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Coding hardware in 
advanced languages 

•  Use of advanced languages simplifies development process  

•  Advanced data structures are easy to use (lists, tree etc.) 

•  Advanced languages dynamically allocate memory 
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Problem with dynamic allocation 

•  Hardware has limited amount of memory 

•  Unbounded heap usage prevents compilation into 
hardware 
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Generic heap-bound 

•  In parameterized design, 
program has two kinds of 
input 

–  Generic inputs 
–  Input signals 

•  Generic heap-bound is a 
function over generic inputs 
that bounds heap usage 

Generic inputs are set to a 
constant during synthesis 

If generic heap-bound exists 
then heap is bounded by a 
constant during synthesis 
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Can we infer generic heap 
bound at compile time?  



Outline 

•  An example 

•  Our solution 

•  Experimental results & conclusion 
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Example: priority queue 

•  Reads infinite series of integers at input channel i 

•  Sort the inputs in batches of n  

•  Push out sorted batch at output channel o 
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Priority queue input channel i output channel o 



Example: priority queue 
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… … linked list b 

input channel i 
sorted insert  
new element 

output head of 
linked list and 

delete it 

output channel o 

Phase 1: n times 

Phase 2: n times 

Infinite  
loop 

Linked list b is initialized to be empty 



Example: priority queue  
prio( int n, in_sig i, out_sig o){

    Link *b, *c, *tmp;

    assume( n > 0 );

    while(1) {

      b = NULL;

      for( int k=0; k<n; k++ ) {

        b=sorted_insert(in(i),b);

      }

      c = b;

      while( c != NULL ) {

        out( o, c->data );

        tmp = c;

        c = c->next;

        free(tmp);

      }

    }

}


Infinite 
Loop 

allocation loop 

de-allocation 
loop 
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There is a single call to 
alloc in sorted_insert 

•  Generic input 
•  Input signals 

Can we infer a generic heap 
bound for this program? 



Outline 

•  An example 

•  Our solution 

•  Experimental results & conclusion 
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Inferring generic heap-bound & compiling 

•  The following 3 steps can do the job 
1.  Track heap usage at each possible run of program 
2.  Estimate maximum heap usage over all runs 
3.  Translate to non-dynamic allocating heap program    

  We supply the following solution for above steps 
1.  Numerical heap abstraction (shape analysis) 
2.  Numerical bound analysis (invariant generation) 
3.  Array based heap management 
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Finding heap-bounds for 
hardware synthesis 

Generates an abstract program that tracks 
heap usage (shape analysis)  
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Numerical heap 
abstraction 

Numerical 
bound analysis 

Array based heap 
management 

Computes generic heap bounds for the 
abstract program (Invariant generation) 

Translates to non-dynamic allocation program 



Finding heap-bounds for 
hardware synthesis 

Generates an abstract program that tracks 
heap usage (shape analysis)  
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Numerical heap 
abstraction 

Numerical 
bound analysis 

Array based heap 
management 

Computes generic heap bounds for the 
abstract program (Invariant generation) 

Translates to non-dynamic allocation program 



Numerical heap abstraction 

Input program is translated into an abstract numerical program 
using shape analysis 

–  Each data structure is replaced by a set of integers 
–  Actions on data structures are replaced by actions on the integers  
–  A new variable is introduced to represent heap usage 
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Numerical heap 
abstraction 

Input program Abstract numerical  
program 



Example: numerical heap abstraction 

•  shape analysis recognizes c as a pointer to a linked list 
•  An integer kc is introduced to represent length of the linked list c 
•  An integer h  is introduced to represent the amount of heap used 

while( c != NULL ){

  out( o, c->data );

  tmp = c;

  c = c->next;

  free(tmp);

}


while( kc >= 0 ){

  skip;

  skip;

  kc = kc - 1;

  h = h – 1;

}
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Input program Abstract numerical program 



Abstract numerical program 

•  Abstract numerical program consists of 
–  variables  
–  control locations 
–  transition relations between locations 
–  generic inputs 
–  a variable to represent heap usage 
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 kb is a new variable which represents length of linked list b 

Abstract numerical program: priority queue 

Generic input 

Heap-usage 



Finding heap-bounds for 
hardware synthesis 

Generates an abstract program that tracks 
heap usage (shape analysis)  
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Numerical heap 
abstraction 

Numerical 
bound analysis 

Array based heap 
management 

Computes generic heap bounds for the 
abstract program (Invariant generation) 

Translates to non-dynamic allocation program 

Heap-bound == generic heap-bound 



Numerical bound analysis  

•  For each location p, we find a heap bound Bndp such that 
h ≤ Bndp( generic inputs ) 

•  Example: 

h ≤ Bnd4(n)  

h ≤ Bnd7(n)  

h ≤ Bnd13(n)  
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Heap-bound from Invariant 
•  Invariant is an assertion that is true at all reachable states 

•  Invariant may imply a heap-bound that bounds heap usage 

•  We solve following problem:  

•  For each location p, find an invariant Invp such that for some 
heap-bound Bndp 

       Invp → h ≤ Bndp(n) 
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We extend constraint solving method for invariants 



Heap-bounds via constraint solving 

•  A template is substituted for each invariant Invp and 
heap-bound Bndp 
–  Template = parameterized assertion over program variables 

•  Build constraints using numerical program and these 
templates 

•  Solve the constraints and get the heap-bounds 
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Template for invariant 

•  Template for invariant = parameterized assertion over 
program variables 

•  Example: template for invariant   
     a+an*n+ah*h+ak*k+ac*kb+ac*kc≤0 

–  a, an, ah, ak, ab and ac are parameters 
–  n, h, k, kb, and kc are program variables 
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•   A template specifies a space of assertions 

•    We search for an invariant in this space 



Template for heap-bounds 
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•  Template for heap-bound = parameterized function over 
generic inputs 

•  Example: template for heap-bound 
        bn*n+b 

–  bn and b are parameters 
–  n is generic input 



Template Maps 
•  Inv  = map from location to templates for invariants 

•  Bnd = map from location to templates for heap-bounds 
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Example: 

Inv4: a+an*n+…+ac*kc≤0  
Bnd4: bn*n+b 



Constraints 
Build constraints that encode two conditions: 
1.  Inductive argument 

–  If program state is in invariant and program runs then state remains 
in invariant 

2.  Invariant implies heap-bound that bounds heap usage 
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•   For transition location 7 to 13 
Inv7 Λ  trans(7,13) → Inv’13 

•   For bound at location 7 
Inv7 → h ≤ Bnd7 

Example: 



Solving and getting heap-bound 

•  The built constraints are solved over the parameters 

•  Placing the solution of parameters in templates produces 
the heap-bounds 

Example: 
•  Template for bound at location 7           
                     Bnd7:   bn*n+b 

•  Solution of parameters, bn=1 and b=0 
              Bnd7:   1*n + 0 
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Finding heap-bounds for 
hardware synthesis 

Generates an abstract program that tracks 
heap usage (shape analysis)  
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Numerical heap 
abstraction 

Numerical 
bound analysis 

Array based heap 
management 

Computes generic heap bounds for the 
abstract program (Invariant generation) 

Translates to non-dynamic allocation program 



Array based heap management 
•  Following are introduced in the input program 

–  an array h of size the heap-bound and initialize it:       i. h[i]=i+1 
–  a variable m and initialize it with 0 

•  m will act as a head of linked list of available cells 

•  Example translation 
–  x = alloc();   x=m; m=h[m]; 
–  free(x);        m=h[x]; m=x; 
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Finding heap-bounds for 
hardware synthesis 

Generates an abstract program that tracks 
heap usage (shape analysis)  
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Numerical heap 
abstraction 

Numerical 
bound analysis 

Array based heap 
management 

Computes generic heap bounds for the 
abstract program (Invariant generation) 

Translates to non-dynamic allocation program 



Outline 

•  An example 

•  Our solution 

•  Experimental results & conclusion 
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Implementation 
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We have developed a tool-chain from C to gates 

1.  Numerical heap abstraction (shape analysis) 
–  THOR 

2.  Numerical bound analysis (invariant generation) 
–  ARMC and InvGen 

3.  Array based heap management 



Experimental results 
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Computed bounds 

Synthesis and implementation results 



Conclusion 

•  A new method to compute heap-bounds using 
–  shape analysis 
–  invariant generation (constraint solving) 

•  An attempt to bring the following together 
–   agility of software development and 
–   speed of raw gates 

33 

Thank you! 


