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Maybe
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Compositional Semantics Thorough Semantics
v/ Computationally cheap X Computationally expensive
X Less precise (more maybe's) v/ More precise (less maybe's)
¢/ Various implementations X No implementation

Need to increase conclusiveness
while avoiding too much overhead
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- Identify formulas where compositional =
thorough

Y Self -minimizing formulas [Godefroid & Huth 05]
LE.g. AG(odd(y))

2 Transform other formulas into equivalent
self -minimizing ones
Y Semantic minimization [Reps et. al. 02]
LE.g. AG(odd(y)) A Alodd(x) U -~odd(y)]
A[(odd(x) A odd(y)) U False] (Self-minimizing)
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Thorough Checking Algorithm

ThoroughCheck (M, ¢)
(1): if (v := MODELCHECK(M, ¢)) # Maybe
return v
(2): if ISSELFMINIMIZING (M, )
return Maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(¢p))
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ThoroughCheck (M, ¢)

(1): if (v := MODELCHECK(M, ¢)) # Maybet/
return v

(2): if ISSELFMINIMIZING (M, ¢)
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(¢p))

2 Step (2):

L Identifying a large class of self-minimizing
formulas

2 Step (3):

Y Devising practical algorithms for semantic
minimization of remaining formulas
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1.We prove that disjunctive/conjunctive p-

calculus formulas are self-minimizing

“Related Work:

> [6urfinkel & Chechik 05] [Godefroid & Huth 05] checking
pure polarity
»>Only works for PKSs, not for all partial models

2.We provide a semantic minimization
algorithm via the tableau-based translation

of [Janin & Walukiewicz 95]
Y Related Work:

» [6odefroid & Huth 05]: p-calculus is closed under
semantic-minimization
»But no implementable algorithm
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2 Thorough checking can be as hard as ,
satisfiability checking _’
Y Satisfiability checking is linear for

disjunctive p-calculus

»Then, can we show that disjunctive
H-calculus is self-minimizing?
»>But, a naive inductive proof does not work

for the greatest fixpoint formulas [Godefroid
& Huth 05]

2 Our proof uses an automata
characterization of thorough checkmg\@

Y reducing checking self-minimization to
deciding an automata intersection game
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= Disjunctive p-calculus [Janin and Walukiewicz 95]
L Conjunctions are restricted (special conjunctions)

L Examples
01 = EXp AEX—qAAX(pV —q)
p2 = AX(pAq) v
p3 = AXp A AXq X
L Syntax
pu=p|l-p|Z|leVe|pA /\ EXOANAX \/ 0| v(Z) o(Z) | mZ)- o(Z)

pel’ Yel

2 Conjunctive p-calculus is dual

= Disjunctive p-calculus is equal to p-calculus



“Formulas = automata,
abstract models = automata

Y Model Checking
Model M satisfies formula @ L(Am) C L(A,)

L Refinement Checking
Model M abstracts model M' L(Am) C L(Awm)

“We use p-automata [Janin & Walukiewicz 95]

& Similar to non-deterministic tree automata
& But

»>no fixed branching degree
>no ordering over successors
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2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false
(true or maybe)
there is a completion of M satisfying @
2.For every abstract model M over which ¢ is non-true

(false or maybe)
there is a completion of M refuting @
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2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false

(true or maybe)
L(Am) N L(A,) # 0

2.For every abstract model M over which ¢ is non-true

(false or maybe)
E(AM) A ‘C(A_'SO) 7& 0

- Existing partial model formalisms can be
translated to p-automata

2 There exists a linear syntactic translation

from disjunctive p-calculus to p-automata
[Janin & Walukiewicz 95]
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~Let ¢ be a disjunctive formula. Show:
for every abstract model M over which @ is

non-false L(Am) N L(AL) £ 0

2The case for conjunctive ¢ is dual

2Proof Steps:
1. Translate models and formulas to p-automata

2.Find a winning strategy for an intersection game
between Ay and A, (by structural induction)
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2 Show that AGp is self-minimizing
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2. Find a winning strategy for an intersection game

“4 ArGp —o
bO,{Sl bO,sl,SQ} bO,{Sz}

P, q pal q b, q bO bl
g R
bl,{33 3 b27{83} W
P, q P, 'q @
Ny QO=0
4d3)Q =0
b3, 83}

P, 9




2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2. Find a winning strategy for an intersection game

AI\»//I/@QO -AAGp o
boa{sl bO, 31,32} bo,{82} @

p,:} P,q] [P 4g bo b1
P, 4
e TD B
bl,{33 ) bgﬂrsg} \, -
. T P, —q QQZ{
g =

O

N—

b3 a1




2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2. Find a winning strategy for an intersection game

AI\»//I/@QO -AAGp o
boa{sl bO, 31,32} bo,{82} @

p,q P,q] [P 4g bo b1
D, g

eI
61{83 b2{s} K/’—\\/
=D, q D, \d2)

N Q=0

@V Q=0

bis_s‘r

(P, q

Proof by structural induction (see the paper)
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2Proof Steps:

1. Translate models and formulas to p-automata

2.Find a winning strategy for an intersection game

-Tn conclusion:

Y Disjunctive/conjunctive p-calculus formulas are self-
minimizing

L Every up-calculus formula can be translated to its
disjunctive/conjunctive form
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Thorough Checking Algorithm

ThoroughCheck(M, ¢)
(1): if (v := MODELCHECK (M, ¢)) # Maybe
return v

(2): if ISSELFMINIMIZING (M, ¢)
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(())




IsSelfMinimizing(M, o)

(i) if M is a PKS or an MixTS and ¢ is monotone
return true

(ii) if M is an HTS and ¢ is disjunctive
return true

(iii) return false

- Example

Y Property AGq A Alp U —q] over

»PKSs and MixTSs violates condition (i)
»HTSs violates condition (i)

©Thus, AGg A A[p U —ql is not self-minimizing



SemanticMinimization(y)

(i) convert @ to its disjunctive form ¢
(ii) replace all special conjunctions in ¢V
containing p and —p with False

(iii) return ¢

= Example: semantic minimization of AGq A Ajp U —q]
& Step (i) AGqAA[pU—q 3 AlpAqUqA-qAAXAG)
Q>S1'ep (ii) Alp AqUqgA —qAAXAGq] W) Alp N q U False]



ThoroughCheck(M, ¢)
(1): if (v := MODELCHECK (M, ¢)) # Maybe
return v

(2): if ISSELFMINIMIZING (M, )
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(())

2 Step (1)
Y Model checking p-calculus formulas O((|¢| - |M|)l4/2+1)
= Step (2)

U Self-minimization check is linear in the size of
formulas

= Step (3)
L, Semantic minimization O((20U#D .| pr))Ld/2+1
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- Studied thorough checking over partial
models

“ An automata-based characterization for
thorough checking

L Simple and syntactic self-minimization checks

»6Grammars for identifying self-minimizing formulas in
CTL

LA semantic-minimization procedure
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2 Studying the classes of formulas for which
thorough checking is cheap

Slinear in the size of models

- Identifying commonly used formulas in
practice that are self-minimizing
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