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Deductive Verification vs. MC

Deductive Verification

� Pros
� Natural translation

� Unrestricted data types

� Arbitrary properties

� Favors proving validity

� Cons
� Time consuming

� Expertise required

� May be hard to produce 
counterexamples

Model checking

� Pros
� Fast

� Automatable

� Generates concrete 
counterexamples

� Cons
� More complex translation

� Finite data types only

� Propositional properties

� Harder to prove validity
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Main Idea of This Work

� Middle-ground approach

� Use SMT-based model checking:

� Automatically translate transition relation T and 
property P into a first-order logic (FOL) 
specification language

� Decidable fragment of FOL supported by SMT solvers

� Uninterpreted functions

� Linear arithmetic

� Arrays, Tuples, Records

� Try to prove or disprove P automatically with an 
inductive model checker/verifier
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Satisfiability Modulo Theories (SMT) [64, 62]

� Lifting of Boolean techniques to include 
decidable fragments of data type theories

� Use efficient reasoners to handle non-Boolean 
terms

� SAT → SMT
� Boolean formulas → quantifier free first order 
formulas

� More powerful than Boolean representation, but 
retain decidability

� More compact formulas, better scalability

� More natural translations
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k-induction to Verify Safety Properties

� SMT + induction to verify property P

� Strengthen by increasing timeframe examined:

� If step does not hold: increase k

� Note: 
� Base formula & step formulas are SMT formulas 

� Base case is just BMC
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So…

� We can use SMT-based k-induction to 
verify safety properties of transition 
systems

� We are interested in reactive systems, 
often described with synchronous 
dataflow languages, such as Lustre
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Lustre Example
node thermostat (a_temp, t_temp, marg: real) returns (cool, heat: bool) ;

let
cool = (a_temp - t_temp) > marg ;
heat = (a_temp - t_temp) < -marg ;

tel

node therm_control (actual: real; up, dn: bool) returns (heat, cool: bool) ;
var target, margin: real;

let
margin = 1.5 ;
target = 70.0 -> if dn then (pre target) - 1.0

else if up then (pre target) + 1.0
else pre target ;

(cool, heat) = thermostat (actual, target, margin) ;
tel
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Lustre Language

� Structure

� Stream definitions - equations

� Nodes - programs as stream definition macros

� Basic types (of streams): 

� Boolean, integer, real

� Complex types:

� Tuples, supplemental array, record data structures

� Operators

� (mostly) lifting of Boolean & arithmetic operators to streams

� Temporal operators: pre, ->, when, current
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Lustre [17,42,43]

� Lustre is an equational synchronous dataflow 
language

� System of equational constraints between input 
and output streams

� We can model a stream s of values of type τ as a 
function

s:Í → τ, 

that maps instants to stream values

� Functional, in the sense of no side effects
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Lustre

� Stream constraints can be reduced to Boolean & 
arithmetic constraints over instantaneous 
configurations:

� Crucial observation: SMT solvers can process 
these sorts of constraints
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Research Contributions

� Translation of Lustre program + 
properties into SMT representation 
Idealized Lustre logic (IL)

� Use SMT-based K-induction to prove 
invariant properties of Lustre programs

� Enhance with path compression, 
abstraction, other optimizations.
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Idealized Lustre Logic (IL)

� First order language with built-in

� Linear integer arithmetic

� Linear real arithmetic

� Tuples
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Lustre program as IL constraints

� Lustre code
node alarm_timer (reset: bool; x,a: int) returns (signal: bool); 
var time, alarm: int; 
let

time = x -> if reset then x else pre(time)+1; 
alarm = a -> if reset then a else pre(alarm);
signal = (time = alarm);

tel

� IL constraints

� Property:
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From Programs to Idealized 
Lustre Logic IL

� N be a single-node Lustre program

� N’s stream variables: 

� d is memory depth of N

� Nodes can be seen as macros & inlined
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SMT-based k-induction in IL

� To check P is invariant, find k such that:

� |=IL decided by an SMT solver for IL
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k-induction may not be enough

Reasons:

i. P might be a non-inductive invariant 
property

ii. Basic k-induction may be too 
expensive
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Enhancements to K-induction algorithm

1. Path compression (i)

2. Termination check (i)

3. Abstraction (ii)
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1. Path Compression (i)[32]

� Invariant strengthening technique

� Enforces distinct configurations
� Reduced set of “memory”/state variables

� If state variables xi = xj for configurations i
and j, then we may compress configurations 
i+1 through j

v(i) v(i+1) v(j+1)v(j)
π1

π2

v(p) v(q)
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2. Termination check (i) [63]

� Same idea as path compression

� If all concrete paths of length k+1 have 
cycles, then we have explored the 
reachable space, and may terminate

� Can prove some non-inductive 
properties



22

k-induction with Path Compression
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3. Abstraction/Refinement in Lustre (ii)

� Let N be a Lustre program

� Over-approximate N with N’ by 
treating some of N’s non-input 
streams as input

� Initial abstraction only contains 
definitions of stream variables in 
property (z)

� Refine abstraction by adding 
definitions of variables in y

� CEGAR / structural abstraction 
[24,52,18,4]

inputs inputs

non-
inputs

non-
inputs

abstracted
inputs
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“Path” Refinement Example

P

y1 y2
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“Path” Refinement Example
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“Path” Refinement Example
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k-induction with Abstraction

� Also checking for & eliminating spurious 
counterexamples
� Done in base & inductive cases
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KIND solver

� We built a new verifier implementing 
these ideas

� Uses Yices / CVC3 SMT solvers

� May be run in BMC mode or induction 
mode

� Comparisons with existing tools: Lesar, 
Luke, Rantanplan, SAL
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Problem set

� 1047 problems
� Hand-crafted Lustre examples

� Published industrial case studies

� Rockwell Collins examples

� 376 Valid, 447 Invalid, 224 Unsolved

� Timeouts
� >900 sec

� Program abort

� Incorrect counterexample (incomplete)
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Results: Impact of Enhancements

� Abstraction
� invalid (BMC) cases: ~2x speedup overall

� valid cases: ~2x slowdown (extra overhead) 

� Path compression + Term. check:
� Solved 29/376 more problems in valid cases 
(including all “hard” problems)

� Termination check:
� Kind solved 8/376 more problems than other systems

� High overhead for BMC/invalid problems (~10x slowdown)
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Abstraction vs. Non-abstraction 
(hard invalid problems)

Invalid Problems
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Comparison w/ Other Systems

� Luke [22], Rantanplan [38, 39] 
(Chalmers) 

� Inductive model checkers

� Rantanplan adds SMT (supports ILP only)

� SAL (SRI) [31, 65]

� sal-inf-bmc inductive 2-state model checker

� Rockwell Collins translations to SAL [73]

� …
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Comparative Results
(Rantanplan & Luke)

All solved problems
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Comparative Results (SAL)

Invalid problems Valid problems
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Conclusion

� Translation of Lustre program + properties into 
suitable first order logic IL with built-in theories

� Used off-the-shelf SMT solvers to prove safety 
properties of Lustre programs with k-induction

� Enhanced with path compression & abstraction

� Highly competitive with state of the art systems
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Future Work

� Structural abstraction variants

� Modular verification

� Support for nonlinear algebra
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Some Terminology

L

L

MM

L

L

MM

L

K

fttttp

bbbbby

bbbbby

aaaaax

aaaaa

mmmmmm

llllll

4,3,2,1,0,

4,13,12,11,10,11

4,3,2,1,0,

4,13,12,11,10,11

instant
var

x

43210\
Key:

- Instantaneous 

configuration

- Trace

- Path

- Counterexample

Inputs

Non-inputs


