

Thorough Checking Revisited

Shiva Nejati Mihaela Gheorghiu Marsha Chechik

{shiva,mg,chechik}@cs.toronto.edu

University of Toronto

Automated Abstraction

3-Valued Abstraction

3-Valued Abstraction

3-Valued Abstraction

Compositional Semantics	
Thorough Semantics	

Compositional Semantics	$AG(odd(y)) \land A[odd(x) \ U \ \neg odd(y)]$
Thorough Semantics	

Compositional Semantics	$Maybe \wedge A[odd(x)\ U\ \neg odd(y)]$
Thorough Semantics	

Compositional Semantics	Maybe ∧ Maybe
Thorough Semantics	

Compositional Semantics	Maybe
Thorough Semantics	

Compositional Semantics	Maybe
Thorough Semantics	$AG(odd(y)) \land A[odd(x)\ U\ \neg odd(y)]$ False over all Concretizations of M

Compositional Semantics	Maybe
Thorough Semantics	False

Compositional vs Thorough

Need to increase conclusiveness while avoiding too much overhead

Implementing Thorough via Compositional

→Identify formulas where compositional = thorough

```
Self-minimizing formulas [Godefroid & Huth 05]
E.g. AG(odd(y))
```

→Transform other formulas into equivalent self-minimizing ones

```
Semantic minimization [Reps et. al. 02]

E.g. AG(odd(y)) \land A[odd(x) \cup \neg odd(y)]

A[(odd(x) \land odd(y)) \cup False] (Self-minimizing)
```

Thorough Checking Algorithm

```
\begin{aligned} \textbf{ThoroughCheck}(M,\varphi) \\ (1): & \text{ if } (v := \text{ModelCheck}(M,\varphi)) \neq \text{Maybe} \\ & \text{ return } v \\ (2): & \text{ if } \underbrace{\text{IsSelfMinimizing}(M,\varphi)}_{\text{ return Maybe}} \\ (3): & \text{ return ModelCheck}(M, \underbrace{\text{SemanticMinimization}(\varphi)}) \end{aligned}
```

Thorough Checking Algorithm

```
 \begin{array}{ll} \textbf{ThoroughCheck}(M,\varphi) \\ (1): & \text{if } (v := \text{ModelCheck}(M,\varphi)) \neq \text{Maybell} \\ & \text{return } v \\ (2): & \text{if } \textbf{IsSelfMinimizing}(M,\varphi) \\ & \text{return Maybe} \\ (3): & \text{return ModelCheck}(M, \textbf{SemanticMinimization}(\varphi)) \end{array}
```

Our Goal

```
 \begin{array}{ll} \textbf{ThoroughCheck}(M,\varphi) \\ (1): & \text{if } (v:=\text{ModelCheck}(M,\varphi)) \neq \text{Maybe} \checkmark \\ & \text{return } v \\ (2): & \text{if } \underbrace{\text{IsSelfMinimizing}(M,\varphi)}_{\text{return Maybe}} \\ (3): & \text{return ModelCheck}(M,\text{SemanticMinimization}(\varphi)) \end{array}
```

→Step (2):

□ Identifying a large class of self-minimizing formulas

→Step (3):

Devising practical algorithms for semantic minimization of remaining formulas

Our Contributions

1. We prove that disjunctive/conjunctive µ-calculus formulas are self-minimizing

Related Work:

- ➤ [Gurfinkel & Chechik 05] [Godefroid & Huth 05] checking pure polarity
- >Only works for PKSs, not for all partial models
- 2. We provide a semantic minimization algorithm via the tableau-based translation of [Janin & Walukiewicz 95]

♥Related Work:

- \triangleright [Godefroid & Huth 05]: μ -calculus is closed under semantic-minimization
- > But no implementable algorithm

Main Idea

- →Thorough checking can be as hard as satisfiability checking
 - Satisfiability checking is linear for disjunctive μ-calculus
 - \succ Then, can we show that disjunctive μ -calculus is self-minimizing?
 - ▶But, a naive inductive proof does not work for the greatest fixpoint formulas [Godefroid & Huth 05]
- →Our proof uses an automata characterization of thorough checking
 - reducing checking self-minimization to deciding an automata intersection game

Outline

- → Need for thorough checking
- → Thorough via compositional
- → Main Result: Disjunctive/Conjunctive µ-calculus is self-minimizing
 - **Intuition**
 - **Background**
 - **Proof**
- →Our thorough checking algorithm
- → Conclusion and future work

Background

- → Disjunctive µ-calculus [Janin and Walukiewicz 95]
 - Conjunctions are restricted (special conjunctions)
 - **Examples**

$$\varphi_1 = \mathsf{EXp} \wedge \mathsf{EX} \neg \mathsf{q} \wedge \mathsf{AX}(\mathsf{p} \vee \neg \mathsf{q})$$

$$\varphi_2 = \mathsf{AX}(\mathsf{p} \wedge \mathsf{q})$$

$$\varphi_3 = \mathsf{AXp} \land \mathsf{AXq}$$

♥Syntax

$$\varphi ::= \mathsf{p} \mid \neg \mathsf{p} \mid \mathsf{Z} \mid \varphi \vee \varphi \mid \mathbf{p} \wedge \bigwedge_{\psi \in \mathbf{\Gamma}} \mathbf{EX} \psi \wedge \mathbf{AX} \bigvee_{\psi \in \mathbf{\Gamma}} \psi \mid \nu(\mathsf{Z}) \cdot \varphi(\mathsf{Z}) \mid \mu(\mathsf{Z}) \cdot \varphi(\mathsf{Z})$$

- → Conjunctive µ-calculus is dual
- → Disjunctive µ-calculus is equal to µ-calculus

Background:

Abstraction as Automata [Dams & Namjoshi 05]

- →Formulas = automata, abstract models = automata
 - Model Checking

 Model M satisfies formula φ $\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi})$
 - $\label{eq:Refinement Checking} \begin{tabular}{ll} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$
- → We use µ-automata [Janin & Walukiewicz 95]
 - Similar to non-deterministic tree automata
 - **♥**But
 - >no fixed branching degree
 - >no ordering over successors

$\rightarrow A$ formula ϕ is self-minimizing if

1. For every abstract model M over which ϕ is non-false (true or maybe)

there is a completion of M satisfying ϕ

2. For every abstract model M over which ϕ is non-true (false or maybe)

there is a completion of M refuting ϕ

$\rightarrow A$ formula φ is self-minimizing if

1. For every abstract model M over which ϕ is non-false (true or maybe)

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}) \neq \emptyset$$

2. For every abstract model M over which ϕ is non-true (false or maybe)

there is a completion of M refuting ϕ

$\rightarrow A$ formula ϕ is self-minimizing if

1. For every abstract model M over which ϕ is non-false (true or maybe)

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}})\cap\mathcal{L}(\mathcal{A}_{arphi})
eq\emptyset$$

2. For every abstract model M over which ϕ is non-true (false or maybe)

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) \neq \emptyset$$

$\rightarrow A$ formula φ is self-minimizing if

1. For every abstract model M over which ϕ is non-false (true or maybe)

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\varphi}) \neq \emptyset$$

2. For every abstract model M over which ϕ is non-true (false or maybe)

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\neg \varphi}) \neq \emptyset$$

- →Existing partial model formalisms can be translated to µ-automata
- There exists a linear syntactic translation from disjunctive µ-calculus to µ-automata [Janin & Walukiewicz 95]

Outline

- → Need for thorough checking
- → Thorough via compositional
- → Main Result: Disjunctive/Conjunctive µ-calculus is self-minimizing
 - **Intuition**
 - Background
 - **Proof**
- →Our thorough checking algorithm
- → Conclusion and future work

Main Result

 \rightarrow Let ϕ be a disjunctive formula. Show:

for every abstract model M over which ϕ is non-false $\mathcal{L}(\mathcal{A}_M)\cap\mathcal{L}(\mathcal{A}_{\wp})\neq\emptyset$

- \rightarrow The case for conjunctive ϕ is dual
- →Proof Steps:
 - 1. Translate models and formulas to μ -automata
 - 2. Find a winning strategy for an intersection game between \mathcal{A}_{M} and \mathcal{A}_{φ} (by structural induction)

→Show that AGp is self-minimizing

 \forall i.e., \forall M over which ϕ is non-false $\mathcal{L}(\mathcal{A}_{M}) \cap \mathcal{L}(\mathcal{A}_{AGP}) \neq \emptyset$

→Show that AGp is self-minimizing

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

1. Translate models and formulas to μ -automata

AGp

→Show that AGp is self-minimizing

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

1. Translate models and formulas to μ -automata

AGp

→Show that AGp is self-minimizing

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

1. Translate models and formulas to μ -automata

→Show that AGp is self-minimizing

 $\$ i.e., $\forall M$ over which ϕ is non-false

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

2. Find a winning strategy for an intersection game

→Show that AGp is self-minimizing

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

2. Find a winning strategy for an intersection game

→Show that AGp is self-minimizing

 $\$ i.e., $\forall M$ over which ϕ is non-false

$$\mathcal{L}(\mathcal{A}_{\mathsf{M}}) \cap \mathcal{L}(\mathcal{A}_{\mathsf{AGP}}) \neq \emptyset$$

2. Find a winning strategy for an intersection game

Proof by structural induction (see the paper)

Main Result

→Proof Steps:

- 1. Translate models and formulas to μ -automata
- 2. Find a winning strategy for an intersection game

→In conclusion:

- $\$ Disjunctive/conjunctive μ -calculus formulas are self-minimizing
- Every μ-calculus formula can be translated to its disjunctive/conjunctive form

Outline

- → Need for thorough checking
- → Thorough via compositional
- → Main Result: Disjunctive/Conjunctive µ-calculus is self-minimizing
 - **Intuition**
 - Background
 - proof
- →Our thorough checking algorithm
- → Conclusion and future work

Thorough Checking Algorithm

```
\begin{aligned} \textbf{ThoroughCheck}(M,\,\varphi) \\ (1): & \text{ if } (v := \text{ModelCheck}(M,\,\varphi)) \neq \text{Maybe} \\ & \text{ return } v \\ (2): & \text{ if } \underset{\text{IsSelfMinimizing}(M,\,\varphi)}{\text{IsSelfMinimizing}(M,\,\varphi)} \\ & \text{ return Maybe} \\ (3): & \text{ return ModelCheck}(M,\,\underset{\text{SemanticMinimization}(\varphi))} \end{aligned}
```

Self-Minimization

IsSelfMinimizing (M, φ)

- (i) if M is a PKS or an MixTS and φ is monotone return true
- (ii) if M is an HTS and φ is disjunctive return **true**
- (iii) return false

→ Example

- \P Property $AGq \wedge A[p U \neg q]$ over
 - >PKSs and MixTSs violates condition (i)
 - >HTSs violates condition (ii)
- $\$ Thus, $AGq \wedge A[p \cup \neg q]$ is not self-minimizing

Semantic Minimization

SemanticMinimization (φ)

- (i) convert φ to its disjunctive form φ^{\vee}
- (ii) replace all special conjunctions in φ^{\vee} containing p and $\neg p$ with False
- (iii) return φ^{\vee}

- → Example: semantic minimization of $AGq \wedge A[p \cup \neg q]$
 - $\$ Step (i) $AGq \wedge A[p \ U \ \neg q] \xrightarrow{(i)} A[p \wedge q \ U \ q \wedge \neg q \wedge AXAGq]$
 - $\$ Step (ii) $A[p \land q \ U \ q \land \neg q \land AXAGq] \xrightarrow{(ii)} A[p \land q \ U \ False]$

Complexity

```
 \begin{array}{ll} \textbf{ThoroughCheck}(M,\,\varphi) \\ (1): & \text{if } (v:=\operatorname{ModelCheck}(M,\,\varphi)) \neq \operatorname{Maybe} \\ & \text{return } v \\ (2): & \text{if } \underbrace{\operatorname{IsSelfMinimizing}(M,\,\varphi)} \\ & \text{return Maybe} \\ (3): & \text{return ModelCheck}(M,\,\operatorname{SemanticMinimization}(\varphi)) \end{array}
```

→ Step (1)

 $\$ Model checking μ -calculus formulas $O((|\varphi|\cdot |M|)^{\lfloor d/2\rfloor+1})$

→ Step (2)

Self-minimization check is linear in the size of formulas

→ Step (3)

 $\$ Semantic minimization $O((2^{O(|\varphi|)}\cdot |M|)^{\lfloor d/2 \rfloor + 1})$

Conclusion

- →Studied thorough checking over partial models
 - \$\ An automata-based characterization for thorough checking
 - Simple and syntactic self-minimization checks

 Grammars for identifying self-minimizing formulas in

 CTL
 - \$\ A semantic-minimization procedure

Future Work

→Studying the classes of formulas for which thorough checking is cheap

\$linear in the size of models

→Identifying commonly used formulas in practice that are self-minimizing

Thank You! Questions?