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Model Checking ...... state space explosion

Divide and conquer

Decompose properties of system (M, | | M,) in properties
of its components

Does M, satisfy P?
¢ typically a component is designed to satisfy its
requirements in specific contexts / environments

Assume-guarantee reasoning: introduces assumption A
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representing M,’s “context”

Simplest assume-guarantee rule

1. A M (P
2. (true)y M, (A)

(true) M || M, (P)




“Automatic Assume-Guarante
Reasoning

2 key steps in assume-guarantee based verification
¢ Identifying an appropriate decomposition of the system,
e Identifying simple assumptions.

Our Goal
e automatically decompose a system into several modules?

e The resulting model should be convenient for assume-
guarantee reasoning

« Minimizing interactions between modules

» It can benefit the assumption learning.



Related Works

Learning Assumptions for Compositional Verification,
(Cobleigh et al., 2003).

— Given a set of decomposed modules
— Use L* algorithm to learn assumption automatically.

Learning-based Symbolic Assume-guarantee Reasoning
with Automatic Decomposition , (Nam and Alur, 2005-
20006)

— The first paper on system decomposition for AG

— Use hypergraph partitioning to decompose the system

Transtion |—" M M,
system e
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Motivating Example

Consider a simple example.

VAR g, a, b, p, c;
Next(g) := a & b;

Next(p) ;=g | c
Next(c) := Ip g is dependent on
a and b.
X: T \
a,b’g’p’C tg:gab
t:p g8 C
t.Ccp




Decomposition Strategy

Target:
e Reduce the shared variables as much as possible,

e such that assumptions are based on a small language
alphabet.

Appropriate Decomposition:

e Enhance inner-cohesion (within a partition)

e Minimize inter-connection (between partitions)
Heuristic:

 Try to put the dependent variables together.



How to minimize inter-connection?
Construct Weighted Hypergraph:

— Using data mining
Weighted Hypergraph:
— The edge connect arbitrary vertices.
— The edge is assigned a numerical value.

Weighted Hypergraph partitioning:
— Partitioning the hypergraph into K parts.

— The sum of weight of all edges
connecting different parts is minimal.



How to enhance inner-cohesion?

* Using a data mining algorithm: Association rule
mining.

* Association rule mining discovers item implications
through a large data set.
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 An association rule X = Y, means if X occurs in a
transaction, then Y should occur too.
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Association Rule Mining

Two steps for using association rule mining
— Find frequent itemsets with minimum support;

— Generate association rules from these itemsets with
minimum confidence.

Some important concepts

— The support of an itemset X: the number of records that
satisty X divided by the number of records.

— The confidence of arule X = Y : the number of records
that satisty X U Y divided by the number of records that
satisfy X.

11



Generate rules from frequent itemset.

\VA

frequent itemsets Fri.

Frequent item sets

te: g a
t:p 8
t:Cp

b

c|

ab
abg
a g
b g
pC
P g
pgc
C§8

=)

Association rules

a-—>b 100
b= a 100
bg=a 100
g—a 50
g=b 50
Cc=>g 50
Pp=>cC 100
P—=>8 50
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Construct Weighted Hypergraph

Create a hyperedge from each frequent itemset

e Variables are the vertices

e hyperedge connects the variables

e Each itemset gives a possible combination for the items.
Weight of a hyperedge is decided by the average value
of all rules derived from the corresponding itemset.

 For example, the weight of edge (p, g, ¢) is decided by
threerules:pg = c,pc=g,and g c = p.

This value gives an evaluation for the
interactions between items.

13



VAR g, a, b, p, c;
Next(g) :=a & b;
Next(p) :=g | ¢

Weighted Hypergraph Model

variable
transactions

)

modeling

gab

pgcC
cp

frequent
item set

Hyperedges:

ab 100
abg 100
ag /5
bg 75
p C 100
pCE§g 50
P g 50
C§g 50
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Partitioning
e Hypergraph partitioning:
e Partitioning the hypergraph into K parts.

e Minimize sum weights of all cut-edges

* There are some existing tools for
hypergraph partitioning problem,
among them, we chose hMETIS.
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Hyperedges:
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Hyperedges:

ab

100

100

75

75

100

33.3

50
50

=

* Decomposing the variable set into 2 partitions:

e a,b,gand p, c.
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- System Decomposition

* With the variable partition result

VAR g, a, b, p, c;
Next(g) :=a & b;
Next(p) :=g | c

Next(c) := Ip
p,C l \ g,a,b
VAR p, C;

Next(p) :=g | c VAR g, 3, b;
NEXt(C) ‘= |p Next (g) = a& b;
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- The Flow of our Approach

State transition
system

Variable
dependencies
Weighted
pergraph mode

ariable ariable
partition 1 partition 2

Decomposed

sub-modules

welghts mining
partitioning into n parts

ariable
partition
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‘Benefits of Our Approach

Modules are compact and have fewer

communication.

Each module has less requirements on its
environment =¥ simplify assumption

. A M, P)
2. (truey M, (A)

2

(true) M, || M, (P)

e Since A is reduced, the
efforts for verifying
these two premises are
also reduced.
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Implementation
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Decomposition Compositional
Verification

WAL
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~Experimental Results
Benchs Var Hypergraph Hypergraph General

IR S TR T

sla 23 0.32 0.31 15.77
slb 25 6 0.49 6 0.60 16.03
msi3 61 17 2.81 19 3.53 10.23
msi5 97 24 5.86 32 8.81 27.17
msi6 121 27 9.69 33 12.11 43.80
syncarb10 74 32 76.13 33 129.20 Timeout
peterson 9 7 0.65 7 113.8 27.67
guidance 76 37 19.93 13 4.11 18.75

* Most of our experiments leads to good result.

* Negative result in guidance,

e The variables dependencies in guidance are so sparse
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Conclusion and Future work

New decomposition method for assume-guarantee
e Integrates data mining to the compositional verification.
e Using weighted hypergraph partitioning to cluster variables.
Automatic decomposition approach
— Inner cohesion improved
— Inter connection reduced
Experimental results show promise
Future work include:
— Circular assume-guarantee rules.

— Applying assorted classification methods in data mining to
find even better decomposition.
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Thank You !

Question & Answer

JQ" P

e 4

26



