Scaling up the formal verification of Lustre programs with SMT-based techniques

> George Hagen and Cesare Tinelli The University of Iowa

Outline

- Background
- Research Contributions
- Experimental Results
- Conclusion

Deductive Verification vs. MC

Deductive Verification

- Pros
 - Natural translation
 - Unrestricted data types
 - Arbitrary properties
 - Favors proving validity
- Cons
 - Time consuming
 - Expertise required
 - May be hard to produce counterexamples

Model checking

- Pros
 - Fast
 - Automatable
 - Generates concrete counterexamples
- Cons
 - More complex translation
 - Finite data types only
 - Propositional properties
 - Harder to prove validity

Main Idea of This Work

- Middle-ground approach
- Use SMT-based model checking:
 - Automatically translate transition relation T and property P into a first-order logic (FOL) specification language
 - Decidable fragment of FOL supported by SMT solvers
 - Uninterpreted functions
 - Linear arithmetic
 - Arrays, Tuples, Records
 - Try to prove or disprove *P* automatically with an inductive model checker/verifier

Satisfiability Modulo Theories (SMT) [64, 62]

- Lifting of Boolean techniques to include decidable fragments of data type theories
- Use efficient reasoners to handle non-Boolean terms
- SAT \rightarrow SMT
 - Boolean formulas \rightarrow quantifier free first order formulas
 - More powerful than Boolean representation, but retain decidability
 - More compact formulas, better scalability
 - More natural translations

k-induction to Verify Safety Properties

- SMT + induction to verify property P
- Strengthen by increasing timeframe examined: base:

$$I(S_0) \wedge T(S_0, S_1) \wedge \ldots \wedge T(S_{k-1}, S_k) \models P(S_0) \wedge \ldots \wedge P(S_k)$$

step:

 $T(S_n, S_{n+1}) \wedge \ldots \wedge T(S_{n+k}, S_{n+k+1}) \wedge P(S_n) \wedge \ldots \wedge P(S_{n+k}) \models P(S_{n+k+1})$

- If step does not hold: increase k
- Note:
 - Base formula & step formulas are SMT formulas
 - Base case is just BMC

So...

- We can use SMT-based k-induction to verify safety properties of transition systems
- We are interested in reactive systems, often described with synchronous dataflow languages, such as Lustre

Lustre Example

node thermostat (a_temp, t_temp, marg: **real**) **returns** (cool, heat: **bool**) ;

node therm_control (actual: **real**; up, dn: **bool**) **returns** (heat, cool: **bool**) ; **var** target, margin: **real**;

let

```
margin = 1.5 ;
target = 70.0 -> if dn then (pre target) - 1.0
else if up then (pre target) + 1.0
else pre target ;
(cool, heat) = thermostat (actual, target, margin) ;
tel
```

Lustre Language

- Structure
 - Stream definitions equations
 - Nodes programs as stream definition macros
- Basic types (of streams):
 - Boolean, integer, real
- Complex types:
 - Tuples, supplemental array, record data structures
- Operators
 - (mostly) lifting of Boolean & arithmetic operators to streams
 - Temporal operators: pre, ->, when, current

Lustre [17,42,43]

- Lustre is an equational synchronous dataflow language
- System of equational constraints between input and output streams
- We can model a stream s of values of type τ as a function

 $s:\mathbb{N}\to \tau$,

that maps instants to stream values

Functional, in the sense of no side effects

Lustre

 Stream constraints can be reduced to Boolean & arithmetic constraints over instantaneous configurations:

 $\begin{cases} margin(n) = 1.5\\ target(n) = ite(n = 0,70.0, ite(dn(n), target(n-1)-1.0, ...))\\ cool(n) = (actual(n) - target(n)) > margin(n)\\ heat(n) = (actual(n) - target(n)) < (-margin(n)) \end{cases}$

 Crucial observation: SMT solvers can process these sorts of constraints

Outline

- Background
- Research Contributions
- Experimental Results
- Conclusion

Research Contributions

- Translation of Lustre program + properties into SMT representation Idealized Lustre logic (IL)
- Use SMT-based K-induction to prove invariant properties of Lustre programs
 - Enhance with path compression, abstraction, other optimizations.

Idealized Lustre Logic (IL)

First order language with built-in

- Linear integer arithmetic
- Linear real arithmetic
- Tuples

Lustre program as IL constraints

```
• Lustre code
```

node alarm_timer (reset: bool; x,a: int) returns (signal: bool);
var time, alarm: int;

let

```
time = x -> if reset then x else pre(time)+1;
alarm = a -> if reset then a else pre(alarm);
signal = (time = alarm);
tel
```

IL constraints

$$\Delta_n = \begin{cases} time(n) = ite(n = 0, x(0), ite(reset(n), x(n), time(n-1)+1)) \\ alarm(n) = ite(n = 0, a(0), ite(reset(n), a(n), alarm(n-1))) \\ signal(n) = time(n) = alarm(n) \end{cases}$$

• Property: $P_n = (\neg signal(n) \Rightarrow time(n) < alarm(n))$

From Programs to Idealized Lustre Logic \mathcal{IL}

- N be a single-node Lustre program
- N's stream variables: $\mathbf{v} = \langle x_1, \dots, x_m, y_1, \dots, y_q \rangle$

$$\Delta_n = \begin{cases} y_1(n) = t_1[\mathbf{v}(n), \mathbf{v}(n-1), \dots, \mathbf{v}(n-d)] \\ \vdots \\ y_q(n) = t_q[\mathbf{v}(n), \mathbf{v}(n-1), \dots, \mathbf{v}(n-d)] \end{cases}$$

- *d* is memory depth of *N*
- Nodes can be seen as macros & inlined

SMT-based *k*-induction in IL

• To check *P* is invariant, find *k* such that:

base:

$$\Delta_0 \wedge \ldots \wedge \Delta_k \models_{\mathcal{IL}} P_0 \wedge \ldots \wedge P_k$$

step:

$$\Delta_n \wedge \ldots \wedge \Delta_{n+k+1} \wedge P_n \wedge \ldots \wedge P_{n+k} \models_{\mathcal{IL}} P_{n+k+1}$$

• $|=_{IL}$ decided by an SMT solver for IL

k-induction may not be enough

Reasons:

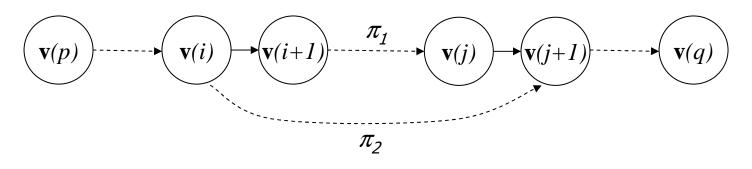
- *P* might be a non-inductive invariant property
- ii. Basic *k*-induction may be too expensive

Enhancements to *K*-induction algorithm

- 1. Path compression (*i*)
- 2. Termination check (*i*)
- 3. Abstraction (*ii*)

1. Path Compression (i)[32]

- Invariant strengthening technique
- Enforces distinct configurations
 - Reduced set of "memory"/state variables
- If state variables x_i = x_j for configurations i and j, then we may compress configurations i+1 through j



20

2. Termination check (i) [63]

- Same idea as path compression
- If all concrete paths of length k+1 have cycles, then we have explored the reachable space, and may terminate
- Can prove some non-inductive properties

k-induction with Path Compression

base:

$$\Delta_0 \wedge \ldots \wedge \Delta_k \models_{\mathcal{IL}} P_0 \wedge \ldots \wedge P_k$$

step:

$$\Delta_n \wedge \ldots \wedge \Delta_{n+k+1} \wedge P_n \wedge \ldots \wedge P_{n+k} \wedge C_{n,k} \models_{\mathcal{IL}} P_{n+k+1}$$

termination check:

$$\Delta_0 \wedge \ldots \wedge \Delta_k \models_{\mathcal{IL}} \neg C_{0,k+1}$$

k-induction with Path Compression

base:

$$\Delta_0 \wedge \ldots \wedge \Delta_k \models_{\mathcal{IL}} P_0 \wedge \ldots \wedge P_k$$

step:

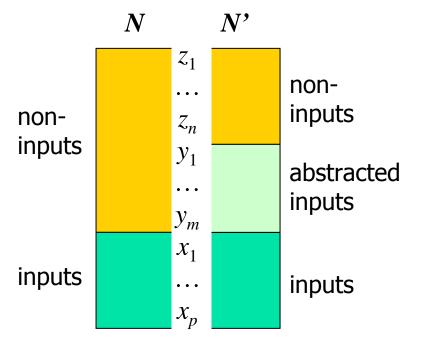
$$\Delta_{n} \wedge \ldots \wedge \Delta_{n+k+1} \wedge P_{n} \wedge \ldots \wedge P_{n+k} \land C_{n,k} \models_{\mathcal{IL}} P_{n+k+1}$$

termination check:
$$\Delta_{0} \wedge \ldots \wedge \Delta_{k} \models_{\mathcal{IL}} \frown C_{0,k+1} \qquad \text{Compression}$$

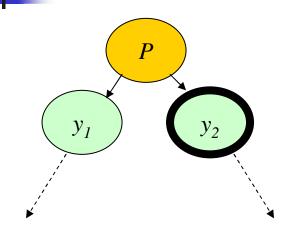
constraint

3. Abstraction/Refinement in Lustre (ii)

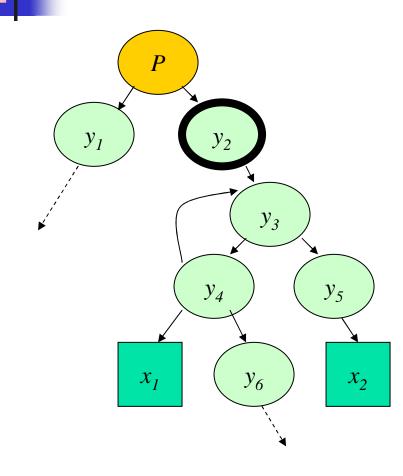
- Let *N* be a Lustre program
- Over-approximate N with N' by treating some of N's non-input streams as input
- Initial abstraction only contains definitions of stream variables in property (z)
- Refine abstraction by adding definitions of variables in y
- CEGAR / structural abstraction [24,52,18,4]



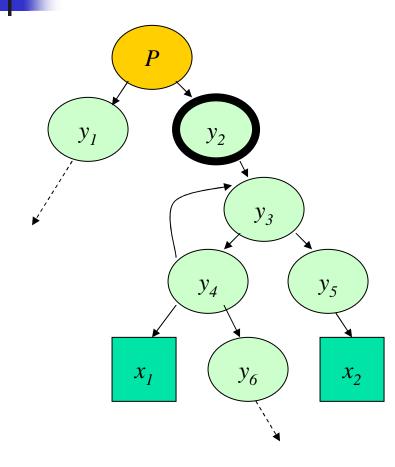
"Path" Refinement Example

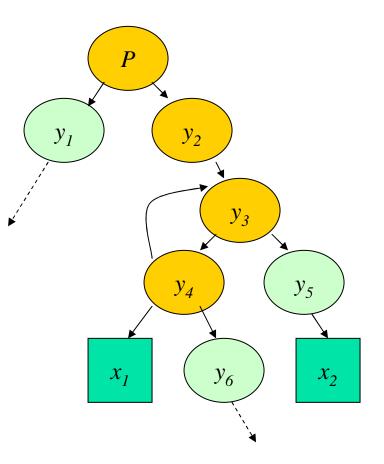


"Path" Refinement Example



"Path" Refinement Example





k-induction with Abstraction

base:

$$\Delta'_0 \wedge \ldots \wedge \Delta'_k \models_{\mathcal{IL}} P_0 \wedge \ldots \wedge P_k$$

step:

$$\Delta'_{n} \wedge \ldots \wedge \Delta'_{n+k+1} \wedge P_{n} \wedge \ldots \wedge P_{n+k} \models_{\mathcal{IL}} P_{n+k+1}$$

- Also checking for & eliminating spurious counterexamples
 - Done in base & inductive cases

Outline

- Background
- Research Contributions
- Experimental Results
- Conclusion

KIND solver

- We built a new verifier implementing these ideas
- Uses Yices / CVC3 SMT solvers
- May be run in BMC mode or induction mode
- Comparisons with existing tools: Lesar, Luke, Rantanplan, SAL

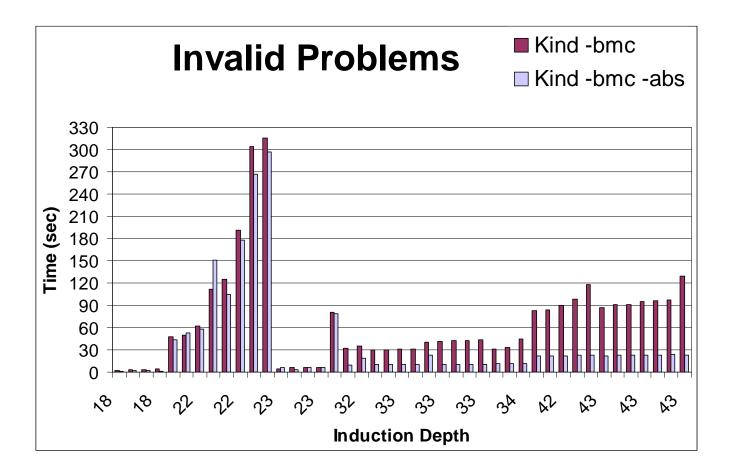
Problem set

- 1047 problems
 - Hand-crafted Lustre examples
 - Published industrial case studies
 - Rockwell Collins examples
 - 376 Valid, 447 Invalid, 224 Unsolved
- Timeouts
 - >900 sec
 - Program abort
 - Incorrect counterexample (incomplete)

Results: Impact of Enhancements

- Abstraction
 - invalid (BMC) cases: ~2x speedup overall
 - valid cases: ~2x slowdown (extra overhead)
- Path compression + Term. check:
 - Solved 29/376 more problems in valid cases (including all "hard" problems)
- Termination check:
 - Kind solved 8/376 more problems than other systems
 - High overhead for BMC/invalid problems (~10x slowdown)

Abstraction vs. Non-abstraction (hard invalid problems)

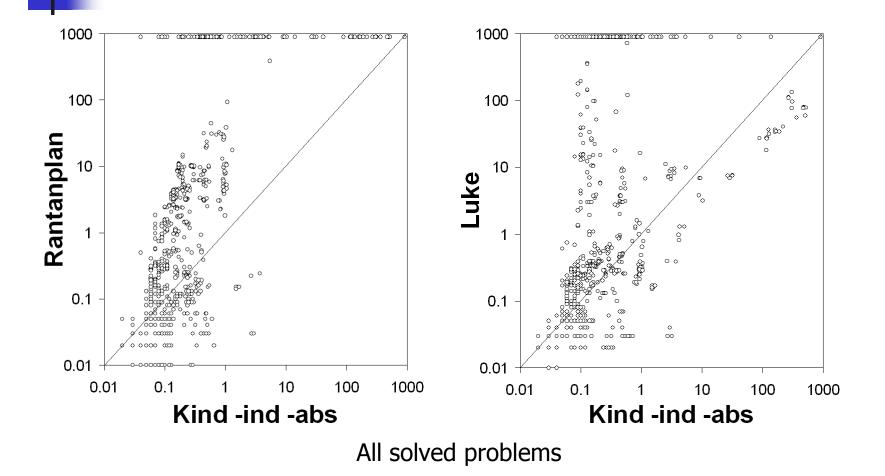


Comparison w/ Other Systems

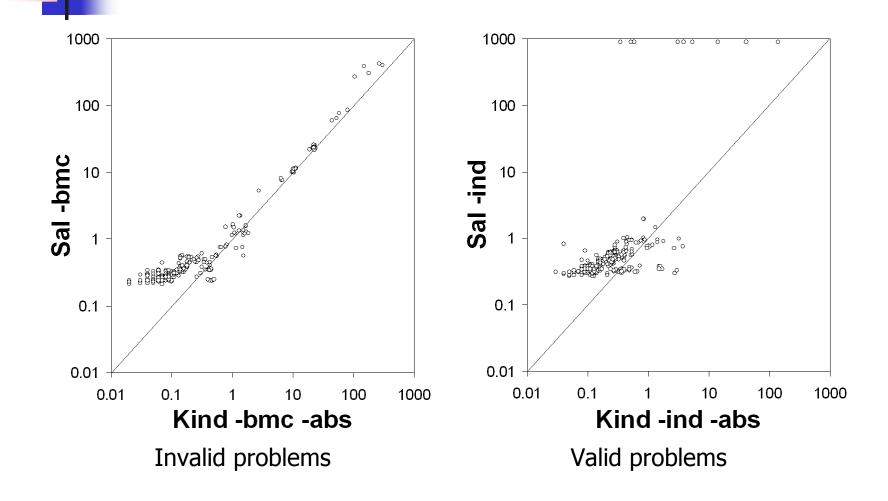
- Luke [22], Rantanplan [38, 39] (Chalmers)
 - Inductive model checkers
 - Rantanplan adds SMT (supports ILP only)
- SAL (SRI) [31, 65]
 - sal-inf-bmc inductive 2-state model checker
 - Rockwell Collins translations to SAL [73]

..

Comparative Results (Rantanplan & Luke)



Comparative Results (SAL)



Conclusion

- Translation of Lustre program + properties into suitable first order logic \mathcal{IL} with built-in theories
- Used off-the-shelf SMT solvers to prove safety properties of Lustre programs with k-induction
 - Enhanced with path compression & abstraction
- Highly competitive with state of the art systems

Future Work

- Structural abstraction variants
- Modular verification
- Support for nonlinear algebra

Works Referenced

- [4] Domagoj Babic and Alan J. Hu. Structural abstraction of software verification conditions. In *Proceedings of the 19th International Conference on Computer Aided Verification (CAV 2007)*, pages 366–378. Springer, 2007.
- [17] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUSTRE: a declarative language for real-time programming. In *Proceedings of the 14th ACM SIGACTSIGPLAN symposium on Principles of programming languages (POPL '87)*, pages 178–188, New York, NY, USA, 1987. ACM.
- [18] William Chan, Richard J. Anderson, Paul Beame, and David Notkin. Improving efficiency of symbolic model checking for state-based system requirements. In Michal Young, editor, *Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 98)*, pages 102–112, Clearwater Beach, Florida, USA, March 1998. ACM.
- [22] Koen Claessen. Luke webpage, 2006. http://www.cs.chalmers.se/Cs/Grundutb/Kurser/form/luke.html.
- [24] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction refinement. In *Proceedings of the 12th International Conference on Computer Aided Verification (CAV 2000)*, volume 1855 of *Lecture Notes in Computer Science*, pages 154–169, 2000.

Works Referenced

- [31] Leonardo de Moura, Sam Owre, Harald Rueß, John Rushby, N. Shankar, Maria Sorea, and Ashish Tiwari. Tool presentation: SAL 2. In *Proceedings of the 16th International Conference on Computer-Aided Verification (CAV 2004)*. Springer-Verlag, 2004.
- [32] Leonardo de Moura, Harald Rueß, and Maria Sorea. Bounded model checking and induction: From refutation to verification. In *Proceedings of the 15th International Conference on Computer-Aided Verification (CAV 2003)*, volume 2725 of *LNCS*, 2003.
- [38] Anders Franzén. Combining SAT solving and integer programming for inductive verification of Lustre programs. Master's thesis, Chalmers University of Technology, 2004.
- [39] Anders Franzén. Using satisfiability modulo theories for inductive verification of Lustre programs. In *Third International Workshop on Bounded Model Checking (BMC 2005)*, volume 114 of *Electronic Notes in Theoretical Computer Science*, pages 19–33. Elsevier, Jan 2005.
- [42] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming language LUSTRE. *Proceedings of the IEEE*, 79(9):1305–1320, September 1991.
- [43] Nicholas Halbwachs, Fabienne Lagnier, and Christophe Ratel. Programming and verifying real-time systems by means of the synchronous data-flow language LUSTRE. *IEEE Transactions in Software Engineering*, 18(9):785–793, 1992.

Works Referenced

- [52] Robert P. Kurshan. *Computer-aided verification of coordinating processes: the automata-theoretic approach*. Princeton University Press, 1994.
- [62] Roberto Sebastiani. Lazy satisfiability modulo theories. *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)*, 3:141–224, 2007.
- [63] Mary Sheeran, Satnam Singh, and Gunnar St°almarck. Checking safety properties using induction and a SAT-solver. In *Proceedings of the Third International Conference on Formal Methods in Computer-Aided Design (FMCAD* 00), pages 108–125, London, UK, 2000. Springer-Verlag.
- [64] Hossein M. Sheini and Karem A. Sakallah. From propositional satisfiability to satisfiability modulo theories. In *9th International Conference on Theory and Applications of Satisfiability Testing (SAT'06)*, pages 1–9, 2006.
- [65] SRI International. Symbolic Analysis Laboratory webpage. http://sal.csl.sri.com.
- [73] Michael Whalen, Darren Cofer, Steven Miller, Bruce Krogh, and Walter Storm. Integration of formal analysis into a model-based software development process. In *12th International Workshop on Industrial Critical Systems (FMICS 2007)*, Berlin, Germany, July 2007.
- [74] Mike Whalen. Autocoding tools interim report. Rockwell Collins internal report, 2004.

Some Terminology

	var \ instant	0	1	2	3	4	•••
Inputs		<i>a</i> _{1,0}	<i>a</i> _{1,1}	<i>a</i> _{1,2}	$a_{1,3}$	$a_{1,4}$	• • •
	$\langle \cdot \cdot \rangle$			•			
	$\int x_l$	$a_{l,0}$	$a_{l,1}$	$a_{l,2}$ $b_{1,2}$:	$a_{l,3}$	$a_{l,4}$	•••
Non-inputs	$\int y_1$	$b_{1,0}$	$b_{1,1}$	$b_{1,2}$	$b_{1,3}$	$b_{\!_{1,4}}$	• • •
	$\langle :$			•			
	\bigvee_m	$b_{m,0}$	$b_{m,1}$	$b_{m,2}$ t	$b_{m,3}$	$b_{m,4}$	• • •
	p	t	t	t	t	f	• • •

Key:

- Instantaneous configuration

- Trace

- Path
- Counterexample