Thorough Checking
Revisited

Shiva Nejati Mihaela Gheorghiu Marsha Chechik

{shiva,mg,chechik}@cs.toronto.edu

University of Toronto

SW/HW
Artifact

Model
Extraction

|

| Finite Abstract Model I

~

Inconclusive Answer

Model-Checker

Correctness
Property

Translation

Temporal Loglc

Conclusive Answer
—

l

Partial Model Universal +
M Existential Properties
\ / e

Model-Checker | m———

Maybe

l

(PKS [BGOO]

‘ Partial Models I< MixedTS [DGG97]

Maybe

|

\HTS:SGM] [LX90]

Model-Checker

Universal +
Existential Properties

\L (PKS [BGOO]
‘ I MixedTS [DGG9T7]
\H']?S:SG04] [LX90]
Model-Checker | m—-

Compositional Semantics Thorough Semantics
[Bruns & Godefroid 00]

7\,

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional
Semantics

Thorough
Semantics

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional AG(odd(y)) A Alodd(x) U —odd(y)]

Semantics

Thorough
Semantics

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional _
Sernantics Maybe A Alodd(x) U —odd(y)]

Thorough
Semantics

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional Maybe A Maybe
Semantics

Thorough
Semantics

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional Maybe
Semantics

Thorough
Semantics

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Composit.ional Maybe
Semantics
Thorough AG(odd(y)) A Alodd(x) U —odd(y)]
Semantics False over all Concretizations of M

4

Property : AG(odd(y)) A Alodd(x) U —odd(y)]

Compositional Maybe
Semantics
Thorough False
Semantics

Parti llM ol Universal +
I-MI Existential Properties
‘ \ / e
Model-Checker | m——

Maybe
° °
o’ ®e
Compositional Semantics Thorough Semantics
v/ Computationally cheap X Computationally expensive
X Less precise (more maybe's) v/ More precise (less maybe's)
¢/ Various implementations X No implementation

Need to increase conclusiveness
while avoiding too much overhead

5

- Identify formulas where compositional =
thorough

Y Self -minimizing formulas [Godefroid & Huth 05]
LE.g. AG(odd(y))

2 Transform other formulas into equivalent
self -minimizing ones
Y Semantic minimization [Reps et. al. 02]
LE.g. AG(odd(y)) A Alodd(x) U -~odd(y)]
A[(odd(x) A odd(y)) U False] (Self-minimizing)

6

Thorough Checking Algorithm

ThoroughCheck (M, ¢)
(1): if (v := MODELCHECK(M, ¢)) # Maybe
return v
(2): if ISSELFMINIMIZING (M,)
return Maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(¢p))

Thorough Checking Algorithm

ThoroughCheck (M, ¢)
(1): if (v := MODELCHECK(M, ¢)) # Maybet/
return v
(2): if ISSELFMINIMIZING (M,)
return Maybe
(3): return MODELCHECK(M , SEMANTICMINIMIZATION(¢p))

ThoroughCheck (M, ¢)

(1): if (v := MODELCHECK(M, ¢)) # Maybet/
return v

(2): if ISSELFMINIMIZING (M, ¢)
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(¢p))

2 Step (2):

L Identifying a large class of self-minimizing
formulas

2 Step (3):

Y Devising practical algorithms for semantic
minimization of remaining formulas

7

1.We prove that disjunctive/conjunctive p-

calculus formulas are self-minimizing

“Related Work:

> [6urfinkel & Chechik 05] [Godefroid & Huth 05] checking
pure polarity
»>Only works for PKSs, not for all partial models

2.We provide a semantic minimization
algorithm via the tableau-based translation

of [Janin & Walukiewicz 95]
Y Related Work:

» [6odefroid & Huth 05]: p-calculus is closed under
semantic-minimization
»But no implementable algorithm

8

2 Thorough checking can be as hard as ,
satisfiability checking _’
Y Satisfiability checking is linear for

disjunctive p-calculus

»Then, can we show that disjunctive
H-calculus is self-minimizing?
»>But, a naive inductive proof does not work

for the greatest fixpoint formulas [Godefroid
& Huth 05]

2 Our proof uses an automata
characterization of thorough checkmg\@

Y reducing checking self-minimization to
deciding an automata intersection game

9

-)

-

= Main Result: Disjunctive/Conjunctive p-

calculus is self-minimizing

®
Y Background
S Proof

= Our thorough checking algorithm

= Conclusion and future work

= Disjunctive p-calculus [Janin and Walukiewicz 95]
L Conjunctions are restricted (special conjunctions)

L Examples
01 = EXp AEX—qAAX(pV —q)
p2 = AX(pAq) v
p3 = AXp A AXq X
L Syntax
pu=p|l-p|Z|leVe|pA /\ EXOANAX \/ 0| v(Z) o(Z) | mZ)- o(Z)

pel’ Yel

2 Conjunctive p-calculus is dual

= Disjunctive p-calculus is equal to p-calculus

“Formulas = automata,
abstract models = automata

Y Model Checking
Model M satisfies formula @ L(Am) C L(A,)

L Refinement Checking
Model M abstracts model M' L(Am) C L(Awm)

“We use p-automata [Janin & Walukiewicz 95]

& Similar to non-deterministic tree automata
& But

»>no fixed branching degree
>no ordering over successors

12

2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false
(true or maybe)
there is a completion of M satisfying @
2.For every abstract model M over which ¢ is non-true

(false or maybe)
there is a completion of M refuting @

2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false

(true or maybe)
L(AM)NL(A,) # 0

2.For every abstract model M over which ¢ is non-true
(false or maybe)
there is a completion of M refuting @

2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false

(true or maybe)
L(AM)NL(A,) # 0

2.For every abstract model M over which ¢ is non-true

(false or maybe)
C(-AM) A ﬁ(Aﬁw) 7& 0

2 A formula @ is self-minimizing if
1.For every abstract model M over which ¢ is non-false

(true or maybe)
L(Am) N L(A,) # 0

2.For every abstract model M over which ¢ is non-true

(false or maybe)
E(AM) A ‘C(A_'SO) 7& 0

- Existing partial model formalisms can be
translated to p-automata

2 There exists a linear syntactic translation

from disjunctive p-calculus to p-automata
[Janin & Walukiewicz 95]

-)

-

= Main Result: Disjunctive/Conjunctive p-

calculus is self-minimizing

G
G
“Proof

= Our thorough checking algorithm

= Conclusion and future work

~Let ¢ be a disjunctive formula. Show:
for every abstract model M over which @ is

non-false L(Am) N L(AL) £ 0

2The case for conjunctive ¢ is dual

2Proof Steps:
1. Translate models and formulas to p-automata

2.Find a winning strategy for an intersection game
between Ay and A, (by structural induction)

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

1.Translate models and formulas to p-automata

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

1.Translate models and formulas to p-automata

A AGp
bO,{Sl b0,81,82} bO,{SQ}

P, 49| [P g P, 9

1
. OQO
bla{33 3 b2a{53}

P, q P, 'q
Ny

g3) =0

b37 83}
P, q

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

1.Translate models and formulas to p-automata

Moo
bO,{Sl b0,81,82} bO,{SQ}

P, 49| [P g P, 9

1
. OQO
bla{33 3 b2a{53}

P, q P, 'q
Ny

g3) =0

b37 83}
P, q

-AAG P

Q=1
) 8

D, q P, q

Q=0

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2. Find a winning strategy for an intersection game

“4 ArGp —o
bO,{Sl bO,sl,SQ} bO,{Sz}

P, q pal q b, q bO bl
g R
bl,{33 3 b27{83} W
P, q P, 'q @
Ny QO=0
4d3)Q =0
b3, 83}

P, 9

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2. Find a winning strategy for an intersection game

AI\»//I/@QO -AAGp o
boa{sl bO, 31,32} bo,{82} @

p,:} P,q] [P 4g bo b1
P, 4
e TD B
bl,{33) bgﬂrsg} \, -
. T P, —q QQZ{
g =

O

N—

b3 a1

2 Show that AGp is self-minimizing

S j.e.,VM over which @ is non-false
L(Am) N L(Aacp) # 0

2. Find a winning strategy for an intersection game

AI\»//I/@QO -AAGp o
boa{sl bO, 31,32} bo,{82} @

p,q P,q] [P 4g bo b1
D, g

eI
61{83 b2{s} K/’—\\/
=D, q D, \d2)

N Q=0

@V Q=0

bis_s‘r

(P, q

Proof by structural induction (see the paper)

6

2Proof Steps:

1. Translate models and formulas to p-automata

2.Find a winning strategy for an intersection game

-Tn conclusion:

Y Disjunctive/conjunctive p-calculus formulas are self-
minimizing

L Every up-calculus formula can be translated to its
disjunctive/conjunctive form

Outline

S
S
S

= Our thorough checking algorithm

= Conclusion and future work

Thorough Checking Algorithm

ThoroughCheck(M, ¢)
(1): if (v := MODELCHECK (M, ¢)) # Maybe
return v

(2): if ISSELFMINIMIZING (M, ¢)
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(())

IsSelfMinimizing(M, o)

(i) if M is a PKS or an MixTS and ¢ is monotone
return true

(ii) if M is an HTS and ¢ is disjunctive
return true

(iii) return false

- Example

Y Property AGq A Alp U —q] over

»PKSs and MixTSs violates condition (i)
»HTSs violates condition (i)

©Thus, AGg A A[p U —ql is not self-minimizing

SemanticMinimization(y)

(i) convert @ to its disjunctive form ¢
(ii) replace all special conjunctions in ¢V
containing p and —p with False

(iii) return ¢

= Example: semantic minimization of AGq A Ajp U —q]
& Step (i) AGqAA[pU—q 3 AlpAqUqA-qAAXAG)
Q>S1'ep (ii) Alp AqUqgA —qAAXAGq] W) Alp N q U False]

ThoroughCheck(M, ¢)
(1): if (v := MODELCHECK (M, ¢)) # Maybe
return v

(2): if ISSELFMINIMIZING (M,)
return Maybe

(3): return MODELCHECK(M , SEMANTICMINIMIZATION(())

2 Step (1)
Y Model checking p-calculus formulas O((|¢| - |M|)l4/2+1)
= Step (2)

U Self-minimization check is linear in the size of
formulas

= Step (3)
L, Semantic minimization O((20U#D .| pr))Ld/2+1

20

- Studied thorough checking over partial
models

“ An automata-based characterization for
thorough checking

L Simple and syntactic self-minimization checks

»6Grammars for identifying self-minimizing formulas in
CTL

LA semantic-minimization procedure

21

2 Studying the classes of formulas for which
thorough checking is cheap

Slinear in the size of models

- Identifying commonly used formulas in
practice that are self-minimizing

22

Thank Youl
Questions?

