
Finding heap-bounds for
hardware synthesis

B. Cook+
A.  Gupta#
S. Magill*
A. Rybalchenko#

J. Simsa*
S. Singh+
V. Vafeiadis+

*CMU
#MPI-SWS
+MSR

Coding hardware in
advanced languages

•  Use of advanced languages simplifies development process

•  Advanced data structures are easy to use (lists, tree etc.)

•  Advanced languages dynamically allocate memory

2

Problem with dynamic allocation

•  Hardware has limited amount of memory

•  Unbounded heap usage prevents compilation into
hardware

3

Generic heap-bound

•  In parameterized design,
program has two kinds of
input

–  Generic inputs
–  Input signals

•  Generic heap-bound is a
function over generic inputs
that bounds heap usage

Generic inputs are set to a
constant during synthesis

If generic heap-bound exists
then heap is bounded by a
constant during synthesis

4

5

Can we infer generic heap
bound at compile time?

Outline

•  An example

•  Our solution

•  Experimental results & conclusion
6

Example: priority queue

•  Reads infinite series of integers at input channel i

•  Sort the inputs in batches of n

•  Push out sorted batch at output channel o

7

Priority queue input channel i output channel o

Example: priority queue

8

… … linked list b

input channel i
sorted insert
new element

output head of
linked list and

delete it

output channel o

Phase 1: n times

Phase 2: n times

Infinite
loop

Linked list b is initialized to be empty

Example: priority queue
prio(int n, in_sig i, out_sig o){

 Link *b, *c, *tmp;

 assume(n > 0);

 while(1) {

 b = NULL;

 for(int k=0; k<n; k++) {

 b=sorted_insert(in(i),b);

 }

 c = b;

 while(c != NULL) {

 out(o, c->data);

 tmp = c;

 c = c->next;

 free(tmp);

 }

 }

}

Infinite
Loop

allocation loop

de-allocation
loop

9

There is a single call to
alloc in sorted_insert

•  Generic input
•  Input signals

Can we infer a generic heap
bound for this program?

Outline

•  An example

•  Our solution

•  Experimental results & conclusion
10

Inferring generic heap-bound & compiling

•  The following 3 steps can do the job
1.  Track heap usage at each possible run of program
2.  Estimate maximum heap usage over all runs
3.  Translate to non-dynamic allocating heap program

 We supply the following solution for above steps
1.  Numerical heap abstraction (shape analysis)
2.  Numerical bound analysis (invariant generation)
3.  Array based heap management

11

Finding heap-bounds for
hardware synthesis

Generates an abstract program that tracks
heap usage (shape analysis)

12

Numerical heap
abstraction

Numerical
bound analysis

Array based heap
management

Computes generic heap bounds for the
abstract program (Invariant generation)

Translates to non-dynamic allocation program

Finding heap-bounds for
hardware synthesis

Generates an abstract program that tracks
heap usage (shape analysis)

13

Numerical heap
abstraction

Numerical
bound analysis

Array based heap
management

Computes generic heap bounds for the
abstract program (Invariant generation)

Translates to non-dynamic allocation program

Numerical heap abstraction

Input program is translated into an abstract numerical program
using shape analysis

–  Each data structure is replaced by a set of integers
–  Actions on data structures are replaced by actions on the integers
–  A new variable is introduced to represent heap usage

14

Numerical heap
abstraction

Input program Abstract numerical
program

Example: numerical heap abstraction

•  shape analysis recognizes c as a pointer to a linked list
•  An integer kc is introduced to represent length of the linked list c
•  An integer h is introduced to represent the amount of heap used

while(c != NULL){

 out(o, c->data);

 tmp = c;

 c = c->next;

 free(tmp);

}

while(kc >= 0){

 skip;

 skip;

 kc = kc - 1;

 h = h – 1;

}

15

Input program Abstract numerical program

Abstract numerical program

•  Abstract numerical program consists of
–  variables
–  control locations
–  transition relations between locations
–  generic inputs
–  a variable to represent heap usage

16

17

 kb is a new variable which represents length of linked list b

Abstract numerical program: priority queue

Generic input

Heap-usage

Finding heap-bounds for
hardware synthesis

Generates an abstract program that tracks
heap usage (shape analysis)

18

Numerical heap
abstraction

Numerical
bound analysis

Array based heap
management

Computes generic heap bounds for the
abstract program (Invariant generation)

Translates to non-dynamic allocation program

Heap-bound == generic heap-bound

Numerical bound analysis

•  For each location p, we find a heap bound Bndp such that
h ≤ Bndp(generic inputs)

•  Example:

h ≤ Bnd4(n)

h ≤ Bnd7(n)

h ≤ Bnd13(n)
19

Heap-bound from Invariant
•  Invariant is an assertion that is true at all reachable states

•  Invariant may imply a heap-bound that bounds heap usage

•  We solve following problem:

•  For each location p, find an invariant Invp such that for some
heap-bound Bndp

 Invp → h ≤ Bndp(n)

20

We extend constraint solving method for invariants

Heap-bounds via constraint solving

•  A template is substituted for each invariant Invp and
heap-bound Bndp
–  Template = parameterized assertion over program variables

•  Build constraints using numerical program and these
templates

•  Solve the constraints and get the heap-bounds

21

Template for invariant

•  Template for invariant = parameterized assertion over
program variables

•  Example: template for invariant
 a+an*n+ah*h+ak*k+ac*kb+ac*kc≤0

–  a, an, ah, ak, ab and ac are parameters
–  n, h, k, kb, and kc are program variables

22

•  A template specifies a space of assertions

•  We search for an invariant in this space

Template for heap-bounds

23

•  Template for heap-bound = parameterized function over
generic inputs

•  Example: template for heap-bound
 bn*n+b

–  bn and b are parameters
–  n is generic input

Template Maps
•  Inv = map from location to templates for invariants

•  Bnd = map from location to templates for heap-bounds

24

Example:

Inv4: a+an*n+…+ac*kc≤0
Bnd4: bn*n+b

Constraints
Build constraints that encode two conditions:
1.  Inductive argument

–  If program state is in invariant and program runs then state remains
in invariant

2.  Invariant implies heap-bound that bounds heap usage

25

•  For transition location 7 to 13
Inv7 Λ trans(7,13) → Inv’13

•  For bound at location 7
Inv7 → h ≤ Bnd7

Example:

Solving and getting heap-bound

•  The built constraints are solved over the parameters

•  Placing the solution of parameters in templates produces
the heap-bounds

Example:
•  Template for bound at location 7
 Bnd7: bn*n+b

•  Solution of parameters, bn=1 and b=0
 Bnd7: 1*n + 0

26

Finding heap-bounds for
hardware synthesis

Generates an abstract program that tracks
heap usage (shape analysis)

27

Numerical heap
abstraction

Numerical
bound analysis

Array based heap
management

Computes generic heap bounds for the
abstract program (Invariant generation)

Translates to non-dynamic allocation program

Array based heap management
•  Following are introduced in the input program

–  an array h of size the heap-bound and initialize it: i. h[i]=i+1
–  a variable m and initialize it with 0

•  m will act as a head of linked list of available cells

•  Example translation
–  x = alloc();  x=m; m=h[m];
–  free(x);  m=h[x]; m=x;

28

Finding heap-bounds for
hardware synthesis

Generates an abstract program that tracks
heap usage (shape analysis)

29

Numerical heap
abstraction

Numerical
bound analysis

Array based heap
management

Computes generic heap bounds for the
abstract program (Invariant generation)

Translates to non-dynamic allocation program

Outline

•  An example

•  Our solution

•  Experimental results & conclusion
30

Implementation

31

We have developed a tool-chain from C to gates

1.  Numerical heap abstraction (shape analysis)
–  THOR

2.  Numerical bound analysis (invariant generation)
–  ARMC and InvGen

3.  Array based heap management

Experimental results

32

Computed bounds

Synthesis and implementation results

Conclusion

•  A new method to compute heap-bounds using
–  shape analysis
–  invariant generation (constraint solving)

•  An attempt to bring the following together
–  agility of software development and
–  speed of raw gates

33

Thank you!

