— FMCAD, San Jose 2006 —

Networks of Elastic Circuits

Sava Krstić, Intel Strategic CAD Labs

with

Jordi Cortadella (UPC) Mike Kishinevsky (SCL) John O'Leary (SCL)

Latency Insensitive Design

- * Challenge in nanoscale technology: Implement a given functionality in a way that tolerates the latency changes of components and wires connecting them.
- * Pioneering work: Carloni, McMillan, Sangiovanni-Vincentelli (CAV 1999)
- * Intel project SELF (Synchronous Elastic Flow): Kishinevsky, Cortadella, Grundmann (TAU2005, DAC 2006)
- * This presentation: Theoretical foundation for SELF

Elastic Circuits

* Ordinary (non-elastic) adder

* Elastic adder

* Elasticization of a wire: Var. Latency Empty Elastic Buffer

SELF Approach to Elasticization

- * Wires of A become channels—triples of wires—in A^e .
 - X vs. $\langle X, \mathsf{valid}_X, \mathsf{stop}_X \rangle$

* States of SELF channels:

idle

Questions

- * Given a circuit A, how to construct its elasticization(s) A^e ?
 - SELF does it
- * If N is an ordinary network and we elasticize its components and connect channels accordingly, will we get an elasticization of N?
- * If we insert an empty elastic buffer into a channel of an elastic network, will the resulting network be "equivalent" to the given one?

More Basic Questions

- * What is precisely the "equivalence" of an ordinary and an elastic circuit?
- * What is an elastic circuit?
- * What is a circuit?

Ordinary Circuits and Networks

Systems

- * Set of wires W
 - Example: for the system Adder, $W = \{\text{in1}, \text{in2}, \text{out}\}$
- * Set of W-behaviors $[\![W]\!]$: W-indexed records of streams
 - Example: $\sigma = \langle \sigma. \text{in} 1, \sigma. \text{in} 2, \sigma. \text{out} \rangle$ $\sigma. \text{in} 1 = \langle 2, 2, 2, \ldots \rangle$ $\sigma. \text{in} 2 = \langle 1, 2, 3, \ldots \rangle$ $\sigma. \text{out} = \langle 3, 4, 5, \ldots \rangle$
- * A W-system is a set of W-behaviors
 - Example: Adder = $\{\sigma \mid \sigma.out = \sigma.in1 \oplus \sigma.in2\}$ $\langle 3, 4, 5, \ldots \rangle = \langle 2, 2, 2, \ldots \rangle \oplus \langle 1, 2, 3, \ldots \rangle$
 - Example: Conn = $\{\sigma \mid \sigma.out = \sigma.in\}$

System Operations: Hiding, Composition, Networks

- * $\mathsf{hide}_V(\mathcal{S}) = \{\sigma_{W-V} \mid \sigma \in \mathcal{S}\} \subseteq [W-V]$
- * $\mathcal{S}_1 \sqcup \mathcal{S}_2 = \{ \sigma \mid \sigma_{W_1} \in \mathcal{S}_1 \land \sigma_{W_2} \in \mathcal{S}_2 \} \subseteq [W_1 \cup W_2]$
- * Networks of systems:

$$\langle \mathcal{S}_1, \dots, \mathcal{S}_m | u_1 = v_2, \dots, u_n = v_n \rangle =$$

 $\mathsf{hide}_{\{u_1, \dots, u_n, v_1, \dots, v_n\}} (\mathcal{S}_1 \sqcup \dots \sqcup \mathcal{S}_m \sqcup \mathsf{Conn}(u_1, v_1) \sqcup \dots \sqcup \mathsf{Conn}(u_n, v_n))$

Measuring Distance Between Streams (Behaviors)

- * **Definition** $a \sim_n b$ iff $\operatorname{prefix}(n, a) = \operatorname{prefix}(n, b)$
- * **Definition** $\sigma \sim_n \tau$ iff $(\forall w \in W) \ \sigma.w \sim_n \tau.w$

• Example:

$$\sigma.\mathsf{in}1 = \langle 2, 2, 2, \ldots \rangle \qquad \sigma.\mathsf{in}2 = \langle 1, 2, 3, \ldots \rangle \qquad \sigma.\mathsf{out} = \langle 3, 4, 5, \ldots \rangle$$

$$\tau.\mathsf{in}1 = \langle 2, 2, 2, \ldots \rangle \qquad \tau.\mathsf{in}2 = \langle 1, 2, 5, \ldots \rangle \qquad \tau.\mathsf{out} = \langle 3, 4, 7, \ldots \rangle$$

$$\therefore \sigma \sim_2 \tau \qquad \therefore \sigma \not\sim_3 \tau$$

Machines (Circuits Abstractly)

Definition An (I,O)-machine is an $(I \cup O)$ -system given by a function $F: [I] \to [O]$ satisfying the causality property

$$(\forall \sigma, \sigma' \in \llbracket I \rrbracket)(\forall k \geq 0) \quad \sigma \sim_k \sigma' \implies F(\sigma) \sim_k F(\sigma')$$

Outputs at the first k cycles are determined by inputs at the first k cycles.

Modeling Combinational vs. Sequential Dependency

* Feedback: When is it a machine?

$$S: \xrightarrow{u} \xrightarrow{v} \xrightarrow{u} \xrightarrow{v} : \xrightarrow{u} \xrightarrow{v} \xrightarrow{u} \xrightarrow{v} \xrightarrow{u} \xrightarrow{v}$$

Definition An input-output pair (u, v) is sequential if

$$\left(\begin{array}{c} \forall \sigma, \sigma' \in \llbracket I \rrbracket \\ \forall k \geq 0 \end{array} \right) \quad \begin{array}{c} \sigma.u \sim_{k-1} \sigma'.u \\ \land \\ (\forall x \neq u) \ \sigma.x \sim_k \sigma'.x \end{array} \implies F(\sigma).v \sim_k F(\sigma').v$$

Combinational Loop Theorem

Definition $\Gamma(\mathcal{N})$: Vertices are wires of \mathcal{N} ; directed edges drawn for non-sequential wire pairs.

Theorem If $\Gamma(\mathcal{N})$ is acyclic, then \mathcal{N} is a machine.

Elastic Circuits and Networks

[I, O]-Elastic Machine

- * Input-output structure
 - inputs: $I \cup \{ \mathsf{valid}_X \mid X \in I \} \cup \{ \mathsf{stop}_Y \mid Y \in O \}$
 - outputs: $O \cup \{ \mathsf{valid}_Y \, | \, Y \in O \} \cup \{ \mathsf{stop}_X \, | \, X \in I \}$

- * Persistence
 - $\mathcal{S} \models \mathsf{G} (\mathsf{valid}_Y \land \mathsf{stop}_Y \Rightarrow (\mathsf{valid}_Y)^+)$ for every $Y \in O$

[I, O]-Elastic Machine (ctd)

* Transfer and token count

cycle	0	1	2	3	4	5	6	7	8	9	
X	*	A	B	B	B	C	*	*	D	D	
$valid_X$	0	1	1	1	1	1	0	0	1	1	
$stop_X$	0	0	1	1	0	0	0	1	1	0	
tct_X	0	1	1	1	2	3	3	3	3	4	

- Transfer behavior ω^{T} (data from transfer cycles)
- $\omega^{\intercal}.X = (A, B, C, D, \ldots)$
- Components $\omega^{\mathsf{T}}.X$ of ω^{T} are perhaps finite sequences

[I, O]-Elastic Machine (ctd)

* Liveness

$$(\forall Y \in O) \quad \mathcal{S} \models \mathsf{G} \left(\mathsf{min_tct}_O \ge \mathsf{tct}_Y \land \mathsf{min_tct}_I > \mathsf{tct}_Y \Rightarrow \mathsf{F} \, \mathsf{valid}_Y \right)$$

$$(\forall X \in I) \quad \mathcal{S} \models \mathsf{G} \left(\mathsf{min_tct}_{I \cup O} \ge \mathsf{tct}_X \Rightarrow \mathsf{F} \, \neg \mathsf{stop}_X \right)$$

Serve only the hungriest channels:

- Liveness guarantees that all transfer behaviors $\omega^{\mathsf{T}}.Z$ are infinite (in an "elastic environment")
- \therefore The transfer system $|S^{\dagger}| = \{\omega^{\dagger} \mid \omega \in S \sqcup \operatorname{Env}_{I,O}\}$

[I, O]-Elastic Machine (ctd)

* Determinism

$$(\forall \omega_1, \omega_2 \in \mathcal{S}) \quad \omega_1^{\mathsf{T}}.I = \omega_2^{\mathsf{T}}.I \quad \Rightarrow \quad \omega_1^{\mathsf{T}}.O = \omega_2^{\mathsf{T}}.O$$

Definition S is an [I,O]-elastic machine if it has the input-output structure as described, and satisfies the persistence, liveness, and determinism conditions.

Theorem If S is an [I,O]-elastic machine, then S^{T} is an (I,O)-machine.

* \mathcal{S} is an elasticization of \mathcal{M} when $\mathcal{M} = \mathcal{S}^{\mathsf{T}}$

Elastic Networks

Suppose S_1, \ldots, S_m are elastic machines.

$$\mathcal{N} = \langle \langle \mathcal{S}_1, \dots, \mathcal{S}_m \, [] \, X_1 = Y_1, \dots, X_n = Y_n \rangle \rangle$$

$$\stackrel{\triangle}{=}$$

$$\langle \mathcal{S}_1, \dots, \mathcal{S}_m \, | \, X_i = Y_i, \mathsf{valid}_{X_i} = \mathsf{valid}_{Y_i}, \mathsf{stop}_{X_i} = \mathsf{stop}_{Y_i} \, (1 \le i \le n) \rangle$$

- Is $\mathcal N$ an elastic machine?
- Do we have $\mathcal{N}^{\intercal} = \langle \mathcal{S}_1^{\intercal}, \dots, \mathcal{S}_m^{\intercal} | X_1 = Y_1, \dots, X_n = Y_n \rangle$?

Elastic Feedback

$$\mathcal{F} = \langle\!\langle \mathcal{S} \, [\! [\, P = Q \rangle \!\rangle \ \, = \ \, \langle \mathcal{S} \, | \, P = Q, \mathsf{valid}_P = \mathsf{valid}_Q, \mathsf{stop}_P = \mathsf{stop}_Q \rangle$$

Definition An i/o channel pair (P,Q) sequential for $\mathcal S$ if

 $\mathcal{S} \models \mathsf{G} \left(\mathsf{min_tct}_{I \cup O} \geq \mathsf{tct}_Q \wedge \mathsf{min_tct}_{I - \{P\}} > \mathsf{tct}_Q \Rightarrow \mathsf{F} \, \mathsf{valid}_Q \right)$ and the graph $\Gamma(\mathcal{F})$ is acyclic.

Elastic Network Theorem

•
$$\mathcal{N} = \langle \langle \mathcal{S}_1, \dots, \mathcal{S}_m [X_1 = Y_1, \dots, X_n = Y_n \rangle \rangle$$

ullet δ_i : a sequentiality interface for \mathcal{S}_i

 $\delta_i(Z)=$ set of input wires "jointly sequential" wrt Z

Definition $\Delta(\mathcal{N})$: Vertices are channels of \mathcal{N} (X_j and X_j are identified); a directed edge drawn for each pair $(P,Q) \in I_i \times O_i$ such that $P \notin \delta_i(Q)$.

•
$$\mathcal{N}' = \langle \mathcal{S}_1^\mathsf{T}, \dots, \mathcal{S}_m^\mathsf{T} | X_1 = Y_1, \dots, X_n = Y_n \rangle$$

Theorem If $\Delta(\mathcal{N})$ is acyclic, then \mathcal{N} is an elastic machine, \mathcal{N}' is a machine, and $\mathcal{N}^{\mathsf{T}} = \mathcal{N}'$.

Inserting Empty Buffers

Theorem Suppose \mathcal{N}_1 and \mathcal{N}_2 are elastic networks obtainable from each other by insertion and deletion of empty elastic buffers. If $\Delta(\mathcal{N}_1)$ is acyclic, then

•
$$\Delta(\mathcal{N}_2)$$
 is acyclic

$$\qquad \qquad \mathcal{N}_1^\mathsf{T} = \mathcal{N}_2^\mathsf{T}$$

What's Coming Next?

- * Prove that SELF creates elastic circuits
- * Weaken the definition of elasticity to include all existing "elastic" designs
- * Extend theory to more complex SELF protocols

Background: Patient Systems

(Carloni, McMillan, Sangiovanni-Vincentelli)

* Behavior: for each wire, a stream in which each element is either a value or \Box ("bubble")

* Example:

	X	*	\boldsymbol{A}	B	B	B	C	*	*	D	D	
elastic	$valid_X$	0	1	1	1	1	1	0	0	1	1	
	$stop_X$	0	0	1	1	0	0	0	1	1	0	
patient			\overline{A}			В	C				D	

- * Precise definition when a collection of such behaviors is a patient process
- * Compositionality Theorem for patient processes; costruction of a patient process latency equivalent to a given circuit
- "Elastic" and "patient" are difficult to compare