
© 2006 Carnegie Mellon University

Assume-Guarantee
Reasoning for Deadlock

Sagar Chaki, Nishant Sinha

November 15, 2006

2

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Overview

We present a framework that uses learning and automated Assume-
Guarantee (AG) reasoning to detect deadlocks

• Concurrent systems with blocking message-passing communication

• Develop a notion of regular failure languages

• Propose a new kind of Failure Automata that accept such languages

• Develop an algorithm LF to learn deterministic FA that accept an

unknown regular failure language

• Use LF to learn appropriate assumptions for deadlock detection

• Present experimental results

3

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Finite LTS

M = (Q , I , Σ , T)

• Q ≡ non-empty set of states

• I ∈ Q ≡ initial state

• Σ ≡ set of actions ≡ alphabet

• T ⊆ Q × Σ × Q ≡ transition relation

a

a

b

c
d

e

M

Σ(M) = {a,b,c,d,e,f}

4

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Operational Semantics

Components handshake (synchronize) over shared actions

• Else proceed independently (asynchronously)

• CSP semantics

Composition of M1 & M2 ≡ M1 || M2

• State of M1 || M2 is of the form (s1,s2) where si is a state of Mi

s1 s’1 a ∉ Σ(M2)
a

(s1,s2) (s’1,s2)
a

s2 s’2 a ∉ Σ(M1)
a

(s1,s2) (s1,s’2)
a

s1 s’1 s2 s’2
a

(s1,s2) (s’1,s’2)
a

a

5

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Example

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1 Σ = {a,b,c} M2 Σ = {a,b’,c}

1,1’ 2,2’
a

3,2’b

2,3’b’

3,3’

b’

b

4,4’
c

M1 ‖ M2

6

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Deadlock

1 2 3 4
a b c

1’ 2’ 3’ 4’
a b’ c

M1 Σ = {a,b,b’,c} M2 Σ = {a,b,b’,c}

1,1’ 2,2’
a

M1 ‖ M2

Deadlock

7

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Deadlock and Composition

a b

c

M1

b c

c

M2

c

M1 || M2

8

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Deadlock and Composition

a

b

M1

M1 || M2

b

a

M1

9

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Failures & Failure Languages

Trace ∈ Σ* = sequence of actions

Refusal ⊆ Σ = set of actions

Failure ∈ Σ* × 2Σ = a trace, followed by a refusal

Deadlock

a

b

L(M1) =

{ λ,{b} a,{a}

ab,{a} abb,{a} …}

Σ = {a,b}

M1 a b

c Σ = {a,b,c}

L(M2) =

{ λ,{b} c,{b} cc,{b} …

a,{a,c} ab,{a,b,c} }

M2

Downward closed

10

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

AG Rule for Deadlock

Consider the following (idea for a) non-circular proof rule

We are interested in the largest A that satisfies the first premise.

• Under what conditions is such a language uniquely defined?

• What kind of automata accept such languages?

• Can we learn such automata efficiently?

M1 || A does not deadlock

M2 � A

M1 || M2 does not deadlock

AG-NC

11

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Downward Closed Failure Languages

A failure language L is downward closed if

∀ t ∈ Σ*, ∀ R, R’ ∈ 2Σ, (t,R) ∈ L ∧ R’ ⊆ R ⇒ (t,R’) ∈ L

There is always an unique maximal downward closed A that satisfies
the first premise of AG-NC

Clearly, languages accepted by LTSs are downward closed.

However, the class of languages accepted by LTSs is simply too
restricted.

We need automata with more general accepting conditions

12

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Failure Automata (FLA)

A = (Q , I , Σ , T, F, µ)

• Q, I, Σ, T defined as for LTSs

• F ⊆ Q is a set of final or accepting states

• µ maps accepting sets to maximal refusal sets

a

b

A1

b

{∅∅∅∅} {{a}}

{{a,b}}

a

b

M

b

L(A_1) = L(M)

a

b

A2

b

{{a},{b}}

{{a}}

L(A_2) = maximal A for M

a,b

a {{a,b}}

13

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Some Results

A failure language is regular iff it is accepted by some FLA

• Deterministic FLA have the same accepting power as FLA in general

• Every regular failure language is accepted by a unique minimal DFLA

The maximal language satisfying premise #1 is unique and regular

• Hence accepted by an unique minimal DFLA

Deadlock can be expressed as a regular failure language containment
problem: M does not deadlock iff L(M) ⊆ No-DL where No-DL = (Σ* ×
2Σ) – (Σ* × {Σ}) is the set of all non-deadlocking failures

L(M1 || A) ⊆ No-DL

L(M2) ⊆ L(A)

L(M1 || M2) ⊆ No-DL

AG-NC

Sound and Complete

ΣΣΣΣ

{Strict subsets of Σ}

14

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Next Steps

We develop a learning algorithm LF that can learn any unknown regular
failure language U

LF uses a minimally adequate teacher (MAT) that can answer two kinds
of queries

• Membership: Given a failure f, does f belong to U?

• Candidate: Given a DFLA C, is L(C) = U? If not, the MAT also returns a

counterexample failure in the symmetric difference of L(C) and U

We use LF to learn the maximal A

• MAT will be implemented via model checking

In case of a deadlock we return a counterexample witness

15

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

The Algorithm LF

Maintains an observation table whose rows are labeled with traces
and columns with failures. Iteratively does the following:

1) Build the table using membership queries

2) Constructs a candidate DFLA C from the table and makes a
candidate query with C

3) If candidate query succeeds, returns C as the final answer

4) If candidate query fails, uses the counterexample to construct a new
failure f and adds f to the columns of the table. Repeats from Step 1.

The new f added ensures that the number of rows will increase strictly
in the next iteration. Number of rows cannot exceed the number of
states of the minimal DFLA accepting U. Hence LF always terminates
and moreover, uses polynomial amount of resources.

16

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Overall Deadlock Detection Procedure

Model Checking

A || M1 � No-DL

M2 � A

A

true

true

remove π from L(A)

Learning
with L*

N

M1××××M2���� p

add π to L(A)

N

Y

M1××××M2 ���� no-DL

π � M2
false, π

false, π π � M1 || DL Y

Membership queries are answered via simulation

17

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Experimental Setup

Implemented AG-NC as well as the following circular rule:

Experimented with benchmarks derived from Linux device drivers and
Inter-Process Communication library (synchronizing via locks) and
Dining Philosophers

2.4 GHz machine with 2 GB RAM limit and 1 hour timeout

L(M1 || A1) ⊆ No-DL L(M2 || A2) ⊆ No-DL

W(A1) || W(A2) ⊆ No-DL

L(M1 || M2) ⊆ No-DL

18

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Experimental Results: No Deadlock

-1474*1156515518109DP

941428611330100682DP

49355478493387033818IPC

963133406-157-636774Tg3

12111406111181568336774Tg3

481852131-179-515717Mxser

12123639111402079315717Mxser

961891815-27*617262Synclink

24215821191547417262Synclink

4885639-84*518905Ide

1247621150338318905Ide

241453716-1453*47272MC

6903307590330827272MC

AMTAMT

CircularNon-CircCompLocExp

1 hour timeout; 2 GB memory limit; * = out of resource; - = no data

19

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Experimental Results: Deadlock

------8109DP

------682DP

------3818IPC

-*1954--*636774Tg3

53934992393486336774Tg3

-*2276-*3368515717Mxser

53646302364657315717Mxser

-*--*1188617262Synclink

61811332181127417262Synclink

-498*-89*518905Ide

125551557-80*318905Ide

------47272MC

169793131398038627272MC

AMTAMT

CircularNon-CircCompLocExp

1 hour timeout; 2 GB memory limit; * = out of resource; - = no data

20

Assume-Guarantee for Deadlock
S. Chaki, N. Sinha, 15 Nov 2006

© 2006 Carnegie Mellon University

Related Work

Use of learning for automated AG reasoning proposed originally by
Cobleigh et al. [TACAS’03] for safety properties

Since been extended to simulation [CAV’05] and the use of symbolic
techniques [CAV’05]

Brookes and Roscoe investigate failure semantics and its use for
deadlock detection.

Assume-Guarantee reasoning is a rich area, but limited automation

Iterative abstraction-refinement has also been used in the context of
compositional deadlock detection [MEMOCODE’03]

chaki@sei.cmu.edu

nishants@cs.cmu.edu

Questions?

