
Google Confidential 1

Deploying Enterprise-Wide
Program Analysis Tools:

Challenges and Opportunities

John Penix
Google

Google Confidential

2

Fun with Java

i = i++;
int x = Math.ceiling(i / 100);

String date = getDate();
date.trim();

if (user.country().equals(“USA”))
 (what is the return type of country()?)

Google Confidential

3

Fun with Java

Map<int, String> myMap;
myMap.put(“one”, “apple”); // error!
myMap.get(“one”); // ok!?

if (x == null)
 new NoRecordException("no ” + x.name());

System.out.println(“int: ” + myInt);
System.out.println(“array: ” + myArray);

Google Confidential

4

FindBugs

Open source static analysis tool for Java
Developed at U. Maryland by Bill Pugh and others
Guiding philosophy:

– Find a mistake developers are making in practice
– Encode it in a rule
– Try for zero false positives

Technology:
– linear byte code scanning
– minimal interprocedural null tracking

Google Confidential

5

Goals and Objectives

Static Analysis Team Vision:

"Analyze every version of every file in every context."
 "Everywhere there is code, there are warnings."

Success factors to impact the development process:
• Timely analysis
• Precise analysis (and false positive suppression)
• Integrate the warnings into the workflow

Software Development at Google

Paradigms
Continuous integration – no surprises downstream
No binary incompatibilities in production
Encourage reuse and SOA

Implementation
One open code repository for all projects
No binary releases (always build from “head”)
Many dependencies throughout entire code base

Google Confidential

7

Goals and Objectives

Static Analysis Team Vision:

"Analyze every version of every file in every context."
 "Everywhere there is code, there are warnings."

Success factors to impact the development process:
• Timely analysis
• Precise analysis (and false positive suppression)
• Integrate the warnings into the workflow

Google Confidential

8

BugBot 2006

Bugbot DB

Code Repository

Submit

FindBugs Code
Dashboard

Google Confidential

9

Cost Analysis
Usage Cost = Analyst Time x Labor Rate

 Analyst Time = Number of Warnings x Triage Time per Warning

Number of Warnings: Estimate based on code base size and the number
of warnings seen during a tool evaluation:

Lines of Code x Observed Warning Density

Triage Time per Warning: Time ranges from less than 1 minute to up to
20-30 minutes in rare cases. We estimated the average as 5 minutes.

Triage of false-positives drives up the cost of finding a real bug.

Google Confidential

10

Comparing Actual Costs to Estimated Costs

Metric Estimate Actual
Lines of Code X million XX million
Interesting Warnings 1500 5000
Time to Evaluate 5 min/wrn ~8 min/wrn
Time to Triage 125 hours 650 hours
False Positive Rate 75-80% ~55%
True Positives 250 - 400 ~1200-1500
Cost/True Positive ~$55 – 70 ~$66-80

Google Confidential

11

Static Analysis Service

Ran as a service for 6 months:
 - Triaged several thousand warnings.
 - Filed over 1000 bugs in bug tracker
 - Over 700 bugs fixed
 - Developed a ranking scheme based on

– false positive rate
– likely hood of being fixed when filed

“Evaluating Static Analysis Defect Warnings on Production Software”, N. Ayewah, W. Pugh, J.D.
Morgenthaler, J. Penix, Y. Zhou, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, 2007, pp. 1-8.

Google Confidential

12

Why don't developers fix bugs?

1. Didn't assign the bug to the right person.
2. The results are stale.
3. Bug has little impact: old code, logging code, testing code
4. False positives make people discount or ignore the tools
5. Developers don’t understand the bug – think it is esoteric

(unlikely) or hard to fix.

“Experiences Using Static Analysis to Find Bugs”, N. Ayewah, D. Hovemeyer,
J.D. Morgenthaler, J. Penix, W. Pugh, IEEE Software, vol. 25 (2008), pp. 22-29.

Google Confidential

13

BugBot 2008

Bugbot
Database

Code Repository

submit

Klocwork C++

Testing
Dashboard

FindBugs

Source
Browser

Code
Review

command line

BugBot

CB jar
 archives

warnings
+ clean files

Bugbot
Web App

i18n
weekly run

Rev #
MD5

Google Confidential

14

Why don't developers fix bugs?

1. Developers don't know the bug is there.

2. The results are stale

– integration with build system

– “whole program analysis” needs to be incremental

3. The bug has little impact: old code, logging code, testing code

4. False positives make people discount or ignore the tools.

5. Developers don’t understand the bug – think it is esoteric (unlikely) or
hard to fix.

Google Confidential

15

Why don't developers fix bugs?

1. Developers don't know the bug is there.

2. The results are stale

3. The bug has little impact: old code, logging code, testing code

4. False positives make people discount or ignore the tools.

– “I don't care” == “false positive” to a developer

– separate “style” checks from defect checks

– start with the best warnings to get buy-in

5. Developers don’t understand the bug – think it is esoteric (unlikely) or
hard to fix.

– Sometime the bugs are subtle:
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Google Confidential

16

Statistics and Metrics

1 year

47 Million Reported Warnings

497,295 Unique Warnings

317,374 Tool Runs

930,606 File Revisions

263,298 with Warnings

6352 Status Updates from

431 Users (not us)

Google Confidential

17

Working with Google

 - We're hiring
 - Summer internships
 - Faculty visits
 - Tech talks
 - Research Grants: $10K - $150K - 3 page proposals
 http://research.google.com/university/relations/research_awards.html

 - Summer of Code

http://research.google.com/university/relations/research_awards.html

	BugBot
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Goals and Objectives
	BugBot 2006
	Slide 9
	Slide 10
	Slide 11
	Why don’t bugs get fixed?
	BugBot 2008
	Slide 14
	Slide 15
	Statistics and Metrics
	Slide 17

