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Preface

FMCAD 2010, held in Lugano Switzerland on October 20-23, was the tenth
in a series of conferences on the theory and applications of formal methods in
hardware and system verification. FMCAD provides a leading forum to re-
searchers in academia and industry for presenting and discussing groundbreak-
ing methods, technologies, theoretical results, and tools for reasoning formally
about computing systems. FMCAD covers formal aspects of computer-aided
system design including verification, specification, synthesis, and testing.

In the past, FMCAD was held in the United States on even years and its
sister conference, CHARME, was held in Europe on odd years. The conferences
merged in 2006 and FMCAD was held in the USA from 2006 to 2009. FMCAS
was held in Europe for the first time this year.

For the first time, FMCADI10 featured an industrial track, dedicated to in-
dustry users of formal methods. We are very pleased at the interest shown in
this track and the high quality of submissions we received, some from purely
industrial teams and some from mixed industrial-academic teams, all describing
results on real-life designs. To encourage professionals, we also accepted decks
of slides. One of these, on property based formal methods for DFT logic verifi-
cation, was accepted—work that otherwise might very well have passed us by.
We are very grateful to Cindy Eiser (IBM Research - Haifa) and Wolgang Ecker
(Infineon) for organizing the track and the accompanying exhibition.

We received 86 papers overall: 66 in the research track and 18 in the indus-
trial track. We accepted 25 research and 7 industrial papers papers, of which
27 were long and 5 were short. The conference covered a wide range of formal
topics, including model checking and theorem proving, verification from the
arithmetic to the system level, synthesis from specifications and case studies.

We heard invited talks from Turing Award winner Joseph Sifakis (CNRS/Verimag,
Schneider-INRIA Endowed Researcher Chair) titled Embedded Systems Design:
Scientific Challenges and Work Directions and from Viresh Paruthi (IBM Austin)
titled Large-scale Formal Application: From Fiction to Fact.

On the 20 October, we had tutorials organized by Helmut Veith (Vienna
University of Technology) from Sumit Gulwani (Microsoft) on Dimensions in
Program Synthesis, from Ken McMillan (Cadence) on Invariant Generation,
from Warren A. Hunt (UT Austin) on Verification of the VIA (Centaur) Nano
Microprocessor using the ACL2 Theorem-Proving System, and from Jin Yang
(Intel) on Post Silicon Verification.

FMCAD 2010 also included a panel, organized by Tom Melham (Oxford) on



The Verification Challenge of Low-Level Embedded Software.

We sincerely thank the sponsors of FMCAD for their generous contributions:
Centaur Technology, the HIPEAC Network of Excellence, IBM, Intel, the City
of Lugano, Microsoft Research, NEC, and the University of Lugano.

FMCAD has in-cooperation status with ACM SIGPLAN and SIGSOFT and
technical co-sponsorship with IEEE CEDA. FMCAD is committed to making
the proceedings of FMCAD10 as available as possible. To that end, FMCAD
will make the proceedings available online for free. In addition, the proceedings
will be published in the ACM and IEEE digital libraries.

We would like to thank the organizing committee. Besides the people men-
tioned above, the committee includes Hana Chockler (publications), Jason Baum-
gartner (sponsoring) and Umberto Bondi, Daniela Dimitrova, Elisa Larghi,
Francesco Regazzoni, and Mariagiovanna Sami, (local arrangements). The or-
ganizing committee provided invaluable help in organizing FMCAD 2010. We
would also like to thank the steering committee (Jason Baumgartner, Aarti
Gupta, Warren A. Hunt, Jr., Panagiotis Manolios, and Mary Sheeran) for their
invaluable advice.

Most of all we would like to thank the FMCAD program committee for both
tracks for their excellent work reviewing and discussing the submissions. With-
out them, FMCAD would not have achieved the quality that it has. Of course,
the conference could not exist without authors choosing to submit their work
to critical scrutiny at FMCAD.

Natasha Sharygina and Roderick Bloem (chairs)
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Dimensions in Program Synthesis

(Tutorial)

Sumit Gulwani
Microsoft Research
Redmond, WA, 98052
Email: sumitg@microsoft.com

Abstract

Program Synthesis, which is the task of discovering programs that realize user intent, can be useful in several scenarios:
discovery of new algorithms, helping regular programmers automatically discover tricky/mundane programming details, enabling
people with no programming background to develop scripts for performing repetitive tasks (end-user programming), and even
problem solving in the context of automating teaching.

In this tutorial, I will describe the three key dimensions that should be taken into account in designing any program synthesis
system: expression of user intent, space of programs over which to search, and the search technique [1]. (i) The user intent
can be expressed in the form of logical relations between inputs and outputs, input-output examples, demonstrations, natural
language, and inefficient or related programs. (ii) The search space can be over imperative or functional programs (with possible
restrictions on the control structure or the operator set), or over restricted models of computations such as regular/context-free
grammars/transducers, or succinct logical representations. (iii) The search technique can be based on exhaustive search, version
space algebras, machine learning techniques (such as belief propagation or genetic programming), or logical reasoning techniques
based on SAT/SMT solvers.

I will illustrate these concepts by brief description of various program synthesis projects that target synthesis of a wide variety
of programs such as standard undergraduate textbook algorithms (e.g., sorting, dynamic programming), program inverses (e.g.,
decoders, deserializers), bitvector manipulation routines, deobfuscated programs, graph algorithms, text-manipulating routines,
geometry algorithms etc.

REFERENCES

[1] S. Gulwani. Dimensions in program synthesis. In ACM Symposium on PPDP, 2010.
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Verifying VIA Nano Microprocessor Components

Warren A. Hunt, Jr.
Centaur Technology, Inc.
7600-C North Capital of Texas Hwy, Suite 300
Austin, Texas 78731-1180
Email: hunt@centtech.com

Abstract—We verify parts of the VIA Nano X86-compatible
microprocessor design using the ACL2 theorem-proving system.
We translate Nano RTL Verilog into the EMOD hardware descrip-
tion language. We specify properties of the Nano in the ACL2
logic and use a combination of theorem-proving and automated
techniques to verify the correctness of Nano design elements.

I. INTRODUCTION

We have specified and verified parts of VIA’s X86-
compatible Nano microprocessor using the ACL2 theorem-
proving system. The VIA Nano microprocessor is a full X86-
64 design, including VMX, AES, DES, and SHA instructions.
The current Nano is implemented in a 40-nanometer process
with around 100 million transistors. The Nano design contains
a security co-processor; it runs over 40 different operating
system (such as Windows, MacOS, Linux, FreeBSD); and
it supports four different virtual-machine implementations.
The RTL Nano specification is written in Verilog, which
we translate into our formalized EMOD hardware description
language (HDL). We use this EMOD representation both as
a specification for transistor-level circuit elements and as an
implementation for more abstract properties.

The design for the Nano is represented with 570,000 lines
of Verilog. This is a hierarchical description that includes
specifications for all Nano circuit elements, and it can be sim-
ulated using a Verilog simulator. To verify parts of the Nano
design, we first translate modules of interest into the EMOD
formal hardware description language, which is embedded it
within the ACL2 logic. We use the ACL2 logic to specify
the operation of Nano hardware elements. Finally, we use
the ACL2 theorem-proving system to verify the correctness
of Nano design elements.

Our verification efforts have been focused on the media
and floating-point units. The Nano media unit can add/subtract
four pairs of floating-point numbers every clock cycle with
a two-cycle latency. Depending on the size of the operands,
the Nano multiplier can multiply one, two, or four pairs of
operands every clock cycle with a three- or four-cycle latency.
The Nano divider is implemented with a special 4-bit divider
unit augmented with a microcode program.

We have verified hardware the add, subtract, multiply, divide
(microcode only), compare, convert, logical, shuffle, blend,
insert, extract, and min-max instructions [8]. To verify Nano
components, we symbolically simulate design fragments and
compare the results to specifications written in ACL2. Sepa-

©2010 FMCAD Inc.

rately, we also verify that our ACL2 specifications implement
various floating-point operations.

In this paper, we describe some of the models used by VIA
to implement the Nano. We have formalized subsets of several
models, and we are working to formalize the entire Nano
design. The Nano is continuously updated and extended; for
example, this last year the Nano was extended with 256-bit
SSE instructions. The Nano will soon be offered as a multi-
core, which required an internal rearrangement of many design
elements. As the design is altered, we re-run our evolving
set of formal verification scripts to ensure that the latest
design continues to satisfy the properties we have been able to
formally specify and mechanically verify. Thus, we must be
able to very quickly translate existing design representations
into a form suitable for our tool suite.

II. THE CENTAUR FV TOOLFLOW

Nano circuits are initially represented in Verilog. We trans-
late the Nano Verilog model into our EMOD hardware descrip-
tion language; and we analyze the result of such translations by
comparing them to specification functions. The relationships
between these various models are shown in Figure 1.

Starting in the upper-left-hand-corner of the diagram is the
Nano ‘‘Golden’’ Model; this is a C-language program
that is used as a specification for the VIA Nano Verilog.
The operation of the VIA Nano Verilog is compared to
the specification using co-simulation; both models are simu-
lated, and after each (clock cycle) step, register and memory
values are compared. This procedure is the primary pre-silicon
verification approach for ensuring that the Nano satisfies its
specification. Once functional silicon Nano processors are
available, this same kind of co-simulation is done but the
actual Nano microprocessor is used in place of the Nano
Verilog; results are still compared to the Nano ‘‘Golden’’
Model. Of course, once working microprocessors are avail-
able, they are also installed in computing systems and sub-
jected to a wide variety of tests; the results of these tests are
compared to known-good results.

We use formal verification to augment the already extensive
simulation being performed. Formal verification has found
errors not detected during testing and in commercial usage
that are generally very subtle. Of course, if such bugs were
easy to find, they would have been uncovered by simulation.
Our formal verification process begins by translating the Nano
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Verilog into the EMOD HDL, and then symbolically simulat-
ing it to get *‘Wire and State Equations. For more
complex specifications, we generally write ACL2 code that is
designed to mimic the behavior of the source Verilog, and then
compare the results produced. In some cases, we compare our
Integer and microcode specifications to even
more abstract specifications, such as when we verified the
Nano media-unit [8] instructions.

In addition to the kind of Verilog verification so far dis-
cussed, we also verify transistor-level circuit implementations.
A large part of the Nano implementation is custom-designed,
transistor-level circuits. In fact, almost all of the Nano design
is full custom, except for a number of auto-place-and-route
blocks that primarily implement control logic. As show in
Figure 1, we verify transistor-level models by translating
their Spice-level circuit representations into a Switches
with strengths -- Sized capacitors form. Us-
ing SYM_SIM, we symbolically simulate the resulting circuit
models and compare the resulting Node Equations values
with the expected Wire and State Equations results.

At a high level, our current verification efforts could be
described as co-simulation with symbolic test vectors. Boolean
data is represented with Boolean variables instead of with
specific Boolean values. In some cases, such as exist in the
execution cluster, the specification of correctness is relatively
straight forward, although voluminous and detailed. In other
cases, such as with the bus interface, the specification is much

Nano OPC GDS2 J<>

Verification relationships between the models

ACL2
Symbolic
Simulation

more complex and subtle because of the very large number
interactions with other units. Before we attempt to explain
our use of EMOD, we provide a simple embedding example.

III. A SIMPLE EMBEDDED LANGUAGE

We now illustrate the embedding of a very simple language
within the ACL2 logic. This language, based on IF trees, is
defined by two functions: a recognizer (the permitted syntax)
for IF expressions and an evaluator (the semantics) for IF
expressions.

Here are some syntactically, well-formed examples in lan-
guage. Note that these expressions are “quoted”; that is, they
are ACL2 (and Lisp) data constants.

"(IF c a b) "(IF 1 2 3)

"(IF r (IF c¢c T NIL) q)

We can check whether these forms are indeed acceptable using
our syntactic recognizer function if-termp, which takes a
single argument and recognizes whether this argument is a
valid IF-expression. If term is an atom then it must be
recognized by the eglablep predicate, which recognizes
atoms that are numbers, symbols, or characters. Otherwise,
this predicate requires an object of the form (IF a b c),
where the argument recursively recognized by i f-termp.



(defun if-termp (term)
(if (atom term)
(eglablep term)

(let ((fn (car term))
(args (cdr term)))
(and (consp args)

(consp (cdr args))
(consp (cddr args))
(null (cdddr args))
(eql fn 'if)

(if-termp (car args))
(if-termp (cadr args))
(

if-termp (caddr args))))))

The function 1 f-ev1 evaluates the term argument, recog-
nized by i f-termp, using assignments of values to variables
as given in alist.

(defun if-evl (term alist)

(1f (atom term)
(cdr (assoc term alist))
(1f (if-evl (cadr term) alist)
(if-evl (caddr term) alist)
(if-evl (cadddr term) alist))))

For instance, by binding the variables 1, 2, and 3 to them-
selves, we get:

(IF-EVL ' (IF 1 2 3)

(1. 1) (2 .2) (3 3)))

==>
2

Given these two functions, we have defined the syntax and
semantics of our IF-expression language. This is a very simple
language embedding; we use the same technique to embed our
hardware description language with ACL2.

We can now prove theorems about descriptions involving
formulas our IF-expression language. For instance, we can
prove:

(let "(IF A B C))
(list (cons
(cons

(cons

((if-expr

(bindings "A a)

"B b)

Cc))))

(implies

(and (if-termp if-expr)
(eglable-alistp bindings))

(equal (if-evl if-expr bindings)

(if a b c))))

This shows for any a, b, and c, that the evaluation of the
expression / (IF A B C) with the bindings shown is the
same as (1if a b c).

IV. OUR VERIFICATION APPROACH

We verify Verilog circuit descriptions by translating them
into a HDL-form that ACL2 can process. We then use our
ACL2-based definition of our HDL to symbolically simulate

these translations, and we compare the simulation results to
ACL2 specifications.

A. Our Verilog-to-EMOD Translator

We have written a translator that converts a Verilog design
description into the EMOD language. This translation is meant
to be principally a syntactic transformation; however, because
of the complexity of Verilog it involves a number of semantic
transformations.

To implement the translation of Verilog into EMOD, we adopt
a program-transformation-like [17] style: to begin with, the
entire parse tree for the Verilog sources is constructed; we
then apply a number of rewriting passes to the tree which
result in simpler Verilog versions of each module. The final
conversion into EMOD is really almost incidental, with the
resulting EMOD modules differing from our most-simplified
Verilog modules only in minor syntactic ways. Since each
rewriting pass produces well-formed Verilog modules, we can
simulate the original and simplified Verilog modules against
each other, either at the end of the simplification process or
at any intermediate point.

o We instantiate modules to eliminate parameters introduc-
ing new modules for each instantiation size.

o Wires and registers in Verilog can have varying widths,
and we resolve all such expressions to constants.

« We reduce the variety of operators we need to deal with
by simply rewriting some operators away. In particular,
we perform rewrites such as:

a & b —
a'!l=b —
a<b —

(la) & (lb),

| (a b), and

~(a >= D).

This process eliminates all logical operators, equality
comparisons, negated reduction operators, and standard-
izes all inequality comparisons.

o We annotate every expression with its type (sign) and
width. The rules for determining widths are subtle, and
if they are not properly implemented then, signals might
be inappropriately kept or dropped.

o« We introduce explicit wires to hold the intermediate
values in expressions.

o Verilog allows for implicit truncations in assignment
statements; for instance, one can assign the result of a
five-bit addition a + b to a three-bit bus (collection of
wires), w. We make these truncations explicit by intro-
ducing a new wire for the intermediate result. We replace
expressions like a + b with basic module instances.

We have left out many minor transformations like naming
any unnamed instances, eliminating supply wires, and minor
optimizations. Together, our simplifications leave us with a
new list of modules where only simple gate and module
instances are used. From this we can produce either EMOD or
simplified Verilog. The simplified Verilog can be co-simulated
with the original Verilog as a translation sanity check.



B. The EMOD HDL

Our EMOD-language analysis approach permits the hi-
erarchical verification of cooperating finite-state machines.
We have been investigating such languages for over 20
years. Our initial attempt was the HEVAL language [2]; this
combinational-only language was embedded in the NQTHM
logic [4]. This led us to the development of the DUAL-EVAL
HDL which was used as the target for the FM9001 micro-
processor verification [3]. As we were the designers of the
FM9001, we actually created and verified a DUAL-EVAL
description of the FM9001 before translating it into LSI
Logic’s NDL language for implementation [12].

The DE HDL [6] was our first HDL embedded into the
ACL2 [11] logic. Later, we extended DE by adding parameters
and busses; we called this the DE2 [7] language. To validate
a data-network circuit, the logic was represented in DE2 and
then this design fragment was verified using ACL2 [14]. Our
latest effort is the EMOD HDL, which is used as a target
for Nano circuits. Other groups [5] have pursued a similar
approach using HOL [16] to provide the formal semantics.
Intel has done extensive formal verification of the Intel®)Core
i7™ processor architecture [10]. AMD is also using formal
verification to aid the verification of their processors [15].

The semantics of EMOD are specified by a deeply-embedded
interpreter written in the ACL2 logic; this interpreter permits
multiple signal evaluation styles: BDDs, AIGs, definedness,
dependency, and delay. We believe EMOD is the first formally-
specified language to support multiple interpretations of HDL
descriptions within a single system, and EMOD is the first
formally-defined HDL to be used in a commercial design flow.

Although EMOD language circuit descriptions have the form
of a HDL, its structure allows it to be accessed and updated
much like a database. Annotations may be attached to every
module definition and occurrence; such annotations include
information such as signaling conventions, functional require-
ments, warnings, and clock disciplines. Thus, we eventually
imagine that a post-silicon design engineer may interrogate
an EMOD-language design with database-like queries to deter-
mine properties that were specified and proven by pre-silicon
designers. And, a post-silicon engineer may exhaustively es-
tablish properties using the speed of fabricated circuits, and
then add these properties to the evolving EMOD-based design
(database).

In support of commercial design verification, we have
defined edge-triggered and level-sensitive, state-holding prim-
itives, and using these primitives, a user may define and verify
multi-clock (derived from one master clock) circuits. Verifica-
tion of gated-clock circuits is supported, indeed, required for
the Nano design style. Verifying bi-directional, tri-state busses
and pass-transistor circuits requires four-valued equations to
be used, and since our transistor-level circuit analyzer targets
our four-valued logic, mixed transistor-gate-level designs may
also be verified.

C. Our Circuit Models

We formally verify fragments of the Nano by translating
them from Verilog to our formal EMOD language, and then
performing symbolic analysis. Instead of trying to write a
formal semantics for Verilog, we choose to formally define
a simpler language and then analyze the results of our trans-
lator, which is labeled ACL2 Verilog Translator in
Figure 1. The EMOD language contains mechanisms that allow
us to represent all of the interface and module names that
appear in Verilog design representations, and we verify EMOD
circuit representations using ACL2.

We verify EMOD circuit representations to more ab-
stract specifications that we write in ACL2. As de-
picted in Figure 1, we write Integer and microcode
specifications in ACL2, and then symbolically simu-
late these specifications [1]; this produces, either as AIGs
or BDDs, results that we compare to the symbolic simu-
lation of EMOD circuit representations. Sometimes, indepen-
dently of the Nano design, we may write an even more ab-
stract X86 ISA specification fragments, such as
for the floating-point operations, and compare our Integer
specifications to these higher-level specifications.
For instance, we have such X86 ISA specification
fragments for the basic floating-point operations; these
specifications are independent from the Nano; they conform
to the IEEE floating-point specifications [9].

In a large number of cases, there are custom implementa-
tions for various Nano circuits; these circuits are implemented
at the transistor level. To verify such transistor-level circuit
descriptions, we use our ACL2 Transistor Analyzer
which converts a Spice-level circuit representation [13] into a
model that has Switches with strengths and Sized
capacitors. This kind of model can be symbolically sim-
ulated using the SYM_SIM circuit simulator, and we compare
the results of such simulations to higher-level, symbolic sim-
ulations.

V. ECC CIRCUIT ANALYSIS

We present a memory error-detection-and-correction circuit
(ECC) and its analysis. This circuit detects and corrects single-
bit memory errors; it also detects double-bit memory errors.
A descendant of this circuit is used in the VIA Nano, and we
verified its operation using the procedures outlined above. As
shown in Figure 2, the circuit is composed of two identical
syndrome generators and an ECC element that drives 64
exclusive-OR gates. The “Memory” block is a model we
developed to model the operation of the real memory; this
block is modeled with 72 exclusive-OR gates, which allows,
using the 72 error inputs, to model any number of inversion
failures. We have three verification goals:
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« when there are no memory errors, the output is correct,
and no error is indicated;

o when there is one memory error, the output is correct,
the correctable_error output bit is set, and the
uncorrectable_error is not set; and

o when there are two memory errors, we only check that
the uncorrectable_error is set.

We approach this verification considering all of the possible
combinations of memory bits and errors that are possible:

o no memory errors: 264 = 18446744073709551616;

« one error: (264 x 72) = 1328165573307087716352; and

o (2064 % (72 % 71)/2) = 47149877852401613930496 for
when there are two errors.

In the two-error case, the error positions are symmetric. We
encode the possible errors explicitly by a one- or two-hot
encoding on the error input vector; we will later see that
our specification functions model these errors.

Below is the Verilog source we will attempt to validate.
We constructed this model so we could check that modules
ecc_gen and ecc_decode perform the intended operation.
Of course, the operation of this circuit model also depends
on the exclusive-OR operations (gates) that are part of the
circuit. The exclusive-OR gates in the memory are just part
of our model; these gates allow us to model “bit-flips” in the
memory.
module ecc_model

(data, //

errors, //
corrected_output_bits, // Output Data

correctable_error, // Corrected?
uncorrectable_error); // Can’t be corrected

Input Data
Error Injection

input [63:0] data; // Data inputs

wire [63:0] data;

input [71:0] errors; // Error injection bits
wire [71:0] errors;

output [63:0] corrected_output_bits; // Output
wire [63:0] corrected_output_bits;

output correctable_error; // Good?
wire correctable_error;

- Ly R

corrected_output_bits
8 &4 >D 64—~
64

correctable_error

-,

—a

uncorrectable_error

syn2

ECC

Error-Correction-Circuitry Diagram

output uncorrectable_error; // Bad
wire uncorrectable_error;

wire [7:0] synl; // from first ecc_gen
wire [7:0] syn2; // from second ecc_gen
wire [63:0] data_err; // Possibly flawed data
wire [7:0] syn_err; // Memory syndrome bits
wire [63:0] bit_to_correct; // correct outputs

// Generate syndrome bits for "memory"
ecc_gen genl (synl, data);

// Fault injection in memory model.
assign data_err = data " errors[63:0];
assign syn_err = synl " errors[71:64];

// Thus, using the "errors" input we can create
// faults that could be considered memory errors.

// Syndrome bits for "memory" output
ecc_gen gen2 (syn2, data_err);

wire [7:0] syn_backwards_xor;
// Compute syndrome

assign syn_backwards_xor = syn_err ~ syn2;
(bit_to_correct,
correctable_error,
uncorrectable_error,
syn_backwards_xor) ;

ecc_decode make_outs

// Finally, correct the output.
assign corrected_output_bits
= bit_to_correct

data_err;
endmodule

We now present the ACL2 commands used to define and
verify our example ECC circuit. Some details are omitted,
but we attempt to supply sufficient detail so a reader can
understand the process. After placing ourselves in the di-
rectory containing the Verilog above, we start our ACL2-
based analysis system and execute the commands below.
The defmodules command reads the Verilog source and
converts it into the EMOD language. The find-input com-
mands collect and group the input wire names. Similarly, the
find-output commands collect the output wire names. We
use these command because it allows rearrangement of the



module interface without it concerning our effort.

; Convert the Verilog ECC model and its inferior
; components into the EMOD language.

:start—-files (list "ecc_model.v")
:search-path " ("."))

(defmodules *eccx

; By name, collect the input data and error inputs.

(defconst *ecc_model/datax
(find-input "data" 64

(defconst xecc_model/errorsx
(find-input "errors" 72

| xecc_modelx|))
| xecc_modelx|))

; By name, collect the output and the correctable
; and uncorrectable error indications.

(defconst xecc_model/corrected-output-bitsx*
(find-output
"corrected_output_bits" 64 |xecc_modelx]|))
(defconst xecc_model/correctable_error=*
(find-output
"correctable_error" 1 |*ecc_modelx]|))
(defconst xecc_model/uncorrectable_errorx
(find-output
"uncorrectable_error" 1 |xecc_modelx]|))

The two functions below allow us to form the inputs by
name. With the function create-input, we construct an
association list pairing names with their values, and then
we generate an appropriate pattern. This frees us from be-
ing concerned about the position of the arguments in the
| recc_modelx | model. The next two functions below
perform a similar function for the output; that is, we construct
three outputs based on the output wire names.

(defun create-input (data errors)
(b*x ((alist

(make-fast-alist

(ap (pairlis$ xecc_model/datax data)
(pairlis$ xecc_model/errorsx errors))))
(pat (gsal (gpl :i |xecc_modelx|
alist ’fail))

(- (fast-alist-free alist)))
pat))

(defun alist-extract (keys alist)

(declare (xargs :guard t))
(if (atom keys)
nil
(cons (cdr (hons—get (car keys) alist))
(alist-extract (cdr keys) alist))))
(defun get-output (output)
(b*x ((alist (pal (gpl :0 |*ecc_modelx|

output nil))
(corrected_output_bits
(alist—-extract
xecc_model/corrected-output-bitsx*
alist))
(correctable_error
(car (alist-extract
recc_model/correctable_errorx
alist)))
(uncorrectable_error
(car (alist-extract
recc_model/uncorrectable_errorx
alist))))
(mv corrected_output_bits
correctable_error
uncorrectable_error))

We next specify our error-correction circuit. We define the
g-not-nth function that (symbolically) inverts a bit of x at
position n. If n is larger than the length of the list x, no change
is made. The next three functions specify the operation of our
| xecc_model~* | when there are no memory errors, when
one error is introduced, and when two errors are inserted.
(defun g-not-nth (n x)

;7 Invert bit N of X.
(1f (atom x)

nil
(if (zp n)
(cons (g-not (car x)) (cdr x))
(cons (car x)
(g—not-nth (1- n) (cdr x))))))

(defun no-problems ()
;7 Check output correctness if no errors injected.

(bx ((data (gv-list 0 1 64)
(errors (make-list 72 :initial-element nil)
(inputs (create—-input data errors))
((mv & o) (emod "two |*ecc_modelx |

inputs nil))
((mv corrected_output_bits
correctable_error
uncorrectable_error)
(get-output o0)))

(and (equal corrected_output_bits data)
(not correctable_error)
(not uncorrectable_error))))

(defun one-bit-error-predicate (bad-bit)
;7 Check output correctness if one error injected.

(bx ((data (gv-list 0 1 64))
(err-bits (make-list 72
:initial-element nil))
(errors (g—not-nth bad-bit err-bits))
(inputs (create—-input data errors)
((mv & o) (emod 'two |[xecc_modelx |

inputs nil))

((mv corrected_output_bits
correctable_error
uncorrectable_error)

(get-output o0)))

(and (equal corrected_output_bits data)
(equal correctable_error (< bad-bit 64)
(not uncorrectable_error))))

(defun two-bit-error-predicate (x y)
;; For two-bit errors, we only check that the
;; uncorrectable error is signaled.
(if (eql x vy)
;7 If only one error bit is injected.
(one-bit-error-predicate x)

(bx ((data (gv-1list 0 1 64)
(err-bits (make-list
72 :initial-element nil))
(errors (g—not-nth
X (g-not-nth
y err-bits)))
(inputs (create-input data errors))
((mv & o) (emod ’'two |xecc_modelx|

inputs nil))
((mv & & uncorrectable_error)
(get-output 0)))
uncorrectable_error))

Finally, we introduce functions that generate input suitable
to check all one- and two-bit errors. Thus, these functions
provide the top-level requirements for the ECC circuit.



(defun all-one-bit-errors (x)
(and (or (one-bit-error-predicate x)
(cw "one-bit-error "x07%" x))
(if (zp x)
t
(all-one-bit-errors (1- x)))))
(defun all-two-bit-errors-help (x y)

(and (or (two-bit-error-predicate x y)
(cw "two-bit-error "x0 "x17%" x y))
(if (zp x)
t
(all-two-bit-errors-help (1- x) vy))))
(defun all-two-bit-errors (y)
(if (zp y)
t
(and (all-two-bit-errors-help (1- y) vy)

(all-two-bit-errors (1- y)))))

(defun all-zero-one-two-bit—-errors (z)
(and (or (no-problems)
(cw "no-problems “%"))
(all-one-bit-errors z)
(all-two-bit—-errors z)))

(time$ (all-zero-one-two-bit-errors 71)

This is not the most efficient way to investigate all such errors,
but it is straightforward. We could have introduced additional
symbolic variables to indicate input-error positions, and then
performed one symbolic computation. However, in spite of the
fact that over 5000 symbolic executions of the EEC circuit
are performed, it takes less than 30 seconds to consider all
of the combinations. When we considered this problem, the
ECC circuit designers wanted a quick answer, and this was a
simple way to check their intent. But, we realized a few days
later that our specification, and therefore, the circuit had an
error — our one—bit-error—-predicate only checks that
a flawed data bit is detected, but it does not check if one of
the redundant check bits (positions 64 to 71) is itself flawed.

(equal correctable_error (< bad-bit 64))

This was a problem of there being an error in both the circuit
and the specification; subsequently, this error was fixed.

In specification for the ECC circuit we just described,
we did not symbolically co-simulate a corresponding ACL2
specification; we directly specified what we expected as an-
swers. Thus, as pictured in Figure 1, instead of comparing
Output and Next State Equations to Wire and
State Equations, we just inspected the latter. For our
proofs about the Nano media unit [8], we wrote ACL2
specifications that we believed correctly specified it operation.
We later verified that our media-unit specifications were valid
by proving that they implemented our IEEE floating-point
specification.

VI. CONCLUSION

We have verified parts of the VIA Nano Verilog design using
the ACL2 theorem prover. Much of the verification “work” is
done with symbolic simulation, and we use the ACL2 theorem
prover both to verify high-level properties and to orchestrate
the various verification techniques we use. All of our proofs

are carried out with the ACL2 theorem prover, and the BDD
and AIG algorithms we use have also been verified using the
ACL2 theorem prover.

Beyond the straightforward mechanisms described here,
we often use additional verification techniques. The circuit
descriptions we verify include state-holding elements, and we
must either initialize such state-holding elements with suitable
initial values or perform additional symbolic simulation that
forces such storage elements into suitable (symbolic) states.
We usually simulate a circuit for multiple steps, as it requires
several clock cycles for such such circuits to complete their op-
erations. With sequential circuits, it is necessary to specify the
clocking discipline; that is, when and in what phases the clocks
arrive is critical to circuit operation. For instance, for the
verification work on the Nano media unit, we must correctly
orchestrate 26 clock inputs. We use input parametrization,
with appropriate choice of input space partitioning, to allow
verifications where otherwise we might fail to create desired
output equations — generally, we construct AIGs and then,
through an iterative BDD construction procedure, we compare
the results produced to their specifications. We have developed
a general procedure for symbolically simulating any specifica-
tion written in ACL2. Using this procedure, we symbolically
evaluate ACL2-based specifications and compared to their
results to an EMOD simulation. Separately, we prove desired
correctness properties about such ACL2 specifications.

Most of our overall effort has been directed to verifying
execution-cluster properties, much in the same way that Intel
has done with the Nehalem family [10]. AMD has also been
using ACL2 to verify elements from their Athlon processors
[15]. We have begun to explore the use of our formal verifi-
cation tools for other parts of the Nano design; for instance,
we have recently been investigating the instruction decoder
because a problem manifested itself that was not discovered
by other tools; this was due to a lack of capacity, as the
state machines being compared were too large for available
commercial tools.

Our application of one formal system, specifically ACL2,
may be broader than any single formal verification tool in
use by other projects. We use ACL2 to read and translate the
Verilog and to model the behavior of Nano circuits at the
transistor level; this part of our verification flow has become
more important as we experience the limitations of commer-
cially available tools. We specify high-level operations, such
as floating-point operations, in a manner that is independent
of the specific operation of the Nano; these specifications are
general and would likely be valid for many microprocessors.
We are expanding the use of formal verification on future Nano
MiCroprocessors.

ACKNOWLEDGMENT

The author would like to thank Jared Davis, Anna Slo-
bodova, and Sol Swords, for the work that they have done
to make this effort possible, and for their contributions to this

paper.



(1]

(2]

(3]

REFERENCES

Robert S. Boyer and Warren A. Hunt, Jr.: “Symbolic Simulation in
ACL2”, with Robert S. Boyer, in the Proceedings of the Eighth Inter-
national Workshop on the ACL2 Theorem Prover and its Applications,
May, 2009.

Bishop C. Brock and Warren A. Hunt, Jr.: “The Formalization of a
Simple HDL”, Proceedings of the IFIP TC10/WG10.2/WG10.5 Workshop
on Applied Formal Methods for Correct VLSI Design, Elsevier Science
Publishers, 1989.

Bishop C. Brock and Warren A. Hunt, Jr.: “The DUAL-EVAL Hardware
Description Language and Its Use in the Formal Specification and
Verification of the FM9001 Microprocessor”, in Formal Methods in
Systems Design, Volume 11, pp. 71-105, Kluwer Academic Publishers,
1997.

Robert S. Boyer and J Strother Moore: “A Computational Logic Hand-
book”, Academic Press”, 1988.

Mike Gordon, “Relating event and trace semantics of Hardware Descrip-
tion Languages”, in The Computer Journal, Volume 45, No. 1, 2002.
Warren A. Hunt, Jr.: “The DE Language”, in Computer-Aided Reasoning
ACL2 Case Studies, edited by Matt Kaufmann, Panagiotis Manolios, and
J Strother Moore, Kluwer Academic Publishers, 2000.

Warren A. Hunt, Jr. and Erik Reeber: “Formalization of the DE2 Lan-
guage”, in Correct Hardware Design and Verification Methods (CHARME
2005), Lecture Notes in Computer Science, No. 3725, pp 20-34, Springer-
Verlag, 2005.

Warren A. Hunt, Jr. and Sol Otis Swords: “Centaur Technology Media
Unit Verification”, Proceedings of the 21st International Conference on
Computer Aided Verification (CAV 2009), In Computer-Aid Verification
(CAV) 2009, LNCS No. 5643, pp 353-367, Springer-Verlag, June, 2009.

10

[9]1 IEEE Computer Society: IEEE Standard for Floating-Point Arithmetic.
IEEE Std 754T™-2008 edn.

[10] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer
Jesse Whittemore, Sudhindra Pandav, Anna Slobodovd, Christopher Tay-
lor, Vladimir Frolov, Erik Reeber and Armaghan Naik, Replacing Testing
with Formal Verification in Intel CoreTM i7 Processor Execution Engine
Validation. In Computer-Aid Verification (CAV) 2009, LNCS No. 5643,
pp 414-429, Springer-Verlag, June, 2009.

[11] Matt Kaufmann, Panagiotis Manolios and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Press, Boston, Mas-
sachusetts, 2000.

[12] LSI LOGIC. 1.5-Micron Array-Based Products Databook. LSI Logic
Corporation, Milpitas, CA. 1990.

[13] T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanii-Vincentelli.
SPICE 3B1 User’s Guide. Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, California. April,
1987.

[14] Erik Reeber and Warren A. Hunt, Jr., A SAT-Based Decision Procedure
for the Subclass of Unrollable List Formulas in ACL2 (SULFA). In the
Third International Joint Conference on Automated Reasoning, Springer
Verlag, Volume 4130, pp. 453-467.

[15] David Russinoff, A Case Study in Formal Verification of Register-
Transfer Logic with ACL2: the Floating-point Adder of the AMD Athlon
(TM) Processor. In: Formal Methods in Computer-Aided Design. (2000)
22-55

[16] Konrad Slind and Michael Norrish, A Brief Overview of HOL4. In
TPHOL, pp. 28-32, 2008.

[17] Eelco Visser, A Survey of Strategies in Rule-Based Program Transfor-
mation Systems. In the Journal of Symbolic Computation, Volume 40,
Issue 1, pp. 831-873, July, 2005.



Embedded Systems Design — Scientific Challenges

and Work Directions

(Invited Paper)

Joseph Sifakis
Verimag

Abstract

The development of a satisfactory Embedded Systems Design Science provides a timely challenge and opportunity for
reinvigorating Computer Science.

Embedded systems are components integrating software and hardware jointly and specifically designed to provide given
functionalities, which are often critical. They are used in many applications areas including transport, consumer electronics and
electrical appliances, energy distribution, manufacturing systems, etc.

Embedded systems design requires techniques taking into account extra-functional requirements regarding optimal use of
resources such as time, memory and energy while ensuring autonomy, reactivity and robustness.

Jointly taking into account these requirements raises a grand scientific and technical challenge: extending Computer Science
with paradigms and methods from Control Theory and Electrical Engineering. Computer Science is based on discrete computation
models not encompassing physical time and resources which are by their nature very different from analytic models used by other
engineering disciplines.

We summarize some current trends in embedded systems design and point out some of their characteristics, such as the chasm
between analytical and computational models, and the gap between safety critical and best-effort engineering practices. We call
for a coherent scientific foundation for embedded systems design, and we discuss a few key demands on such a foundation: the
need for encompassing several manifestations of heterogeneity, and the need for design paradigms ensuring constructivity and
adaptivity.

We discuss main aspects of this challenge and associated research directions for different areas such as modelling, program-
ming, compilers, operating systems and networks.
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Abstract— Traditionally, validation at the ASIC block level relies
primarily upon simulation based verification. Specific
components that are “hot spots” are then considered as
candidates for Formal Verification. Under this usage model, the
hurdles to Formal Verification are intractability and poor
specifications. In this paper, we outline an alternate approach,
where we used Formal Verification as the “first line of defense”
in the course of validating a Packet Switch. This block had
several components that were complex and hard to verify,
including components that required liveness guarantees, where
responses are event bound, and not cycle bound. To surmount
typical hurdles, an early collaboration was formed between
design and verification engineer, both to influence the design as
well as to identify relevant manual abstraction techniques
upfront. All significant components were formally verified at the
module level.

This approach was successful in identifying most bugs during the
design phase itself and drastically minimized bugs during
verification/emulation phases of the project. This paper
illustrates the strengths of such an approach. It describes our
overall methodology and the proof techniques utilized. The
overall effort yielded a total of 55 bugs found (52 during the
design phase and only 3 bugs during the verification phase). No
bugs were found subsequently during emulation. As a result, this
block was deemed “tape out ready” 2 months prior to other
blocks of similar complexity.

. INTRODUCTION

The complexity of modern designs has been increasing at a
rapid pace. Modern design blocks are made up of modules that
have very complex behaviors and interactions. Verification of
such blocks poses a serious challenge. The conventional
approach is to verify through simulations at the block level.
However, simulation has the inherent limitation that one can
simulate only a limited set of patterns in any reasonable
amount of time. As design sizes grow, it is becoming
increasingly difficult to maintain a high level of confidence
purely based on simulation coverage. A possible solution is to
use Formal Verification to verify some of complex modules in
your design. Formal Verification performs exhaustive
verification by exploring the entire state space of the design.

In this paper, the design block under consideration is a switch
with around 650k gates and with multiple ports. Most of the
modules inside this design block have high complexity both in
terms of the control oriented behavior and data path
operations. Based on previous experiences, it was estimated
that simulation based verification techniques of such designs
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would require more than a year for a dedicated engineer to
fully verify.

In addition, the design in question also had several
components for which liveness guarantees were required,
which were not possible to validate using simulation based
verification. Thus, it was therefore concluded that the most
cost-effective approach would be to utilize Formal
Verification techniques to prove correctness of all significant
components of the design at the module level. Conventional
simulation based design verification (DV) was also done, but
at the block level.

Our overall approach was inspired by the following quotation
from “Mythical Man Month** [1]:

“The use of clean, debugged components saves much more
time in system testing than that spent on scaffolding and
thorough component test."

Our FV efforts commenced very early during the design phase
and consisted of the following methodology (which took place
alongside conventional DV efforts at the block level):

1) Partition the design into minimally sized pieces and generate
specifications at the module level. Use the compositional
verification technique of proving properties of a system by
checking the properties of its components, using “assume-
guarantee” style reasoning.

2) Aim to prove “black-box” (end-to-end module level)
properties and use the tractability results to both influence
design re-partitioning as well as to gain insights about RTL
complexity.

3) Study cones of influence in order to deduce possibilities for
manual abstractions. Once identified, these abstractions were
then used to replace stateful RTL components within the
design.

In a few cases where all other options failed, we resorted to
proving “white-box” properties (based on RTL internal state).
We used this approach as a last resort since rigorous
specifications of RTL internals are hard to come by, and
further, such specifications often change in the course of the
design cycle.

This paper will focus on the techniques used to verify two of
the modules in the design, namely the Synchronizer and the
Page Manager modules. The first case study is a control &



datapath block that consists of 20k gates and the second is a
datapath block that consists of 25k gates.

In subsequent sections, we describe each module, the Device
Under Test (DUT) operational details, the Formal Verification
strategy utilized in each case as well as the verification results.
Later, we also present our overall results (number of bugs
found etc.) and our high level conclusions. The model
checkers Incisive Formal Verifier (IFV)[2] and SMV[5] were
used over the course of this project.

The design block under consideration was a packet switch
with multiple ports that accepted packets, stored them in
memory, and later forwarded them to various output ports,
allowing for the possibilities of switching and replicating
packets.

DESCRIPTION OF THE PACKET SWITCH

In order to accomplish this functionality, the block had various
types of complex components, components that were
responsible for storing incoming packets to memories,
components that were responsible for managing pages in
memory over which packets were stored, components that
maintained caches, etc.

The goal here was to a) design specifically with Formal
Verification in mind (keep modules small, keep interfaces
crisp) as well as to b) formally verify as many elements of the
design as possible. In total, 14 modules of the design were
formally verified. The design consisted of 18 modules in its
entirety.

The following design principles were utilized to ensure FV
tractability:

Careful design partitioning with exhaustive invariants
of module interfaces.

Isolation of modules that exhibit FIFO-ness.
Significant parameterization of modules, to allow
abstraction/reduction of bus widths, etc.

Significant reuse of common modules, e.g., arbiters,
aligners, etc.

Decomposition of all architectural invariants into
micro-architectural invariants.

I1l.  FORMAL VERIFICATION OF THE SYNCHRONIZER

The synchronizer module has two inputs, a) packet data is sent
across in_{valid,sop,eop,data[63:0]} , where sop and eop are
start/end packet delimitors and b) address of a valid page is
specified across in_addr, in_addr_valid. Its purpose is to place
the arriving data, which arrives in units of 8 bytes, into various
slots within the specified page. The interface for this module is
shown in Fig 1.

The input packet data bus adheres to the following protocol:
in_valid is asserted whenever there is new data presented
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across the input. During the first 8 byte data chunk within a
packet, in_sop will be asserted, and during the last 8 byte
chunk, in_eop will be asserted.

Each page is of size 128 bytes, which is broken down into 16 x
8 byte slots. This module receives an input, sync_cnt[3:0],
which is an external counter that increments every cycle. The
output consists of: rf_write, rf write_sop, rf_write_eop,
rf_write_data[63:0]. If, at any point in time, we see
rf_write==1 and sync_cnt==i (where i:=0...15), then it means
that rf_write_data[63:0] is being written into slot i within the
page.

The rules determining when/what data is written into a
particular slot in a page are described in the Operational
Details section. All data arriving over in_data goes into an
internal skid_fifo. The data that is at the head of the skid_fifo is
written out into a page only when various design rules are
satisfied.

This module is called the synchronizer because it synchronizes
when and where an incoming data segment is written into a
page. It is part of a larger system that is responsible for
accumulating various 8 byte chunks of data within a register
file so that it can later generate an atomic memory write
operation for a half page worth of data.

Synchronizer

in_valid

page_wr

—_write

rf_write_sop
rf_write_eop
rf_write_data[63:0]

in_eop

in_data[63:0]

SKID FIFO
sync_cl [3:0] SLOTO
Page
SLOT i
in_addr (page
in_addr_valid o
SLOT15

64 bits

Figure 1 — Block Diagram of the Synchronizer

IV. OPERATIONAL DETAILS OF THE SYNCHRONIZER

Following are rules governing the Synchronizer module:
e Across the datapath between in_{valid,sop,eop,data} &
rf_write,rf_write_{sop,eop,data}, FIFO-ness needs to
hold. Note that the input bus has no backpressure



capability (i.e., the input interface should always be able
to sink data and cannot throttle the input bus).

e For agiven page (presented on: in_addr), rf_writes should
occur to slot=0...15 in a monotonically increasing
fashion.

e For agiven page, if a non-EOP data word was written into
slot=i, then the next data word for this packet must be
written into slot=i+1.

e |If we are at the lower half of a page (slot=7) and a)
there’s an rf_write or b) we are not within a packet and
have seen an rf_write in the past to the lower half of this
page, then at the next cycle hpage_wr will be asserted and
not otherwise.

e If we are at the upper half of a page (slot=15) and a)
there’s an rf_write or b) we are not within a packet and
have seen an rf_write in the past to the upper half of this
page, then at the next cycle hpage_wr will be asserted and
not otherwise.

V. DESIGNER’S INVARIANTS FOR THE SYNCHRONIZER

Apart from the rules that were identified by the verification
engineer, we also proceeded to prove the following invariants
put forth by the designer. The intent here was to prove
invariants that emerged after interface study by the verification
engineer, as well as those that were deemed important by the
designer.

e |f there is an rf_write to some slot x (where x=0...15),
then there will be no write to slot y (y<=x) until there is
an assertion of output signal hpage_wr.

VI. SYNCHRONIZER VERIFICATION STRATEGY

We could visually establish that this module demonstrated
data independence. The circuit accepted data and shuffled it
around, but no control signals were derived from data. This
could be done relatively easily, by examining the fan-out cone
associated with the data-path elements.

Further, the design also dealt exclusively in terms of 8 byte
(64 bit chunks) and didnT reorder data bytes within each
incoming double word. In order to prove that the unit fulfilled
the specification of a FIFO, it was possible to utilize Wolper’s
Theorem [3], abstract the data width to just 2 bits, inject a
regular expression consisting of A*BA*CA* over the input
data interface and expect that the data showing up at the
output also conformed to this regular expression.

A packet generator was written to inject packets that a)
conformed to SPI4 framing conventions and b) had a
minimum length of 64 bytes, over the input bus:
in_{valid,sop,eop,data}. This packet generator data words
consisting of just 4 types: {AB,C,D}, where A=64M0,

B=64 71, C=6412, D=64"h3. A auxiliary fsm was written to
monitor the outputs: rf_write,rf_write_{sop,eop,data}.

Three critical proofs, pertaining to packet data-integrity and
framing, were then cast using the packet generator and
auxiliary FSM.

Proof Obligation1: To prove data integrity across the FIFO’s
data-path.

This proof asserted that if we injected packets conforming to
the regular expression A*BA*CA* over in_data[1:0], then we
are guaranteed to see outputs that also conform to the regular
expression A*BA*CA* over rf write[1:0]. Note that this
regular expression is injected and expected across all valid
input and output data words This proves that no input data
word is dropped, duplicated or reordered.

Proof Obligation2: To prove that SOPs are preserved intact
across the internal FIFO.

For this proof, the regular expression A*BA*CA* was injected
into in_data[1:0] for SOP input words, and D was injected
into in_data[1:0] for non-SOP input words. The expectation
was that the regular expression A*BA*CA* will always be
seen on rf write[1:0], for SOP output words and D will
always be seen on rf_write[1:0], for non SOP output words.

Any corruption of an input SOP word (with data values:
{A,B,C}) into an output non-SOP word, would result in an
output non-SOP with a value of {A,B,C}, which will be
detected as a violation of Proof Obligation2.

Any corruption of an input non-SOP word (with data value: D)
into an output SOP word, would result in an output SOP word
with a value of D, which will be detected as a violation of
Proof Obligation2.

Proof Obligation3: To prove that EOPs are preserved intact
across the internal FIFO.

For this proof, the regular expression A*BA*CA* was injected
into in_data[1:0] for EOP input words, and D was injected
into in_data[1:0] for non-EOP input words. The expectation
was that the regular expression A*BA*CA* will always be
seen on rf write[1:0], for EOP output words and D will
always be seen on rf_write[1:0], for non EOP output words.

Any corruption of an input EOP word (with data values:
{A,B,C}) into an output non-EOP word, would result in an
output non-EOP with a value of {A,B,C}, which will be
detected as a violation of Proof Obligation3.

Any corruption of an input non-EOP word (with data value:
D) into an output EOP word, would result in an output EOP
word with a value of D, which will be detected as a violation
of Proof Obligation3.



In order to prove that writes within a page were to
monotonically increasing slots, a tracking FSM was written.
This FSM did the following: Every time a new page was
presented over in_addr, in_addr_valid, it recorded the slot into
which it first saw an rf write, storing both the value of
sync_cnt into last_wr_ptr as well as rf_write_{sop,eop} into
last_wr_{sop,eop}.

Properties were then written to monitor the behavior of
rf_write. The two most important assertions were:

1. If we are performing an rf_write to some slot=sync_cnt
and if this is not the first write to the page, then sync_cnt
will be greater than last_wr_ptr.

If we are performing an rf_write and if this is not the first
write to the page and if the previous write was a non-EOP
data word (i.e., last_wr_ptr=i && last_wr_eop=0), then
this write will be to slot=(i+1).

This tracking FSM also monitored writes to upper/lower
halves of a page such that later, when sync_cnt={7,15} (i.e.,
write pointer is at the upper/lower half boundaries), if any
writes had occurred to a half, the output hpage_wr would be
asserted.

VII.

A critical bug was found in the implementation of hpage wr.
The failing counterexample consisted of a scenario where
there was a write to the upper half of a page for which there
was a valid hpage wr assertion. However, this signal
continued to be asserted for 8 extra cycles indicating a write to
the lower half of the page inspite of the fact that the lower half
was not written into. This was found very early in the design
stage.

SYNCHRONIZER VERIFICATION RESULTS

Another critical bug was found in the FIFO size required. The
property corresponding to Proof Obligationl failed. Our
analysis showed us that the minimum FIFO depth should have
been 18 and not 16. The depth had to account for the internal
FIFO latency. This bug was found very early in the design
stage. While sync_cnt is a primary input to this module, it is an
internal signal within the larger block. Since conventional
simulation based DV was being performed at the block level,
precise control over this signal is difficult to realize in
simulation, making this bug an improbable event within block
level DV. The designer estimates that debugging this issue
would have required ~ 2 hours within a block level
verification test failure, but within the module level FV
framework, this debugging took just a few minutes.

VIII.

The Page Manager module’s block diagram is shown in
Figure 2. It is responsible for managing all pages on the
receive path of our Ethernet Switch. This module’s interface
supports four types of requests: Allocate, Enqueue, Dequeue
and Dealloc. It also has an output bus, Page Free.

FORMAL VERIFICATION OF THE PAGE MANAGER MODULE
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IX. PAGE MANAGER OPERATIONAL DETAILS

Data passing through the switch from input to output ports is
stored in pages. A list of pages defines a packet. The Page
Manager maintains the state of the page, from the time it is
allocated until the time it is relinquished. Internally, the Page
Manager consists of a) Free List Manager and b) Life Count
Memory. These two sub-units together maintain the state of a
page, which consists of its allocation state as well its reference
count (i.e., the number of packets utilizing that page).

Alloc 2 Lent:=0
Enqueue 2 Lent :={1,2,3}
Dequeue = Lent Read
Dealloc = Lent Decrement
Free 2 Lent 1=>0

Free List Manager
Free Page
Pool

Life Count Memory

page_alloc_req
page_alloc_{rsp,pgnum}

AllOC =t

Free

page_enque_{req,pgnum,lcnt}

page_enque_rsp

page_deque_{req,pgnum}

page_deque_{rsp, lcnt}

PAGEO : LCNTO {0,1,2,3}
PAGEI : LCNT1 {0,1,2,3}
PAGE2 : LCNT2 {0,1,2,3}

page_dealloc_{req,pgnum}
page_dealloc_rsp

page_free_{req,pgnum} PAGEi: LCNTi {0,1,2,3}

pége_free_rsp

Figure 2 — Block Diagram of Page Manager

The Free List Manager sub-unit maintains a list of free pages
and its interface allows pages to be allocated and freed. The
Life Count Memory sub-unit maintains a reference count (also
called Life count or Icnt) on a per-page basis, representing the
number of packets present on a single page. The legal Icnt
values are: 0...3.

The life cycle of any page consists of the following event

sequence:

e The unit first receives a Page Allocate. This request is
fielded by the Free List Manager, and a free page is
handed to out to the requestor. Coincident with that, the
page’s Icnt is initialized to 0 in the Life Count Memory..

e Once a page has been successfully allocated, an Enqueue
request will be received along with a specified initial lcnt.
The legal values for Icnt are: {0,1,2,3}. This information
is then stored alongside the page within the LCNT
complex.

e  After a page has been Enqueue’ed, it will then receive (at
arbitrary points in time), various Page Dealloc requests.



During each Dealloc request, this page’s lcnt, will be
decremented in the Life Count Memory complex.

e The design assumes that once a page has been
Enqueue’ed with some lIcnt (1,2 or 3), it will only field
those many Dealloc requests. After the last Dealloc
request (in the course of which a particular page’s Icnt
goes from 1 to 0), the Free List Manager should free the
relevant page and thePage Free output signal will be
asserted.

e Between the time a particular page has been Enqueue’ed,
and the time it is freed up, its lcnt can be read any number
of times over the Page Dequeue interface. Each Dequeue
request extracts the lcnt and return this value in the
Dequeue response.

X.  PAGE MANAGER VERIFICATION STRATEGY

The design was responsible for managing a total of 1024
pages. When an attempt was made to cast proofs against the
DUT, it was found that the proofs did not converge due to
state space explosion. The biggest contributor to the state
space was the Free List Manager (with 1024 state bits).

The Free List Manager’s interface definition is shown in
Table 1. This module has a page allocation interface
alloc_{srdy,drdy,num} as well as a page free interface
dlloc_{srdy,drdy,num}.

Table I (Free List Manager Interface)

/*
* alloc_srdy => alloc page available
* alloc_drdy => alloc page consumed by client
* alloc_num => alloc page number
* dlloc_srdy => dlloc page requested by client
* dlloc_drdy => dlloc page request accepted
* dlloc_num => dlloc page number
*/
module fl_mgr(
Clk,
Rst_,
alloc_srdy,
alloc_drdy,
alloc_num,
dlloc_srdy,
dlloc_drdy,
dlloc_num
)
input Clk;
input Rst_;
output alloc_srdy;
input alloc_drdy;
output [9:0] alloc_num;
input dlloc_srdy;
output dlloc_drdy;
input [9:0] dlloc_num;
endmodule
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Our abstraction reasoning hinged on a single observation: If
you focus on the life of a single page, every other page’s
activity (and state) should be orthogonal to this page’s life.
We utilized this observation in constructing a manual
abstraction for the Free List Manager that maintains state only
for a single page of interest thereby cutting down the size of
the cone-of-influence significantly. This technique is based on
the Refinement strategy described in [4].

The Free List Manager abstraction had the following
characteristics:

e |t was aware of the address of a magic page and
maintained state only for that page.

e It operates in two modes, depending upon whether this
magic page is allocated or not:

e If the magic page was already allocated, during
subsequent allocation requests, it would non-
deterministically allocate a page whose address!=
magic page.

e |f the magic page wasn’t already allocated, during
subsequent allocation requests, it would non-
deterministically allocate any page (including one
whose address == magic page).

This Free List Manager abstraction SMV code is shown in
Table Il. This abstraction was coded in both SMV (for
abstraction soundness proofs) as well as in verilog (for the
Page Manager proofs, which were run within IFV).

As can be seen in the abstraction’s code, a single state
variable, magicPageAllocated, was used to record whether or
not the magic page was allocated, and this state is then used in
determining the page handed out during allocation requests.

Aside from this state, the notion of magic page was
maintained within a rigid variable that was set non-
deterministically by the external environment at the time of
reset, and kept constant during each path. By virtue of
maintaining just 1 bit of state (magic page’s allocation state),
the number of bits of state was reduced by 1023 bits within the
cone of influence. This abstraction was then used to replace
the Free List Manager instance within the DUT.

The intent here, in the construction of the Free List Manager
abstraction, was to provide ourselves with a light-weight stub
that allowed completely non-deterministic allocation and
freeing of pages, with arbitrary latencies, with a single
restriction that it would never reallocate the magic page, if
someone else already have it allocated which are
characteristics required for this abstraction to be “sound”.



Table 11 (Free List Manager Abstraction)

layer abstract : {

alcvid - boolean;
dicVid : boolean;
magicPageAllocated : boolean;

magicPageAllocatedNxt : boolean;

alcVId := (alloc_srdy & alloc_drdy);
dicVId := (dlloc_srdy & dlloc_drdy);

init (magicPageAllocated) := 0;
next (magicPageAllocated) := magicPageAllocatedNxt;

/* magicPageAllocatedNxt generation */
default {
magicPageAllocatedNxt := magicPageAllocated,;
}in{
if (~Rst)
magicPageAllocatedNxt := 0;
else {
if (alcVId & ~dIcVId){
/* Only Alloc */
if ((alloc_num=magicPage) | magicPageAllocated)
magicPageAllocatedNxt := 1;

else
if (~alcVId & dlcVId){
/* Only Dlloc */
if (magicPageAllocated & dlloc_num=magicPage)
magicPageAllocatedNxt := 0;

else
if (alcVid & dicVId){
/* Both Alloc & Dlloc */
if (alloc_num=magicPage)
magicPageAllocatedNxt := 1;
else
if (dlloc_num=magicPage)
magicPageAllocatedNxt := 0;

3
}

/* alloc_num generation */
default {
/* any page whatsoever */
alloc_num := {0..MAX_NPAGES-1};
}in{
if (alloc_drdy & magicPageAllocated){
* any page other than magicPage */
alloc_num := {i : i=0..MAX_NPAGES-1, i~=magic Page };
}
}

The FV framework additionally maintained an auxiliary non-
deterministic “tracking state” FSM (trkState) to both
exhaustively generate requests sequences while tracking the
life of the magic page as well as to help predict the DUT’s
responses. This FSM’s state diagram is shown in Figure 3

The trkState FSM starts off in IDLE state and transitions into
ALCD state if magic page is allocated. Once it is in ALCD
state, it non-deterministically generates an Enqueue request
with Icnt={1,2,3} and transitions to states LCNT1, LCNT2,
LCNTS3 respectively. After it moves into an LCNT state, it
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then non-deterministically generates as many Dealloc requests
as is permissable.

During the last Dealloc request generation (which occurs
while in LCNT1) state, this FSM expects to see a Page Free
event for the magic page. If this event occurs, the FSM
transitions to IDLE. On the other hand, during this last
Dealloc, a Page Free event is not observed for the magic
page, it transitions to and forever remains in ERROR state. In
addition, any unexpected output event also caused a transition
to ERROR state.

ALLOC
IRCV magicPage

Magic Page Auxiliary FSM

ALLOC

.
L

RCV magicPage

ENQUEUE(/cnt=3)

DEALLOC
ERROR <
IRCV FREE

DEALLOC

Figure 3 — trkState FSM state diagram

There are two modes of operation within the FV framework,
based on whether or not magicPageAllocated is set:

1. If magicPageAllocated is 0, the trkState FSM will be in
IDLE and the FV framework will non-deterministically
generate requests (for any page), to the DUT.

If magicPageAllocated is 1, the trkState FSM will
generate legal/exhaustive requests (for magic page)
while other input constraints non-deterministically
generate requests (for any page other than magic page).

In addition to generating exhaustive and legal inputs, the
purpose of the FSM’s state variable was to predict the DUT’s
responses while in various states.

We now describe some important assertions governing the
DUT’s behavior (These were coded in System Verilog):

e While in non-IDLE states (i.e., magic page has already
allocated), the DUT should not reallocate magic page to
any other requesting agent.



e After the Allocate phase, during the Enqueue phase for
the magic page, the specified Icnt should be initialized.

e After the Enqueue phase for the magic page, during each
Dealloc phase, its Icnt should be properly decremented in
the LCNT memory.

e The output Page Free should be generated for the magic
page if and only if the last Dealloc request has been
issued for this page.

e While in non-IDLE states, for any Dequeue request, the
response lcnt should match what we expect based on the
FSM state (0 if in ALCD, 1 if in LCNTZ1, 2 if in LCNT2,
3ifin LCNT3).

Table 111 (Example SV Assertions)

/*
* If we’re in non-IDLE state, magic page is already in use and
* should not be reallocated to any other requestor
*/
assert_page_no_realloc: assert property(

@(posedge CIk) disable iff (IRst_)(

(trkState!=IDLE) |-> !(page_alloc_req && page_alloc_rsp

&& page_alloc_pgnum==magic_page)

)
)

/*

* If in LCNTL1 state and there is a dealloc of the magic page,

* then we should see a freeing of the magic page

*/

assert_page_free_valid: assert property(

@(posedge CIK) disable iff (IRst_)(

(trkState==LCNT1 && page_dealloc_req &&

page_dealloc_rsp && page_dealloc_pgnum==magic_page) |->
(page_free_req && page_free_pgnum==magic_page

);

/*
*If in I(LCNTL1 state and there is a dealloc of the magic page),
* then we should not see a freeing of the magic page
*/
assert_page_free_invalid: assert property(
@(posedge CIk) disable iff (IRst_)(

! (trkState==LCNT1 && page_dealloc_req &&
page_dealloc_rsp && page_dealloc_pgnum==magic_page) |->

! (page_free_req && page_free_pgnum==magic_page

We provide some example SV assertions in Table I11. The first
property, assert_page _no_realloc, asserts that if trkState is not
IDLE, that is if the magic page is already allocated, it will not
be reallocated to any other requestor.

The second and third properties that are shown here,
assert_page_free {valid,invalid}, describe the necessary and
sufficient condition required for the magic page to be freed
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(“magic page should be freed if and only if trkState is in
LCNT1 and magic page is deallocated”).

By maintaining a rigid variable that determined magic page
and by having a Free List Manager abstraction that
maintained state for just this one page, the design was
rendered tractable. The properties outlined earlier were all
proven against the life of this single magic page, and since this
page address was non-deterministically generated (to have any
page address), the proofs hold for all pages.

In the interest of completeness, the Free List Manager was
separately formally verified within an SMV framework. Two
properties were proven against the actual Free List Manager:

e A page, once allocated, will never be reallocated until it is
deallocated (safety property)

e All page allocation requests will eventually be fulfilled
(liveness property)

It is worth noting that the last property mentioned above
required the following fairness constraint: “Every allocated
page will always eventually be relinquished” in order to
eliminate invalid counter-examples.

In addition, the soundness of (an SMV version of) the Free
List Manager abstraction was also proven within this
framework.

XI.

During this project, 14 modules within this block were
formally verified by a single FV engineer, over a period of 6
months. A total of 55 bugs were found during this effort; 52
bugs were found in the design phase and 3 bugs were found in
the verification phase. It is also worth noting that during the
verification phase, 3 other bugs slipped through FV and were
found in block level simulation (2 were due to missing
properties and 1 was due to an overly tight constraint).

OVERALL VERIFICATION RESULTS

The 3 bugs found in simulation were recreated within FV by
adding new properties and correcting an overly constrained
input. In addition, the fixes were formally verified.

During emulation, this formally verified block was the first to
successfully withstand data integrity type testing. As a
consequence, this block was deemed tape-out ready two
months prior to other blocks, of similar complexity that
exclusively underwent simulation based verification.

During ASIC “bring-up”, no issues were found in any of the
design components that were formally verified.

XII. CONCLUSIONS

Based on our experience, we come to the conclusion that it is
possible to significantly address block level verification needs



by breaking down the design into minimally sized modules and
then formally verifying each of them.

Our methodology also helped yield the following benefits over
the course of this project:

e Overcoming state space explosion during proof runs
within the model checker.

e Generating rigorous specifications upfront at the module
level, something that is often overlooked while embarking
on “block level” DV.

e Providing SVA assertions and assumptions which could
also be used in simulation.

e Creating FV frameworks within which we could verify
design changes/bug fixes with a high degree of confidence
alleviating the need to rerun all simulation tests.

While re-partitioning of design based on FV tractability can
sometimes lead to added design latency, this tradeoff was
worthwhile overall because the more minimally sized design
modules were easier to maintain.

We also observed that debugging of counter-examples was
very efficient since we specified a large number of module
level invariants that helped isolate root-causes fairly quickly.

We believe there is value in some amount of overlap between
FV efforts and conventional simulation based verification.
Such a parallel/overlapping approach reduces the risks posed
by overly tight constraints and inadequate (or missing)
properties. This overlapping effort is justified by the fact that
almost all bugs were found in the design phase itself and the
FV proof frameworks provided us with a vehicle within which
the fixes could be formally verified.

While the techniques outlined here, to render modules tractable
under FV, are well known in the research world, they are
seldom applied in the course of ASIC formal verification
efforts and are hence worth emphasizing.

XIII. LIMITATIONS AND FUTURE WORK

Our approach relies on the verification engineer using design
insights to come up with the right manual abstractions. This
approach does risk bias particularly in light of the fact that
commercial model checkers (that we know of) lack the means
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to prove soundness of abstractions or the means to express
refinement maps (as can be done with SMV/[5]).

To alleviate this risk, we made a deliberate attempt to keep our
abstractions very simple (less than half a screen worth of
verilog code per abstraction), and as a result have a high degree
of confidence in our abstractions’ soundness.

For the specific case of the Free List Manager abstraction, we
reimplemented this abstraction within an SMV “layer” and
proved its soundness, ensuring that for every path taken within
the RTL component replaced, there exists at least one identical
path within the abstract definition.

Most commercial model checkers do not possess the ability to
verify data-independence in any automated way. We look
forward to such features so that we can utilize them in the
interest of completeness.

However, to put these concerns into practical perspective, we
observe that these risks are no worse than other concerns, such
as ensuring that DUT inputs are not over-constrained, ensuring
that assertions correctly capture the specification’s intent, etc.
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Abstract—Arbiters are commonly used components in elec-
tronic systems to control access to shared resources. In this
paper, we describe a novel method to check starvation in ran-
dom priority-based arbiters. Typical implementations of random
priority-based arbiters use pseudo-random number generators
such as linear feedback shift registers (LFSRs) which makes
them sequentially deep precluding a direct analysis of the design.
The proposed technique checks a stronger bounded-starvation
property; if the stronger property fails, we use the counter-
example to construct an underapproximation abstraction. We
next check the original property on the abstraction to check for
its validity. We have found the approach to be a very effective
bug hunting technique to reveal starvation issues in LFSR-
based arbiters. We describe its successful application on formal
verification of arbiters on a commercial processor design.

I. INTRODUCTION

Arbiters [4] are widely used in electronic systems such as
microprocessors and interconnects. Arbiters restrict access to
shared resources when the number of requests exceeds the
maximum number of requests that can be satisfied concur-
rently. For example, an arbiter that regulates access to a bus
selects which requestors would be granted access to the bus
if there are more concurrent requests than the bus can handle.
Arbiters use various arbitration schemes in the form of a
priority function to serialize access to the shared resource by
the requestors. The priority function decides which requestor
to grant next. Examples of priority functions include round
robin (rotate priority amongst requestors), queue-based (first-in
first-out), or random priority (select next requestor randomly).

Random priority-based arbiters [8] have been gaining in
popularity because of their high potential for fair arbitration,
unlike other techniques such as round robin or queue-based
which can be unfair because of their fixed order of arbitration.
This arbitration scheme allows any request to have the highest
priority at random. A random priority-based arbiter uses a
pseudo-random number generator to select or influence the
selection of the next requestor. A common implementation of
such arbiters uses a Linear Feedback Shift Register (LFSR) [7]
to generate a pseudo-random sequence of numbers. An LFSR
is a cyclic shift register whose current state is a linear function
of its previous state, and it generates a sequence of numbers
which is statistically similar to a truly-random sequence. In
this paper we focus on formal verification of such LFSR-based
random priority arbiters.

The main concern in verification of an arbiter is checking for
starvation. Starvation is a special case of liveness properties,
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Figure 1. LFSR-based arbiter

in which any request must have a grant eventually. Liveness
properties are often computationally hard to verify even on
medium-sized designs. To alleviate this, it is common to check
for starvation by replacing liveness properties with bounded
properties — “request will be granted within N cycles”, for
some constant N. If a bounded property passes, it implies
the correctness of the original liveness property. Even so, the
sheer size of LFSR-based industrial arbiters may preclude an
exhaustive analysis of the bounded property.

We describe a method to uncover bugs leading to long
latencies before requestors are granted in such complex ar-
biters. If the bounded property fails, we study the counter-
example and attempt to either fix the problem by increasing the
bound, or to use the information from the counter-example to
underapproximate the original design. The concepts presented
in this paper can be easily generalized to other schemes
(besides LFSRs) to implement a random priority function.
The presented technique can, in fact, be generalized to model
checking of general-purpose systems, and we briefly present
such a generalization.

II. LFSR-BASED ARBITERS

An LFSR-based arbiter grants access to a pending request
based on the random number generated by the LFSR at any
given point in time. Figure 1 shows a schema of an LFSR-
based arbiter. An LFSR of length /N generates a deterministic
cyclic sequence whose period is 2V — 1, where all numbers
from 1 to 2V — 1 are visited. The initial value of an LFSR
is called the seed, and the sequence of numbers generated by
the LFSR is completely determined by the value of its seed.
An LFSR of length N may be used to arbitrate between M
requestors, where M < 2V, by sampling a subset log(M) bits
of the LFSR to select the next request to be granted. Such a
scheme helps to amortize the cost of implementing an LFSR in
hardware by way of the same LFSR serving multiple arbiters
with different tap points. E.g., N may be 16, while M is 8
requiring 3-bits of the 16-bits of the LFSR to be tapped.
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Figure 2. 16-bit LFSR

Figure 2 depicts a 16-bit LFSR from one of our case studies,
the I_arbiter. The register shifts bits from left to right with
some bits XORed with the most significant bit. The LFSR seed
is configurable, and may be assigned any value between 1 and
216 1 = 65535. Formal verification environments typically
assign a non-deterministic value to the seed.

III. FORMAL VERIFICATION OF LFSR-BASED ARBITERS

Verification of arbiters entails checking for starvation, which
may be formulated as a liveness property. E.g., the following
PSL [6] property specifies that whenever signal request is
asserted, signal grant is asserted some time in the future.

always request —-> eventually! (grant)
A counter-example for such a property is a trace showing a
path leading to an infinite loop. In an LFSR-based arbiter,
this constitutes a cycling through of all the valuations of the
LFSR. The LFSR minimal loop length is 2V — 1, thus any
loop showing a counter-example of the liveness property must
be at least of that length. Hence, finding a trace for such a
property of an LFSR-based arbiter is very hard. An easier yet
more useful alternative to the above correctness property is to
check for a request to be granted within a specified number of
cycles, determined by the arbiter specification. In other words,
we check to see if the request is granted within k£ cycles [8],
[5]. In addition to verifying that a request is granted, such a
formulation gives insights into the performance aspects of the
arbiter, which is quite useful given the critical role arbiters
play in the overall performance of electronic systems. The
following property expresses a bounded-starvation condition.

always request—> next_e[l..k] (grant)

Exhaustive verification of above properties to guarantee lack
of bugs on is becoming increasingly challenging, if not impos-
sible, for arbiters in real-world systems due to their sheer size
and complexity. This calls for bug hunting methods to detect
as many bugs as possible using scalable underapproximate
techniques and (semi-) formal analysis. Such methods are
more practical and provide concrete traces, rather than a
suspicious bounded pass due to suspect abstractions.

Related work

As stated above, typical approaches to verify arbiters check
for eventual grant of resources to the requests without much
attention to performance aspects. Krishnan et. al. [8] studied
starvation and performance of random priority-based arbiters
extensively. They proposed a three-step verification process
for computing an upper bound on the request-to-grant delay.
In the first step they compute the maximum length Complete
Random Sequence (CRS) comprising all random numbers (in
the context of the sampled bits) the LFSR can assume. Next
they compute the maximum number of CRSes needed for a
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request to be granted by the arbiter standalone with replacing
the LFSR with a random-number generator. In the third step,
the two values computed are combined to give the worst-case
request-to-grant delay in clock cycles. A drawback of this
method is the decoupling of the LFSR from the arbiter in
the second step; a CRS can complete without being sampled
by the arbiter. This produces a theoretical worst-case request-
to-grant delay yielding very high bounds at times, much
higher than the bounds stated in the model specification to
be useful. Moreover, the trace produced by this technique is
not representative of the overall system comprising the LFSR
and the arbiter.

Our proposed technique compliments the above solutions
by providing an effective bug hunting method for the actual
LFSR-based arbiter, without any simplification thereof which
may render the treatment (results) removed from the real
logic. The effectiveness of the method has been proven on
highly complex arbitration systems where it was leveraged
to find real bugs. The method dynamically chooses between
property strengthening and underapproximations in order to
find a failure faster. The method can be easily generalized to
create property-based underapproximations.

IV. BUG HUNTING IN LFSR-BASED ARBITERS

The complexity of property checking is a function of the
property and the design-under-test (DUT). Our bug hunting
approach considers both the property and the DUT. In this
section we describe how we construct easier-to-check under-
approximate abstractions of LFSR-based arbiters.

Underapproximation and overapproximation techniques are
commonly used to falsify properties or prove their correctness
[3]. An abstract system is easier to check than the concrete
system because it has fewer states and fewer transitions. Since
our focus is bug hunting of safety properties we leverage
underapproximations to obtain traces falsifying the property,
which are then validated on the concrete/original model.

The seed of an N-bit LFSR may range between 1 and
2N _ 1. The seed fully determines the LFSR sequence, so
a run of the arbiter is based on one of 2V — 1 possible seeds.
To underapproximate the arbiter we fix the LFSR seed by
assigning it a constant N-bit number. A fixed-seed arbiter
underapproximates the nondeterministic-seed arbiter as every
run of a fixed-seed arbiter corresponds to a single LFSR
sequence. If a bounded-starvation property fails in a fixed-
seed arbiter then it definitely fails in the nondeterministic-seed
arbiter; additionally, a counter-example that demonstrates a
fail of a safety property in a fixed-seed arbiter is valid in the
nondeterministic-seed arbiter. If a bounded-starvation property
holds in a fixed-seed arbiter we cannot ascertain if it holds in
the concrete system.

Falsification of a k-cycle-starvation property in an [N-bit
LFSR arbiter requires checking runs of depth & in a model that
allows 2% —1 possible LFSR sequences. Our method addresses
the inherent hardness by alternating checking easier-to-check
properties on the original system, and checking the original
property on abstract systems. We iteratively check starvation
with lesser bounds on the original system, and starvation with



the original bound on fixed-seed arbiters. We use property
strengthening to seek interesting seeds that generate sequences
that are likely to cause long starvation.

We define the following properties that express lower
request-to-grant delays

D [1..73]
for 1 < j < k. It is obvious that checking any of the properties
p; can be done in a shorter period of time than the original
property. Clearly, every run that starves a request for k cycles
starts with a starvation of j cycles, but a starvation of j cycles
does not necessarily end with a starvation of k£ cycles. If a
property p; fails in the concrete system and a counter-example
is generated, we underapproximate the arbiter by restricting
it to the very same LFSR sequence that the counter-example
reveals. Since LFSR sequences are determined by their seed it
is enough to confine the arbiter’s non-deterministic seed to the
same seed that is exposed by the counter-example. Checking
the fixed-seed arbiter is easier and likely to uncover a k-cycle
long starvation.

Our method is outlined in Algorithm 1. We denote the orig-
inal nondeterministic-seed LFSR arbiter by M, the maximal
number of cycles allowed between a request and a grant as
determined by the specification by k, and for some constant
number ¢, we denote by M [seed < c] the arbiter M whose
seed is the constant number c.

= request -> next_e (grant)

Algorithm 1 Checking bounded starvation on LFSR-based arbiters

>
1) check M Ep
2) if pass or fail then return result
4) while (Jimin < Jmaz) do
a) j <« |_jmm-52-jmazj
?

b)
)
d)
€)

check M = p;

if pass then return “pass”
if timeout then j,,,q. < J
if fail then

i) M; < M[seed < seed;] ; jmin < J
?
ii) check M; E=p
A) if fail then return “fail”

The algorithm checks bounded starvation with different
bounds and creates underapproximations of the original arbiter
by initializing it with different seeds. We iteratively check
property p; with arriving at the next value of j using a binary
search. If checking of a bounded-starvation property p; times
out, we next check another bounded-starvation property with a
lower bound. If a property p; fails, we extract the LFSR seed
from the counter-example, denoted by seed;. Next we restrict
the arbiter’s seed to seed;, and check if the original property
fails in the fixed-seed arbiter. If the property does not fail we
narrow the seed space by checking a weaker property with a
higher bound.

The algorithm halts after log(k) steps at the most. Let us
examine an extreme case where all runs of the strengthened
properties on the concrete model, M |= p;, time out. This
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indicates that the arbiter is extremely complex and beyond
the capabilities of our formal-verification tools. We note that
the method is an effective bug hunting heuristic, but does not
guarantee a bug free design, nor does it cover all LFSR seeds.

V. BUG HUNTING METHOD — A GENERALIZATION

We generalize the presented heuristic to general purpose
model checking. The rationale is straightforward — check
strengthened properties on the original model to aid in finding
an efficient underapproximation for bug hunting on the original
model. If any of the strengthened properties pass on the
original model, it implies that the original property passes as
well. If it fails then, heuristically, it has some information
leading to a fail of the original property. This information
can be extracted, and used to guide the search for a failure
on the original property. This is achieved by defining an
underapproximation of the model and checking for the validity
of the property on it.

Intuitively, a safety property asserts that something bad
never happens, while a strengthened property asserts that
something “not-as-bad” never happens. Formally, for two
properties p and ¢ we say that property p is stronger than
property q if p — g. Consequently, given system M and two
properties p and ¢ such that p is stronger than g, we have
MEp— M [ q,ie., if p holds in M then ¢ holds in M.

Falsification of a strengthened property tends to be easier
than falsification of the original property because it defines
more bad states in the system. If falsification of the original
property is infeasible then we check a strengthened version
of the property. If the strengthened property fails, we restrict
the concrete system to the valuations provided by the obtained
counter-example, and see if the original property fails.

It is not easy to determine how to strengthen a property
in a useful manner. Hence, we restrict the discussion to a
subset of properties whose strengthened versions enable an
efficient and exhaustive search. A straightforward example
for such properties is PSL parameterized properties that have
a single parameter that serves as a sequence consecutive-
repetition operator or as a bound of the next e or next_a
families of operators (formal definitions can be found in [1]).
These widely-used operators are similar to the next_e operator
used in our test case, and the practice of binary search over a
bounded range of integers readily applies to them.

VI. EXPERIMENTAL RESULTS

The bug hunting method described in section IV has been
used to verify several random priority-based arbiters used in
an interconnect unit, and a router of a complex commercial
processor. Table I shows the experimental results on 3 such
industrial designs that use different types of random priority-
based arbiters, and different LFSR sizes to generate pseudo-
random numbers. The first arbiter, referred to as C_arbiter,
is a command arbiter using a 32-bit LFSR. It arbitrates 27
requestors going to a single target. Its specification states
the starvation bound to be 600 cycles. It uses a compound
priority scheme combining LFSR-based arbitration and round
robin to combinatorially compute the next granted requestor.



[ Design | Random seed run time (h:m) | Fixed seed run time (h:m) | Vars before Redn | Gates before Redn | Vars after Redn | Gates after Redn |
C_arbiter 48:00 (Timeout) 8:56 2361 90397 812 7883
I_router 48:00 (Timeout) 21:09 104575 4223285 34070 1413519
I_arbiter 21:34 19:50 104575 4223285 30766 876328

Table I
RUN TIMES AND MEMORY USAGE FOR DIFFERENT ARBITERS

The second design, referred to as I_router, is a router of 56
requestors to 56 targets. The router is a more complex case of
arbitration. It cannot starve an input from getting a request, and
it cannot block an output from receiving a request. This router
has a 16-bit LFSR, and it uses three of its bits for arbitration. It
is a very large design with hundreds of thousands of variables
(inputs and Flip-Flops) with multiple arbitration stages. The
third arbiter, I_arbiter, is a simpler case of this router, with
only one target available, thus checking arbitration only. The
specification of I_router and I_arbiter requires a starvation
bound of 1000 cycles.

All experiments were run on a 2x2.4GHz AMD dual core
processor with 8 GB RAM memory, using IBM’s RuleBase PE
[2] and SixthSense [9] state-of-the-art industrial formal verifi-
cation tools. The problem size is in term of gates and variables
as reported by the RuleBase PE tool, shown before and after
running RuleBase PE automatic model-size reductions. Vars
denotes the numbers of registers and inputs.

For each of the designs we first applied the CRS technique
[8]. The results yielded request-to-grant bounds higher than
the starvation bounds in the specification. E.g., for the router
arbiter it showed that the max length of CRS is 95 cycles; and
we found that the request-to-grant delay is at least 50 CRSes
— while trying to find a higher bound of 100, the tool timed
out, implying a best case request-to-grant upper bound to be
at least 4750 cycles.

Table I shows the run time of runs of the original property
on fixed-seed arbiters that yielded traces (the last step in
Algorithm 1). The various runs to compute an initial LFSR
seed took anywhere from few minutes to 4 hours. We used
parallel capabilities of our toolset to run a large number of
rules with different starvation bounds, with a total run-time
of 8 hours. The highest bounds on which the properties p;
failed were 375 for the C_arbiter and 687 for the I_arbiter. We
gathered all LFSR seed values from the failing traces, seeded
the LFSR of the original design with those, and ran the original
formula. For benchmark purposes, the results above show the
run time of RuleBase PE without using the parallel feature.

The verification timed out on the nondeterministic-seed
runs of the C_arbiter, while a specification violation with a
fixed seed was found in 9 hours. For the I_router design, the
nondeterministic-seed runs timed out as well, while a trace for
a fixed seed was obtained after 21 hours. As for the I_arbiter,
the nondeterministic-seed finished in 21-1/2 hours while the
fixed seed finished in 20 hours. In the I _router and I_arbiter
designs the trace was found after the first run of algorithm
1, while on the C_arbiter the algorithm ran more than once
and timeout increased for the run of stronger properties on the
original model.

Clearly the fixed seed method shows a significant advantage
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on the more complex designs. It was able get past the huge
complexity barrier of these designs. Note that even if the
nondeterministic-seed runs were to finish easily, the initial
state of the LFSR from these runs can be used as a seed
for future runs that try to falsify proposed fixes. Another
interesting fact was that the initial LFSR seed for the I_router
and I_arbiter traces was different. In addition to finding the
bounded starvation traces, our method was able to give us a
large number of interesting traces which provided insights into
the relationship between the LFSR and the arbiter.

VII. CONCLUSION AND FUTURE WORK

We presented an effective method for computing smart
property-based underapproximations. The technique dynam-
ically converges on underapproximations which yield useful
results in the form of bugs or interesting insights into the
workings of the logic. This method has been successfully
applied to LFSR-based arbiters and provided results which
otherwise would not have been obtained with other techniques.

The described approach can be further generalized to
other types of properties. Other directions include developing
more general ways to construct underapproximations from
counter-examples. The search for underapproximations can
be improved by considering additinal seeds provided by the
underlying decision procedure. The method can be enhanced
further to be a proof-oriented approach by extracting reasons
for pass results of the strengthened properties from the solving
engines.
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Abstract—Semiformal, or hybrid, verification techniques are
extensively used in pre-silicon hardware verification. Most ap-
proaches combine simulation and formal verification (FV) al-
gorithms to achieve better design coverage than conventional
simulation and scale better than FV. In this paper we introduce
a purely SAT-based semiformal verification (SFV) method that is
based on new algorithms for generating multiple heterogeneous
models for a propositional formula. An additional novelty of our
paper is the extension of the SFV algorithm to liveness properties.
The experimental data presented in this paper clearly shows
that the proposed method can effectively find bugs in complex
industrial designs that neither simulation nor FV reveal.

I. INTRODUCTION

Traditionally, Register Transfer Logic (RTL) level design
validation is carried out by applying simulation techniques
throughout the design and formal verification in certain high
risk areas. In simulation, design behavior is checked with
a large number of mostly random tests which cover just a
small fraction of the design space. FV resolves the coverage
issue by exhaustively checking all possible scenarios. It usually
requires building a restricted environment and reduced model,
as it cannot be directly applied on typical industrial-size
designs. One of today’s most efficient FV methods, SAT-based
bounded model checking (BMC) [1], verifies the lack of bugs
in scenarios of bounded length. The maximal reachable BMC
bound is not sufficient in many cases to address structures with
long latency, such as deep queues or counters.

Semiformal verification approaches developed throughout
the last decade trade the completeness of FV for effectiveness.
They aim to detect bugs in larger designs rather than to
prove their correctness. Being incomplete, these approaches
are sound — all reported violations of the properties are
true bugs. SFV approaches that simultaneously apply mul-
tiple verification techniques in a complementary fashion are
referred as hybrid approaches. Bhadra et al. [2] provide a
comprehensive survey of recent advances in hybrid approaches
to functional verification. A major challenge for hybrid tools
is their practical applicability to a wide range of industrial
designs and the soundness of the integration of the individual
technique. As opposed to hybrid approaches, our SFV method
is based on a single FV algorithm — SAT-based BMC.

Previous SFV approaches using a single FV algorithm
suggested heuristics to search in a fraction of the original state
space. This allowed reducing the binary decision diagrams
(BDD) [3] to a manageable size in semiformal symbolic
reachability analysis [4]-[6]. BDD-based algorithms, whose
capacity is limited to hundreds of variables, are unsuitable
for verifying properties in today’s industrial designs, which
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often comprise tens of thousands of state elements. Cabodi et
al [7] restrict the BMC SAT engine during the search based
on dynamically computed simplified BDD-based image and
preimage computations. The work in [8] suggests a rarity-
based metric to identify states of a particular depth, searching
from which leads to better coverage.

We use a different approach that utilizes user guidance to
restrict the search within the state space - an idea extending the
“lighthouses” used in the SIVA tool [9]. The user guides the
search by providing a series of waypoints — describing design
behavior throughout the desired scenario. The idea is similar
to [10], but is used in the context of property verification rather
than post-silicon debugging. Some works have suggested ways
to automate the guiding algorithm, as they consider user
guidance as a major drawback. For example, see probabilistic
state ranking in [11] and lighthouse generation automation
in [12], [13]. However, our experience shows that because
verification engineers are well versed in the design, they
can easily specify the required waypoints. Moreover, they
usually prefer to encounter events they are familiar with when
analyzing the resulting counterexamples.

There are other hybrid techniques that augment simulation
with formal searches, as is done in KETCHUM [14], SIVA
[9] and other systems [15], [16]. The biggest challenge for
these tools is the synchronization of the simulation and FV
environments. Random simulation needs to take into account
the FV environment, which is usually modeled with complex
sequential assumptions. Although this problem was partially
addressed in [17], eventuality assumptions, assumptions in-
volving internal or output signals, and assumptions requiring
a lookahead (e.g. G(a — past(b))) are very difficult or im-
possible to account for, thus resulting in false negative results.
Another approach applies multiple shallow FV searches start-
ing from selected cycles in simulation, a technique known as
dynamic FV. Dynamic FV approaches suffer from an inherent
drawback — they require tight coordination between the FV
and simulation environments, which is extremely difficult to
achieve, since in most cases FV is applied at a lower level of
hierarchy than simulation. Moreover, the FV environment is
usually restricted, allowing only a subset of functionalities, a
fact which makes many simulation tests unusable.

Our SFV technique uses user guidance to compose several
applications of purely SAT-based model checking, and ex-
plores the system state space in parts. It can be applied to
all LTL properties, including liveness properties. We address
the known problem that some waypoint states may not be
extendable to the next waypoint. We introduce two new



highly configurable SAT-based algorithms for model sampling
to generate different traces towards waypoints — necessary
for achieving sufficient coverage and detecting corner-case
bugs. This differs from previously suggested approaches, e.g.
periodically tunneling or backtracking between shallow and
deeper waypoints [13]. Our experimental results show the
superior bug-finding ability of our approach, which detected
critical bugs in industrial-scale designs that were “clean” from
FV and simulation perspectives.

The rest of the paper is organized as follows. Section II
describes the proposed BMC-based SFV algorithm. Section III
introduces SAT-based algorithms for model sampling. Sec-
tion IV is dedicated to semiformal verification of liveness
properties. Our experiments are described in Sections V
and VI, the first reviewing the test cases and the second sum-
marizing the results. Conclusions and future work directions
follow in Section VII.

We use a standard LTL notation for temporal properties:
X for next, U for until, G for always, and F' for eventually
(see [18]). Instead of repeating X n times we use a shortcut
notation X",

II. SAT-BASED SEMIFORMAL VERIFICATION
A. Basic Algorithm

The verification time in BMC grows exponentially with the
bound, and as a result it cannot explore scenarios that require
many clock cycles to execute. The proposed semiformal veri-
fication algorithm applies multiple shallow BMC runs, trading
the exhaustiveness of a search for speed. The user provides
an ordered set of waypoints which direct the search engine
towards the desired deep design state. The algorithm searches
for a path from one waypoint to the next starting from the
initial state, the BMC engine being restarted at each waypoint.
Being familiar with the design behavior, users naturally direct
the search towards the desired area by encoding the waypoints
with cover points. For example, consider a queue that requires
200 clock cycles to be filled. To verify the design in a risky
“full queue” state, possible waypoints could be “1/4 full
queue”, 7172 full queue”, ”3/4 full queue”, each waypoint
being easily reached and the overall verification time being
but a fraction of the original BMC verification time.

The high-level SFV algorithm below is based on the fact that
the properties may be represented with finite automata [18].
Another possibility for handling properties is to generate the
satisfiability formula directly by the syntactic structure of the
temporal assertion [19]. However, this algorithm is much less
efficient than semantic translation based on automata [18],
as shown in [20]; therefore we do not consider syntactic
translation here.

Given a series of cover points &1, &a, . . ., &, and the property
¢, the algorithm performs the following steps:

1) Calculate the set of relevant assumptions for
&1,&,...,&, and run BMC targeting &; from the
set of initial states Wj.

2) If a witness has been found, the property automata
are simulated along this witness. BMC and simulation
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init g1,...,q2a <0
next(q1) < a; next(q2) < q1; ..
fail — —=bA qu

-;next(qs) < g3

Fig. 1: RTL for assumption G(a — X*b)

are repeated each time using the end point of the last
simulation as the new initial state, targeting consequent
cover points &, ..., &,. If a witness is not found for
some &;, an indeterminate result is reported.

Run BMC to determine whether ¢ holds. If there is a
failure, append the counterexample to the concatenation
of witnesses &1, ...,&,. If a timeout or required BMC
bound is reached, report a lack of failure.

3)

B. Calculation of New Initial States for Safety Properties

Since a safety property automaton can be synthesized into
RTL [21], it may be simulated on the waypoint witness using
a conventional RTL simulator. As an example, consider an
assumption G(a — X*b). Its automaton may be synthesized
as shown in Fig. 1.

If a =1 in the witness appears in the next to last step, the
initial state of the next BMC run should have g = 1. Simu-
lating the property automaton is important: blindly reusing the
initial property condition init ¢i, ..., g4 < 0 would have led
to the discontinuity of the adjacent BMC runs, and potentially
to false negatives and bogus witnesses and counterexamples.

III. USING MULTIPLE SAT MODELS TO ENHANCE
COVERAGE

A. Motivation and Related Work

The experiments conducted, described in Section VI, show
that the proposed basic algorithm will likely miss corner-case
bugs. The reason for this is that a randomly chosen path,
constructed from a series of witnesses each of which satisfies
the corresponding intermediate waypoint, does not exhibit
sufficient coverage of the design space. Greater coverage may
be achieved by advancing towards the desired deep state along
multiple paths in parallel. For each intermediate waypoint, a
heterogeneous set of witnesses is generated instead of a single
witness, and for each such witness a separate verification
process towards the next waypoint is launched. Consider Fig. 2
which illustrates a scenario where using two witnesses for the
waypoints resulted in bug detection, whereas the chances of
detecting the bug would have been much smaller otherwise.

A number of approaches to generating random witnesses
(or solutions, or models) exist in literature. BDD-based,
local-search-based, and arithmetic-based approaches such
as [22], [23], and [24], respectively, are not applicable for our
domain, since our test-cases are too complex for BDD-based
and local-search-based algorithms, and they contain more bit-
vector operations than arithmetical operations.

Modern efficient SAT solvers are able to solve complex
formulas that arise in FV. SAT-based methods can also be used
to sample the solutions of a given formula. One such method,
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Fig. 2: Multiple witnesses

called XORSample, was proposed in [25]. XORSample in-
vokes the SAT solver at least k& times to generate & models.
For each invocation, the initial formula is augmented with
random XOR constraints. A sampling is not rejected only if
the augmented formula has one and only one model. This re-
quirement was relaxed in [26], whose version of XORSample
does not reject samplings. Another SAT-based method, called
DPLL-based sampling, was mentioned in [24] (we did not find
any reference to a work introducing it). DPLL-based sampling
invokes a SAT solver k times to generate k£ models on the same
input formula. Model diversification is achieved by making the
first boolean value assignment to a variable random for each
invocation of the SAT solver.

Literature on the AIISAT problem (that is, the problem of
finding all the models for a formula) is also relevant for our
purposes. Most AIISAT engines are built on top of a SAT
solver. When a model is found, a typical ALISAT solver [27],
[28] adds a blocking clause which prevents the solver from
rediscovering the same model in a subsequent search and
restarts the search. Unlike DPLL-based sampling, AISAT
invokes a SAT solver only once.

B. SAT-Based Algorithms for Generating Multiple Witnesses

In this section we describe two new algorithms for gene-
rating heterogeneous models (witnesses) to a given formula:
Rand-k-SAT and Guide-k-SAT. Both our algorithms surpass
existing approaches in terms of both diversification quality
(formally defined below) and performance. We also present
two modifications to Rand-k-SAT and Guide-k-SAT, called
AlISAT-sampling and BCP-aware Guide-k-SAT, which allow
the user to trade diversification quality for performance.

Given a propositional formula F' in conjunctive normal
form (CNF) over variables V = {vy,...,v,}, a SAT solver
either finds a complete satisfying assignment (model) for F'
or proves that no model for F' exists. We define the distance
D(p1, p2) between two partial assignments 1 and ug to be
the number of variables that are assigned in both p; and po
and have different values in p; and po. Note that our definition
yields that the distance between two models is the Hamming
distance. We define the diversification quality of k models
w1 - g Q1 - .. pg) to be the average distance between each
pair of models, normalized by the number of variables:

QU k) = (=g Xj—iir Dpi 1)/ (n(k? = k) /2).

For example, consider a formula F' = (a VbV ) A (—aVb)
and three models p; = {a =1, b=1, ¢ =0}, ps ={a =

27

1, b=1, ¢c= 1} and pg = {a =0, b =0, ¢ = 1}.
Then, D(p1, p2) = 1, D(pa,p3) = 3, D(p2,p3) = 2, and
Q(p1, p2, u3) = (14+2+3)/(3x((32-3)/2)) = 2/3. Note that
since the diversification quality is normalized by the number
of variables, it must lie between O and 1.

Given a propositional formula F' in CNF and an integer
number k£ > 0, we are interested in finding k£ models for
F with the optimization goal of increasing the diversification
quality of the models. We do not intend to guarantee a certain
quality in a theoretical sense, but rather to combine solid
performance with a good model quality for the practical needs
of efficient semiformal verification.

Both our approaches, Rand-k-SAT and Guide-k-SAT, invoke
the SAT solver only once, like AIISAT solvers do. However,
we do not add blocking clauses when models are discovered.
Instead, the solver restarts the search after a model is discov-
ered. Diversification is achieved solely by changing the phase
selection heuristic for variables.

The decision stage of a modern SAT solver chooses a
variable and its phase at each decision point during the search.
The variable decision heuristic selects a variable. The phase
selection heuristic selects a boolean value for the selected
variable. Most modern SAT solvers use RSAT solver’s phase
selection heuristic [29], which tries to refocus the search on
subspaces that the solver has knowledge about. This heuristic
keeps a saved-phase array, indexed by variables. The array
contains boolean values and is initialized with 0’s. The solver
stores the last assignment given to a variable in the saved-
phase array. The phase selection heuristic for variable v always
chooses the value of v from the saved-phase array.

Both Rand-k-SAT and Guide-k-SAT override the traditional
phase selection heuristics. However, they differ from one
another conceptually in their phase selection strategies. Rand-
k-SAT selects the phase randomly on all occasions. Guide-k-
SAT selects the polarity in a non-random manner: explicitly
guides the solver to extend its partial assignment o so that the
distance between o and previous models pq,..., u,—1 will
be as large as possible. We designed this strategy keeping
in mind the goal of making the distance between the next
model p,, and the previous models as large as possible. More
specifically, Guide-k-SAT uses the following greedy approach.
Suppose a variable v is selected by the variable decision
heuristic. Let p(v)/n(v) be the number of times v was assigned
1/0 in previous models. If p(v) > n(v), v is assigned 0; if
p(v) < n(v), v is assigned 1; if p(v) = n(v) (including the
case where no models have yet been identified), v is assigned
a random value.

The ideas behind Rand-k-SAT and Guide-k-SAT are very
simple and straightforward to implement, yet they turn out
to be powerful and efficient for finding heterogeneously
distributed models on well-structured problems, with an ac-
ceptable performance overhead compared to a modern SAT
solver. On the one hand, we continue using all the modern
SAT strategies, whose goal is to achieve solid performance
on structured instances. On the other, we achieve sufficient
diversification quality, either by selecting the phase randomly



TABLE I: Comparing Approaches to Generating Heterogeneous
Models.

DbS Rand-k-SAT Guide-k-SAT
Mean Quality 0.215 0.313 0.339
Overall Run-Time 47456 30307 28450

or by explicitly guiding the solver away from previous models.

DPLL-based sampling (DbS) is the best previous SAT-based
approach to finding heterogeneous models. We implemented
DPLL-based sampling as well as our algorithms Rand-k-
SAT and Guide-k-SAT, and compared them experimentally
on 66 benchmarks. The number of propositional clauses in
the benchmarks varies from eight thousand to more than three
million. In all the experiments, the required number of models
was 10. All experiments were carried out on a machine with
4Gb of memory and two Intel Xeon CPU 3.60 processors. All
the algorithms were implemented in the latest version of Intel’s
Eureka SAT solver. Eureka’s default phase selection heuristic
is RSAT’s heuristic.

Table I compares DPLL-based sampling (DbS), Rand-k-
SAT, and Guide-k-SAT in terms of mean diversification quality
and overall run-time. Two scatter plots, comparing our best
algorithm, Guide-k-SAT, and DPLL-based sampling in terms
of run-time and quality are provided in Fig. 3. Similar scatter
plots, comparing Guide-k-SAT and Rand-k-SAT, appear in
Fig. 4. Our experiments yield two main conclusions.

First, both our algorithms are clearly preferable to DPLL-
based sampling in terms of both quality and run-time. Table I
confirms the overall advantage. Consider now the the right-
hand scatter plot of Fig. 3 comparing the quality of Guide-
k-SAT and DPLL-based sampling. A significant number of
dots appear near the x-axis, far away from the diagonal,
hinting that the gap is significant for some of the benchmarks.
Now consider the run-time comparison scatter plot to the left.
Guide-k-SAT outperforms DPLL-based sampling on most of
the most difficult instances.

Second, Guide-k-SAT outperforms Rand-k-SAT in terms
of both quality and run-time. The gap in run-time is not
so significant: it stands at 6.5% overall. Also, the run-time
comparison scatter plot in Fig. 4 shows that Guide-k-SAT is
not always preferable to Rand-k-SAT. Now consider diver-
sification quality. While the gap between average quality is
not large, the quality comparison scatter plot clearly shows
that Guide-k-SAT yields better diversification quality on every
one of the benchmarks. Hence, for our examples, to achieve
better performance and model diversification it is preferable
to explicitly guide the SAT solver away from previous models
(using Guide-k-SAT) than to use randomness (using Rand-k-
SAT).

It is also possible to modify our algorithms to trade quality
for run-time. Consider a variation of Rand-k-SAT, called
AlISAT-sampling, that invokes the SAT solver once, but assigns
random values only to variables selected for the first time or
for the first time after a restart. Note that the solver is expected
to keep assigning the same values to the variables for some
restricted time after the beginning of the search or a restart due
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TABLE II: Trading Quality for Run-Time in Heterogeneous Model
Generation.

AlISAT-sampling BaG; T=100 BaG; T=100000
Mean Quality 0.124 0.342 0.353
Overall Run-Time 8211 33392 183857

to RSAT’s phase selection heuristic. A comparison of Table I
and Table I shows that AIISAT-sampling is much faster than
both Guide-k-SAT and Rand-k-SAT; however, the distribution
quality is significantly worse. Accordingly, AIISAT-sampling
can be recommended when the problem is computationally
very complex.

Consider now a variation of Guide-k-SAT, called BCP-
aware Guide-k-SAT. BCP-aware Guide-k-SAT tries to take into
consideration the impact of Boolean Constraint Propagation
(BCP) on the distance between the current partial assignment
and the previous models. It performs BCP for both polarities,
and measures the distance between the resulting partial assign-
ments o and previous models. Eventually, it picks the polarity
that yielded the larger distance.

Specifically, the algorithm operates as follows. Suppose a
variable v is selected by the variable decision heuristic. Let
p(v)/n(v) be the number of times v was assigned 1/0 in
previous models. The variable v is assigned a value p as
follows: if p(v) > n(v), p is 1; otherwise p is 0. Then, BCP is
carried out. Suppose that the set of variables V), is assigned as
a result of BCP. The algorithm saves the distance D,, between
the partial assignment, induced by {v} UV}, and the previous
models. Afterwards, the algorithm unassigns {v} UV}, assigns
v the value —p, and propagates it using BCP. Suppose now
that the set of variables V-, is assigned as a result of BCP.
The algorithm calculates the distance D-,, between the partial
assignment, induced by {v} U V., and the previous models.
If D_, > D,, the algorithm continues to the next decision.
Otherwise, it unassigns {v} U V., assigns v the value p,
propagates using BCP, and continues to the next decision. Note
that the algorithm first tries the polarity p that is less likely to
result in better distance. The reasons is that if —p is preferable,
BCP is performed only twice; otherwise it is performed three
times.

BCP-aware Guide-k-SAT is a costly algorithm, since it has
to perform BCP two or three times per decision. Hence we
limit its usage as follows. BCP-aware Guide-k-SAT is used
until a certain number of conflicts 7" is encountered by the SAT
solver. In addition, BCP-aware Guide-k-SAT is reinvoked after
each model is discovered until 7' conflicts are encountered.
The algorithm then uses plain Guide-k-SAT until the next
model is encountered. Table II shows that BCP-aware Guide-
k-SAT (BaG) improves distribution quality, but deteriorates
run-time. Observe that it is possible to trade quality for run-
time by changing T'.

We also implemented XORSample [25] as well as the
modified XORSample of [26]. We tried a variety of distribu-
tion quality values (0.1,0.01,...,0.0000001) and the number
of generated XOR constraints (1000, 10000, ...). Our results
show that, depending on the configuration, XORSample is



either slower by an order of magnitude compared to Rand-k-
SAT and Guide-k-SAT (it timed-out on most of the instances),
or its distribution quality is worse by approximately 10 times
compared to Rand-k-SAT and Guide-k-SAT. Hence, although
XORSample is useful on randomly generated instances and
on small real-world formulas when a large number of models
needs to be generated, it is inferior to other methods on
difficult benchmarks when a small number of models needs to
be generated.

Our experience shows that the best approach for generating
multiple counterexamples in the framework of semiformal
verification is to allow the user some control over the algorithm
used within the tool. As our experimental results demonstrate,
Guide-k-SAT is preferable as the default algorithm, since it
exhibits the most attractive trade-off between run-time and
solution diversification quality (which translates to efficient
verification). However, we encountered a number of especially
difficult cases where AlISAT-sampling was mandatory in order
to satisfy performance requirements. In those cases, AlIISAT-
sampling was 25X faster than Guide-k-SAT (1 hour versus
25 hours to generate 10 models), although the diversification
quality was 1.7X worse (0.181 versus 0.307). For easy test
cases we recommend using BCP-aware Guide-k-SAT, where
the trade-off between run-time and solution diversification
quality is controlled by the threshold 7'.

IV. CHECKING LIVENESS PROPERTIES
A. Motivation

To the best of our knowledge, no attempt at semiformal
verification of liveness properties has ever been described
in the literature. We do not restrict our consideration to
pure liveness properties, and by “liveness” we understand
everywhere general liveness. Verifying liveness properties is
required when the exact timing in end-to-end properties is
not specified, and to check the absence of starvation. FV
of liveness properties without prior aggressive abstraction is
challenging: the complexity of their BMC-based verification
is significantly more expensive than the verification of safety
properties. Therefore the ability to perform semiformal verifi-
cation of liveness properties is important.

One possible way of handling liveness properties would
to convert them to equivalent safety properties, as explained
in [30]. However, this approach is problematic in the semi-
formal verification context for the following reasons: 1) The
number of property variables doubles when transforming a
liveness property into a safety property, and 2) This translation
makes sense when the resulting safety property is exhaustively
checked. Therefore we did not explore this option in our work.

It is well known [31] that a violated liveness property always
has a lasso-shaped counterexample: a state path consisting of
a linear prefix and a loop. As explained in [32], in BMC of
liveness properties these lasso-shapes paths are described with
Boolean formulas parameterized by the size of the prefix and
of the loop. SFV may help get to a design state close to the
beginning of the loop, and/or to a neighborhood of a smaller
loop. For example, to check starvation, it is necessary to bring
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the system into a state where resources have been requested by
several clients. Applying BMC directly from the initial state
is useless if the greatest feasible bound is insufficient to bring
the system to such a state.

To apply classical algorithms based on semantic translations
to check liveness properties in semiformal verification, the
main challenge is to simulate their automata along the way-
point witness. Application of the algorithm proposed below
is not limited to BMC-based semiformal verification; it may
also be combined with other semiformal methods such as those
described in [14], [15], [33].

B. Simulation of Non-deterministic Biichi Automata

Liveness properties cannot be represented as finite automata
on finite words, and for their representation a finite automaton
on infinite words (a so called Biichi automaton) is needed [18].
In practice it is more convenient to represent LTL properties
with a more general form of Biichi automata — alternating
Biichi automata [18]. For the sake of simplicity we describe
our algorithm for regular (nondeterministic) Biichi automata
only, but with minimal changes the same method may be
applied to alternating Biichi automata as well. Unlike safety
property automata, Biichi automata representing liveness prop-
erties are simulated symbolically, as described below.

In our algorithm we use a symbolic representation of the
transition relation as a Boolean function of two sets of vari-
ables, current (unprimed) and next (primed) [19]: §(w,w’).
We also introduce a map 3 : w’ — w to convert functions of
next variables to functions of current variables. For example,
B(a’ ANV)=aAnb.

Let U; be a symbolic representation of the states reachable
at step ¢ (active states) from one of the initial states while
respecting the given witness. For the witness of the first way-
point, Uy = Qo — the set of initial states of the automaton. For
other witnesses Uy is the symbolic representation of the end-
point of the automaton simulation along the previous waypoint
witness. Let V; be the set of pairs (w,w’), where w € U is a
current active state, and w’ is the next state reachable from w
according to the transition relation J, respecting the limitations
imposed by the witness a; at step i: V; = U; Ad Aa;. The next
variables computed this way become current variables for the
next step, and the process is repeated: U; 11 = G(Fw.V;). In
this formula the existential quantifier selects the member w’
of the pair (w,w’) € V;.

We will illustrate this algorithm on the Biichi automaton in
Fig. 5 for a 4-cycle long witness trace shown in Table III. The
symbolic transition relation § = /\?:O d;, where

do=qo—qyVaNgVaNndg,

Si=q —aAq Vahg

02 =q2 — q3

03 =¢q3 = "bAgGEVbAg,

61 = (g1 — q1)
The values of U; and V; are shown in Table III. As expected,
the values of U; contain symbolic representation of the active
states of the automaton at each simulation step. The initial
state of the next BMC run should have qo V ¢2 = 1.
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Fig. 5: Biichi automaton with accepting states g1 and qa

TABLE III: Simulation of Biichi automaton

Time | a | b | U, | Vi
0 0 0 q0 qo/\ﬁa/\ﬁb/\(q{]Vq’l)/\/\?:l o;
1 0]0] gVa | (goVag)A=-aA=bA (g — g5V dq))
ANa Hqi)/\/\?:z 9
2 110 |gVva | (goVa)Aan-bA(q — g,V dh)
A1 = a) A Ni_y 6
3 0101 gVag —

V. TEST CASES

We implemented the algorithm in Intel’s proprietary FV tool
and chose three CPU design blocks for our experiments. These
design blocks had been extensively tested in simulation and the
design was believed to be mature. The blocks were modeled in
SystemVerilog and included novel features carrying high risk.
The properties were captured using SystemVerilog Assertions
(SVA). We chose blocks of sizes that SAT-based FV engines
could handle — the full cone of influence of a typical assertion
comprised 1K inputs, SK state elements, and 75K gates. As
a result, the FV confidence level was not high enough in all
test cases, as the BMC bound reached by the traditional BMC
approach was not sufficient. In most cases, after reducing the
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Fig. 6: Request Tracker

models using both manual and automatic techniques, design
scenarios requiring more than forty clock cycles could not
be addressed. It is worth noting that our attempts to apply
industrial semiformal verification tools yielded no tangible
results. This was due to complex environments that needed
to be synchronized and to the unique properties and large size
of the CPU design blocks.

The first block, a Request Tracker, is responsible for mana-
ging various request types and ensuring the correct execution
order of the requests, giving preference to high-priority re-
quests while not starving low-priority requests. Requests arrive
from various sources, and each is associated with a unique
identifier (ID). A high-level diagram of Request Tracker is
shown in Fig. 6.

The different request types vary in the time needed to
process them, e.g. a REQ1 request (path REQ1 — OUT1)
requires considerably fewer clock cycles than a REQ2 request
(path REQ2 — OUT?2). We chose to experiment with REQ2,
which had not been properly addressed in FV due to BMC
bound limitations.
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The second block, a Resource Manager, is responsible for
controlling resources and making sure that no resource is
allocated twice and that none are lost. The resources are kept
in the pool and allocations/deallocations are recorded using a
cyclic table. See Fig. 7 for a high-level diagram of the block.

The third block, a Flow Manager, implements a mechanism
to control a complex flow involving many agents. It comprises
a central FSM with additional smaller FSMs around it, each
being responsible for a specific flow scenario or sending
and receiving data from a certain agent. The central FSM
controls the flow, supervising all the smaller FSMs around it.
This block was used for algorithm experiments with liveness
properties, as the main concern is that the flow will eventually
finish successfully without getting stuck in live-lock due to a
bug in one of the FSMs.

VI. RESULTS

In this section we describe the results of applying the
proposed SFV algorithm to the RTL blocks described in
Section V. The most important result was the exposure of
three real corner-case bugs described in Section VI-A. We
also inserted several artificial corner-case bugs described in
Section VI-B. We sought to corroborate different characteris-
tics of the algorithm, namely its ability to adequately cover
design state space using the multiple witness approach.

A. Real Corner-Case Bugs in Mature Designs

Our SFV algorithm revealed the following bugs in the
Resource Manager, two of them critical. These bugs could be
revealed neither in simulation, nor using traditional FV, nor
using SFV with a single witness.

o Incorrect STALL calculation in a very specific combina-
tion of allocation requests, which causes resources to be
lost.

A bug in recovery/restart event handling which results
in not all of the allocated resources being correctly sent
back to the resource pool.

Corruption, in a scenario involving extremely high allo-
cation traffic, of a mechanism which validates resource
integrity in the Resource Control Unit.

B. Testing the Ability to Adequately Cover Design State

We inserted an artificial corner-case bug in the Request
Completion Logic sub-block which causes a failure when
multiple REQ?2 type requests from particular sources and ID
ranges arrive in a particular order. The bug results in one of
the requests being incorrectly marked as completed. This bug
could not be revealed with the simulation regression.
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TABLE IV: Resource Manager Verification Results

CP/Asrt BMC SFYV, single SFV, multiple
Result | Bound || Result | Bound || Result | Bound
Line 4 covered | 69 covered | 69 covered | 69
Line 8 covered | 71 covered | 77 covered | 77..83
Line 12 uncov. 24 covered | 89 covered | 85..95
Line 16 uncov. 26 covered | 99 covered | 93..107
Line 19 uncov. 26 covered | 113 covered | 99..119
Line 0 N/A N/A covered | 129 covered | 107..133
Asrt TO 38 TO 42 failed 142

We used nine different waypoints modeling several REQ2
requests in various pipe stages on a path REQ2 — OUT2; for
example, the one marked by a star in Fig. 6. In this and other
experiments we used general waypoints (waypoints previously
defined by validation engineers for other purposes) in order
to eliminate the possibility that prior knowledge about the
bugs might lead us unconsciously to craft waypoints leading
directly to them. For each waypoint we calculated 5 witnesses,
targeting each of the twelve assertions from 9x5=45 different
initial states defined by these witnesses. The cover points
occurred at bounds 64-70, and verification took 1406-3379
seconds (on a machine with 4Gb memory and two Intel Xeon
CPU 3.60 processors). A failure was detected by one out of
12 assertions from only one initial state, whereas runs from
the other 44 initial states missed the problematic scenario.
It occurred at bound 34 (70+34=104 clock phases from the
original initial state) after 14707 seconds.

We inserted an artificial corner-case bug into the Resource
Manager logic which calculates the condition for next request
STALL. This caused Next free pointer to wrap around early
due to illegal allocation, thereby running over other resources
in the table. We used general cover points as waypoints
asserting that table lines were allocated, and the table was
incrementally filled up until the wraparound. We ran traditional
BMC and SFV with single as well as multiple witnesses. The
assertion verified that resources were not being lost in the
system. In all cases a timeout of 20 hours was used. Results
are summarized in Table IV.

A wraparound happens after the 19th table line is allocated,
as the cyclic allocation table size is 20. BMC could not get
beyond the allocation of line 8, and the multiple witness
approach was needed in order to come across the problem-
atic combination of resource requests. The total number of
verification runs was 3(witnesses)8(Waypoints)=729 Note that
the SFV algorithm does not necessarily produce the shortest
counterexample — line 8 was reached with bound 71 using
BMC whereas using SFV it was reached with bound 77 to 83.

We experimented with liveness properties in the Flow
Manager block. The properties validate forward progress with
the control FSM (dispatcher), eventually reaching predefined
control points without getting stuck, e.g. due to a bug in
one of the FSMs. The proof assumes the legal behavior of
the surrounding agents. We used waypoints describing the



state transitions of the dispatcher FSM. Although we did not
find any real design bugs, we validated the correctness of
the algorithm by properly detecting a known deep bug using
our approach. The failure was detected faster: 1575 seconds
(509 seconds towards the waypoint and 1064 seconds to get a
counterexample) vs. 5470 seconds for traditional BMC (3.5X
faster). This is due to the run-time reduction phenomenon
described in Section II-A.

VII. CONCLUSION AND FUTURE WORK

The method suggested in this paper for pure SAT-based
semiformal verification is very simple to grasp and straightfor-
ward to implement, yet it exhibits a superior ability to achieve
good design coverage and detect deep, corner-case bugs in
industrial-scale designs. The experimental results confirm this
by exposing both real and artificial design bugs missed by
simulation (due to coverage limitations) and classic FV (due to
bound limitations). These encouraging results were achieved
with a relatively small amount of work on the part of the
validation engineers, much less than the effort required by the
traditional FV and simulation approaches applied prior to our
experiments. Moreover, the suggested method can save the
substantial effort usually invested in reducing designs to fit
the capacity limitations of FV tools, as it can replace such
activities.

As a by-product, we developed two SAT-based algorithms,
Rand-k-SAT and Guide-k-SAT, that are able to efficiently
find a number of heterogeneous models for a given problem.
We also discuss variations of Rand-k-SAT and Guide-k-SAT
that allow the user to achieve the desired balance between
performance and solution diversification quality. We have also
proposed an extension of the semiformal verification algorithm
for liveness properties.

In our future work we intend to study how different diver-
sification techniques affect bug detection capabilities and to
collect more experimental data on semiformal verification of
liveness properties to better understand the practical utility of
this technique.
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Abstract — System On Chips (SOCs) are being increasinglyjunctionalities are needed, whether it be at the IP level, sub-
deployed in large number of applications and systems as théystem level or at the SOC level, albeit with increasing
allow automation to be implemented to render ease arfPmplexities in their functionality. Re-use further reduces the
convenience in many human activities’ a prime examp|e beir@)mpleXity, time and cost associated with verification. In this
smart mobile phones. This renders their desigrPaper, while we emphasize the verification task of DFT logic
implementation a fairly difficult task - with larger product in an SOC at the RTL level, which constitutes a significant
space and product revisions, comes the requirement for largertion of the entire DFT logic verification task, there are
feature integration in smaller die-sizes, smaller desig§everal gate level DFT Logic verification tasks which are
turnaround times and lower power consumption. To addredetter suited to simulation (through TDLs). Even for such gate
these issues, SOCs are being designed by integrating existit®ye! verification tasks, ensuring a clean DFT logic integration

in house Intellectual Properties (IPs), or third party IPtthe RTL level helps in reducing the overall effort, as many
provided by external vendors. errors at this level of hierarchy, using earlier approaches, are

attributable to RTL level integration errors.

DFT logic integration is an important design activity in any

SOC design implementation, which gets carried out almost aghe principal objective of the proposed approach has been to
a background activity, while not being accorded the dué.) Reduce simulation based DFT IOgiC integration verification
importance given to the prominent front-end design activityat the RTL level, 2). Improve robustness of Silicon quality by
related to implementing functional features in the design ofomplete elimination of any bugs related to DFT logic, and 3).
any SOC. Integration of DFT logic and the verification of thisEnable re-use of DFT logic verification infrastructure across
integration to other functional Sub_systems and IPs in a Sodfferent SOCs and across different hierarchies within each
constitutes a significant portion of the overall design andOC. These objectives have been achieved by taking the
verification effort. Any Savings in this Component he|ps informal verification route with aUtO'generation of formal
reducing the overall chip design and verification time andProperties and the formal tool set up, on which the proof of
therefore, the cost. This is achievable through automatiofih€se properties are executed. In this paper we give several
The predominantly canonical and regular nature of th&xamples which highlight our contributions to the above
structures and behavior of most DFT IPs facilitates thispbjectives across different hierarchies within an SOC and
leading to the kind of convergence presently seen towardkross different SOCs.

standardized configurable DFT logic architectures. Such
standardized configurable DFT logic architectures lend
themselves to auto-generation of their RTLs with ease.
In addition, this feature enables high re-usability at different
levels of hierarchy in any SOC design because similar DFT

Keywords - Formal Verification, DFT Logic, SOC Integration
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Abstract—In theory, counterexample-guided abstraction re-
finement (CEGAR) uses spurious counterexamples to refine T T

overapproximations so as to eliminate provably false alarms. (msnumencea‘ pbstraction  |_Beolean Model Error Trace
In practice, CEGAR can report false alarms because: (1) the | ©F&" Programi || iCheckac: [l STmer (| Malladon

underlying problem CEGARIs trying to solve is undecidable; (2)
approximations introduced for optimization purposes may cause sl exror trace
CEGARto be unable to eliminate a false alarm; (3)CEGAR has New Predicates for refinement

no termination guarantee - if it runs out of time or memory then
the last counterexample generated is provably a false alarm. Fig. 1. The SLAM realization of the CEGAR loop.
We report on advances in theSLAM analysis engine, which
implements CEGAR for C programs using predicate abstraction,
that greatly reduce the false alarm rate. SLAM is used by the ) )
Static Driver Verifier ( SDV) tool. Compared to the first version at least this trace from the abstraction (the so-cafietjress
of SLAM (SLAML1, shipped in SDV 1.6), the improved version property); third, even if CEGAR always makes progress it
(?LAM% Shiggeﬂyir} SD\G 2-020/@;1%;5 t\*}\;ﬂDﬁAerClemaQ? é)f false still has no guarantee of terminating [BPR02].
alarms from 25.7% to under 4% for the class of device . o
drivers. For the KMDF class of device drivers, SLAM2 has Theoretically, the lack of a termination guarantee appears
under 0.05% false alarms. The variety and the volume of our [0 be the death knell for CEGAR: most program analyses

experiments of SDV with SLAM2, significantly exceed those typically have termination guarantees despite having the prob-
performed for other CEGAR-based model checkers. lem of false alarms. However, we can set a time limit on a

These results made it possible foiSDV 2.0 to be applied as CEGAR run. If the run is aborted, we have the result that
gﬂvggstomatlc and required quality gate for Windows 7 device the last counterexample trace considered by CEGAR was
' invalid (provably a false alarm). So, CEGAR with a time limit
|. INTRODUCTION has a three-valued outcome: (1) verified; (2) validated error
A decade ago, the SLAM project [BRO2b] introducedrace; (3) not-useful result (NUR) due to lack of progress or
the concept of counterexample-guided abstraction refineméfteout/spaceout. In the second case, the result still could be
(CEGAR) for the analysis of temporal safety properties ¢ false alarm due to bugs in the environment model, temporal
C programs. This work resulted in the Static Driver Verifiepafety property, or the SLAM engine itself. In the results
(SDV) tool that Microsoft applies internally to its devicereported in the abstract and here in the introduction, we count
drivers and ships with the Windows Driver Development Kiguch cases as well as NURs as “false alarms”.
(WDK) for use by third-party device driver writers [BBO6)]. In order to improve the chances for CEGAR to terminate
As shown in Figure 1, the essential points of the CEGARith useful results and fewer false alarms, we explored four
process, as implemented by SLAM, are: (1) the automatsthin ideas in SLAM2, which was derived from SLAML1.
creation of a Boolean prograabstractionof an instrumented  First, we increase the precision of the predicate transformer
C program that contains information relevant to the propertyver statement sequences. SLAM1 abstracts each C program
under consideration; (2nodel checkingf the Boolean pro- statement (such as an assignmentassumestatement rep-
gram to determine the absence or presence of errors; (3) tagenting a conditional branch) to a corresponding Boolean
validation of a counterexamplé&race to determine whether or program statement. Thus, if the C program contains the state-
not it is a feasible trace of the C program. The last step carent sequencé¢sS;; S;) then the Boolean program abstrac-
either produce a validated counterexample trace or a prdimin computed by SLAM1 contains the statement sequence
that the trace is invalid (a provably false alarm), in whickiS;?; S, ), whereS# is the abstraction of statemefit We
case information is added to the abstraction to rule out thell this approacHine-grainedabstraction. Our contribution
false alarm. here is to show how to construct the Cartesian/Boolean pro-
The CEGAR process has three distinct attributes: first,gtam abstraction [BPRO1] for sequences of assignments and
may terminate with either a proof of correctness (“verified”) oassume statements, so that the statement sequéhcss)
a validated counterexample trace; second, if CEGAR proveslstracts td.Sy; Sg)#. We call this approacleoarse-grained
counterexample trace is invalid then, in theory, it can rule oabstraction, which SLAM2 implements.
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Second, we use diverse strategies for exploring counterekecks using both SLAM1 and SLAM2 on 69 device drivers
ample traces. SLAML1 uses a “depth-first” strategy: it synfrom the WDK against 83 temporal safety properties.
bolically executes a counterexample trace in the C programA common question about verification tools is “who verifies
forward from the initial state. As soon as it finds a tracthe verifier?”. The typical answer is that one uses lots of
prefix that is inconsistent, it generates a set of refinemdmnchmarks and testing, as well as cross comparison to other
predicates and a refined Boolean program abstraction. Tthels. In the development of SLAM2, we found numerous
SLAM1 symbolic execution step is complicated because dgficiencies in SLAM1, including its overconstraining of the
its use of symbolic (Skolem) constants, which must be trackafistract transition relation, which leads to “false verification”,
and eliminated in order to later generate properly scopadeal but little acknowledged problem with verification tools.
predicates [BR02a]. So, we also compared SLAM2 to theo¥! analysis en-

In contrast, SLAM2 uses both forward and backwardine [NRTT09] on the same benchmarks. For WDM, SLAM2
symbolic execution. Forward symbolic execution is a simpjgovides 7% fewer NURs, fewer false defects (2 versus 18),
interpreter that maintains a symbolic store. Backward symbolidile finding 18 true defects that &G1 misses (Yol finds
execution is based on preconditions, decomposed and cackddue defects that SLAM2 misses), and is two times faster
per program point in order to make predicate generation vehan YoGl. For KMDF, SLAM2 produces 58 times fewer
simple. The combination of forward and backwards symboldURS (2 versus 117), and is 8 times faster thanGY.
execution allows SLAM2 to detect inconsistencies near the SLAM2 moves closer to the CEGAR promise to “abstract-
beginning of a counterexample trace as well as near the eamtl-refine” until it produces a proof of correctness or a
or in the middle, giving it more flexibility over SLAM1. validated trace. The false alarm rate of SLAM2 is so low

The third major difference is in how the two engines reathat SLAM2 empowers a truly push-button software model
to the lack of progress, which can occur because SLAM cor@hecking experience for users of the SDV tool, which resulted
putes approximations to the best Boolean abstraction in ordieithe technology being required as quality gate for shipping
to speed the search for both proofs and counterexamples. UpbiMicrosoft-produced Windows 7 device drivers.
finding lack of progress (identified when none of the predicatesThe rest of this paper is organized as follows: Section Il
generated in the current iteration of CEGAR is new), SLAMpresents the coarse-grained abstraction; Section Il describes
refines the Boolean program transition relation [BCDR04]. We forward and backwards symbolic interpreters; Section 1V
call this the @NSTRAIN module of SLAM, which is common describes how SLAM2 uses these interpreters to optimize the
to both SLAM1 and SLAM2. In contrast, SLAM2 detectsCEGAR loop; Section V presents the treatment of precondi-
multiple inconsistencies in the same counterexample trabens for assignments and procedure calls in the presence of
when a lack of progress stops it; it interleaves the discoveppinters; Section VI presents experiments results; Section VI
of new predicates with application of theo@sTRAIN module reviews related work, and Section VIII concludes the paper.
so that it is less likely to get stuck.

Fourth, SLAM2 uses information computed during forward
symbolic execution to optimize backward symbolic execution Given a C programP, a set of Boolean expressioris,
in several ways. In particular, the value of pointers computé&tl-AM’s predicate abstraction step produces the Boolean
by the forward execution is critical to the optimization ofrogram abstractionBP(P, E) containing variablesV’ =
the precondition calculation for assignment statements afitd:bz;---,bn}. Each variableb; in V' corresponds to the
procedure calls. Boolean expression (predicate) in E. Boolean programs

In addition to these four main ideas, SLAM2 has a confontain all the control-flow constructs of C, including pro-
pletely re-implemented and more efficient pointer analysis. f§dures and procedure calls. We will focus here on the
optimize predicate evaluation, SLAM2 uses the Z3 state-gibstraction of a procedure with no procedure calls, as the
the-art SMT solver [MBO8] with two major improvements inhandling of procedure calls and returns remain unchanged
the interface between SLAM and Z3: an efficient encoding §Pmpared to SLAM1 [BMRO5].
the predicates given to Z3 and a new set of axioms that expres&§ach procedure of a C program is represented by a control-
the SLAM memory model, in particular, relations betweeflOW graph with basic blocks, where each basic block is a
pointers and locations [BBAML10]. sequence of assignments, skips, a&;dumestatementg _The

As the saying goes, “the proof is in the pudding”: comparedfSume statements are used to model the semantics-of
to SLAM1, SLAM2 reduces the percentage of false alarni§én-elsestatements as well as assumptions about data (non-
from 25.7% to under 4% for the WDM class of device driverd!ullness of pointers). .

For the KMDF class of device drivers, SLAM2 has under SLAM2 generalizes the abstraction step compared

0.05% false alarmb.These figures come from 5727 uniqud® SLAM1 Dby abstracting sequences of statements as
opposed to single statements:

II. COARSE-GRAINED BOOLEAN ABSTRACTION

1The Windows Driver Model (WDM) is a widely-used kernel-level API
that provides access to low-level kernel routines as well as routines specifi
to driver's operation and life-cycle. The Kernel-mode Driver Frameworj_ . . .
(KMDF) is a new kernel-level API which provides higher-level abstraction he main advantage of coarse-grained abstraction compared

of common driver actions. to fine-grained is increased precision [CC77].

S —51;8 | skip | z:=e | xz:=e | assume(e)
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S pre(S, Q) wp(S, Q)
skip Q Q
ri=e Qle/x] Qle/x]
sr:=e | (x=8&y1 AQle/y1]) V...V (z = &yr A Qle/yx]) | Same aspre(S, Q)
assume(e) eN@ e = @
SI;SQ pre(slvae(SQaQ)) wp(Sl7wp(SQ7Q))

Fig. 2. Predicate transformegs-e and wp.

A. Transformation assume(g (pre(S, true)));

We use the standard precondition (pre) and weakest pre-
condition (wp) predicate transformers to assign meaning |to
C programs as well as to perform the abstraction to Boolean
programs. Figure 2 shows the predicate transformers for the
statementsS under consideration. Recall thatp(S, Q) =
ﬁp"ne(SaﬁCZ)' i

We use a source-to-source transformation on the C programb" T !; (i‘/(wp(suz(?’ #n)) thr—.t\;: true ;alse lsex:
to simplify the abstraction process. Any statement sequenee It (Fv (wp(sub(S), ~¢n))) then false elsex
S is equivalent toassume(pre(S, true))sub(S), where the Fig. 3. Cartesian/Boolean abstraction of statement sequgnce
functionsub(.S) is defined to be the maximal subsequenc# of
containing only assignment statementsSofand is defined to
be theskip statement in the case thétcontains no assignment

by := if (Fy(wp(sub(S), 1)) then true else
if (Fv(wp(sub(S),—p1))) then false elsex,

[1l. COUNTEREXAMPLE TRACE VALIDATION

statements). In this section, we explain the two symbolic interpreters
Lemma 1 (Correctness of transformation). For all statemeriflat SLAM2 uses to perform counterexample trace validation
sequences and predicates): on C programs and predicate discovery. The first is a forward
interpreter and the second a backwards interpreter (SLAM1

wp(S, Q) <= wp(assume(pre(S, true))sub(S), Q) only performs forward symbolic execution). The next section
Proof. By induction on length of statement sequerseshow will discuss more about how the two interpreters are used

that together.

The language of compound statements introduced in the
wp(S,Q) < (pre(S,true) = wp(sub(S),Q)) previous section for the abstraction of basic blocks also serves

[The proof is straightforward but omitted due to lack of spacezS the. basis for our d|scuss_|on of Symb"'!c execution of an
xecution trace. An execution trace is simply a sequence

B. Abstraction of basic blocks through the control-flow graph, whose code

A cubeover V is a conjunctione;, Ac;, A...Ac;,, where C€an be modeled by a sequence of assignment assdime
eache;, € {b;,,~b;, } for someb;, € V. For a variablé; € V, statements (one very long basic block). For the rest of this
let £(b;) denote the corresponding predicate and letg (—b;) section, letS; ... S, represent the sequence of statements in
denote the predicatey,. Extend€ to cubes and disjunctions the execution trace under consideration.
of cubes in the natural way.

For any predicatep and set of Boolean variableg, let ) ) )
Fy (¢) denote the largest disjunction of cubesver V" such ~ Forward Symbolic Execution (FSE) processes émire
that £(c) implies ¢. The predicatef (Fy () represents the tracesS; .. ..Sn with two goals: (1) to find an invalid execution
weakest predicate ovel(V') that impliesy. The correspond- trace prefix of the forms, ...S;; (2) to populate a “trace
ing weakening of a predicate is also defined similarly. L&atabase” that maps each statemento the store computed
Gy () be ~Fy (). The predicatef(Gy (¢)) represents the by FSE just before execution of;. '_I'hg main use of the trace
strongest predicate ovél(V) that is implied byp. datat_):_:\se is to resolve pc_Jlnte_r—allasmg guestions in a trace-

Following Lemma 1 and the definition of Cartesian/Boolea#Nsitive manner, as detailed in Section V.
abstraction [BPRO1], Figure 3 shows the translation of a state-OPerationally, forward symbolic execution is an interpreter
mentS to aguarded parallel assignmerin the Boolean pro- that computes the strongest post-condition (sp(J}. 8f a
gram. Here the value represents a value non-deterministicali§fatément sequencg with respect to the initial predicate
chosen from{true, false}. The computation of the predicate!” = true. Recall that

A. Forward Symbolic Execution

abstraction of a formula, as represented by (¢), typically sp(P, skip) = P

relies on an automated theorem prover [GS97]. SLAM1 and sp(P,assume(e)) = PAe

SLAM2 both rely on a specialized algorithms for predicate sp(P,x :=e) = 30,.Plz/0s] A (x = e[z/6,])
abstraction [LBCO5]. sp(P, S1;52) = sp(sp(P,5S1),S2)
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C-like Program Precondition Vectors
I void main(){
2: int x, y, a
3: X =y,
4 X = x+1; 0 1 2
5: if(a>0) 34| true | y+1=y+2 | =(a>0)
6: a = a+l; 5 true | v =y +2 —(a > 0)
7 if(x = y+2){ 7 true | x=y+2
8 SLIC_ERROR:O0; 8 true
9: }
10: }
() (b)
Fig. 4. Backwards Symbolic Execution
(for brevity, we omit the rule fokx := ¢). <qo, ---, qr, € >, Which preserves the positions of the
FSE maintains a store mapping locations to values aimdthe vector.
processes the statemerfis....S,, in order from.S; to .S,,. BSE starts with the one element vecl@r= < true >.

Symbolic evaluation of an assignment (= ¢ or xx := ¢) Processing of anssumestatement lengthens the vector by one
involves: (1) evaluation of the RHS expressiom the context element, as described above. For an assignment statement, the
of the current store to get a valug (2) evaluation of the pre computation for the assignment is applied point-wise to
LHS expression in the context of the current store to getthe input vector, resulting in a new vector of the same length.
location [; (3) mapping locationl to value v in the store =~ We can visualize the computation efe as creating an
(possibly overwriting the previous mapping for locatién upper-left-triangular matrix of row vectors, where the first
During symbolic execution, if a locatian(such as the addresscolumn containgrue everywhere and each subsequent column
of variablex) doesn't have a mapping in the store then a freskpresents the history of a subformula introduced by an
symbolic valued; for the value ofl is created and is mapped assumestatement. The last row {k1) of the matrix represents
to 6, in the store. the starting point wher€), =< true >. Thei'* row of the
Execution of a statemer; = assume(g) first evaluates matrix (1 < i < k) represents); = pre(S; ... Sk, true).
the Boolean expressiosy in the current store, which results For each new precondition vectdp; computed, Z3 is
in an expressiomw; solely over constants of the programmingalled to query if the conjunction of formulas in the vector
language (such a$, 42, ...) and symbolic constants (suchs satisfiable. If it is unsatisfiable then the trasg... Sy
as 6;). FSE maintains a trace conditian (initially ¢rue), is invalid and the predicate discovery algorithm starts, as
which is the conjunction of the;. A call to the theorem described in the next subsection. Otherwise, BSE proceeds
prover Z3 [MBO08] determinines the satisfiability of the forto consider statemen;_; in the trace. If BSE determines
mula 30.¢ A e;. If the formula is satisfiable, then there ishat @, is satisfiable then the execution trace is valid.
an assignment of values to the symbolic constahtéhe Figure 4 illustrates BSE on a simple C program (a).
primary inputs to the execution trace) that witness the validityonsider the false counterexample tr@e8-4-5-7-8. Fig-
of the execution trace. If it is unsatisfiable then the trace prefixe 4(b) shows the vector-based computatiorpaf on this

S1...S; is inconsistent/invalid. trace, with the corresponding trace step numbers in the left-
. . most column (only the steps where the preconditions change
B. Backwards Symbolic Execution are shown).

Operationally, backwards symbolic execution (BSE) com- Columns 0-2 in the table show the precondition computation
putespre(S; ... Sk, true), k < n, but decomposes and cachefor each step of the trace, going backwards from the error step
the representation of each applicatiorpot in order to enable 7. For example, at step 6 a new vector element y + 2 is
predicate generation if the counterexample is determinedagded, which corresponds to tigen branch of the condi-
be invalid. The benefits of symbolic execution wijihe are: tional. At steps 3 and 4, which correspond to the sequence of
(1) there is no need to introduce symbolic constants; (pSignmentg := z;x := x + 1, the precondition in column 1
assignments to variables that don’t appear in the postconditisromputed agre(y := z;z:=x+1l,x =y+2) = (y+1=
Q@ have no effect. An issue with the use mfe is a blow-up y+2), whereas the precondition in column 2 is not affected.
in the size of the precondition formula due to pointer aliasi
(see the rule fokx := e in Figure 2), which we will return
to later. Given an invalid execution trace;...Sy, the goal of

The decomposition ofpre is based on the simple ob-Predicate discovery is very simple: find a set of predicates

servation thatpre(assume(e = (en Q). If is a
P ( ( )’ Q) ( Q) Q 2Note that the two assignment statements occupy the same basic block, so

conjunction (QO Ao A (Ir)' represented implicitly by the are treated together, just as they are during the abstraction step. This reduces
vector < qo, ..., g >, then we represenfe A () by the number of predicates generated.

"8. Predicate Discovery
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E such that the abstract version mfe induced byE (preg) traceS;...S, to try to find an invalid trace suffixy ...S,.
can proves; ... Sy is an invalid execution trace. Second, if there is lack of progress on invalid trace suffix
More formally, letag(¢) be the weakest formula’ (in Sy ...S,, SLAM2 will perform a partial resetof the pre
the implication ordering) such that’ is a Boolean combi- computation and continue BSE, as follows. Suppose that
nation of the predicates itf and ¢’ implies ¢. Then for the set of inconsistent columns of the precondition matrix
a basic blockS, preg(S,Q) = ag(pre(S,Q)) and for a after processingy ... S, areki, ks, ..., k. The partial reset
sequence of two basic blocks and Ss, preg(S1;.52,Q) = removes these columns from the precondition matrix and
preg(Sy,preg(Se, @)). Suppose thapre(S; ... Sk, true) = resumes BSE at stateme$)f_;. The partial reset can be done
false, where theS, are basic blocks, then we wish to find anultiple times to find multiple invalid traces.
sufficientset of predicate& such thapreg(S; ... Sk, true) = The above approach is interleaved with the application of
false. the CONSTRAIN module, which is applied just once when a
Once BSE has discovered that a precondition ve@prs lack of progress is first identified. SLAM1 does not attempt
unsatisfiable, it is clear that the set of predicates in the pte- find multiple invalid subtraces. Upon lack of progress,
condition matrixM;, 1 =< Q;11 ... Qy > are sufficient. Of it attempts to resolve the issue usingCSTRAIN. If lack
course, we can do much better: the underlying theorem prowérprogress continues, SLAM1 terminates with a “GiveUp”
can provide us an unsatisfiable core)f a small subset of the result, whereas SLAM2 will continue to analyze the trace to
elements ofy; whose conjunction is unsatisfiable. This subsdind new predicates. If SLAM2 finishes exploring ... .S,
identifies a set of “inconsistent” columns ;... Again, it with no new predicates, it too will terminate with a “GiveUp”
is clear that the set of predicates from this set of columns aesult.

sufficient. In our example at line 3, the formula
V. PROCEDURECALLS AND POINTERS

Jy.Jatrue A(y+1=y+2)A-(a>0) A key aspect of the SLAM approach to CEGAR is that

is unsatisfiable. An unsatisfiable core{ig/+1 = y+2)}. So, the Boolean program abstraction contains procedures and pro-

a sufficient set includes predicates from the second Co|umr5:_edure calls. Thus, Boolean variables introduced by predicate
(t=y+2) discovery can be locally scoped to a procedure, which reduces

the cost of model checking.
V. OPTIMIZING THE CEGAR LOOP. MULTIPLE SLAM2 remains unchanged with respect to SLAM1 re-
INCONSISTENCIES garding Boolean program abstractions with procedures. BSE
Optimizations of the CEGAR loop are based on anaWSgerforms precondition evaluation at procedure return and pro-
of the cases when SDV fails on Windows device drivers withedure call steps by converting the precondition from the scope
“not-useful results” (NURs, in SDV terminology). In theory,0f the caller into the scope of the callee (for returns) and back
for a CEGAR run, the set of predicates strictly increasdfor calls). This is done by using relations between actual and
as the iterations of CEGAR increase. LB} be the set of formal parameters of the call/return, and between the return
predicates discovered by iteratiorof CEGAR. In practice, Value of the procedure call (if any) and the return variable of
both SLAM1 and SLAM2 may discover predicat&k such the callee. - _ _
that E; C Uy;-; E:. This lack of progress condition can As discussed before, the precondition computation applied
= <i<<g Tt . . . .
arise due to approximations introduced in the abstraction stéfing BSE has the potential to blow up in size because of

produced in consecutive iterations. making thepre computation trace-sensitive for BSE, using

Upon finding lack of progress, SLAM1 employs a toofhe pointer aliasing information computed by FSE. Consider
called CNSTRAIN to refine the Boolean program abstractiod Statements; : «x := e in the trace. Recall thatre(+x :=
computed for the current set of predicates [BCDR04]. Ot @) is

experiments indicated thatdSTRAIN was a bottleneck in 2 = &us A Ole V.. V(2= &y AOle
SLAM1, so we experimented with techniques in SLAM2 to ( 1 A Qle/un) ( e 1 Qle/ i)
reduce the need to useORSTRAIN. To reduce the size of this formula, BSE looks up the location

The optimized CEGAR loop makes use of both FSE arigpinted to byz in the store computed by FSE on entry to
BSE, as well as the GuSTRAIN module. Given a counterex- Statements;. Suppose that in this storemaps to&y;. Then
ample trace’; . .. S,, SLAM2 first applies FSE. If FSE finds the above equation reduces @e/y;].
an invalid trace p.reflxgl...si then' BSE is applied to the VI. EXPERIMENTAL RESULTS
traceS; ... S; to discover new predicates.

The approach outlined above is similar to SLAM1: pred- W now present a comparison of SLAM2, SLAM1

icates are discovered based on invalid tracefixes. How- and YoG! by running SDV on two large test suites developed

ever, an invalid trace can have several invalid subtraces. §8,d, maintained bY M|crosqft quality assu'rance teams for
SLAM2 also uses BSE in two new ways to discover mor&sting SDV. We first describe our evaluation platform and

invalid sut?traces. First, if there_is lack of progress on irj'va"d 30ne could also perform a full reset of the precondition matrix to the initial
trace prefixS; ....S;, SLAM2 will apply BSE to the entire vector< true > - we did not experiment with this approach.
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Metric

SDV 1.6 (SLAMT)

SDV 2.0 (SLAMI)

SDV 2.0 (SLAM2)

Drivers

Rules

Total checks

LightweightPass results

Pass results

2563

2551

NUR results

6% (285/4692)

2.1% (123/5727)

3.3% (187/5727)

Defects reported

157

564

512

GiveUp results only

0.52% (30/5727)

0.3% (16/5727)

False defects

19.7% (31/157)

9.04% (51/564)

0.4% (2/512)

Time for identical pass

39922

65800

Time for identical defect| -

4440

2669

TABLE

COMPARISON OFSLAM1 AND SLAM2 FORWDM DRIVER CHECKS

criteria. At Microsoft, SDV is used for verification of device g%\éz.o (SLAML) ﬁgs\g 2.0 (SLAM2) gloUNT ?/HANGE
drivers built in multiple driver development models. For our[ Defect (false) Pass 5 v
analysis, we have chosen test suites developed for WD Defect (true) Pass 2 X

and KMDF drivers. These comprehensive test suites includpggeRUp Eifsct i ;5 y
drivers of different sizes (1-30K LOC), with a mix of test —5efect rarse) OOR 36 v
drivers written to test SDV rules (with injected defects),| GiveUp OOR 13 N
sample drivers that are shipped in WDK to provide guidance Pass OOR 64 ~

to driver developers, and drivers that are shipped as part of thegeofeRCt ) g:ngg il :}
Windows operating system. Note that all the data presented [N5efect (true) GiveUp 1 X

this section has been extracted from test runs performed by TABLE Il

the test team. BREAKDOWN OF CHANGES OBSERVED BETWEENSLAM1 AND SLAM2
Most of the metrics used in this section were explained USING SDV 2.0FORWDM DRIVERS.

in previous sections. New to this section are the following

metrics. A “check” is a run on one driver for one rule. A

“LIGHTWEIGHTPASS’ result refers to the fact that before

starting the CEGAR loop, SDV first applies property instruPa@rt of SDV 2.0. Dashes in the table indicate that the data is
mentation, pointer analysis, and function pointer resolution 89t available for that particular metric.

show that the error state of a rule is not reachable in theTab|e | shows Significant reduction in the number of false

call-graph of the C program. An “out of resource” (OORYefects and GiveUp results for SLAM2. This is due to the

result refers to checks that exceeded the allocated time h@tter precision of coarse-grained abstraction, as well as to
memory resources. The NUR results include both the OGRe improved trace validation and predicate discovery. All

and GiveUp results. three factors play a role in these improvements. In particular,

SDV can report a false defect for a number of reasons:bgtter predicate discovery helps make progress (discover new
bug in the verification engine, a bug in the rule, or a bug ipredicates) in the cases where SLAM1 couldn’t; more precise
the environment model (the C code that calls into a drivépstraction reduces the need for additional predicates in the
and provides stubs of kernel routines used by drivers). Heniést place. The number of NURs significantly decreased be-
improvements to any of those components can result in théeen SDV 1.6 and SDV 2.0 for both engines. This is mostly
reduction in the number of false defects. due to the improvements in SDV environment and rules, in

SDV can report a Pass result which is actually a “falgearticular, NULL pointer dereference bugs. Those bugs have
verification”, due to overconstraining of the abstract transitideeen found by running SDV with SLAM2 (but not with
relation. This problem can be revealed by comparing SD¥LAM1). Finally, SLAM2 is faster in finding defects, but
runs with different engines, for example, SLAM1 versutakes more time to prove Pass results. The time difference for
SLAMZ2. In particular, we observed that some Pass resuft Pass results is due to the problem of overconstraining of the
with SLAM1 turn into Defect or OOR results with SLAM?2. abstract transition relation in SLAM1, i.e., “false verification”.
The OOR result would mostly occur on the runs for large According to Table I, for WDM drivers, SLAM2 provides
drivers and/or hard rules. Specific data for such cases areiseful result 96.7% of the time, and upon discovery of a
presented in Tables | and II. defect, provides a 99.6% guarantee that this is a true defect.

For the purposes of profiing SDV and comparing the Table Il shows the breakdown of the individual results
analysis engines, we use the two official releases of SD&nd changes observed between SDV 2.0 with SLAM1 and
SDV 1.6 and 2.0, and also runs of SDV 2.0 with SLAM1with SLAM2 for WDM drivers. The leftmost column is the
for a more accurate comparison. result reported by SLAM1, followed by the result reported

Table | compares the data for the WDM drivers for SLAMby SLAM2 and the count for such changes. The rightmost
as part of both SDV 1.6 and SDV 2.0, and for SLAM2 asolumn indicates whether the changes are in faygr against
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Metric SDV 2.1 (SLAM2) [ SDV 2.1 (Yogl) SDV 2.1 (Yoal) | SDV 2.1 (SLAM2) | COUNT | CHANGE
LightweightPass results | 2457 2457 NUR Pass 114 v/
Pass results 2556 2538 Defect (false) Pass 8 v
NUR results 3.3% (194/5727) 3.65% (209/5727) NUR Defect (rue) 10 v
Defects reported 520 523 Pass Defect (true) g v
False/reported defects | 0.4% (2/520) 3.4% (18/523)
Missed defects 2 18 Defect (false) OOR 1 Vv
Time for identical pass | 76922s 147189s (~2x) Pass OOR 94 X
Time for identical defect| 1795s 99845 (~6x) NUR GiveUp 4 ~
TABLE Il Defect (false) GiveUp 10 VA
COMPARISON OFSLAM2 WITH YOGI USING SDV 2.1FORWDM E:;esct (true) g:zzgg g i
DRIVERS.

TABLE IV
BREAKDOWN OF CHANGES OBSERVED BETWEENSDV 2.1WITH SLAM2
AND SDV 2.1WITH YOGI FORWDM DRIVERS.

(x), or neutral (~), for SLAM2 with respect to SLAM1.
There are 28 cases where GiveUp results by SLAM1
changed into Pass (15 cases) or OOR (13 cases) for SLAMA. KMDF drivers. Note that KMDF drivers are significantly
The change from GiveUp to OOR indicates that progress h&saller than WDM drivers, due to the higher level of the APIs
been made beyond the GiveUp point (but not until a definifgovided by the KMDF model. This explains the comparable
result, due to insufficient resources). Out of 14 cases wheegults for both SLAM1 and SLAM2. There is a significant
SLAM2 produces a GiveUp, there are 11 cases for whigthprovement in the number of NURs (1% to 0.04%) and false
SLAM1 produces a (false) defect. There are 36 cases whelects (25% to 0%) between SDV 1.6 and SDV 2.0, regard-
false defects reported by SLAM1 changed into OOR fagss of the SLAM version. This improvement is primarily
SLAM2, which is clearly favorable for SLAM2. Finally, we due to the improvements in the KMDF environment model
mark the changes from the Pass result for SLAM1 into thghd rules between the two releases. Comparing SLAM2 to
OOR result for SLAM2 (64 cases) as neutral, because WehGi, we observe significantly larger number of NURs for
have a strong evidence that SLAM1 was able to prove the Passci: 117 vesus 2 for SLAM2. Additionally, ¥G! takes
result by overconstraining, but it is unrealistic to investigat® times longer than SLAM2 for checks with the identical
each case to validate this claim. Note that the two defegissults. Note that the defect analysis (true versus false defects)
found by SLAM1 but not by SLAM2 are being investigatedfor comparing YoGl to SLAM2 has not been performed
Table 1l presents a comparison of SLAM2for KMDF drivers.
with YocGl! [NRTT09] for WDM drivers. SLAM2 provides  Table V shows the comparison of SLAM1, SLAM2,
7% fewer NURs, fewer false defects (2 versus 18), whilend Yoaifor KMDF drivers. SLAM2 provides a useful result
finding 18 true defects that &GI misses (the respective99.8% of the time, and upon discovery of a defect, provides
number for YoGl is 2), and is two times faster thano6l. a 100% guarantee that this is a true defect. Comparatively,
Note that YoG! does not report GiveUp results in the sam& oG provides a useful result 97.8% of the time.
way as SLAM does, so this analysis is not performed - In summary, our comprehensive analysis of the realistic
instead, the GiveUp cases are included into the NUR casegmpirical data confirms that SLAM2 provides highly reliable
Notably, Yoc! takes 6 times longer for finding the sameesults by reporting defects with a high degree of confidence
defects as SLAM2, but only 2 times longer for finding theéhat those are true defects, or finding proofs when there’s no
same proofs as SLAM2. defect. Our comparison involves two driver models and three
According to Table I, for WDM drivers, Gl provides verification engines and is based on the data obtained in an
a useful result 96.3% of the time, and upon discovery ofiadustrial setting by independent testers.
defect, provides a 96.6% guarantee that this is a true defect.
SLAM2 provides a useful result 96.6% of the time and a true
defect guarantee of 99.8%. Coarse-grained Abstraction. After the development of
Table 1V provides a breakdown of the changes observell AM1, it became clear that we were underutilizing the
between SLAM2 and ®G! using SDV 2.1 on WDM drivers. power of automated theorem provers such as Z3 to cope with
The format is the same as in Table Il. The table show®mplex Boolean formulae, relying instead on the Boolean
that in general, SLAM2 provides a higher rate of usefylrogram model checker to deal with arbitrary Boolean combi-
results: 114 Pass results and 10 defect reports for wh@1Y nations of predicates. With coarse-grain abstraction, we give
reports NUR. There are 8 Pass results for SLAM2 for which3 a little bit more work to do and increase the precision
Y oGl reports false defects. There are 11 cases where SLAM® the abstraction. However, one can do much more, as
finishes with an NUR result, andoG! reports a false defect. explored by Beyer and colleagues in their work on “software
On the other hand, there are two cases whegesiYfinds model checking via large-block encoding” [BCG9]. They
a defect which SLAM2 is unable to find (GiveUp) - thosehow that one can abstract over loop-free fragments of code
proved to be useful in identifying limitations of SLAM2.  such as sequences iffthen-else statements. They compared
Table V compares SLAM1, SLAM2, anddGI using SDV their large-block approach to the approach where each single

VIl. RELATED WORK
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Metric SDV 1.6 (SLAM1) | SDV 2.0 (SLAM1) | SDV 2.0 (SLAM2) | SDV 2.1 (SLAM2) | SDV 2.1 (YoGI)
Driver 51 51 51 51 51

Rules 61 102 102 103 103

Total checks 3111 5202 5202 5253 5253

NUR results 1% (31/3111) 0.04% (2/5202) 0.04% (2/5202) 0.04% (2/5253) 2.2% (117/5253)
Defects reported 300 271 271 271 -

False defects

25% (75/300)

0% (07271)

0% (07271)

0% (0/271)

Total time for identical checkg

8414s

636455 (~8X)

TABLE V

COMPARISON OFSLAM1, SLAM2 AND YOGI USING SDV FORKMDF DRIVERS.

statement is abstracted in isolation. It would be interesting [®CG*09]

compare their approach to the presented approach.

Multiple Inconsistencies Per Trace. We are not aware of
other work that explores the idea of finding multiple invaligBMRo05]
subtraces of a single counterexample trace. We found this
technique to be very valuable for making more progresgnrsog]
but it does come at an increased cost in model checking,
as more predicates are introduced. The ability to recover
from “irrelevant refinements” (retracting predicats that arIeBPRm]
not useful) would be valuable in order to explore multiple
inconsistencies during CEGAR. McMillan explores how t
give CEGAR such a flexibility, which would be very helpfu
for the case of detecting multiple inconsistencies. [McM10]

Path/Trace-Sensitive Pointer Aliasing. SLAM2’s use of
pointer aliasing information, computed by forward symboli
execution, to refine the precondition computation is very
similar to that used by the DASH algorithm [BNRS08], thatBR020]
forms the basis of the the O6GI tool we compare against.
However, SLAM2 only uses this technique during symboligcC77]
execution and not the abstraction process, asivdoes.

I?BPonz]

[BROZa]

VIIl. CONCLUSION [GS97]

We have described major improvements in the SLAM
verification engine, shipped with SDV 2.0 in September, 20G8zcos)
as a part of the Windows 7 WDK. SLAM2 significantly
improved the reliability, robustness and precision of SD\{
SDV adoption inside Microsoft proved to be very successful,
with “SDV clean” being a requirement for Microsoft drivers
to be shipped with Windows 7. (McM10]

Our results show that SDV 2.0 with SLAM2 is an industriajnrTTog]
quality static analysis tool, compared to previous versions
of SDV based on SLAM1, which was in many respects a
research prototype. The SDV tool has benefited greatly from a
multi-engine approach, allowing us to easily compare SLAM2
to YoGl.

BOS]

REFERENCES
[BBCT06] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers.HoroSys 06, pages
73-85, 2006.
[BBAML10] T. Ball, E. Bounimova, L. de Moura, and V. Levin. Efficient
evaluation of pointer predicates with Z3 SMT Solver in SLAM2.
Technical Report MSR-TR-2010-24, Microsoft Research, 2010.
T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining
approximations in software predicate abstraction. TRCAS
04: Tools and Algorithms for the Construction and Analysis of
Systems, pages 388—-403, 2004.

[BCDRO4]

42

D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Se-
bastiani. Software model checking via large-block encoding. In
FMCAD 09: Formal Methods in Computer Aided Design, pages
25-32, 2009.

T. Ball, T. D. Millstein, and S. K. Rajamani. Polymorphic pred-
icate abstractionACM Trans. Program. Lang. Syst., 27(2):314—
343, 2005.

N. Beckman, A. V. Nori, S. K. Rajamani, and R. J. Simmons.
Proofs from tests. INSSTA 08: International Symposium on
Software Testing and Analysis, pages 3-14, 2008.

T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian
abstractions for model checking C programs. TIACAS 01:
Tools and Algorithms for Construction and Analysis of Systems,
pages 268-283, 2001.

T. Ball, A. Podelski, and S. K. Rajamani. On the relative
completeness of abstraction refinement. TRCAS 02: Tools
and Algorithms for Construction and Analysis of Systems, pages
158-172, April 2002.

T. Ball and S. K. Rajamani. Generating abstract explanations
of spurious counterexamples in C programs. Technical Report
MSR-TR-2002-09, Microsoft Research, January 2002.

T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. ROPL 02: Principles of
Programming Languages, pages 1-3, January 2002.

P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for the static analysis of programs by construction
or approximation of fixpoints. InPOPL 77: Principles of
Programming Languages, pages 238-252, 1977.

S. Graf and H. Sdi. Construction of abstract state graphs with
PVS. InCAV 97: Computer Aided Verification, pages 72-83.
1997.

S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via
symbolic decision procedures. IBAV 05: Computer-Aided
Verification, pages 24-38, 2005.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT
solver. INTACAS 08: Tools and Algorithms for the Construction
and Analysis of Systems, 2008.

K. L. McMillan. Lazy annotation for program testing and
verification. INCAV 10: Computer-Aided Verification, 2010.

A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The
Yogi project: Software property checking via static analysis
and testing. INTACAS ’'09: Tools and Algorithms for the
Construction and Analysis of Systems, pages 178-181, 2009.



Precise Static Analysis of Untrusted Driver Binaries

Johannes Kinder
Technische Universitit Darmstadt
Darmstadt, Germany
Email: kinder @cs.tu-darmstadt.de

Abstract—Most closed source drivers installed on desktop
systems today have never been exposed to formal analysis.
Without vendor support, the only way to make these often hastily
written, yet critical programs accessible to static analysis is to
directly work at the binary level. In this paper, we describe a
full architecture to perform static analysis on binaries that does
not rely on unsound external components such as disassemblers.
To precisely calculate data and function pointers without any
type information, we introduce Bounded Address Tracking, an
abstract domain that is tailored towards machine code and is
path sensitive up to a tunable bound assuring termination.

We implemented Bounded Address Tracking in our binary
analysis platform Jakstab and used it to verify API specifications
on several Windows device drivers. Even without assumptions
about executable layout and procedures as made by state of the
art approaches [1], we achieve more precise results on a set of
drivers from the Windows DDK. Since our technique does not
require us to compile drivers ourselves, we also present results
from analyzing over 300 closed source drivers.

I. INTRODUCTION

Software model checking and static analysis are successful
methods for finding certain bugs or proving their absence in
critical systems software such as drivers. Source code analysis
tools like SDV [2] are available for developers to statically
check their software for conformance to specifications of the
Windows driver API. For instance, if a driver calls the API
method loAcquireCancelSpinLock, it is required to call loRe-
leaseCancelSpinLock before calling loAcquireCancelSpinLock
again [3]. The vendors, however, are not forced to use these
analysis tools in development, and they are unwilling to submit
their source code and intellectual property to an external
analysis process. Without source code, certification programs
such as the Windows Hardware Quality Labs (WHQL) have to
rely on testing only, which cannot provide guarantees about all
possible executions of a driver. A solution to this problem is to
relocate the static analysis to the level of the compiled binary.
If the analysis does not require source code or debug symbols,
an analysis infrastructure can be created independently of
active vendor support.

Working with binaries poses several specific challenges. In
general, code cannot be easily identified in x86 executables
such as Windows device drivers. Data can be arbitrarily
interleaved with code, and bytes representing code can be
interpreted as multiple different instruction streams depending
on the alignment at which decoding starts [4]. Therefore, a ma-
jor challenge in analyzing binaries is to reliably extract those
instructions that are actually executed at runtime and to build
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a control flow graph that accurately represents the possible
targets even of indirect jumps. Existing approaches to static
analysis of binary executables rely on a preprocessing step
performed by a dedicated, heuristics based disassembler such
as IDA Pro [5] to produce a plain text assembly listing [6].
This decouples the analysis infrastructure from disassembly
itself and makes it difficult to use results from static analysis
towards improving the control flow graph. Furthermore, since
the analysis builds on an external disassembler, soundness can
only be guaranteed with respect to the (error prone) output
produced by the disassembler.

To overcome this problem, we propose an architecture for
single pass disassembly and analysis, which does not dis-
criminate between disassembly and analysis stages (Figure 1).
Its integrative design is based on the following key insight:
Following the control flow of a binary in order to decode
the executed instructions is already an analysis of reachable
locations. This is non-trivial in presence of indirect control-
flow and should not be left to heuristic algorithms.

Another challenge in statically analyzing binaries is that the
lack of types and the a priori unknown control flow make a
cheap points-to analysis impossible. Every dereference of an
unknown pointer can mean an access to any memory address,
be it the stack, global memory, or the heap. A write access
then causes a weak update to the entire memory: After the
write, every memory location may contain the written value,
which dramatically impacts the precision of the analysis. Worst
of all, weak updates potentially overwrite return addresses
stored on the stack (or function pointers anywhere in memory),
which can cause spurious control flow to locations that are
never executed at runtime. The goal of a sound and precise
analysis on binaries is thus to achieve strong updates wherever
possible: If a pointer can only point to one specific address in
a state, the targeted memory location must contain the written
value after a write access [7].

read . decode .
Executable Binary Instruction
Environment
pc value translate
Specification check States abst. int. IL
Fig. 1. Disassembly and analysis architecture.



In essence, an analysis capable of dealing with the lack
of types in binaries needs to be precise enough to represent
addresses without over-approximation that might introduce
spurious control flow into non-code regions. On the other
hand, high precision analyses are known not to scale to larger
programs, so abstraction has to be introduced where possible.
In this paper, we present our approach to dealing with these
challenges without sacrificing soundness. In particular, our
paper makes the following contributions:

o We describe an architecture for checking specifications
on binary executables without access to source code and
without a heuristics based, separate disassembly step. The
control flow of the binary is reconstructed in a single pass
with static analysis, following the approach presented
in [8]. Abstractions of the execution environment can be
written in C and are compiled into a separate module.

o We introduce Bounded Address Tracking, an abstract
domain based on tracking a selection of register and
memory values up to a given bound (inspired by [9]). The
path sensitivity of our analysis allows strong updates to
allocated heap regions. Since path sensitivity subsumes
context sensitivity, we do not require assumptions about
a separate call stack or well-structured procedures.

o In our path-sensitive analysis, nondeterminism in the pro-
gram (e.g., from modeling input) is especially expensive.
To address this issue, we offer two different constructs for
nondeterminism, havoc and nondet, which cause explicit
enumeration of variable values or their abstraction to an
unknown value, respectively.

II. BACKGROUND

We extended our own iterative disassembler JAKSTAB [10]
to implement the integrated analysis architecture for single
pass disassembly and static analysis (Figure 1). Using the
entry point of the executable as the initial program counter
(pc) value, our tool decodes one instruction at a time from
the file offset that corresponds to pc. This instruction is then
translated into one or more statements of the intermediate lan-
guage (IL). Depending on the abstract domain chosen for the
analysis, JAKSTAB calculates successor states by interpreting
the abstract semantics of the IL. If a newly reached state is an
error state according to the specification, an abstract error trace
is generated. Otherwise, JAKSTAB concretizes new pc values
from the states and uses these to decode the next instructions
to be interpreted.

A. Low Level Intermediate Language

CISC architectures such as x86 offer very rich instruc-
tion sets, in which a single instruction can affect multiple
registers and status flags and can even represent non-trivial
operation sequences including loops. To avoid dealing with
hundreds of different concrete and abstract state transformers
when analyzing machine code, we translate each instruction
into a sequence of IL statements using specifications of the
instruction semantics. For instance, the instruction push eax,
which pushes the contents of register eax to the stack and

decrements the stack pointer, is specified to translate to the IL
code m[esp] := eax; esp := esp—4. Note that for simplicity of
the exposition, in this paper we assume all memory accesses
and all bit vectors to be 32 bit. The actual implementation
allows arbitrary word lengths using bit masking expressions.

The IL uses a finite set of bit vector type registers V' =
{vo,...,vn}, a store m[-], and the program counter pc. The
set Exp of expressions of the IL contains common arithmetic,
Boolean, and bit-manipulation operations. All expressions are
of the 32-bit bit vector type [32; Boolean true and false are
represented by the bit vectors 1 and 0, respectively. To model
input from the hardware, expressions can contain the keyword
nondet, which nondeterministically evaluates to some bit
vector value in its concrete semantics.

A program is made up of IL statements of the form [stmt]g, ,
where ¢ € I35 is the address of the statement, ¢’ € I3, is the
address of the next statement, and stmt € Stmt is one of
nine types of statements:

o Register assignments v := e, with v € V and e € Exp,

assign the value of expression e to register v.

o Store assignments mle;] := e, with e1,eo € Exp,
assign the value of expression ey to the memory location
at the address computed by evaluating e;.

o Guarded jumps if e; jmp eq, with e, es € Exp, transfer
control to the target address resulting from evaluating es
if the guard expression e; does not evaluate to 0.

o A halt statement terminates execution.

o Allocation statements alloc v,e, with v € V and e &
Exp, reserve a block of memory of the size determined
by evaluating e and write the address to register v.

o Deallocation statements free v release the block of mem-
ory pointed to by v € V' for reallocation.

« Statements assume e terminate execution if e € Exp
evaluates to 0, and do nothing otherwise.

o Assertions assert e are similar to assume statements, but
signal an error on termination.

« Statements havoc v <, n, with v € V,n € I35, nonde-
terministically assign a value z with 0 <, z <, n to v,
where <,, denotes unsigned comparison. The same effect
can be achieved using v := nondet; assume v <, n. The
point of having two different sources of nondeterminism
becomes apparent in Section III-C, where they will be
used for selective abstraction.

The statements alloc, free, assert, and havoc are never gen-
erated from regular instructions, but are encoded in our ab-
stracted model of the operating system (Section IV-C).

Note that call and return instructions receive no special
treatment in our IL but are translated to assignments and
jumps. In x86 assembly, these instructions simply store the
current program counter on the stack and jump to a target, or
read an address from the stack and jump to it, respectively.
There is no fixed concept of procedures in x86 assembly,
so relying on binary code to respect high level procedural
structuring can introduce unsoundness into the analysis.

The concrete IL semantics is defined in terms of states
S = Loc x Val x Store x Heap, consisting of the location
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post[[v := e]g/]](s) = s[v — eval[e](s)][pc — ¢']
post[[m[e1] ::eg]ﬁ,}](s) := s[m[eval[e;1](s)] — eval[ez2](s)][pc+— ¢']

post([if e1 jmp 62]%/}](3) = { z{zz : f;/\}/al[[egiﬁ‘(i;,]al[[el(})]t(h?r;sg
postﬂ[halt]ﬁ,}](s) =1

post[[alloc v, e]ﬁ,}](s) := s[v > h][pc — £'], min. h > hg s.t.
V(h',2') € s(H).h >k +2' Vh+2z<h where z = eval[e](s)
post|[[free v]g,}](s) = s[H — H\ (v,-)][pc — £']

1 if evalfei1](s) =0
postessume 1) = { e i) ot
1 (raise error) if evale1](s) =0
post|[assert e]ﬁ,}](s) = { (s[pc — Z’]) otherwigel]]( )

post[[havoc v <un]5](s) := s[v +— a][pc — £], with some = < n

Fig. 2. Concrete semantics of the intermediate language.

valuation Loc := {pc} — I3, the register valuation Val :=
V' — I39, the store valuation Store := I35 — I35, and a heap
set Heap := 3o — I35, which maps addresses of allocated
heap objects to their corresponding sizes. Allocation of heap
objects starts above some constant h in the address space. We
denote access to parts of the state by s(pc), s(v;), s(m[]),
s(H(p)). The syntax s[- +— -] denotes the state obtained
by updating part of state s with a new value. The concrete
semantics is then given by the concrete post operator from
states and statements to states in Figure 2. It uses the operator
eval :: Exp — I3 to concretely evaluate IL expressions.

B. Control Flow Reconstruction

In [8], we proposed an integrated theoretical framework for
building the most precise control flow graph of a low level
program while calculating data flow facts, akin to control
flow analysis in functional programming languages. The basic
idea of the framework is to translate low level statements into
edges (I3z x Stmt X I35) of the control flow automaton (a
control flow graph where edges instead of vertices carry the
statements). The edges over-approximate the concrete control
flow of the program, eliminating any indirect jumps.

In particular, every guarded jump [if e; jmp eg]f, is trans-
formed into a set 2 of edges labeled with assume statements:
If e; = 0, E contains the fall-through edge (¢, assume (e; =
0),¢). If e # 0, E also contains all of the possible
target edges {(¢,assume (e1 # 0 Aey = "), 0") | " €
e;/gl[[eg]](p/c-)s\t[[assume (e1 # 0)](s))}. where post and
eval denote the abstract post and eval operator of a suitable
abstract domain, respectively. The key feature that allows this
approach to produce the most precise control flow automaton
is that the conditions for taking a particular edge from a
guarded jump, i.e., the jump condition and the jump target,
are encoded into the assumption.

As a result, an abstract domain used with this framework
only needs to supply implementations of the p/0;t (for state-
ments other than jmp) and eval operators and does not need
to deal specifically with indirect jumps.
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III. PRECISE POINTER AND VALUE ANALYSIS

The translation of guarded jumps to labeled edges requires a
precise evaluation of the target expression, otherwise spurious
control flow edges can be introduced that point into code or
data sections never meant to be executed, causing a cascading
loss of precision. Furthermore, the lack of types in binaries
prohibits a limited over-approximation of points-to sets. While
in regular source based static analysis an unknown pointer
may point to all variables of the matching type, an unknown
pointer in untyped assembly code may point to any location
in the entire memory, including code.

We have therefore devised a highly precise abstract domain
for tracking states as valuations of registers and memory
locations that supports pointer arithmetic and the ambiguity
between integer values and addresses (there is no distinction
between pointers and regular values in machine code).

A. Memory Model

The virtual memory available to a process is organized as
one large, continuous array. The stack, the heap, and global
variables all share this address space. The runtime environment
initializes the stack and heap locations to reasonable values
such that they do not interfere, and it uses buffer pages
between these logical memory regions to detect overflows.
Correct implementations of malloc (and its kernel-level equiv-
alents available to drivers) guarantee that allocated memory
blocks in the heap do not overlap. Therefore, we use a concrete
memory model based on a set R of separate memory regions:

o The global region, containing code, global variables, and

static data,

« a single stack, holding local variables, parameters, and

return addresses at runtime,

o and zero or more allocated heap regions, which corre-

spond to memory blocks allocated using malloc.

We thus treat every memory address as a pair of memory
region and offset from R x I32. Pointers into the global region
are denoted by (global, offset); the stack pointer is assumed to
be initialized to a value of (stack, 0). Subsequent modifications
to the stack pointer then change the offset, but let it stay
within the stack region. In x86, the stack grows downward,
so the stack pointer will always have negative offsets within
valid code. The number of heap regions is unbounded, and a
fresh heap region is created by any call to malloc. A fresh
identifier tags the individual heap region, creating pointers
such as (alloc;q, offset).

Strictly speaking, this memory model presents an abstrac-
tion of the actual x86 memory layout, since it ignores the
relative position of regions to each other. If for whatever reason
the memory region model is too imprecise for the kind of code
being analyzed, it can be effectively turned off by initializing
the stack pointer and any newly allocated memory into the
global address space.

Our memory model combines integer and pointer values
similarly to Value Set Analysis [6]; it does not make the
assumption of separated procedure stack frames, however, but
uses a single region for the entire stack instead.
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Fig. 3. Diagram of the lattice of abstract addresses A.

B. Bounded Address Tracking

To build our abstract domain, we extend the model of
memory addresses to a lattice that includes a top element
(Tgr, T32) representing a memory address with the unknown
region Tpr and unknown offset T3s. We further introduce an
intermediate level of pointers with known region but unknown
offset of the form (region, T32), which represents the join
of different addresses within the same region (e.g., (r,4) U
(r,8) = (r, T32)). We thus define the set of abstract memory
addresses as A = {(Tg, T32)} U (R x {T32}) U (R x I35).
The resulting lattice for A is sketched in Figure 3.

Our analysis over-approximates the set of reachable con-
crete states of the program by calculating a fixpoint over
the abstract states. Abstract states form the set S = Loc x
Val x Store, consisting of an abstract register valuation
Val := V — A and an abstract store Store := A —
A. The initial state at the entry point of the executable
is initialized to ({start,{€sp — (stack,0)},{(stack,0) —
lend, (global,ag) — do), ..., (global,a,) — d,)}), where
ao, - - ., an denote static data locations in the executable (e.g.,
initial values for global variables, integer or string constants)
and do, ..., d, their respective values. Location {¢nq points
to a halt statement that catches control flow when the main
procedure returns, the esp register is initialized to point to
this return address on the stack. All registers and memory
locations (including all offsets in all heap regions) not shown
are implicitly set to (Tg, T32).

Our analysis is path sensitive, i.e., it does not join abstract
states when control flow recombines after a conditional block
or loop. To ensure termination, we introduce bounds on the
number of values tracked for each register and memory loca-
tion (hence the name Bounded Address Tracking). In particular,
the analysis bounds the number of abstract addresses per
variable per location that it explicitly tracks and performs
widening in two steps. Before calculating abstract successors
for a state s at location /, the analysis checks for each register
or memory location x whether the total number of unique
abstract values for = in all reached states at ¢ exceeds the
configurable bound k. If it does, then the value of x is widened
o (r, T32), where r is the memory region of = in s. If the
number of unique memory regions also exceeds the bound k,
then z is widened to (Tg, T32) (see BOUND rule in Figure 5).

Consider the example code in Figure 4. The single initial
abstract state is (0,{z — (Tg, T32),b — (Tg, T32)},0), so

46

?x := alloc(100)

l | #2 | #D
0 1 1
8 D 1 1]
+ @ 2 6 1
"\7 mlz] :=0 3 6 1
MN©) 4 6 1
o z:=z+1 5 1 1
§ 0) # a, # b:  Number of unique val-
% assume x > b+100 ues for « and b.

@

Fig. 4. Example code fragment and final value counts.

there is one unique value per variable. We choose to set the
bound % to 5. After creating a new abstract heap region and
copying the pointer into b, the analysis enumerates states in
the loop 2,3,4 while the edge (4,assumez > b+ 100,5)
remains infeasible. When the state (2, {z — (global,5),b —
(global,0)}, {(alloc;,0) — (global,0),...}) is reached, the
analysis counts 6 unique values for x in location 2, and widens
x to (allocy, T32). This causes a weak update to alloc; once
x is dereferenced. At the end of the loop, both assume edges
are now feasible, and the analysis reaches a fixpoint.

The abstract semantics of Bounded Address Tracking is
given using the abstract evaluation operator eval :: Exp —
S — A, the bounding operator bound :: S — (VU fl) — S‘
and the abstract transfer function Ii)?u : Stmt — § — 2°
from statements and abstract states to sets of abstract states
defined in Figure 5. A worklist algorithm extended to apply
and adapt precision information [11] (in our case bounds over
the number of abstract values) enforces the bound for all
registers and memory locations before calculating the abstract
transfer function.

Global addresses (global,n) are absolute integers and thus
expressions over them are calculated concretely (first case
of EVALOP). Addresses for other regions have no statically
known absolute value, so only additions of positive or negative
integers to their offset can be precisely modeled (second and
third case); if pointers to different regions are added or pointers
are involved in other types of expressions (including compar-
isons), the resulting abstract value is safely over-approximated
0 (TR, T32) (fourth case). Other operations (bit extraction,
sign extension, etc.) are interpreted analogously. Explicit
nondeterminism in expressions evaluates to (Tg, T3z2), and
memory reads are interpreted by joining the values stored at
the addresses in the concretization of the abstract pointer.

A register assignment is interpreted concretely and replaces
an existing mapping in the new abstract state. For an as-
signment to a memory location (i.e., an assignment to a
dereferenced pointer), we distinguish three cases depending
on the abstract value of the pointer. We can perform a:

o Strong update, if both region and offset of the pointer are
known. A strong update allows to replace the old value
of the memory location in the new state.

o Weak update to a single region, if the region of the pointer
is known but the offset is T3o. Since the precise offset is
not known, all memory locations in the region may hold
the new value, so the existing values have to be joined



strong update

weak update single region
weak update all regions

EvVALOP &El[[el © e2](s) = let(ri,01) := e/vzl[[el]](s), (re,02) := g/;l[[eg]](s)
(global,01 ® 02) if ® not 4+ and r; = global A r2 = global
(r1,01 +02) if ® is + and r = global
(r2,01 +02) if ® is + and r; = global
(Tr, T32)  otherwise
EVALNONDET e/vzlﬂnondet]](s) = (Tr, T32)
o o ( [ D ifT#TR/\O#ng
EVALMEM  eval[ml[e]](s) = let(r,0) := evale](s) § Llici,, (m[r i]) ifr£TrAo=Ts
( R,ng) ifr=TrANo=Tss
s if [{s(z) [ s € {s'|s'(pc) = O}}| <k
BOUND  bound(s,z) := sz (Tr, T32)] if [{r]| (r,0) =§'(z).s' € {s”|s”(pc) =L} >k
let(r, 0) = s(x).s[x — (r, T32)] otherwise
ASSIGNREG  post[[v := ¢]%](s) - {s[v - eval[e](s)][pc — z’]}
ASSIGNMEM p/o?t[[[m[el] = ea]o](s) = let(r,0) := eval[[el]](s), a:= &31[[@]]( ), s s[pc — 0]

{s'[m][r, O]I—>a]} ifr#£TrANo#Taz
{s.,[m[r, ] — ;(m[r, i) Ua]l...] for all Z € I3} %f r#TrAo=Taz
{s'IMmr,i] — s(Mmlj,i]) Ua][...] forall j € R4 €132} ifr=Tg

ALLOC p/o?c[[[alloc v, )5/ ] (s) = {s[v > (r,0)][pc — £'] where r is a fresh region identifier }
FREE  post[[free v]§/](s) = let(r, 0) := s(v), §" 1= s[pc — £']
() (raise error) if r=TrVo#0
{s'[m[r,i] — (Tr, T32)][...] for all i € I32} otherwise
—— . _ 0 if eval[e](s) = (global,0)
ASSUME  post[[assume €], ](s) = { (s[pe o €]} otherwise
A cost ¢ _ ] 0 (raise error)  if eval[e](s) = (global, 0)
SSERT  post[[assert €], ](s) { (s[pe— ]} otherwise
HAvoC  post[havoc v <, n]4](s) = {s[v > (global,i)][pc — €']|i <um,i € I3z}

Fig. 5.

with the new value (with respect to the lattice of abstract
addresses shown in Figure 3).

Note that this rule makes the assumption that a memory
write to a specific region never exceeds the bounds to
write to an adjacent heap regions, since the goal of
this work is not to prove memory safety but check API
specifications. For full soundness, however, we would
have to perform a weak update to all regions.

o Weak update to all regions, if neither region nor offset

of the pointer are known. All memory locations in all
regions have to be joined with the new value.
In practice, the state becomes too imprecise to continue
analysis. In particular, all return addresses will be affected
by the weak update. Our implementation thus signals
an error for writing to an unknown (possibly also null)
pointer in this case.

Besides the fact that region and offset have to be known,
there is another prerequisite for performing strong updates:
The region of the pointer must not be a summary region,
i.e., on all execution paths, the abstract region corresponds
only to one concrete memory region [7]. Our analysis never
creates summary regions, which can be seen from the ALLOC
rule in Figure 5. New regions are tagged with fresh, unique
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Definition of abstract evaluation and abstract post operators for Bounded Address Tracking.

identifiers. The only way the abstract region value of a pointer
can represent multiple regions is if the number of regions for
the pointer exceeds the value bound k and is joined to Tg.
In this case, a weak update to all regions will be performed
when the pointer is dereferenced, which is a sound over-
approximation for an assignment to a summary region.

The abstract post operator for free sets all memory locations
in the freed region to (Tg, T32). The abstract semantics for
assume and assert is similar to the concrete case and only
adapted to the abstract address model. The abstract post for
havoc is the only implementation that returns a non-singleton
set: It splits abstract states by enumerating absolute integer
values for the given register.

C. Abstraction of Nondeterminism

Abstraction by approximating multiple concrete program
states with abstract states is the key to achieving scalability
of an analysis. In static analysis, abstraction is introduced by
choosing a suitable abstract domain for the program to be
analyzed. In software model checking, an iterative refinement
finds a suitable abstraction by adding new predicates over
program variables. Control flow reconstruction from binaries
requires concrete values for jump targets, however, and the



lack of types requires precise values for pointer offsets.
Therefore, existing mechanisms for abstraction are not well-
suited for a precise analysis of binaries. Still, abstraction has
to be introduced to make the analysis feasible.

Even though Bounded Address Tracking resembles software
model checking in the way that states from different paths
are not merged, it allows registers and memory locations
to be wunknown, i.e., set to (Tg, T32). This is especially
useful when representing nondeterminism in the execution
environment (e.g., input, unspecified behavior). Setting parts
of the state to unknown avoids an exponential enumeration of
value combinations. When designing the environment model
for a program, we often have a good idea of what needs to be
precisely modeled and where we can safely over-approximate.
For instance, the standard calling convention of the Windows
API specifies that upon return the contents of registers eax,
ecx, and edx are undefined. Enumerating all possible values for
the registers in a full explicit state exploration would require
creating 296 states. By abstracting the nondeterministic choice
of values to (Tg, T32) for all three registers, we only need
a single abstract state. It is extremely unlikely to produce
a spurious counterexample from this abstraction, since code
should not depend on undefined side-effects.

On the other hand, there are occasions when abstracting to
an unknown value increases the requirements for the abstract
domain. Consider the following code, which is a stub for the
Windows API function loCreateSymbolicLink:

int choice = nondet32; mov eax, nondet32
if (choice == 0) neg eax

return STATUS_SUCCESS; sbb eax, eax

else and eax, 0xC0000001
return STATUS_UNSUCCESSFUL; ret

Here, the compiler replaced the if-statement with bit-
manipulation of the return value. Our abstract domain can
only deduce that eax is (Tg, T32) at the return statement, even
though eax actually can be only either 0 or 0xC0000001.
Therefore we added the havoc statement to the IL; it causes
the analysis to generate multiple successor states with different
integer values for a register (HAvVOC in Figure 5). With it,
we can change the first line of the stub to int choice;
havoc (choice, 1). This causes the analysis to create two
states; one with eax set to 0, and one with eax set to 1. From
these states it can easily compute the two possible states at
the return statement: In the first case eax becomes 0, in the
second case 0xC0000001.

IV. IMPLEMENTATION

We have implemented the architecture and approach de-
scribed in this paper in our binary analysis platform JAKSTAB
(Java toolkit for static analysis of binaries). As input, JAK-
STAB is able to process Windows PE files (the format used in
32-bit Windows for .exe, .d11, .sys, and more), unlinked
COFF object files, and Linux ELF executables. It can load an
executable in combination with multiple dynamic libraries and
will resolve dependencies between the files.
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A. Instruction Sets

JAKSTAB currently supports only the x86 architecture, but
can be extended to other architectures by supplying an opcode
table and a description of instruction semantics. Instructions
are specified using the semantic specification language of
the Boomerang decompiler [12], [13]. We used Boomerang’s
existing x86 specifications as a starting point, which we
rewrote and extended heavily.

Our current description of x86 instruction semantics covers
over 500 instructions, which includes all instructions that we
encountered in the executables analyzed during the experi-
ments. Large parts of the floating point instruction set and
the various SSE extensions are supported. The instruction
semantics are specified on the level of registers and flags, I/O
instructions are specified to read nondeterministic values.

B. Analysis Architecture

JAKSTAB’s analysis architecture is based on the Config-
urable Program Analysis API by Beyer et al. [9], [11], which
allows to seamlessly combine state splitting and state joining
analyses such as predicate abstraction and interval analysis,
respectively. For the work described in this paper, we used
only our Bounded Address Tracking domain combined with
the trivial location domain that expands the state space of the
program to at least one state per IL statement.

C. OS Abstraction and Driver Harness

Executables in general and drivers in particular frequently
interact with the operating system. As in source based anal-
yses, we abstract system calls using stubs, which model
the relevant side effects such as memory allocation or the
execution of callback routines. Following the approach of the
source code software model checker SDV [2], we load the
driver into JAKSTAB together with a separate harness module,
that includes system call abstractions relevant to drivers and
contains a main function that nondeterministically exercises
the driver’s initialization and dispatch routines. The harness is
written in C and compiled into a dynamic library (DLL) for
loading; it is based on SDV’s osmodel . ¢ and follows SDV’s
invocation scheme for plug&play drivers. For our experiments,
we manually encoded specifications in the harness by inserting
state variables and assertions at the locations where SDV
places hooks into its specification files.

Several parts of the SDV harness and rules had to be mod-
ified to make it suitable for binary analysis. For example, the
preprocessor macro loMarklrpPending, which sets a bit in the
control word of interrupt request packets (IRPs), is intercepted
by SDV to change the state for the PendedCompletedRequest
rule. Since macro invocations are no longer explicit in the
binary, we had to modify the rule’s assertion to check the bit
directly instead of a separate state variable. Furthermore, we
replaced SDV’s statement for nondeterminism by either havoc
or nondet, depending on the context.

The IL statements alloc, free, havoc, and assert are exclu-
sively generated by the harness, since they do not correspond
to any real x86 instructions. These statements are encoded



DDA/x86 JAKSTAB
Driver Instr Time Result | k kn States | Instr | Time | Result
vdd/dosioctl/krnldrvr/krnldrvr.sys 2824 14s v 28 5 378 413 2s | OK
general/ioctl/sys/sioctl.sys 3504 13s v 28 5 3947 630 7s v
general/tracedrv/tracedrv/tracedrv.sys 3719 16s v 28 5 486 439 2s v
general/cancel/startio/cancel.sys 3861 12s v 28 5 633 759 2s v
general/cancel/sys/cancel.sys 4045 10s v 28 5 600 780 2s v
input/moufiltr/moufiltr.sys 4175 3m 3s X 28 5 3830 722 9s X
general/event/sys/event.sys 4215 20s v 28 5 663 690 2s v
input/kbfiltr/kbfiltr.sys 4228 | 2m 53s X 28 5 3834 726 8s X
general/toaster/toastmon/toastmon.sys 6261 4m 1s v 28 | 25 4853 977 Os v
storage/filters/diskperf/diskperf.sys 6584 3m 17s v 28 5 19772 | 1409 46s v
network/modem/fakemodem/fakemodem.sys | 8747 | 11m 6s v 28 5 13994 | 1887 24s Xm
storage/fdc/flpydisk/flpydisk.sys 12752 1h 6m FP 100 | 35 | 186543 | 1782 |39m34s v
input/mouclass/mouclass.sys 13380 | 40m 26s FP 28 | 28 3055 | 1763 8s | FP.
input/mouser/sermouse.sys 13989 1h 4m FP 28 | 28 1888 | 1293 4s FP
kernel/serenum/SerEnum.sys 14123 | 19m 41s v 28 | 25 5213 | 1503 8s v
wdm/1394/driver/1394diag/1394DIAG.sys 23430 1h33m | FP 28 | 28 2181 | 2426 4s | FP,,
wdm/1394/driver/1394vdev/1394VDEV.sys | 23456 1h38m | FP 28 | 28 2837 | 2872 5s | FP,,

Fig. 6.

into the compiled harness object file using illegal instructions,
which are directly mapped to the corresponding IL statements
during disassembly. For instance, an alloc statement can be
generated from the C source of the harness by inlining the
assembly instruction lock rep inc eax.

V. EXPERIMENTS

For direct comparison with the IDA Pro and CodeSurfer/x86
based binary driver analyzer DDA/x86 described in [1], we ran
JAKSTAB on the same set of drivers from the Windows Driver
Development Kit (DDK) release 3790.1830 and checked the
same specification PendedCompletedRequest. The rule speci-
fies that a driver must not call loCompleteRequest and return
STATUS_PENDING unless it invokes the loMarklrpPending
macro on the IRP being processed. We compiled the drivers
without debug information using default settings. Note that
unlike [1], we did not compile and link the driver source
code against the harness; our approach is directly applicable
to drivers without access to source code.

Our experimental results are listed alongside those reported
in [1] in Figure 6. The number of instructions include instruc-
tions from the harness in both cases. Note that the tools report
very different numbers of instructions for the same binaries;
this is due to the fact that JAKSTAB disassembles instructions
only on demand, i.e., if they are reachable by the analysis.
In contrast, CodeSurfer/x86 uses IDA Pro as front end, which
heuristically disassembles all likely instructions in the exe-
cutable. Since for DDA/x86 the entire harness was compiled
and linked with the driver, IDA Pro disassembled all code from
the harness, including code that is unreachable from the driver
under analysis. Conversely, it is possible that some driver code
is unreachable from the harness. For the experiments we used
two value bounds which we determined empirically; k& shows
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Comparison of experimental results on Windows DDK drivers between DDA/x86 (on a 3GHz Xeon) and JAKSTAB (on a 3GHz Opteron).

the value bound for registers and stack locations, kj, the value
bound for memory locations in allocated heap regions.

For f1pydisk.sys, JAKSTAB was able to verify the spec-
ification, while DDA/x86 found a false positive (FP). This is
due to the only limited degree of path sensitivity in DDA/x86,
which follows the ESP approach [14] for differentiating paths
based on states of a property automaton. In [1], the property
automaton is extended to track updates to the variable holding
the return value, but it can miss updates due to its heuristic for
detecting interprocedural dependencies for the return value.

In fakemodem. sys, JAKSTAB encountered a potentially
unsafe memory access (marked as x,,), where an uninitialized
value, i.e., (Tg, T32), is used as the index for a write to
an array. We manually confirmed the feasibility of the error
trace for the execution environment simulated by the harness.
DDA/x86 does not check for memory safety due to the large
number of false positives [1], so it did not detect this bug. As
mentioned in Section III-B, our analysis signals an error on
weak updates to all regions. This amounts to implicitly check-
ing for write accesses to uninitialized pointers, which allows
JAKSTAB to detect the error. As a consequence of building on
the SDV harness, which is not designed for checking memory
safety and often omits proper pointer allocation, our analysis
yielded false positives where the result shows FP,,, in Figure 6.
In mouclass.sys, a switch jump could not be resolved
because the switch variable was over-approximated leading
to a false positive of invalid control flow (FP.). Currently,
we manually investigate abstract error traces and extend the
harness if necessary to eliminate false positives. We leave a
partial or full automation for future work.

The comparison of execution times should be taken with
a grain of salt, since both prototypes were run on different
machines. DDA/x86 was run on a 64-bit Xeon 3GHz processor
with 4GB of memory per process, while the experiments with



JAKSTAB were conducted on a 64-bit AMD Opteron 3GHz
processor with 4GB of Java heap space (we report the average
time of 10 runs per driver). Still, it is possible to see that
execution times for JAKSTAB appear favorable overall.

We do not have to recompile and link drivers with the
harness, so we were able to extend our experiments beyond
the Windows DDK. We ran our prototype on all 322 drivers
from the system32\drivers directory of a regular 32-bit
Windows XP desktop system, using & = 28 and k, 5.
Besides the PendedCompletedRequest rule, we also checked
the CancelSpinLock rule, which enforces that a global lock is
acquired and released in strict alternation. Note that this set
of drivers also includes classes of drivers which are not even
supported by the SDV harness in source code analysis, such
as graphics drivers. Nonetheless, we were able to successfully
analyze 28% of these drivers. For 41% of the drivers, analysis
failed because of weak global updates, mostly due to missing
information about pointer allocation in the harness. In 31%
of the cases, the analysis failed due to unknown or erroneous
control flow, which can be again caused by unknown side
effects of API functions not supported by the harness, or by
coarse abstraction of variables used in switch jumps. Two
drivers timed out after 1 hour; in three drivers the analysis
found potential assertion violations. To our knowledge, this is
the first time static analysis was successfully applied to real
world, closed source, binary driver executables.

VI. RELATED WORK AND DISCUSSION

Bounded Address Tracking was inspired by the Explicit
Analysis of Beyer et al. [11], which tracks explicit values of
integer variables of C programs up to a certain bound. In their
work, explicit analysis is used for cheap enumeration of values
for a variable before it is modeled by the computationally more
expensive predicate abstraction.

As pointed out already, the CodeSurfer/x86 project is most
closely related to our work and faces similar challenges.
The major differences in approach are that CodeSurfer/x86
is implemented on top of the heuristics based IDA Pro, and
that its analyses (in particular Value Set Analysis (VSA) [6])
are based on more “classic” static analyses such as interval
analysis. VSA is path insensitive and thus requires the use of
call strings for reasonable results. Call strings, however, are
tied to the concept of procedures (which is unreliable in x86
assembly) and assume the existence of a separate call stack.
This issue lead us to the design of the bounded path sensitive
analysis presented in this paper.

Balakrishnan and Reps generally rely on summary nodes for
representing heap objects. They reduce the number of weak
updates by introducing a recency abstraction [15] of heap
nodes. Their approach extends the common paradigm of using
one summary node per allocation site (i.e., address of the call
to malloc), by splitting this summary node into (i) the region
most recently allocated in the current execution path and (ii)
a summary node for the remaining regions. In contrast, our
approach instead explicitly discriminates allocated regions up
to the value bound.
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VII. SUMMARY

In this paper, we presented a framework for precise static
analysis of driver binaries. Compared to existing approaches, it
significantly reduces the sources of unsoundness by eliminat-
ing the separate, error-prone disassembly step. We introduced
Bounded Address Tracking, an abstract domain which allows
strong updates to memory locations on the heap, as long as
the number of different pointer values stays below a definable
bound. Experiments on several driver binaries confirm the
feasibility of our approach on small, but real world code and
demonstrate its improved performance compared to state of the
art approaches in spite of increased precision. Moreover, we
tried our approach on all drivers of a regular desktop system
and achieved encouraging results.

For scaling up to larger programs, however, we will attempt
to reduce precision where it is not required. One approach is to
reduce the value bound individually for variables not involved
with control flow or specifications. Starting from a generally
low bound, an iterative refinement loop can help to identify
memory locations and function stubs in the harness where
increased precision is required. Furthermore, we will investi-
gate the use of summaries that do not require assumptions on
procedure structure or calling conventions.
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Abstract—SystemC is becoming a de-facto standard for the de-
velopment of embedded systems. Verification of SystemC designs
is critical since it can prevent error propagation down to the
hardware. SystemC allows for very efficient simulations before
synthesizing the RTL description, but formal verification is still
at a preliminary stage. Recent works translate SystemC into the
input language of finite-state model checkers, but they abstract
away relevant semantic aspects, and show limited scalability.

In this paper, we approach formal verification of SystemC by
reduction to software model checking. We explore two directions.
First, we rely on a translation from SystemC to a sequential C
program, that contains both the mapping of the SystemC threads
in form of C functions, and the coding of relevant semantic aspects
(e.g. of the SystemC kernel). In terms of verification, this enables
the “off-the-shelf” use of model checking techniques for sequential
software, such as lazy abstraction.

Second, we propose an approach that exploits the intrinsic
structure of SystemC. In particular, each SystemC thread is trans-
lated into a separate sequential program and explored with lazy
abstraction, while the overall verification is orchestrated by the
direct execution of the SystemC scheduler. The technique can be
seen as generalizing lazy abstraction to the case of multi-threaded
software with exclusive threads and cooperative scheduling.

The above approaches have been implemented in a new soft-
ware model checker. An experimental evaluation carried out on
several case studies taken from the SystemC distribution and from
the literature demonstrate the potential of the approach.

I. INTRODUCTION

The development of System-on-Chips (SoCs) is often started
by writing an executable model, using high-level languages
such as SystemC [1]. Verification of SystemC designs is an
important issue, since errors identified in such models can
reveal errors in the specification and prevent error propagation
down to the hardware.

SystemC is arguably becoming a de-facto standard, since it
allows for high-speed simulation before synthesizing the RTL
hardware description. However, formal verification of SystemC
is still at a preliminary stage. In fact, a SystemC design is a
very complex entity, that can be thought of as multi-threaded
software, where scheduling is cooperative and carried out ac-
cording to a specific set of rules [2], and the execution of threads
is mutually exclusive.

There have been several works that have tried to apply model
checking techniques to complement simulation [3]-[7]. These
approaches map the problem of SystemC verification to some
kind of model checking problem, but suffer from severe lim-
itations. Some of them disregard significant semantic aspects,
e.g., they fail to precisely model the SystemC scheduler or
the communication primitives. Others show poor scalability of
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model checking, because of too many details included in the
model.

In this paper we present an alternative approach to the veri-
fication of safety properties (in the form of program assertions)
of SystemC designs, based on software model checking tech-
niques [8]-[11]. The primary motivation is to investigate the
effectiveness of such techniques, that have built-in abstraction
capabilities, and have shown significant success in the analysis
of sequential software.

We explore two directions. First, we rely on a translation
from SystemC to a sequential C program, that contains both the
mapping of the SystemC threads in form of C functions, and
the coding of relevant semantic aspects (e.g. of the SystemC
kernel). In terms of verification, this enables the “off-the-shelf”
use of model checking techniques for sequential software.

However, the exploration carried out during software model
checking treats in the same way both the code of the threads
and the kernel model. This turns out to be a problem, mostly
because the abstraction of the kernel is often too aggressive, and
many refinements are needed to re-introduce abstracted details.

Thus, we propose an improved approach, that exploits the in-
trinsic structure of SystemC. In particular, each SystemC thread
is translated into a separate sequential program and explored
with lazy abstraction, i.e. by constructing an abstract reachabil-
ity tree as in [8], [12]. The overall verification is orchestrated by
the direct execution of the SystemC scheduler, with techniques
similar to explicit-state model checking. This technique, in the
following referred to as Explicit-Scheduler/Symbolic Threads
(ESST) model checking, is not limited to SystemC: it lifts lazy
abstraction to the general case of multi-threaded software with
exclusive threads and cooperative scheduling.

We have implemented our approaches into a tool chain that
includes a SystemC front-end derived from PINAPA [13], and
a new software model checker, called SYCMC, using several
extensions built on top of NUSMV and MATHSAT [14]-[16].
We have been experimenting the two approaches on a set of
benchmarks taken and adapted from the SystemC distribution,
and from other works that are concerned with the verification
of SystemC designs. First, we have run several software model
checkers on the sequential C programs resulting from the trans-
lation of SystemC designs. Finally, we have experimented with
the new ESST model checking algorithm. The results, although
preliminary, are promising. In particular, the ESST algorithm
demonstrates dramatic speed ups over the first approach based
on the verification of sequentialized C programs.

The structure of this paper is as follows. In Section II we
introduce SystemC. In Section III we reduce model checking



of SystemC designs to model checking of sequential C. In
Section IV we present ESST model checking. In Section V
we discuss some related work. We present the results of the
experimental evaluation in Section VI. Finally, in Section VII
we draw conclusions and outline some future work.

II. BACKGROUND ON SYSTEMC

SystemC is a C++ library that consists of (1) a core language
that allows one to model a SoC by specifying its components
and architecture, and (2) a simulation kernel (or scheduler)
that schedules and runs processes (or threads) of components.
SoC components are modeled as SystemC modules (or C++
classes). Channels abstract communication between modules,
while ports in a module are used to bind the modules with
channels. The SystemC library provides primitive channels
such as signal, mutex, semaphore and queue.

A module contains one or more threads describing the par-
allel behavior of the SoC design. The SystemC library also
provides general-purpose events used for the synchronization
between threads. A thread can suspend itself by waiting for
an event e, i.e. by calling wait (e), or by waiting for some
specified time, i.e. by calling wait (t), for some time unit t
> 0. A thread can perform immediate notification of an event
e, by calling e.notify (), or delayed notification, by calling
e.notify (t) for some time unit t.

The SystemC scheduler is a cooperative non-preempting
scheduler that runs at most one thread at a time. During a simu-
lation, the state of a thread changes from sleeping, to runnable,
and to running. A running thread will only give control back
to the scheduler by suspending itself. The scheduler runs all
runnable threads, one at a time, in a single delta cycle, while
postponing the channel updates made by the threads. When
there are no more runnable threads, the scheduler materializes
the channel updates, and wakes up all sleeping threads that are
sensitive to the updated channels. If, after this step, there are
some runnable threads, then the scheduler moves to the next
delta cycle. Otherwise, it accelerates the simulation time to the
nearest time point where a sleeping thread or an event can be
woken up. The scheduler quits if there is no more runnable
thread after time acceleration.

Listing 1 depicts an excerpt of a simple producer-consumer
example in SystemC. It defines the producer that has two
threads, write and read. The thread write sends the value
stored in the variable d to the consumer by calling the function
put in the consumer, and then wait for the event e to be
notified. The method thread read reads from the channel bound
to the input port p_in and notify the event e. It is sensitive to
the input port p_in. A method thread only suspends itself by
exiting the function and becomes runnable when the channel
bound to the port is updated. The function dont_initialize
makes the thread read not runnable at the beginning of simu-
lation. The consumer consists of two threads: compute and
write_b. The thread compute is triggered by the event £
notified by the function put that was called by the producer.
The interface write_if contains the signature of put and
is derived from the SystemC interface. The thread compute
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1 SC_MODULE(producer) {
2 private:

3 int d;

4 sc_event e;

5 public:

6 sc_in<int> p_in;

7 sc_port<write_if> p_w;

8 SC_HAS_PROCESS( producer);
9
10
11
12
13
14
15
16
17

producer (sc_module_name name)
SC_THREAD( write );
SC_METHOD(read ) ;
}

void write () {
int t;

: sc_module (name) {

sensitive << p_in; dont_initialize ();

wait (SC_ZERO_TIME) ;

18 while (1) {

19 t =d; /I Save old value of d.

20 p_w—=put(d); /I Write d's value to consumer.
21 wait(e);

22 assert(d == t+1);

}

void read() { d

p_in.read(); e.notify(); }

SC_MODULE(consumer), public write_if {
private :
int data;
sc_event f,
public:
sc_out<int> p_out;
sc_expori<write_if> ex_w;
SC_HAS_PROCESS(consumer ) ;

*H

consumer (sc_module_name name)
ex_w(xthis);
SC_THREAD(compute ) ;
SC_THREAD(write_b);

}

void put(int d) { data = d; f.notify(); }

: sc_module (name) {

void compute () {
while (1) {
wait(f); ++data; g.notify ();

}

void write_b () {
while (1) {
wait(g); p_out.write (data);

}
}:

int main() {
sc_signal<int> s;
// Create producer and consumer instances.
produce * p = new producer(”P");
consumer % ¢ = new consumer(”C”);
/I Interconnect signal.
p—=>p_in(s); c—=p_out(s);
// Interconnect modules.
p—>p_w(c—=>ex_w);
// Start simulation
sc_start();

70 }

Listing 1. Definition of a producer/consumer design in SystemC.

increments the value sent by the producer, and then notifies the
event g that subsequently activates the thread write_b. The
thread write_b then writes the incremented value to the chan-
nel connecting the producer and the consumer through the port
p_out. Finally, the main function shows that the producer p
and the consumer c are connected via the signal channel s. The
export construct of SystemC allows communication between
components without any intermediate channel, as shown by the
binding of port p_w of producer and port ex_w of consumer.

III. MODEL CHECKING SYSTEMC VIA
SEQUENTIALIZATION

In this section we describe the translation from SystemC
designs into an equivalent sequential C programs by using the
producer-consumer example introduced in the previous section.

A. Translating SystemC to C

In our translation each thread in the SystemC design is
translated into a C function. Members of module instances,



int d; /* Global variable for producer. =/
/« Events in the design =/

int event_e; /x Status of event e. =/
int event_f; /x Status of event f. x/
int event_g; /+ Status of event g.
/= Local to thread producer::write ()
int write_pc; /* Program counter.
int write_state; /x Status of thread
int event_write; /= Status of thread event.

int t_write; /« Local variable t x/

*/
*/
)
*/
*/

CLVU®U G WN

Listing 2. Excerpt of the C preamble.

channels, and events are translated into a set of global variables.
We assume that the SystemC design does not contain any
dynamic creation of such components. We also assume that
each function call in the SystemC thread code can be inlined
statically.

To model context switches that occurs during the SystemC
simulation, for each thread ¢, we introduce the following
supporting variables: (1) ¢_pc keeps track of the program
counter of the thread; (2) ¢_state keeps track of the status
of the thread, whose possible values are SLEEP, RUNNABLE,
or RUNNING; (3) event_t describes the status of the event
associated with the thread, whose possible values are DELTA,
FIRED, TIME, or NONE; and (4) event_time_t keeps track
of the notification time of the event associate with the thread.
The status DELTA indicates that the event will be triggered at
the transition from current delta cycle to the next one. The
status TIME indicates that the event will be triggered at some
time in the future. The status FIRED indicates that the event
has just been triggered, while the status NONE indicates there is
no notification or triggering applied to the event. Similarly, for
each event e occurring in the design, we introduce a variable
event_e whose values range over event status and a variable
time_event_e that keeps track of the notification time. For
succinctness of presentation, we do not prefix the above vari-
ables with the names of module instances that own the threads.
Moreover, when the design has no time notification we omit the
TIME status and the variable that keeps track of the notification
time.

Member variables of a module instance are visible by all its
threads. Thus, they are translated into global variables in the C
program. For variables local to some thread, as context switches
require saving and restoring such variables, we introduce for
every local variable [ of thread ¢ a global variable I_t of the
same type as [. Saving the value of [ means assigning its value to
[_t, while restoring the value of [ means assigning [_t’s value to
l. Listing 2 shows the variables introduced for the thread write
and for all the events of Listing 1.

Listing 3 shows the result of translating the thread write
of producer into a C function. First, the function is anno-
tated with program labels indicating the locations of context
switches. The function starts with a jump table whose targets
depend on the values of the program counter write_pc that
points to the location at which the thread has to resume its
execution. Second, we model calls to wait functions and their
variants by the following instructions: (1) an assignment setting
the thread’s status to SLEEP; (2) an assignment setting the
thread’s program counter to the location where the thread has to
resume its execution once it is woken up; (3) assignments sav-
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void write () {
int t;
/= Local jump table =/

if (write_pc == WRITE_ENTRY) goto WRITE_ENTRY;

else if (write_pc == WRITE_WAIT_2) goto WRITE_WAIT_2;
else if (write_pc == WRITE_WAIT_1) goto WRITE_WAIT_1;
WRITE_ENTRY :

/% wait (SC_ZERO_TIME); _BEGIN_ s/
write_state = SLEEP;
write_pc = WRITE_WAIT_1;

event_write = DELTA;

12 t_write = t; /x Save t. x*/

13 return;

14 WRITE_WAIT_1:

15 t = t_write; /x Restore t. =x/

16 [+ wait(SC_ZERO_TIME); _END_ =/

17 while (1) {

18 t =d;

19 /% inline consumer::put _BEGIN x/

20 data = d;

21 event_f = FIRED; / f.notify () _BEGIN_ */
22 activate_threads ();

23 event_f = NONE; /= f.notify () _END_ =/

/= inline consumer::put _END_ =/
/% wait(e) _BEGIN_ =/
write_state = SLEEP;
write_pc = WRITE_WAIT_2;
t_write t; /= Save t.
return;

WRITE_WAIT_2:
t = t_write; /* Restore t.
/= wait(e) _END_ */
assert(d==t+1);

}
}

= %/

*/

Listing 3. Sequential thread write of producer.

ing the values of thread’s local variables into the corresponding
global variables introduced above; (4) a return statement; (5) a
program label representing the location where the thread has to
resume its execution; and (6) assignments restoring the values
of thread’s local variables. For example, for wait (e) in the
thread write, we introduce the program label WRITE_WAIT_2
and set the program counter write_pc t0 WRITE_WAIT_2
before the function returns (see lines 25-32 of Listing 3). In the
case of wait (SC_ZERO_TIME) in the thread write, the thread
is suspended and will be woken up at the delta-cycle transition.
To model this, we set the variable event_write to DELTA.

An event e can be specified to be notified at immediate
time or at some time in the future. In the former case, ev-
ery thread that depends on the notified event has to be trig-
gered. To this end, we introduce for each thread ¢ a function
is_t_triggered that returns 1 if the thread is triggered,
0 otherwise. Now immediate notifications can be modeled
by the following instructions: (1) an assignment setting the
event’s status to FIRED; (2) a list of queries checking if
threads are triggered, and if they are triggered, their status
are set to RUNNABLE; this list is represented by the function
activate_thread; and (3) an assignment setting the event’s
status to NONE. Lines 21-23 of Listing 3 shows the translation
of £.notify (). Listing 4 shows the code for thread activation.
The notification by e.notify (SC_ZERO_TIME) is modeled
similarly to wait (SC_ZERO_TIME), thatis, we set the variable
event_e to DELTA. To model general time delayed notification,
one needs a statement that assigns the delayed notification time
to the variable associated with the event that keeps track of the
notification time.

Next, we inline the function calls in the SystemC code. For
instance, the inlining of the call p_w->put (d) in write is
shown in lines 19-24 of Listing 3. As we will discuss later,
function inlining can give advantages to the application of soft-
ware model checking techniques, particularly in the encoding
of the threads.



int is_write_triggered () {

if ((write_pc == WRITE_WAIT_1)

&& (event_write == FIRED)) return 1;
((write_pc == WRITE_WAIT_2)

&& (event_e == FIRED)) return 1;
return 0;

if

void activate_threads () {
if (is_write_triggered())
if (is_compute_triggered (
if (is_write_b_triggered (
if (is_read_triggered())
}

write_state = RUNNABLE;
compute_state = RUNNABLE;
write_b_state = RUNNABLE;
read_state = RUNNABLE;

(
( )
( )
(

Listing 4. Thread activation.

A signal channel s is represented by two global variables
s_old and s_new. Writing to and reading from a port bound to
the channel is modeled as, respectively, an assignment to s_new
and an assignment from s_o1d. For each channel, we include
the update function of the channel in the resulting C program.
For a signal s, the update function simply assigns s_old with
the value of s_new if their values are different.

The SystemC scheduler is included in the C program result-
ing from the translation. The scheduler is shown in Listing 5. It
consists of five phases: the initial phase, the evaluation phase,
the update phase, the delta-notification phase, and the time
phase. (We based the definition of the scheduler on [2])

In the initial phase all channels are updated by calling the
corresponding update functions. The function init_thread
changes the status of a thread to SLEEP if dont_initialize
is specified for the thread. The function fire_delta_events
simply changes the status of an event to FIRED if it was pre-
viously DELTA, while the function reset_events changes the
status to NONE. Similarly for the function fire_time_events.
In the evaluation phase, denoted by function eval, all runnable
threads are run one at a time. Unlike the original SystemC
scheduler that explores only one schedule, in the verification
we want to explore all possible schedules. To this end, we use
the function nondet () that returns a non-deterministic value.

The scheduler enters the update phase when there is no more
runnable thread. In the update phase all channels are updated.
The scheduler then moves to the delta-notification phase. This
phase signifies the transition from the current delta phase to the
next one. In this phase the scheduler triggers all events whose
status are DELTA, and subsequently wakes up triggered events.
The time phase is entered if there is no runnable thread after
the delta-notification phase. In this phase the scheduler simply
accelerates the simulation time. The scheduler quits if there
are no more runnable threads. Note that, this encoding of the
scheduler admits one impossible schedule where no runnable
threads are selected to run. However, the existence of such a
schedule is benign given we are focusing on the verification of
safety properties.

To complete the translation, all variables related to threads
and events must be initialized. The program counter is initial-
ized to the entry label, for example, write_pc is initialized
to WRITE_ENTRY. All variables whose values represent thread
status are initialized to RUNNABLE, and all variables whose
values represent event status are initialized to NONE. These ini-
tializations are performed in the function init_model called
by the main function.

This translation from SystemC to sequentialized C preserves
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void eval() {
while (exists_runnable_thread()) {

if (write_state == RUNNABLE && nondet())

{ write_state = RUNNING; write (); }
if (compute_state == RUNNABLE && nondet ()
{ compute_state = RUNNING; compute(); }
)
}

)

if (write_b_state == RUNNABLE && nondet())
{ write_b_state = RUNNING; write_b();
if (read_state == RUNNABLE && nondet())

{ read_state = RUNNING; read(); }
}

i

void start_simulation () {
update_channels (); /= Initialization phase
init_threads ();

y

fire_delta_events ();
activate_threads ();
reset_events ();
do {
eval (); /= Evaluation phase. =/
update_channels (); /# Update phase.
fire_delta_events (); /=
activate_threads ();
reset_events ();
if (lexists_runnable_thread()) {
fire_time_events (); /+ Time—notification phase
activate_threads ();

*/
Delta—notification phase.

reset_events ();
}
} while (exists_runnable_thread());

int main() {

init_model (); start_simulation ();

Listing 5. Sequential SystemC scheduler and main.
the behavior of the original SystemC design.

B. Model Checking (SystemC as) C

The translation from SystemC to C presented above opens
up the possibility to reduce the verification of a SystemC
design to the problem of verifying the translated C program.
Verification of C programs is possible by using existing soft-
ware model checkers, such as SATABS [17], BLAST [8], and
CPACHECKER [18]. We notice that these model checkers im-
plement approaches that are complementary to the ones that
have been proposed in the past to verify SystemC.

Among the above approaches, one particularly promising
is the idea of model checking via lazy abstraction [10]. The
approach is based on the construction and analysis of an
abstract reachability tree (ART) using predicate abstraction.
The approach can be seen as combining an exploration of the
control flow automaton (CFA) of the program with explicit-
state techniques, while the data path is analyzed by means
of predicate abstraction. (See also [8]-[11], [18] for a more
thorough discussion) The ART represents reachable abstract
states obtained by unwinding the CFA of the program. An
ART node typically consists of a control flow location, a call
stack, and a formula representing a region or data states (i.e.
assignments to each variable of the program of a value in its
domain).

An ART node is expanded by applying the strongest post
operator followed by predicate abstraction to the region and
the outgoing CFA edge of the location labelling the node [12],
[18]. When the expansion reaches an error location, if the path
from the root to the node with the error location is feasible,
then the path is a counter-example witnessing the error (or
assertion violation). Otherwise, the path is analyzed to discover
new predicates to track and to determine the point in the ART
where to start the refinement to discard the spurious behavior.

Predicate abstraction can benefit from advanced SMT tech-
niques like [15] and [16]. Large block encoding (LBE) for lazy-



abstraction has been proposed in [12] to reduce the number
of paths (and nodes) in the ART that have to be explored
independently. Intuitively, in LBE each edge in the CFA corre-
sponds to a rooted directed acyclic graph (DAG) in the original
CFA. Such an edge can be thought of as a summarization of
the corresponding rooted DAG in the original CFA. In LBE
function calls and loops in a program require block splitting.
As we want to keep the number of blocks as small as possible,
one can complementary apply function inlining to calls to
non-recursive functions and loop unrolling to the loops whose
bounds are known. The refinement can benefit from proof of
unsatisfiability and from interpolation based techniques. For
instance, in [11] it has been described an interpolation based
refinement approach where the relevant predicates at each lo-
cation of the infeasible path are inferred from the interpolant
between the two formulas that define the prefix and the suffix
of the path.

The idea of applying software model checking techniques to
the C program resulting from the translation of SystemC is, to
the best of our knowledge, novel. The hope is that the various
abstraction techniques may provide some leverage to tackle the
state explosion problem.

However, we remark that the exploration of the ART carried
out during software model checking will treat in the same
way both the code of the threads and the kernel model. In a
sense, a general purpose technique is being applied to programs
that have a very specific structure, resulting from the sequen-
tialization of concurrency. In the next section, we propose a
generalization to software model checking that exploits this
feature of the analyzed problems.

IV. EXPLICIT SCHEDULER + SYMBOLIC THREADS

In this section we propose a novel approach to the verification
of SystemC designs. First, unlike the previous approach, here
we decouple the scheduler from the threads. That is, the sched-
uler will no longer be part of the program, but is embedded in
the model checking algorithm. Second, we combine the explicit
model checking technique with the symbolic one based on lazy
predicate abstraction. In this combination we still represent the
state of each thread as a formula describing a region. But, unlike
the classical lazy abstraction, we keep track of the states of
scheduler explicitly. In the following, we refer to this technique
as Explicit-Scheduler/Symbolic Threads (ESST) model check-
ing. Fig. 1 shows an overview of this new approach.

We introduce several primitive functions to model SystemC
synchronization mechanism and for interacting with the model
checking algorithm. For example, the SystemC’s wait functions
wait (¢) and wait (e) are modeled by primitive functions
wait (¢) and wait_event (e), respectively. These primitive
functions perform synchronization by updating the state of the
scheduler. In the proposed algorithm the scheduler requires pre-
cise information about its state in order to schedule the threads.
To this end, we assume that in the SystemC design the values
of t and e in wait (¢) and wait_event (e) can be determined
statically. This assumption does not limit the applicability of
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Fig. 1. An overview of the ESST approach.

our technique since, to the best of our knowledge, most real
SystemC designs satisfy the assumption.

A. Abstract Reachability Forest

We build an abstract reachability forest (ARF) to describe
reachable abstract states. An ARF consists of some ART’s,
each of which is obtained by unwinding the running thread.
The connections between one ART with the others in an ARF
describe context switches.

For a model with n threads, each node in the ARF is a tuple
({q1,81,01)s -+ s {Gns Sns Pn)s ©, S), where (1) ¢;, $;, and ;
are, respectively, the program location, the call stack, and the
region of thread 4, (2) ¢ is the region describing the data state
of global variables, and (3) S is the state of scheduler. The state
S does all the book keeping necessary to model the behavior
of the scheduler. For example, it keeps track of the status of
threads and events, the events that sleeping threads are waiting
for, and the delays of event notifications.

To expand the ARF, we need to execute primitive functions
and to explore all possible schedules. To this end, we introduce
the function SEXEC that takes as inputs a scheduler state and a
call to a primitive function f, and returns the updated scheduler
state obtained from executing f. For example, the state S’ =
SEXEC(S,wait_event (e)) is obtained from the state S by
changing the status of running thread to sleep, and noting that
the now sleeping thread is waiting for an event e.

We also introduce the function SCHED that implements the
scheduler. This function takes as an input a scheduler state and
returns a set of scheduler states, each of which has exactly
one running thread. These resulting states represent all possible
schedules.

To describe the expansion of a node in ARF, we as-
sume that there is at most one running thread in the sched-
uler state of the node. The rules for expanding a node
((q1,51,91)s - -+ {qn, Sny ©n), @, S) are as follows:

El. If there is a running thread 7 in S such that the thread per-
forms an operation op, then the successor node is obtained
in the following way:



o If op is not a primitive function, then the suc-
cessor node s ((q), 5 9): -« (€8s 2, 2 )
where ¢, SP™(pi N ¢, 0p), ¢ SP™(p; A
@, HAVOC(op)) for j # i, ¢’ = SP™(p, 0p), s} = Sk
for all k = 1,...,n, and S’ S. SP™(p, op)
computes the abstract strongest post condition w.r.t.
precision 7. In our case of predicate abstraction the
precision 7 can contain (1) a set of predicates that
are tracked for the global region ¢, and (2) for all
1, a set of predicates that are tracked for each thread
region ;. HAVOC is a function that collects all global
variables that are possibly updated by the operation
op, and builds a new operation where these variables
are assigned with new fresh variables. We do this since
we do not want to leak variables local to the running
thread in order to update the region of other threads.

If op is a primitive function, then the new node

is ({q1,81,01); -« (qns Sn, Pn)» @, S") where S’

SEXEC(SS, op).

E2. If there is no more running thread in .S, then for each
scheduler’s state S’ € SCHED(S) we create a node
({q1,51,91)5- - - {qn, Sns©n), @, S") such that the node
becomes the root node of a new ART that is then added
to the ARF. This represents the context switch that occurs
when a thread gives the control back to the scheduler.

In the same way as the classical lazy abstraction, one stops
expanding a node if the node is covered by other nodes. In our
case we say that a node ({q1, 51, ©1), - -+ » {(Gns Sn, Pn), @, S) is
covered by anode ((q}, 1, ©1)s -, (@, Shy o), @', S") if (1)
¢i=¢q,ands; = s, fori=1,...,n,(2)S =5, and 3) p —
¢ and \,_; , (i — ¢}) are valid. We also stop expanding a
node if the cénjuction of all thread regions and the global region
is unsatisfiable.

We say that an ARF is complete if it is closed under the
expansion rules described above and there is no node that can
be expanded. An ARF is safe if it is complete and, for every
node ({q1,$1,©1), - -+ {Gns Sn, Pn), ¥, S) in the ARF such that
@A N,—1 _, wiis satisfiable, none of the locations ¢1, ..., qn
are error locations.

B. ARF construction

The construction of an ARF starts with a single ART repre-
senting reachable states of the main function. In the root node
of that ART all regions are initialized with T'rue, all thread
locations are set to the entries of the corresponding threads,
all call stacks are empty, and the only running thread in the
scheduler’s state is the main function. The main function then
suspends itself by calling a primitive function that starts the
simulation.

We expand the ARF using the rules E1 and E2 until either
the ARF is complete or we reach a node where one of the
thread’s location is an error location. In the latter case we build a
counterexample consisting of paths in the trees of the ARF and
check if the counterexample is feasible. If it is feasible, then we
have found a real counterexample witnessing that the program
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is unsafe. Otherwise, we use the spurious counterexample to
discover predicates to refine the ARF.

C. Counterexample analysis and predicate discovery

The counterexample in our proposed technique is built in a
similar way to that of in the classical lazy abstraction for se-
quential programs. In our case each call to a primitive function
is replaced with a nop (no operation). The connections between
trees induced by SCHED is removed and the two connected
nodes are collapsed into one.

Let us consider the path represented in Fig. 2. There are two
threads in this example. First, thread 1 moves from node 0O to
node 1 with operation op;, and then moves from node 1 to
node 2 with wait_event (e) that makes thread 1 sleep and
wait for the event e to be notified. The scheduler SCHED is
then executed, and this execution creates a connection from
node 2 to node 3, and also makes thread 2 as the running
thread. Finally, thread 2 moves from node 3 to error node 4
with operation ops. The counterexample is built by replacing
the call to wait_event (e) labeling the transition from node
2 to 3 with nop and by collapsing nodes 2 and 3 into a new
node 2,3. We thus obtain the path depicted in the lower part
of Fig. 2. This final path corresponds to a “standard” path in
the pure sequential software model checker, and is the path we
consider for the counterexample analysis.

When the formula corresponding to the error path built above
is unsatisfiable, then the proof of unsatisfiability is analyzed
in order to extract new predicates. These predicates are then
used to refine the abstraction in order to rule out this unfeasible
error path in the expansion of ARF. For this purpose we
re-use the same techniques used in the sequential case, e.g.
Craig interpolants and unsatisfiable core. The newly discovered
predicates are then used to update the precision. Depending on
the nature of the predicates, they can be associated to all threads
globally, which is the precision of the global region, or to a
specific thread, which is the precision of the thread region. Due
to lack of space, we refer the reader to [19] for a more thorough
discussion of the refinement process.

D. Parametric Summarization of Control Flow Automata

CFA summarization based on the large block encoding
(LBE) has been introduced in [12]. The encoding can also be
applied to summarize the CFA representing a thread.

We define a parameterized version of the LBE w.r.t. asetI" C
Ops of operations that is used to prevent the creation of a large
block. The algorithm to compute parametric LBE is a variant of
the algorithm described in [12]. First, a CFA is a tuple (L, G)
where L is a set of control locations and G C L X Ops x L is a
set of edges. Without loss of generality, we assume that the CFA
has at most one error location denoted by {g. The LBE of I'-
CFA Summarization consists of the application of the rules we



describe below: we first apply the rule R1, and then repeatedly
apply the rule R2 and R3 until none of them are applicable.
R1. We remove all edges (g, *,*) from G. This rule trans-
forms the error location into a sink location.

If (I1,0p,l2) € G such that Iy # lo, op &€ T, l5 has
no other incoming edges, and for all (I3,0p;,l;) € G
we have op; ¢ T',then L = L\ {lo} and G = (G \
{(l1,0p,12)}) U {(l1, op; op;, ;) |for all i}. If the current
operation op, or one of the outgoing operations is in I,
then we stop summarizing the current block.

If (I1,0p1,12) € G, (I, 0p2,l2) € G, and none of op1, op2
are in I' then G = (G \ {(ll,Opl,lg), (ll,Opg,lg)}) @]
{(l1, 0p1||lop2,12)}. Intuitively, if there is a choice and
none of the two outgoing operations are in I, then we join
the operations.

R2.

R3.

Since the parameter of summarization only prevents the cre-
ation of large blocks, the correctness of summarization as stated
in [12] still holds for the above rules.

V. RELATED WORK

There have been some works on the verification of SystemC
designs. Scoot [20] is a tool that extracts from a SystemC design
a flat C++ model that can be analyzed by SATABS [17]. The
SystemC scheduler itself is included in the flat model. Scoot,
to the best of our knowledge, has only been used for race
analysis [21], and for synthesizing a static scheduler to speed
up simulation [22]. Our work on embedding the scheduler into
the model-checking algorithm can benefit from the techniques
described in [21] for reducing the number of schedules to
explore.

CheckSyC [4] is a tool used for property and equivalence
checking, and for simulation of SystemC designs. It relies on
SAT based bounded model checking (BMC) and thus does
not support unbounded loops. Moreover CheckSyC does not
support SystemC constructs that have no correspondence in
RTL, like channels.

Lussy [3] is a toolbox for the verification of SystemC designs
at TLM. The tool extracts from a SystemC design a set of
parallel automata that captures the semantics of the design,
including the SystemC scheduler. These automata are then
translated into Lustre or SMV model for the verification. The
results reported in [23] show that the approach does not scale.
An extension for the use of Spin is discussed in [6]. However,
this translation is manual. Moreover, it is bound to not scale-up
when the SystemC design requires to model nondeterministic
signals with a large domain like e.g. an integer. For us, this is
not a problem since we model them symbolically.

In [7] the SystemC design is encoded as a network of timed
automata where the synchronization mechanism is modeled
through channels. The execution semantics is specified through
a pre-determined model of the scheduler, and by means of
templates for events and threads. The resulting network of
automata is verified using the UPPAAL model checker. This
approach only supports bounded integer variables.

Formal verification of SystemC designs by abstracting away
the scheduler, that is encoded in each of the threads, has been
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reported in [5]. This work does not handle channel updates and
time delays. Our translation from SystemC to C can adopt the
technique in the paper to simplify the resulting C program.

Works on the verification of multi-threaded C programs
are related to our work. Software model checkers for multi-
threaded programs such as Verisoft [24] and Zing [25] explore
states and transitions using explicit enumeration. Although
several state space reduction techniques (e.g. partial order re-
duction [26] and transaction based methods [27]) have been
proposed, they do not scale well because of the state explosion
caused by the thread interleaving. Extensions of the above
techniques by using symbolic encodings [28] combined with
bounded context switches [29] and abstraction [30] have been
proposed. In [31] an asynchronous modeling is used to reduce
the size of BMC problems. All of these techniques can be
applied to the verification of SystemC designs by properly
encoding the semantics of the SystemC scheduler. Our ap-
proach can benefit from these optimizations. In particular we
expect that partial-order reduction that can reduce the number
of schedules to explore will lead to dramatic improvements, but
we leave it as future work.

VI. EXPERIMENTAL EVALUATION

We have implemented a tool chain that supports the SystemC
verification approaches presented in this paper. The front-end
for handling SystemC is an extended version of PINAPA [13]
modified to generate the flattened pure sequential C program
described in Section III, and the output suitable for the new
algorithm described in Section I'V.

To deal with the sequential C program, we have implemented
a new software model checker for C that we call SYCMC.
Inspired by BLAST [8], SYCMC implements lazy predicate
abstraction. Furthermore, SYCMC also provides LBE and the
I'-CFA summarization described before. SYCMC is built on
top of an extended version of NUSMV [14] that integrates the
MathSAT [32] SMT solver and provides advanced algorithms
for performing predicate abstraction by combining BDDs and
SMT formulas [15], [16]. The new ESST model-checking
algorithm is implemented within SYCMC. In SYCMC as well
as in ESST each time we expand an ART (ARF) node we
perform the check to verify whether the newly generated node
is covered by another ART (ARF) node. Thus, it is fundamental
to perform this check as efficiently as possible. Similarly to
CPACHECKER, in SYCMC as well as in ESST we use BDDs
to represent the regions, and we exploit them for efficiently
checking whether a node is covered by another node.

A. Results

We used benchmarks taken and adapted from the SystemC
distribution [1], from [23], and from [33] to experiment with
our approaches. To the best of our knowledge, none of the tools
used in [3], [4], [7] is available for comparison. We first experi-
mented with the translation of SystemC models to C programs,
by running the benchmarks on the following model checkers:
SATABS [17], BLAST [8], CPACHECKER presented in [12],
and SYCMC. We then experimented the ESST algorithm of



SYCMC on the same set of benchmarks. As the model checkers
feature a number of verification options, we only consider what
turned out to be the best options for the benchmarks. For BLAST
we used the -foci option, while for CPACHECKER and for
SYCMC we applied LBE, depth first node expansion with
global handling of predicates, and restarting ART from scratch
when new predicates are discovered. We have experimented the
tools on an Intel-Xeon DC 3GHz running Linux, equipped with
4GB of RAM. We fixed the time limit to 1000 seconds, and the
memory limit to 2GB.

The results of experiments are shown on Table I. In the
second column we report S, U, or - to indicate that the veri-
fication status of the benchmark is safe, unsafe, or unavailable
respectively. The unavailability of the status is due to time or
memory out. In the remaining columns we report the running
time in seconds. We use T.O. for time out, M.O. for memory
out, and N.A. for not available.

The results show that the translation approach is feasible, but
the model checkers often reached timeout. This is because the
presence of the scheduler in the C program enlarges the search
space that has to be explored by the model checkers. Moreover,
we noticed that several iterations of refinement are needed to
discover predicates describing the status of the scheduler in
order to rule out spurious counterexamples. We notice that, as
far as these benchmarks are concerned, CPACHECKER outper-
forms BLAST, while we have cases where SYCMC performs
better than CPACHECKER, and others where it performs worse.
This is explained by the fact that the search in the two model
checkers, although similar may end-up exploring paths in a
different order and thus discovering different sets of predicates.

The table clearly shows that the ESST algorithm outper-
forms the other four approaches in most cases. In the case
of pipeline design CPACHECKER and SYCMC outperform
the ESST algorithm. It turns out that for the verification of
this design precise details of the scheduler are not needed.
CPACHECKER and SYCMC are able to exploit this character-
istic and thus they end up exploring less abstract states than
ESST. Indeed, for this design the ESST algorithm needs to
explore many possible schedules that can be reduced by using
techniques like partial-order reduction. For the mem-slave de-
sign SATABS outperforms other model checkers. SYCMC and
ESST employ a precise Boolean abstraction in the expansion
of the ART. Such an abstraction is expensive when there are a
large number of predicates involved. For this design, SYCMC
and ESST already discovered about 70 predicates in the early
refinement steps. SATABS also discovered a quite large number
of predicates (51 predicates). However, it performs a cheap
approximated abstraction that turns out to be sufficient for the
verification of this design.

All the benchmarks and the executable to reproduce the
results reported in this paper are available at http://es.fbk.eu/
people/roveri/tests/fmcad2010.

B. Limitations

The approaches presented in this paper assume that the Sys-
temC design does not contain any dynamic creation of threads,
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Sequentialized ESST
Name V | SATABS BLAST CpAC. SYCMC | SYCMC
toyl S 22.790 T.O. | 282.230 57.300 1.990
toy2 U 28.050 T.O. | 621.120 35.300 0.690
toy3 U 20.290 T.O. 141.780 22.390 0.190
token-ring 1 S 16.520 97.2000 14.590 36.990 0.010
token-ring2 S 62.240 | 888.2900 30.330 540.160 0.090
token-ring3 S 152.360 T.O. 141.860 T.O 0.190
token-ring4 S 602.300 T.O. | 911.300 T.O0 0.400
token-ring5 S T.O. T.O. T.O. T.O 1.000
token-ring6 S T.O. T.O. T.O. T.O0 2.500
token-ring7 S T.O. T.O. T.O. T.O 6.390
token-ring8 S T.O. T.O. T.O. T.O0 18.400
token-ring9 S T.O. T.O. T.O. T.O 54.290
token-ring10 S T.O. T.O. T.O. T.O 201.980
token-ring11 - T.O. T.O. T.O. T.O M.O
transmitterl U 2.230 1.2700 11.850 6.200 0.010
transmitter2 U 26.920 29.4000 18.210 640.750 0.010
transmitter3 U 61.460 | 501.3500 44.320 176.290 0.010
transmitter4 U 190.620 T.O. 113.490 T.O 0.090
transmitter5 U 472.180 T.O. | 296.580 T.O 0.190
transmitter6 U T.O. T.O. 969.530 T.O 0.500
transmitter?7 U T.O. T.O. T.O. T.O 1.390
transmitter8 U T.O. N.A. T.O. T.O 3.690
transmitter9 U T.O. N.A. T.O. T.O 11.690
transmitter10 | U T.O. T.O. T.O. T.O 40.590
transmitter]1 U T.O. T.O. T.O. T.O 150.480
transmitter12 - T.O. T.O. T.O. T.O M.O
pipeline S T.O. T.O. 130.610 178.490 T.O
kundul S 139.440 T.O. | 232310 T.O 2.900
kundu2 U 41.500 | 245.8500 57.160 T.O 0.900
kundu3 U 110.550 T.O. 129.370 T.O 2.900
bistcell S 36.600 T.O. 10.560 38.000 1.090
pe-sfifol S 4.260 46.6500 13.110 7.690 0.300
pe-sfifo2 S 5.210 | 300.3800 28.490 34.790 0.300
mem-slave S 77.210 T.O. T.O. T.O0 677.010

TABLE I: RESULTS FOR EXPERIMENTAL EVALUATION.

channels, and module instances. In particular, in the sequential-
ization approach the encoding of the scheduler requires those
components to be known a priori. For example, to encode the
evaluation and the channel update phases (the functions eval
and update_channels, respectively) one needs to know all
threads and channels that are involved in the simulation. In
the threaded C approach we assume the values of ¢ and e in
wait (¢) and wait_event (e) can be determined statically.
Similarly for the translation to threaded C and in the ESST
algorithm, at the moment we do not support dynamic creation
of threads, channels, and module instances. It turns out that
also the SystemC front-end we use for our translator suffers of
these limitations. Indeed, PINAPA parses the SystemC design
and executes it until the point just before the simulation begins.
At that point PINAPA gives access to the abstract syntax tree
(AST) of the design and to all the ground SystemC objects
(i.e. module instances, channels, and threads) of the design. We
remark that, these limitations do not affect the applicability of
the proposed techniques since, to the best of our knowledge,
most real SystemC design satisfy this assumption.

The PINAPA SystemC front-end at the current stage of de-
velopment suffers of many other limitations. For example, as
far as we know, it does not recognize all SystemC transaction-
level modeling (TLM) constructs and does not fully support
function pointers. Because of these limitations, our translator
from SystemC to sequential C (and also to threaded C) does not
handle such constructs either. For the experiments presented
in this paper we extended PINAPA to handle simple TLM



constructs like sc_export. Support for additional SystemC
constructs can be added to PINAPA with a reasonable effort.

As far as the limitations of our translator are concerned, we
do not yet support rich C++ features like standard template
library (STL) data structures and respective constructs, and we
do not yet support pointers, arrays, and dynamic creation of
objects. To this end, we remark that most of the software model
checkers currently available are not able to fully support all of
them. We remark that, our translator can be extended to support
such constructs wit a reasonable effort.

Finally, the new SYCMC and ESST model checkers are not
yet able to handle designs that use complex data types (like
e.g. records), pointers, arrays, dynamic creation of objects, and
recursive function. However, support for all these constructs is
currently argument of future extensions of the tools.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two novel approaches aiming
at lifting software model checking techniques to the verification
of SystemC designs. We first presented a conversion of a
SystemC design into an C program that can be verified by
any off the shelf software model checker for C. Second, we
presented a novel model checking algorithm that combines
an explicit model checking technique to model the states of
SystemC scheduler with lazy abstraction. Both approaches have
been implemented in a tool set and an experimental evaluation
was carried out showing the potential of the approach and the
fact that the new algorithm outperforms the first approach.

As future work, we will investigate the applicability of static
and dynamic partial order techniques to reduce the number of
paths to explore. We will extend the set of primitives to interact
with the scheduler to better handle TLM constructs. Moreover,
we will investigate the possibility to handle the scheduler semi-
symbolically by enumerating possible next states exploiting
SMT techniques as to eliminate the current limitations of the
ESST approach. Finally, we will also extend our back-end to
support richer data like e.g. arrays [34], [35].
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Abstract—State-of-the-art hardware model checkers and
equivalence checkers rely upon a diversity of synergistic algo-
rithms to achieve adequate scalability and automation. While
higher-level decision procedures have enhanced capacity for
problems of amenable syntax, little prior work has addressed (1)
the generalization of many critical synergistic algorithms beyond
bit-blasted representations, nor (2) the issue of bridging higher-
level techniques to problems of complex circuit-accurate syntax.
In this paper, we extend a variety of bit-level algorithms to designs
with memory arrays, and introduce techniques to rewrite arrays
from circuit-accurate to verification-amenable behavioral syntax.
These extensions have numerous motivations, from scaling formal
methods to verify ever-growing design components, to enabling
hardware model checkers to reason about software-like systems,
to allowing state-of-the-art model checkers to support temporally-
consistent function- and predicate-abstraction.

I. INTRODUCTION

Contemporary hardware designs are often of substantial
complexity, comprising a diversity of bit-level control logic,
datapaths, and performance-related artifacts including pipelin-
ing, multi-threading, out-of-order execution, and power-saving
techniques. While reference models expressing the correctness
of such designs may be specified at a higher abstraction
level, it is often necessary to directly reason about the circuit-
accurate implementation. For example, equivalence checkers
must reason about the circuit-accurate implementation. If the
designer-specified implementation closely matches the circuit,
combinational equivalence checking (CEC) may scalably solve
the equivalence-checking problem — leaving a formidable
correctness check of the circuit-accurate implementation vs.
the reference model. If in contrast the implementation more
closely matches the higher-level specification, functional ver-
ification becomes simpler, leaving a formidable sequential
equivalence check between the implementation vs. the circuit.

Numerous automated transformations have been developed
to alleviate the challenges of verifying contemporary hardware
designs. For example, phase abstraction eliminates verification
complexities of designs with intricate clocking and latch-
ing schemes [1]. Retiming reduces the verification overhead
associated with pipelined designs [2]. Redundancy removal
and rewriting eliminate numerous design artifacts which may
dramatically hurt verification scalability [3], [4], [S]. Such
techniques have become key components of state-of-the-art
model checkers and equivalence checkers [6], [1], [7], without
which such solvers often fail to yield a conclusive result on
industrial designs. However, these techniques have hitherto
largely been developed assuming a bit-blasted representation.

©2010 FMCAD Inc.
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Substantial recent research has focused upon enhanced
reasoning scalability for designs expressed at a higher-level
of abstraction. For example, numerous techniques have been
established to enhance the verification scalability of designs
containing arrays: storage devices arranged as a set of ad-
dressable rows of a specific width, accessed through atomic
write and read operations. Example techniques include the
efficient memory model which preserves data consistency
within temporally-bounded reasoning using a modeling whose
complexity grows sub-linearly with respect to array size [8],
[9], and the abstraction-refinement technique of [10] which
reduces an array to a small number of consistently-modeled
rows. Additionally, a large number of dedicated decision
procedures have been developed around theories of arrays [11].

While extremely powerful for amenable problems, such
techniques have not yet delivered their full impact in industrial
hardware verification for several reasons. First, such tech-
niques are often applicable only to designs with behavioral
syntax, not to designs of intricate circuit-accurate syntax. Man-
ual creation of behavioral models may alleviate this concern
for property checking — though at an often-prohibitive expense
to the overall design flow. Furthermore, these behavioral
models must be equivalence-checked to the circuit-accurate
implementation to ensure the soundness of such an approach;
while property checking may become simpler, the equivalence
check may be intractable. Second, techniques which are in-
compatible with bit-level transformations are of limited utility
on industrial designs, given capacity limitations in reasoning
about the logic adjacent to the arrays. In our experience, the
logic around the dataflow often contains the most subtle flaws;
the dataflow itself poses a bottleneck to verification algorithms
which often necessitates manual guidance to expose these
flaws and ultimately establish correctness.

In this paper, we address the issue of efficient formal
reasoning about industrial hardware designs which include
arrays. Our contributions include: (1) algorithmic extensions
to a variety of traditionally bit-level transformation algorithms
to support designs with arrays, including redundancy removal
(Section III), phase abstraction (Section IV), temporal decom-
position and retiming (Section V); (2) techniques to simplify
array syntax, enabling efficient array reasoning upon designs
which may otherwise lack a suitable behavioral representation
(Section III-C); (3) enhancements to the robustness and scal-
ability of known array abstraction techniques (Section VI).
Experiments are provided in Section VII to confirm the
profound verification benefits enabled by these techniques.



There are numerous motivations for this work.

e As per Moore’s Law, increasing array size (caches, main
memory, lookup tables, ...) is one prevalent way in which
growing transistor capacity is used to increase design per-
formance [12]. While bit-blasted analysis suffers substantial
overhead with doubled array size, native reasoning techniques
often entail sub-linear complexity growth — e.g., merely re-
quiring an additional address-comparison bit.

o There are numerous problem domains which are practically
infeasible for bit-blasted techniques without manual abstrac-
tion, such as formally verifying logic that interacts with main
memory or large caches. Large arrays already constitute a
substantial scalability differential between formal and informal
industrial verification efforts, as most hardware simulators and
accelerators represent arrays without bit-blasting.

« Increasing the scalability of automated solutions mandates
enabling the applicability of as large a set of algorithms
as possible, to leverage algorithmic synergies to eliminate
implementation characteristics which otherwise may pose a
bottleneck to, if not outright inapplicability of, otherwise well-
suited algorithms. This is particularly true for satisfiability
modulo theories solvers, which tend to be highly sensitive to
the type of logic which may be efficiently handled by a given
combination of theories (e.g., [13]).

+ Randomly-initialized read-only arrays may be used to
abstract complex combinational functions in a temporally-
consistent manner. In particular, the data output of such
an array, addressed by the arguments to the function be-
ing abstracted, may be used to replace the logic associated
with that function. This uninterpreted modeling may simulate
the original function, hence is sound for verification — and
maintains the necessary invariant for arbitrary model checking
algorithms that applying identical arguments to the abstracted
function at different points in time yields identical results [14].
Our techniques thus constitute a method to utilize uninter-
preted functions in a state-of-the-art model checker.

II. PRELIMINARIES

We represent the design under verification as a netlist.

Definition 1: A netlist comprises a directed graph with
vertices representing gates, and edges representing intercon-
nections between gates. Gates have associated functions, such
as constants, primary inputs (termed RANDOM gates), combi-
national logic of various functionality, and single-bit sequential
elements termed registers. Registers have associated initial
values defining their time-0 or reset behavior, and next-state
functions defining their time-(i+1) behavior.

The And / Inverter Graph (AIG) is a commonly-used netlist
representation where the only combinational primitives are
single-bit inverters and two-input AND gates [3], [4]. This
implies a bit-blasting of all higher-level constructs. Our netlist
format is an AIG which also includes array primitives.

Definition 2: An array is a gate representing a two-
dimensional grid of registers (referred to as cells), arranged as
rows vs. columns. Cells are accessed via read and write ports.
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reg [COLS-1 : 0] ram[ROWS - 1 : 0]; // array declaration
always @ (posedge clk) begin
// write port:
if (wr_en) // enable is " (posedge clk AND wr_en)"
ram[wr_addr] <= // address is "wr_addr"
wr_data; // data is "wr_data"
end
// read port:
assign rd_data = // data is "rd_data"
rd_en ? // enable is "rd_en"
ram[rd_addr] : // address is "rd_addr"
{ (COLS) {1"bX}};
Fig. 1: Verilog array example

Ports have three types of pins: an enable, an address vector,
and a data vector: refer to Figure 1. The enable indicates
whether the given port is actively accessing the array cells.
The address indicates which row is being accessed. The data
represents the values to be stored to (read from) the given row
for a write (read) port. A column refers to a one-dimensional
vector: the ith cell of each row. All pins are inputs of the array
gate, aside from read data pins which are outputs.

Arrays have a defined number of r rows, ¢ columns, and
p address pins per port; a default initial value (in case an
unwritten row is read); and an indication of read-before-write
vs write-before-read behavior. The latter is relevant in case of
a concurrent read and write to the same address: write-before-
read will return the concurrent write data, whereas read-before-
write will not. Read data is conservatively randomized when
the read enable is de-asserted, or when the read is “out-of-
bounds” — i.e., its address exceeds the number of array rows.
Write ports have a specified precedence (e.g., reflecting the
order of if, else if statements in Verilog), defining which will
persist in case of concurrent stores to the same address.

We refer to the read ports as Ry, ..., R,,, and the write ports
in order of increasing precedence as W1, ..., W,,. For a given
port P;, let P;.e represent its enable pin, P;.a(0...,p—1) its
address pins, and P;.d(0,...,q — 1) its data pins.

Definition 3: A merge is a reduction technique which effec-
tively eliminates a gate from a netlist by replacing its fanout
references with references to a semantically-equivalent gate.

It is highly desirable to be able to merge array outputs if
it can be determined that the referenced array cells exhibit
redundancy. However, the nondeterminism exhibited at an
array output when its read port is disabled or out-of-bounds
often precludes a direct merge from being a semantically-
consistent transformation.

Definition 4: An array output merge is a specialized merge
to achieve the desired netlist reduction while preserving neces-
sary nondeterminism. This operation consists of replacing the
array output to be merged by a multiplexor which selects the
merged-onto gate when the corresponding read port is enabled
and in-bounds, else selects a unique RANDOM gate.

A. Temporal Unfolding and the Efficient Memory Model

Many algorithms reason about netlist behavior over a spe-
cific number of timesteps. Unfolding is commonly used for
this purpose, replicating the netlist for the desired number
of timesteps to allow valuations to propagate through next-
state functions. Depending upon the application for which



unfolding is performed, the time-0 unfolding of the sequential
elements will differ. For Bounded Model Checking (denoted
as unfoldy), the time-0 value will be the initial value of the
array or register [15]. For induction, the time-0 value will be a
RANDOM gate [16]. For a sequential transformation such as
phase abstraction (denoted as unfold,,), the time-0 value will
be a reference to an existing array or register in the netlist [1].

The efficient memory model (EMM) represents data consis-
tency for arrays within unfoldings using sub-linear modeling
size vs. the number of array cells [9]: the data at an array
output at time ¢ for an enabled, in-bound read must be
the highest-priority, most-recently-written data for the corre-
sponding address. This may be modeled in unfolding using
a sequence of if-then-else constructs, one per write port and
timestep, selected by the corresponding write being enabled
and address-matching the read being synthesized [9]. Because
each read must be compared to each write, the size of each
synthesized read for time ¢ is O(¢ - |W]), resulting in overall
quadratic unfolding size with respect to depth as a multiple of
the number of write ports |W| and read ports |R|.

A technique to further reduce array unfolding size is
proposed in [17], re-encoding array references given upper-
bounds on the number of distinct referenced addresses. Rewrit-
ing rules are used to minimize the number of memory refer-
ences, e.g., synthesizing if-then-else constructs for reads as
with EMM. While highly effective for suitable problems, we
have not yet found a method to advantageously leverage this
technique in a model checking framework: these rewriting
rules shadow the complexity of an EMM unfolding, and since
arrays are generally interconnected by arbitrary bit-level logic
it is challenging to improve upon the effectiveness of standard
logic optimization techniques upon such unfoldings, or to a
priori meaningfully upper-bound a desired unfolding depth.

B. Symbolic Row Abstraction

While EMM is highly effective to boost the efficiency of
temporally-bounded reasoning, many alternate algorithms are
critical to a robust model checker. For example, BDD-based
reachability analysis is often necessary to prove properties
of extremely temporally deep netlists. For such temporally-
unbounded algorithms, EMM is not directly applicable.

A related technique has been proposed in [10] as a sequen-
tial netlist abstraction that is applicable for arbitrary model
checking algorithms. This abstraction bit-blasts an array into
a small set of symbolic rows. This set begins empty and
rows are added during refinement in response to spurious
counterexamples. In addition to modeling data contents for
represented rows, the address correlating to each modeled row
is represented using nondeterministically-initialized registers;
reads and writes to modeled rows are performed precisely,
whereas writes to unmodeled rows are ignored and reads of
unmodeled rows are randomized. To prevent trivial failures
merely due to reading unmodeled rows, antecedent condition-
ing of properties is performed: given a spurious counterexam-
ple caused by a read from port R; which occurred £ timesteps
prior to the property failure, resulting in a new row being
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modeled with symbolic address r¥, property always(p) is
replaced by always (prevk (Ria=rk) — p). This abstraction
is sound because the abstract netlist may simulate the original,
and the antecedent conditioning forms a complete temporal
case-split. While very effective for certain types of problems,
the abstraction risks exceeding the size of a bit-blasted netlist
due to the need to represent modeled addresses, and due to a

potentially large number of temporal read dependencies.

III. LoGic OPTIMIZATION TECHNIQUES

A vast collection of logic optimization techniques have
been developed over the past decades, which reduce netlist
size while preserving the behavior of sequential elements.
Examples include redundancy removal [3], [5] as well as
extensions under observability don’t cares [18], and syntactic
combinational rewriting [4]. Many of these techniques operate
on local logic windows treating sequential elements as uncon-
strained cutpoints, hence are directly applicable to netlists with
arrays. Some require bounded / inductive reasoning, possibly
to derive invariants with which to constrain local analysis, for
which the efficient memory model provides a suitable extension
to netlists with arrays. There are however several optimization
techniques which have required substantial customization to
achieve an adequate level of scalability and optimality, which
we detail in this section.

A. Ternary-Simulation Based Analysis and Reduction

Ternary simulation-based reduction is a method to identify
and eliminate a subset of semantically-equivalent gates. Ini-
tially, the registers are assigned their initial values and the
inputs are assigned an unknown ternary X value. Next-state
functions are then simulated, overapproximating an image
computation. These next-states values are propagated through
the registers, and another overapproximate image is computed.
This iteration continues until a repeated ternary state is de-
tected, indicating that an overapproximation of the reachable
states have been explored. Pairs of gates which always evaluate
to the same deterministic values in these states may be merged
to reduce netlist size [1]. This technique is highly overapprox-
imate and able to identify a relatively small subset of truly
redundant gates, though is remarkably scalable and often able
to yield substantial reductions on industrial netlists [1]. This
analysis may also be used to detect oscillating clocks for phase
abstraction (Section IV), and transient behavior for temporal
decomposition (Section V). Ternary simulation has thus found
a role in many state-of-the-art model checkers.

Unlike with Boolean simulation, each three-valued address
may resolve to multiple existing simulated array value entries.
Numerous commercial simulators support multi-valued rea-
soning, though to avoid the computational overhead entailed
by multiple-entry address resolution they take shortcuts such
as mapping X values on enables or addresses to Boolean con-
stants, or X’ing array contents in such cases, as also was noted
in [8]. Such shortcuts render unacceptable suboptimalities and
even unsoundness in model checking applications.

Building upon the work of [8], which uses three-valued
write lists for precise read resolution in symbolic trajectory



Algorithm 1 Ternary simulation write function

1: function write(enable, addr, data)

2 if (enable = 0) then return

3 nodesToWrite = deepest nodes whose address intersects addr
4:  for all node in nodesToWrite do

5: subAddr = intersection of addr and node.address

6.

7

8

9

if (subAddr = node.address) then
node.data = (enable = 1) ? data : resolve(node.data, data)
else add child to node with address subAddr and data data

end for
10:  for all ( address cube subAddr in addr not written above ) do
11: add new child to tree root with address subAddr and data data
12:  end for

13:  subsume children with data equal to parent
14: end function

evaluation, we have developed the following algorithm for
precise and efficient three-valued array simulation. Our frame-
work uses a tree structure, where each node represents an
(address, data) tuple and edges satisfy the following relation-
ships, maintained during wrifes to enable efficient reads:

o A child’s address cube is contained in its parent’s address.
o Child addresses are exceptions to parent addresses. E.g.,
given parent (X X1, Do) with child (X11, D;), addresses
{X X1\ X11} have data Dy and {X11} has data D;.

o For any parent, the addresses of all children are disjoint.

Read operations traverse the tree to identify nodes with ad-
dresses intersecting the referenced address. A resolve function
is used to compute the tightest cube that contains all associated
three-valued data, similar to resolution across list entries
in [8]. Accordingly, X-saturated data may be returned without
traversing all relevant nodes. Write operations, detailed in Al-
gorithm 1, similarly traverse nodes with intersecting addresses.
These nodes are updated if the write address covers their
address, else a new child node is created. We employ a more
efficient data structure with more aggressive subsumption rules
than used in [8], since simulation applications may entail
1000s of timesteps of analysis. The need to continually re-
traverse lists often degrades to quadratic runtime over simu-
lation depth, whereas the use of a tree enables analysis to be
limited to the subset of nodes relevant to a given operation.

Figure 1 illustrates the tree resulting from an array initial-
ized to 000, after a write of (IXX, 1XX), then (XX0, XX0),
then (X1X, 01X).

B. Sequential Redundancy Identification and Removal

Arrays are composed of columns comprising one cell per
row. It is possible for two array columns (within the same or
across different arrays) to evaluate identically in all reachable
states. This is particularly common when equivalence checking
netlists with arrays; the arrays themselves may be unaltered
(merely the logic adjacent to the arrays may be altered), or
they may reflect a column-equivalence-preserving transfor-
mation such as partitioning. The overall equivalence check
nonetheless often requires reasoning about array contents, if
e.g. the logic adjacent to the arrays was optimized using don’t
care conditions inherent in the array data, precluding their
elimination via black-boxing [19]. Solving the equivalence
checking problem requires efficient methods to identify and

Addr XXX, Data 000

default value 000

Addr 1XX, Data XXX

default value 000
Write <1XX, 1XX>

Addr 0X0, Data XX0

default value 000
Write <XX0, XX0>

Addr 011, Data OXX

default value 000
Write <X1X, 01X>

Addr 010, Data XXX

default value 000
Write <XX0, XX0>
Write <X1X, 01X>

Fig. 1: Three-valued array simulation example

eliminate such column redundancy. More generally, column
equivalence is a form of netlist redundancy whose removal
significantly benefits the scalability of all types of verification.

Induction is a scalable technique which may be used to
identify sequential redundancy [5]. An inductive unfolding
instantiates a distinct RANDOM gate for each sequential
element to represent an arbitrary state. If it is desired to prove
equivalences among sequential elements, the corresponding
induction hypotheses constrain the values of these RANDOM
gates and thereby often enable inductive redundancy identi-
fication. With arrays, however, it is desirable to not require
explicit correlation of individual cells or even rows, as their
cardinality may render such reasoning intractable — basically
degrading to the overhead of redundancy identification on
a bit-blasted netlist. Directly attempting to establish array
output or column equivalence without cell correlation is a
highly-noninductive problem, since each unfolding timestep
may reference a distinct row, hence induction hypotheses over
earlier timesteps do not meaningfully constrain later timesteps.

One approach that we have found useful to enable inductive
redundant column identification is to move the proof obligation
from array outputs to inputs: two columns are equivalent if
they have the same number of rows, they initialize equiva-
lently and any value written to one column is concurrently
written to the other column. This proof obligation may be
decomposed into a bidirectional check that each enabled, in-
bound irredundant write to one column has an equivalent write
to the other column. This check may be formalized as follows,
where it is suspected that columns ¢ and j of arrays A; and
A, respectively, are equivalent. Predicate oob(W;.a) indicates
that W, has an out-of-bounds address. Predicate rdt(WW;)
indicates that W; is superseded by a higher-precedence write
to the same address, and may be strengthened to check that
W,.d(i) differs from the current value of the addressed cell.!

Vports W of A; : Wi.e A —oob(Wj.a) A —xrdt(W;).
Iport Wjof Aj: Wj.e A (Wi.a = Wj.a) A —rdt(Wj)
A (Wi.d(i) = W;.d(j))

Speculative reduction is a technique to enable the benefit of
a merge even before the corresponding suspected redundancy
has been proven, yielding orders of magnitude speedup to
redundancy identification [5]. This technique simplifies the
netlist while retaining a proof obligation to identify whether
the postulated redundancy is accurate. Speculative reduction

IThis irredundant write-data condition is often necessary in practice, to
enable column equivalence detection despite don’t care optimizations used to
minimize the redundant writing of values already present in the array.



may be extended for column equivalences by modifying each
read port that references a potentially-redundant column. If
it is suspected that columns 7 and j of arrays A; and Aj,
respectively, are equivalent, each read port R; referencing
column 7 may be modified to derive values from column j.
This is accomplished by synthesizing a new read port R;; of
array Aj; with Rj;.e = R;.e and Rj;.a = R;.a, and replacing
references to the redundant column of R; by references to the
representative column of R7;. Note that speculative reduction
of array outputs reduces the number of RANDOM gates in the
inductive unfolding, which is essential to overall inductivity.

Column equivalence conditions may be verified directly
on the speculatively-reduced netlist. Any identified column
equivalences may be eliminated from the netlist, replacing
R; by the corresponding R;; as in the speculatively-reduced
netlist. The array representation may then be simplified using
the techniques introduced in the following section.

C. Array Simplification Techniques

In addition to simplifying logic around the arrays, it is
advantageous to simplify the arrays themselves: the number of
columns, rows, ports, and even the number of distinct arrays.
All simplifications tend to enhance algorithmic scalability, and
these particular simplifications are often practically necessary
to enable the efficient use of array reasoning techniques. For
example, “content-addressable memories” often have one read
port per row, using downstream logic to select which reads are
actually relevant. Additionally, industrial arrays often entail
circuit-oriented characteristics which may entail fragmenting
wide arrays into numerous narrow arrays, implementing one
write port per row with orthogonal address-related enables, or
intertwining test- or initialization-logic with the array.

Such circuit-accurate arrays pose numerous challenges to
verification, which often render them substantially less effi-
cient to verify in their native vs. bit-blasted form.

o The efficient memory model entails large unfoldings for
netlists containing many arrays with many read and write port
(refer to Section II-A).

o As will be discussed in Section VI, the abstraction approach
of [10] may run into suboptimalities or even inapplicability
given such circuit-accurate syntax.

o Logic simulators are significantly burdened by such rep-
resentations, and accelerators may be unable to model such
arrays without bit-blasting — motivating manual creation of
behavioral representations for enhanced validation, and using
equivalence checking to establish their correctness.

We have found the following transformations essential to
automatically convert circuit-accurate array representations to
behavioral representations for enhanced property checking
and equivalence checking. These techniques also are useful
to simplify ports created through other transformations such
as phase abstraction, and generally to simplify arrays to as
efficient of representations as possible.

1. If a given data pin is disconnected from every read port,
the corresponding column may be eliminated from the array.

65

2. Read ports with no connected data pins may be eliminated.
3. Arrays with no read ports may be eliminated.

4. If the enable pin of a given port is semantically equivalent
to 0, that port may be eliminated. If that port is a read, its
outputs may be replaced by RANDOM gates.

5. If a given address pin is an identical constant across every
read port, some rows are un-readable hence the array’s address
space may be reduced. Each write port may conjunct its enable
with the condition that its corresponding address pin evaluates
to this constant value, then the number of rows and address
pins may be reduced accordingly.

6. If a pair of ports P;, P; for i < j have identical addresses,
and these ports are compatible,> then these ports may be
coalesced to eliminate P;. Coalescing of write ports consists
of multiplexing data: if P;.e then P;.d else P;.d. Read data
may be directly merged as per Definition 4. The enable pin of
P; is finally replaced by (P;.e V Pj.e).

7. Similar to item 6, if compatible ports P;, P; for ¢ < j
have orthogonal enables, then these ports may be coalesced to
eliminate P;. Data and address pins on P; are multiplexed by
enables, then P;’s enable is disjuncted with that of F;.

8. If every data pin of read port R; has the same observability
don’t care condition O;, then R;.e may be optimized using
O; as a don’t care — e.g. conjuncting R;.e with O;. This often
enables the orthogonal-enable port coalescing of item 7.

9. For a write-before-read array, if read port R; and write
port W; have semantically-equivalent addresses, 1W;.e implies
R;.e, and no higher-precedence write port may address-match
R;, then R;.d may be merged onto W;.d as per Definition 4.
10. If each write port has a semantically-equivalent data pin
for two different columns m and n, array outputs for columns
m and n may be merged.

11. If arrays A; and A; have an identical number of rows
and read-before-write vs. write-before-read type, and they have
an identical number of ports of each type with semantically-
equivalent enable and address pins, the columns of A; may
be concatenated onto A;, eliminating Aj.

12. If arrays A; and A; have identical size and type, identical
deterministic initial values, and an identical number of write
ports with semantically-equivalent enable, address, and data
pins, the read ports of A; may be migrated to A;.

13. A write-before-read array may be converted to a read-
before-write array, by creating a multiplexor for each read
port which selects the highest-precedence concurrent write
port data, else the array output itself if no such write exists.
This may enable array elimination as per item 11 or 12.

These simplifications are synergistic in that one reduction
may enable the applicability of another, and we have found
it useful to iterate the above transformations until no further
reduction is achieved. It is also useful to iterate these reduc-
tions with other logic optimization and abstraction techniques
because simplifying the logic around the arrays may greatly
enhance the applicability of these reductions and vice-versa.

2All read ports are compatible. Write ports are compatible if no port P,
for ¢ < k < j may concurrently write to the same address.



IV. PHASE ABSTRACTION

Phase abstraction is a temporal abstraction which unfolds
next-state functions for a specific number of timesteps c.
The resulting netlist represents a c-accelerated variant of the
original netlist, such that each state transition of the abstracted
netlist correlates to ¢ consecutive transitions of the original
netlist. This unfolding results in ¢ copies of every combi-
national gate in the original netlist, correlating to different
modulo-c timesteps. Safety property checking is preserved by
disjuncting over each copy of the property gate [1].

Phase abstraction has been demonstrated to yield dramatic
speedups to the verification of clocked netlists where most
registers toggle at most once every c¢ consecutive timesteps.
This transformation eliminates the need to model an oscillating
clock in the netlist, and often eliminates many registers from
the cone of influence as their values become irrelevant to the
unfolded next-state functions. Additionally, phase abstraction
greatly enhances the reduction capability of techniques such
as retiming and redundancy removal [1] and enhances a
variety of verification algorithms such as reachability analysis,
interpolation [20], and induction [16]. This technique has thus
become an essential component of many industrial-strength
hardware model checkers [6], [1], [7]. In this section, we
extend phase abstraction to netlists with arrays.

Phase abstracted arrays intuitively must have the following
characteristics: (1) Abstracted write ports must be replicated
to reflect all updates that may occur during the ¢ consecutive
unfolded timesteps. (2) Abstracted read ports must be repli-
cated to support all data fetches which may occur during the
¢ consecutive unfolded timesteps. It is nonetheless essential to
ensure that data consistency is maintained during this trans-
formation: read ports for “older” unfolded timesteps cannot be
allowed to return write data from “newer’”” unfolded timesteps.
Algorithm 2 yields the necessary semantics-preserving trans-
formation through creation of new array ports.

To ensure data consistency, function unfoldReadPort,, syn-
thesizes data-forwarding paths for read ports unfolded within
unfold,, to capture the most-recent applicable unfolded write
data. This data may be concurrent for a write-before-read
array, else must be strictly earlier. If no such write occurs
(the if-the-else returns line 24), or if the read enable is de-
asserted or its address is out-of-bounds (line 31), the read is
satisfied by a reference to the newly-created read port from
line 8. Note also that the type of the array is converted to
read-before-write to ensure that unfoldings for “newer” write
ports will not satisfy “older” reads.

V. TEMPORAL DECOMPOSITION AND RETIMING

Transient simplification is a technique to reduce a netlist
with respect to transient signals which behave arbitrarily for
a fixed number of timesteps after reset, and thereafter settle to
a reducible behavior. The prefix timesteps, before the transient
signals settle to their reducible behavior, may be verified with
Bounded Model Checking. The netlist may then be time-
shifted to represent its post-prefix behavior, decomposing the
verification task such that unbounded analysis may focus only

Algorithm 2 Array-compatible phase abstraction algorithm

1: function phaseAbstract(netlist, unfoldDegree)

2:  for all array in netlist do

3 writePorts = set of write ports in original array
4 readPorts = set of read ports in original array
5 for all time in O to unfoldDegree-1 do

6: for all R in readPorts do
7.

8

9

// port syntax: (enable, address, data)
create shell read port (0,0, Reime)

: end for
10: end for
11: for all time in O to unfoldDegree-1 do
12: for all R in readPorts do
13: fill in (unfold,(R.e, time), unfold,(R.a, time), R¢jme) for R
14: end for
15: for all W in writePorts via increasing precedence do
16: append (unfold,(W.e, time), unfold,(W.a, time), unfold,(W.d,
time)) as highest-precedence write port
17: end for
18: end for
19:  end for
20:  perform traditional phase abstraction over non-array gates [1]
21:  convert all arrays to type read-before-write

22: end function

23: function unfoldReadPort, (port, time)

24:  readData = Ryjme

25:  time/ = (port’s array is write-before-read) ? time : time-1

26: for all time” in O to time’ do

27: for all W in writePorts via increasing precedence do

28: readData = if (unfold,(W.e, time’’) A (unfold,(W.a, time”’) =

unfold,(R.a, time))) then unfold,(W.d, time’’) else readData

29: end for

30: end for

31: readData = if (ﬁunfoldp(R.e, time) V (unfoldy(R.a, time) is out-of-
bounds)) then R¢;m. else readData

32:  return readData

33: end function

upon timesteps after which the transient signals have settled
and hence may be eliminated [21]. Such decomposition may
reduce the overhead associated with initialization logic in a
verification testbench. A subset of transients may be efficiently
detected using ternary simulation. Given efficient techniques
for ternary simulation and Bounded Model Checking, the
extension necessary to support temporal decomposition for
netlists with arrays is that of time-shifting the arrays.

Time shifting replaces initial values by the set of states
reachable in a specific number of timesteps. For registers, a
temporal unfolding of their values may be used as their new
initial values [21]. Like registers, arrays have initial values that
must be modified to reflect writes that occur within the time-
shifted prefix. Algorithm 3 illustrates the overall time-shifting
transformation. To ensure data consistency, this algorithm
places the unfolded prefix write ports lower in precedence
than the existing ports, which are used to reflect post-transient
writes. These prefix ports are prioritized in order of increasing
unfolding time, following the precedence order of the original
write ports within each timestep.

Retiming is a technique which moves registers across other
types of gates in a netlist, reducing their cardinality while
preserving overall netlist behavior. Each retiming step moves
one register from each input of a gate to each of its outputs, or
vice-versa. The number of registers moved fanin-wise across
a gate is referred to as its lag, representing the number



Algorithm 3 Array-compatible time-shifting algorithm
1: function timeShift(netlist, timeSteps)

2:  for all register in netlist do

3: initialValue[register] = unfoldy (register, timeSteps)

4:  end for

5:  init = new register with initial value 1, next-state function 0

6: for all time in O to timeSteps-1 do

7 for all array in netlist do

8: newPorts = ()

9: for all writePort of array via increasing precedence do

10: append newPorts with ((init A unfold,(writePort.e, time)),
unfold,(writePort.a, time), unfold,(writePort.d, time))

11: end for

12: inject newPorts in appended precedence order as lowest-priority

write ports for array
13: end for
14:  end for

15: end function

of timesteps its behavior has been delayed. Coupled with
peripheral retiming, in which registers may be borrowed or
discarded across RANDOM gates or properties, retiming has
been demonstrated to enable orders of magnitude speedup to
numerous verification algorithms [2], [6]. Normalized retim-
ing, in which all lags are negative, is often used in verification
to ensure that retimed initial values may be consistently
computed through unfolding. Computing of retimed initial
values is analogous to that for time-shifting, aside from the
distinction that the lag of each gate may differ hence unfolding
is performed at a finer level of granularity.

The following customizations enable the retiming of arrays.

1. All pins associated with a given port must have an identical
lag to ensure that each port may be evaluated atomically.

2. No write port may be lagged to a more-negative degree than
any read port for a given array. This is to ensure that a read
cannot return data from a later write, similar in justification
to the need to convert write-before-read to read-before-write
arrays for phase abstraction in Algorithm 2.

3. For every array with a lagged write port, we use a mech-
anism similar to Algorithm 3 to reflect its prefix writes. For
each array, we iterate from O to the maximum negative lag
of any write port. For each write port, if its lag is more-
negative than the current time iteration, we enqueue a port
reflecting the time-iteration unfolding of that port, conjuncting
the corresponding enable with an inif register. We finally inject
this queue as the lowest priority write ports.

4. For every read port R;, a bypass path is constructed to
capture data consistency constraints, similar to lines 24-31 of
Algorithm 2. Specifically, for any write port lagged to a less-
negative degree than a given read port, we build a multiplexor
chain that selects the appropriate unfolded write which is
more-recent than what is reflected by the array representation,
fetching the array contents only if there is no such more-recent
write or if the read was not enabled or was out-of-bounds.

VI. SYMBOLIC ROW ABSTRACTION
The array abstraction technique described in Section II-B
is capable of substantially reducing verification complexity
for certain classes of properties [10], though faces several
limitations which we have found extensions to ameliorate.
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First, in content-addressable memory style arrays, all rows
are read every timestep, using logic downstream of the ar-
ray to select which reads are actually relevant. Antecedent-
conditioning properties with respect to a particular read port
address-matching a modeled address is thus basically mean-
ingless. In [10] it is instead proposed to search for a vector
of registers of the width of the address, which evaluates
to the address appearing at the read port referenced in the
counterexample trace being refined. If found, the equality of
that vector of registers (vs. the address of the read port) to the
modeled address is used to antecedent-condition the properties.

This approach tends to be fragile in practice. For exam-
ple, some arrays use arbitrary signals, not only registers, in
their read-selection logic. Additionally, given arbitrary design
styles, it may not be the case that a dedicated vector exists
representing the address of relevance. We have found our array
simplification techniques from Section III-C able of eliminate
this concern, in reducing the number of read ports in content-
addressable memory arrays and thus obviating the need for
heuristics to identify useful antecedent addresses.

Second, it is often suboptimal to model a distinct ad-
dress per refinement step, as doing so fails to explicitly
reflect address correlation in the abstract netlist. Consider
the equivalence checking of two netlists, each containing
an array to abstract. The testbench itself may ensure that
equivalent addresses are presented to these arrays, even if
design optimizations such as retiming are used to change the
timing with which relevant reads occur across these arrays.
Additionally, for arrays which are fragmented to reflect circuit
characteristics, many arrays may have correlated addresses.

A correlated-address optimization may be implemented as
follows. Instead of immediately modeling a fresh address upon
refinement, we first attempt to assess a relationship between
the address to be refined and a previously-refined address.
If a correlation is found, the newly modeled row will have
its address defined as the postulated correspondence with
respect to the previously-modeled address, and no antecedent-
conditioning is performed for this refinement step — else this
optimization would not be sound. Only if this modeling fails to
block the spurious counterexample is a fresh address modeled.

Regarding postulated equivalences: often identity between
the address of a current refinement and that of a previously-
modeled row is an adequate relation. Alternatively, we have
encountered equivalence checking problems where an array
with a large number of rows in one netlist is replaced with
multiple arrays of a smaller number of rows in another. In
such cases, postulating a correspondence between an address
of the larger array to an address identical modulo the number
of rows in the smaller array is often effective.

Failure to directly model address correlation in the abstract
netlist poses several verification suboptimalities. First, the
abstract netlist is larger, requiring more logic to represent more
modeled addresses. Second, because distinct addresses are
being modeled, this lack of address correlation entails a loss
of any data correlation which holds in the original netlist. For
example, in equivalence checking, array data may be identical
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on a per-address basis across two arrays, and hence logic
optimization techniques may be able to merge those arrays
as being redundant. However, if a distinct address is used to
abstract each array, the modeled data will differ in states for
which modeled addresses differ, precluding such reductions.
While such states may be irrelevant due to antecedent con-
ditioning, it is computationally expensive to need to identify
such irrelevance through the sequential observability don’t care
condition of the antecedent vs. being able to identify such
redundancy natively using arbitrary logic optimizations.
Furthermore, this lack of modeled address correlation tends
to inherently limit the subsequent effectiveness of localization
abstraction [22], which eliminates irrelevant gates through
replacing them with RANDOMs. E.g., the localized netlist
must include enough logic in the fanin of the array addresses
to establish the correlation conditions that otherwise would be
natively reflected in the correlated-address abstraction.

VII. EXPERIMENTAL RESULTS

In this section we experimentally demonstrate the utility
of our techniques to reduce verification resources. All experi-
ments were run on a 1.9 GHz POWERS Processor, using the
IBM internal verification toolset SixthSense [6].

Cumulative Impact: Given the numerous techniques pre-
sented in this paper, and their ability to synergistically enable
solutions to complex problems for which standalone or bit-
blasted techniques would fail, our first set of experiments
in Figure 2 demonstrates their cumulative impact across a
large set of complex non-falsifiable industrial property check-
ing and sequential equivalence checking problems. We used
a set of often-effective algorithm sequences including the
simplification and abstraction techniques presented in this
paper, followed by either interpolation or inductive redundancy
removal, assessing their effectiveness on bit-blasted netlists vs.
ones with arrays within a 10000 second timeout.

Most runtimes become significantly faster without bit-
blasting, and many (108 of 810) complete that otherwise
timeout. Only a small percentage witness significant slowdown
with arrays; almost all of these may be turned to an advantage
by fine-tuning algorithm parameters. While these experiments
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illustrate the profound cumulative benefit of our techniques
in enhancing the capacity of state-of-the-art verification so-
lutions, this high-level overview offers little insight into the
merit of particular techniques, which we focus on below.

Array Simplification: Figure 3 shows Bounded Model
Checking (BMC) performance for several runs: efficient mem-
ory model (EMM) with and without our array simplification
techniques, vs. a bit-blasted representation, each run until
memout. This netlist has 430373 AND gates and 21429
registers, in addition to 444 1-column, 128-row arrays, each
with 128 read and write ports: a content-addressable memory.
Our array simplification techniques from Section III-C reduce
these to three 148-column 128-row arrays with one read and
one write port each, using 1.3 seconds of runtime. The bit-
blasted netlist has 599381 AND gates and 78209 registers.

EMM run without array simplification quickly completes 15
timesteps of BMC, after which a formidable resource spike
is encountered due to the large number of arrays and ports —
ultimately resulting in memout. The bit-blasted approach fares
considerably better, completing 74 timesteps before memout.
Array simplification enables EMM to yield substantially bet-
ter results, completing 133 timesteps before memout. These
results clearly illustrate the utility of automated techniques to
convert circuit-accurate arrays to behavioral representations,
without which bit-blasting may be a superior solution.

Phase Abstraction: Recall from Section IV that phase
abstraction multiplies the number of read and write ports
by its unfolding depth. However, for every netlist we have
encountered for which phase abstraction reduced clocking
complexity, array simplifications eliminate these duplicated
ports as irrelevant (e.g., enables being conjuncted with a
clock signal) or redundant (e.g., identical reads / writes occur
across consecutive clock phases). Phase abstraction plus array
simplification may thus quarter (or better) the size of EMM
modelings through halving (or better) the number of read ports
and write ports compared across a specific unfolding depth.
This benefit is illustrated in Figure 3, where modulo-2 phase
abstraction enabled the completion of 268 BMC timesteps
before memout, requiring only 0.5 seconds of reduction time.



Correlated Row Abstraction: This netlist also illustrates
the value of the correlated-address abstraction techniques
discussed in Section VI. We focused on a single parity-style
property. If applying the technique directly from [10], each of
the 444 1-column arrays requires the modeling of a single
row. This yields a substantial reduction; seven registers to
represent each modeled address, and one for the modeled
data, per array — vs. 128 registers for a precise bit-blasting.
However, the large number of arrays entails a large collective
abstraction size. Furthermore, the failure to model address cor-
relation hampered subsequent verification: localization could
not reduce the resulting netlist below 3241 registers, which we
could not verify within an eight hour timeout.

In contrast, using our address-correlation optimization, only
three abstract addresses need to be modeled across all 444
arrays. Localization and logic optimizations were able to
reduce this address-correlated abstraction to only 32 registers,
which interpolation solved within one second of runtime.

Localization: We have noted numerous additional benefits
of applying localization without bit-blasting: (1) BMC tends
to be much more efficient; (2) far fewer refinements need to
be performed given fewer gates in the netlist; and (3) fewer
necessary refinements entails fewer inevitable mistakes which
unnecessary bloat the abstract netlist.

Sequential Redundancy Identification: To illustrate the
benefit of identifying redundancies without operating on a bit-
blasted netlist, we detail a sequential equivalence checking
(SEC) problem involving a DRAM. This DRAM implementa-
tion and its redundancy scheme (used for fault-tolerance) was
altered, yet in a way that preserved input-to-output behavior.
One netlist has sixty-four 9-column, 128-row arrays; the
other has four 144-column, 128-row arrays. The overall SEC
problem additionally has 95786 AND gates and 5286 registers
surrounding these arrays. Our redundancy identification frame-
work from Section III-B is able to automatically identify 572
column equivalences and 1238 register equivalences induc-
tively in 851 seconds. However, given changes in the fault-
tolerance scheme, four columns and 2810 registers did not
correspond hence the SEC problem remained unsolved; a com-
bination of localization and interpolation on the redundancy-
eliminated netlist was necessary to complete the overall SEC
problem with a total runtime of 34 minutes. The bit-blasted
variant has 770215 AND gates and 152710 registers, for which
we were unable to even prove the equivalent sequential ele-
ments (without tedious manual correlation of array cells [19],
[23]) given 48 hours of runtime.

Overall, redundancy identification substantially benefits
without bit-blasting due to (1) speedups to BMC and sim-
ulation used to filter invalid candidate equivalences, and to
induction used in proofs, and (2) requiring far fewer compu-
tations at the granularity of columns vs. cells.

VIII. CONCLUSION

Arrays are ubiquitous in industrial hardware designs, along
with many control- and performance-related artifacts which
practically mandate the availability of a large set of synergistic
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algorithms to enable automated verification. In this paper, we
extend numerous traditionally bit-level state-of-the-art model
checking and equivalence checking algorithms to support de-
signs with arrays, and introduce automated techniques to trans-
form arrays of circuit-accurate to behavioral syntax, enabling
the use of higher-level reasoning techniques on problems of
otherwise-unsuitable syntax. Nearly all algorithms used in a
state-of-the-art model checker (simulators, logic optimization
and abstraction techniques, isomorphism detection, ...) tend
to significantly benefit from operating on the smaller non-bit-
blasted netlist, in addition to the even more profound benefits
that dedicated array reasoning techniques may offer. These
techniques have collectively enabled dramatic scalability en-
hancements to our model checking and equivalence checking
solutions, enabling automation for verification tasks that oth-
erwise would have required significant manual guidance.
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Abstract—Certain formal verification tasks require reasoning Additionally, even when constraints are restricted to be
about Boolean combinations of non-linear arithmetic constraints convex, it is possible that, during Boolean reasoning, some

or satifiabity Soling of Boplean’ comainations of mon-inear ©f these consirainis become negated, and thus the theory
constraints that are convex. Our approach applies fundamental solver must handle some non-convex constr.alnts. We_ show
results from the theory of convex programming to realize a how to handle such constraints by set-theoretic reasoning and
satisfiability modulo theory (SMT) solver. Our solver, CalCS, approximation with affine constraints.

uses a lazy combination of SAT and a theory solver. A key  The main novel contributions of our work can be summa-
step in our algorithm is the use of complementary slackness rized as follows:

and duality theory to generate succinct infeasibility proofs that )

support conflict-driven learning. Moreover, whenever non-convex ~ * We present the first SMT solver for a Boolean combina-

constraints are produced from Boolean reasoning, we provide
a procedure that generates conservative approximations of the
original set of constraints by using geometric properties of convex
sets and supporting hyperplanes. We validate CalCS on several

tion of convex non-linear constraints. Our solver exploits
information from the solution of convex optimization

problems to establish satisfiability of conjunctions of
convex constraints;

benchmarks including formulas generated from bounded model : .
checking of hybrid automata and static analysis of floating-point ~ * We give a novel formulation that allows us to generate
software. certificates of unsatisfiability in case the conjunction of

theory predicates is infeasible, thus enabling the SMT
. INTRODUCTION solver to perform conflict-directed learning;

The design and verification of certain systems requiress Whenever non-convex constraints originate from convex
reasoning about nonlinear equalities and inequalities, both constraints due to Boolean negation, we provide a proce-
algebraic and differential. Examples range from mixed-signal dure that can still use geometric properties of convex sets
integrated circuits (e.g., [1]) that should operate correctly and supporting hyperplanes to generate approximations of
over process-voltage-temperature variations, to control design the original set of constraints;
for biological or avionics systems, for which safety must be «+ We present a proof-of-concept implementation, CalCS,
enforced (e.g., [2]). In order to extend the reach of formal that can deal with a much broader category than linear
verification methods such as bounded model checking (BMC) arithmetic constraints, also including conic constraints, as
for such systems [3], [4], it is necessary to develop efficient the ones in quadratic and semidefinite programs, or any
satisfiability modulo theories (SMT) solvers [5] for Boolean  convex relaxations of other non-linear constraints [8]. We
combinations of non-linear arithmetic constraints. However, validate our approach on several benchmarks including
SMT solving for arbitrary non-linear arithmetic over the reals,  formulas generated from BMC for hybrid systems and
involving, e.g., quantifiers and transcendental functions, is static analysis of floating-point programs, showing that
undecidable [6]. There is therefore a need to develop efficient our approach can be more accurate than current leading
solvers for special cases that are also useful in practice. non-linear SMT solvers such as iSAT [9].

In this paper, we addresthe satisfiability problem for The rest of the paper is organized as follows. In Section II, we
Boolean combinations of convex non-linear constraiv® pyriefly review some related work in both areas on which this
follow the lazy SMT solving paradigm [7], where a classigyork is based, i.e. SMT solving for non-linear arithmetic con-
David-Putnam-Logemann-Loveland (DPLL)-style SAT solvstraints and convex optimization. In Section I, we describe
ing algorithm interacts with a theory solver based on fundgackground material including the syntax and semantics of the
mental results from convex programming. The theory solveMT problems our algorithm handies. Section IV introduces
needs only to check the feasibility of conjunctions of theory the convex optimization concepts that our development
predicates passed onto it from the SAT solver. However, whgiids on and provides a detailed explanation of our algorithm.
all constraints are convex, a satisfying valuation can be foupd Section v we report implementation details on integrating
using interior point methods [8], running in polynomial timeconvex and SAT solving. After presenting some benchmark

A central problem in a lazy SMT approach is for the theonyesylts in Section VI, we conclude with a summary of our
solver to generate a compact explanation when the conjunctigsrk and its planned extensions.

of theory predicates is unsatisfiable. We demonstrate how this

can be achieved for convex constraints using duality theory for Il. RELATED WORK

convex programming. Specifically, we formulate the convex An SMT instance is a formula in first-order logic, where
programming problem in a manner that allows us to easibpme function and predicate symbols have additional inter-
obtain the subset of constraints responsible for unsatisfiabilipretations related to specific theories, and SMT is the problem
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of determining whether such a formula is satisfiable. ModernAs an example, convex optimization has been used in
SAT and SMT solvers can efficiently find satisfying valuationslectronic circuit design to solve the sizing problem [13]-[15].
of very large propositional formulae, including combinationRobust design approaches based on convex models of mixed-
of atoms from various decidable theories, such as lists, arragiginal integrated circuits have also been presented in [16],
bit vectors [5]. However, extensions of the SMT problem tfiL7]. While, in these cases, there was no Boolean structure,
the theory of non-linear arithmetic constraints over the reaBoolean combinations of convex constraints arise when the
have only recently started to appear. Since our work combirgescuit topology is not fixed, or for cyber-physical systems
both SAT/SMT solving techniques with convex programmingyhere continuous time dynamics need to be co-designed with
we briefly survey related works in both of these areas. discrete switching behaviors between modes. It is therefore
necessary to have solvers that can reason about both Boolean
i i ] and convex constraints.

Current SMT solvers for non-linear arithmetic adopt the | the context of optimal control design for hybrid systems,
lazy _comblna_tlon of a SAT solver with a theory solver fc_’fhe work in [18], [19] proposes a combined approach of
non-linear arithmetic. The ABsolver tool [10] adopts thignixed-integer-programming (MIP) and constraint satisfaction
approach to solve Boolean combinations of polynomial NORroblems (CSP), and specifically, convex programming and
linear arithmetic constraints. The current implementation USEAT solvers, as in our work. The approach in [18], [19] is,
the numerical optimization tool IPOPT [11] for solving th&n some respects, complementary to ours. A SAT problem is
non-linear constraints. However, without any other additionfist ysed to perform an initial logic inference and branching
property for the constraints, such as convexity, the numericgbp on the Boolean constraints. Convex relaxations of the
optimization tool will necessarily produce incomplete resultgyiginal MIP (including Boolean variables) are then solved by
and possibly incorrect, due to the local nature of the solv@{e optimization routine, which iteratively calls the SAT solver
(all variables need upper and lower bounds). Moreover, in cageensure that the integer solution obtained for the relaxed
of infeasibility, no rigorous procedure is specified to produggoplem is feasible and infer an assignment for the logic
infeasibility proofs. , __variables that were assigned to fractional values from the MIP.

A completely different approach is adopted by the iSAfjowever, the emphasis in [18], [19] is more on speeding up
algorithm that builds on a unification of DPLL SAT-solvingihe optimization over a set of mixed convex and integer con-
and interval constraint propagation [9] to solve arithmeligyaints, rather than elaborating a decision procedure to verify
constraints. iSAT directly controls arithmetic constraint profjeasibility of Boolean combinations of convex constraints, or
agation from the SAT solver rather than delegating amhmeﬁg%nerate infeasibility proofs. Additionally, unlike [18], [19],

decisions to a subordinate solver, and has shown superior &ffj-everaging conservative approximations, our work can also
ciency. Moreover, it can address a larger class of formulae thgihgle disjunctions of convex constraints.

polynomial constraints, admitting arbitrary smooth, possibly
transcendental, functions. However, since interval consistency I1l. BACKGROUND AND TERMINOLOGY

is a necessary, but not sufficient condition for real-valued s cover here some background material on convexity and

satisfiability, spurious solutions can still be generated. define the syntax of the class of SMT formulae of our interest.
To reason about round-off errors in floating point arithmetic ~ o+ Finctions. A function f:R" — R is termed

%neﬁgi(;ﬁgt g%csgrép;?gggt%ﬁéﬁ% Iz?eiisfgczmﬁgegﬁepggggnvexif its domain domf is a convex set and if for all
by Ganai and lvancic [12]. In their approach, the non-linee%’y € domf, andé with 0 < 6 < 1, we have

part of the decision problem needs first to be translated into a flz+ (1 —=0)y) <O0f(z)+ (1 —06)f(y). (1)
linear arithmetic (LA) formula, and then an off-the-shelf SMT- . o )

LA solver and DPLL-style interval search are used to soh@eometrically, this inequality means that ttteord from z to
the linearized formula. For a given precision requirement, tidies above the graph gf. As a special case, when (1) always
approximation of the original problem is guaranteed to accout!ds as an equality, theyfi is affine All linear functions

A. SMT solving for non-linear arithmetic constraints

for all inaccuracies. are also affine, hence convex. It is possible to recognize
) whether a function is convex based on certain properties. For
B. Convex Programming instance, iff is differentiable, thenf is convex if and only

An SMT solver for the non-linear convex sub-theory i domf is convex andf(y) > f(x) + Vf(z)T(y — x)
motivated by both theoretical and practical reasons. On the di@ds for all z,y € domf, and Vf(z) is the gradient of
hand, convex problems can be solved very efficiently todaf, The above inequality states that ff is convex, its first-
and rely on a fairly complete and mature theory. On the otherder Taylor approximation is always a global underestimator.
hand, convex problems arise in a broad variety of applicatiof®)e converse result can be also shown to be trug.igftwice
ranging from automatic control systems, to communicatiordifferentiable, thery is convex if and only ifdom f is convex
electronic circuit design, data analysis and modeling [8]. Ttand its HessiaV? f(z) is positive semidefinite matrix for all
solution methods have proved to be reliable enough to bec domf. In addition to linear, affine, and positive semi-
embedded in computer-aided design or analysis tool, or ewdsfinite quadratic forms, examples of convex functions may
in real-time reactive or automatic control systems. Moreovenclude exponentials (e.g**), powers (e.gz* whena > 1),
whenever the original problem is not convex, convex problentgarithms (e.g— log(z)), the max function, and all norms.
can still provide the starting point for other local optimization Convex Constraint. A convex constraint is of the form
methods, or a cheaply computable lower bounds via constrafiit:) {<,<,>,>} 0 or h(z) = 0, where f(z) andh(x) are
or Lagrangian relaxations. A thorough reference on convernvex and affine (linear) functions, respectively, of their real
programming and its applications can be found in [8]. variablesz € D C R", with D being a convex set. In the
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following, we also denote a constraint in the fogffz) < 0 feasibility problem for convex constraints can be expressed in
(f(z) < 0) as aconvexstrictly conveXconstraint (CC), where the form

f(x) is a convex function on its convex domain. A convex find =

constraint is associated with a sét= {z € R" : f(z) < 0},

i.e. the set of points in the space that satisfy the constraint. . _ .
Since(C is the 0-sublevel set of the convex functiof{z), C subject to fi(z) <0, i=1,..., m (3)
is also convex. We further denote the negation of a (strictly) hi(@) =0, j=1
convex constraint, expressed in the fofifx) > 0 (f(z) > 0), A
asreversed convefreversed strictly convgxconstraint (RCC). where the single (vector) variable € R™ represents the:-

An RCC is, in general, non-convex as well as its satisfyingple of all the real variableées, ..., z,)”, the f; functions
setN = {z € R": f(z) > 0}. The complementV of N is, are convex, and thé, functions are affine. As in any opti-
however, convex. mization problem, ifz is a feasible point and;(x) = 0, we

Syntax of Convex SMT Formulae.We represent SMT say that thei-th inequality constraintf;(x) < 0 is active at
formulae over convex constraints to be quantifier-free formulae If f;(x) < 0, we say the constraint;(z) < 0 is inactive
in conjunctive normal form, with atomic propositions ranginghe equality constraints are active at all feasible points. For
over propositional variables and arithmetic constraints. TR@ccinctness of presentation, we make the assumption that
formula syntax is therefore as follows: inequalities are non-strict (as listed in (3)), but our approach
extends to systems with strict inequalities as well.

formula o {clausen} fl':wse In this section, we describe how we construct a theory solver
clause == ({literalV}*literal) .
. - for a convex SMT formula that generates explanations when
literal := atom| —atom

a system of constraints is infeasible. In general, the system

atom = conv_constraint | bool_var . )
; _ ) . X of constraints can have both convex constraints and negated
conv_constraint = equation | inequality . . <
) . ) convex constraints (which can be non-convex). We will first
equation = affine_function =0 . : A
. . B . . consider the simpler case where all constraints in the system
inequality = convex_function relation 0 - . G
relation 1= < | < are convex, and show how explanations for infeasibility can

be constructed by a suitable formulation that leverages duality
In the grammar aboveyool var denotes a Boolean variable theory (Section IV-A). We later give an alternative formulation
and affine function and convexfunction denote affine and (Section IV-B) and describe how to deal with the presence of
convex functions respectively. The term®mandliteral are negated convex constraints (Section 1V-C).
used as is standard in the SMT literature. Note that the onlyAlthough it is possible to directly solve feasibility problems
theory atoms are convex or affine constraints. Even though W turning them into optimization problems in which the
allow negations on convex constraints (hence allowing nofbjective function is identically zero [8], no information about
convex constraints), we will term the resulting SMT formul&he reasons for inconsistency would be propagated with this
as aconvex SMT formula formulation, in case of infeasibility. Therefore, we cast the
Our constraint formulae are interpreted over valuatiorigasibility problem (3) as a combination of optimization prob-
p € (BV — B) x (RV — R), whereBV is the set of lems with the addition of slack variables. Each of these newly
Boolean andRV the set of real-valued variables. The definitiogenerated problems is an equivalent formulation of the original
of satisfaction is also standard: a formulas satisfied by a problem (and it is therefore in itself a feasibility problem),
valuationy (1 |= ¢) iff all its clauses are satisfied, that is,while at the same time being richer in informative content.
iff at least one atom is satisfied in any clause. A literas In particular, given a conjunction of convex constraints, our
satisfied if up(I) =t r ue. Satisfaction of real constraints isframework builds upon the following equivalent formulations
with respect to the standard interpretation of the arithmet (3), namely thesum-of-slackéeasibility problem §SF, and

operators and the ordering relations over the reals. the single-slackfeasibility (SF) problem, both detailed below.
Based on the above definitions, here is an example of a o
convex SMT formula: A. Sum-of-Slacks Feasibility Problem
(t+y—3=0VaV—log(e® +e¥) + 10 > 0) In the SSFproblem, a slack variable; is introduced for
5 5 every single constraint, so that (3) turns into the following
AV ||[(z=2,2=3)]2 <y—5)A (2" +y~ — 42 <0)
e m+2
A (maVy < 4.5V max{2z + z,32° + 4y* — 4.8} < 0), minimize Y7 s
2) .
. ) subject to  fr(z) —s, <0, k=1,..., m+2p (4)
wherea,b € BV, z,y,z € RV, and|| - ||2 is the Euclidean
norm onRZ. sp >0
If the SMT formula does not contain any negated convex ) N ~
constraint, the formula is termed monotone convex SMTwhere f(z) = fi(z) for k = 1,...,m, fmyi(z) = h;(x),
formula and fupij(x) = —h;(z) for j = 1,...,p. In other

IV. THEORY SOLVER FORCONVEX CONSTRAINTS WOf_dS, every equaI]ty conspralrhtj(x) = 0 s turned into a
: conjunction of two inequalitiesh;(z) < 0 and —h;(z) <0
In optimization theory, the problem of determining whethdvefore applying the reduction in (4). TH&SF problem can
a set (conjunction) of constraints are consistent, and if dwe interpreted as trying to minimize the infeasibilities of the
finding a point that satisfies them, ideasibility problem. The constraints, by pushing each slack variable to be as much as
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possible close to zero. The optimum is zero and is achievBd Single-Slack Feasibility Problem

if and only if the original set of constraints (3) is feasible.  \yile the SSF problem is the workhorse of our decision
Based onduality theory[8], a dual problemis associated procedure, we also present an alternative formulation of the

with (4), which maximizes the.agrange dual functiores- feasibility problem, which will be useful in the approximation

sociated with (4), under constraints on ttleal variablesor of RCCs.

Lagrange multipliers While the dual optimal value always The SF problem minimizes the maximum infeasibilityof

provides a lower bound to the origingr{mal) optimum, an 3 set of convex constraints as follows
important case obtains when this bound is tight and the two

primal and dual optima coincidestfong duality. As a simple
sufficient condition, Slater’s theorem states that strong duality ) - (6)
holds if the problem is convex, and there exists a strictly subject to fi(z) —s <0, k=1,..., m+2p

feasible point, such that the non-linear inequality constrainfg,qre inequalities are pre-processed as in Section IV-A. The
hold with strict inequalities. As a consequence of dualityyy| 5 clearly to drive the maximum infeasibility below
theory, the following result holds for (4) at optimum: zero. At optimum the sign of the optimal valué provides
Proposition IV.1. Let (z*,s*) € R"™+2 be a primal feasibility information. If s* < 0, (6) has a strictly feasible
optimal andz* € Rm+2 be a dual optimal point for4). solution; if s* > 0 then (6) is infeasible; finally, i* = 0 (in
TR e Bovtes a i ssmenifeciee < o frsome sk 1) nd e i
i) moreover, we obtain: : : . 0

(i) strictly feasible. As in (4), complementary slackness will hold

w(F (% X at optimum, i.e.
Gful@) —si)=0 k=1,...m+2p (6 *%P

minimize s

2i(fu(@®)—s)=0 k=1,...,m+ 2p.
Proof sketch:The first statement trivially follows from the
solution of problem (4). Since* is the optimal point, it
also satisfies all the constraints in (4) with = s; = 0,
therefore it is a satisfying assignment for (3). The second st
ment follows fromcomplementary slacknesk fact, under
the assumptions in Section Ill, (4) is a convex optimizati

Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(f,(z*) — s*) # 0 will be
afér_ictly satisfied, and imply;, = 0. Conversely, ifz, # 0,

en the constraintf,(z*) — s*) is certainly active and (z)
oﬁpntributes to determine the maximum infeasibility for the

problem. Moreover, it is always possible to find a feasib@Ven Problem, in the sens?dtgatsf \livas furthe_rfpudshed to
point which strictly satisfies all the nonlinear inequalities sinc@® More negativef;,(z) would be no longer satisfied.
for a any glve,nr, the §!ack variables;, can be freely chosen,_c_ Dealing with Reversed Convex Constraint
hence Slater's conditions hold. As a result, strong duality ) )
holds as well, i.e. both the primal and dual optimal values are”A negated (reversed) convex constraint (an RCC) is non-

attained and equal, which implies complementary slackne§8nvex and defines a non-convex $ét Any conjunction of -
as in (5). ] these non-convex constraints with other convex constraints

We use complementary slackness to generate infeasibifiUltS in general in a non-convex set. To deal with such

certificates for (3). In fact, if a constraiktis strictly satisfied ''ON-CONVEX Sets, we propose heuristics to compute convex
(ie. st = 0 and fk(w*) < 0) then the relative dual variable ©Ver- and under-approximations, which can then be solved

h . = . fficiently. Thi ion ri h hni .
is zero, meaning that the constraifit(z*) < 0 is actually efficiently s section describes these techniques

. . ; Our approximation schemes are based on noting that the
non-active. Conversely, a non-zero dual variable will necess%rgmplementary set is convex. Therefore geometric prop-
correspond to either an unfeasible constraijt* 0) or to a '

wraint that i trictl tisfied (— 0. In both erties of convex sets, such as strict or weak separation [8],
constraint that is non strictly satisfiesi(= 0). In both cases, ,, stil be used to approximate or bou@via a supporting

the constraintf,,(z*) < s, is active at optimum and it is one v nerplane. Once a non-convex constraint is replaced with a
of the reasons for the conflict. We can therefore conclude wi unding hyperplane, the resultiagproximate problenfAP)
the following result: will again be convex, and all the results in Section IV-A will

Proposition IV.2. The subset of constraints if#) that are € valid for this approximate problem.

related to positive dual variables at optimum represents the 70" Simplicity, we assume in this section that we have
active subset, and therefore provides a succinct reason ©factly one non-convex constraint (RCC), and the rest of the
infeasibility (certificate). constraints are convex. We will describe the general case in

Sec. IV-D. Letg(z) be the convex function associated with
Numerical issues must be considered while implementitige RCC. Our approach proceeds as follows:

this approach. When (3) is feasible, the optimization algorithm 1) Soplve the sum-of-slacks (SSF) problem for just the

in practice will terminate with| >} * 54| < ¢, thus pro- convex constraints. Denote the resulting convex region
ducing ane;-suboptimal point for arbitrary small, positive. by B.

Accordingly, to enforce strict inequalities such Agx) < 0, If the resulting problem idJNSAT, report this answer
we modify the original expression with an additional user- along with the certificate computed as described in
defined positive slack constarf as fi(x) + €5 < 0, thus Sec. IV-A.

requiring that the constraint be satisfied with a desired margin  Otherwise, if the answer returned AT, denote the
es. All the above conclusions valid for (3) can then be optimal point asr; (satisfying assignment) and proceed
smoothly extended to the modified problem. to the next step.
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2)

3)

We now detail the under-approximation procedure in Step
As an illustrative example, we use &dimensional region
defined by the following SMT formula:

Add the negation of the RCC (a convex constraint) an
solve the SSF problem again, which we now denote ¢ -
reversed problenfRP). There are two cases: /7 AN

(@) If the answer iSUNSAT, then the RCC regiogV’ / \
does not intersect the convex regiBnThis implies ,F’
that B ¢ N, and hence the RCC is a redundan
constraint. This situation is illustrated in Fig. 1(a). Sl 7
Thus, the solver can simply retuBAT (as returned
in the preViOUS SIep)- a) Strict separation b) Inclusion
(b) On the other hand, if the answerS&T, we denote
asx; the optimal point of the RP and check whethefig. 1. Two special cases for handling non-convex constraints: (a) by adding

; egated RCC a new set is generated that is strictly separated from the
the negated RCC is now redundant, based on t r%lvious convex set; (b) the negated RCC generates a set that totally includes

shift induced in the Optlmql pOIntZ In particular, the previous convex set.
if both 2 andx; are inside\, we solve two single-
slack feasibility 6F) problems, and we denote as
7 andz; the two optimal points, for the problemAs apparent from the geometrical representation of the sets in
having just the convex constraints and for the the RPRig. 2 a), the problem is clearly satisfiable and a satisfying
respectively. Similarly, we denote the two optimalaluation could be any point in the grey regigh
values ass; ands;. First, we note for this example the results obtained before
As also observed in Section IV-B, for a set othe under-approximation is performed. We solve $i&Fprob-
satisfiable constraints;, z;, 5; ands; may contain |lem for the convex seB = {(z1,22) € R?: (22 + 23 — 1 <
more information than the optimal point§ andz}  0) A (22 + 23 — 421 < 0)}, obtained fromA after dropping
(and their slack variables) for t@SFproblem. In  the RCCN. The problem is feasible, as shown in Fig. 2 (b),
fact, sinces; and s} are also allowed to assumeand the optimal point; = (0.537,0) is returned.
negative (hence different) values at optimum, they Next, the RCC is negated to become convex andSB&
can provide useful indications on how the RC@roblem is now solved on the newly generated formula
has changed the geometry of the feasible set, an
which constraints are actually part of its boundar;g,xd% +25—1 <0)A(x] +25— 4oy < 0)A(a]+a5 275 <0)
thus better driving our approximation scheme. Ihich represents the previously defined (RP). The RP will
particular, if we verify thats; = 57, #; = #7, and provide useful information for the approximation, thus acting
B C N, then we implyB NN = (. Hence, the as a “geometric probe” for the optimization and search space.
solver can returtUNSAT. Techniques to detect if a Since the RCC is reversed, the RP is convex and generates the
conjunction of convex constraints generates sets thadtC, shown in Fig. 2 (c).
are (exactly or approximately) contained in a convex Let us assume, at this point, that the RP is feasible, as
set are reported in [20], [21]. For instance, whefh this example. Ther® # ), and an optimal point:* =
both B and V" are spheres, the conditidd C N (0.403,0.429) € C is provided. Moreoverd can be expressed
is equivalent to checking that the slack constrairs 3\ C, andz; is clearly outside the convex s&f generated
related to the RCC is not active at optimum in thgy the negated RCC, meaning that we can go to the under-
SF problem. This case is illustrated in Fig. 1(b) forapproximation step without solving the SF problems since the
the following conjunction of constraints: negated RCC is certainly non-redundant.
9 9 9 9 The key idea for under-approximation is to compute a
(@1 + 25 1< 0)A (21 + 23 —4>0) hyperplan)é that we can use ptg separate the RCC rggflon
where(z? +22—4 > 0) is the non-convex constraintfrom the remaining convex region. This “cut” in the feasible
defining region. If set containment cannot beregion is performed by exploiting the perturbation of the
exactly determined the procedure retuddKNOWK. ~ optimal point fromzj to z7 induced by the negated RCC
If none of the above cases hold, we proceed to the né¥t: (27 + @3 — 222) < 0. At this point, we examine a few
step. For example, this is the case wheneyes outside POSSible cases: . .. . _
N, or on its boundary (i.eg(x}) > 0). This implies that _ Case (i):Suppose that; # 7, andxj is outside\ (as in
the negated RCC is not redundant, and we can move®df €xample). In this case, we find the orthogonal projection
the next step without solving the tw8F problems. p = P(xp) onto N, which can be performed by solving a
In this step, we generate a convex under-approximati6RnVeX, Lz-norm minimization problem [8]. Intuitively, this
of the original formula including the convex constraint§0rrésponds to projecting; onto a poin on the boundary of
and the single non-convex RCC. If the resulting problef€ régionV'. Finally, we compute the supporting hyperplane
is found satisfiable, the procedure retu®&T. Other- t0 N in p. The half-space defined by this hyperplane that
wise, it returnsUNKNOWN, excludesA provides our convex (affine) approximatiox
r N
fQ’For our exampleN' = {z € R" : 22 + 23 — 2z, < 0}.
The affine constraint resulting from the above procedure is
N : —0.06x1 +0.1222 +0.016 < 0. On replacing the RCQV

(3425 -1 < 0)A(2]+ 235 —4x; < 0)A(2F+25—229 > 0).  with N, we obtain a new seb, as shown Fig. 2(d), which is

(7) now our approximation forA.
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a) Original problem b) Convex-only problem c) Reversed problem d) Approximation

Fig. 2.  Geometrical representation of the sets used in Section IV-C to illustrate the approximation scheme in CalCiS:t(ed search space (in grey)
for the original non-convex problem including one RCC constraint;ih$ search space when the RCC is dropped (over-approximatio);ofc) C is the
search space for theversed problem, i.e. the problem obtained from the original one in (a) when the RCC is negated; the RP is therefore cdpvsx; (d)
the under-approximation dP in (a) using a supporting hyperplane.

An SSF problem can now be formulated fbr thus pro- exterior with a supporting hyperplane, e:gz; +1 < 0, by
viding the satisfying assignment; = (0.6,—0.33). The simply picking it to be orthogonal to one of the symmetry
approximation procedure will stop here and retGAir. axes of the feasible set. The resulting under-approximation is

Notice that, whenever; is on the boundary o/, a similar found SAT and we obtain a satisfying assignment consistent
approximation as described above can be performed. In thigh this approximation.

case,r; is the point through which the supporting hyperplane s completes the description of the under-approximation

needs to be compu_ted,_and no orthogonal projection is Necgsscaqyre of Step 3. We note that we still have the possibility
sary. The normal direction to the plane needs, however, to e 110 solver to returrUNKNOM. Depending on the target
ir:]u;n*erlcally computed by approximating the gradienyof)  ahiication, the user can interpret this3#T (possibly leading
bt . to spurious counterexamples in BMC) @INSAT (possibly
*L‘SE ('L)'A second case occurs wherj # ¢, but boih missing counterexamples). For higher accuracies, the approx-
z; and z7 are inside V. In this case, starting from:? nation scheme can also be iterated over a set of boundary

we search the closest boundary point along thg — z7) points of the original constraint(z), to build a finer polytope
direction, and then compute the supporting hyperplane throq%Unding the non-convex set.

this point as in the previous case. In fact, to find an under-

approximation for the feasible regiad, we are looking for D. Overall Algorithm

an over-approximatiorof the set\' in the form of atangent  our theory solver is summarized in Fig. 3. This procedure
hyperplane. Since the optimal poinf moves tox; after - generalizes that described in the preceding section by handling
the addition of the negated RCG/ will be more “centered” myjtiple reversed convex constraints (RCCs). In essence, if the
aroundz; than aroundr;. Therefore, a reasonable heuristiqonjunction of all convex constraints and any single RCC is
could be to pick the direction starting frony, and looking t5nd UNSAT, then we reportUNSAT. In order to reporSAT,
outwards, namelyz; — 7). o . . on the other hand, we must consider all convex constraints and
_ Case (iii):Assume now that; = z; (with bothzj anda? 5| affine under-approximations of non-convex constraints.
inside '), but we haver; # Z:, wherez; andz; are the  The details are as follows. For a given conjunction of
two optimal points, respectively, for th&F problem having ccs and RCCs, we first solve tf&SF problem generated
just the convex constraints and for the the RP in$tieform, by the CCs alone (Section IV-A). If the problem W#NSAT,

as computed in Step 2 (b) above. In this case, to operate {hg algorithm returns the subset of constraints that provide the
“cut”, we cannot use the perturbation arf and z7, as in  reason for inconsistency (infeasibility certificate) and stops.
Case (i), but we can still exploit the information containegtherwise, each RCC is processed sequentially. For each
in the SF problems. This time, starting frof}, we search Rcc, the initial convex problem is augmented and the RP
the closest boundary point along thg — z7) direction, and s formulated and solved. If the RP is unfeasible then, as
then compute the supporting hyperplane through this bound@i¥cussed in Section IV-C, the constraint is ignored since

point. § i} L it is non-active for the current feasibility problem. On the
Case (v):Finally, bothzj = z7 andz; = z7 can also contrary, if the RP is feasible we proceed by computing an
occur, as for the following formula: approximation.
(:z:f + l,g —1>0)A (I% + xg —4<0), The Approxi mate method implements the under-

approximation strategies outlined in Section IV-C and deter-
for which A would coincide with the white ring region in mines whether the constraint is non-active or can be dropped
Fig. 1 b) (including the dashed boundary). In this case, oy solving additionalSF' problems (Section IV-B). If the
useful information can be extracted from perturbations in threegated RCC is fully included in the set generated by the
optimal points. The feasible set appears “isotropic” to hgth CCs alone, (e.g. the megated RCC and the set generated
andz;, meaning that any direction could potentially be chosdsy the CCs are both circles and the negated RCC is non-
for the approximations. In our example, we infer from ®l€ active for the RP) the problem INSAT, meaning that the
problems that the inner circle is the active constraint and ViRICC is incompatible with the whole set of CC (step 2(b) of
need to replace the non-convex constraint corresponding toSection IV-C). The full set, including both the CC and the
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function [status oufl = DecisionManage(CC, RCQ)

realmodel(satisfying assignment) is also returned. Otherwise,

% receive a set of convex (CC) and non-convex constraints (R@k@never inconsistencies are fourldNGAT), the reason for

% return SAT/UNSAT/UNKNOWN and MODEL/CERTIFICATE

%
% solve sum-of-slacks feasibility problems with CCs
[status ouf] = SoS solvgCC);
% OUT contains CERTIFICATE
if (status== UNSAT) return; end
AC = CC% AC stores all constraints
for (k = 1, k <= length(RCO), k++)
RP = revers¢CC, RCQKk));
[status ouf] = SoSsolvgRP);
% strict separation: ignore RCC
if (RP == UNSAT) continue end
% both CC and RP problems are SAT: approximation
[approxCC active dropg = ApproximatéRCC(K));
% RCC incompatible (inclusion)
if ("active
status= UNSAT,
% certificate
out = [CC, RCQK)]; return;
% over-approximation: ignore constraint
elseif (drop continue
else AC = AC U approxCGC
[status out] = SoS solvgAC);
if (status== SAT)
Check SAT assignment on original constrajnts
if (original constraints satisfi@dstatus= SAT; return;
end
end
end

the conflict (certificate) is encoded into thearned clause
(=l V...V =), 11, .., 1, being the auxiliary literals as-
sociated with the infeasible constraints. The SAT problem is
then augmented and new SAT queries are performed until
either the SAT solver terminates wiliNSAT or the theory
solver with SAT. To benefit from the most recent advances in
SAT solving, MiniSAT2 [22] is adapted to our requirements
by adding decision heuristics to prune our search space. To
reduce the number of theory calls, we first assign values to
the Boolean variables so as to satisfy as many clauses as
possible. Subsequently, we start assigning values to some of
the auxiliary variables, until all clauses are satisfied. Whenever
we need to decide an assignment for an auxiliary variable,
we affirm any CC and negate any RCC as a first choice, to
maximize the number of CCs for each theory call, hence the
chances of deciding without approximations. The following
theorems state the properties of CalCS.

Theorem V.1. Let ¢ be a convex SMT formula. Then, if CalCS
reports SAT on ¢, ¢ is satisfiable. Alternatively, if CalCS
reports UNSAT, ¢ is unsatisfiable. O

Note that the converse does not hold in general. If CalCS
reportsUNKNOWN, it is possible that the formula is either
satisfiable or unsatisfiable. In the case of a monotone convex

end SMT formula, we have stronger guarantees.
status= UNKNOWN;

Theorem V.2. Let ¢ be a monotone convex SMT formula.
Then, CalCS report$SAT on ¢ iff ¢T is satisfiable and
CalCS reportsUNSAT iff ¢* is unsatisfiable. O

The above result follows straightforwardly from the fact that

current RCC is returned as an explanation for the conflid®" monotone convex SMT formulas, all convex constraints
If an over-approximation is required, then the constraint &€ assigned true, so the theory solver never sees non-convex
ignored. If the constraint is compatible and cannot be dropp&@nstraints.
the supporting hyperplane is computed and the new under-
approximated problem is solved. The algorithm proceeds
with visiting the other RCCs. Finally, when all non-convex In our prototype implementation, we use the Matlab-based
constraints have been processed without returnifN$AT convex programming packa@®/X [23] to solve the optimiza-
the algorithm is re-invoked on the set of convex constraint®n problems, while theory solver and SAT solver interact
CC and the set of affine under-approximations of non-convéia an external file I/O interface. We therefore allow for
constraints RCC. If this invocation retur8AT, so does the all functions and operations supported by disciplined convex
overall algorithm; otherwise, it returnNKNOWN. A SAT programming [24]. We first validated our approach on a set
answer is accompanied by a satisfying valuation to variabl@$. benchmarks [25], including geometric decision problems
dealing with the intersection af-dimensional geometric ob-

V. INTEGRATING CONVEX SOLVING AND SAT SOLVING jacts, and randomly generated formulae obtained f8e8AT

Using the theory solver described in Section IV, we havdassical Boolean benchmarks [26], after replacing some of
implemented a proof-of-concept SMT solver, CalCS, th#ite Boolean variables with convex or RC constraints. Table |
supports the convex sub-theory. As in [10], CalCS receives stows a summary of an experimental evaluation of our tool,
input an SMT formula in a DIMACS-like CNF format, wherealso in comparison with iSAT. To evaluate the impact of gen-
atomic predicates can be both Boolean or convex constrairgesating a compact explanation of unsatisfiability (a certificate)
according to the definitions in Section Ill.  Following thewe run CalCS in two modes: in the first mod€ {n Table I),
lazy theorem proving paradigm, the SMT problem is first subset of conflicting constraints is provided, as detailed in
transformed into a SAT problem, by mapping the nonline&ection 1V, while in the second mod& (' in Table 1), the full
constraints into auxiliary Boolean variables. This Booleaset of constraints is returned as simply being inconsistent. All
abstraction of the original formula is then passed to tHeenchmarks were performed or8aGHz Intel Xeon machine
SAT solver. If the outcome i$JNSAT, the theory manager with 2 GByte physical memory running Linux.
terminates and returddNSAT. Conversely, the assigned aux- Results show that whenever problems are purely convex,
iliary variables are mapped back to a conjunction of CC aridey are solved without approximation and with full control of
RCC and are sent to the theory for consistency checkimgunding errors and can provide results that are more accurate
If the theory solver returnSAT, a combined Boolean andthan the ones of iSAT, in comparable time, in spite of our

Fig. 3. Pseudo-code for the CalCS decision procedure.

VI. EXPERIMENTAL RESULTS
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y TABLE |
CALCS EXPERIMENTS: IN MODE C' THE UNSAT CORE IS PROVIDED
WHILE IN MODE NC THE FULL SET OF CONSTRAINTS IS RETURNED AS
CONFLICTING; APPROX DENOTES THE NUMBER OFRCC'S

Reset

¥ =ux

y=y-2 A
1],'1"2 APPROXIMATED AS HYPERPLANES S STANDS FORSAT, U FORUNSAT.
y=3
Invariant File Res. CalCS Approx [ Queries iSAT
Py —25<0 x ‘ ‘ ‘ CINC [s] ‘ CINC | CINC [s] ‘
_ ®) U 0.5 (U) 0 T 0.05 (3)
Dynamics 9 U 0.2 (0) 0 1 0(S)
el Conp | U 22723 (U) 5 3 0.05 ()
Guard i (10) S 0.2 (S) 0 1 0 (V)
224 y?—25>0 Booll S 3.5(S) 1 1 8 (S)
Bool2 S 16 (S) 3 T 0.91 (S)
Fig. 4. Simple hybrid automata with convex guards and invariants (left) and Bool3 S 27/23 (S) 5/4 2 0.76 (S)
representation of the error traces from CalCS (solid) and iSAT (dashed) in Conjl U 8.7/9.5 (U) 3 2 0.3 (U)
the (z,y) plane (right). The safety interval far is [—4, 4]. Bool4 S 17.9/17.7 (S) 3 1 0.75 (S)
Conpg | U 17/23.3 (U) 175 a7 0.4 (U)
Bools [§] 23.5/321.7 (U) 4/36 5/94 0.02 (U)
) ) ) ) Bool6 | U 29.8/T0O (U) 5/— 6/— 0.4 (U)
prototype implementation. In particular, the interval-based rea-Bool7 | S 257.7/T0 (S) | 24/— 6/— 1.31 (S)

soning scheme can incur inaccuracies and large computation
times when the satisfying sets are lower dimensional sets with TABLE Il

respect to the full search space including all the real variables TCAS BMC CaseSTUDY
in the problems. As a simple example, for the formula:

[ Maneuver type| Crash state [ #queries ] run time [s] |

2,2 2,2 UNSAFE CRUISE 2 10.9
: ; - - ; UNSAFE STRAIGHT § 50
iISAT returns an interval that contains a spurious solution, SAFE NONE 10 170

while our convex sub-theory can rigorously deal with tight
inequalities and correctly returidNSAT (see (8) and Cofj
in Tab. 1). Similarly, CalCS can provide the correct answer far, S
the follozfving formyulae ((9) andp(lo) in Tab. 1), mentioned géfter3 BMC steps ¢ = 3), while iSAT stops at the second step
prone to unsound or spurious results in [12] producing an error trace that is still in the safety region, a!belt
on the edge. As an additional case study, we considered aircraft
(z+y <a)A(x—y <b)A(2z >a+b)Ala=1)A(b=0.1), conflict resolution [27] based on the Air Traffic Alert and
(9) Collision Avoidance System (TCAS) specifications (Tab. ).
(x <10 A(z+p>10°) A (p=107%). (10) The hybrid automata in Fig. 5 models a standardized maneuver
that two airplanes need to follow when they come close to each
While for small problem instances (Bde-3, Conjl) both other during their flight. When the airplanes are closer than a
the C and NC schemes show similar performances, theistanced,,..., they both turn left byA¢ degrees (which is
advantages of providing succinct certificates becomes evidggpt fixed to a constant value in our maneuver) and fly for a
for larger instances (Bo#i5-6-7, Conj2), where we rapidly distanced along the new direction. Then they turn right and
reached a time-over (TO) limit (set 890 queries to the theory fly until their distance exceeds a threshdlg,,.. At this point,
solver) without certificates. A faster implementation wouléhe conflict is solved and the two airplanes can return on their
be possible by using commercial, or more optimized, convexiginal route. We verified that the two airplanes stay always
optimization engines. apart, even without coordinating their maneuver with the help
We have also tested CalCS on BMC problems, consistia§ a central unit.
in proving a property of a hybrid discrete-continuous dynamic Finally, we have applied CalCS to formulae generated
system for a fixed unwinding depth. We generated a setin the context of static analysis of floating-point numerical
of hybrid automata (HA) including convex constraints in botgode, and requiring an SMT solver that can handle non-linear
their guards and invariants. For the simple HA in Fig. 4 we als@rithmetic constraints over the reals. Tab. Ill summarizes the
report a pictorial view of the safety region for thevariable, performance of CalCS on a set of benchmarks provided by Vo
and the error traces produced by CalCS (solid line) and iSA¥ al, who are developing a static analyzer to detect floating-
(dashed line). The circle in Fig. 4 represents the HA invariapbint exceptions (e.g., overflow and underflow) [28]. Early
set, while the portion of the parabola underlying theaxis experience with CalCS on this set of benchmarks, mostly
determines the set of poinissatisfying the property we wantincluding conjunctions of linear and non-linear constraints,
to verify, i.e. {x € R : 22 — 16 < 0}. Our safety region seems promising. After a fast pre-processing step, CalCS can
is therefore the closed intervéal-4, 4]. The dynamics of the deal with the formulae of interest providing an exact answer
HA are represented by the solid and dash lines. As far as {hgeasonable computation time even when approximations are
invariant is satisfied, the continuous dynamics hold and theeded, which demonstrates that our solver can be general
HA moves along the arrows on tlie, y) plane, starting from enough to be suitable for different application domains.
the point(2,3). When the trajectories intersect the circle’s
boundary, a jump occurs (e.g. frofd, 4) to (3,2) and from VII. CONCLUSIONS
(4,3) to (4, 1)) and the system is reset. Initially, both the solid We have proposed a procedure for satisfiability solving of a
and dashed trajectories are overlapped (they are drawn sligliglyolean combination of non-linear constraints that are convex.
apart for clarity). However, more accurately, we return unsat@ur prototype SMT solver, CalCS, combines fundamental
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CRUISE

LEFT

X Guard i are
Invariant 22+ 12 < dpear Invariant
lf + 912 2 dear - — < max (mm:(Am)" v sh:(Am))
Dynamics Reset Dynamics
i=0 j—
4‘ o | =reaa ] - [
Guard Reset Common Dynamics . Reset
z] )| Er= 1t vacos(d) mat FErewl PR 2
t<0 ; = R(=Ag) ;, i = vasin(e) m 7/, R<A®) [ ]
RIGHT Guard STRAIGHT [3]
Invariant 2242 > dyy Invariant
t>0 1';1+y,2.§d]m
Dynamics Dynamics [4]
t=-1 t=0
Fig. 5. Air Traffic Alert and Collision Avoidance System 5]
TABLE Il
BENCHMARKS FROMSTATIC ANALYSIS OF NUMERICAL CODE: APPROX [6]
DENOTES THE NUMBER OFRC'C'S APPROXIMATED AS HYPERPLANES
| File [ Result | Time [S] | Approx | [7]
Numil SAT 1.08 0
Num2 SAT 4.35 2
Num3 UNSAT 0.55 0 8]
Numd UNSAT 0.55 0
Numb SAT 4.27 2 [9]
Numé6 SAT 0.49 0
Num7 SAT 2.82 1
Nums UNSAT 2.64 2
Num9 UNSAT 2.10 0 [10]
Num10 UNSAT 0.53 0
Numil — 13 | UNSAT 0 0 [11]
Numi4 UNSAT 1.91 0 [12]
Numlb UNSAT 1.94 0
Numi6 UNSAT 0.53 0
Numi7 — 18 | UNSAT 0 0 [13]
NumIi9 UNSAT 0.49 0
Num20 UNSAT 0 0
[14]

results from convex programming with the efficiency of SA'[15
solving. By restricting our domain to a subset of non-linear
constraints, we can solve for conjunctions of constraints glob-
ally and accurately, by formulating a combination of conveyg
optimization problems and exploiting information from their
primal and dual optimal values. When the conjunction
theory predicates is infeasible, our formulation can generi@
certificates of unsatisfiability, thus enabling conflict-directed
learning. Finally, whenever non-convex constraints original&]
from convex constraints due to Boolean negation, our pro-
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Abstract—We propose a novel integration of interval constraint
propagation (ICP) with SMT solvers for linear real arithmetic
(LRA) to decide nonlinear real arithmetic problems. We use ICP
to search for interval solutions of the nonlinear constraints, and
use the LRA solver to either validate the solutions or provide
constraints to incrementally refine the search space for ICP. This
serves the goal of separating the linear and nonlinear solving
stages, and we show that the proposed methods preserve the
correctness guarantees of ICP. Experimental results show that
such separation is useful for enhancing efficiency.

I. INTRODUCTION

Formal verification of embedded software and hybrid sys-
tems often requires deciding satisfiability of quantifier-free
first-order formulas involving real number arithmetic. While
highly efficient algorithms [10] exist for deciding linear real
arithmetic (QFLRA problems, as named in SMT-LIB [5]),
nonlinear formulas (QFNRA problems [5]) have been a major
obstacle in the scalable verification of realistic systems. Exist-
ing complete algorithms have very high complexity for non-
linear formulas with polynomial functions (double-exponential
lower bound [9]). Formulas containing transcendental func-
tions are in general undecidable. It is thus important to find
alternative practical solving techniques for which the com-
pleteness requirement may be relaxed to some extent ([11],
[12], [20], [8D).

Interval Constraint Propagation (ICP) is an efficient numeri-
cal method for finding interval over-approximations of solution
sets of nonlinear real equality and inequality systems ([15],
[6]). For solving QFNRA formulas in a DPLL(T) framework,
ICP can be used as the theory solver that provides decisions
on conjunctions of theory atoms. What distinguishes ICP from
other numerical solution-finding algorithms (such as Newton-
Raphson or convex optimization) is that it guarantees the
following reliability properties:

3

o ICP always terminates, returning either “unsatisfiable”,
or “satisfiable” with an interval overapproximation of a
solution (or the solution set).

o When ICP returns an “unsatisfiable” decision, it is always
correct.

e When ICP returns a “satisfiable” decision, the solution
may be spurious; but its error is always within a given
bound that can be set very small.

A detailed discussion of what these correctness guarantees
of ICP imply for decision problems is given in Section
IV. These properties ensure that an ICP solver only relaxes
completeness moderately (see “6-completeness”, Section 1V),
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while achieving efficiency. ICP algorithms have been applied
to various nonlinear scientific computing problems involving
thousands of variables and constraints (including transcenden-
tal functions) ([17], [18], [6]).

The HySAT/ASAT solver [11] is a state-of-the-art SMT
solver for QFNRA problems. HySAT uses ICP for handling
nonlinear real constraints. It carefully builds Boolean solving
capacities into ICP by exploiting the similarity between SAT
and interval constraint solving algorithms. HySAT successfully
solved many challenging nonlinear benchmarks that arise from
hybrid system verification problems [3].

However, a problem with HySAT is that it handles both
linear and nonlinear constraints with ICP. It is known that
ICP does not solve linear constraints efficiently enough. In
fact, ICP can suffer from the “slow convergence” problem [7]
on easy linear constraints such as “x > y A x < 47, where it
needs a large number of iteration steps to return an answer.
As there exist highly optimized algorithms for deciding linear
arithmetic problems [10], solving all the constraints in ICP
is suboptimal. Most practical formal verification problems
contain a large number of linear and Boolean constraints, and
only a small number of nonlinear ones. Ideally, we would
like to solve linear and nonlinear constraints differently, and
apply the efficient algorithms for linear constraints as much
as possible.

Such separation of linear and nonlinear solving is not
straightforward to design. In fact, it is suggested as an open
question in the original HySAT paper [11]. There are several
difficulties involved:

o The linear and nonlinear constraints share many variables
in nontrivial problems. For the same variable, the linear
solver returns point solutions while ICP returns interval
solutions. It is not straightforward to check consistency
between the different solutions.

o As both the linear solver and the nonlinear solver return
only one solution (point or interval box) at a time, it is
impossible to enumerate all the solutions in one solver
and validate them in the other solver, since there are
usually infinitely many solutions.

« Linear solvers use rational arithmetic and ICP uses float-
ing point arithmetic. Efficient passing of values between
the two solvers can compromise the guaranteed numerical
error bounds in ICP. (See Example 2).

In this paper, we propose methods that tackle these prob-

lems. The main idea is to design an “abstraction refinement”
loop between the linear and nonlinear solving stages: We use



the ICP solver to search for interval solutions of the nonlinear
constraints, and use the LRA solver to validate the solutions
and incrementally provide more constraints to the ICP solver
for refining the search space. The difficulty lies in devising
procedures that efficiently communicate solutions between the
linear and nonlinear solving stages without compromising
numerical correctness guarantees. Our main contributions are:

« We devise procedures that separate linear and nonlinear
solving in a DPLL(T) framework to enhance efficiency
in solving QFNRA problems.

« We give precise definitions of correctness guarantees
of ICP procedures, named §-completeness, as used in
decision problems. We show that the devised separation
between linear and nonlinear solving preserves such
correctness guarantees.

o We describe how to exploit ICP in assertion and learning
procedures in DPLI(T) to further enhance efficiency.

The paper is organized as follows: In Section II we briefly re-
view ICP, DPLL(T), and LRA solvers; in Section III, we show
the detailed design of the checking procedures; in Section IV,
we discuss correctness guarantees of ICP in decision problems;
in Section V, we further describe the design of the assertion
and learning procedures. We show experimental results and
conclusions in Section VI and VIIL.

II. BACKGROUND

A. Interval Constraint Propagation

The method of ICP ([15], [6]) combines interval analysis
and constraint solving techniques for solving systems of real
equalities and inequalities. Given a set of real constraints and
interval bounds on their variables, ICP successively refines an
interval over-approximation of its solution set by narrowing
down the possible value ranges for each variable. ICP either
detects the unsatisfiability of a constraint set when the interval
assignment on some variable is narrowed to the empty set, or
returns interval assignments for the variables that tightly over-
approximate the solution set, satisfying some preset precision
requirement. (See Fig 1.) We will only be concerned with
elementary real arithmetic in this paper. We first use a simple
example to show how ICP works.

Example 1. Consider the constraint set {x = y,y = x°}.

i) Suppose I§ = [1,4],1§ = [1,5] are the initial intervals
for x and y. ICP approaches the solution to the constraint set
in the following way:

Step 1. Since the initial interval of y is 1§ = [1,5], to
satisfy the constraint y = x2, the value of = has to lie within
the range of :I:m, which is [—/5,—1] U [1,V/5]. Taking
the intersection of [—+/5, —1]U[1,/5] and the initial interval
[1,4] on x, we can narrow down the interval of x to I =
[, V5];

Step 2. Given I = [1,/5] and the constraint x = vy, the
interval on y can not be wider than [1,~/5]. That gives I} =

I(Z)/ N [17\/5] = [17\/5};

Step 3. Given I}, we can further narrow down the interval
on x, by maintaining its consistency with x = +./y, and obtain
IZ =101 =[1,V5).

Iterating this process, we have two sequences of intervals
that approach the exact solution x = 1,y = 1:

I7:[1,4] = [1,V5] — [1, V5] = [1,V/5] — - — [1,1]

IV 2 [1,5] = [1,V/5] = [1, V5] = [1, V5] = - = [1,1]

ii) On the other hand, ICP detects unsatisfiability of the
constraint set over intervals I§ = [1.5,4] and I] = [1,4]
easily:

I7 : [1.5,4] — [1.5,4] N [1,vV/4] — [1.5,2] — [1.5,2] N
[V1.5,v2] = 0

IV [1,4] — [1,4] N [1.5,2] = [1.5,2] = [1.5,2] N0 — 0

Note that ICP implements floating point arithmetic, there-
fore all the irrational boundaries are relaxed by decimal
numbers in practice. O

-

T \ 7

Fig. 1: Contraction of initial intervals to solution boxes

During the interval narrowing process, ICP can reach a
fixed-point before the precision requirement is satisfied. In that
case, ICP takes a splitting step, and recursively contracts the
sub-intervals. This framework for solving nonlinear constraints
is called the branch-and-prune approach [15].

We give the following formal definitions that will be referred
to in the following sections. Let n be the number of variables
and Z = {[a,b] : a,b € R} the set of all intervals over R.
An n-ary constraint o is a relation defined by equalities and
inequalities over R, i.e., 0 C R".

Definition 1. Let ¢ C R" be a constraint, I e¢1Iran
interval vector whose i-th projection is written as I;, i.e.,
I = (I, ..., Ipy). We say I over-approximates o, if for all
(al, ...,an) €0, a; €1;.

Definition 2. An interval contractor § : I — 1" is a
Sunction satisfying $1 C I. The result of multiple applications
of an interval contractor on I is written as $*1. A contraction
sequence is a sequence of intervals S = (Iy,...,I,) where
I;+1 = t1;. A contraction step in S is defined as (I, #I) where
1= <Il, very Ii, ciey In>) ﬂ[ = <Il, ceey ﬂ[i, ceey In) and

# = LN F(Iy, o Loy, Ly s 1)
F :In ' = T is an interval-arithmetic function whose graph
over-approximates the constraint o.

Definition 3. A consistency condition C C 1™ x I satisfies:
for any constraint o C R", if I over-approximates o and
(I,8I) € C, then {1 over-approximates o.
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B. DPLL(T) and the Dutertre-de Moura algorithm

An SMT problem is a quantifier-free first-order formula
@ with atomic formulas specified by some theory 7. Most
current SMT solvers use the DPLL(T) framework [19]. A
DPLL(T)-based solver first uses a SAT solver on the Boolean
abstraction ¢ of the formula . If ©? is satisfiable, a theory
solver (T-solver) is used to check whether the Boolean assign-
ments correspond to a consistent set of asserted theory atoms.
The T-solver should implement the following procedures:

Check() and Assert(): The Check() procedure provides
the main utility of a T-solver. It takes a set of theory atoms
and returns a “satisfiable”/“unsatisfiable” answer, depending
on whether the set is consistent with respect to the theory 7.
The Assert() procedure provides a partial check for detecting
early conflicts.

Learn() and Backtrack(): When the Check() or Assert()
procedure detects inconsistency in a set of theory atoms, the
T-solver provides explanations through the Learn() procedure,
so that a clause can be learned for refining the search space.
When inconsistency occurs, the T-solver performs efficient
backtracking on the theory atoms in Backtrack().

LRA Solvers: The standard efficient algorithm for solving
SMT problems with linear real arithmetic is proposed in [10],
which we will refer to as the Dutertre-de Moura Algorithm.
The algorithm optimizes the Simplex method for solving SMT
problems by maintaining a fixed matrix for all the linear
constraints so that all the operations can be conducted on
simple bounds on variables. In what follows we assume that
the LRA solver implements the Dutertre-de Moura algorithm.

C. Formula Preprocessing

We consider quantifier-free formulas over (R, <, +, x). The
atomic formulas are of the form p; ~ ¢;, where ~ € {<, <
,>,>,=}, ¢; € R and p; is a polynomial in R[Z].

Adopting similar preprocessing techniques as in [10], we
preprocess input formulas so that a fixed set of constraints can
be maintained such that the DPLL search can be done only
on simple atoms of the form = ~ c. For any input formula,
we introduce two sets of auxiliary variables: a set of nonlinear
variables and a set of slack variables.

A nonlinear variable v; is introduced when a nonlinear term
t; appears for the first time in the formula. We replace ¢; by v;
and add an additional atomic formula (¢; = v;) to the original
formula as a new clause.

Similarly, a slack variable s; is introduced for each atomic
formula p; ~ ¢;, where p; is not a single variable. We replace
p; by s;, and add (p; = s;) to the original formula.

For instance, consider

=g (@ +y>10Az-2<5)Vy+2z>0).

We introduce nonlinear and slack variables to get:
2

(r"=viAx-z=v2) AN (ni+y=s1Ay+z=s2)
N, L
AN ((81210/\1)2<5)\/82>0)

’

@
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The new formula is equi-satisfiable with the original formula.
In general, after such preprocessing, any input formula ¢ is
put into the following normal form:

n m p q

0= /\Z/i/\/\/,c,;/\ /\(\/lﬁ)
i=1 =1 j=1 i=1
N, L, o

The following notations will be used throughout the paper:

1. V = {x1,...,x} denotes the set of all the variables ap-
pearing in . The set of variables appearing in any subformula
1 of  is written as V (¢). In particular, write Vi = |J, V()
and VL = Ul V(/J,Z)

2.In N, each atom v; is of the form x;, = fi(xs,, ..., z;,)
where z;; € V. Note that x;, is the introduced nonlinear
variable. f; is a nonlinear function that does not contain
addition/subtraction. We call N, the nonlinear table of .

3.In L, each atom y; is of the form > a;;x;; = 0, where
a;; € R and X € V. L, is called the matrix of the formula
following [10].

4. In ¢, each literal [; is of the form (z; ~ ¢;) or =(z; ~
¢;), where z; € V, ¢; € R and ~ € {>,>,=}. The original
Boolean structure in ¢ is now contained in ¢’

All the v;s and ;s are called constraints (nonlinear or
linear, respectively), and N, A L, is called the extended matrix
of the formula.

ITI. INTERFACING LINEAR AND NONLINEAR SOLVING IN
THE CHECK() PROCEDURE

A. The Main Steps

As introduced in Section II-B, the Check() procedure pro-
vides the main utility of the theory solver in the DPLL(T)
framework. It takes a set of asserted theory atoms and returns
whether their conjunction is satisfiable in the theory 7.

An intuitive way of separating linear and nonlinear solving
is to have the following two stages:

1. The linear constraints are first checked for feasibility, so
that linear conflicts can be detected early.

2. If no linear conflict arises, the nonlinear solver is invoked
to check whether the nonlinear constraints are satisfiable
within the feasible region defined by the linear constraints.

However, the difficulty lies in starting the second step. For
checking linear feasibility, the LRA solver maintains only one
point-solution throughout the solving process. That is, it stores
and updates a rational number for each variable. To obtain the
linear feasible region, extra computation is needed. A direct
way is to use the optimization phase of the Simplex algorithm
and collect optimal bounds of linear variables (their min/max
values), which are used as the initial interval assignments for
ICP. However, this is problematic for several reasons:

o Obtaining bounds on each variable requires solving two
optimization problems involving all the linear constraints
for every variable. This leads to heavy overhead.

« More importantly, the bounds on variables only constitute
a box over-approximation of the linear feasible region.



After obtaining a nonlinear solution within this over-
approximation, we still need to check whether this so-
lution resides in the real feasible region. (See Fig. 2)
Numerical errors in the optimization procedures are intro-
duced in the decision procedure. They can compromise
the correctness guarantees of ICP.

Min-Max Approximation

Linear Feasible Region

Fig. 2: Box approximations can be too coarse.

Consequently, we need more subtle interaction procedures
between the linear and nonlinear solving stages.
We write the set of asserted theory atoms as A, i.e.,

A C{x; ~c;: x5 ~ ¢ is a theory atom in ¢},

where ¢’ is as defined in the preprocessing step. Our Check()
procedure (Fig. 3) consists of the following main steps:

Step 1. Check Linear Feasibility. (Line 2 in Fig. 3)

First, we use the LRA solver to check the satisfiability of
the linear formula L, A A A. If the formula is unsatisfiable,
there is a conflict in A with respect to the matrix L,, and
Check() directly returns “unsatisfiable”.

Step 2. Check Nonlinear Feasibility. (Line 4 in Fig. 3)

If the linear constraints are consistent, we start ICP directly
on the set of nonlinear constraints; i.e., we check the satis-
fiability of the formula N, A \ A. Note that after the linear
solving phase in Step 1, the bounds on linear variables in A
are already partially refined by the LRA solver [10] and we
update A with the refined bounds. (Line 3 in Fig. 3)

If ICP determines that the nonlinear constraints are inconsis-
tent over the initial intervals specified by A, the solver directly
returns “unsatisfiable’.

Step 3. Validate Interval Solutions. (L6 in Fig. 3; Fig. 4)

If ICP determines that the formula in Step 2 is satisfiable,
it returns a vector I of interval assignments for all variables
in V. Since we did not perform nonlinear checking within
the linear feasible region, it is possible that the interval
assignments for Vy are inconsistent with the matrix L. Thus,
we need to validate the interval solutions I with respect to the
linear constraints L. This validation step requires reasoning
about the geometric properties of the interval solutions and
linear feasibility region defined by L, A A\ A. We give detailed
procedures for the validation step in Section III-B.

Step 4. Add Linear Constraints to ICP. (L7-10 in Fig. 3)

If in the previous step an interval solution I is not validated
by the linear constraints, we obtain a set > of linear constraints
(specified in Section III-B) that are violated by I. Now we

84

1: Procedure Check(L,, N, A)
2: if Linear_Feasible(L, A /A A) then

3: A +Linear_Refine(L, A A\ A)

4 while ICP_Feasible(N, A A\ A) do
5: I + ICP_Solution(N, A A A)
6: S « Validate(I, Ly, \)

7: if N, == N,UZX then

8: return satisfiable

9: else

10: N, < N,UX

11: end if

12: end while

13: end if

14: return unsatisfiable

Fig. 3: Procedure Check()

. Procedure Validate(I = ([, @), L, A)
. if Linear_Feasible(A\(z; = “5“) A L, A /\ A) then

J b /*LRA solver returns b as the solution of ¥/
for,u:fgejer_;T;JELg, do
if c{(ij <e;+ J;TI; is false then
/* See Proposition 1 for the definitions */
Y+—XUp
end if
end for
. else
Y + Linear_Learn(/\(x;
: end if
: return X

AN A o e

—— =
M oY

:HTM)/\LW/\/\A)

—_
w

Fig. 4: Procedure Validate()

restart ICP and look for another solution that can in fact satisfy
the linear constraints in 3, by setting N, := N, A A X and
loop back to Step 2. This is further explained in Section III-C.

In this way, we incrementally add linear constraints into
the set of constraints considered by ICP to refine the search
space. The loop terminates when ICP returns unsatisfiable on
N, because of the newly added linear constraints, or when
the LRA solver successfully validates an interval solution.

Next, we give the detailed procedures for the validation
steps.

B. The Validation Procedures

1) Relations between interval solutions and the linear fea-
sible region: Geometrically, the interval solution returned by
ICP forms a hyper-box whose dimension is the number of
variables considered by ICP. The location of the hyper-box
with respect to the linear feasible region determines whether
the interval solution for the nonlinear constraints satisfies the
linear constraints. There are three possible cases (see Fig. 5
for a two-dimensional illustration):

Case 1: (Box A in Fig. 5) The hyper-box does not intersect
the linear feasible region. In this case, the interval solution
returned by ICP does not satisfy the linear constraints.

Case 2: (Box B in Fig. 5) The hyper-box partially intersects
the linear feasible region. In this case, the real solution of the
nonlinear constraints contained in the solution box could either
reside inside or outside the linear region.



Distinguishing this case is especially important when we
take into account that the LRA solver uses precise rational
arithmetic. The interval assignments returned by ICP satisfy
certain precision requirements and usually have many decimal
digits, which can only be represented as ratios of large integers
in the LRA solver. Precise large number arithmetic is costly in
the LRA solver. To efficiently validate the interval solutions,
we need to truncate the decimal digits. This corresponds to a
further overapproximation of the intervals. For example:

Example 2. Consider (y )N (y — = 5) A
(y > 2Azxz > 0As > 0.6). In Step 2, ICP solves
the formula (y = 2> ANy > 2 Az > 0) and re-
turns a solution v € [1.414213562373,1.414213567742]
and y € [2,2.000000015186]. Irs rational relaxation x €
[14/10,15/10] and y € [2,21/10] is validated, since y—x >
0.6 is satisfied by x = 1.4,y = 2. But the original formula is
unsatisfiable, which can in fact be detected if we use ICP on
the nonlinear and linear constraints together.

‘ Rational Approximation of Box B ‘

Linear Feasible Region

<\

.

Fig. 5: Positions of hyper-boxes and the linear feasible region.

Case 3: (Box C in Fig. 5) The hyper-box completely resides
in the linear feasible region. In this case, all the points in the
interval solution returned by ICP satisfy the linear constraints
and hence the formula should be “satisfiable”. To distinguish
this case from Case 2, we propose the following consistency
condition.

2) The Sufficient Consistency Check: We check whether
all the points in I satisfy the linear constraints in L.,. When
that is the case, we say I is consistent with L, and accept
the interval solution. This is a strong check that provides a
sufficient condition for the existence of solutions. By enforcing
it we may lose possible legitimate solutions (e.g., Box B may
contain a solution that indeed resides in the linear region). This
problem is handled in the refinement step (Section III-C).

We write variables contained in the nonlinear constraints as
VN = {z1,...,z,}, and the variables that only occur in linear
constraints as Vi, \ Vv = {y1, ..., Ym }-

Definition 4. Let I : ([l1,u1], ..., [ln, un]) be an interval so-
lution for variables in V. We write I : [1, 4], T = (21, ..., Zn),
¥ = (Y1,.-sYm). We say I is consistent with the matrix L,
if

GV E [(Fel) » (Lon \A) - (%)
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is true, where T € f:df /\xieVN (l; < a; Nx; < uy). Note
that L, N \ A is a formula in both & and .

This condition states that, for an interval solution I to be
consistent with the linear constraints, there must be a feasible
point solution b for the remaining linear variables ¢ such that
for all the points @ € I, (@,b) satisfies the linear constraints.
This is a direct formulation of Case 3.

3) The Validation Steps: We propose the following pro-
cedures for validating interval solution with the LRA solver
(shown in Fig. 4).

Step 3.1. (Line 2-3, Fig. 4) First, we check whether the
center of the hyper-box I resides in the linear feasible region
(in fact it can be an arbitrary point of the box), by checking
whether the linear formula:

/\ (I.:li“v‘ui

z, €EVN

2
is satisfiable. This can be done by the LRA solver.

If this formula is unsatisfiable, we know that Condition (*)
is violated, since the center of I lies outside linear feasible
region. We can obtain a set of violated linear constraints
provided by the LRA solver (Line 11, Fig. 4). This is further
explained in Section III-C.

If it is satisfiable, the Dutertre-de Moura Algorithm returns
an exact point solution b for y. (Line 3, Fig. 4)

Step 3.2. (Line 4-7, Fig. 4) Next we need to ensure that,
after the remaining linear variables ¢ are assigned b, the
interval box I resides “far away” from the boundaries of the
linear feasible region.

Since L, A /\ A only contains linear constraints, it can be
written as the intersection of & half spaces:

)ALy A \A

k
—»T — T —
LWA/\AE /\ cj:cgej—i—djy.
j=1
where 5} = (le, ~-‘7cjn) and dj = (djla »djm)
First, we make the observation that the maximum of each

T . . . .
¢; T is obtained when the x variables take the min or max

values in their intervals depending on their coefficients:

Lemma 1. The solution to the linear program

T - -
max ¢; & with respect to T € I : [, ]

is given by ¥ = (ax, ..., ay), where a; = l; when c;; < 0 and
a; = u; otherwise.
Further, we know that the universal statementTin the consis-
tency condition is satisfied, if the max value of ¢ Z is bounded
. . FCA .
by the linear constraints e; + d; . That is:

Proposition 1. The assertion



wherein @; = (a1, ..., ajn) satisfying: aj; = l; when cj; <0,
and aj; = u; otherwise.

The condition in Proposition 1 can be verified by simple
calculations: we only need to plug the values of & = d;
and y = b in each linear constraint, and check whether the
constraint is satisfied.

To summarize, we use the LRA solver to search for a
candidate solution b for the linear variables y, and verify
if the strong consistency condition () holds when 7 = b,
using Proposition 1. If Condition (%) is verified, we return
“satisfiable”.

Again, Condition (x) and Proposition 1 provide a sufficient
condition for the consistency of I and L, which may refute
legitimate solution boxes. This is compensated, because we
use the strong condition to learn the violated linear constraints
instead of directly refuting boxes. This is further explained in
the next section.

C. Refinement of ICP Search Using Linear Constraints

In the validation steps, there are two places where we can
detect that an interval solution has violated linear constraints:

o In Step 3.1, the linear formula is detected unsatisfiable
by the LRA solver. In this case, we use the learning
procedure in the LRA solver that returns a set of linear
constraints.

In Step 3.2, the condition in Proposition 1 can fail for
a set of linear constraints. These are the constraints that
the box solution does not completely satisfy.

In both cases, we have a set of linear constraints which we
write as 2. We then add Y. to N, and restart the ICP search on
the updated IN,. Now, the new interval solution obtained by
the updated N, should not violate 3 modulo numerical errors
in ICP, since it was obtained by ICP under the constraints in
3.

Here, a tricky problem is that ICP allows numerical error (up
to its precision bound). It is possible that even after ¥ is added
to ICP, the interval solution I that ICP returns may still violate
Y in terms of precise arithmetic. In such cases, the linear solver
and the ICP solver disagree on the same set of constraints:
Namely, ICP decides that T satisfies 2 up to its error bound,
whereas the linear solver can decide that I is not consistent
with X since it is not validated using precise arithmetic. When
this happens, the same set ¥ can be repeatedly violated and
the refinement algorithm may loop forever without making
progress. To avoid this problem, we pose the requirement that
the added X should not be already contained in IV,,. Otherwise,
we directly return “satisfiable” (Line 6 and 7 in Fig. 3). We
will show in the next section that this decision preserves the
correctness guarantees of ICP.

IV. CORRECTNESS GUARANTEES

Originally ICP is used in solving systems of nonlinear
equalities/inequalities over real numbers. Thus, the notion of
correctness of ICP is not directly formulated for the use in
decision procedures. A well-known property [15] of ICP is
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that when a system S of real equalities and inequalities has
a solution, ICP always returns an interval solution Tof S.In
deciding QFNRA problems, this property of ICP implies that
when a system is satisfiable, ICP always returns “satisfiable”.
In other words, when ICP returns “unsatisfiable”, the system
must be unsatisfiable.

Conversely, if whenever ICP returns “satisfiable” the system
is also satisfiable, we would have a sound and complete
solver!. This can not be guaranteed by ICP because of its use
of finite-precision arithmetic. In other words, the “satisfiable”
answers from ICP can not always be trusted. In the design
of HySAT [11], posterior validation procedures of the interval
solutions are applied, and the solver can return “unknown”
when a solution is not validated.

Similar validation procedures can be straightforwardly
adopted in our solver. However, in what follows we aim to
make clear the exact meanings of the answers returned by
ICP algorithms in the context of decision problems. In fact,
we will show that ICP does guarantee a moderately relaxed
notion of soundness and completeness that can indeed prove
useful for certain verification tasks.

Informally, when ICP returns “satisfiable” for a set .S of
theory atoms, it must be one of the following two cases:

o S is satisfiable.
e S is unsatisfiable, but if some constant terms in S are
changed slightly, S will become satisfiable.

Contrapositively, if a system S remains unsatisfiable under
small perturbations on its constant terms, ICP indeed returns
that S is “unsatisfiable”. This notion (as a special case of the
formulation in [21]) is made precise in the following definition.

Definition 5 (§-robustness). Let S be a system of equalities
/\f:1 fi =0, where f; € R[Z], and x; € I; where I; C R are
intervals. Let § € R™ be a positive real number.

S is called d-robustly unsatisfiable if for any choice of ¢ =
(c1, ..., ci) where |¢;| < 6, /\f:1 fi = ¢; remains unsatisfiable.
Each C is called a perturbation on S.

We write the system perturbed by & as S¢. Note that we only
considered systems of equalities, because inequalities can be
turned into equalities by introducing new bounded variables.
The following example illustrates the definition.

Example 3. Consider the system S : y = 2> Ay = —0.01.
S is unsatisfiable. If we set §; = 0.1, then there exists a
perturbation ¢ = 0.01 < &1 such that S©*° :y=2> ANy =0
is satisfiable. However, if we set do = 0.001, then there does
not exist ¢ that can make S satisfiable with |c;| < 0. Hence,
we say S is do-robustly unsatisfiable. O

The bound ¢ of “undetectable perturbations” corresponds to
the error bound of ICP. It can be made very small in practice
(e.g., 107%). To be precise, we have the following theorem:

IThe notion of soundness and completeness have quite different, although
related, definitions in different communities. We will give clear definitions
when a formal notion is needed (such as §-completeness). Informally, we will
only use “sound and complete” together to avoid mentioning their separate
meanings that may cause confusion.



Theorem 1. Let S be a system of real equalities and in-
equalities. Let & be the preset error bound of ICP. If for any
¢ satisfying |c;| < 6, S¢ is unsatisfiable, then ICP returns
“unsatisfiable” on S.

Proof: First, note that we only need to consider systems
of equalities. This is because by introducing a new variable, an
inequality f(Z) > ¢ can be turned into an equality f(Z) =y
with the interval bound y € (¢, +00).

Now, let S : /\f:1 fi(Z) = 0 be a system of equalities,
where the variables are bounded by the initial interval bounds
7 € I, and f; € R[] are polynomials.

Suppose S is decided as satisfiable by ICP. ICP returns an
interval solution Iz for Z. The § error bound of ICP ensures

that:
k

iz e I [/\ | fi(Z)] < 0].

Let @ be the witness to the above formula. We then have
(fil@)=c1Nher <6) Ao A (fe(@) = e A e <0).

Consequently, (¢y, ..., cx) is indeed a perturbation vector that
makes S(1ck) /\f=1 fi(#) = ¢; satisfiable with the
solution @. As a result, S is not d-robustly unsatisfiable, which
contradicts the assumption. [ ]

This property ensures that ICP is not just a partial heuristic
for nonlinear problems, but satisfies a “numerically relaxed”
notion of completeness, which we call j-completeness:

o If S is satisfiable, then ICP returns “satisfiable”.

o If S is §-robustly unsatisfiable, then ICP returns “unsat-

isfiable”.

Consequently, the answer of ICP can only be wrong on
systems that are unsatisfiable but not §-robustly unsatisfiable,
in which case ICP returns “satisfiable”. We can say such
systems are “fragilely unsatisfiable”.

In practice, it can be advantageous to detect such fragile sys-
tems. In bounded model checking, an “unsatisfiable” answer of
an SMT formula means that the represented system is “safe”
(a target state can not be reached). Thus, fragilely unsatisfiable
systems can become unsafe under small numerical perturba-
tions. In the standard sense, a fragilely unsatisfiable formula
should be decided as “unsatisfiable” by a complete solver, and
such fragility will be left undetected. Instead, ICP categorizes
such fragilely unsatisfiable systems as “satisfiable”. Moreover,
ICP returns a solution. Note that this solution is spurious for
the unperturbed system, but is informative of the possible
problem of the system under small perturbations. On the other
hand, ICP returns “unsatisfiable” on a system if and only if
the system is d-robustly safe. The error bound § of ICP can
also be changed to allow different levels of perturbations in
the system.

Our checking and validation procedures are devised to
preserve such correctness guarantees of ICP. Formally, we
have the following theorem.

Theorem 2 (§-completeness of Check()). Let ¢ be the pre-
processed input formula for Check(), and 0 the error bound

of ICP. If v is satisfiable, then the Check() procedure returns
“satisfiable”. If  is §-robustly unsatisfiable, then the Check()
procedure returns “unsatisfiable”.

A detailed proof of the theorem is contained in our extended
technical report [13].

As a technical detail, we need to mention that the prepro-
cessing procedure may change the actual § in the robustness
claims. The reason is that when we preprocess a formula ¢ to
¢, new variables are introduced for compound terms, and new
constants are used. Perturbations allowed on the new constants
may accumulate in ¢’. For instance, 22 = 1Az = 0 is robustly
unsatisfiable for § = 1/2. But when it is preprocessed to
22—h=0Ah=1Az =0, the perturbations on the first two
atoms can be added, and in effect the formula is no longer
1/2-robustly unsatisfiable (z2 —h = —1/2Ah=1/2Az =0
is satisfiable). Note that the new formula is still 1/3-robustly
unsatisfiable. The change of ¢ is solely determined by the
number of the new variables introduced in preprocessing. In
practice, when the exact error bound is needed, a new ¢’ can
be calculated for the robustness claims that we make for the
original formula. As is usually the case, the error bound is
small enough (e.g. 107%) such that §’ and ¢ are of the same
order of magnitude.

V. ASSERTION AND LEARNING PROCEDURES

In a standard DPLL(T) framework, the theory solver pro-
vides additional methods that facilitate the main checking
procedures to enhance efficiency. First, a partial check named
Assert() is used to prune the search space before the complete
Check() procedure. Second, when conflicts are detected by
the checking procedures, the theory solver uses a Learn()
procedure to provide explanations for the conflicts. Such
explanations consist of theory atoms in the original formula,
which are added to the original formula as “learned clauses”.
Third, when conflicts are detected, the theory solver should
backtrack to a previous consistent set of theory atoms, using
the Backtrack() procedure.

In this section, we briefly describe how these additional
methods can be designed when the interval methods in ICP
are used in the checking procedures. A complete description
of the procedures requires references to more details of ICP,
which can be found in our extended technical report [13].

A. Interval Contraction in Assert()

In the DPLL(T) framework, besides the Check() procedure,
an Assert() procedure is used to provide a partial check of
the asserted theory atoms [10]. We use interval contraction
(Definition 2) to detect early conflicts in Assert() in the
following way:

In each call to Assert(), a new atom x ~ c is added to the set
A of asserted theory atoms. First, the interval assignment on
x is updated by the new atom z ~ c. Then, Assert() contracts
the interval assignment I for all the variables with respect to
the linear and nonlinear constraints. That is, it takes I as input,
and outputs a new vector of intervals I’, such that (I, ) is a
valid contraction step (Definition 2) preserving the consistency
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conditions (Definition 3). If I’ becomes empty, it represents an
early conflict in A. Otherwise, Assert() returns the contracted
intervals as the updated 1.

B. Generating Explanations and Backtracking

1) Generating Explanations: As described in Section II-
A, ICP returns “unsatisfiable” when the interval assignment
on some variable z is contracted to the empty set. When
this happens, we need to recover the set of atoms that has
contributed to the contraction of intervals on the variable z.
This can be done by keeping track of the contraction steps.

Let x be a variable in ¢, and [ a theory atom of the form
y ~ cin ¢. For convenience we can write [ as y € IY. Suppose
x has a contraction sequence S, = (I7, ..., I¥). We define:

Definition 6. The theory atom 1 is called a contributing
atom for x, if there exists a contraction step (I}, I} ;) in

Sy, satisfying that I, = I N F(I), where I} appears in I.

The contributing atom list for a variable x is defined as
L, = A{l:1is a contributing atom of x}. We can prove that
when the interval on z is contracted to the empty set, i.e.,
when I = (0, it is sufficient to take the negation of L, as the
learned clause:

Proposition 2. Let x be a variable in formula ¢ with a con-
traction sequence (I¥, ..., I%). Let L, be the contributing atom

sy dpy

list of x. Suppose I =0, then N, A\ L, A L, is unsatisfiable.

A detailed proof is contained in [13].

2) Backtracking: When an inconsistent set A of atoms is
detected by either Assert() or Check(), the solver calls the SAT
solver to backtrack to a subset A’ of A and assert new atoms.
The theory solver assists backtracking by eliminating all the
decisions based on atoms in A\ A’, and restores the solver state
back to the decision level where A’ is checked by Assert().
Since the Assert() procedure stores interval assignments during
the contraction process, this is accomplished by restoring the
interval assignment at that level.

VI. EXPERIMENTAL RESULTS

We have implemented a prototype solver using the
realpaver package for ICP [14] and the open-source SMT
solver opensmt [4]. We accept benchmarks in the SMT-
LIB [5] format, and have extended it to accept floating-point
numbers. All experiments are conducted on a workstation with
Intel(R) Xeon 2.4Ghz CPU and 6.0GB RAM running Linux.

A. Bounded Model Checking of Embedded Software

Our main target domain of application is bounded model
checking of embedded software programs that contain nonlin-
ear floating point arithmetic. The benchmarks (available online
at [1]) in Table I are generated from unwinding a program that
reads in an array of unknown values of bounded length, and
tries to reach a target range by performing different arithmetic
operations on the input values [16].

In Table I, We show the running time comparison between
LRA+ICP and the HySAT/iSAT tool [3]. (hysat—-0.8.6 and

| D [ #Vars [ #L, [ #N, [ #1 [ Result || LRA+ICP | HySAT

Benchmark Set: AddArray
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6 10 3 0 1 | UNSAT 0.06s 0.04s
8 36 10 0 1 | UNSAT 0.09s 303.03s
31 1634 735 0 1 UNSAT 0.93s mem-out
Benchmark Set: MultiArray-1
5 10 3 20 1 UNSAT 0.23s 0.02s
7 30 8 28 1 UNSAT 0.04s 7.21s
8 121 40 32 1 UNSAT 0.12s 56.46s
16 817 320 64 1 UNSAT 0.32s mem-out
26 | 1687 670 104 2 SAT 87.45s mem-out
Benchmark Set: MultiArray-2
9 208 75 36 1 | UNSAT 0.73s 244.85s
10 295 110 40 1 | UNSAT 0.11s 123.02s
11 382 145 44 1 | UNSAT 0.12s 3.96s
20 | 1165 460 80 1 UNSAT 0.30s mem-out
26 | 1687 670 104 2 SAT 65.72s mem-out
Benchmark Set: MultiArrayFlags
11 861 337 44 1 UNSAT 0.19s mem-out
21 2131 847 84 1 UNSAT 0.93s mem-out
31 | 3401 1357 124 1 | UNSAT 0.65s mem-out
51 5941 2377 204 1 UNSAT 26.17s mem-out
TABLE I: LRA+ICP and HySAT on BMC Benchmarks
[ name [ cvc3(s) | LRA+ICP [[ name [ cvc3(s) | LRA+ICP ||
10u05 2.21 8.87 20revert 6.73 36.12
20ul0 5.54 14.25 30ul5 13.52 120.21
40f10 117.53 89.01 40125 123.97 175.28
40f50 228.25 99.26 40199 240.11 215.12
40m10 | 120.16 86.29 40m25 120.18 153.01
40m50 | 213.12 111.87 40m99 237.87 217.92
40s10 41.445 280.06 40s25 40.38 180.15
40s50 37.59 180.12 40s99 35.23 189.43
40u20 28.31 231.21 c40f timeout 270.12
c40m timeout 279.45 c40s 34.12 301.76
140f 15.02 320.12 140s 20.32 242.75
m40e 25.72 113.23 m40 226.21 182.12

TABLE II: LRA+ICP and CVC3 on QF_UFNRA Benchmarks

its new version isat give roughly the same results on the
benchmarks, we picked the best timings.)

In the table, the first column (“D”) is the unrolling depth
of the original program. The number of variables (# Vars),
linear constraints (#L,), and nonlinear constraints (#N,,)
are the ones that actually effective in the theory solver, after
preprocessing is done. They can be much lower than the
raw numbers appearing in the benchmark. The “#1” column
is the number of iterations of the linear-nonlinear checking
loop (Step 2-4 in Section III-A) that are used in obtaining
the answer. “mem-out” indicates that HySAT aborted for the
reason that no more memory can be allocated.

For the “UNSAT” instances, the linear solver detects con-
flicts in the linear constraints early on, and avoids solving
the nonlinear constraints directly as in HySAT. For the “SAT”
instances, the two iterations of the linear-nonlinear checking
loop proceed as follows: Initially, no linear conflicts were
detected, and ICP is invoked to solve the nonlinear constraints
and return an interval solution. The linear solver then detects
that the interval solutions violate a set of linear constraints,
which are added to the constraints considered by ICP (Line
6 in Fig. 3). This concludes the first iteration. In the second
iteration, ICP solves the expanded set of constraints and return
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a new interval solution. Then the linear solver detects no
further conflict and return “SAT” as the final answer. This
concludes the second iteration.

We see that by separating the linear and nonlinear solving
stages, we can exploit the highly efficient linear solver for
solving the linear constraints and invoke the nonlinear solving
capacity of ICP only when needed. The proposed refinement
loop ensures that the correctness guarantees of ICP are pre-
served under such separation of linear and nonlinear solving.

B. QFNRA Problems from SMT-LIB

We have obtained results on QF_UFNRA benchmarks on
SMT-LIB [5]. So far the only solver that solves the same set
of benchmarks is CVC3 [2]. (The HySAT solver uses a special
format. CVC3 does not accept floating point numbers in the
previous set of benchmarks.)

In Table IT we compare the LRA+ICP solver with CVC3.
The data are plotted in Fig 6. (The timeout limit is 1000s.)
The timing result is mixed. Note that our solver ensures
d-completeness and does not have specific heuristics. Con-
sequently, our solver performs rather uniformly on all the
benchmarks, whereas CVC3 can be much faster or slower on
some of them. (We are not aware of the solving strategy in
CVC(C3.) To evaluate the influence of the error bound ¢ on
the speed of the solver, we have set it to different values
51 = 107! and 8, = 10~6. However, the difference is not
significant on this set of benchmarks. The reason for this may
be that the nonlinear constraints in the benchmarks are all of
the simple form “x = y2z” with few shared variables.

VII. CONCLUSION

We have proposed a novel integration of interval constraint
propagation with SMT solvers for linear real arithmetic to
decide nonlinear real arithmetic problems. It separates linear
and nonlinear solving stages, and we showed that the pro-
posed methods preserve the correctness guarantees of ICP.
Experimental results show that such separation is useful for
enhancing efficiency. We envision that the use of numerical
methods with correctness guarantees such as ICP can lead to
more practical ways of handling nonlinear decision problems.
Further directions involve developing heuristics for different
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systems with specific types of nonlinear constraints and extend
the current results to transcendental functions.
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Abstract—Complementary synthesis automatically synthesizes
the decoder circuit £~ of an encoder E. It determines the
existence of £~ ' by checking the parameterized complementary
condition (PC). However, this algorithm will not halt if £
does not exist. To solve this problem, we propose a novel halting
algorithm to check PC in two steps.

First, we over-approximate PC' with the linear path unique
condition (LP), and then falsify L P by searching for a loop-like
path. If such a loop is found, then £~" does not exist; otherwise,
LP can eventually be proved within E’s recurrence diameter.

Second, with L P proved above, we construct a list of approx-
imations that forms an onion-ring between PC and LP. The
existence of £~' can be proved by showing that E belongs to
all these rings.

To illustrate its usefulness, we have run our algorithm on
several complex encoder circuits, including PCIE and 10G
Ethernet. Experimental results show that our new algorithm
always distinguishes correct Es from incorrect ones and halts
properly.

Index Terms—Halting Algorithm, Complementary Synthesis

I. INTRODUCTION

Complementary synthesis has been proposed by us [1] to
automatically synthesize an encoder circuit E’s decoder !
in two steps. First, it determines the existence of E~! by
checking the parameterized complementary condition(PC),
i.e., whether E’s input can be uniquely determined by its
output on a bounded unfolding of E’s transition function.
Second, it builds E~! by characterizing its Boolean function
with an all-solution SAT solver.

However, the bounded nature of the first step makes it an
incomplete algorithm that will not halt if £~! does not exist.

To solve this problem, as shown in Figure 1, we propose a
novel halting algorithm to check PC' in two steps:

1) First, we over-approximate PC' with the linear path
unique condition (LP), i.e., every linear path of F
longer than a particular parameter p always reaches
the unique state set SU, in which the input letter
can be uniquely determined by the output letter, the
current state and the next state. We then define the
negative condition of LP.i.e., the loop-like non-unique
condition(LL). We can falsify LP and prove LL by
searching for a loop-like path that does not reach SV
within E’s recurrence diameter rd. If we find such a
loop-like path, then LL is proved and E~! does not
exist; otherwise, a parameter p can eventually be found

©2010 FMCAD Inc.
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to prove L P. In this case, we need the second step below
to further check PC.

Second, with p found in the first step that proves L P, we
construct a list of approximations that forms an onion-
ring between PC' and its over-approximation LP. If F¥
is found in a certain ring but not in the next inner ring,
then PC is falsified and E~! does not exist; otherwise,
the existence of E~! is proved.

2)

We have implemented our algorithm with the OCaml lan-
guage, and solved the generated SAT instances with Zchaff
SAT solver [2]. The benchmark set includes several complex
encoders from industrial projects (e.g., PCIE and Ethernet),
and their slightly modified variants without corresponding
decoders. Experimental results show that our new algorithm
always distinguishes correct encoders from their incorrect vari-
ants and halts properly. All experimental results and programs
can be downloaded from http://www.ssypub.org.

This paper’s contribution is: We propose the first halting
algorithm to determines the existence of an encoder’s decoder.

The remainder of this paper is organized as follows. Sec-
tion II presents background materials. Section IV introduces
how to over-approximate PC' with LP, and how to falsify
LP by searching for loop-like paths. Section V discusses how
to construct the onion-ring, and how to determine whether F
belongs to a certain ring. Section VI describes how to remove
redundant output letters to minimize circuit area, while Section
VII and VIII present experimental results and related works.
Finally, Section IX concludes with a note on future work.

II. PRELIMINARIES
A. Basic Notation of Propositional Satisfiability Problem

For a Boolean formula F over a variable set V, the
Propositional Satisfiability Problem(abbreviated as SAT) is
to find a satisfying assignment A : V' — {0, 1}, so that F’ can

Fig. 1. Relationship between PC,LP and LL
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be evaluated to 1. If such a satisfying assignment exists, then
F is satisfiable; otherwise, it is unsatisfiable.

A computer program that decides the existence of such a
satisfying assignment is called a SAT solver, such as Zchaff
[2], Grasp [3], Berkmin [4], and MiniSAT [5]. A formula to
be solved by a SAT solver is also called a SAT instance.

B. Recurrence Diameter

A circuit can be modeled by Kripke structure M = (S, [
,T, A, L), with a finite state set .S, the initial state set I C S,
the transition relation 7" C S x .S, and the labeling of the states
L : S — 24 with atomic proposition set A.

Kroening et al. [6] defined the state variables recurrence
diameter with respect to M, denoted by rrd(M), as the
longest loop-free path in M starting from an initial state.

rrd(M) def

I(so) A /\ T(sj,854+1) A /\ /\ Sj # Sk}

7=0k=j+1

max{i|3sg ..

6]

In this paper, we define a similar concept: the uninitialized
state variables recurrence diameter with respect to M,
denoted by wirrd(M), is the longest loop-free path in M.

wirrd(M) = max{i|3sg...s;
i1 -1
2)
A T(isii) A NN\ si # se}
§=0 §=0k=j+1

The only difference between these two definitions is that
our uirrd does not consider the initial state.

These definitions are only used in proving our theorems be-
low. Our algorithm does not need to compute these diameters.

C. The Original Algorithm to Determine the Existence of
Decoder

The complementary synthesis algorithm [1] includes two
steps: determining the existence of decoder and characterizing
its Boolean function. We will only introduce the first step here.

The encoder £ can be modeled by a Mealy finite state
machine [7].

Definition 1: Mealy finite state machine is a 5-tuple M =
(S, s0,1,0,T), consisting of a finite state set S, an initial

state so € S, a finite set of input letters I, a finite set of
output letters O, a transition function 7 : S x I — S x O
that computes the next state and output letter from the current
state and input letter.

As shown in Figure 2, as well as in the remainder of this
paper, the state is represented as a gray round corner box, and
the transition function 7' is represented by a white rectangle.

We denote the state, input letter and output letter at the n-
th cycle respectively as s,, i, and o,. We further denote the
sequence of state, input letter and output letter from the n-th
to the m-th cycle respectively as ', ;' and 07”

A sufficient condition for the existence of E~1 is the unique
condition, i.e., there exist two parameters d and [, so that ¢,, of
E can be uniquely determined by the output sequence 0213 ll
As shown in Figure 3, d is the relative delay between o) 5~
and the input letter i,,, while [ is the length of 021241.

However, the unique condition is unnecessarily restrictive,
because it may not hold when s,, is not reachable, even if £
is a correct encoder whose input can be uniquely determined
by its output in its reachable state set. So we need to rule out
unreachable states before checking the unique condition.

The continuous running character of communication circuits
provides us an opportunity to rule out unreachable states easily
without paying the expensive cost of computing the reachable
state set. That is to say, we only need to check the unique
condition on the state set RS that can be reached infinitely
often from S.

51 (s, /\ {(Sms1.0m) = T(5m,im)}} @)
Rs>» 2 | ] RS @)

q>p
RS* " lim RS>P 5)

p—00

Here, RS is the set of states that can be reached from S
with exact ¢ steps.

According to Equation (5) and Figure 3, RS°° can be easily
over-approximated by prepending a state transition sequence
of length p to s,, which forces s, to be in the state set
RSP = |-, RS?. Obviously, RS> and all RSP form
a total order shown below, which means a tighter over-
approximation of RS°° can be obtained by increasing the
length p of prepended state transition sequence.

IA . ;I
12

i(
On+d-] ===ee= Op ==== Onid-1
1 1 1
T r===-% T === T r---9% T
] J
n-p n
.

Fig. 3. The parameterized complementary condition
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RS>® C...C RS>P2C ... C RS”PL C ... where p2 > pl

Thus, as shown in Figure 3, the parameterized complemen-
tary condition(PC) [1] can be defined as:

Definition 2: Parameterized Complementary Condition
(PC) : For encoder E, E £ PC(p,d,l) holds if i, can
be uniquely determined by oZiz:ll on s,’{fz_l. This equals
the unsatisfiability of Fpc(p, d,!) in Equation (6). We further
define £ F PC as Jp,d,l: EF PC(p,d,l).

def

FPC' (p7 d? l)
/\’I'L+d—1

m=n—p

{(Sm-‘rh Om) = T(Sma Zm)}

+d—1 . X
A fn:n—P{(S{rn"’ll’ O/m) = T(S/m, Z;n)} ©)
A Nnntd—i Om = 0,
A g # i,

The 2nd and 3rd lines of Equation (6) correspond respec-
tively to two unfolded instances of E’s transition function. The
only difference between them is that a prime is appended to
every variable in the 3rd line. The 4th line forces the output
sequences of these two unfolded instances to be the same,
while the 5th line forces their input letters to be different.

III. CASE STUDIES

To facilitate the understanding of our idea, we use some
small examples shown in Figure 4,5 and 6.

A. Case study 1

The circuit in Figure 4a) stores its input port ¢,, in register
Sn+1, and then outputs it to output port o,,+1. The unfolding
of its transition function is shown in Figure 4b).
Obviously, ¢, is same as, and therefore can be uniquely
determined by s,41. So ¢, can be uniquely determined by
Sn, On, and S,41. So LP is satisfied by this circuit. Here, the
tuple < Sy, 0n, Sp4+1 > can be seen as a ring that surrounds
in.
Next, we expand the ring < s,,, 0y, Sp+1 > to another ring
< Sp, On,On+1, Sn+2 >, and perform the following 3 checks:
1) Whether ¢,, can be uniquely determined by the ring <
SnyOny Ont1, Sny2 >7 Obviously the answer is yes.

2) Whether i, can be uniquely determined by <
Ony On+1, Snt+2 >, the ring with s,, removed? Obviously
the answer is yes.

On

;
]

In

CR@a I NE

a) Mealy machine

In

b) Unfolding

In+1

Fig. 4. Case study 1

93

G ) &

a) Mealy machine

In

b) Unfolding

In In+1

Fig. 5. Case study 2

3) Whether 4, can be uniquely determined by <
On, On+1 >, the ring with s,, and s,42 both removed?
Obviously the answer is yes. In this case, we find that
in, can be uniquely determined by the output sequence
< Op, 0n+1 >. Thus, a decoder exists for this circuit.

B. Case study 2

The circuit in Figure 5a) connects a constant 1, instead of
input port ¢ to register s. So 4,, can never be determined by s,
o, and s,4+1 in all states. Thus, a loop-like path with length
1 will reach such a state, which satisfies L L and falsifies LP.
So no decoder exists for this circuit.

C. Case study 3

For the circuit in Figure 6a), the unfolding of its transition
function is shown in Figure 6b). It’s output is driven by
constant 1, instead of register s. Obviously, this circuit can
satisfy L P, which means 7, can be uniquely determined by
Sn,Opn and Spy1.

Next, we expand the ring < S, 0n, Sn4+1 > to another ring
< SpyOn, On+1, Snt2 >, and perform the following 3 checks:

1) Whether 4, can be uniquely determined by the ring
< Sp,yOn, Ont1, Snt+2 >7 The answer is no, because i,
never goto 0y, Onp+1 and Sp42.

2) Whether 4, can be uniquely determined by <
OnyOn+1,Sn+2 >, the ring with s, removed? The
answer is still no with the same reason.

3) Whether 4, can be uniquely determined by <

On,On+1 >, the ring with s,, and s,, 2 both removed?
The answer is still no with the same reason.

So in this case, no more expansion is needed, no decoder exists
for this circuit.

On On On+1
1 1 1
1 1 1

b) Unfolding

a) Mealy machine

f

In In+1

Fig. 6. Case study 3



a) The linear path
unique condition

b) The loop-like non-
unique condition

Fig. 7. Two new uniqueness conditions

IV. OVER-APPROXIMATING PC WITH LP AND
FALSIFYING LP BY SEARCHING FOR LOOP-LIKE PATH

A. Definition of Over-approximation

We first present some related definitions before defining the
over-approximation of PC.

Definition 3: Unique State Set SU and Non-unique State
Set S™V: For a circuit E, its unique state set SU is the set of
states s,, that makes i, to be uniquely determined by s,,0,
and sp41, i.e., makes FY in Equation (7) unsatisfiable. The
non-unique state set S%V is the complementary set of SU, i.e.,

sN % g _ gU.

FU %t
(5n+170n) = T(snain) 7
A(spp1,00) = T(sy,, i, 7
Nop =0}, Nsp =85, N Spy1 = Spq
Niy, # 10

To obtain a halting algorithm, we need to develop a negative
condition for PC, which can recognize all those £ F —~PC.

Unfortunately, it is very difficult, if not impossible, to de-
velop such a condition. So we choose to first over-approximate
PC with the linear path unique condition(LP), and then
develop a negative condition for LP, i.e., the loop-like non-
unique condition(L L). The definitions of L P and LL are given
below, and presented intuitively in Figure 7a) and 7b).

Definition 4: Linear Path Unique Condition (L P) : For
encoder £, E F LP(p) holds if every linear path of length
p always reaches the unique state set SU. This equals the
unsatisfiability of Fp(p) in Equation (8). We further define
EELPas3p: EE LP(p).

def

FLP( ) /\ {(5m+170m ET(vaim)} (8)

m=n—p

Definition 5: Loop-like Non-unique Condition (LL) :
For encoder £, E E LL(p) holds if there exists a loop-like
path of length p that reaches the non-unique state set S™V. This
equals the satisfiability of Frr(p) in Equation (9). We further
define B F LL as 3p: E'F LL(p).

n

Frr(p) = Frp(p) A \/

m=n—p+1

{Sm = sn—p} 9)

Equation (9) is very similar to Equation (8), except that
(VA » +118m = sn—p} is inserted to find a loop-like path.
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The intuition behind L P and LL is to check whether 7,, can
be uniquely determined by s,,S,+1 and o, with prepended
sf;llj. Here, parameters d and [ are removed, which makes it
easier to find the value of p .

B. Relationships between PC, LP and LL

The relationships between PC, LP and LL are :

1. LP over-approximates PCi.e.,F F PC — EF LP.

2. Between LP and LL, there is always one and only one
that holds,i.e.,F E LP < EF —-LL.

These relationships are presented intuitively in Figure 1, and
their proofs are presented below. Those impatient readers can
skip the remainder of this subsection.

Before proving these theorems, we need a lemma that
defines a new formula for LP.

Lemma 1: With F1p(p,d, 1) defined below:

Frp(p,d,l) = =

nidn—lp{(sm+l707n) (Sm,lm)}

A ARE A S 0) = Tlsi )}
Nop =0, Nsp =55, N Sny1 = 5,41
Nip # 1,
we have: F'rp(p,d,l) < Frp(p)

Proof: First, for the — direction. It is obvious that the
clause set of Fp(p,d,l) is a supper set of Frp(p), so the
— direction is proved.

Second, to prove the « direction, we list below all
additional sub-formulas that have been added into Equation
(8) to obtain (10), and also our methods to satisfy them with
a particular satisfying assignment A of Frp(p).

L An—n pi(s m.+170'/rn) = T(s,,,i,)}: This formula can
be satisfied by assigning A(sy,), A(im) and A(oy,) to s,., i,
and o/, respectlvely

2. /\;;+ n+1{(sm+1,om) = T(Sym,im)}: this formula rep-
resents a state transition sequence starting from s,,11, which
is satisfiable.

3. /\:Lnidn_jl{(s;nﬂ ,o0l,) =T(s),,i,)}: this formula rep-
resents a state transition sequence starting from s, ;, which
is satisfiable with the same assignment defined in 2.

So, every satisfying assignment A of Fpp(p) can make
Frp(p,d,l) satisfiable. So the « direction is proved.

Thus, this theorem is proved. [ |

In the remainder of this paper, we will use Fyp(p) and
Frp(p,d,l) interchangeably.

Theorem 1: E = PC(p,d,l) — EE LP(p)

Proof: Let’s prove it by contradiction. Assume that A :
V — {0, 1} is a satisfying assignment of F1p(p,d,1).

We define a new satisfying assignment A’ as:

(10)

Alom) v=ol, m#n
A'() def ) Alim) v=1i, m#n
) A(sm) v=s, m#n and m#n+1
A(v)  otherwise

(11
Thus, A’ is also a satisfying assignment of F'7p(p,d,1).
By comparing Equation (6) with (10), it is obvious that
A’ is a satisfying assignment of the unsatisfiable formula
Fpc (p7 d, l)



This contradiction concludes the proof. ]
Theorem 2: EF LP «— EF —-LL
Proof: For the — direction, let’s prove it by contradic-
tion. Assume that £/ F LL. This means there exists a loop-like
path that reaches state s, € S N

Assume the length of this loop is ¢, and the parameter of
E F LP is p. Then we can unfold this loop [p/q]+1 times, to
get a path that is longer than p and reaches a state s, € SV,
This will lead to E = =LP(p).

This contradiction concludes the proof of the — direction.

For the < direction, assume that £ F =LP and £ = —LL,
then for all p, Fy,p(p) is satisfiable.

Assume the uninitialized state variables recurrence diameter
of E is wirrd, and let p = wirrd + 1. Then Fpp(p) is
satisfiable, which means there is a path of length p that reaches
astate s, € SN. Because p is larger than wirrd, this path must
contain a loop in it, which also makes Fp;, satisfiable.

So E = LL holds, which contradicts with £ = —LL.

This contradiction concludes the proof of the <+ direction.

|

C. Algorithm to Check E= LP and EF LL

Based on the relationships discussed in Subsection IV-B, we
develop Algorithm 1(as shown below) to check £ = LP and
E'F LL. This algorithm also discovers the value of parameter
p if EE LP holds.

Algorithm 1 checkLPLL
1: for p=0— oo do

2. if Frp(p) is unsatisfiable then

3 print "EE LP(p)"

4 halt;

5 else if F7;(p) is satisfiable then

6: print "no E~! due to EF LL(p)"
7 halt;

8 end if

9: end for

According to Theorem 2, Algorithm 1 will eventually halt
at line 3 or 6 before p reaches E’s uninitialized state variables
recurrence diameter wuirrd. Thus, we have the following
theorem.

Theorem 3: Algorithm 1 is a halting algorithm.

With Algorithm 1, we can determine whether F is an
improperly designed encoder that leads to £ F LL. But if
E E LP, how to determine whether E is a correct encoder
that leads to £ F PC? We will discuss this problem in the
next section.

V. CHECKING E E PC BY CONSTRUCTING ONION-RING
A. Intuitive Description

To make it easier to follow our presentation, we present our
idea intuitively here with an example.

As shown in Figure 8, we add two new parameters b and
f to replace d and [. The backward parameter b refers to the
distance between state s, and s,. The forward parameter
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f refers to the distance between state s, and sy, ¢. The
relations between < b, f > and < d,[ > are:

d=f
l=b+f+1

Because Algorithm 1 already recognizes all Es that lead
to £ F LL, we only need to deal with those E's that lead to
E E LP(p) here. This will result in the following proposition:

Proposition 1: i, is uniquely determined by s,, o, and
Sn+1-

As shown in Figure 8, we can further generalize Proposition
1 by:

1) Replacing o,, with OZJ:{:,

2) Replacing s,, with s,,_,

3) Replacing 5,1 with s, 711,

12)

and thus obtain:

Proposition 2: i, is uniquely determined by s,_p, 0
and Sp4pq1.

It is obvious that Proposition 1 is a special case of Propo-
sition 2, with b =0 and f = 0.

With this generalization, our algorithm will be intuitively
described in the following five steps:

n+f
n—b

1) First, we ignore both s,,_; and s,,4 y+1, and test whether
iy, can be uniquely determined by to{: . If yes, our
algorithm halts with £ F PC.

2) Otherwise, we ignore s, _p, and test whether 4,, can be
uniquely determined by to{j and sy, r41. If yes, then
i, definitely does NOT depend on any o, with k < n—b,
but it may still depend on some oy with &k > n + f. So
we need to increase f by 1 and goto step 1.

3) Otherwise, we ignore s,y s+1, and test whether 4,, can
be uniquely determined by s,,_; and 02’_*{ . If yes, then
i, definitely does NOT depend on any o; with k& >
n+ f, but it may still depend on some oy with k& < n—b.
So we need to increase b by 1 and goto step 1.

4) Otherwise, we test whether ¢,, can be uniquely deter-
mined by s,,_p, 021’{: and s, ry1. If yes, then 4, may
depend on some o, with both Kk <n—0band k > n+ f,
so we need to increase b and f by 1, and goto step 1.

5) If the algorithm reaches here, then 4,, had been uniquely
determined by s, _p/, OZL]:, and s, /1 previously, but
NOT by s, OZJ_“,f and S, f+1 now, where b’ < b and
/' < f. This means that adding more o into to{: by

bt

On-b On+f
in.p iTn
le N
[ P (
Fig. 8. Forward and backward constraints



increasing b and f, will never make PC holds. Our
algorithm halts with £ = -PC.

In this algorithm, every step with a pair of b and f
corresponds to an onion-ring defined in subsection V-B. If
it halts at step 5, then F belongs to the ring corresponding
to & and f’, but does not belong to the next inner ring
corresponding to b and f, which means E~! does not exist.

Formal presentation and proof will be given in the next two
subsections.

B. Constructing Onion-Ring between PC and LP

According to Figure 8, we define the following formulas:

Funfola defines two unfolded instances of transition func-
tion, and constrains that their output sequence are equivalent,
whereas their input letters are inequivalent:

de
Funfold(pab7 f) :f
/\"+f {(sm+1,0m) =T (Sm,im)}

WL::L_‘—fp 13
A /\m:nfp{gcsgn+17 O'Irn) = T(S:H,Z;n)} ( )
+ _
/\:ln:nfb{om = OZm}
A i
Frackward constrains that s, _; equals s;_b:
def
Foackwara(p.b, ) = {sap =} (14)
Fforward constrains that s, 14 equals s, ¢
def oy
Frorward(p: 0, f) = {snt145 = 5n+1+f} (15)

With these formulas, we define 4 new unique conditions
between PC and LP.

LP_nobf(p,b, f): i, can be uniquely determined by
OZL{ . This equals the unsatisfiability of 7 p_nos¢ in Equation

(16).

)< (16)

LP_f(p,b, f): in can be uniquely determined by OZ:’;

and s, 14 7. This equals the unsatisfiability F'7, p_; in Equation
7).

FLP_nobf (pa ba f unfold

def
FLP_f (pa b7 f) éf unfold A Ffo’r'wa'rd (17)

LP_b(p,b, f): i, can be uniquely determined by s,_p
and o::f{: . This equals the unsatisfiability Fp p in Equation
(18).

(18)
LP _bf(p,b, f): in can be uniquely determined by s,_,

021‘{ and s,4145. This equals the unsatisfiability Frp 7 in

Equation (19).

def
FLP_b(pa bv f) i unfold A Fbackward

de
FLP_bf (P, b7 f) :f Funfold A Fbackward A Fforward (19)

These new unique conditions, when coupled with param-
eters b and f, will act as onion-rings between PC' and its
over-approximation LP.
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It is obvious that, LP_bf is very similar to LP, while
LP_nobf is very similar to PC. Such similarities will be
employed to prove the correctness of our approach.

Some lemmas that will bed used to prove the correctness
of the onion-ring approach are given below:

Lemma 2: EE LP_bf(p,b,f) — EE LP_bf(p,b, f+1)

Proof: Let’s prove it by contradiction. Assume that F F
-LP _bf(p,b,f) and E E LP_bf(p,b, f + 1), which means
that Frp_pr(p, b, f) is satisfiable while Frp_p¢(p, b, f + 1) is
unsatisfiable.

We can append a state transition to Frp »¢(p,b, f) after
Sn+f+1, and get a new formula F7 5, (p, b, f).

def
Frp_py(0,b, f) S Frer (b, f)

_ (20)
A (Sntg+2,0n4f41) = T(Snt 415 ingf41)
This newly appended state transition is satisfiable, which
makes F7 p . a satisfiable formula.
Assume A is a satisfying assignment of Iy p  (p, b, f). We

define another satisfying assignment A’ as

Alontf41) v=o0p p

A/(U) dif A(Zn+f+1) v= Z%L+f+1 (21)
A($”+f+2) v= 8n+.f+2
A(v) otherwise

Obviously, A" is a satisfying assignment of unsatisfiable
formula Frp_pf (p,b, f +1).

This contradiction concludes the proof. ]

Lemma 3: EE LP_b(p,b, f) — EE LP_b(p+1,b+1, f)

Its proof is similar to that of Lemma 2.

Lemma 4: 1f EF PC(p,d,l), then the following Equation
holds.

EE LPbf (p+d—1+1,0,d)
—~ EE LPb (p+d—-1+4+1,0,d)

Proof: For the — direction, according to Equation (18)
and (19), it is obvious that the clause set of F'7,p_s is a super
set of I'p_,, which means the unsatisfiability of the latter
one implies the unsatisfiability of the former one. So the «
direction is proved.

For the — direction, let’s prove it by contradiction.
Assume that Frp_pr(p+d — 1+ 1,0,d) is unsatisfiable, and
A is a satisfying assignment of Frp ,(p+d—1+1,0,d).

We define another assignment A’ as :

(22)

Aop) v=o0) where k<n
roydef ) Aliy) v=1i), where k<n
Alv) = A(sy) v=s), where k<n (23)
A(v)  otherwise

Obviously, A’ is a satisfying assignment of Equation (6),
which means E ¥ PC(p,d,l). This contradiction concludes
the proof of the — direction.

|

Lemma 5: If EE PC(p,d,l), then the following Equation

holds.

EE LP.b (p,l —
— EE LP nobf (pl-—

Its proof is similar to that of Lemma 4.

1,d)
1,d (24

d —
d_a)



An important theorem that defines the onion-ring is pre-
sented and proved below:

Theorem 4: If E E PC(p,d,!), then there exists a list of
unique conditions with their relationship shown below:

FE LP (p+d—14+1)
—~ EE LP.bf (p+d—141,0,0)
«— FEE LP_bf (p+d—-1+1,0,1)
— EE LP.bf (p+d—14+1,0,d—1)
«— FEE LP_bf (p+d—1+1,0,d) 25)
— FEE LPb (p+d—141,0,d)
— FEE LPb (p+d—142,1,d)
— EF LP_b (p,l —d—1,d)
« EFE LP_nobf (p,l—d—1,d)
—~ FE PC (p,d,l)

Proof: According to Equation (10) and (19), the <

relation between the 1st and 2nd line of Equation (25) holds.

According to Lemma 2, the «— relations between the 2nd
and 6th line of Equation (25) holds.

According to Lemma 4, the < relation between the 6th and
7th line of Equation (25) holds.

According to Lemma 3, the < relations between the 7th
and 10th line of Equation (25) holds.

According to Lemma 5, the «— relation between the 10th
and 11th line of Equation (25) holds.

According to Equation (6) and (16), the < relations be-
tween the last two lines of Equation (25) holds. [ |

In Equation (25), all < symbols form a total order, which
makes all unique conditions on the right-hand side of Fs to
form an onion-ring(as shown in Figure 1).

C. Algorithm Implementation

With those theorems presented in Subsection V-B, we use
the following Algorithm 2 to check E F PC.

Algorithm 2 check PCLP(p,b, f)

1: if Frp_nobs(p, b, f) is unsatisfiable then

print "EE PC(p, f,b+ f+1)"

halt;

. else if Frp s(p,b, f) is unsatisfiable then
checkPCLP(p,b, f +1)

else if F.p ,(p,b, f) is unsatisfiable then
checkPCLP(p+1,b+1, f)

. else if F'rp 5¢(p,b, f) is unsatisfiable then
checkPCLP(p+1,b+1,f +1)

else
print "no E~! due to EF -PC"
halt;

end if

2
3
4
5
6:
7
8
9

Algorithm 2 is invoked with the form check PCLP(p,0,0),
with p computed by Algorithm 1.

Algorithm 2 just follows the onion-ring defined by Equation
(25), from the first line to the last line. If £ F PC holds, it will
eventually reach line 2, and the existence of E-1lis proved;
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otherwise, it will eventually reach line 11, which means that
E does not belong to the current ring, and PC is falsified. So
E~1 does not exist.
Thus, with Theorem 4, we have the following theorem.
Theorem 5: Algorithm 2 is a halting algorithm.

VI. REMOVING REDUNDANT OUTPUT LETTERS

Although Algorithm 1 and 2 together are sufficient to
determine the existence of E~!, the parameters found by line
2 of Algorithm 2 contain some redundancy, which will cause
unnecessary large overhead of circuit area.

For example, as shown in Figure 9, assume that [ is the
smallest parameter value that leads to £ = PC(p,d,!), and
I < d, which means that i,, is uniquely determined by some
output letters o, with k& > n.

We further assume that line 2 of Algorithm 2 find out £ F
PC(p,d,l"). It is obvious that I’ > d, which make i,, to depend
on some redundant o, with £ < n.

So oZiZ:ET L s the sequence of redundant output letters,
which should be removed to prevent them from being instan-
tiated as latches in circuit £~

Algorithm 3 that removes these redundant output letters is
presented below:

Algorithm 3 RemoveRedundancy(p,d, ")
1: for [ =0—1 do

2. if Fpe(p,d,l) is unsatisfiable then
3 print "EE PC(p,d,l)"

4: halt;

5 end if

6: end for

VII. EXPERIMENTAL RESULTS

We have implemented our algorithm in Zchaff [2], and run
it on a PC with a 2.4GHz Intel Core 2 Q6600 processor, 8GB
memory and CentOS 5.2 linux. All experimental results and
programs can be downloaded from http://www.ssypub.org.

A. Benchmarks

Table I shows information of the following benchmarks.

1) A XGXS encoder compliant to clause 48 of IEEE-
802.3ae 2002 standard [8].

l It
L—redundant letters —
On+dl ===eececceceas On+d| ==== On+d-1
T b==-H T t===¥ T b===H T F===H T
lI—p ;[
le e N
) P 0 d (

Fig. 9. Redundant Output Letters



TABLE I
INFORMATION OF BENCHMARKS

XGXS | XFI | scrambler | PCIE | T2 et-
hernet
Line number
of verilog 214 466 24 1139 1073
source code
#regs 15 135 58 22 48
Data path 8 64 66 10 10
width

2) A XFI encoder compliant to clause 49 of the same IEEE
standard.

3) A 66-bit scrambler used to ensure that a data sequence
has sufficiently many O-1 transitions , so that it can run
through high-speed noisy serial transmission channel.

4) A PCIE physical coding module.

5) The Ethernet module of Sun’s OpenSparc T2 processor.

B. Experimental Results on Properly Designed Encoders

The 2nd and 6th rows of Table II compares the run time
of checking F F PC between [1] and our approach. The run
time of our approach are much larger than [1]. This is caused
by checking the unique and non-unique conditions defined in
Section IV and V.

The 3rd and 7th rows compare the discovered parameter
values, and some minor differences are found on parameter
p. This is caused by the different orders in checking various
parameter combinations.

According to [9], p is used to constrain the reachable states,
while d and [ will affect the run time of building £~ and
its circuit area. To prove this, we compared the run time of
building E~' with all-solution SAT solver in the 4th and
8th rows of Table II, and also compared the area of E!
in the 5th and 9th rows. These E~'s were synthesized with
DesignCompiler and LSI10 target library.

The results indicate that the differences in parameter p do
not cause significant overhead in the run time of all-solution
SAT solver and circuit area.

C. Experimental Results on Improperly Designed Encoders

To further show the usefulness of our algorithm, we need
some improperly designed encoders without corresponding
decoders.

TABLE 11
EXPERIMENTAL RESULTS ON PROPERLY DESIGNED ENCODERS
XGXS XFI scra- PCIE | T2 et-
mbler hernet
time chk
PC(sec) 0.49 59.19 2.52 1.46 35.17
d,p,l 1,0,1 0,3,2 0,1,2 2,1,1 4,0,1
[1] run time
allsat(sec) 1.16 1047.19 2.00 0.96 29.51
area 765 19443 1455 398 648
time chk
PC(sec) 1.32 88.68 7.23 2.73 84.47
d,p,l 111 0,3,2 0,2,2 2,1,1 41,1
Ours run time
allsat(sec) 1.38 1055.64 3.23 1.18 29.42
area 773 19481 1455 400 535
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TABLE III
EXPERIMENTAL RESULTS ON IMPROPERLY DESIGNED ENCODERS

XGXS XFI scra- PCIE T2 et-

mbler hernet

Alg Tresult | LP(1) | LL(2) | LL(2) | LP(1) | LP(1)
Alg 2 result | —PC NA NA -PC -PC
time(sec) 1.23 44.58 3.26 1.67 21.49

We obtained these improperly designed encoders by modi-
fying each benchmark’s output statements, such that they can
explicitly output the same letter for two different input letters.
In this way, input letter ¢,, can never be uniquely determined
by E’s output sequence.

The 2nd row of Table III shows the result of Algorithm 1,
while the 3rd row shows the result of Algorithm 2. The total
run time is shown in the 4th row.

For XFI and scrambler, the result of Algorithm 1 is LL,
which falsifies PC' directly. So the result of Algorithm 2 is
NA.

The results indicate that our algorithm always terminated,
and recognized these modified incorrect encoders.

VIII. RELATED WORKS
A. Complementary Synthesis

The concept of complementary synthesis was first proposed
by us [1] in ICCAD 2009. Its major shortcomings are that it
is incomplete, and its run-time overhead of building comple-
mentary circuit is too large.

The incomplete problem has been addressed by this paper,
while we [9] addresses the second shortcoming by simplifying
the SAT instance with unsatisfiable core extraction before
building complementary circuits.

B. The Completeness of Bounded Model Checking

Bounded model checking(BMC) is a model checking tech-
nology that considers only those paths of limited length. Many
researchers try to find out complete approaches for BMC.

One line of research [6], [10] tries to find out a bound b,
which can guarantee the correctness of a specification on all
paths, if the specification is correct on all paths shorter than
b.

The other line of research [11] tries to find out a pattern for
induction, such that the correctness of a specification within
any bound b implies the correctness on bound b + 1.

Our approach achieves completeness without following
these two approaches. Instead, we define two complement
uniqueness conditions, LP and LL, and find out proper
algorithms to check them.

C. Temporal Logic Synthesis

The temporal logic synthesis was first addressed by Clarke
et.al [12] and Manna et.al [13]. But Pnueli et.al [14] pointed
out that the complexity of LTL synthesis is double exponent.

One line of research [15]-[17] focuses on the so-called gen-
eralized reactive formulas of the form: (OOpy A- - - O0py,) —
(O0q1 A ---O0gy,). Complexity of solving synthesis problem
for such formula is O(N?).



The other line of research focuses on finding efficient
algorithm [18] for expensive safra determination algorithm
[19] on an useful formula subset, or just avoiding it [20].

Based on these research works, some tools [21] that can
handle small temporal formulas have been developed.

All these works assume a hostile environment, which seems
too restrictive for many applications. So Fisman et.al [22],
Chatterjee et.al [23] and Ummels et.al [24] proposed rational
synthesis algorithm, which assumes that each agents act to
achieve their own goals instead of failing each other.

D. Protocol Converter Synthesis

The protocol converter synthesis was first proposed by Avnit
et.al [25] to automatically generate a translator between two
different communication protocols. Avnit et.al [26] improved
it with a more efficient design space exploration algorithm.
The implementation of this tool is introduced in [27].

IX. CONCLUSIONS AND FUTURE WORKS

This paper proposes the first halting algorithm that checks
whether a particular encoder E has corresponding decoder.
Theoretical analysis and experimental results show that our
approach always distinguishes correct encoders from their
incorrect variants and halts properly.

One future work is to develop a debugging method to find
out why E~1 does not exist. For the failure caused by loop-
like path, we plan to develop a debugging mechanism based on
our previous work on loop-like counterexample minimization

[28].
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Synthesis for Regular Specifications over
Unbounded Domains
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Abstract—Synthesis from declarative specifications is an am- ities, possibly performing search over a very large space of
bitious automated method for obtaining systems that are correct integer tuples. Furthermore, this approach handles disjunctions
by construction. Previous work includes synthesis of reactive by a transformation into disjunctive normal form. Finally.

finite-state systems from linear temporal logic and its fragments. th ification | ts int ithmetic but not
Further recent work focuses on a different application area by € specinication language accepts Iinteger arithmetc but no

doing functional synthesis over unbounded domains, using a mod- bitwise constructs on integers.

ified Presburger arithmetic quantifier elimination algorithm. We In this paper we present a synthesis procedure that is
present new algorithms for functional synthesis over unbounded guaranteed to produce an efficient function that computes
domains based on automata-theoretic methods, with advantagesa solution of a given constraint on unbounded integers in

in the expressive power and in the efficiency of synthesized code.,. . - - .
Our approach synthesizes functions that meet given regular time linear in the combined length of input and the shortest

specifications defined over unbounded sequences of input andoUtput, represented in binary. Moreover, our specification
output bits. Thanks to the translation from weak monadic second- language supports not only Presburger arithmetic operations,
order logic to automata, this approach supports full Presburger put also bitwise operations and quantifiers. We achieve this
arithmetic as well as bitwise operations on arbitrary length aypressive power by representing integers as sets in weak
integers. The presence of quantifiers enables finding solutions di d-order loaic of WS1S) which i
that optimize a given criterion. Unlike synthesis of reactive monadic second-order oglc_;o one successor ( )V_V Ic '_S
systems, our notion of realizability allows functions that require KNOwn to be more expressive than pure Presburger arithmetic
examining the entire input to compute the output. Regardless [6], [7]. We use an off-the-shelf procedure, MONA [8], to

of the complexity of the specification, our algorithm synthesizes obtain a deterministic automaton that represents a given WS1S
linear-time functions that read the input and directly produce specification.

the output. We also describe a technique to synthesize functions .
with bounded lookahead when possible, which is appropriate As our central result, we show how to convert an arbitrary

for streaming implementations. We implemented our synthesis @utomaton recognizing the input/output relation into a function
algorithm and show that it synthesizes efficient functions on a that reads the input sequence and produces an output sequence
number of examples. that satisfies the input/output relation. Consequently, we obtain
functions that are guaranteed to run in linear-time on arbi-
trarily large integers represented as bit sequences. Assuming

Automated synthesis of systems from specifications ¢®nstant-time lookup of automaton transition, the running time
a promising method to increase development productivigf the synthesized functions is independent of the automaton
Automata-based methods have been the core technique siae. These properties are a consequence of our algorithm,
reactive synthesis of finite-state systems [1], [2], [3]. In thiand we have also experimentally verified them on a number of
paper, we show that automata-based techniques can alscex&mples. Our result solves the problem of synthesis of general
used to perform functional synthesis over unbounded daMS1S specifications that are not necessarily causal. Our basic
domains. In functional synthesis, we are interested in synthagorithm generates implementations that h@¢&") time and
sizing functions that accept a tuple of input values (rangirgpace complexity, wher&/ is the number of bits of input
over possibly unbounded domains), and generate a tupleanfl output. We show how to reduce space consumption to
output values that satisfy a given specification. Our effor3(log V) if the time is increased t®(N log N).
are inspired in part by advances in software synthesis forWe also examine synthesis for sub-classes of WS1S speci-
bit-manipulating programs [4]. Our goal is to develop antications that can be implemented using bounded memory. We
analyze complete algorithms that require only a declaratiigroduce a class of implementations based on a finite union
specification as input. Recently, researchers have proposé@synchronous transducers, and show that they can be used
[5] a technique for functional synthesis based on quantifite implementk-causal specifications as well as specifications
elimination of Presburger arithmetic. in Presburger arithmetic without bitwise operations.

In the previous approach, the functions generated by quanti- 0 E
fier elimination can be inefficient if the input contains inequal- _ - EXAMPLES

A. Parity Bit Computation

Thi_s research was facilitated py the COST Action ICORIth Model The goal of our first example is to illustrate the form of

Toolkit—An Infrastructure for Reliable Computer Systesnsl the Dagstuhl - . .
the functions produced by our synthesizer. For a non-negative

Seminar on Software Synthesis, December 2009. The author list has be = o
sorted according to the alphabetical order. integerz, let z[k] denote thek-th least significant bit in the

I. INTRODUCTION
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x: 01101
y: 10000

Fig. 2. Input x and outputy
satisfying parity specification

Fig. 1. AutomatonA for parity
specification betweer andy

Transition State | 7

{g0} > {a1, 42} o | (40,0)
{a0} > {a1, g2} @ | (01
{a0} = {a1, a2} q (g0, 1)
{a0} > {a1, a2} a | (9,0)
{a1, a2} > {a1, a2} q (q1,0)
{1, a2} > {q1, g2} q2 (g2,0)
{a1, a2} > {a1, a2} q1 (q2,0)
{1, a2} = {a1, g2} q2 (q1,0)

Fig. 3. AutomatonA’ for computing parityy of input =

qo

Fig. 4. Running synthesized function on input shown in Fig. 2

Fig. 5.

Beam balance with three weights

such that(q, (0;Uc,),q’) is a transition in the automatoA.
We indicate functiong in A’ by additional circles around
individual states, e.g.¢({¢1,42}) = q¢. Figure 4 shows
the run of A’ on the input01101. The synthesized function
first runs the deterministic automatotf (the upper part of
Figure 4, ending in stat¢q:, ¢2}). The synthesized function
then picks a state according top (the statey; in case of our
example), and runs backwards according tehile computing
the output bits. The lower part of Figure 4 shows the backward
computation followingr defined in Figure 3; the backward run
generates the bits0000 of the output.

B. Synthesizing Specialized Constraint Solvers

Our next examples illustrate a range of problems to which
our synthesis technique applies. Consider first the beam bal-
ance (scale) depicted in Figure 5. We are interested in a
function that tells us, for any object on the left-side of the

binary representation of. (We write the binary digits starting beam, how to arrange the weights to balance the beam. We are

with the least significant one on the left, 56001, is a binary

given three weights, with, 3, and9kg, respectively. We use

representation of 19.) Our first specification states that the fif8¢ variablew for the weight of the unknown object. For each
output bit,y[0] indicates the parity of the number of one-bitgvailable weight, we use two variables to indicate whether

in the input (Figure 2)y[0] = [{k | z[k] = 1}|%2.

the weight is placed on the left side andto indicate it is

Consequently, the synthesized function must examine thtgced on the right side of the beam. We obtain the constraint:

entire input before emitting the first bit of the output.

One way to specify this computation is as follows. Let

Nmaz have the propertyk > nua.. 2[k] = 0. To specify
y, introduce first an auxiliary sequence of bitsuch that

2= [k <nalk] = 1}1%2

for all n < nmaq, by definingz[k + 1] as xor of z[k] and
x[k + 1]. Then definey[0] to be z[nmqez)-

Figure 1 shows the generated automatbfor this specifi-
cation, accepting the word%}) (jﬁ]) . (fm) which satisfy
the given relation between: and] y. After applying our
construction to compute a function from to y, we obtain
the input-determinstic automatod’ shown on the left of

Figure 3, augmented with two labeling functiomsand ¢.

w1y + 313 +9lg = r1 4 3r3 + 9ry. (2)

Because each weight can only be use at most once, we require
that the solution also respects the following three constraints

)

When we give these four constraints to our tool, it compiles
them into a function. The function accepts arbitrary input
values and returns corresponding output values, performing
computation in time linear in the number of bits in the input.
E.g., if the object weight$1kg, then the program tells us that
we should use Weight on the left and Weigh8 and 9 on
the right side to balance the beam. It is easy to verify that
this response is correct by insertion into Equation 1 leading to

Lh+m <1 ls+r3 <1, lg+rg <1

The automaton is the result of first projecting out the parti +1.1=3-1+9-1. When asked forw = 15, the program
of A’ labels corresponding to the output, then applying thgbrrectly responds with “There is no output for your input.”

subset construction. Therefore, the labelsdincorrespond to

input bits, and the states are sets of states of the autordator-- Modifying Example to Minimize Output

Functionr tells us how to move backwards within a run_4f

Next, we consider a modified version of the balance exam-

to construct an accepting run of the underlying automaton ple to show that neither inputs nor outputs need to be bounded.
it thus recovers information lost in applying the projectioft also shows how to specify a function that minimizes
to A. Finally, function¢ tells us for every accepting state inthe output. In the previous example, we could only balance
A’ at which state ofA to start the backward reconstructionobjects up tol3kg because only one copy of each weight

The table on the right of Figure 3 showsfor A’: it maps
every transitions = S’ of A’ and every state’ € S’ into
a predecessor statee S, and a matching output value,,

was available. Assume we want to balance arbitrary heavy
objects with the minimal number of balance weightslp8,
and9kg. We keep the constraint from Eqn. (1) and replace the
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constraints in Eqn. (2) by a constraint that asks for a minimal X [TTTUTTTITTT]

solution: —_——
VUL U Ut . balanceéw, I, 1, U, i i 1) — \f_A;I:__‘/
SUI’T(ll,lg7l9,7’1,7“377’9) S SUI’T(Z/17lé7lé7T/17Té,Té) Y [ | l | H | l | H | l | ‘
where balandev, 1}, 14,15, 71, r%, r4) is the constraint obtained Fig. 6. Averaging signal values
from Egn. 1 by replacing; andr; by I, andr,, respectively, "
and sum refers to the sum of the listed variables. This 1l
constraint requires that every other solution that would also 12|
balance the scale for the given object has to use more weights w0}
than the solution returned. sl -
The newly synthesized program gives correct answers for o
arbitrary large natural numbers. E.g., let us assume the object at
weighs 12345123451234512345123456789kg, then the pro- 2t

gram tells us to také371680383470501371680384088 times
Weight9 on the right side and once Weighton the left side.

0 L L L L L L L L L
0O 10 20 30 40 50 60 70 80 90 100

Fig. 7. The result of applying the synthesized function that computes a
D. Finding Approximate Solutions smoothed version of a signal. The function on an arbitrarily long signal was
specified in WS1S.
Consider the constrai6tz+9y = z, wherez is the input and

x,y are inputs. The solution exists only wheis a multiple of
3, so we may wish to find:, y that minimizes|6z + 9y — z|, denote the number represented by the subrange of digits of
using a similar encoding with quantifiers as in the previousetweenk - ¢ andk + b:
example. The support for disjunctions allows us to encode the b
absolute value operator that is useful for finding approximatet + @, k+b] = z[k +a] +2z[k +a+ 1]+ ...+ 2" “z[k + ]
solutions. The tool synthesizes a function that given a value\gk gefine the smoothing relation between numbeaady by:
z, computesr, y to be as close te as possible. For example,
given the input 104, the tool outputs= 13 andy = 3. Vi. (4]d) — yli+4.i4+7] =
(xft..i43] + 2x[i+4..i4+7) + z[i+8..i+11]) div4

E. Folding and Inverting Computations Our synthesizer generates a function that, given the sequence

Consider the Syracuse algorithm function, whose one stepbits =, produces a sequence of bjjs Figure 7 shows an
is given by f(x) = if (2| z) thenz/2 else3x + 1. Consider input signal (dotted line) and the resulting smoothed signal
a relation on integers corresponding to iteratihgix times: (full line) that results after we applied the linear-time function
r(x,y) < f%(x)=y. (We could use such function to speedsynthesized by our tool to the input.
up experimental verification of the famo@s + 1 conjecture
that states/z > 0.3n.f"(z) = 1.) When we use(z,y) as
the specification and indicate as input andy as output, our A. Words and Automata

synthesizer generates a function that accepts a sequence of biggien a finite set of variable¥, we useXy to denote the
of z and outputs in linear time a sequence of bitsyathat  5iphapetsy,, = 2V. We omitV in Sy if it is clear from the
is given by 6-fold iteration of /. Note that, if the synthesis context. When used as a letter, we deribte Xy by 0. Given
from a specification (e.gy = f"(x)) succeeds, the runtime, finite wordw € ¥, we use|w| to denote the length af,
of the comp_utation is independent ofand is linear in t_he andw; to denote the letter on thieth position ofw. By ¢ we
number of bits ofz. Therefore, our approach can effectivelyyanote the empty word, of length zero. Given a partitioning
fold n iterations of f into one linear-time function on the 5 v/ into the setd andO and a lettew © Sy, we uses|; to
binary representations of inputs and outputs. denote the projection of to I, i.e., o|; = o N I. We extend
projection in usual sense to words and languages.

A finite automatonA over a finite set of variable¥ is

We next illustrate the use of specification of unboundeal tuple (X, Q, init, F, T), whereX = 2V is the alphabet @
numbers in simple signal processing task. Suppose vgea finite set ofstates init € @ is the initial stateg 7" C
have an input signalX with discrete values in the range@ x ¥ x @ is thetransition relation and F' C @ is a set of
{0,1,2,...,15} and we wish to compute a smoothed outpuinal states AutomatonA is deterministic if for all transitions
signal Y by averaging signal values with its neighbors, usingy, o1,4}), (q2,02,¢5) € T, ¢ = ¢z and oy = oy implies
the formulaY; = (X;_1 +2X,; + X, ;1) div4d. We specify this ¢] = ¢, holds. A is complete, if for all stateg € @ and letters
function in WS1S as a relation between unbounded integersg € 3, there exists a stat¢ € @ such that(q,0,¢’) € T.
andy, where we reserve 4 bits for value of the signal at eadtote that if A is deterministic and completé& describes a
time point (see Figure 6). For constant®, let z[k+a, k+b] total function from@ andX to Q.

Ill. PRELIMINARIES

F. Processing Sequences of Bits
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F == FAF|FVF|-F|tn<Iy|ty=tn
| tnlte] [tp <tp | tp=tp |(Cltn) |ty ~in
| Vposk.F' | Jposk.F | V&.F | 3z.F
tN = z|C|tn+iny|C-ty | tndivC |ty %C
| (nYin) |[(EnAty) [tn < C |ty >C
| 2" | ty[tp..TC] | ta[0..tp]
tp = k|C|k+C|k-C| maxBit(tn)
C = non-negative integer constant
Fig. 8. Syntax of WS1S where sets denote natural numbEks) @nd

elements denote positiond’4) in binary representations of numbers

Given an automatord = (X,Q,init, F,T) and a state
g € @, we useA, to refer to the automato(®, Q, ¢, F,T')
that has the same structure Asbut starts ay.

>), a sub-word of lengtla at positionk of a given integer:
(denotedz[k.."¢c]), congruence modul@? (denotedz ~, y),
the initial prefix of an integer:[0..k], the integer2? for a
position p, and the smallesp such thatz < 2P, denoted
maxBit(z).

C. Amortized Cost of Synthesis

We describe the cost of synthesis and synthesized program
in a unified framework, by considering the entire amortized
cost of applying a given specificatianon a series of inputs
bi,...,b,. Let f be a function with two arguments, so
that f(a,b) = c if the input-output pair(b,c) satisfies the
specificationa. We implement functiory using a function of
the formg(a, b, s) = (f(a,b),s’) that computeg and updates
its local state fronms to s’. We assume a fixed initial statg.

The presence of local state can make the computation more
efficient on a series of inputs. This framework accounts for

A run p of A on a wordw € ¥* is a sequence of statesSimple cases such as memoization and caching, as well as the

q1 - - - quw|+1 such that (i)g; = init and (i) for all 1 <7 <
lw| : (i, wi, giv1) € T. A run is acceptingif gj,+1 € F.
We sayw is accepted byA if there exists a run ofA on w
that is accepting. We denote i}(A) C X* the set of words
accepted byA.

The exhaustive rurp of A on a wordw € ¥* is a sequence
of sets of states); ... S|,,|4+1 such that (i)S; = {init} and (ii)
forall 1 <i < |w|, Sit1 ={¢ € Q|3qe€ Si,(qw;,q) €
T}. An exhaustive run isicceptingif S|, 41 N F # (). Note
that if A is deterministic, then the run of on a wordw is
unique and the elements in the exhaustive rumain w are
singletons.

Lemma 1:For an automatond with a set of states),
computing an exhaustive run of for a wordw € ¥* can
be done in timeO(|Q] - |w|) for a non-deterministic4, and
can be done in tim®(|w|) for a deterministicA.

Given an automatord = (X, Q,init, F,T) over vari-
ables V and a setl C V, the projection of A to I,
denoted byA|;, is the automatonX;, @, init, F,T;) with
Ty = {(q,01,¢) € QxZr xQ | Jo € Zy,(¢g,0,¢) €
T Aolr = or}. In the remainder, we fiX¥ to be the set of
input andO to be the set of output variables.

B. WSL1S as extension of Presburger Arithmetic

Figure 8 shows the syntax of weak monadic second-ordar |[z1, ..

more general case of on-the-fly specialization.

Given the specificatioru and the inputsby,...,b, we
defines, = g(a,b;,s;—1) for i € {1,...,n}. Let ¢’(a,b, s)
denote the time to computga, b, s). Let || denote the length
of value x. We define the amortized cost @f on inputs
a;bi,...,by by L3 ¢'(a,b;, si—1). Our main complexity
measure is then(s,, sy, n), which we define as the maximum
amortized cost over aly; by, ..., b, for which |a| < s, and
|b;| < sy, for all 4.

Observe that(s,, s, 1) is simply the complexity of running
function f once on inputs of sizes, and s,, respectively.
Another useful measure, of particular interest in synthesis,
IS Coo(Sa, $p) = limy, oo ¢(Sq, Sp,n), Which amortizes any
pre-computation that happens in finitely many steps. We
next present several examples to illustrate the cost function
Coo (84, sp) for implementations of several problems.

Example 1 (Finding an enclosing interval):  Consider
the problem of computing the smallest interval enclosing
a given number. More precisely, the goal is to compute
[z, zml y) = (L,U) where L = max{z; | z; < y}
andU = min{z; | y < =z;} given an unordered list of
numbersxy, ..., x,, (with the result arbitrary if thanax or
min expressions above are not defined). In this example, we
assume that each number takes constant space to represent,
. Zm]| = m and|y| = 1. An algorithm for one

logic of one successor, which we use as our specification lanvocation can simply make a single pass through the list,
guage for unbounded non-negative integers. The logic contagmnputing the currentnax of lower bounds ofy and the
all integer linear arithmetic operations and quantifiers, thusirrentmin of the upper bounds up to a given position in the
subsuming Presburger arithmetic. Furthermore, it contains tig. This gives the worst-case complexity of the algorithm.

expressionz[k] to extract thek-th least significant bit of the
numberz. It is also possible to find a-successor of position
k, with notationk + ¢, as well as thec-predecessor, with
notationk - ¢, denoting the positiomax(k — ¢, 0). Together

with quantification over positions, this allows the specificatiomvocation, g([x1, . .

If we use this algorithm as the implementatign(without
making use of state), we obtain, (m, 1) of O(m).

Consider next an alternative implementation, given by
9 ([x1,...,zm], vy, s), which behaves as follows: on the first
., Zml, Y, S0), builds a balanced binary

of arbitrary uniform bitwise relations on integer variablesearch tree storing the set of numbers..., z,, in time
To illustrate the expressive power of WS1S, we introdu@@(m logm), and returns this tree in the resulting stateOn
shorthands for some of the constraints that can be definedsubsequent invocationg, uses this tree to find the enclosing

this way: bitwise operations\( V), left and right shifting «,

interval (L, U'), which can be done in tim@(log m) by doing
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a lookup in the tree. Therefore, we obtain thainvocations S|, N F and constructs an accepting rg. . . g+ of A
require O(mlogm + nlogm), which givesc(m,1,n) € and the output word by proceeding backwards ovéerfrom
O(%(mlogm)+logm) andce(m, 1) = O(logm). Thus, we i = |w|toi = 1, as follows: it picks; € £ andg; € S; such
have seen that precomputation improves the amortized tithet (¢;, w; Uv;, ¢;+1) € T. When it reaches one of the initial
Cso(m, 1) from O(m) to O(logm). O states inS;, the result is an accepting run of the automaton
A; the desired output is the sequenge . . v, of the output
components of the labels in the reconstructed run.

A. Constructing Specification Automaton The Punspec implementation repeats the above construction

The input to our algorithm is a WS1S formuawhose free for each input wordw. From Lemma 1 we obtain the amor-
variableszi, ..., z. denote unbounded integers. We assuniied cost of Pnspec.
a partitioning of the index sef1,...,r} into inputsI and Lemma 2:If s4 denotes the size of the input automaton
the outputsO. In the first step, our algorithm constructs al and s,, denotes the size of the input word, then the
deterministic specification automatoh accepting words in Unspecialized implementatiaRnspec Solves the synthesis for
the alphabeE; . We use a standard automaton constructidRPut-bounded specifications in amortized tinfe, s.,, ) of
[9] and obtain an automatod characterizing the satisfying O(sa - sw) (consequentlycoc(sa, sw) is als0O(sa - sw))-
assignments of7, i.e. whose languag#&(A) contains pre- D
cisely the wordssyo ...0, € £}, for which G holds in
the variable assignmerit, ..., 2.) in which the k-th least

IV. SYNTHESISALGORITHM

Input-Bounded Synthesis of Specialized Implementations

We next present our main construction (illustrated in the
significant bit ofz, is one iff 0 < k < n andi € ox. We use Example 11-A), which avoids the dependence of the running

£(G) to denote the language ov&l o characterizing the time of computation of on the (potentially large) number of

satisfying assignments @f. From this correctness property itStates of the automatas. To obtain an implementation with
follows thatw € £(A) impliesw0? € £(A) for everyp > 0. optimal runtime, we transform the given automaténnto an
- input-deterministic automatad’ using the subset construction

B. Overview on the projectiond|;. The challenge is to extend the subset

All subsequent steps of our algorithm work with the Specifponstruction with the additional labeling functions that allow
cation automatont and do not depend on how this automatoHS t0 efficiently reconstruct an accepting run 4ffrom an
was obtained. Giverl, our goal is to construct a function that2ccepting run ofd’. Given such additional information, our
computes, for a given sequence of inputs bits a correspondfiRgcialized implementatioRspec runs A’ on the inputw and
sequence of output bits such that the combined word Y§€es the labeling to construct the output
accepted by the deterministic automaton. Our const.ruction introduces two .Iabeling functiomsand

Note that we seek an implementation that works uniformf The functiong maps each accepting stafeof A’ into one
for arbitrarily long sequences of bitsvhich means that it is Stateq € S that is accepting ind. The 7 function indicates
not possible to pre-compute all possible input/output pairs."ow to move backwards through the accepting run; it maps

We show our construction in several steps. First, we assuffgeh transitior(S, o;, 5’) of A" and a state’ € S into a pair
that we are only interested in outputs whose length does H6t70) € S5 x X, of new a state and an output letter, such that
exceed the length of inputs. For this case we start by dé-%i U0,,q’) is a transition of the original automatot

scribing a less time-efficient implementation (Subsection IV-@)efinition of synthesized data structure 4’, ¢, 7. Given
that depends on the size of, then describe an efficientan automatom = (X0, @, init, F,T), we construct an au-
version, showing that we can avoid the dependence on taenatonA’ = (X, Q’,init’, F’, T') and two labeling functions
size of A (Subsection IV-D). Finally, we show how to lift ¢ : " — @ and7 : (T’ x Q) — (Q x ¥o) such that (i)A4’
the assumption that the outputs are no longer than the inpigisieterministic, (i))£(A)|; = £(A’), and (iii) for every word
(Subsection IV-E). u € L(A") with an accepting runS; ... S, ;1 of A’, there

i . - .exists a wordw € L(A) with w|; = w and an accepting
C. Input-Bounded Synthesis of Unspecialized Implementat|orﬂrs1 ¢1 - -qn+1 Of A such thatg(S,+1) = gn41 and for all

In the first version of our solution we assume that, given an< ; <, (¢;, w;|o) € 7((Si, us, Si41), gis1). We defineA’
input bit sequence, we seek an output sequence ofdhee a5 follows:

lengthsuch that the input and output pair are accepted by th&, NG
specification automatoA. init’ B (init)
Our unspecialized implementatioRynspec Simulates the .

(SeqQ |SNF+£0}
T’ — {(S,i,Sl) EQ/XEI ><Q/|
S"={q |3q,0.(q.0,¢) €T Nq€ S Aol =i}}

given automatonA = (X;u0,@,init, F,T) on the input
word w € X7 and tries to find an accepting runspec
first constructs the exhaustive ryn= S ... S, of the
projected automatord|; on w (see preliminaries for the We definep : F/ — @ such that ifS € F’ then¢(S) € SNF;
definition of automaton projection and exhaustive run)p If such value exists by definition df’.

is not accepting, then there is no matching output word andWe definer : (7" x Q) — (Q x 3o) for (S,4,S") € T" and
Punspec terminates. Otherwiseynspec Picks a statey,, 11 in ¢’ € S’ as follows. By definition ofl”, there exists a transition
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(¢.0,9') € T of the original automaton such thaf; = i. We amortized timec(s 4, s.,,n) of O(12°4 + 5,,). Consequently,
pick an arbitrary such transition and defingS,:,5’),¢') = the amortized timecs(s4, s,) as the number of queries
(g,0]0). approaches infinity i€)(s,).

Computing A’ and 7 through automata transformations. E. Extending Synthesis to Arbitrary Regular Specifications
In our implementation, we represent bati and = in one
automaton, which we compute using the following sequenge

?f aL_Jtt_omata tr?nstf?rmatlonﬁ.t Bec_?usegrl?fetrs to tstets_ of even if the output has a larger number of bits than the input.
r_ar;lfn_s, vaJe Irs urr]nt eFacT rar;SIclc?:str I(r:]toar? Zic?&];fo’nConsider the simple specificatian< y, wherez is the input
gV = (Zru0, @, init, . T), w u u and y is the output. Given the inputll, of length three

B = (Z1u0,Qp,initp, Fp, Tp) such that (representing the number 7), every value of output satisfying

In this section we extend the result of the previous section
allow computing an output that satisfies the specification

initg = (q,0,inity) for arbitrarily choseny, o the specification has the length at least four.

Qs = {initg}luT To adapt the solution in the previous section to the full

Fz = {(q,0,¢)€Qp|q €F} synthesis problem we generalize the notion of acceptance to

Tz = {(t,o.t') € QX Zruo X QB | take into account any number of zeros that could be appended
3¢,¢.¢" € Q. Io' € 100. to the input without changing the meaning of the input.
t=(q,0',¢) andt’ = (q,0,q")}. Therefore, if the automato’ finishes reading the input word

, ) _.and none of the states reached in the last step are accepting, it
Next, we projects to I; i.e., we replace every transitiongpecks whether one of the states can reach an accepting state
(¢,0,¢") in B by (g,01,¢'). Finally, we obtain automatol’ e reading only the input letted. The closure with the
by determinizingB|; using the classical ;upset construc’uoqnput 0 can be computed in polynomial time by computing
Now, every reachable state @ (other than inif;) corresponds e states that are backward-reachable from an accepting state
to a transition inA’. Assume we are given a statg in using only edges with input labél
C, theng. has the form{(¢:,01,41), -, (gr: ok, %)} With 15 e aple to emit the appropriate segment of the output,
VZ’J"”JI = UJ,'|1 = oy and corresponds o the transitionne packward-reachability computation keeps, for every state,
(f7017t2 in A", wheret = {¢; | 1 < i < k} and a5 gyeput word that leads to an accepting state. We use the
t' = {g; | 1 < i< k}. So, every state. in C' defines a nctiony : Q — 2% U {L} to store these words, where
labeling function for the corresponding transitidt o;,t’) O are the states of the specification automatoriVe write
that maps every state, € t' to a set of available pairs ¥(q) = L to denote that there is no input word € 0* that
(4i,0i]0). Our final labeling functionr picks for each state js accepted starting fromg. Formally, given the automaton
¢; one of the available pairs. A = (Sr00,Q,init, F,T), we sety = !9 and definey
Specialized implementation and its complexityThe special- inductively: for allg € Q :
ized implementationPspec runs A’ on the input wordw and .. | _Je ifgeF
constructs a rup = 51 ... Sj,+1. If pis not accepting, then (@) v"(e) = | otherwise
there is no matching output word and the function terminatqﬁ) let R be the set of stateg for which " (q) # L
Otherwise, it computes an accepting g4n . . gj,,+1 of A and ¥i(q) if g€ R
the output wordv as follows: ¢ (S = and, forall , . ,
1<i Sp\wl, (gi,vi) = ﬂ(&iﬁ,‘sf'ﬂﬁﬂﬁf‘f o V) = | olod(d) elsit3(a,0,¢) €T ol = Ong €,

The following theorem states the correctnessgfec and L otherwise. _

follows by construction. Observe that ify)(q) # L thent(q) is a word of length

Theorem 1:Consider an automatond and an input bounded by the number of states of the specification
wr ... w,. Then if there exists an output ..., such that automatonA. Therefore, the maximal amount by which the
W, ce i Un

is accepted byd, then Pypec computes output is longer than the input is bounded by the size of the

(wrUvy) ... (wy, Uvy,)

one such output . .. v,. If there is no corresponding outputSPecification automaton. .
then Pspec indicates that there is no output. To recognize leading zeros, we adapt the final statesf

The following theorem states that our construction achievés (Computed as foPspec in the previous section) and extend
the desired linear-time behavior and independence from labeling functiony as follows. Letfin(S) = {¢ € 5 |
size of the initial automaton. The constructiondf ¢, - takes ¢'(4) 7 L} be the states i’ that can reach input on zeros.
time singly exponential in the size of the automaton, but ispr — {S e qQ |fin(S)# 0}
done only once, so it is amortized for each invocation of they(S) = ¢ ¢ fin(S) s.t. [¢)(q)| = min{|y)(¢") | ¢ € fin(S)|}

automaton. Extracting the output for a given input takes time i
independent of the number of statesAh becaused’ and Note that the functiom(S) chooses one of the states that lead
have deterministic transitions. to an accepting state with an output word of minimal length.

Theorem 2:If s, denotes the size of the specificatiolThe implementation and its time complexity. Given an
automatonA ands,, denotes the size of the input word, therinput wordw; . . . w,,, the implementatioPyspec generates, as
Pspec solves the synthesis for input-bounded specifications #y,ec in the previous Subsection (IV-D), a ru, ..., Sp41.
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a lookup in the tree. Therefore, we obtain thainvocations S|, N F and constructs an accepting rg. . . g+ of A
require O(mlogm + nlogm), which givesc(m,1,n) € and the output word by proceeding backwards ovéerfrom
O(%(mlogm)+logm) andce(m, 1) = O(logm). Thus, we i = |w|toi = 1, as follows: it picks; € £ andg; € S; such
have seen that precomputation improves the amortized tithet (¢;, w; Uv;, ¢;+1) € T. When it reaches one of the initial
Cso(m, 1) from O(m) to O(logm). O states inS;, the result is an accepting run of the automaton
A; the desired output is the sequenge . . v, of the output
components of the labels in the reconstructed run.

A. Constructing Specification Automaton The Punspec implementation repeats the above construction

The input to our algorithm is a WS1S formuawhose free for each input wordw. From Lemma 1 we obtain the amor-
variableszi, ..., z. denote unbounded integers. We assuniied cost of Pnspec.
a partitioning of the index sef1,...,r} into inputsI and Lemma 2:If s4 denotes the size of the input automaton
the outputsO. In the first step, our algorithm constructs al and s,, denotes the size of the input word, then the
deterministic specification automatoh accepting words in Unspecialized implementatiaRnspec Solves the synthesis for
the alphabeE; . We use a standard automaton constructidRPut-bounded specifications in amortized tinfe, s.,, ) of
[9] and obtain an automatod characterizing the satisfying O(sa - sw) (consequentlycoc(sa, sw) is als0O(sa - sw))-
assignments of7, i.e. whose languag#&(A) contains pre- D
cisely the wordssyo ...0, € £}, for which G holds in
the variable assignmerit, ..., 2.) in which the k-th least

IV. SYNTHESISALGORITHM

Input-Bounded Synthesis of Specialized Implementations

We next present our main construction (illustrated in the
significant bit ofz, is one iff 0 < k < n andi € ox. We use Example 11-A), which avoids the dependence of the running

£(G) to denote the language ov&l o characterizing the time of computation of on the (potentially large) number of

satisfying assignments @f. From this correctness property itStates of the automatas. To obtain an implementation with
follows thatw € £(A) impliesw0? € £(A) for everyp > 0. optimal runtime, we transform the given automaténnto an
- input-deterministic automatad’ using the subset construction

B. Overview on the projectiond|;. The challenge is to extend the subset

All subsequent steps of our algorithm work with the Specifponstruction with the additional labeling functions that allow
cation automatont and do not depend on how this automatoHS t0 efficiently reconstruct an accepting run 4ffrom an
was obtained. Giverl, our goal is to construct a function that2ccepting run ofd’. Given such additional information, our
computes, for a given sequence of inputs bits a correspondfiRgcialized implementatioRspec runs A’ on the inputw and
sequence of output bits such that the combined word Y§€es the labeling to construct the output
accepted by the deterministic automaton. Our const.ruction introduces two .Iabeling functiomsand

Note that we seek an implementation that works uniformf The functiong maps each accepting stafeof A’ into one
for arbitrarily long sequences of bitsvhich means that it is Stateq € S that is accepting ind. The 7 function indicates
not possible to pre-compute all possible input/output pairs."ow to move backwards through the accepting run; it maps

We show our construction in several steps. First, we assuffgeh transitior(S, o;, 5’) of A" and a state’ € S into a pair
that we are only interested in outputs whose length does H6t70) € S5 x X, of new a state and an output letter, such that
exceed the length of inputs. For this case we start by dé-%i U0,,q’) is a transition of the original automatot

scribing a less time-efficient implementation (Subsection IV-@)efinition of synthesized data structure 4’, ¢, 7. Given
that depends on the size of, then describe an efficientan automatom = (X0, @, init, F,T), we construct an au-
version, showing that we can avoid the dependence on taenatonA’ = (X, Q’,init’, F’, T') and two labeling functions
size of A (Subsection IV-D). Finally, we show how to lift ¢ : " — @ and7 : (T’ x Q) — (Q x ¥o) such that (i)A4’
the assumption that the outputs are no longer than the inpigisieterministic, (i))£(A)|; = £(A’), and (iii) for every word
(Subsection IV-E). u € L(A") with an accepting runS; ... S, ;1 of A’, there

i . - .exists a wordw € L(A) with w|; = w and an accepting
C. Input-Bounded Synthesis of Unspecialized Implementat|orﬂrs1 ¢1 - -qn+1 Of A such thatg(S,+1) = gn41 and for all

In the first version of our solution we assume that, given an< ; <, (¢;, w;|o) € 7((Si, us, Si41), gis1). We defineA’
input bit sequence, we seek an output sequence ofdhee a5 follows:

lengthsuch that the input and output pair are accepted by th&, NG
specification automatoA. init’ B (init)
Our unspecialized implementatioRynspec Simulates the .

(SeqQ |SNF+£0}
T’ — {(S,i,Sl) EQ/XEI ><Q/|
S"={q |3q,0.(q.0,¢) €T Nq€ S Aol =i}}

given automatonA = (X;u0,@,init, F,T) on the input
word w € X7 and tries to find an accepting runspec
first constructs the exhaustive ryn= S ... S, of the
projected automatord|; on w (see preliminaries for the We definep : F/ — @ such that ifS € F’ then¢(S) € SNF;
definition of automaton projection and exhaustive run)p If such value exists by definition df’.

is not accepting, then there is no matching output word andWe definer : (7" x Q) — (Q x 3o) for (S,4,S") € T" and
Punspec terminates. Otherwiseynspec Picks a statey,, 11 in ¢’ € S’ as follows. By definition ofl”, there exists a transition
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idea then is to avoid storing all stat@s . . ., gy of the forward arithmetic specifications [5]. They key observation is that
run, and instead compute them on demand, storing onlyfumctions implementing Presburger specifications have the
sparse subsequengg, ¢, , - - ., ¢, Wherem = [log N]. Let form\/,(P;(z) Ay = t;(x)) for inputz and outputy.
p denote the current position in the backward run of the Lemma 3:For every WS1S specificatiofi that encodes a
synthesized function. The synthesized function maintains tfeemula in Presburger arithmetic, there exists a finite set of
invariant0 = ip < iy < ... < 4, < p. Initially it sets transducerd\/y, ..., M such thatM, ..., My = G.
ir, ~ N(1 —27%). To move back fronp to p — 1, it re-runs The key observation is that witness tertis) are computable
the forward automaton from the largegtfor which i, < p, using asynchronous transducers.
and redistributesiy1,...,4,, Similarly as for the initial Note that Presburger specifications are not computable
run, maintaining the ordering and the decreasing geometusing only one asynchronous transducer due to presence of
progression of distances, ;11 —i,+;. Because each positiondisjunctions in specifications. They are also not computable
pointer i; requiresO(log N) space and there afdeg N of using a finite union obynchronousransducers because of the
them, this implementation needilog® N) space. A run that division by constants.
updates innter$k+]i fori >0 re-reads?f’“ fraction of the | imitations of asynchronous transducers.
input and is calle®™ times, so the total time iI©(N'log N). | emma 4: There exists WS1S specifications cannot be im-
Unions of asynchronous transducers. An (asynchronous) plemented using a finite union of asynchronous transducers.
transducerM = (A, \, ) over input variabled and output ~ The proof is based on consider the following WS1S speci-
variablesO consists of (1) a deterministic automateh = fication G over input/ and outputO. We give G’ as regular
(37,Q,init, F,T) and (2) two labeling functions\ : 7" —  expression over the binary presentation olemd O:
Y5 and o : F — 26. A (more conventionalsynchronous TN\ 71N 0N [0\
transduceris a special case of an asynchronous transducer G = ) :((0> <0)> <1> (1> <0> .
where|A(¢)] =1 for all t € T and|¢(q)| =< for all ¢ € F.

The outcomeof M = (A, ), ¢) on a valid input word  Observation 1:Every transducerM = (4, ¢) with
w € L(A), denoted by ou(w), is the concatenation of £L(M) C L(G) and less tham states that accepts an input
output wordsus, . .., u, produced byM while readingw Wword (1"0)* must output a non-empty word within every
concatenated with the final word produced by i.e., if steps while reading this input.
P = qiqz - - . qn+1 IS the accepting run ol onw € L(A), then Observation 2:Every transducerM = (A, \, ¢) with
outy (w) = uy . .. untins1, Wherew; = Mg, wi, girq) forall  £(M) € L£(G) and less tham states that accepts the input
1 <i<nandunii = ¢(gni1). Note that the outcome of word (170)* for somek > 0, rejects all input wordg1"0)"
M is only defined for valid input words. The languagelt for [ > k.
denoted (M) is the is the union of valid input/output pairs Using the above observations and giverasynchronous
padded with trailing zeros to have equal lengthd/) = {w € transducersMy, ..., My with M; = (A;, Ai, i) such that
Sio | 3k ul 1 € L(A)OI Al o = outa (u] 1)0F}. L(M;) € L(G) it suffices to consider word$1™0)* for

An asynchronous transducer can express even certain speck 1, -, & + 1 to conclude that it cannot be the case that
fications that are not WS1S expressible. For example, considéf)|r = Ui:l,...,k L(A;).
a transducer that emits when reading) and emitsl when ~ Note thatG can be implemented by a finite set of trans-

readingl. Such transducer outputs a contiguous sequenceddtcers if the input is read from right to left. However, we
output bits whose length is the number of bits in the input.can concatenate specifications suchCawith their reversed

Given a finite set of transducerd; ..., M, with M, — Versions to obtain specifications that cannot be realized by
(4;, ;) and a languagé over the variablegUO, we say that transducers making both forward and backward passes.
M;, ..., My jointly implementL, written M, ..., M = L VII. L OOKAHEAD-CAUSAL SPECIFICATIONS

iff (1) each transducerd/; produces outputs satisfying the
specification, i.e.,L(M;) C L(G) and (2) the union of
M;’'s covers the valid inputs, i.e£(G)|r C U, £L(4;). We
say My,..., M;, implements a WS1S formulé/, denoted
Mi,...,M, E G, iff My,..., My = L(G).

Note that if My, ..., My, | G, then there exists a finite-

An interesting class of specifications that can be imple-
mented using a single asynchronous transducer are lookahead-
causal specifications discussed in this section.

The algorithms presented so far first read the entire input
and then generate a corresponding output. In some cases (e.g.,
. . in streaming applications), one might prefer an implementation
memory implementation fo that performs only two PASSES At starts outputting before reading the entire input. Specifica-

over th_e input (regardless df). In th? first pass, t_he |mp|_e- tions such as the signal processing example require reading a
mentation generates no output, but simply determines which an

. bounded number of bits ahead (three, in this case) to compute
the transducers accept. In the second pass, the |mplementaé|ﬁ)rbutput bit

generates the output for one of the transducers that accept. For notational simplicity we consider specifications

Transducers for Presburger specifications. The follow- spec(x,y) containing a single input-output pair and y.
ing lemma can be shown by analyzing the output of tHeurthermore, we assume that the specifications are total, that
quantifier-elimination based synthesis algorithm for Presburger Vz.3y.spec(z, y). If a specification is not total, we can
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transform it into a total specificatiospec’(x,y,e) given by the problem of deciding when an S1S specification can be
(spec(z,y) Ae=0)V ((—TJy.spec(z,y)) A\y=0Ae=1). implemented using a system with lookahead. Thé&¢knded)

Definition of k-causality. We next define Iookahead-causa”ty _checks in our problem CC.JUI.d.be performed using
k-causality, ork-causality for short. We say that an inputthls ‘?'?C'S_'O“ procedure baset_j on _|nf|n|te game_theory. Our
output pairz, y is k-causal forspec, written causaly (z, y) iff spguflcatlon Ianguagg uses finite instead of mﬁmtq words,
Vp. Vo' ~pin 2. Jy ~py. spec(a’,y'). wherez ~, = means which allows us to eliminate the non-causal behaviors and

that 2’ andz have identical the initiap bits. spec is k-causal thus simplify the synthesis process. Moreover, our technique
iff it implies causaly (z, 1) for all z,y is not restricted tdc-bounded specifications.

Observe that &-causal specification can be implemented b The work on graph types [16] proposes to synthesize fields

an asynchronous transducer, but there are specifications ( ik by definitions in monadic second-order logic and also

as the sign function) implementable by asynchronous trafees the MONA tool [8]. However, it focuses on computing

ducers that are ndt-causal. Ifspec is not k-causal but some dssignments to update fielfjs of quked data structures as
inputs have multiple possible outputs, a general strategy to tl?f?lposed to numerical and bit constraints.

spec it into a causal specification is to simply conjoin it with IX. CONCLUSION

causaly(z,y) and check whether the resulting specification is

. . We presented an algorithm to synthesize linear-time func-
still total, that is, whethe¥xz.3y.spec(x, y) A causal(z, y). P J y

tions from general WS1S specifications. Our software im-

Synthesized system for ak-causal specifications. Let plementation works on a number of interesting examples.
spec(z,y) be ak-causal and total specification. We showVe have also identified interesting classes of specifications
how to construct an implementations that emits the input aftérat can be implemented using finite unions of asynchronous
reading k steps of the output. Construct first the specificaransducers, and provided examples of specifications for which
tion automatonA and apply the construction described irsuch finite-memory implementations do not suffice. Our results
Section IV-E. We obtain the automatofi and the labeling therefore contribute to the understanding and to the algorithm
functions , ¢, and . We extendA’, 7, ¢, and« so that toolbox of automated synthesis approaches for software and
they include, for all stateg of A, the determinized version hardware.
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Automatic Inference of Memory Fences

Michael Kuperstein
Technion

Abstract—This paper addresses the problem of placing mem-
ory fences in a concurrent program running on a relaxed memory
model. Modern architectures implement relaxed memory models
which may reorder memory operations or execute them non-
atomically. Special instructions called memory fences are provided
to the programmer, allowing control of this behavior. To ensure
correctness of many algorithms, in particular of non-blocking
ones, a programmer is often required to explicitly insert memory
fences into her program. However, she must use as few fences as
possible, or the benefits of the relaxed architecture may be lost.
Placing memory fences is challenging and very error prone, as it
requires subtle reasoning about the underlying memory model.

We present a framework for automatic inference of memory
fences in concurrent programs, assisting the programmer in this
complex task. Given a finite-state program, a safety specification
and a description of the memory model, our framework computes
a set of ordering constraints that guarantee the correctness of
the program under the memory model. The computed constraints
are maximally permissive: removing any constraint from the so-
lution would permit an execution violating the specification. Our
framework then realizes the computed constraints as additional
fences in the input program.

We implemented our approach in a tool called FENDER and
used it to infer correct and efficient placements of fences for
several non-trivial algorithms, including practical concurrent
data structures.

I. INTRODUCTION

On the one hand, memory barriers are expensive
(100s of cycles, maybe more), and should be used
only when necessary. On the other, synchronization
bugs can be very difficult to track down, so memory
barriers should be used liberally, rather than relying
on complex platform-specific guarantees about limits
to memory instruction reordering. — Herlihy and
Shavit, The Art of Multiprocessor Programming [1].

Modern architectures use relaxed memory models in which
memory operations may be reordered and executed non-
atomically [2]. These models enable improved hardware per-
formance with respect to the standard sequentially consistent
model [3]. However, they pose a burden on the programmer,
forcing her to reason about non-sequentially consistent pro-
gram executions. To allow programmer control over those exe-
cutions, processors provide special memory fence instructions.

As multicore processors become increasingly dominant,
highly-concurrent algorithms emerge as critical components
of many systems [4]. Highly-concurrent algorithms are noto-
riously hard to get right [5] and often rely on subtle ordering of
events, an ordering that may be violated under relaxed memory
models (cf. [1, Ch.7]).
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Finding a correct and efficient placement of memory fences
for a concurrent program is a challenging task. Using too
many fences (over-fencing) hinders performance, while using
too few fences (under-fencing) permits executions that violate
correctness. Manually balancing between over- and under-
fencing is very difficult, time-consuming and error-prone as
it requires reasoning about non sequentially consistent exe-
cutions (cf. [1], [6], [7]). Furthermore, the process of finding
fences has to be repeated whenever the algorithm changes, and
whenever it is ported to a different architecture.

Our Approach In this paper, we present a tool that auto-
matically infers correct and efficient fence placements. Our
inference algorithm is defined in a way that makes the de-
pendencies on the underlying memory model explicit. This
makes it possible to use our algorithm with various memory
models. To demonstrate the applicability of our approach,
we implement a relaxed memory model that supports key
features of modern relaxed memory models. We use our tool to
automatically infer fences for several state of the art concurrent
algorithms, including popular lock-free data structures.

Main Contributions The main contributions of this paper are:
e A novel algorithm that automatically infers a correct
and efficient placement of memory fences in concurrent
programs.
o A prototype implementation of the algorithm in a tool
capable of inferring fences under several memory models.
e An evaluation of our tool on several highly concur-
rent practical algorithms such as: concurrent sets, work-
stealing queues and lock-free queues.

II. EXISTING APPROACHES

We are aware of two existing tools designed to assist pro-
grammers with the problem of finding a correct and efficient
placement of memory fences. However, both of these suffer
from significant drawbacks.

CheckFence In [7], Burckhardt et al. present “CheckFence”, a
tool that checks whether a specific fence placement is correct
for a given program under a relaxed memory model. In terms
of checking, “CheckFence” can only consider finite executions
of a linear program and therefore requires loop unrolling. Code
that utilizes spin loops requires custom manual reductions.
This makes the tool unsuitable for checking fence placements
in algorithms that have unbounded spinning (e.g. mutual
exclusion and synchronization barriers). To use “CheckFence”
for inference, the programmer uses an iterative process: she
starts with an initial fence placement and if the placement is
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incorrect, she has to examine the (non-trivial) counterexample
from the tool, understand the cause of error and attempt to fix it
by placing a memory fence at some program location. It is also
possible to use the tool by starting with a very conservative
placement and choose fences to remove until a counterexample
is encountered. This process, while simple, may easily lead to
a “local minimum” and an inefficient placement.

mmechecker presented in [8] focuses on model-checking with
relaxed memory models, and also proposes a naive approach
for fence inference. Huynh et. al formulate the fence inference
problem as a minimum cut on the reachability graph. While
the result produced by solving for a minimum cut is sound, it is
often suboptimal. The key problem stems from the lack of one-
to-one correspondence between fences and removed edges.
First, the insertion of a single fence has the potential effect
of removing many edges from the graph. So it is possible that
a cut produced by a single fence will be much larger in terms
of edges than that produced by multiple fences. [8] attempts to
compensate for this by using a weighing scheme, however this
weighing does not provide the desired result. Worse yet, the
algorithm assumes that there exists a single fence that can be
used to remove any given edge. This assumption may cause a
linear number of fences to be generated, when a single fence
is sufficient.

III. OVERVIEW

In this section, we use a practically motivated scenario to
illustrate why manual fence placement is inherently difficult.
Then we informally explain our inference algorithm.

A. Motivating Example

Consider the problem of implementing the Chase-Lev work-
stealing queue [9] on a relaxed memory model. Work stealing
is a popular mechanism for efficient load-balancing used in
runtime libraries for languages such as Java, Cilk and X10.
Fig. [I] shows an implementation of this algorithm in C-like
pseudo-code. For now we ignore the fences shown in the code.

The data structure maintains an expandable array of items
called wsq and two indices top and bottom that can wrap
around the array. The queue has a single owner thread that can
only invoke the operations push () and take () which operate
on one end of the queue, while other threads call steal ()
to take items out from the opposite end. For simplicity, we
assume that items in the array are integers and that memory is
collected by a garbage collector (manual memory management
presents orthogonal challenges [10]).

We would like to guarantee that there are no out of bounds
array accesses, no lost items overwritten before being read,
and no phantom items that are read after being removed. All
these properties hold for the data structure under a sequentially
consistent memory model. However, they may be violated
when the algorithm executes on a relaxed model.

Under the SPARC RMO [11] memory model, some oper-
ations may be executed out of order. Tab. [I] shows possible
reorderings under that model (when no fences are used) that
lead to violation of the specification. The column locations

1  typedef struct { 1 void push(int task) {
2 long size; 2 long b = bottom;
3 int =xap; 3 long t = top;
4} item_t; 4 item_tx q = wsq;
5 5 if (b—t > q—size —1){
6 long top, bottom; 6 q = expand ();
7 item_t *wsq; 7
8 q—ap[b % q—size]=task;

fence (”store—store”);
9 bottom = b + 1;
10 }

1 int take() { 1
2 long b = bottom — 1; 2
3 item_tx q = wsq;
4 bottom = b;

fence (”store—load”);

int steal () {

long t = top;

fence (”load—load”);
long b = bottom;
fence (”load—load”);

W

5 long t = top; 4 item_tx q = wsq;
6 it (b<t) { 5 if (t > b)
7 bottom = t; 6 return EMPTY;
8 return EMPTY; 7 task=q—ap[t % gq—size];
9 } fence (”load—store”);
10 task = q—ap[b % q%size];s if (1CAS(&top, t, t+1))
11 if (b> 1) 9 return ABORT;
12 return task; 10 return task;
13 if (!CAS(&top, t, t+1)) 1no}
14 return EMPTY;
15 bottom =t + 1;
16 return task;
17
1 item_tx expand() {
2 int newsize = wsq—size * 2;
3 intx newitems = (int %) malloc(newsizexsizeof (int));
4 item_t *newq = (item_t *)malloc(sizeof (item_t));
5 for (long i = top; i < bottom; i++) {
6 newitems[i % newsize] = wsq—ap[i % wsq—size];
7 }
8 newq—size = newsize;
9 newq—ap = newitems;
fence (”store—store”);
10 wsq = newq;
11 return newq;
12}
Fig. 1. Pseudo-code of the Chase-Lev work stealing queue [9].
# | Locations Effect of Reorder Needed Fence
1 push 3o steal () returns phantom item | store-store
2 take}4flS lost items store-load
3 steal {2f3] lost items load-load
4 | stealf3 array access out of bounds load-load
5 steal {7j8] lost items load-store
6 expand{9f10) steal () returns phantom item store-store

TABLE I
POTENTIAL REORDERINGS OF OPERATIONS IN THE CHASE-LEV
ALGORITHM OF FIG.[IIJRUNNING ON THE RMO MEMORY MODEL.

lists the two lines in a given method which contain memory
operations that might get reordered and lead to a violation.
The next column gives an example of an undesired effect
when the operations at the two labels are reordered. There
could be other possible effects (e.g., program crashes), but we
list only one. The last column shows the type of fence that
can be used to prevent the undesirable reordering. Informally,
the type describes what kinds of operations have to complete
before other type of operations. For example, a store-load
fence executed by a processor forces all stores issued by
that processor to complete before any new loads by the same
processor start.
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Avoiding Failures with Manual Insertion of Fences To
guarantee correctness under the RMO model, the programmer
can try to manually insert fences that avoid undesirable
reorderings. As an alternative to placing fences based on
her intuition, the programmer can use an existing tool such
as CheckFence [7] as described in Section [[I, Repeatedly
adding fences to avoid each counterexample can easily lead
to over-fencing: a fence used to fix a counterexample may
be made redundant by another fence inferred for a later
counterexample. In practice, localizing a failure to a single
reordering is challenging and time consuming as a failure
trace might include multiple reorderings. Furthermore, a single
reordering can exhibit multiple failures, and it is sometimes
hard to identify the cause underlying an observed failure. Even
under the assumption that each failure has been localized to a
single reordering (as in Tab. I}, inserting fences still requires
considering each of these 6 cases.

In a nutshell, the programmer is required to manually
produce Tab. [[} summarize and understand all counterexamples
from a checking tool, localize the cause of failure to a single
reordering, and propose a fix that eliminates the counterexam-
ple. Further, this process might have to be repeated manually
every time the algorithm is modified or ported to a new
memory model. For example, the fences shown in Fig.
are required for the RMO model, but on the SPARC TSO
model the algorithm only requires the single fence in take ().
Keeping all of the fences required for RMO may be inefficient
for a stronger model, but finding which fences can be dropped
might require a complete re-examination.

Automatic Inference of Fences It is easy to see that the
process of manual inference does not scale. In this paper, we
present an algorithm and a tool that automates this process.
The results of applying our tool on a variety of concurrent
algorithms, including the one in this section, are discussed in
detail in Section [V]

B. Description of the Inference Algorithm

Our inference algorithm works by taking as input a finite-
state program, a safety specification and a description of
the memory model, and computing a constraint formula that
guarantees the correctness of the program under the memory
model. The computed constraint formula is maximally permis-
sive: removing any constraint from the solution would permit
an execution violating the specification.

Applicability of the Inference Algorithm Our approach is
applicable to any operational memory model on which we
can define the notion of an avoidable transition that can be
prevented by a local (per-processor) fence. Given a state, this
requires the ability to identify: (i) that an event happens out
of order; (ii) what alternative events could have been forced
to happen instead by using a local fence. Requirement (i) is
fairly standard and is available in common operational memory
model semantics. Requirement (ii) states that a fence only
affects the order in which instructions execute for the given
processor but not the execution order of other processors. This

Rl =R2 =X=Y = 0;

A: B:
Al: STORE 1, X H Bl: LOAD Y, RI
A2: STORE 1, Y B2: LOAD X, R2

Fig. 2. A simple program illustrating relaxed memory model behavior

holds for most common models, but not for PowerPC, where
the SYNC instruction has a cumulative effect [12].

State Given a memory model and a program, we can build
the transition system of the program, i.e. explore all reachable
states of the program running on that memory model. A state
in such a transition system will typically contain two kinds
of information: (i) assignments of values to local and global
variables; (ii) per-process execution buffer containing events
that will eventually occur (for instance memory events or
instructions waiting to be executed), where the order in which
they will occur has not yet been determined.

Computing Avoid Formulae Given a transition system and
a specification, the goal of the inference algorithm is to infer
fences that prevent execution of all traces leading to states that
violate the specification (error states). One naive approach is
to enumerate all (acyclic) traces leading to error states, and try
to prevent each by adding appropriate fences. However, such
enumeration does not scale to any practical program, as the
number of traces can be exponential in the size of the transition
system which is itself potentially exponential in the program
length. Instead, our algorithm works on individual states and
computes for each state an avoid formula that captures all
the ways to prevent execution from reaching the state. Using
the concept of an avoidable transition mentioned earlier, we
can define the condition under which a state is avoidable. The
avoid formula for a state o considers all the ways to avoid all
incoming transitions to o by either: (i) avoiding the transition
itself; or (ii) avoiding the source state of the transition. Since
the transition system may contain cycles, the computation of
avoid formulae for states in the transition system needs to be
iterated to a fixed point.

Consider the simple program of Fig. 2] For this program,
we would like to guarantee that R1 > R2 in its final state.
For illustrative purposes, we consider a simple memory model
where the stores to global memory are atomic and the only
allowed relaxation is reordering data independent instructions.
Fig. 3] shows part of the transition system built for the program
running on this specific memory model. We only show states
that can lead to an error state. In the figure, each state contains:
(i) assignments to local variables of each process (L1 and L2),
and the global variables G; (ii) the execution buffer of each
process (E1 and E2); (iii) an avoid formula which we explain
below.

The initial state (state 1) has R1 = R2 = X =Y = 0.
There is a single error state where R1 = 0 and R2 = 1
(state 9). The avoid formula for each state is computed as
mentioned earlier. For example, the avoid formula for state 2 is
computed by taking the disjunction of avoiding the transition
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1
Li={} L2={R1=0, R2=0}

X=0, Y=0;
El=(A1,A2) E2=(B1,B2)

False

2 3
Li={} L2={R1=0, R2=0} Li={} L2={R1=0, R2=0}

= (X=0, Y=1 G={X=0, Y=0}
EI=(A1,A2) E2(BI)

G={X=0,
El=(Al) E2=(B1,B2)

[Al<A2] [BI<B2)]

6
Li={} L2={R1=0, R20}
G={X=1, Y=0}

El=(A2) E2=(B1)

5
Li={} L2={R1=0, R2=0}
G={X=0, Y=1}
El=(Al) E2=(BI)

4
Li={} L2={R1=0, R2=1}
G={X=0, Y=1}
EI=(Al) E2=(B2)
[A1<A2]

[Al<A2] || [B1<B2] [BI<B2]

A2:STORE: Y = 1

8
Li={} L2={R1=0, R2=0}

G={X=1, Y=1
El=() E2=(BI)

7
Li={} L2={R1=0, R2=1}

G={X=0, Y=1}
El=(Al) E2=()

[BI<B2]

1:LOAD:R2 =Y

9 (Error)
Li={} L2={R1=0, R2=1}
G={X=1, Y=1}
E1=() E2=()

[AI<A2] && [BI<B2]

Fig. 3. A partial transition system of the program in Fig. |2} Avoidable
transitions are drawn with thicker lines.

Ag and avoiding the source state of the transition (state 1).
To check whether As is an avoidable transition from state
1, we check whether A, is executed out of order, and what
are the alternative instructions that could have been executed
by A instead. We examine the execution buffer E'1 of state
1 and find all instructions that precede A,. We find that
Ay is executed out of order, and that A; could have been
executed to avoid this transition. So, we generate the constraint
[A1 < As] as a way to avoid the transition A,. The meaning
of the constraint is that this transition can be avoided if A; is
executed before As. Since the source state (state 1) cannot be
avoided, the avoid formula for state 2 is just [4; < Ag]. The
constraint [By < Bs] for state 3 is obtained similarly.

For state 5, there are two incoming transitions: Bs and
As. Here, By is taken out of order from state 2 and hence
we generate the constraint [B; < DBs]. The constraint for
the parent state 2 is [A; < Ag], so the overall constraint
becomes [By < Bs] V [4; < Ag]. Similarly, we perform the
computation for transition A from state 3 which generates an
identical constraint. The final avoid formula for state 5 is thus
the conjunction of [By < Bs|V[A1 < Aj] with itself. In other
words, it is this exact formula. The transition from state 2 to
state 4 is taken in order. Therefore, the transition itself cannot
be avoided and the only way to avoid reaching 4 is through the

avoid formula of its predecessor, state 2. For the error state
9, the two incoming transitions do not generate constraints
as they are executed in-order. The overall constraint is thus
generated as conjunction of the constraints of the predecessor
states 7 and 8, and it is [By < Ba| A [A1 < A3].

Because our example graph is acyclic, a single pass over
the graph is sufficient. It is easy to check the formulas that
appear in Fig. [3]indeed correspond to a fixed point. Since there
is only one error state, the resulting overall constraint is the
avoid constraint of that error state: [A; < As] A [B; < Ba].

Finally, this constraint can be implemented by introducing
a store-store fence between A; and As and a load-load fence
between By and Bs.

C. Memory Models

To demonstrate our fence inference algorithm on realistic
relaxed memory models, we define and implement the model
RLX that contains key features of modern memory models.
According to the categorization of [2], summarized in Fig. §]
there are five such key features. The leftmost three columns
in the table represent order relaxations. For instance, W — R
means the model may reorder a write with a subsequent read
from a different variable. The rightmost columns represent
store atomicity relaxations - that is, whether a store can
be seen by a process before it is globally performed. Our
memory model supports four of these features, but precludes
“reading other’s writes early” and speculative execution of
load instructions.

The memory model is defined operationally, in a design
based on [13] and [14]. We represent instruction reordering
by using an execution buffer, similar to the “reordering box”
of [15] and the “local instr. buffer” of [14]. To support non-
atomic stores we, like [13], split store operations into a “store;
flush” sequence, and allow local load operations to read values
that have not yet been flushed. This allows us to talk about
the model purely in terms of reordering, without paying any
additional attention to the question of store atomicity.

Barring speculative execution of loads, RLX corresponds
to Sun SPARC v9 RMO and is weaker than the SPARC v9
TSO and PSO models. RLX is strictly weaker than the IBM
370. Since RLX is weaker than these models, any fences that
we infer for correctness under RLX are going to guarantee
correctness under these models.

Our framework allows to instantiate models stronger than
RLX, by disabling some of the relaxations in RLX. In fact, the
framework supports any memory model that can be expressed
using a bypass table (similar to [14] and the “instruction
reordering table” of [13]). This enables us to experiment with
fence inference while varying the relaxations in the underlying
memory model. In Section [V] we show how different models
lead to different fence placements in practical concurrent algo-
rithms, demonstrating the importance of automatic inference.

IV. INFERENCE ALGORITHM

In this section, we describe our fence inference algorithm.
Due to space restrictions, the description is mostly informal.
The full technical details can be found in [16].
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Relaxation W — R W =W R — RW R Others’ R Own
Order Order Order W Early W Early
SC v
IBM 370 v
TSO v v
PSO v v v
Alpha v v v v
RMO v v v v
PowerPC v v v v v

Fig. 4. Categorization of relaxed memory models, from [2].

A. Preliminaries

We define a program P in the standard way, as a tuple
containing an initial state Init, the program code Prog; for
each processor, and an initial statement Start;. The program
code is expressed in a simple assembly-like programming lan-
guage, which includes load/store memory operations, arbitrary
branches and compare-and-swap operations. We assume that
all statements are uniquely labeled, and thus a label uniquely
identifies a statement in the program code, and denote the set
of all program labels by Labs.

Transition Systems A transition system for a program P is a
tuple (X p,Tp), where Xp is a set of states, Tp is a set of

labeled transitions o —— ¢’. A transition is in T p if 0,0’ €
Y.p and [ € Labs, such that executing the statement at [ results
in state o’. The map enabled: ¥ p — P(Labs) is tied to the
memory model and specifies which transitions may take place
under that model.

Dynamic Program Order Much of the literature on memory
models (e.g. [11], [12], [17]) bases the model’s semantics on
the concept of program order, which is known a priori. This is
indeed the case for loop-free or statically unrolled programs.
For programs that contain loops, Shen et. al show in [13] that
such an order is not well defined, unless a memory model
is also provided. Furthermore, for some memory models the
program order may depend on the specific execution.

To accommodate programs with loops, we define a dynamic
program order. This order captures the program order at any
point in the execution. For a given state o and a process p, we
write [; <, l2 when Iy precedes [y in the dynamic program
order. The intended meaning is that in-order execution from
state 0 would execute the statement at [; before executing the
statement at [5.

B. An Algorithm for Inferring Ordering Constraints

Given a finite-state program P and a safety specification S,
the goal of the algorithm is to infer a set of ordering constraints
that prevent all program executions violating S and can be
implemented by fences.

Avoidable Transitions and Ordering Constraints The ordering
constraints we compute are based on the concept of an
avoidable transition — a transition taken by the program
that could have been prohibited by some fence. This captures
the intuition of a transition that was taken out of order. To
identify such transitions we use the dynamic program order:
a transition t = o L) o’ is avoidable if there exists some [;
such that [; <, , l;.

With every pair of labels l1,lo € Labs we associate a
proposition [I; < la]. We call such a proposition an ordering
constraint. We define a constraint formula as a proposi-
tional formula over ordering constraints. For each transition
t = 0 5 o' we then define the formula prevent(t) =
V{lln < U] | b <sp Ui} Intuitively, prevent(t) is the
formula that captures all possible ordering constraints that
would prohibit the execution of ¢ by the program. Note
that if ¢ is not avoidable, this is an empty disjunction and
prevent(t) = false.

Algorithm 1: Fence Inference

Input: Program P, Specification S
Output: Program P’ satisfying S
compute (Xp,Tp)
avoid(Init) < false
foreach state o € Xp \ {Init} do
| avoid(o) « true
workset«— Xp \ {Init}
while workset is not empty do
o < select and remove state from workset
¢ < avoid(o)
foreach transition t = (u — o) € Tp do
10 | @< @A (avoid(u) V prevent(t))
1 if avoid(o) # ¢ then
12 avoid(o) + ¢
13 L add all successors of o in X p to workset
14 Y +— A{avoid(o) | o ¥ S}

15 return implement(P, )

B W N =

R B

Inference The algorithm operates directly on program states.
For every state o in the program’s transition system, the
algorithm computes a constraint formula avoid(o) such that
satisfying it prevents execution from reaching o. The com-
puted formula avoid(o) captures all possible ways to prevent
execution from reaching ¢ by forbidding avoidable transitions.

The algorithm computes a fixed point of avoid constraints
for all states in the program’s transition system. First, we
build the transition system (Xp,Tp) of the program. For
o = Init, we initialize avoid(o) to false. For all other states,
we initialize it to frue. We then add all states to the workset.
The algorithm proceeds by picking a state from the workset,
and computing the new avoid constraint for the state. A state
can only be avoided by avoiding all incoming transitions (a
conjunction). To avoid the transition, we must (i) consider all
possible ways to avoid the transition from the predecessor state
(by using prevent(t)); or (ii) avoid the predecessor state, by
using its own avoid constraint. (see line [10f of the algorithm).

As shown in line [TT] every such computation step requires
comparing two boolean formulas for equality. While in general
NP-hard, this is not a problem in practice due to the structure
of our formulas and their relatively modest size.

When a fixed point is reached, the algorithm computes
the overall constraint ¢ by taking the conjunction of avoid
constraints for all error states. Any implementation satisfying
1 is guaranteed to avoid all error states, and thus satisfy

115



the specification. Finally, the algorithm calls the procedure
implement (P, ) which returns a program that satisfies 1.

Ensuring Termination In cases where the transition system
is an acyclic graph (e.g. transition systems for spinloop-
free programs), we can avoid performing the fixed point
computation altogether. If the states are topologically sorted,
the computation can be completed with a single linear pass
over the transition system. In the general case, we can show
the set of mappings between states and constraints forms a
finite lattice and our function is monotonic and continuous.
Thus convergence is assured.

Safety and Maximal Permissiveness Given a program P and a
specification .S, the avoid formula ¢ computed by Algorithm T]
is the maximally permissive avoid formula such that all traces
of P satisfying ¢ are guaranteed to satisfy S. More formally,
we say a constraint formula admits a transition ¢t = o Ly ot if
there exists an assignment « = ¢ so that every proposition of
the form v = [I; < I;] where [y <, [; we have [v], = false.
Here [v], is the value of proposition v in the assignment
«. We can lift this definition of admits from transitions to
program traces. Then if ¢ # false it only admits traces that
satisfy S, but for any 1 # ¢ such that ¢ = 1), there exists a
trace 7 of P that reaches o such that ) admits 7, but o ¥ S.

C. Fence Inference

Our algorithm computes a maximally permissive constraint
formula . We can then use a standard SAT-solver to get
assignments for i), where each assignment represents a set
of constraints that enforces correctness. Since for a set of
constraints C, a superset C’ cannot be more efficiently imple-
mented, we need only consider minimal (in the containment
sense) sets.

An orthogonal problem is to define criteria that would allow
us to select optimal fences that enforce one of those sets. In
our work, we focus on a simple natural definition using set
containment: a fence placement is a set of program labels
where fences are placed and we say that a placement P; is
better than P, when P; C Ps.

Given a minimal assignment C' for the formula ¢, for each
satisfied proposition [l; < l2], we can insert a fence either right
after [; or right before ls, thus getting a correct placement of
fences. We can try this for all minimal assignments of v, and
select only the minimal fence placements. This procedure can
be improved by defining a formula £ s.t. every proposition
in 1 is replaced with after(ly) V before(lz). Here, after(l)
and before(l) map labels to a new set of propositions, so
that if /o appears immediately after /; in the program, then
after(ly) = before(lz). Then, our fence placements will be
the minimal assignments to £. This allows us to directly apply
a SAT-solver and consider fewer fence placements.

Of course this local approach will not guarantee a minimal
placement of fences because there can be many ways to
implement a constraint [l; < 2] aside from inserting a fence
immediately after {; or before l. For instance, if Iy, ...l4 ap-
pear in this order in the program, and ¢ = [I; < I4] A [l2 < 3]

then we can implement 1) by a single fence between [, and
l3. More precise and elaborate implementation strategies are
possible if the program’s control flow graph is taken into
account. However, in our experiments we found the simple
local fence placement strategy to produce optimal results.

V. EXPERIMENTS

We have implemented our algorithm in a tool called FENDER.
Our tool takes as input a description of a memory model, a
program and a safety specification. The tool then automatically
infers the necessary memory fences.

A. Methodology
We experiment with FENDER by varying the following:

(1) Input Algorithm - we experiment with five concurrent
data structures and one mutual exclusion algorithm.
Client Program - we experiment with clients of varying
size and complexity.

Memory Model - we experiment with 3 relaxed models
and the sequentially consistent model as a baseline.
Specification - in some benchmarks, there is more than
one reasonable specification.

Bound on the execution buffer, when required.

(i)
(iii)
(iv)

v)

Algorithms We applied our tool to various challenging state-
of-the-art concurrent algorithms:
o MSN: Michael&Scott’s lock-free queue [18].
e LIFO WSQ: LIFO idempotent work-stealing queue [19].
o Chase-Lev WSQ: Chase&Lev’s work-stealing queue [9].
e Dekker: Dekker’s mutual exclusion [20].
o Treiber: Treiber’s lock-free stack [21].
o VYSet: Vechev&Yahav’s concurrent list-based set [22].

Clients For each algorithm, we ran FENDER with several
clients. Our tool permits exhaustive exploration of bounded
clients that consist of a (bounded) sequence of initialization
operations followed by (bounded) sequences of operations
performed in parallel. A client typically consists of 2 or 3
processes, where each process invokes several data structure
operations. Below, we use the term “program” to refer to the
combination of an algorithm and a client.

Memory Models As noted earlier, our RLX model is equiv-
alent to SPARC RMO without support for speculation. Our
framework can instantiate stronger models, and in our exper-
iments, we infer fences under four memory models: RMO,
PSO, TSO, and as a reference, SC, the sequentially consistent
model. The models RMO, PSO and TSO implement three
different sets of relaxations as described in [2]. All three
implement the ‘“read own writes early” relaxation. RMO
implements the W — R, W — W and R — RW relaxations.
PSO removes the R — RW relaxation and TSO additionally
removes the W — W relaxation.

Specification We consider safety specifications realized as
state invariants on the program’s final state. To write an
invariant, for most algorithms, we observed the results a
specification of sequential consistency would produce and
then write invariants that are implied by this specification. In
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Initial | Client |E| Time States Edges | #C
State Bnd (sec.)
MSN empty | eld oo 0.83 1219 2671 2
empty | ele ') 1.78 4934 12670 1
empty | ee|dd o 5.21 24194 61514 3
empty | edled 0o 13.05 86574 242822 2
empty | ed|de o 9.26 59119 167067 4
empty | ele|d 0o 31.43 233414 653094 3
ChaseLev | empty | pppt(tpt|sss) 0o 97.22 386283 1030857 -
WSQ empty | tttt(ptt|sss) ) 255.5 1048498 | 2819355
empty | pppt(ttp|sss) o'} 90.28 281314 878880
empty | tttt(tpp|sss) ') 355.95 1325858 | 4150650
empty | tttp(tptp|ss) 0o 37.98 280396 698398 -
”LIFO” 2/2 tp|ss o 0.69 2151 3190 2
WSQ 2/2 tpt|ss oo 1.94 9721 16668 2
2/2 ptp|ss oo 11.41 89884 195246 3
2/2 ptt|ss ) 11.31 85104 198353 4
1/1 ptt|ss 00 4.07 23913 48997 4
Dekker - - 1 0.64 1388 2702 2
10 2.13 7504 14477 2
20 2.71 13879 26422 2
- - 50 5.99 33004 62257 2
Treiber empty | plt 00 1 71 93 2
empty | pt|tp oo 1.02 3054 6190 2
empty | pp|tt 00 0.6 1276 2250 2
VYSet empty | ar|ra 10 1.98 4079 6247 2
empty | aalrr 10 4.56 20034 31623 2
empty | ar|ar 10 2.19 6093 9905 2
empty | aaalrrr 10 7.98 41520 66533 2
TABLE 11

EXPERIMENTAL RESULTS FOR THE RMO MODEL

this context, sequential consistency refers not to the memory
model, but to the high level specification that an algorithm
should satisfy. In some experiments we also used additional,
weaker specifications.

Bound on the Execution Buffer As recently shown in [23], the
reachability problem for weak memory models is, depending
on the model, either undecidable or non-primitive recursive
even for finite-state programs. To avoid this problem we add
a stronger condition and require the execution buffers to be
bounded. In four of our benchmarks this was the natural
behavior, and in the other two we’ve had to enforce a bound.

Experimental Setup Experiments were performed on an IBM
xSeries 336 with 4 Intel Xeon 3.8Ghz processors, 5GB
memory, running a 64-bit Red Hat Enterprise Linux. Tab.
contains performance metrics for RMO, the most relaxed
memory model that we considered.

B. Results

A summary of our experimental results is shown in Tab. [[I}
For each data structure, several parallel clients were used. For
each client, the “Initial” and “Client” columns represent the
initial state of the data structure and the operations performed
by the client respectively. “e” represents an enqueue operation,
“d” a dequeue, “p” put, “‘s” steal, “a” add and “r” remove. The
“|[E[” column represents the bound on the length of execution
buffers, and “#C” the number of constraints in a minimal
solution to the avoid formula for that client. Since for Chase-
Lev the constraint formula was solved only for the conjunction

of all clients, individual “#C” values are not given. The “Time”

column shows the total analysis time. This includes the state
exploration time, the constraint inference time and the SAT-
solving time. Note that in all cases the solving component was
negligible.

In Tab. we show a comparison of the performance of
FENDER for different memory models it supports. On average
the number of states for PSO was ~ 4.5 times smaller and for
TSO = 40 times smaller than for RMO.

Chase-Lev Work Stealing Queue For this data structure, we
ran an exhaustive set of clients with two bounds: (i) all
clients were of the form of 4 initializer operations, followed
by a parallel section with 5 > X > 3 invocations by
the owner, and 6 — X steal invocations by another process.
(ii) If a particular client’s state space exceeded 2.5 million
states, it was terminated and discarded. In Tab. |IIl we show
representative clients that produced useful constraints. In those
experiments, FENDER inferred a set of 9 constraints which can
be implemented using the 6 fences of Fig. [1] In particular, the
fence between lines 9 and 10 in expand () also prevents the
reordering of the store on line 10 with the stores on lines 8 an
6. Under PSO, we are left with 6 constraints and 3 fences—all
of the fences in steal () are no longer needed. Even under
TSO, one fence still remains necessary—it is the store-load
fence between lines [4] and [3 in the take () operation.

Michael-Scott Queue For MSN FENDER inferred all 3 required
fences under RMO. The placement for this algorithm in [7]
contained 7 fences, however, 2 of these are the result of [7]
allowing extra speculation, and 2 are not required in our model
due to conservative memory allocation. Under PSO a single
fence was inferred, and under TSO no fences are required.

Idempotent Work-Stealing The reference placement in [19] is
phrased only in terms of constraints, and requires 5 constraints.
Under RMO, reENDER produced 4 constraints which are a
subset of those 5. The one constraint not inferred is, again,
only required because of possible speculation.

Dekker’s Algorithm 1t is well known that Dekker’s algorithm
requires a fence in the entry section and a fence at the end of
the section (to preserve semantics of critical section). In our
experiments, FENDER successfully inferred the required fences.
Under RMO and PSO both fences were inferred, and under
TSO, the tool inferred only the entry section fence. This is
consistent with the reference placement appearing in Appendix
J of [11].

C. Discussion

In our experiments, we observe that the fences inferred by
FENDER are quite tricky to get manually. For some of the
algorithms, there are known correct fence assignments, and
for these we show that FENDER derives all necessary fences
for our memory models with a small number of clients driving
the algorithm. For most of our benchmarks, a bound on the
execution buffer was not required. In the two cases where it
was required, all fences were obtained with a small bound.

A recurring theme in our results was that several
different maximally permissive constraint sets could be
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Initial | Client |E| RMO PSO TSO SC
Bound States Edges | #C States Edges | #C States Edges | #C | States | Edges
MSN empty | eld oo 1219 2671 2 455 743 1 228 316 0 146 180
empty | ele o] 4934 12670 1 2678 6354 1 586 994 0 252 328
empty | ee|dd &S] 24194 61514 3 7025 13689 2 1724 2512 0 1029 1325
empty | edled oo 86574 242822 2 15450 35362 2 2476 3972 0 1538 2126
empty | ed|de 00 59119 167067 4 11023 24362 2 2570 4010 0 1541 2073
empty | ele|d o] 233414 653094 3 51990 119050 2 9638 | 16822 0 4928 7632
Chase-Lev | empty | pppt(tpt|sss) oo 386283 | 1030857 - 74533 256613 - | 12348 | 20004 - 4961 6740
WSQ empty | tttt(ptt|sss) oo 1048498 | 2819355 - 124455 255390 - 6418 9380 - 3101 4069
empty | pppt(ttp|sss) oo 281314 878880 66960 241814 10564 | 16317 - 4199 5700
empty | tttt(tpp|sss) oo 1325858 | 4150650 - | 361855 1080835 - 9878 13956 - 3473 4537
empty | tttp(tptp|ss) 00 280396 698398 - 29573 54696 - 9197 | 14499 - 4760 6455
”LIFO” 2/2 tp|ss 00 2151 3190 2 882 1171 1 676 852 0 570 694
WSQ 212 tpt|ss o] 9721 16668 2 3908 5811 1 2256 3116 0 1410 1786
2/2 ptp|ss oo 89884 195246 3 31289 64133 3 4045 5688 0 2317 3007
2/2 ptt|ss oo 85104 198353 4 29920 62020 3 4130 5987 0 2198 2866
1/1 ptt|ss 00 23913 48997 4 9976 18002 3 2353 3269 0 1314 1654
Dekker - - 1 1388 2702 2 1388 2702 2 489 674 1 388 490
- - 10 7504 14477 2 7504 14477 2 2560 3750 1 388 490
- - 20 13879 26422 2 13879 26422 2 4845 7115 1 388 490
- - 50 33004 62257 2 33004 62257 2 | 11770 | 17210 1 388 490
Treiber empty | plt ) 71 93 2 71 93 2 43 48 0 36 38
empty | pt|tp oo 3054 6190 2 3041 6167 2 407 609 0 392 482
empty | pp|tt oo 1276 2250 2 1276 2250 2 325 407 0 270 323
VYSet empty | ar|ra 10 4079 6247 2 4079 6247 2 1088 1308 0 1088 1308
empty | aalrr 10 20034 31623 2 20034 31623 2 1168 1411 0 1168 1411
empty | ar|ar 10 6093 9905 2 6093 9905 2 1671 1968 0 1671 1968
empty | aaalrrr 10 41520 66533 2 41520 66533 2 3311 4072 0 3311 4072

TABLE III

EXPERIMENTAL RESULTS FOR DIFFERENT MEMORY MODELS

derived from the constraint formula. However, in all
cases, all of those sets represented one ‘“natural” so-
lution. The reason for the appearance of those ap-
parently different solutions involves data dependencies.
Consider the simple example program shown
on the right. Assume that the constraint
. . STORE Z = 1

[l1 < I3] must be enforced in any execution. » oAb R = X
However, if [l; < [5] is enforced, then it is 3 STORE Y =R
impossible to reorder /3 with /1. Due to a data
dependency, l> must come before I3, and we
get the order oy £> D) £> o3 L> o4 in which the first
transition violates [l < l3]. Thus, our constraint formula will
necessarily contain the disjunction [l; < lo] V [l; < I3]. Tt is
an interesting question whether there exists an input algorithm
which permits several substantially different constraint sets.

As expected, when we ran the tool with more restricted
memory models, the number of required fences decreases. For
example, the move from PSO to TSO disables reordering of
independent stores and hence all constraints between stores to
different locations are not required.

VI. RELATED WORK

Earlier we discussed work directly related to fence infer-
ence, that is [7], [8]. Additional related work includes:

Explicit-State Model Checking The works closest to ours in
the way they explore the state space for a weak memory model
are [15] and [24]. Both describe explicit-state model checking
under the Sparc RMO model, but neither uses it for inference.

Delay Set Analysis A large body of work relies on the concepts

of delay set and conflict graph of [25] for reasoning about
relaxed memory models. In particular, the Pensieve project
[26], [27], [28] implements fence synthesis based on delay
set analysis. This kind of analysis is, however, necessarily
more conservative than ours since it prevents any potential
specification violations due to non-SC execution, and is not
appropriate for highly concurrent algorithms.

Verification Approaches In [29] and [30] algorithms are pre-
sented that can find violations of sequential consistency under
the TSO and PSO memory models. Those algorithms find
violations based purely on sequentially consistent executions,
thus making them very efficient. However, just like delay
set analysis, this is often needlessly conservative. Another
approach to verification is to try to establish a property which
ensures the program remains correct under relaxed models.
The most common such property is data-race freedom, as for
data-race free programs the “fundamental property of memory
models” [31] ensures that there can be no sequentially
inconsistent executions. In our work we deal with programs
that do not satisfy such properties. Further, none of those
works supports fence inference for programs that are found
to violate SC.

Inference of Synchronization In [32], [22], a semi-automated
approach is used to explore a space of concurrent garbage
collectors and linearizable data-structures. These works do not
support weak memory models. In [33] a framework similar to
ours is used to infer minimal synchronization. However the
technique used there enumerates traces explicitly, which does
not scale in our setting and thus cannot be applied as-is.
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Effect Mitigation Several works have been published on
mitigating the effect of memory fences [34], [35] and making
synchronization decisions during runtime [36]. Those archi-
tectural improvements are complementary to our approach.

VII. SUMMARY AND FUTURE WORK

We presented a novel fence inference algorithm and demon-
strated its practical effectiveness by evaluating it on various
challenging state-of-the-art concurrent algorithms. In future
work, we intend to improve the tool’s scalability and add
support for more memory models. Another direction we intend
to pursue is memory model abstraction and fence inference
under abstraction. This will allow us to avoid bounding the
execution buffer and make our algorithm more suitable for
more general input programs.
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Abstract—Microcode is a critical component in modern micro-
processors, and substantial effort has been devoted in the past to
verify its correctness. A prominent approach, based on symbolic
execution, traditionally relies on the use of boolean SAT solvers
as a backend engine. In this paper, we investigate the application
of Satisfiability Modulo Theories (SMT) to the problem of
microcode verification. We integrate MathSAT, an SMT solver
for the theory of Bit Vectors, within the flow of microcode
verification, and experimentally evaluate the effectiveness of some
optimizations. The results demonstrate the potential of SMT
technologies over pure boolean SAT.

I. INTRODUCTION

A modern Intel CPU may have over 700 instructions in the
Instruction Set Architecture (ISA), some of them for backward
compatibility with the very first x86 processors. Although
the processor itself is a Complex Instruction Set Computer
(CISC), the microarchitecture (basically the implementation
of the ISA) is what can be likened to a Reduced Instruc-
tion Set Computer (RISC). The instructions in the ISA are
translated into a smaller set of simpler instructions called
microinstructions or micro-operations. Most instructions in
Intel processors correspond to a single microinstruction, while
larger programs are stored in a microcode program memory
called the Microcode ROM. Some of these programs may be
surprisingly large, such as string move in the Pentium 4 which
was reported in [15] to use thousands of microinstructions.

Verification of these programs is a critical, but time-
consuming process. To aid in the verification effort, a tool
suite called MicroFormal has been developed at Intel starting
in 2003 and under intensive research (in collaboration with
academic partners) and development since. This system is used
for several purposes:

« Generation of execution paths. These execution paths are
used in traditional testing to ensure full path coverage,
and to generate test cases which execute these paths,
described in [2], [3].

o Assertion-based verification. Microcode developers an-
notate their programs with assertions, and these can be
verified to hold using MicroFormal.

o Verification of backwards compatibility, described in
[1]. When new generation CPUs are developed, they
should be backwards compatible with older generations,
although they may include more features.

At the heart of this set of tools is a system for symbolic ex-

ecution (often called also symbolic simulation) of microcode,
which is the part of the tool suite on which we will concentrate.
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The symbolic execution engine explores the paths of the
microcode, generating proof obligations, that have to be
solved by a satisfiability engine. Such proof obligations can
be thought of as constraints over bit-vectors. Traditionally,
they are transformed into boolean satisfiability problems, and
analyzed by means of boolean SAT solvers [7]. Although SAT
technology is very efficient and has been highly specialized to
the context of application, the time spent in the satisfiability
engine is a very significant fraction of the total time devoted
to symbolic execution.

In this work, we tackle this problem by presenting an
alternative approach, based on the use of Satisfiability Modulo
Theory (SMT) techniques [6] to replace boolean SAT. Modern
approaches to SMT can be thought of leveraging the structure
of the problem, by reasoning at a higher level of abstraction
than SAT: efficient SAT reasoning is used to deal with the
boolean component, and it is complemented by specialized
rewriting and constraint solving to deal with more complex
information at the level of bit-vectors.

The work presented in this paper (and described in greater
detail in [12]) is based on the MathSAT SMT solver [9],
that was the winner of the 2009 SMT competition on the
bit-vector (BV) category, and was still unbeaten in 2010
edition. MathSAT was first integrated within the MicroFormal
platform, and then customized to deal with the specific proof
obligations arising from symbolic simulation of microcode.
In particular, tailored solutions were adopted to deal with
the satisfiability of sequences of formulae, and of sets of
formulae. The approach was evaluated on a selected set of
realistic microcode programs. MathSAT was able to provide
substantial leverage over in-house SAT techniques on single
problems; combined with the solutions described in this paper,
we were able to significantly reduce the total execution time.
As a consequence, a modified version of MathSAT was put in
the production version of MicroFormal. Substantial speed-ups
are reported on a wide class of real-world problems.

The rest of this paper is structured as follows. In § II
we present an overview of the MicroFormal framework. In
§ IIT we describe the nature of the proof obligations resulting
from MicroFormal, and in § III-A and III-B we discuss
tailored techniques to deal with them. In § IV we present the
experimental evaluation. In § V we discuss related work. In
& VI we draw some conclusions and outline directions for
future work.
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II. BACKGROUND
A. Intermediate Representation Language

To simplify the process, the symbolic execution engine does
not work directly with microcode. Instead it works with an
intermediate representation called Intermediate Representation
Language, or IRL. This is a simple formal language with all
features necessary to model microcode programs. Microcode
programs are translated into IRL by a set of IRL templates,
which define the translation from microcode instructions into
a corresponding sequence of IRL instructions. This makes
adapting the tool suite to a new microarchitecture simpler,
since all that needs to be written is a new set of templates
describing how instructions are translated into IRL. Another
benefit of using IRL is that it is possible to handle other
types of low-level software. Although the precise details of
the language used in MicroFormal are not public, its main
features have been presented in [1].

The correctness of the translation from actual microcode
programs into IRL is crucial, but outside the scope of this high-
level description of MicroFormal. We will also make many
simplifications and skip over details that are not immediately
relevant for the work presented.

B. Symbolic execution of microcode

The MicroFormal symbolic execution engine is used to
compute a set of paths through a program, where a path is
a sequence of locations that the program can follow from
start to finish. A path through the program for which there
exists an assignment to input registers such that the execution
follows that path is called feasible. A partial path is a path
from the start to some non-exit location within the program.
The problem solved by the symbolic execution engine is to
find all paths from the starting location to one of the exit
locations. Symbolic execution [18] is a form of execution
where all input (or initial values of variables) are symbolic.
Consider the following simple example, which swaps values
in two bit-vector variables

X, Y BitVector[64];
1: x 1= x + y;

2:y =X — VY;

3: x 1= x - y;

4: exit;

To execute this program symbolically, we start by giving the
symbolic values xg, yo to the variables x and y. For the first
assignment x := x + y we create a new symbolic value
x1 and compute how it relates to the symbolic values of the
variables in the right hand side of the assignment x;=xq + yo
and so on for all instructions in the program, accumulating the
equations that define the symbolic values we have created.

l: x :=x +y .CE1££C0 + Yo

2: y 1= x -y x1=%o+Yo, Y1=21 — Yo

3: x 1= x -y x1=%0+ Yo, Y1=T1 — Yo, T2=T1 — Y1
4: exit T1=x0 + Yo, Y1=21 — Yo, T2=T1 — Y1

Constraints

microcode

— Symbolic |,
Path DB execution Dec. proc.
engine (¢
result

Fig. 1. Overview of the MicroFormal symbolic execution engine

By expanding the final definitionswe can see that the final
values of the variables (z’, 3’) depend on the initial given by
the equations 2’ = (2 + yo) — w0 and y' = (xo + Yo) — Yo
which can be simplified to ' = yo and 3’ = ¢ respectively.

Apart from the current symbolic values for all variables in
the program, during symbolic execution we also keep track of
a path condition and the program location. The path condition
is the conjunction of the conditions on the conditional branches
along the current execution path, expressed in terms of the
initial symbolic values. A more detailed description of how
this may be performed is presented in [17].

An execution starts by executing the basic block (a non-
branching sequence of instructions) starting at the beginning
of the program to the first branch instruction. This partial
path is marked as open. Then as long as there exists an
open partial path m, all feasible branch targets continuing
this path are computed by generating a sequence of path
feasibility conditions which are sent to a decision procedure.
A path feasibility condition is the path condition which would
result when branching into a given branch target. If this path
condition is satisfiable, the target is feasible in the sense that
there exists some input that would execute down the current
path and branch to that target. For every feasible branch
target, MicroFormal extends 7 with the basic block starting
at that location into a new path 7. If 7’ reaches a terminating
instruction, this path is stored in the path database. Otherwise
it is marked as an open path and the execution continues. An
overview of the symbolic execution engine in MicroFormal
can be seen in figure 1.

A path feasibility condition for a partial path 7 is a formula
which describes the possible branch targets symbolically in
terms of the input variables combined with some query on
the target, and which is used to determine the possible values
for the branch target. The details on the formulation of path
feasibility conditions are outside the scope of this paper, here
we will focus on the decision procedure used to solve these
and other decision problems generated by MicroFormal.

From the point of view of the decision procedure, the
symbolic execution engine feeds it a sequence of formulae,
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and the result returned for one formula affects the future paths
taken by the symbolic execution engine, and therefore also
which formulae it receives in the future.

C. Improvements to the basic symbolic execution algorithm

To improve performance of the symbolic execution, several
techniques are used as described in [3]; here we will briefly
present three of them. One problem is the sheer size of the
formulae sent to the decision procedure. In order to reduce
the size of formulae, MicroFormal merges sets of partial
paths ending up in the same location into a single path by
introducing extra variables and conditional assignments. The
details are explained in [3], but for our purposes the relevant
effect is that it removes open partial paths which have so
far been generated, and replaces them with a new merged
path which is equivalent to but syntactically different from the
previous paths. Two other techniques that are used are based
on caching and SSAT, briefly described below.

Caching of solver results: The result of each solver call is
stored in a cache shown in figure 1. This cache stores for every
formula solved whether it is satisfiable or not, as well as the
model for satisfiable formulae. If a formula o has been shown
previously to be satisfiable, then any future formula « V 3
can be determined to be satisfiable without calling a solver.
In the same way, if o has been shown to be unsatisfiable,
any future occurrence of it as a subformula in future formulae
can be replaced with L as a simplification step. In case this
fails, it is possible to take a model stored in the cache and
evaluate the current formula with it. In case it evaluates to
true, there is no need to call the solver. It may also happen
that the evaluation results in a new smaller formula due to
some variable occurring in the formula which did not occur
in the model. In this case it is possible to send this simplified
formula to the solver: if it is satisfiable, then it is possible
to extend the old model into a model for the current formula.
The motivations for caching models is that if a path feasibility
check for some partial path shows it to be feasible, then there
exists an extension to this path. Therefore the model for this
path feasibility check should be useful in the future.

SSAT: In most cases, the symbolic execution engine
generates a single formula which must be solved before exe-
cution can continue, because the satisfiability of this formula
determines how the execution should proceed. But in some
cases, it is possible to generate more than one formula, which
it can predict must be solved regardless of their satisfiability.
One technique used to improve performance of solving in
these cases is to apply Simultaneous SAT (SSAT) introduced
by Khasidashvili et al. [16]. This technique is a modification of
the standard DPLL algorithm which allows the user to solve
multiple proof objectives for a single formula in CNF. The
solver will solve all proof objectives and for each of them
return their satisfiability and a model in cases of satisfiable
proof objectives. The motivation behind this technique is
twofold; First a single model may satisfy more than one proof
objective, and second information learnt while solving one
proof objective may be helpful in solving the others. Both of

these assume that the proof objectives are closely related to
each other, which is the case in this application.

III. SMT(BV) FOR SYMBOLIC EXECUTION

The primary objective of this wok is the reduction of
time spent in satisfiability checking of the proof obligations
generated during symbolic execution. The problem has been
tackled along two directions: (i) improve execution time for
each call to the decision procedure, and (ii) identify a more
efficient use of the decision procedure. (In the following,
it suffices to see MicroFormal as a generator of bit-vector
formulae to be solved.)

Direction (i) was pursued by replacing the backend engine
used in MicroFormal, called Prover, with the MathSAT SMT
solver. Prover is composed of an encoder from bit-vector
formulae to boolean formulae (through a process of bit-
blasting), pipelined to a customized (and extremely efficient)
SAT solver working on a boolean formulae in CNF. MathSAT,
on the other hand, can be seen as working at a higher level of
abstraction, and leveraging structural information at the level
of bit vectors to perform simplifications and rewritings. For
example, reasoning at BV level allows simplification based on
the theory of equality. This step, though conceptually simple,
allows exploiting recent progress made in dealing with the
theory of bit vectors in the field of SMT [8], [10]. We refer the
reader to [12] for a detailed description of how MathSAT deals
with BV. Notice that MathSAT won the 2009 SMT competition
on the BV category, see http://www.smtcomp.org/2009/.

In order to identify more effective ways to use the decision
procedure (ii), we consider that MicroFormal presents to
the solver a sequence ®,,®P,,..., Py, where each ®; is a
nonempty set of formulae. The sequence of formulae is not
known a priori, meaning that the set ®; is not known until all
formulae in the set ®; have been solved. Since all formulae in
the sequence derive from the symbolic execution of the same
microcode program, they will share the same set of variables.

The sets of formulae in the sequence have typically a
very distinct nature: the vast majority are singleton sets,
containing a single formula; the remaining few, non-singleton
sets, however, can contain large numbers of formulae, in some
cases even thousands. Thus, we concentrated on two specific
way to use the decision procedure, i.e. how to efficiently solve

« sequences of single formulae,
« large sets of formulae.

A. Solving sequences of single formulae

In MicroFormal, most sets in a sequence contain a single
formula, and we need to solve this one formula to advance the
search. Each formula is usually very similar to the previous
one. This can be seen by measuring similarity for a number of
medium to large sequences. Seeing each formula as a Directed
Acyclic Graph (DAG) using perfect sharing, we can compare
the similarity of a pair of formulae by measuring the number of
nodes in the DAG for one which do not occur in the DAG for
the other. Formally, given two formulae ¢ and ¢, we compute
the ratio of terms occurring in ¢ which do not occur in ¥ to
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Algorithm 1: Solve reusing information

Algorithm 2: MSPSAT

IHPUt: (;517 ¢2: RS (bN
Input: Reset interval k
¢—=T;

for i € [1, N] do

if i mod k£ = 0 then

=T

end

p; < fresh proposition;

¢ — N (pi = ¢i);

solve ¢ under the assumptions {p;};
end

the total number of terms in ¢, and vice versa. The minimal
of the two ratios denotes the similarity.

Consecutive formulae appear to be highly similar, with
a median similarity of 78%, 95% and 99%, respectively in
the sequences of three typical programs (see § IV-A), and
this is something we would wish to take advantage of. The
cases with very small similarity between formulae are almost
always combined with at least one of the two formulae being
very small. The approach we have taken is to reuse learnt
information from the solving of one formula to help solving
the next.

Modern SAT solvers are often quite good at handling
irrelevant information, since the heuristics they use often
manage to focus on the relevant parts of a formula, ignoring
the rest. MathSAT inherits these features from its underlying
SAT solver. We will take advantage of this fact by retaining all
information stored in the solver from one formula to the next.
We will also take advantage of the fact that MathSAT imple-
ments incremental solving under assumptions [11]. The basic
approach is shown in algorithm 1. When solving a sequence
of individual formulae ¢, ¢o, ..., the basic algorithm is to
first create one fresh predicate p;, add the formula p; = ¢4
and solve under the assumption of p; to discover if ¢y is
satisfiable; then, we create another fresh predicate p» and add
P2 = ¢ to the solver and solve under the assumption of ps.
In the second iteration, the complete formula in the solver will
be (p1 = ¢1) A (p2 = ¢2) and all learnt information from the
solving of ¢, is still available when solving ¢o.

Although the solver might be good at ignoring irrelevant
information, eventually as the amount of irrelevant clauses
grow these will have a negative impact on performance, and
of course also on memory usage. Therefore it is important to
at some point remove this information. The simplest possible
approach would be to just throw away all information irrele-
vant or not, and then solve the next formula as if it is the first
one encountered. The advantages of this is that it is very easy
to implement and to use. The disadvantage are that we also
throw away potentially useful information.

The main question with this approach of dealing with the
accumulation of irrelevant information is, when to reset the
solver? Several solutions suggest themselves:

Input: ¢17 ¢27 ) ¢N
P —{py,...,pn}; ! p; fresh predicates
¢ — Nisy (pi = 60);
Sat « (); Unsat < 0;
while P # () do
p; < some element in P;

if ¢ under the ass. {p;} satisfiable with model u then
Sat — Sat U {; | 1 = py}:

else
Unsat < Unsat U ¢;;
end
P «— P\ {p; | ¢; € (Sat U Unsat)};
end

return Sat, Unsat

o Use fixed reset frequency. Reset every k& formulae.

o Reset based on subformula reuse. Measure how much the
next formula is already known to the solver, how much of
it is not previously known, and how much of the solver
information is irrelevant.

o Use an adaptive strategy. Measure solver performance,
and try to predict when degradation starts to occur. Reset
before it becomes detrimental.

o Delete only irrelevant information from the solver, and
keep the rest. This sounds like the best solution, but
computing which information is irrelevant is not a simple
problem. Just because it is not relevant for the current
formula does not mean it will not become relevant again
in the future.

Even in the cases where no learnt information is explicitly
removed, the underlying solver is free to remove learnt clauses,
as any standard SAT solver does. This can be more or less
aggressive, and works regardless of how the solver is used.
However, these techniques will not work on the original
clauses generated from encoding of the formulae given to
the solver, only the learnt clauses. In this application an
aggressive heuristic for clause removal may be interesting,
such as suggested in [4] and used in the glucose SAT solver.

B. Solving sets of formulae

In the cases where the current set of formulas contain more
than one formula, we should try to take advantage of this in
order to improve performance. For three medium-sized to large
microcode programs (see § IV-A) the simulator generates sets
of formulae with 93 non-singleton sets with between 100 and
1000 instances, and 11 sets with over 1000 instances.

To take advantage of this fact, we would like to make the
solver aware of all formulae beforehand. In this way we may
be able to satisfy more than one formula at a time, and also
reuse learnt information to discover that several formulae in
the set are unsatisfiable. One way of achieving this is shown in
a simple algorithm 2 we will call Multiple Similar Properties
SAT (MSPSAT). Here we create one fresh predicate (boolean
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variable) p; for each formula ¢; and give the solver the formula
N\pi=di

To solve ¢;, we solve under the assumption p;. Should it be
satisfiable under this assumption, we can easily check which
of the other formulae are also satisfied by the same model
by checking the truth assignment for the other fresh variables.
The algorithm iteratively picks one unsolved formula as a goal
and solves under the assumption of the corresponding fresh
variable. If it is satisfiable we check if any other unsolved
formulae are satisfied by the same model, and discharge all
satisfiable formulae.

IV. EXPERIMENTAL EVALUATION
A. Benefits of incremental and simultaneous solving

We now turn to an experimental evaluation of the techniques
proposed in this paper. Except where explicitly noted, all
experiments were carried out on a machine with dual Intel
Xeon E5430 CPUs running at 2.66 GHz using 32 GB of RAM
running Linux.

The initial experiments are run on instances coming from
three nontrivial microcode programs. For these three, Micro-
Formal was instrumented to dump all instances to files in
SMT-LIB format, and produce a log describing how these
instances were created. In this paper the programs will be
called “program 17, “program 2” and “program 3”. Table I
gives the number of formulae generated in each of these three
MicroFormal runs. A test bench has been created which can
replay the solver calls in these three runs of MicroFormal,
which makes it easy to experiment with different strategies
and instrument the system to extract interesting information.
In order to emulate the behaviour of MicroFormal, when
solving a formula it is first loaded into memory in a separate
data structure to avoid measuring the time taking for parsing
formulae. From this data structure the MathSAT API is called
creating and solving formulae simulating the in-memory usage
in MicroFormal as closely as possible without actually running
MicroFormal.

Apart from the techniques described in this paper, these
experiments were performed with MathSAT set up to simply
bit-blast and solve the formula using a SAT solver. Since
the vast majority of formulas generated by MicroFormal are
trivial, this seems to deliver good performance, and this setup
should also mean that the techniques described here will also
translate to SAT solvers. For the instances taking the most
execution time, more aggressive preprocessing techniques can
be effective, but the total execution time is dominated by
a large number of trivial instances, and the preprocessing
normally used in MathSAT seems to be too expensive to be
used here.

1) Solving sequences of single formulae: We start by inves-
tigating the effect of fixed reset strategies on singleton sets. For
these experiments, we solve only singleton sets, skipping over
the other calls completely. The result on the three programs are
summarized in figure 2. It shows the relative improvement of

TABLE I
MICROFORMAL TEST SETS

Program Instances Satisfiable Unsatisfiable
Program 1 52933 44359 8574
Program 2 5468 4341 1127
Program 3 28962 13757 15205
10+
g

Program

— 1
— 2
— 3

. il

T
50 100 150
Reset interval

Relative improvement

Fig. 2. Effect of reset interval on singleton calls

reusing solver information compared to solving each formula
in isolation. The horizontal axis shows the reset interval, that
is how frequently all learnt information is thrown away. A
reset interval of 1 corresponds to solving each formula in
isolation. From the figure, it is clear that there is a positive
effect of reusing solver information. For program 1 the best
improvement is a factor of 4 (at a reset interval of 161), and
for program 2 the best improvement is a factor of almost 10
(at reset a interval of 169). Lastly for program 3 the best
improvement is a factor of 7.4 (at a reset interval of 99).

We can also see that the exact reset frequency is not critical.
For program 1 and program 2, there is only a minor difference
between different reset intervals above 50. For program 3, the
trend is similar but the data appears to be more noisy. This
is due to some outliers among the instances to be solved,
which are both large and significantly different from any
of the others. These cause significant overhead when these
instances are retained in the solver and we attempt to solve
fresh instances. Performance depends on being able to divest
the solver of this irrelevant information as soon as possible,
but with a fixed reset interval how quickly this happens is
largely due to chance. To avoid this, we will choose a reset
interval of 25 for future experiments, which although shorter
than what is indicated as the optimal, should on the other
hand handle such outliers better. With this reset interval, the
improvement for these three programs is a factor of 2.7, 6.7
and 4.9 respectively.

To check if reuse of solver information is usable outside
of MicroFormal, the technique has also been applied to the
instances coming from the SAGE tool [13] (available in SMT-
LIB under QF_BV/sage). Out of 12 sets of instances, a
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Fig. 3. Effect of reusing solver information on SAGE instances. Execution
times in seconds

fixed reset strategy of resetting every 25 instances helped
in all but two sets. In one of the two, execution time was
comparable (332 versus 334 seconds). In the other reusing
solver information used 65 seconds versus 11 seconds for
solving each instance individually. The added time is taken
up in two instances which take considerably more time than
the rest. Full results for these sets of instances can be found in
figure 3, where total execution time (in seconds) for each set
of instances is reported. Although the improvement is not as
large as for the three microcode programs seen earlier, there is
still a fairly clear improvement, and, indeed this improvement
is statistically significant (p = 0.016).

2) Solving sets of formulae: For the cases where Micro-
Formal generates multiple formulae to solve there are several
choices, we will look at a few of them as listed below:

1) Solve them in the same way as single formulae. There
might not after all be any need to treat these instances
any different from any other.

2) Solve them as with single formulae, but with an infinite
reset interval. The motivation is that similarity can be
expected to be better within each set than between
singleton instances since all instances in a set have been
generated at a specific point in symbolic execution.

3) Solve them with MSPSAT.

As a baseline, let’s look at the performance when treating
each instance as a singleton, disregarding that more than one
instance is known a priori. The results are shown in the
first row in table II. We can see a significant improvement
using MSPSAT over solving each formula individually. For
comparison, we also include the execution time when solving
all instances reusing solver information using a reset interval of
25, and also when resetting only in between sets of instances.
We can see that using a reset interval of 25 gives worse
performance than using the MSPSAT algorithm, so there
seems to be some value in treating these sets in a special way.
For these three programs at least there does however not seem

TABLE 1I
PERFORMANCE OF THE MSPSAT ALGORITHMS

Method Program1 Program2 Program 3

No reuse 104459.86 1722.31 55539.64

Reset (25) 9104.31 217.13 5434.52

Reset in-between 4485.51 243.91 2694.61

MSPSAT 6064.98 278.00 2826.98
TABLE III

AMPLE PERFORMANCE SUMMARY (EXECUTION TIMES IN SECS)

Solver Type Median Mean Standard Dev.

Prover Singleton 1072.14  2887.13 5973.29
Non-singleton 389.01 2264.52 4432.13
Ample 2412.00 6282.90 10316.34

MathSAT  Singleton 98.48 289.05 704.25
Non-singleton 233.25 975.24 1751.98
Ample 997.00 2183.03 2842.62

to be an advantage with MSPSAT when compared to using a
separate solver instance for non-singleton sets which is reset
in-between every set. Indeed, the latter technique has a small,
but statistically insignificant, advantage over the others.

B. Overall impact of MathSAT within Ample

As a final experiment the impact of the usage of MathSAT
on the Ample tool is evaluated. Ample (Automatic Microcode
Path Logic Extraction) is a tool in MicroFormal used for
generation of execution paths for dynamic testing, and this will
be used for experimental evaluation in this section. For this
evaluation 32 different microcode programs have been selected
to be representative of small, medium, and large programs. For
each, Ample is run with its standard backend engine, the in-
house SAT solver Prover, and with MathSAT. In MathSAT,
reusing of solver information was used with a fixed reset
frequency of 25, and for non-singleton sets MSPSAT was used.
For Prover, singleton sets were solved individually, and non-
singleton sets were solved using the SSAT algorithm. The tool
was run on machines with Intel Xeon 5160 CPUs running at
3 GHz and 32GB RAM running Linux, and the execution
times of solver calls, other processing, total execution time
and memory usage was measured. In these experiments, in no
case was memory usage an issue.

The results are summarized in table III, which presents
the median, mean, and standard deviation values for the total
execution time on, respectively, singleton sets of formulae,
non-singleton sets (using MSPSAT for MathSAT, SSAT for
Prover) and for the total execution time for Ample. The
corresponding values, with one point for each of the 32
programs, are plotted in Figure 4.

For every program, the performance of MathSAT is better
than that of Prover, and for total execution time the improve-
ment is at worst a factor of 1.17, at best a factor of 4.43, and
overall the improvement is a factor of 2.88. Not surprisingly,
the improvement is statistically significant (p = 9-107). As
the experiments on non-singleton sets showed, simply reusing
solver information resetting the solver in-between each set may
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Fig. 4. Results for each of the 32 programs: (left) total solving times on the singleton sets; (center) total solving times on the non-singleton sets; (right)

Ample total execution times.

improve performance further. At the time of writing, this has
not been tried on these 32 microcode programs.

It should be noted that the difference on non-singleton sets
are not necessarily due to the different algorithms (MSPSAT
versus SSAT) being used, since two completely different
solvers are used for the comparison.

V. RELATED WORK

Whittemore et al. [21] describes reusing of learnt clauses
in the SATIRE SAT solver. This is an incremental SAT
solver which allows the user to retract clauses and add new
ones before searching again. To implement this the solver
keeps track of the dependencies between learnt clauses and
original clauses. If a clause is retracted, all clauses which
have been learnt using this clause are also removed. Silva and
Sakallah [20] proposed a technique for reusing clauses from
one formula to the next in automatic test pattern generation
(ATPG) for circuits. In this application a SAT solver is used
to try to generate stimuli that expose a particular fault. They
notice that some learnt clauses are independent of the current
target fault instead depending only on the circuit being studied,
and could be reused from one SAT problem to the next.
This happens if a learnt clause is derived solely from clauses
originating in the circuit. Strichman [19] noticed that in the
context of Bounded Model Checking (BMC), certain clauses
could be reused from one unrolling to the next.

Eén and Sorensson showed in [11] how learnt clauses could
be reused when doing k-induction. This relies on the idea
that in this application we are monotonically adding non-
unit clauses to the solver, and all unit-clauses can be used
as assumptions rather than adding them permanently to the
solver.

In [14] GroBe and Drechsler propose to reuse clauses learnt
while solving one formula when solving another iff they can
be derived from the intersection of the clauses in the two
formulae.

Babi¢ and Hu proposed some simple heuristics to decide if
a fact is reusable of not in [5], which allow for reuse of learnt

unit clauses.

The only work which considers the idea of reusing all
information is the work by Eén and Sorensson, which is
targeted for the case of k-induction where all non-unit clauses
in one formula will occur also in the next. For general solving
of similar formulae which are not extensions of one another,
all previous work concentrate on techniques to compute the
relevant parts of the learnt clauses and reuse only those.

A. Simultaneous SAT

Khasidashvili et al. [16] introduced a technique for solv-
ing a set of related formulae using an algorithm they call
Simultaneous SAT (SSAT). Given a formula in CNF and a
set of proof objectives being literals in this formula, their
algorithm is a modification of a normal DPLL-like algorithm.
They always keep a particular proof objective as the current
goal to satisfy, the currently watched proof objective. At any
decision this literal is chosen unless it has already been given
a truth value. When the solver finds a model, it checks all
other proof objectives and records all that have been satisfied
by the model. Then a new currently watched proof objective
is chosen among those which has not yet been solved. This
is repeated until all proof objectives have been solved. The
SSAT algorithm can be seen as a special case of reusing
learnt information when all formulae to be solved are known
in advance.

In contrast to the SSAT algorithm, the MSPSAT algorithm
presented in this work doesn’t require any modifications of the
underlying solver. Indeed it would be possible to implement
using the MathSAT API rather than modifying any part of the
solver.

VI. CONCLUSIONS

In this industrial case study, we have seen how the introduc-
tion of SMT technology can result in increased performance
over pure boolean SAT. The experience also demonstrates
that a tailored integration within a given verification flow
can have a big impact on performance. In particular, reusing
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learnt information from solving previous formulae can be very
useful, and that in some cases it is possible to achieve good
performance without resorting to more complex techniques
for reusing information that have been proposed in the past.
Simply retaining all information, relevant or not, can provide a
significant performance boost with a very low implementation
cost and with no added solver complexity.

The activity described in this paper has had substantial
impact. MathSAT has now been successfully integrated into
MicroFormal, and it delivers significantly improved perfor-
mance over the SAT-based solver previously used. A version of
the tool set with MathSAT integrated has been made available
to users within Intel with MathSAT available as a command-
line option. Using MathSAT, this version has been successfully
used for verification of a next generation microarchitecture.
In the future, MathSAT will be made the default decision
procedure in MicroFormal.

Although some improvements have been made to MicroFor-
mal in this case study, the time taken to solve formulae is still
considerable compared to the rest of the work of the symbolic
execution engine, on average over half the execution time is
spent in solving formulae. Therefore, it would be interesting
to look for ways of further reducing the time taken to solve
instances as well as reducing the number of instances that need
to be solved. Listed below are a few possibilities which may
be interesting to investigate.

Better models: Since MicroFormal is currently capable
of storing models for previous formulae, and then use them
in a model caching scheme to either avoid future solver calls,
or significantly reduce the complexity of future calls, it makes
sense to attempt to adapt the models returned from the solver
to maximize the utility of this feature. A “good” model in this
case is one which models (or can be extended to model) as
many future formulae as possible, therefore minimal (or near
minimal) models may be interesting.

Heuristics for resets: The reset strategy used in this work
is a simple strategy with a fixed reset frequency. Although
it has been shown to deliver a significant performance im-
provement, it is still vulnerable to outliers in the sequence of
instances. It would be interesting to discover heuristics capable
of detecting when irrelevant information stored in the solver is
likely to negatively affect performance, and build an adaptive
reset strategy around such a heuristic. This should allow for
longer reset intervals in the cases where no outliers exists, and
further improve performance.

A hybrid concrete/symbolic execution engine: One tech-
nique which can quickly discover sets of paths in a program
is fuzz testing. It might be possible to combine fuzzing with
symbolic execution by starting with generating a number of
paths with fuzzing, and then extending this set using symbolic
execution. The two methods can be interleaved by a technique
similar to [13]. Judicial use of fuzzing and concrete execution
may in the best case be able to significantly reduce the number
of formulae that need to be solved, and taking a closer look
at this possibility may be a fruitful avenue of research.

Other possibilities: There are many other possibilities for
future improvement. Among them are the following:

o Support for uninterpreted functions. MicroFormal ab-
stracts some parts with uninterpreted functions, but cur-
rently those are eliminated using Ackermann’s expansion
by MicroFormal itself. Passing the original formula on to
the solver may improve performance.

o Parallelism. There are opportunities for parallelism in
MicroFormal. One example would be performing the
symbolic execution in parallel exploring several paths
simultaneously.
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Abstract—

To keep up with the growing complexity of digital systems, high
level models are used in the design process. In today’s processor
design, a comprehensive tool chain can be built automatically
from architectural or transaction level models, but disregarding
formal verification. We present an approach to automatically
generate a complete property suite from an architecture de-
scription, that can be used to formally verify a register transfer
level (RTL) implementation of a processor. The property suite
is complete by construction, i.e. an exhaustive verification of all
the functionality of the processor is ensured by the method. It
allows for the efficient verification of single pipeline processors,
including several advanced processor features like multicycle
instructions. At the same time, the structured approach reduces
the effort for verification significantly compared to a manual
complete formal verification. The presented techniques have been
implemented in the tool FISACO, which is demonstrated on an
industrial processor.

I. INTRODUCTION

The complexity of digital hardware systems has shown an
exponential growth over the last decades and it is growing
still. To keep track of large systems during the design process,
high level models are used increasingly. Especially for the
design of processors, architecture or transaction level models
form the core of an elaborate tool chain that enables the
automatic generation of simulators, assemblers or compilers,
like Facile [27] or LISA [9]. However, formal verification of
the functionality of the design is still not part of this tool chain.

There exist several techniques for the verification of hard-
ware designs. In simulation based verification, the outputs of
the implementation are compared to a golden reference model,
that is usually based on a transaction level description. But,
simulation is not well suited to cover the whole functionality
of a pipelined processor because achieving a sufficient design
quality for such a processor requires a huge simulation-based
verification effort and there is no guarantee that all possible
bugs have been considered. In contrast, formal techniques offer
the highest quality of verification [15].

One successful technique is Interval Property Checking
(IPC) [23], a technique similar to Bounded Model Checking
[3]. IPC is used to check if a system satisfies a set of properties
about the operations of a design like the processing of a
request in a bus bridge, the execution of an instruction in a
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processor pipeline, or an arbitration cycle in an arbiter. IPC
has been extended with further proofs which ensure that a set
of properties verifies all input/output behavior of a circuit [5].
This methodology has already been used in industrial context
for the verification of a wide variety of designs [12] including
small or medium size processors [6].

However, these projects also illustrate that the integration
of a thorough formal examination into industrial verification
practice requires larger changes to the education and opin-
ions of verification engineers. Compared to simulation based
approaches, formal verification requires a deep knowledge
of the internals of the design under verification (DUV) in
order to write assertions. An important motivation of the work
summarized here and presented in [20] is therefore, that the
automation of the formal verification of some well defined
class of circuits eases the migration from simulation to formal
verification and hence helps to introduce this technology. We
chose smaller single pipeline processors as this class.

For processors, a structured manual verification flow is
available today [2]. But, automation of the verification is
quite low, the more comprehensive the verification is. On the
other hand, existing approaches for the automatic verification
of processors (see related work in Sect. II) often require a
background of deep and general insight into verification goals
and correctness criteria.

In this paper we present a technique for the automatic
generation of a complete property suite for processors. The
starting point of the approach is an architecture description
of the processor. By defining a number of mapping functions
the user captures how the abstract concepts are mapped to the
register transfer level (RTL) implementation. These mapping
functions refer to pipeline stages, stall and cancel signals,
and similar objects that design and verification engineers are
familiar with. Following this approach, the specification is
captured in a concise and readable form, while the underlying
general processor model enables the verification of several
advanced processor features like multicycle instructions, out-
of-order termination as well as exceptions. The generated
property suite is complete by construction in the sense of [5].
As a driving verification engine, the OneSpin 360 MV tool
[24] is used, offering the performance and capacity to formally
verify whole processor designs.

The main contribution of this work is a well structured yet
pragmatic approach to tackle the formal verification of pro-
cessors. It offers an exhaustive verification for a certain class
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of designs, while the automatic generation of the properties
increases the verification productivity significantly compared
to manual coding of properties. As the input for the approach
is an abstract architecture description, the method can easily be
integrated with existing tool chains for processor design. The
automatic generation of the properties is implemented in the
tool FISACO. The approach is demonstrated with an industrial
control processor used in embedded automotive systems, a
domain with particularly high quality requirements.

The paper is structured as follows. Related work is discussed
in Sect. II. In Sect. III, our formal verification techniques are
reviewed. The automatic property generation is described in
Sect. IV. Sect. V shows the application of the approach to an
industrial processor design. Sect. VI concludes the work.

II. RELATED WORK

An approach for the automatic equivalence verification of
general transaction level models (TLM) with timed imple-
mentations is presented in [4], where the different levels of
abstraction are related by events. However, the lowest level of
abstraction in [4] is behavioral RTL and it is not clear how
the concept of events relates to optimized pipeline designs.
In other words, an automated equivalence check between a
sequential processor architecture and a pipelined RTL imple-
mentation is not feasible for optimized industrial designs.

There has been work on the formalization of pipelined
designs. Part of the approaches in the literature use formal
models for the automatic design of correct pipelines [19], or
to accompany the design process [10], [16]. In [10], starting
from a simple model, the design is incrementally refined until
a pipelined implementation is obtained. A CTL specification is
transformed along with the design to prove the correctness of
the refinement steps. A similar approach is presented in [22].
It decomposes the correctness proof for a complex pipelined
machine with branch prediction into several steps, the first
of which proves the compliance of a simple version of the
processor with its ISA. The drawback of these approaches is
that they cannot handle industrial designs containing legacy
code and manual optimizations that are needed to match hard
power and timing constraints.

There are various techniques for the verification of existing
processors [1], [13], [14], [30]. In [1], a formal pipeline model
is introduced that is based on parcels (instructions) process-
ing through the pipeline. By instantiating several predicates
describing the pipeline, the correctness of the design can
be proved formally. However, the model is rather abstract
and the predicates seem difficult to derive. In contrast, we
provide a clear distinction between the architecture layer and
the mapping to the implementation. Furthermore, our mapping
functions have a more intuitive counterpart in the designer’s
intent of implementing a pipeline.

Further approaches for processor verification rely on inter-
active theorem proving [18], [26], [29]. This generally offers
a high level view on the design. Theorem proving however
requires a significant level of expertise that is usually not
available to designers or verification engineers in practice.

Approaches for the automatic generation of properties are
given in [17], [25]; they are based on learning dependencies

or properties from simulation traces. However, they are only
suited for an initial design understanding rather than for a veri-
fication against a specification. In contrast, our approach starts
with a specification that is then related to the implementation
in a well structured way.

III. FORMAL VERIFICATION SETTING

Within the last two decades, there has been a lot of research
in formal verification techniques. Methods based on Boolean
satisfiability (SAT) have proven to be a robust solution. One
prominent technique is SAT based Bounded Model Checking
(BMC), that has first been described in [3]. Successive im-
provements in performance have made BMC a suitable method
for the formal verification of larger scale designs. For the work
at hand, we use the techniques described in [23], referred
to as interval property checking (IPC). In the following, this
verification methodology will be briefly outlined.

In contrast to BMC, only safety properties are verified using
IPC. As digital circuits always have a finite response time,
this is not a serious restriction in practice. It is rather natural
to capture the specification of a design in terms of safety
properties. Furthermore, using IPC, these properties can be
verified with bounded proofs, which can be checked efficiently
using a SAT solver.

The main idea of IPC is to use an arbitrary starting state
instead of the initial state used in BMC. Any property that
holds starting from an arbitrary state then also holds from any
reachable state and thus, it is exhaustively verified. Conversely,
false negatives can occur in IPC, i.e. counterexamples for
properties starting in unreachable states may be produced.
These false negatives need to be removed by adding invariants
in order to restrict the starting state. For more details on the
idea of IPC and the following formalization, refer to [23].

A synchronous circuit is modeled as a finite state machine
(FSM) M = (I, S, So, A, A, O) with input alphabet I C B",
output alphabet O C B™, a finite set of states S C B™, output
function A and next state function A. The set Sy C S denotes
the initial states. With next state function A : B® x B™ — B™,
the transition relation of the circuit is given by

T(s,s') = IxreB": s = A(x,s). (1)

A safety property f = AG(yp) is translated to a Boolean
function [[f]];, checking the validity of formula ¢ at time-
point t. Here, the translation is done such that a satisfying
assignment of [[f]]; corresponds to a counterexample of (.
The resulting function depends on the inputs, outputs and
states within a bounded time interval [0, ¢]. IPC searches for
counterexamples by solving the SAT instance

c
A T, ) A @)

i=0
The transition relation is unrolled within the time interval
[0,c] and it is connected to the single instantiation of [[f]]:.
In order to avoid unreachable counterexamples, invariants are
added. In many cases, such invariants can even be generated
automatically [31]. In the context of the described method-
ology, the needed invariants are usually less complex than
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the main properties; they can thus be verified using inductive
proof techniques like k-induction [28]. For more details on the
method, refer to [23].

IPC is a powerful verification technique, enabling the for-
malization of a specification in terms of safety properties
and its verification against the implementation. However, to
be sure that no bugs have been missed, the verification
engineer needs to reason about the completeness of the written
property suite. A technique to formally check whether a set
of properties forms a complete specification is described in
[51, [8]. These techniques have been successfully applied to
industrial processor designs [6].

Completeness analysis determines whether every possible
input scenario—corresponding to a transaction sequence of
the design—can be covered by a chain of properties that
predicts the value of states and outputs at every point in time.
In other words, any two designs fulfilling all the properties
of a complete property suite are formally equivalent. The
completeness analysis basically boils down to check in the end
state of each property whether (1) there is always a successor
property with matching assumptions, (2) the successor prop-
erty is uniquely determined and (3) each property describes
the outputs and states of the design uniquely. For more details
on the methodology please refer to [5], [8].

For the formal verification of the generated property suite
against the RTL, we use OneSpin 360MV [24]. This com-
mercial solution covers the required spectrum of formal
verification—from the verification of SystemVerilog assertions
all the way to the automatic completeness analysis described
above. Among various other proof engines, 360MV also offers
IPC and k-induction with sufficient capacity and performance
to handle the complete verification of processors [6].

IV. VERIFICATION USING GENERATED PROPERTIES

Technically, the basis of the approach presented here is
to provide a general formal processor model that can be
customized by the user to match his specific implementation.
The general processor model can be thought of as a tool box
with several design features to be picked out. The customiza-
tion is done by setting the architecture design parameters,
like the number of pipeline stages and the possible interface
transactions. Furthermore the mapping from the architecture
description to the RTL has to be established by defining a
number of mapping functions. The basic flow is shown in
Fig. 1. The general processor model consists of three parts:

1) The pipeline model describes the movement of the
instructions through the stages

2) The datapath model describes register access and data
forwarding

3) The interface model describes memory and bus ac-
cesses

v
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Fig. 2. Interaction of generated properties

After identifying the visible registers and interfaces, the
instruction set and the exception behavior of the processor are
described on the architecture level. The generated property
suite consists of instruction properties and a set of consis-
tency assertions. While each instruction property describes the
processing of a single instruction until it leaves the pipeline,
the consistency assertions ensure the correct interaction of
multiple instructions and the consistent pipeline behavior, if no
instruction is present in a dedicated stage. The latter includes
e.g. checking that empty stages will not update any state
elements. These assertions also help the user in finding an
appropriate mapping by giving him a feedback for debugging.

Basically, the equivalence of the property suite and the DUV
is established by chaining the generated properties, as shown
in Figure 2. Each property is depicted as a rectangular box,
consisting of an assume part (assumption A) and prove part
(consequent C, shaded gray in the figure). The properties are
hooked up at the time point when the processor is ready to
execute the next instruction, represented by the big black dots
in the picture. Thus, starting from reset, the first property
proves that the new instruction state (NIS) will be reached.
Then, the following properties assume the NIS and prove that
after fetching the dedicated instruction, NIS will be reached
again, enabling the connection to the next instruction property.

The basic approach has been described in detail in [20]; it
is based on a patent application [7].

A. General Processor Model

The approach presented here is limited to a class of pro-
cessors that is common in industrial designs. The class is
characterized by the following features:

« Single pipeline

o In-order-execution, out-of-order termination

o Register files with multiple prioritized write channels

« Exceptions and interrupts

¢ Delayed branch instructions

« Branch prediction

o Multicycle instructions

o Multiple interfaces, including pipelined protocols

Note that a typical CPU also contains complex data memory
and prefetch logic. With our approach, the core of such a
CPU can be verified with generated properties, providing
exact interface descriptions to the data memory and prefetch.
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These modules can in turn be verified manually, thus ensuring
correctness of the overall CPU. In such manual extensions, the
already established mappings and models can easily be reused.

The components that are included in the architecture view
are described in the following. A processor receives its instruc-
tions via an instruction memory interface, that is addressed by
a program counter PC. The currently processed instruction
word is denoted ITW. There can be an arbitrary number of
architecture registers and flags. There can be interfaces to data
memories or buses, each associated with a set of transactions,
at least containing the idle transaction.

The instructions are described on the architecture level.
In order to verify them against the RTL implementation, a
mapping has to be established by the user. For the components
PC and IW, the corresponding mapping function is usually
pointing to a dedicated signal in the RTL showing the value of
the program counter and an instruction register, respectively.
However, the mapping of an architecture register file requires
a model of the pipelining due to forwarding mechanisms that
are part of every pipelined processor design. We first introduce
the architecture description, followed by a discussion of the
models for the pipeline, the data path, and the interfaces.
Finally, the generation of the property suite is described, and
the completeness of the model is discussed.

B. Architecture Description

In our approach, there is a clear distinction between the
architecture description and the mapping functions. In this
way, a readable and proven correct description of the ISA is
obtained. The mapping functions relate the ISA to the RTL.

In the first section of the architecture description, the com-
ponents of the processor are listed, comprising all architecture
registers and flags. Furthermore the interfaces to memories and
buses are given, as well as the respective transaction types on
these interfaces. The main section of the architecture descrip-
tion consists of the ISA description, where all instructions of
the processor are defined. In the ISA description, the registers
are referred to by their specification name.

For each instruction, first the execution condition is given
(TRIGGER). Then, the updates of the program counter and the
architecture registers and flags need to be defined, followed
by the definition of one transaction per interface. The updates
are defined by the read registers (VREGISTER), the target
register (UREGISTER) and the value that will be written by
the instruction (UPDATE).

As an example, consider Fig. 3(b) with a simple processor
description including an ADD instruction. The triggers for the
instruction are divided into two statements, one of which
only depends on the architecture state (TRIGGER_STATE),
while the second one depends on the instruction word
(TRIGGER_IW). Besides the update of the program counter
in line 8, there is one update of the register R, where two
registers are read addressed by parts of the instruction word
(lines 9 and 10). The target register is given in line 11 and the
sum of the two source registers is defined in line 12. Finally,
there is no transaction on the data memory interface, indicated
by the statement DMEM_IDLE in line 13.

opcode = 11000
R[rt] := R[ra] + R[rb];
‘ No memory access.

Arithmetic Instruction ADD
15 1110 87 5

opcode | ra | b | it |

(a) Specification

registers R;
interfaces DMEM;
transactions_DMEM :=

IDLE, READ, WRITE;
simple_instruction ADD {

TRIGGER_STATE := true;

TRIGGER_IW := IW[15:11] == ADD_op;

UPDATE_PC := (PC + 2)[7:0];

VREGISTER_1 := R(IW[10:817);

VREGISTER_2 := R(IW[7:5]1);
11 UREGISTER_1 := R(IW[4:2]);
UPDATE_1 := (VREGISTER_1 + VREGISTER_2)[15:0];
13 DMEM_IDLE; }
(b) Architecture description

N=NCCIEN e WU NNV SR

Fig. 3. Informal specification and architecture description example

C. Pipeline Model

In a pipeline, the processing of instructions is overlapped
in order to speed up computations. Thus, a new instruction
starts before the preceding one has terminated. For example,
a typical simple pipeline would partition an instruction into
fetching the instruction word from the memory, decoding it,
executing logical and arithmetic operations and writing the
result back into the register file. Note that this section only
introduces basic pipeline modeling for the control path in order
to keep track of the different instructions in the pipeline. The
handling of forwarding is part of the data path of a pipeline
and discussed in the following Sect. IV-D.

The major challenge in designing a correct pipeline are
hazards, i.e. conflicts between instructions that are processed
at the same time in different stages. If an instruction needs data
that is currently being computed by a preceding instruction, a
read-after-write conflict occurs and the succeeding instruction
needs to wait for the data. Thus, a mechanism to stall a stage
is needed. Another hazard is related to branching instructions.
When a jump is taken, this is typically detected at a time
when subsequent instructions from the sequential program
flow already have been fetched. Therefore, the pipeline must
possibly be cleaned from wrongly fetched instructions, requir-
ing a cancel mechanism. As this may lead to stages that are
not processing any instructions, it is desirable to distinguish
between empty and full stages to prevent spurious register
updates or similar faults. Based on these requirements, we
now define our pipeline model.

Given the number of pipeline stages n, we define the set
S ={1,2,...n} of pipeline stages. The pipeline architecture
is further classified by defining some constants that refer to
certain stages like the decode stage dec € S and the stages
ia,iv € S that denote the stage when the instruction memory
is accessed and when the instruction word is valid, respec-
tively. The processing of instructions by the pipeline is defined
by the mapping functions! full, stall, cancel : S — B.

The value of full(s) reflects if the pipeline stage s currently

IThe state of the design is an implicit parameter of all mapping functions.
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Fig. 4. Normal processing of instructions by the pipeline
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Fig. 5. Pipeline for a taken jump instruction

holds an instruction. If stall(s) is true, the instruction in stage
s will not proceed to the succeeding stage s + 1. cancel(s)
indicates that the instruction currently in stage s will be
removed from the pipeline and will have no more effects
in later stages. The normal processing of two consecutive
instructions is shown in Fig. 4, where time progresses from left
to right. The time-points when the first instruction is allowed
to proceed to the next stage are denoted by ¢; to ts, i.e.,
stall(s) evaluates to false at t;. The boxes indicate the time-
points when the respective stage is processing an instruction,
i.e. full(s) = 1. The pipeline for a taken jump or mispredicted
branch instruction is shown in Fig. 5. At timepoint ¢, the
canceling of two succeeding instructions is indicated by the
dark boxes. After the taken jump, the target instruction is
fetched from the instruction memory.

The mapping functions have to be defined by the user. This
means for example, that the user needs to identify how the
implementation encodes the fact that a stage is full. Since the
functions are used in the properties, the verification fails as
long as the model is not completed properly.

In addition to the basic model, further pipeline operations
can be supported. It is common for instructions to leave the
pipeline before the last stage, if no more actions will be
taken in later stages, in order to prevent conflicts. Thus, a
last stage can be defined for each instruction. Exceptions are
a crucial feature for practical applications. By nature, they
interrupt the normal instruction processing. The most general
exception model, that is still suited to conform with our
approach, is an injection of a new instruction into the pipeline
after an exception has been acknowledged. Finally, for more
complex arithmetic operations or interactions with protocol
driven interfaces, multicycle instructions are frequently used
in processor designs. Typically, an FSM in an early stage is
responsible for dispatching partial instructions in the pipeline.

For these refinements of the simple model, additional map-

stall(1) m P ? ? ? -

stage | ‘ ‘

stall(2) bt
dispatch(2)

stageo

stall(3)

stages

Fig. 6.

Pipeline for a multicycle instruction

ping functions for of out-of-order termination, exceptions, and
multicycle instructions need to be defined.

last_stage,inject,dispatch : S — B, 3)

Here, last_stage(s) indicates that the instruction in stage s
will leave the pipeline, inject(s) states that an instruction will
be injected into stage s in the next cycle due to an exception,
and dispatch(s) describes that a multicycle instruction is
started in stage s. The pipeline of a multicycle instruction
according to our model is shown in Fig. 6. There, the partial
instructions are dispatched in stage 2.

D. Data Path Model

Based on the above control path model of the pipeline, we
can now define the data path model, describing the way how
data is read, forwarded and stored in the registers.

For a register file R, a mapping function currentr : Zp —
Dr, is defined that returns the current implementation state of
the register, where Zp is the index set and Dp is the data
domain of register R. For the data path of the register the
following mapping functions have to be defined:

writeg,validg : S — B (4a)
destp : S — Ig (4b)
datar : S — Dg, (4¢)

where writegr(s) indicates if the instruction in stage s is going
to update register R, while destr(s) and datagr(s) specify
the target register and the data to be written, respectively. By
validg(s), it is stated if stage s already produces a valid result.
With these building blocks, the forwarding in the pipeline to
some forwarding target stage s € S can easily be captured: the
value of a register R with index ¢ € Zr, in the forwarding target
stage s is recursively given by checking whether succeeding
stages write to register ¢; this corresponds to the forwarding
logic in the pipeline.

currentp(i), if s > writebackg;
if writeg(s + 1)A
destp(s+1) =g

otherwise.

Datag(s,i) = < datag(s+ 1),

Datagr(s+1,1),

Note that this automatically generated function Datapr
actually captures the complex mapping of the visible register
R to the implementation, i.e., the architecture value of R for
an instruction in the pipeline is the value of Datapr in the
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forwarding target stage of that instruction. Since the value of

Datapr may be invalid because the result of some instruction is
not available yet, we introduce an additional mapping function
capturing whether the forwarding data is indeed valid:

false,

true,

if s < dec;

if s > writebackg;
if writer(s + 1)A
destr(s + 1) =

otherwise.

Valid 1) =
alidg(s, ) validgr(s + 1),

Validg(s + 1,14),

E. Interface Transactions

In order to verify the interfaces of the processor, the
following model is used. For each interface ' the constants
darp,dvrp € S denote the stage when a data access is issued
and when valid data is returned, respectively. For each inter-
face, a set of transactions T'A;r is defined by the user with at
least IDLE € T Arp. For each transaction ta € T'Arr a func-
tion tarp : N x N — B is defined, where ta;p(addr, wdata)
captures that the specified transaction takes place in the
design, optionally involving the address addr and (for writing
transactions) the write data wdata. As for the example in
Fig. 3(b), the three functions IDLEpy gy, READpyEM
and WRITEpyen need to be defined, capturing for given
address and data, if the respective transaction is issued on the
data memory interface.

Besides the transactions, for each interface a mapping
function rdata;r points to the implementation port, where
data is read in to the processor. Finally, there is a static
interface to the instruction memory, given by the predicate
tbus_read : N — B, which checks if the instruction memory
is currently being accessed for a given value of the program
counter.

FE. Consistency Assertions

While the above models describe the processing of instruc-
tions by the successive pipeline stages, additional assertions
are needed for the overall correctness of the processor. This
includes the behavior of empty pipeline stages as well as the
interaction of succeeding instructions. For this purpose, a set
of consistency assertions are automatically generated.

Note that the overall verification is fail safe, i.e. it cannot
succeed if the design is not correct. But, even for a correct
design, finding the appropriate mapping functions can be
difficult. The consistency assertions provide useful information
on the status of the modeling. Failing assertions can point
the user to certain mapping functions that need to be revised
to complete the verification, thereby guiding the debugging
process.

We show the following assertion as an example. For a more
detailed description of the consistency assertions, see [20].

Vs,2<s<n:
( (—=fullt(s —1) V stall*(s — 1))A )
(—fullt(s) V —stallt(s)) ) = = full'T1(s)
This assertion states that it is illegal to create full stages in
the middle of the pipeline: when the stage before s is empty

TABLE 1
USER INPUT FOR PROPERTY GENERATION

(a) Constants

Name Domain Description
n N number of stages
dec S={1,...,n} decode stage
ia S instruction memory access stage
v S stage in which instr. word is valid
int S highest stage for interrupt injection
darp S access stage for interface [F'
dvrp S data valid stage for interface [F'
writebackr S writeback stage for register R
(b) Mapping functions
Arch. Function Signature Description
Basic components
PC pc N program counter
w W N instruction word
Pipeline Model
full S—>B stage active
stall S—B stage stalled
cancel S—B stage is canceled
inject S—B inject launch instr.
dispatch S—B dispatch micro instr.
last_stage S — B instr. leaves pipeline
Datapath Model
currentp Dr implementation register
writer S—B stage will write
R destpr S —Ign write destination
datag S — Dgr write data
validgr S—B data is valid
Interfaces
ibus_read N—B instruction fetch
IF_TA tarp NxN—B transaction
IF_RDATA  rdatajp N read data

or stalled, and s is empty or it will proceed to the next stage,
then s must be empty in the next cycle. Here, f* denotes the
value of f at timepoint ¢. Other assertions ensure, for example,
that instructions do not overwrite each other and that empty
pipeline stages do not have an effect on the visible registers
or issue interface transactions.

G. Generating The Property Suite

In order to adapt the general processor model to the actual
DUYV, the user needs to specify the mapping functions de-
scribed in Sections IV-C to IV-E. The user input is summarized
in Table I. Besides the basic data on the pipeline, given by
a set of constants, the table shows the mapping functions
corresponding to the architectural components of the general
processor model.

During the generation of the property suite, an architecture
register R(7) is replaced by an instantiation of the function
Datar(sfwa,t), where sp,q is the forwarding target stage,
which is usually the decode stage.

The generated properties prove the correctness of the in-
structions on the implementation level. For this, we define
to to be the timepoint when the respective instruction enters
the pipeline and ¢; > t;_1,1 < ¢ < n to be the timepoints
when the instruction is allowed to proceed from stage ¢ (see
also Fig. 4-6). The properties have an implication structure
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A = C. Whenever the assumptions A evaluate to true, the
prove part C' must hold as well. In the following, we give an
overview of the templates for instruction execution without
exceptions. There are similar templates for exceptions; for
more details, see [7]. Note that there are two templates for
conditional branches depending on whether the branch is taken
or not. In this way, branch prediction can easily be modeled.
The assume part for an instruction m basically consists of the
following assumptions:

o The instruction enters the pipeline at ¢g.

o In decode, instruction m is triggered.

o The instruction proceeds from stage ¢ at ¢;, ¢+ < 1 < n.

o The instruction is not canceled by preceding instructions
and not replaced by an exception call.

For each instruction, mainly the following will be proved:

o The instruction is fetched from the instruction memory

o The program counter is updated correctly

o The full stages are correctly tagged by the full function

o No cancel is generated (except for jump instructions)

o All read registers are valid

o The registers will be updated (or remain stable) corre-
sponding to the ISA; this includes the verification of
correct forwarding

o The correct transactions will take place on the interfaces

H. Completeness

The pipeline model is built such that the final property suite
in combination with the consistency assertions is complete
by construction, if some rules are respected for the definition
of the mapping functions. For a proof for the basic pipeline
model, see [7].

However, the completeness of a concrete generated property
suite additionally depends on the proper definition of some of
the functions. If, for example, the user defined the function
for a read transaction by simply returning true, it is obvious
that the interface signals are not checked at all for read
transactions and there is a gap in the verification. In summary,
the generation ensures that all possible scenarios are covered
with properties, but not that all transactions verify all outputs.
However, the automatic gap detection of OneSpin 360 can be
used to close these gaps as well.

V. APPLICATION

The above method has been implemented as a front-end
for OneSpin 360 MV; we call it FISACO (Formal Instruction
Set Architecture Compiler). It takes an architecture description
and automatically generates the instruction properties and the
consistency assertions in a form readable for 360MV. The
mapping information needs to be supplied in a temporal logic
format. The processor model formed by both the architecture
description and the mapping information can then be verified
and debugged using 360MV.

In the following we will describe the application of the
proposed method on an industrial processor design. We suc-
cessfully verified a control processor that is used in automotive
applications, the Peripheral Control Processor (PCP) by In-
fineon Technologies. First, the basic data of the PCP will be

given, followed by a presentation of the verification results.
Besides, during its development, the method has been applied
for the complete verification of smaller processor designs from
the opencores site (www.opencores.orq). Details cannot
be given here due to page limitation.

A. PCP Processor

The PCP processor is a control processor that is part
of automotive systems. Its main purpose is the monitoring
of peripheral components in order to release the central
CPU [11]. Therefore, a great share of the instruction set
is dedicated to data transfer and bit operations, which are
frequently used in typical control applications. The PCP is
connected to a data memory and a pipelined FPI bus (Flexible
Peripheral Interface). As the bus operations require complex
protocol transactions, 35% of the instruction set are multicycle
instructions. In total, the PCP has 66 instructions, divided
into arithmetic/logic instructions, jump and control, memory
instructions, bus instructions and complex math instructions.

The processor is implemented as a four stage pipeline. The
register file contains 8 registers of 32 bit, where one register is
a special purpose register containing various status flags and
the program counter. The whole RTL implementation adds up
to about 17.000 lines of VHDL code, accompanied by a de-
tailed informal specification. Regarding the complexity of the
design and the quality of the source code and documentation,
the time for the formal verification was estimated with 8 to 10
person months, needed to manually write a complete property
suite using OneSpin 360 MV.

B. Results

The PCP has been verified using the presented approach.
The informal specification was ported to an architecture de-
scription. Most of the manual effort was spent for the definition
and refinement of the pipeline and datapath model, given by
the mapping functions explained in Sect. IV-C to IV-E. Using
our approach, the instruction set of the PCP could be success-
fully verified except for two highly complex bus instructions
involving nested loops and excluding three complex math
instructions. For these instructions, the control mechanisms
of the PCP did not match our general pipeline model. It does
not seem useful to extend the model for these cases, as they
are very specific to the PCP implementation. Instead, having
found a good representation of most of the functionality based
on our processor model, the defined functions can be reused
for further manual verification. This has also been done for
some additional functionality beyond the ISA, like loading
and storing full register contexts. The overall verification of the
PCP with our methodology took about 5 person months. Thus,
we could achieve an estimated productivity gain of 100%.

The verification has been carried out on 2.2 GHz work-
station with 16 GB memory. Details on the proof times and
the used memory can be found in Table II. As can be seen,
the generated consistency assertions could be proved quickly.
Most of the time was spent for the verification of arithmetic
and bus instructions. The latter ones are mostly multicycle
instructions and thus the design needs to be unrolled for up to
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TABLE II
VERIFICATION RESULTS

Category  Properties Total time Avg. time Memory
assertions 34 600 s 17.6 s 937 MB
arithmetic 15 18788 s 1252.5' s 2500 MB
logic/bit 18 3368 s 187.1 s 2500 MB
jump 7 220 s 314 s 2500 MB
memory 16 2135 s 1334 s 2500 MB
bus 10 3214 s 3214 s 2500 MB
other 3 147 s 49.1 s 1763 MB
total 103 7:54 h

26 cycles. Note that the two most difficult instructions make
up 3 hours and 48 minutes or 48% of the total runtime.

VI. CONCLUSIONS

We have presented an approach for the automatic generation
of a complete property suite from an architecture description
of a processor. There is a clear distinction between the
architecture model and the mapping information connecting
architecture to RTL implementation. The architecture model
can be easily derived from an informal specification.

The mapping from the specification to the implementation is
based on a general pipeline model that reflects the designer’s
intent in implementing a correct pipelined processor. A set
of consistency assertions is automatically generated to check
the correctness of the model and helps the user in finding
a suitable mapping. When the mapping and the architecture
description are finished, the generated property suite forms a
model of the design, i.e. the verification is exhaustive.

The practicability of the approach has been demonstrated
on an industrial processor design, a control processor from
the automotive domain. With the presented methodology, the
estimated verification productivity could be doubled.

In the future, we want to integrate this approach with our au-
tomatic generation of efficient instructions set simulators (ISS)
[21]. This allows to generate both a complete property suite
and an efficient ISS from a common architecture description,
ensuring that the generated ISS complies to the verified RTL
code. A complementary extension would be the use of existing
ADL like LISA, facilitating the integration of formal methods
into the tool chain for processor design.
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Abstract—Word-level bounded model checking and equiva-  In this paper we are interested in equivalence checking and

lence checking problems are naturally encoded in the theory model checking problems in hardware verification involving
of bit-vectors and arrays. The standard practice of deciding gecision procedures for bit-vectors and arrays. Such problems

formulas of such theories in the hardware industry is either .. NP .
SAT- (using bit-blasting) or SMT-based methods. Theyse methods &N be solved efficiently by Satisfiability Modulo Theories

perform reasoning on a low level but perform it very efficiently. (SMT) [16] solvers [5], [6], [21]. More precisely, we are
To find alternative potentially promising model checking and interested in problems in the theory of fixed-size bit-vectors
equivalence checking methods, a natural idea is to lift reasoning and extensional arrays, known as the the@d¥ AUFBV.

from the bit and bit-vector levels to higher levels. In such an It has also been shown [14] that such problems can be

attempt, in [14] we proposed translating memory designs into the . . o
Effectively PRopositional (EPR) fragment of first-order logic. encoded into the Effectively Propositional (EPR) fragment of

The first experiments with using such a translation have FOL, WhICh |S deC'dabIe and fOI’ WhICh effICIent FOL SO|VerS
been encouraging but raised some questions. Since the high-levelexist [20], [15], [3]. The EPR fragment consists of first-order
encoding we used was incomplete (yet avoiding bit-blasting) some formulas which in clausal normal form contain no function
equivalences could not be proved. Another problem was that symbols other than constants.

there was no natural correspondence between models of EPR Th d di hich in th
formulas and bit-vector based models that would demonstrate e current understanding (on which many experts in the

non-equivalence and hence design errors. field agree) is that FOL solvers are good at "pure first-order
This paper addresses these problems by providing more re- problems” involving formulas with (interleaving and nested)

fined translations of equivalence checking problems arising from yniversal and existential quantifiers, while SMT solvers are

hardware verification into EPR formulas. We provide three such  |joqt 4t quantifier-free theoridsin this paper we set out to

translations and formulate their properties. All three translations . . . . .
are designed in such a way that models of EPR problems can be INVestigate the scalability of EPR solvers with different proof-

translated into bit-vector models demonstrating non-equivalence. calculi to real-life problems involving reasoning with bit-
We also evaluate the best EPR solvers on industrial equivalence vectors and arrays, and comparing their performance with the

checking problems and compare them with SMT solvers designed pest SMT solvers for the theol@ F_AUFBV. We propose
and tuned for such formulas specifically. We present empirical several sound and complete encodings of problems in this
evidence demonstrating that EPR-based methods and solvers are . . .
competitive. theory into EPR, anq discuss and expenmentally e_valuate
the advantages and disadvantages of different encodings. We
|. INTRODUCTION also discuss and experimentally evaluate advantages and dis-
advantages of different proof calculi for FOL with respect

Qse .Of theorem proving in he}r.dwelxre and software Ve”f{b solving the EPR problems arising from industrial scale
cation is not new. A first classification of the use of theﬁardware verification

orem proving in formal verification would be to divide it To the best of our knowledge, no similar analysis was
into Higher-Order Logic (HOL) and First-Order Logic (FOL) eported before. We find this analysis interesting and important

theorem proving. Because HOL theorem proving is hIghI5,(specially because the significance of the EPR fragment in

interactive and requires from the user both an expertise in e .
) L : software and hardware verification has been realized only

theorem proving and a good familiarity of the design (or . . . y
e . recently [17], [18], by showing that many interesting veri

prog.ram.) under ver|f|ca'.[|.on,.the.us'e .Of hlgher-o'rder thl:‘\orei!igation problems can be encoded in this fragment and can
proving in hardware verification is limited to particular styleséf,[en be solved efficiently. We hope that the theoretical and
of design for which no good fully-automatic verification )

methods exist. Unlike HOL, there are highly efficient fully experiential analysis reported in this work will help in cross-

automatic FOL theorem provers, so the potential of FOL fcl)(?arnlng between the calculi and algorithms emplpyeq in SMT
. . et . and FOL approaches, for the class of problems with bit-vectors
a wider use in formal verification is significantly higher.

and arrays.

This work is partially supported by EPSRC and the Royal Society.
1This by no means diminishes the importance of the use of HOL theorem?Few SMT solvers, like Z3, do support limited quantified theories; see [22]
proving in verification — in certain areas of verification it is indispensable. for further references.
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In the next section, we recall a sound but incomplete RTL SCH
encoding of problems with bit-vectors and arrays into EPR, i
as described in [14]. As a consequence of incompleteness, the
powerful abstraction of the size of bit-vectors and arrays on wren
which the encoding to EPR is based, is often the source of false  gen | v |
counter-examples in verification. Debugging of verification addr | L
failures is the main source of inefficiency in hardware design ]|
projects, and false failures (also called false negatives, caused
by the nature of the verification tool or methodology rather
than an actual bug in the design) are simply unacceptable. Fig. 1. Specification and Implementation memories
In Section Ill, we therefore propose several approaches to
achieving the completeness of encoding to EPR, thereby

eliminating the possibility of false negatives. The toy designs are depicted in Figure 1. The specification
In Section IIl, and further in Section IV, we analyze th§jesign corresponds to the register-transfer level description

advantages and disadvantages of the proposed sound ), while the implementation design corresponds to its

complete encodings to EPR, and relate these to the strengiigematic implementation (SCH). The specification model

and weaknesses, relative to the problems we are interesteq.ghtains a memonsmem with 64 rows and 71 columns,

of several important proof calculi employed in the best EPR; sqdress bit-vectoaddr is of width 12, and it is used

solvers (the winners of recent theorem proving competitiogs pass the memory address for both write and read oper-

in the EPR and other categories). Extensive experimenig,ns: bitsaddr [5 : 0] are used for the write operation
results comparing the performance of the best solvers for EBRy pits addr[11 : 6] are used for the read operation.

problems with the performance of winning SMT solvers in thether swr i t e andsr ead denote the write and read data
category of .b'|t-vectors and arrays on hardware Ve”f'caF'%ctors, respectively, of widthl, andwr en andr den are the
problems arising from real-life Intel micro-processor desighyniro| bits enabling write and read operations, respectively.
are reported in Section V. The benchmarks were selected bits w en and rden. as well as the clockcl ock
organized carefully so to expose the strengths and weaknesggs addresaddr , are shared between the specification and
of different decision procedures, and their sensitivity to th?nplementation designs. The implementation design has mem-
nature of the benchmarks (such as the presence of extengiw:i memwith the same dimensions asrem 2 The write
bit-level reasoning as opposed to really bit-vector level regperation in the implementation model is different: bit-vector

soning, the design style, the writing style of RTL, the naturgaai v j t e is split into two parts during the write operation
of compilation of RTL and schematic descriptions into model- ; ,r i te[70 : 36] and iwrite[35 : 0]. Each of the

checking instances). Conclusions appear in Section VI.

| smem read

parts is written to the corresponding part iofrem so the
implementation memory is shown split into two parts. Beyond
the boundaries of the implementation memory unit the data is

In this paper we consider the theory of fixed-size bit-vectotstwise negated before being written to the implementation
and extensional arrays. We assume that bit-vector arithmetiemory and after being read from it, so the write data
operators are synthesized (or bit-blasted) in the verificationw i t e (respectively, read datar ead) in the implemen-
front-end, and the solver engines do not receive arithmetation memory is the negation of the write (respectively, read)
operations in the expressions to solve. data in the specification memory.

For arrays, we assume the standard operations: read (Ofith the relational encoding [14] of memory equivalence
select), write (or store), and equality (|f the array dlmenglo%ecking problems into EPR, any bit-vectois considered as
are the same), and the standard consistency and extensionglif4|ation on integers. Thus, for every integerit holds that

I[I. THE RELATIONAL ENCODING

axioms [19], [7], [16]: b(k) is true if and only if thekth bit of b is 1. If b does not
mem{i < e}(i) = e; have thekth bit, the relational encoding in [14] assumes that
mem{i < e}(j) = mem(j), if j # i b(k) is either true or false. Such a representation of bit-vectors
(V5 : mems (j) = memz(j)) — mem; = mems. is a powerful abstraction, since, instead of considering a bit-

The encodings of the theory of bit-vectors and arrays thygetor a mqpping from a finite range of integer§ o boolgans,
we consider here are all refinements of an encoding propo§’t§dIS done n the SMT theop"_AUFBV, a b|t-yector IS
in [14], called therelational encoding (as opposed to the now a mapping fronall integers to booleans. The width of bit-

algebraic encoding that was also considered there and wadectors is thus abstracted away. In the relational encoding, a
shown not to scale on even small verification problems). TB8MOTY becomes a binary relation: the first argument denotes

explain the relational encoding and to describe our contributiGf addref]s anld th? ‘:fecﬁnt? afb'r:' F(l)r exampllrﬁn(aalg)
clearly, we choose to use as the running example slighfynotes the value of thieth bit of the element at the address

modified tOY specmcatlo_n and implementation designs usedsIntel's logic extraction tool can identify memories and address decoders
as the running example in [14]. in the schematic models [14].
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aininmem
Let us now recall the relational encoding (as in [14]) ¢l ock Arden — VB(sread'(B) < smen(r eadAddr , B));
of our running example. First, define the correspondence-(cl ock Arden) — VB(sread'(B) +> sread(B)).
between the specification and the implementation designs agyq gefinitions of the read operations for the implementa-

the conjunction of correspondence of the memories and of WS’n memory are similar: one should only replaeead and
read data. smemby i read andi nem

VAVB(i memA, B) <> ~snem(4, B)). (1) 11l. RELATIONAL ENCODINGS ELIMINATING SPURIOUS
MODELS
VB(i read(B) < —sread(B)). (2) Unfortunately, as pointed out in [14], the powerful abstrac-
The input write data correspondence is specified as follow@n resulting from considering bit-vectors as functionsain
integers comes in the expense of loosing the completeness
VB(iwrite(B) < —swite(B)). (3) of the encoding — false negatives (i.e, counter-examples that

To be able to use the relational approach, one should idenfiy’ not real) are possible. For exampley,ib, ¢ represent bit-
gi%ors of length 1, the formula

bit-vectors in the design used as addresses and add equatY
enabling to decide when any pair of addresses is equal. For a=bVa—=cVb=c @8)
example, in our running example, we might need formu- . o . . ) )
las describing when the termr i t eAddr corresponding to S valid, but it is not valid in the abstraction since its negation
addr [5 : 0] is equal to the ternt eadAddr corresponding S satisfiable. . o _
to addr [11 : 6]. Since the bit indexes involved in these In order to avoid the pqssmlhty offglse negatives (i.e., spuri-
two bit-vectors are different (in particular, are shifted), th@us models), we would like the relational encoding to become

corresponding bit-index constants t | nd,, ...,bi t I nd;; aware of the ranges of bit-vectors and arrays involved in circuit
are introduced, and the following axiom is added: operation, and we would like to record this information in the
translation. The main idea of the refined encoding — let us call
(writeAddr =readAddr) it range-aware relational encoding to EPR — is that for every
((addr (bi t I ndo) <+ addr (bi t1nds)) A...A (4) formula that we generate during the encoding, the range of bits
(addr (bi t I nds) <> addr (bi t I ndi1))). in the involved bit-vectors or arrays is explicitly encoded in

The transition relation for the specification memory is a§'€ formula using the less-predicates and bit-index constants

follows, where the prime symbdlis used to denote next-state(Such as esssg or bi t 1 nds). For this to work, we need to -
variables: relate the less predicates introduced during the encoding with

the bit-index constants introduced during the encoding. Note

vA(clock Awren A A =writeAddr — that there is no need to relate a bit-indgixt | nd;, with a less

VB(smenmi(A, B) <> swrite(B)));

VA(=(cl ock Awren A A —writeAddr) — (5) predicatd ess,, for many pairs(k, n): it might be irrelevant
VB(smem(A, B) <> smem(4, B))). to capture the fact that
Splitting bit-vectors into parts is done by introducing pred- lessy(bitindy) if k<mn )
icates true on bits belonging to the LSB part. For the running -l ess,(bitlndy) otherwise

example, predicaté esssg is introduced, intended to hold - - .
(only) on bits with numbers strictly less thais, We also Next we discuss several ways to eliminate false negatives,

introduce propositional variablesr enj,; and wr en;, for and discuss the advantages and disadvantages of each ap-
enabling writing into the two parts of the memory. proach.

W eNnp1 <> Wren Acl ock; ®) A. Encoding 1: precise ranges

W enps <> W en Acl ock. . . . .
"2 Let us first define range-predicates: For a pair of non-

. . . . .negative integers < m, let us define
The transition relation for the implementation memory is

then given as follows: rangey,, ,)(B) < | ess;,11(B) A -l ess,(B).

VAW enm A A = wri t eAddr — When equality between arrays is introduced, it should be

VB(l essss(B) — (i mem(A, B) < i write(B)))); guaranteed that there will be no bits beyond the range of the
YA(—~(wrenp; A A=witeAddr) — data on which the array equality will fail. For example, we
VB(l essss(B) — (i nen(A, B) <+ i mem(A, B)))); write the invariant formula (1) for memories as
VAW enp A A=witeAddr — )
VB(-l essss(B) — (i mem(A, B) < i write(B)))); VAVB(rangez g (B) — (i men(A, B) <> ~snen(4, B))).
VA(-(Wenpe ANA=witeAddr) — . . .
VB(~l essse(B) — (i mem(A, B) <» i mem(A, B)))). When equality between bit-vectors of the same range is in-

(7) troduced, we explicitly restrict the corresponding equivalence
The definitions of the read operations for the specificatiaf bits to the relevant bit-range. For example, we now write
memory are as follows. the formula (7) as
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B. Encoding 2: bit-index pre-instantiation

VAW enm A A =writeAddr — In the precise-ranges encoding, the axioms like (10) intro-
VB(rangess o (B) — (i menf(A, B) «» i write(B)))); duce many equalities between terms describing bit-indexes.
VYA(—~(wrenp; A A=witeAddr) — Dealing with many such equalities may significantly slow

VB(rangess o (B) — (i meni(A4, B) <+ i men(A, B)))); down the EPR solvers. This is explained in the next section.
VAW enuz AA=witeAddr — The most straightforward way to avoid these equalities be-

VB(r ange;o 35 (B) — (i meni(A, B) «» i wri te(B)))); iy . )
VA(=(Wr enps A A — i t eAddr ) — tween the bit-index terms (and still retain the completeness)

VB(r angeqyo s (B) — (i meni(A, B) < i men(A, B)))). is. to pre—insta_ntiate all quantifierg ranging over bit—index.es

' with concrete index values. This is a meaningful alternative

Similarly, instead of (2) we now write in the case where there is a lot of bit-wise reasoning, like
in schematic models, and most of the bit-indexes introduced

VB(r ange 4 (B) — (i read(B) +> —sr ead(B))). during pre-instantiation would have been introduced anyway

with the precise-ranges approach.

We add axioms stating that bit-index terms corresponding This approach is sensitive to the amount of bit-index con-
to different indexes are not equal. For a less-predicate |iRENts that will be introduced during pre-instantiationGdrbit

| esssg, that has been introduced, we add the axiom based real-life micro-processor designs, there normally are no
bit-vectors longer than arourid bits (which consist 064 bits

of data and several other encryption bits and flags). However,

VBl eSSéG(_Bg_?l q B—bitlnd (10) because of the writing style of RTL and Schematic, and the
(B=bitindo) V...V (B=bitlndss)). way many RTL compilers work, often long vectors are created

How can the range-aware encoding solve the incomple{ om neste.d structures. Fprexample, in our toy exam_ple, if two
ifferent bit-vectors of widthé were used for the write and

ness of the relational encoding of [14]? With the relation d add . d of usind Zbi ddr - th
encoding, the equation (8) is represented with the followir§ac addresses m_stea 0 u§|n_g It Vec“’“’?‘ r, there
ill be no need to introduce bitsi t | ndg,...,bitlnd; to

formula, which is false already for 2-bit bit-vectors, sa ) o . . .
. _ - he instance. Similarly, if the write and read data bit-vectors
a=10,b=00,c=11. . .
swite and sread were defined as the LSB and MSB

(VB(a(B) <> b(B))) v halves of a data bit-vectardat a[141 : 0], or as a structure
(VB(a(B) +» ¢(B))) V with two fields [70 : 0] swrite and[70 : O] i wri te, the
(VB(b(B) <+ c(B)))- functionality of the design would not change but the encoding
] ) ] with index pre-instantiation would force us to introduce extra
With the range-aware relational encoding, the same formyg_indexesbi t | nds1,...,bit1ndig. In our experiments

is represented by below, we will see how introduction of bit-indexes caused by

the RTL and SCH writing style and compilation of RTL and

Ezgg :28;0’0} Egg : Zggg : gggggg z SCH into the model-checking instance can affect the solvers
0,0
(VB(rangey g)(B) = b(B) « ¢(B))). performance.

C. Encoding 3: Skolem predicates

From the axiomatization (10) of thkess andrange ~ o )
predicates, we conclude that the above formula is equivalent& NOW introduce a smarter way to avoid introduction of
to the one below, which is clearly true. _equall_tles between bit-index terms as in the less prgdlcate ax-
ioms like (10). Our approach can be seen as reasoning modulo
(a(bi t 1 ndo) < b(bi t 1 ndg)) Vv a fixed domain of indexes and is inspired by approaches used
(a(bi t1ndg) < c(bi t1ndg)) Vv in state-of-the-art finite model finders [1], [8].
(b(bi t1ndo) <+ c(bi t1ndo)). First, note that the Skolemization of the invariant formu-
las (1) and (2) introduces Skolem constants. For example,

Note that with the precise-ranges relational encoding thg poolean variable eadeq denote the truth value of the
widths of bit-vectors and the dimensions of arrays are Stﬂhuality @):

abstracted away. This is different from the information spec- _
ified to SMT solvers in the theory of fixed-size bit-vectorsr eadeq «» VB(r ange o (B) — (i r ead(B) «» —sr ead(B))).
and extensional arrays. However, since our modeling of everyrhis formula is translated into a collection of following
bit-vector or array operations explicitly encodes the relevapifauses, wherek0 is a fresh Skolem constant:
ranges, the bit-vector width and array size information be'readeq Vv —i read(sk0) v —sr ead(sk0);
comes redundant. readeq Vi read(sk0) V sread(sk0);

Theorem 1: The precise ranges encoding is sound andeadeq V -l essg(sk0);
complete: an EPR formula obtained by the precise rangdstadeq V| esszi(sk0); | | .
encoding is satisfiable if and only if it is satisfiable over bit-S' €2d(B) vV -i read(B) VI esso(B) V-l essn(B) v readeg;

o ) i d(B)V - d(B) VI B) Vv -l B)V deq.
vectors of the specified size. | read(B) v ~sread(B) vl esso(B) v ol essn(B) re&nl)eq
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On the clauses containing occurrences of Skolem constami®del is growing during the proof search (and optionally, the
we perform the following transformation: For each Skolerset of lemmas if lemma learning is applied). On the other
constantsk; we introduce a new unary predicat&P; and hand, such lifting to the first-order logic requires to compute
the following axiom, wherek,...,m is the index range expensive context unifiers and considerably complicates dy-
corresponding tsk;. namic backtracking and lemma learning, generally rendering
them not as effective as in the propositional case.

The Inst-Gen calculus is based on a modular combination
of propositional reasoning with refined instantiations of first-

Informally if skP;(bi t 1 nd,) is true then we can assignorder formulas..One of the distinctive features of the Inst-
sk, to be equabi t | nd;. Further, wherevesk, occurs in Gen approach is that it allows one to employ off-the-shelf
a clauseC(sk;, X1, ... X,,) then we replace this clause Withefﬂc_lent propositional splvers_ (currently (iProver integrates
-skP;(Y) Vv C(Y, X1,...X,). After this transformation, the M|n.|SAT [9]) for reasoning with propos!no.nallabstrachons
first four formulas in (11) will have the following form: of first-order clauses, guiding the instantiation inferences and

) simplification of clauses. We believe that such a modular
ig:g:ggiﬁ: é:g?lg?)v\é: :;de(""g)(e)ﬁ\g;;i((%’)(? ); integration of industrial-strength propositional solvers gives
readeq V -l esso(B) V —skPo(B); a considerable advantage when solving large real-life prob-
readeq V| essr7i(B) V —skPy(B). lems. Another important requirement from a solver used in a

verification environment is to produce models for satisfiable

Then we can define predicatesss; for i as follows: e.g. problems. Such models correspond to bugs in the design and

skP;(bi t I ndy) V...V skP;(bi t I nd,,). (12)

for | ess3 we have unit clauses: it is crucial to have a model representation amendable to
efficient analysis. As a byproduct of this work, iProver has
I esss(bit1ndo),l esss(bitlndi),l esss(bitlnds), been extended with a representation of models such that the
=l esss(bit1nds),...,—l esss(bitlnd,).

value of each bit in a bit-vector can be retrieved efficiently;
this considerably simplified model analysis.

Our experimental results show that already non-tuned gen-
equalities between bit-index terms) any more. al purpose instantiation-based systems are close in perfor-

Theorem 2: The Skolem predicates encoding is sound an(rjaance and in some examples outperform highly optimized

) . . edicated SMT solvers. These initial results are very encour-
complete: a formula obtained by the precise ranges encodin . . o
acgqng and we believe that instantiation-based reasoners can

is satisfiable if and only if the corresponding formula obtain .
by the Skolem predicates encoding is satisfiable. eggti%?z?ggﬂijrgzgn?é 22?;223? the problem structure and by

Proof: An adaptation of results from [1], 8] - Let us now discuss different effects of our encodings on
IV. ANALYSIS OF PROOF CALCULI FOREPR the EPR reasoners. First we note that the size of bit-vectors

We compare general purpose first-order reasoners wishdirectly related to the size of the search space. Therefore
dedicated SMT solvers on the benchmarks generated fréfglucing the size of bit-vectors in the encodings is a promising
industrial memory designs. Since our encodings are falling ingS€arch direction. Moreover, large ranges of bit-indexes pro-
the EPR fragment we focus on instantiation-based first-orcfce clauses with large numbers of equational literals like (10).
reasoners which are especially efficient in this fragment, 4% 9eneral, instantiation-based methods are more tolerant to
witnessed by recent CASC competitichdnstantiation-based clauses with many literals than resolution-based methods since
methods are general purpose reasoning methods for first-ordi number of literals in clauses does not increase during the
logic which are based on combining efficient propositional, dpstantiation process. Nevertheless equational axioms as (10)
more generally ground, reasoning techniques with instantiatid" Produce numerous redundant inferences by substituting the
of first-order formulas. Instantiation-based methods are theM@/iable5 with different indexes during equational reasoning.
fore well-suited for reasoning with fragments closely related ol this instantiations are redundant and can be avoided as
propositional logic such as the EPR fragment and in particuf#foWn in Section 11I-C. o
decide the EPR fragment. We consider two sate-of-the-ar-€t US compare our approach of encoding bit-vector and
instantiation-based reasoners: the Darwin system [3], based®Y reasoning into the EPR fragment with approaches used
the Model Evolution calculus [2] and the iProver system [15], I SMT solvers. Reasoning in SMT solvers is done at the
based on thénst-Gen calculus [10]. ground level and frequently results in full bit-blasting. Using

The Model Evolution calculus can be seen as a lifting dirst-order logic we can use higher levels of abstraction which
efficient propositional DPLL calculus into first-order logiccan result in memory/bit-vector size independent reasoning.
together with a number of DPLL-style techniques such J¥e believe this can lead to better scalability of our approach
(dynamic) backtracking and lemma learning. The Model Evé? 'arge memories and bit-vectors. On the other hand, SMT

lution calculus is space efficient since only the candida?@'vers have advanced built-in bit-vector functions which are
needed in many memory designs. Although it is possible to

“http://Awww.cs.miami.edu/ tptp/CASC/ bit-blast such functions in our approach, a better approach

(13)

Note now we do not need axioms like (10) (introducin%r
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would be to devise encodings of these functions into the ERRthe design. Undoing or preventing this linearization (even
fragment. if it was not done as aggressively as possible), allowed us
A further research direction is to strengthen our encodints significantly reduce the amount of long bit-vectors and the
by introducing higher level abstractions and by more sophiséimount of bit-indexes involved in the generated EPR instances
cated encoding of bit-vector reasoning. Such an encoding dan FUBs 1 and2. For the other FUBs the maximal width of
also pave the way for using powerful resolution-based firdtit-vectors remained unchanged. Benchmark results on these
order reasoners such as Vampire [23], as the current encodimgdified FUBs are reported in Table 3.
tends to produce very long clauses which are known to belt is well understood that solvers might perform particularly
hard for resolution-based reasoners. well or badly on SAT vs UNSAT problems, and we aim
to evaluate the selected solvers and encoding methods from
this angle as well. To generate SAT instances, we manually
In this section, we evaluate the three above-discussed soimtbduced several common types of bugs into the designs or
and complete encodings of problems with bit-vectors anerification instances (such bugs include mismatches between
arrays into EPR on two fastest EPR solvers, iProver [15] atlte corresponding read or write enables, mixture in the order
Darwin [3]. We further compare their performance to thaif data bits, incorrect or missing constraints (3) connecting the
of the fastest SMT solvers for the theotyF_AUFBV — corresponding write data of the compared slices of specifica-
Boolector [5] and MathSAT [6]. We used a standard, antbn and implementation designs, etc.). Tables 4 and 5 report
straightforward, encoding of RTL descriptions of hardware tantime results orb FUBs obtained by these manipulations
the theoryQF_AUF BV (for example, we haven't used thefrom the equivalence checking problems evaluated in Tables 2
abstraction technique in [11] to reduce the number of involveahd 3, respectively.
bits during the encoding). With the incomplete encoding The formulas checked for SAT/UNSAT correspond to the
of [14], iProver returned spurious models on all problemaduction step formulas [24] at depths smaller or equé to
which are UNSAT with the complete encodings; therefore wibe depths needed to prove the induction invariant stating the
do not report here the EPR solver results with this encodingguality of memories (1) and the read data (2). For the sake
of performance efficiency, checking these formulas there split
into two independent runs of the solvers; in one run, the initial
In our experiments, we use five equivalence checking prolalue of the main clock was set to true, while in the second
lem instances originating from a recent micro-processor desigmeck it was set to false.
at Intel. Each problem instance corresponds to an equivalence
checking problem between an RTL functional block (FUBP: Performance results
and the corresponding FUB in the schematic model. One of the most important observations based on our
The first group of experiments reported in Table 2 corr@xperimental results is that already at this initial stage, non-
spond to the original RTL and schematic FUBs. The schematithed general purpose instantiation-based methods can solve
model contains lots of bit-level reasoning, and as a resirdustrial-size hardware verification problems within a reason-
the resulting EPR instances contain lots of bit-level equatioable time limit. Moreover, there are a number of problems
(using the bit-indexes). On such instances, the abstractishere instantiation-based solvers outperform highly optimised
techniques are less efficient, and the solvers that do not re@MT solvers, see Tables 2-5. In particular, instantiation-based
employ the bit-vector level reasoning can perform almost asethods perform well on the problems with long bit-vectors
efficiently as on the problems with lots of reasoning at highesuch as problems FUB 4 and FUB 5 (Tables 2-3), with max-
bit-vector level reasoning. imal bit-vector sizes 994 and 1047 respectively. We believe
Recall that in EPR encodings often there is a need to wrilgis is one of the promising aspects of the instantiation-based
axioms at bit level, say in equations like (4). As explainedpproach which is achieved due to a higher level reasoning.
above, one expects that existence of a large amount of suchet us note that SMT solvers and an instantiation-based
index constants will negatively affect the performance of EP$olver iProver are all using SAT solvers as the back-end.
solvers. To evaluate this point experimentally, for each equit the case of Boolector it is PrecoSAT and in the case
alence checking benchmark we tried to produce an equivalefitMathSAT and iProver it is MiniSAT. Recently developed
instance involving significantly fewer bit-indexes. This trang?recoSAT is a highly optimized propositional solver which
formation was performed by manually editing the RTL andon the latest SAT competition. Thus, comparing MathSAT
SCH descriptions and changing compilation switches whemd iProver better highlights the differences between SMT
generating the model-checking instances (e.g., the next-siaitel instantiation approaches since the same SAT solver is
functions) from hardware descriptions. In brief, because of tleenployed. We can see that iProver outperforms MathSAT on
way how the compiler works, linearization (or flattening) ofnany problems both in SAT and UNSAT categories.
(nested) structures or modules, causes creation of long bitThese experimental results indicate that instantiation-based
vectors containing the original bit-vector fields of structuremethods and SMT technology complement each other and
and bit-vectors of modules as sub-vectors. This phenomermth are useful alternatives for industrial-size hardware ver-
is an artifact of compilation and does not change the meanitfigation. There are still a number of problems were SMT

V. EXPERIMENTAL EVALUATION

A. Description of benchmarks
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solvers perform better than instantiation-based methods, assertion and the transition relation for every unrolling depth.
pecially on satisfiable problems. Therefore we are planning@ne of our major next goals in the EPR related model-
explore applicability of recent advances in bit-vector reasonimfpecking research is to combine the ability of solving bit-
developed in the SMT framework [5] into instantiation-basedector and array reasoning instances in EPR at the word level
reasoning. with the EPR-based BMC proposed in [17] for bit-blasted
Let us compare our different encodings. Tables 2-5 indicat®del-checking instances. Furthermore, we believe that EPR
that there is no clear winner among our encodings. Theresislvers can be optimized on model checking instances resulted
a trade-off between concise, higher-level encodings such femm this combined encodings.
precise ranges and Skolem predicates encodings; and more eXhis reported and future work is part of an ongoing re-
plicit bit-index pre-instantiation encoding. These tables shosearch collaboration between Intel's formal technology group
that explicit encodings are better for unsatisfiable problemsveloping efficient model-checking and equivalence checking
whereas concise encodings are better for satisfiable problesmdutions for Intel's chip design project and between the Uni-
The reason for this can be that in many cases low lewatrsity of Manchester. The developed word-level equivalence
reasoning is unavoidable for unsatisfiable problems wheredmecking method will replace the more traditional sequential
for satisfiable problems it is sufficient to consider concisequivalence checking solution implemented in Intel's sequen-
representations. tial equivalence checking tool, Seqver [12], [13], [14].

Tables 2-5 show experiments with longer/shorter bit-vectg&knoMedgmtS We would like to thank the developers of
encodings. The reduction of bit-vector sizes was not alwaggolector and MathSAT for their collaboration on this work.
successful, only in two first FUBs there was a noticeable
reduction in the maximal bit-vector size: in FUB 1 from 286 REFERENCES
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Solver Boolector MathSAT iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 0.39/0.18 13.0/3.5 1.6/11.6 1.3/1.2 9.1/12.8
FUB 2 0.36 /0.3 7.714.7 19/76 6.7/11.6 42 [ 78.3
FUB 3 0.05/0.04 0.8/0.9 1.4/04 3.6/1.8 4.1/4.7
FUB 4 0.13/138.5 26/ t-0 48/51.1 44 [ t-0 42 | t-0
FUB 5 5861.26 / 3.2|| 160.15/ 31.75 179.24/ 13.3 t-0/ 680.94| 1132.36/ 329.1
TOTAL || 5862.19/ 142.04 207.65 / t-0 188.94/ 84 t-0/t-0 1229.56 / t-o
Fig. 2. Equivalence checking UNSAT problem instances with long bit-vectors.
Solver Boolector MathSAT iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 0.28/0.18 12.0/ 3.8 16/6.4 6.6 / 40.3 8.6/11
FUB 2 0.32/0.34 14.7 /1 11.5 1.8/19.0 9.0/43.1 19.6/31.3
FUB 3 0.04 / 0.04 0.8/0.9 1.2/04 3.6/1.9 41/ 4.7
FUB 4 || 0.13/138.8 t-0/ t-0 t-0/ t-o 43.7 | t-0 42.2 | t-0
FUB 5 t-0/2.98| 158.94/ 31.71 149.88 / 11.08 t-0 /592.3| 1084.7 / 320.33
TOTAL || t-0/142.34 t-0/ t-0 t-0/ t-o t-0/ t-o 1159.2/ t-o
Fig. 3. Equivalence checking UNSAT problem instances with shorter bit-vectors.
Solver Boolector || MathSAT || iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 || clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 || 0.14/0.14|| 36.3/34.9 51/11.2 1.4/1.2 9.0/29.3
FUB 2 || 0.22/0.24 50/ 38.9 5.3/15.3 6.3/115 2441575
FUB 3 || 0.04/0.04 3.2/33 15.1/0.9 26.4/1.7 6.2/27
FUB 4 || 0.14/0.42 t-o/t-o 1475/ t-0 39.7 / t-o 46.7 1 46.4
FUB5 || 1.66/ 1.56 t-0/ t-0 63.65 / 62.57 46.58 / 48.51|| 379.68 / 439.95
TOTAL 22/2.4 t-0/ t-0 236.65 / t-0 120.38 / t-0|| 465.98 / 575.85
Fig. 4. Equivalence checking SAT problem instances with long bit-vectors.
Solver Boolector || MathSAT || iProver pre-inst || iProver Skolemize || iProver precise
Test clock=0/1 || clock=0/1 clock=0/1 clock=0/1 clock=0/1
FUB 1 || 0.14/0.16|| 42.8/ 36.9 5.0/10.4 571717 8.3/11.9
FUB 2 || 0.21/0.26|| 92.2/ 48.4 6.1/11.4 10.3/47.9 10.5/32.3
FUB 3 || 0.04/0.04 3.1/3.2 15.3/1.0 26.6/1.6 6.0/27
FUB 4 || 0.14/0.38 t-o/t-o 129.5/ t-0 44,0/ t-0 44,11 47.4
FUB5 || 1.66/1.54 t-o/t-o 291.48 / 92.93 43.61/ 42.89|| 424.71/511.34
TOTAL || 2.19/ 2.38 t-o/t-o 447.38 / t-0 130.21/ t-o|| 493.61 / 605.64

Fig. 5. Equivalence checking SAT problem instances with shorter bit-vectors.
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Abstract

Often sequential logic synthesis can lead to substantially easier
verification problems, compared to the general-case for
sequential equivalence checking (SEC). We prove some general
theorems about when SEC can be reduced to combinational
equivalence checking (CEC). These can be applied to many
sequential clock gating transforms, where correctness is argued
intuitively using a finite unrolling of a sequential design. A
method based on these theorems was applied to six large
industrial examples. It completed on all examples and was about
30x faster on the three examples where the conventional engine
was able to finish.

1 Introduction

To motivate this work, consider a sequential circuit, A, which is
to be optimized by a k-step unrolling process; then combinational
synthesis is applied to the first frame while the other k-1 frames
are left untouched. This synthesis is done so that no difference
between the two circuits is observed i.e. neither at the POs of each
of the k frames nor at the flip-flop (FF) inputs of the final frame
(see Figure 1). The last k-1 copies of A are used only to produce
“ODCs” for transforming the combinational part of A into the
combinational part of a new sequential circuit B.

Several questions arise in similar types of synthesis:

1. Is the derived circuit B sequentially equivalent to A? This
is not obvious because it is the k-1 copies of A that provide
the observability don’t cares (ODCs), for B, and not B
producing those ODCs as would be the case during the
sequential operation of machine B. Although there is a
known 1-1 correspondence between FFs in A and B, their
state-transition functions are not necessarily the same.
Suppose A is unrolled n times and the last copy of A is
synthesized using satisfiability don’t cares (SDCs)
provided by the first n-1 copies of A. Are A and B
sequentially equivalent? As in Question 1, this is not
obvious.

3. More generally, suppose A is unrolled n + k times and the

n'™ copy of A is synthesized, using both ODCs and SDCs,
to produce machine B. Is B sequentially equivalent to A?
This is not only not obvious, but generally incorrect.

In Section 2, we answer these questions, affirmatively for the
first two with Theorems 1 and 2, and give a counterexample for
the last one. The theorems are stated for general SEC and give
sufficient conditions when it can be solved by a CEC method.
Theorem 1 might be expected to apply when a synthesis transform
can be argued from non-observability principles and Theorem 2
when non-controllability is used. In Section 3, we discuss relevant
literature and related parallels to the results obtained in this paper,
and in Section 4, we give some experimental results illustrating
how these methods can make sequential equivalence checking

©2010 FMCAD Inc.
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(SEC) much more effective and practical on certain types of
problems. Section 5 summarizes and poses some open questions
for future research.

2 Sequential Equivalence

Let A be a sequential circuit and A’ denote the combinational
part of A. Let A" denote the combinational circuit obtained by
connecting n copies of A’ at the FF inputs and outputs. The
outputs of A" are the set of n POs of A one for each time frame
plus the final FF input signals after the n™ frame. The inputs of A"
are the set of n PIs of each frame, plus the initial FF output signals
at the start of the first frame.

Let A and B be two sequential circuits with the same PIs and

POs, (B",A") denotes the

combinational circuit where the outputs corresponding to the final
FF inputs of B" are connected to the inputs corresponding to the
initial FF outputs of A" . The connection is done using some 1-1
mapping between the FF of A and B. We overload notation by
dropping the superscript in A’ when the context is clear, as in
(B,A"Y).

In this paper, it is always assumed that a single initial state is
given for a sequential machine. We are not concerned with
initializing sequences etc., but follow the philosophy articulated
in [1]. Thus two machines are considered sequentially equivalent
if starting at their respective initial states they produce the same
sequence of POs for any sequence of PIs. This is usually
equivalence checked by forming a miter (which creates a single
output formed by ORing XORs of corresponding POs) of the two
circuits to obtain one machine with a single output. Then it is to
be proved that the output is always O for all time if the miter
machine is started in the initial state given by the initial states of
the two machines.

For two sequential circuits, A = B denotes that the circuits are
sequentially equivalent starting from the two given initial states. If
C and D are combinational circuits, the C = D means that they are
combinationally equivalent, i.e for any input, their outputs match.

The first question in Section 1 concerns equivalence of two

and the same number of FFs.

related combinational circuits, i.e. does A*= (B,A*™") imply A =
B? This is depicted in Figure 1 where k = 3. We emphasize that to
create the related combinational circuit (B,A*™") from A’ and B,
it is necessary that there is a 1-1 correspondence between the FFs
of A and B. In some applications, this can be relaxed by inserting
dummy FFs in one of the circuits.

Theorem 1: Suppose two sequential circuits A and B have the
same PIs and POs. Using some 1-1 mapping between the FF of A
and B to form (B",A"), suppose that (B",A")=A""*. Then A =
B, for any common initial state.

Note that A and B are initialized with the same initial state.



Proof:! Assume that (B",A*)=A""*. Consider the following
infinite sequence of lines.

—— time frame number ——

S n Sy (n) n S (2n) n
A A A
S* Bn Sy (n) An S, (2n) An S,(3n)
St g S pn_ $0m an__ $:06m)
- ; 3
S* Bn S;(n) Bn S;(2n) Bn S;(3n) Bn

It is assumed that all lines at each time-frame receive the same
sequence of common PI inputs. Denote the POs of line j by
PO,(t) , where te {1,2,3,--} and je{0,1,2,3,---}. Similarly for
$;(0)
1€ {0,1,2,3,---} where §,(0)=S%*, the set of all states. Since
(B",A")=A""* then PO,(t)=PO,(t) for te({l,2,3,--,n+k}.
Note that all t>n+k, this
Sy(n+k)=S,(n+k) and the circuit copies in both lines are A

Now compare lines 1 and 2. Clearly
t =1,...,n since in both lines, the inputs are to

the states; denotes the state of line j at time ¢,

for is also true because

from then on.
PO,(t) = PO,(1),
n copies of B, and by using the template, (B",A")=A""*, but
applying it starting at the end of frame n, we have PO, (t) = PO, ()
for all ¢ by the same argument that established that
PO,(t) = PO,(t) for all . Thus by transitivity, PO,(t)=PO,(t).
Continuing, we get PO,(t) = PO,(t) for all lines je {1,2,3,---}.
Thus line 0 and line o always produce the same sequence of POs

for all time no matter what is the initial state. Since the miter for
A ® B is proven to be UNSAT, we have A=B. QED.

\PIl \PIZ \PI3

FF signals
A
FF signals = — - S
FF signals
B A |=> A

f PI, f PL, / PI

Figure 1. SEC by unrolling and CEC. POs are compared
at each time frame as well as FF inputs after the last
frame.

Note that nothing is assumed about how B derived. Also, if
(B",A*)# A", one can still try to prove A= B by increasing k
or n, and a false negative may go away.

"It has been suggested by several people (including one reviewer) that the
theorems of this paper can be proved more elegantly by induction.
However, we prefer the more graphical proofs (which are basically
induction).

146

Note also that no initial state information was used in proving
this theorem, i.e. §;(0)=S* is the set of all states. However, we

could use a subset ScS* as long it is guaranteed that

S,(n),S,(2n),S,(3n),--- are all subsets of S . Thus a corollary of
the theorem would be that [(B”,A"):A"”‘]s = A=B for any

initial state se S , where [(B",A")= A"J"‘]‘6 denotes  that
combinational equivalence need only hold on state inputs in S.

A variation of Theorem 1 states that SEC holds after n cycles of
A.

Theorem 2: [(A",B)=A""]=A=B on any initial state
chosen from the subset of states that can be reached by A after n
cycles, denoted S .

Proof: We use the fact that the state space is finite, and
therefore its diameter, D, is bounded. Thus after D time frames,
every possible state has been seen under all possible inputs. The
proof is similar to that of Theorem 1, except we proceed

backwards from time-frame 7 =D + (k(D +k—|) . We first apply
the template, (A",B*)=A"" | to insert k B’s just before r=T .
This is iterated [ D+k | times until we arrive at a line with n A’s

followed by all B’s up to t = T. At each iteration j, we are assured
that PO,(t) = POj(t) for all time. At this point we know that all
states and all PIs for these states have been seen and for all of
these the PO’s agree. Thus starting at any state in S, A=B.
QED.

To illustrate the need to start only on the states reachable by an

initial sequence of A’s, consider the example of Figure 2 (a bubble
at an input to a gate denotes inversion).

ouTt

A-A A-B
output gates output gates
not shown not shown

Figure 2. A,B = A’, but sequential equivalence occurs
only after one cycle of A.

It is easy to check that (A,A) = (A,B) from the STGs shown, but
A # B . The counterexample is that if A and B start in State 01,
the PO sequences for A and B are not the same. However, note
that starting from any state that can be reached after one clock
cycle of A (i.e. States 00 and 11), then A=B.

The first theorem is essentially an observability theorem and the
second a controllability theorem. One might conjecture that
analgous combined controllability and observability theorems
hold. Indeed we have the following.



Theorem 3: [(B,A,A)=(B,B,A)|= A= B on any initial state
chosen from the subset of states that can be reached by B after
one cycle, denoted S IB .

Proof: Consider the sequence of transformations shown below.
B,A,AALAVA, -
B,B,A,AAA,---
B,B,B,A,AA,--
B,B,B,B,A,A,---

Each new line is obtained by using (B,A*) = (B, A) . At each line
note that PO j(t) = PO, (t),Vt . Thus after the first time frame, the

set of states that can existis S and after that, we have
A,A,AAAA,---=B,B,B,B,B,B,
Thus, A=Bon S . QED

Note that in Figure 2, (B*,A) #(B,A%), which can be seen by

starting at State (01), so it is not a counterexample to Theorem 3.
One could consider this as a B-controllable, A-observable
theorem and the first two theorems as A-observable and A-
controllable theorems respectively. What about an A-controllable,
A-observable theorem, where we consider (A,B,A)=(A,A,A)?
Such a result does not hold. Consider the STG example shown
in Figure 3, which has no inputs; the label on the edges denotes
the output value. Although (A,A,A)=(A,B,A), one can check

that A # B, even on the states that A can reach after one cycle, e.g.

starting at State 01 A 110... and B outputs 111....
10§

9
®

0 1
@— @
A B

Figure 3. Although (A,A,A) =(A,B,A)
combinationally, A and B are not sequentially equivalent.

(0}

0 1

Although such a theorem does not hold, it still might be useful to
synthesize (A,A,A) into (A,B,A) to derive a new sequential
machine B. This is easier to do than obtaining a new machine B,
for example, by synthesizing (A,A,A) into (B,B,A) or
(A,B,B). These twi cases can guarantee equivalence using
Theeorems 1 and 2 respectively. However, it is possible in the
synthesis into (A,B,A), that the SDC or ODC don’t cares
actually used would be produced also by B. We can try to check
A*=(B,A,A) or A’=(A,B,B) using Theorems 1 or 2, or
(B,A,A)=(B,B,A) or (A,A,B)=(A,B,B)using Theorem 3. If
any of these cases hold, then A= B . For the last three checks, it

needs to be checked also that the initial state is in the appropriate
subspace.

3 Relations to Previous Work

One of the pragmatic aspects of sequential synthesis is that it is
insufficient to provide synthesis software, which may even use
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formally-proved® transforms because the software that embodies
these may have bugs. Even if the software has withstood the test
of time having been applied to many examples, most companies
insist on formally verifying the result against the original design.
Equivalence checking of combinational netlists (CEC) is practical
for most industrial designs and, partly because of this,
combinational synthesis is readily accepted. Also, resolution
proofs [9] can be used for CEC.

However, the PSPACE-complete complexity of SEC often
discourages the use of sequential synthesis. In special cases, the
complexity of SEC is simpler, e.g. if synthesis is restricted to one
set of combinational transformations followed by one retiming (a
sequential synthesis step) or vice versa, the problem is provably
simpler - only NP-complete. If retiming and resynthesis are
iterated, the problem is PSPACE complete [3]. Like CEC, SEC
becomes simpler in practice if there are many structural or
functional similarities (cut-points) between the two circuits being
compared.

There are instances where SEC can be transformed into a CEC
problem on which today’s commercial CEC engines usually can
be successful, even on very large problems. One is where
sequential signal equivalences (signals that are equivalent on the
reachable state set) are derived using induction [5] and used in the
synthesis process. If equivalence checking is done immediately
after this without other transformations intervening, SEC can be
proved by CEC methods.

Another example is where a history of synthesis is recorded as a
redundant sequential circuit [6]. In most cases, this history circuit
provides a set of intermediate equivalences, which can be proved
inductively, and these are enough prove SEC . Also, the concept
of speculative reduction [7] can be used to make the equivalence
checking problem even easier in this case.

Several papers have used an (explicitly or implicitly) unrolled
version of the circuit to derive redundancies for synthesizing an
improved sequential circuit. These papers do not address the
formal SEC of the synthesized result. All deal with the case where
the redundancies derived are independent of any initial state,
similar to the theorems in the present paper. These types of results
come mostly from the testing community, where a signal is
redundant if the good and faulty (with a stuck-at fault inserted)
machines can not be distinguished for any initial state.

There is a subtle distinction between untestable faults and
redundant faults. If s, and s are the initial states of the faulty and

good machines respectively, then a fault is untestable if
V()A(s,s)ZU,s)= Z’(I,sf)] it if

‘v’([,sf)EI(s)[Z(I,s) =Zf(l,sf)]. Z(1,s) is the trace, starting at

state 5, of POs under the sequence I of PI inputs. Using
redundancy in synthesis means that when the good machine is
replaced with the “faulty” (redundancy removed) machine, no
difference can be observed externally because no matter what
state s, the faulty machine starts in, there is an equivalent state in

which the good machine could have started in. Such a
replacement is safe* [10] and compositional. In contrast, if the
fault is merely untestable, then there could exist a pair of states in
which the two machines could start, such that the difference
between the two machines could not observed. However, there

and is  redundant

% There are cases where “proved” methods in the literature have been
shown to have counterexamples.

3 We know of no similar capability for SEC.

4 A safe replacement is one for which there is no possibility of externally
detecting any difference from the original.



could be a state in either machine which has no equivalent in the
other, and if one of the machines happened to start in such a state,
the two machines would have different observable behaviors.
Such a (untestable) replacement is not safe and is not
compositional, and its use in synthesis is problematic. A good
discussion on the difference between undetectable faults and
redundant faults is in [3].

From Theorem 1, if (B",A")=A""", then the synthesized

circuit is a safe replacement for the original one. Safe
replacements are useful because safety implies that every
synchronization sequence for the original design also
synchronizes the replacement. This is often desired because it is
not necessary to re-derive a new synchronizing sequence for
initializing the synthesized machine.

A useful notion is c-cycle redundancy [2] where the two
circuits’ outputs need not match for the first ¢ cycles after power-
up. This allows more flexibility in synthesizing a circuit because
the behavior of the machine need only be preserved on states that
can be reached after c cycles as long as initialization is preserved.
Several papers make use of this and determine a bound k and a
new circuit with the redundancies removed (called a k-delayed
replacement) [4]. In [2] such redundancies are identified, one is
then removed, and new ones identified. This is repeated until no
more can be found. In [4], a set of “compatible” redundancies is
found and removed simultaneously.

The method of [4] derives a constant n which is the difference
between the time frame of an identified redundancy and the least
time frame needed to infer this redundancy. Their theorem states
that if the redundancy is used to create the new circuit, then it is
an n-delayed replacement of the original. Note that in n-delayed
replacement, it is B that is delayed for n cycles before equivalence
can be guaranteed, but in Theorem 2 it is A that is delayed n
cycles.

A sequential ATPG engine can be used to determine if a test
vector sequence can be found which justifies a state that activates
the fault in n cycles and then propagates the fault effect to a PO in
k cycles. If none can be found, the fault might be redundant, but
three things can go wrong; (i) undetectable faults are not
necessarily redundant, (ii) the justification and propagation
conditions are usually done on the good machine, and (iii) finite
values for n and k were used. Such a fault is a good candidate for
redundancy removal, but the result must be sequentially verified,
possibly by applying Theorems 1-3, which may work if A or B are
supplying a sufficient set of SDCs or ODCs. An interesting
discussion of some incorrect “proofs” in the literature related to
the use of ATPG for redundancy removal can be found in [3], as
well as limitations of some other methods.

4 Experimental Results

A few experimental results are shown in Table 1. They were
designed to compare the efficiency of applying the new SEC
approach of this paper with the general SEC method of the ABC
system. Six large industrial benchmarks were synthesized using
sequential clock-gating transforms, based intuitively on sequential
ODC arguments, but not formally proved. The synthesized
versions are denoted by B and the originals by A. Columns 1-5
give the sizes of the circuits. The entries in column 6-11 give the
times in minutes taken to verify equivalence. The columns labeled
New denote the use of Theorem 1 and Berkeley’s ABC system
CEC algorithm to prove SEC. The column ABC general denotes
that the ABC command dsec was used. Columns seq-j denote

experiments where (B,A’) was compared combinationally with
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A" to illustrate how CEC run-times might scale as j increases.
The items marked with * or **, denote that the corresponding
equivalence checking problem timed out.

Observations.

1. In general, New is significantly faster than General, as
expected (about 30 times faster when General could complete.
The fact that General could actually complete on three out of six
large problems was surprising to us).

2. Except for Design 4, CEC times scale approximately linearly
with the size of the CEC problem.

5 Conclusions and Future Work

Some sequential synthesis transforms do not use the initial state
information but preserve a circuit’s behavior starting from any
initial state. Such transforms may use sequential observability [2]
[4] and can be practical because they do not use state space search
or can be argued using structural information as in the case of
many clock-gating methods. These contrast with transforms that
extract ODCs using reachability analysis such as BDD
reachability, interpolation or SAT-based induction [5].

In the sequential observability case, it may be possible that
sequential equivalence can be proved by combinational
equivalence checking methods, making SEC much easier. This
can have a significant impact in applications where parts of the
circuit are changed based on a local view of the circuit.

We have given a method for SEC, which can be effective in
certain special cases, leading to considerable reduction in
computation effort. The method is conservative; it fails no
information is obtained. Some conditions under which it can be
expected to succeed include sequential clock-gating methods and
methods that alter pipeline behavior. Experimental results were
given on a six large industrial SEC problems, comparing the
sequentially synthesized design against the original design. It was
demonstrated that the new SEC method was about 30 times faster
than in the general case. In addition, it was able to check three
examples where general SEC could not complete.

Our theorems are stated in terms of having a one-to-one
correspondence between the FFs of A and B. This was necessary
for combinational circuits (A,B) or (B,A) to be formed where
signals in the first circuit are wired to their corresponding signals
in the second circuit. However, some clock-gating transforms
require that a signal be delayed one or more time-frames. In such
cases, FFs must be introduced in B that have no correspondence
in A. This can be handled by introducing dummy FFs in A with no
fanout.

We conjecture, more generally, that it is sufficient to find two
cuts of the same size, one in A and the other in B. The signals in
the cuts can be a mixture of internal wires and FFs. It may be that
the only requirement is that the cuts are feedback arc sets, i.e.
cutting them makes each circuit acyclic. This would allow
applications of the theorems to retimed circuits.

Also, it would be desirable to have a practical method to check
general k-delayed equivalence, such as for designs produced by
the methods of [2][4]. These situations are cases of local

sequential synthesis being done. Note that if Sj S, then

Theorem 2 applies and can be used to prove k-delayed
equivalence. It is possible that Theorem 3 can be used in such
cases, although at the moment, we have no experimental results
on this.

Theorem 1 legitimizes sequential synthesis based on unrolling a
sequential machine A, k times, and combinationally synthesizing
the first copy of A to obtain a new equivalent sequential machine



B. However, we have not done experiments on how effective this
might be in terms of improved quality of the synthesis result.
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Table 1. Experimental results.

Design Statistics Seq-1 Seq-2 Seq-3 Seq-4 Seq-5
Ands Flops PI PO New General New New New New

1 39282 6506 51 83 0.68 15.16 0.98 1.34 1.55 1.78

2 18932 10544 96 115 0.51 18.88 0.7 0.88 1.06 1.25

3 31103 7276 105 79 0.78 *60.55 1.29 1.51 1.69 1.63

4 81782 13822 394 703 1.61 *152.21 2.34 17.22 72.93 | 267.83

5 45241 11595 1741 301 0.94 25.63 1.26 1.63 237 | **%6.18

6 114824 15284 857 804 2.05 *112.83 3.26 4.09 4.79 6.22

Notes:  * General sequence equivalence in ABC timed out. Although time-out was set to 1 hour,

we were curious to see if the problem could complete if more time was given. Hence the

irregular time-out times reported.

** Unresolved by ABC combinational equivalence checking
Entries in columns 6-11 denote run times in minutes. . .
Seq-j denotes the CEC problem where j copies of A are used, i.e. (B,A’) is compared to A’™*".
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Abstract—The correctness of some arithmetic functions can taking advantage of internal equivalent points. However, such
be expressed in terms of the magnitude of errors. A reciprocal internal equivalent points do not exist in general between the
es;ima:.e f“tr;]Ctito.” t.hatlret“mts dar.‘ approximation of 1/Tlt'1.is such  hardware execution of micro-code and its reference model.

a tunction at IS Implemented In MICroprocessors. IS paper . . .. .

describes an aIgorithFr)n to prove that theperror of an arithrgeﬁc One approa(_:h _to solve this problem 'S, W“““g"@h"e‘,’e'
function is less than its requirement. It divides the input domain modelwhich mimics the hardware behavior and using it as a
into tiny segments, and for each segment we evaluate a require- stepping stone for the verification. Since the high-level model
ment formula. The evaluation is carried out by converting an s specifically built to have the same intermediate results as
arithmetic function to what we call a polynomial of bounded 5 qware, the equivalence checking becomes more tractable.

functions, and then its upper bound is calculated and checked if . . .
it meets the requirement. The algorithm is implemented as a set of One must also prove that the high-level model is correct. Since

rewriting rules and computed-hints of the ACL2 theorem prover.  the high-level model is built to mimic the behavior of the
It has been used to verify reciprocal estimate and reciprocal hardware, both may contain the identical algorithmic defects.
square root estimate instructions of one of the IBM POWER" The proof of a high-level model usually requires theorem
processors. proving or similar techniques. In the past, theorem provers
have been used to verify divide and square root algorithms
[7], [8], [9], [10]. However, the verification of a high-level
Formal verification has been used to verify floating-poinhodel using mechanical theorem proving takes a lot of time
arithmetic logic in the past. Especially, verifying primitiveand expertise, and it has not been used widely in the industrial
floating-point arithmetic operations, such as multiply or adsketting. Some early work used mathematical analysis such as
operations, can be handled by automatic equivalence checkilggivatives [11] or series approximations [12] to verify the
[1]. The results of floating-point addition or multiplicationalgorithms, but the use of analysis further complicates the
are well-defined in the IEEE 754 floating-point standard [2proof. It would be desirable if one can automatically verify
and it is not hard to define their reference model. Runnirgghigh-level model.
equivalence checking between a hardware implementation andéh this paper, we will consider reciprocal and reciprocal
its reference model may require a number of tricks [3], [4kquare root estimate instructions in order to study the automa-
such as using proper case-splitting and variable ordering tan of high-level model validation. Floating-point instructions
BDD [5] representations, but today’s formal verification toolfre andfrsqrte  in the POWER architecture [13] are exam-
can handle it pretty well. Because the equivalence checkiplis of such instructions. Estimate instructions are somewhat
of these operations does not rely on the equivalence of thienilar to micro-coded instructions from the perspective of
intermediate results, the reference model can be developedification. An estimate instruction returns a number close
independently of hardware implementations, making it less the actual reciprocal or the reciprocal of a square root,
likely to have the same defects in both. The reference modlt not exact one. Their correctness is given as a relative
can be reused over and over for different projects, which makasor being less than a certain value. Therefore, there is no
the reference model even more trustworthy. Furthermore, thiagle reference model that could be used for the equivalence
reference model itself can be formally checked by theorechecking against any implementations. The verification needs
proving technology, which can be done once and for all [6]to be carried out by first creating a high-level model, verifying
On the other hand, verifying micro-coded floating-poinits correctness, and then checking the equivalence against
operations, such as divide and square-root, is not as easy. Rhsthardware. The equivalence part is relatively easy because
of all, applying the same equivalence checking approach festimate instructions are much simpler than that of divide or
primitive floating-point operations does not work well. Microsquare root. The high-level model verification is a key for
coded operations are far more complex, and it is intractaldaccessful verification.
to symbolically simulate an entire microcode sequence andWe developed a new algorithm to verify the high-level mod-
perform equivalence checking. Industrial equivalence checkiey of estimate instructions. This algorithm runs automatically
tools are very good at comparing two similar net-lists, bwith no human guidance. We used the new algorithm to verify

I. INTRODUCTION
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the estimate instructions implemented in an industrial proceBUT to obtain the symbolic result of the arithmetic operation,

sor. In theory, this algorithm can be applied to other arithmetighich is then compared to the net-list representation of the

operations whose correctness is expressed in terms of relatiigh-level model. Equivalence checking tools are widely used

error size. For example, the correctness of divide and squarenardware verification in industry [14], [15].

root algorithms using the Newton-Raphson procedure can bdf one is only interested in checking the algorithm, not

represented by a relative error requirement. hardware, we can only use the algorithm evaluation process
In Section Il, we describe our evaluation algorithm usealone, and skip the equivalence checking path altogether. In

to verify the high-level model of estimate instructions, anthe rest of the paper, we will focus on the algorithm evaluation

in Section Ill, we describe its ACL2 implementation. Inprocess to check the high-level model.

Section 1V, we apply the verification algorithm to instruction%

of an industrial processor. In Section V, we discuss future Formal Specification of Mathematical Operations

improvements of our algorithm and its implementation. In a high-level model, an arithmetic operation is represented
as a function of rational numbers. It should be specified in
[1. VERIFICATION ALGORITHM a polynomial of bounded functions (PBF) as defined below
A. Overall Verification Scheme using a Backus-Nauer form:
The overall verification framework is as shown in Fig. 1. PBF ::= Constant | Variable | PBF+ PBF
The design under testDUT) is typically a hardware imple- | PBF x PBF| ERR_FUNC(PBF, ... PBF)

mentation of an arithmetic function, and it is written in a
hardware description language such as VHDL or Verilog. DUT
may be implemented as microcode or firmware, essentially aHere, the ERRFUNC is a set of functions such that, for
piece of software working with the hardware. any functione € ERR _FUNC, there is a polynomial function
In order to verify DUT, one has to provide a high-leveB(z1,...,z,) and:
model of the algorithm. It should precisely define arithmetic .
operations performed by DUT, but it may not capture imple- Virlwil < Ai =>le(z1,..o2n)] < B(Ar,-., An).
mentation details such as what type of adder or multipli@ince functions in ERRFUNC are used to represent the
implementations are used. errors of primitive arithmetic operations, we call thenror
There are two paths to check the correctness of the arifbinctions. We restrict the bounding functidB(z) to be a
metic operation. The first path employs an algorithm evabolynomial function in order to make it easy to compute
uation process to check that a high-level model satisfiesttee upper bound of an error function when its argument
desired mathematical property. Then, the second path udesnains are also bounded. The error function will be treated
an equivalence checker to compare the high-level model aasl an uninterpreted function during the evaluation process.
the DUT. If both paths succeed, the operation of the DUT I[4SR FUNC is the set of user-defined functions. One can
guaranteed to meet the mathematical property. We assumeléfine a new functiory to be f(z1,...,2z,) = g, where g
this paper that a verified mathematical property is written is a PBF with variables:, ..., z,.
an inequality like the maximum relative error requirement for PBF is used to model mathematical operations that can be
an estimate instruction. approximated with a polynomial, and we found that many
The second path operation of verification is the well-studieatithmetic operations used in hardware designs can be nicely
equivalence checking problem that is straightforward to skillegpresented as a PBF.
engineers. The high-level model must be translated into a bit-For example, the nearest mode rounding defined in the
level net-list so that a bit-level equivalence checker can BEEE 754 standard rounds a value to the closest representable
used. We may need to perform symbolic simulation on tHating-point number. For 53-bit double-precision numbers,

| USR FUNC(PBF, ... PBF)

Correction of Algorithm

High-Level Model of Design Under Test
Arithmetic Operation

(typically in RTL)

Fixing
DUT

Algorithm
Evaluation
Process

Equivalence
Checking
Tool

Debug Trace
for DUT

Violation Fail
Point for
High—level Model

Success Sucess

Successful Verification
Fig. 1. Overall Scheme of the Verification
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y y = FldFrag, (x) Simplify(A(z), [z, 2;))
,,,,,,,, y=(x=x)*2" 1) Substitutex; + § for = in P(x). Variable § satisfies|d| <
Tj — Ti-.
2) Replace user defined functions with the corresponding PBF,
3) Expand and simplify to normalize the the polynomial.
4) Move the constant term to the right &f and non-constant
terms to the left. Return the resulting inequatiQn(é) < C;.

Fig. 3. PBF Simplification Algorithm

’—,—ﬁ where Firyncate () satisfies

X Xiy
. ' o o ! o FEtruncate, (r) < 1.
Fig. 2. Fraction field value and its approximation.

We can represent a number of operations used in the
implementation of numerical operations as functions of PBF.
the nearest mode rounding can be defined as a user-defiBemetimes restricting the domain of input variables is a key.
function: For example, floating-point divide and square root operations
neagp(z) =  + Enears{) using the Newton-Raphson algorithm is usually implemented

by combining an initial table look-up, floating-point multiply-
with an associated bounding condititfthears{=)| < 27%*xA  and-add operations, and a final rounding operation. If we

for any [z| < A. N . _ ~ narrow the input range so that the table look-up value is
Next, the double-precision floating-point add operation with constant, the entire algorithm except the final rounding is
the nearest mode rounding can be defined as: represented by PBF. Then the correctness of the algorithm

can be given by a formula bounding the error of the final

add(z, y) = neagp(x + ), approximation before rounding.

and similarly the multiply operation is: Some arithmetic operations are hard to be represented as a
PBF. For example, representing the SRT division algorithm
mult(z,y) = neagp(z x y). as a PBF is difficult. The SRT division algorithm guesses

Hwe next quotient digit by table look-up using some bits of
n intermediate remainder as an index. Depending the guess,
he next intermediate remainder can be completely different,

making it hard to approximate using a polynomial.

Another example is an operation to extract a bit-fiel
from the fraction of a floating-point number. A floating-poin
numberz is typically represented with sign bégn, exponent
expo and fractionfrac, wherex = (—1)%9" x 289 x frac.
We assumer is normalized, which means thétc satisfies C. Algorithm to Verify a Property of Formal Specification
1 < frac < 2. Thus the binary representation e l00ks  |n this subsection, we consider an algorithm to verify a PBF
like 1.b1b2b3 - - -, whereb; is 1 or 0. Let us consider a functionsg mula of the form:

FracFld; () that returns binary integénb; 41 - - - by_1b,. In
Fig. 2, theFracFld, . function is represented as a solid line. Formula::= PBF < PBF.

We can approximate th_Era(_:FIle. Wlth (z —z;) X 2" Thig type of formula can be used to represent relative error
represenlted as a dashed line in a domajnzi;.1) such that requirements such as the correctness statement of an estimate
w; = 27" x4, and1 < @; < 2. Thus FracFld,, can be fnction. Let us consider verifying formul®(z), with the
represented as: assumption that the input variablesatisfieszq < = < z,,

FracFld, . (v) = (z — 2;) X 2" + Bracra,, (z), (1) and the error functions appearing/it{z:) may take any values
as long as they satisfy the associated bounding condition. We

with an error functionEracria,, () satisfying: assumer is the only free variable iP(x), but we can easily
extend the algorithm to a multiple-variable formula.
Erracria,, (2) < 1. The evaluation algorithm is carried out by splitting
Note thatFracFld, . (z) is a user-defined function of PBFS€gment [zo,xn) into  non-overlapping  segments,
because2” is a constant, and: — x; is a shorthand of [0:%1);[%1,%2),. ., [&n_1,2,), and simplifying and

z+ (—1) x ;. evaluating P(x) in each sub-segment. The algorithm

Similarly, we can consider truncating lower bits of arMPIify(Hz), [zi,2;)) in Fig. 3 is used to simplify the
integer as yet another example. Let us suppede anm- °riginal formulaP(z) in segmentz;, z;). _
bit binary integer and truncatér) removes the lowen-bit The first step of the simplification algorithm produces

of  and returns(m — n) bit integer. This truncation can be’(#i +9), @ formula of variable) where |5| < z; — ;.
represented as: Let us defineA;; = x; — x;. After expanding user-defined

functions, Step 3 normalizes the polynomial by applying the
truncate, () = x X 27" + Eyuncatg () associativity, commutativity and distributivity laws of and
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U(c, A) = |¢| wherec is a constant. compete the proof or refute it. In general, we should define
U(5,A) = A where$ is a variable. error functions appearing if?(x) so that error functions take

U(Q1 +@2,4) =U(Q1,4) + U(Q2,A). relatively small magnitude compared to the main computation.
U(Q1 x Q2,8) = U(Q1, A) x U(Q2, A). If it is done properly, the smaller the segment gets, the more

%ﬁé%‘)gfg b::}:ﬁg((gi’fgp)(b) holds for error functiore. likely the evaluation succeeds or reports a failure point.
D. An Example of Verifying a Reciprocal Estimate Function

Fig. 4. Rules to calculate Upper Bound U(Q(&) . . ; . .
In this Section, we discuss a simple example of reciprocal

Evaluate(Rz),[zo, zn)) { estimate functions that illustrates the use of our algorithm.
S h:I {Eﬂﬂg,?q)),)[lf{lwz), oo [T, 2n)} Instructionsfre in the POWER processor returns a reciprocal
W ile . . . . .

, estimate of a given number. Precisely speaking, for a given
ngjég)g.nlegmbﬁ&;% ?;di)j S/lew ;). double-precision floating point number it returns a double-
7 = 1) T E) 1y4L] . a . . . .
If C; <0, then return fail withz; as a failure point. precision number fre(rthat is an approximation of/z. The
If U(Qs,z; — x:i) > Cy, thenS := S U {[zi, zx), [Tk, 75)} architectural definition of the POWER processor requires the
y for some newk. following formula to be met:
return success 1/x —fre(x)
| < 1/256. 2
} ‘ 1/z =1/ )

Similarly thefrsqrte  instruction returns a reciprocal square
root estimate frsqrte(y an approximation ofl /\/x. It must
satisfy the following relative error requirement.

Fig. 5. Algorithm to verify P(x) over [zo, zr]

+, and combining monomials of the same kind. Finally, ’Uﬁ_frsqrte(x) <1/32

constants are moved to the right ef symbol, and non- 1/Vz
constant monomials are moved to the left. The simplificatiobw . . . .
epending on the processor implementation, it may be re-

algorithm Simplify (R x), [x;, z;)) preserves the semantics in~ " .
the sense that th(f(o?ig[inal i‘()))rmula(m) holds if the final quired that the upper bound of the relative errors should be

—14
formula Q;(9) < C; does. 2 Th, not 1{t25f6ﬂ$r 1/?.2' te instructi idered ¢
In the final product of simplificationg);(6) < C;, the left- € resuttortne estimate INSTUCHons are considered correc

hand side is a PBF without any constant terms or duplicaqé long as it satisfies the_ fom.“”'a above, and there is no
monomials. Note that),(0) — 0 if we assume all error single correct answer. The idea is that these numbers are later

functions appearing irQ; take zero values. Thus the prooi“sed for software divide and square root routines based on an

of P(x) fails if C; < 0 Floer(é) < C; to hold regardless of iterative algorithm. Such an algorithm is self-correcting and is

the values of the error functzionsf must be a non-negative "°t sensitive to minor differences of the initial estimate values.
7

number Let us consider a reciprocal estimate function flethat

If C; is indeed a non-negative number, we compute é%wntplleinentedz bfy a plicetvwse I|net3ar app_roglm?)tlotn.k!:or the
upper bound U(@ A,;) of Q;(d) for |§] < A;;, and compare Inpu o T < 'f', ret(x) Irs Icct))Tpufefhanfln t(_ax yf? Irllg
it againstC;. Fig. 4 shows the recursive rules to computgwe most significant several bits ot the fraction :qf 100ks

U(Qs. Ay, I U(Q,. Asi) < Cy. Qi(8) < C; holds for all § up tables to obtaimi. and bz and returnsa;x + b; as the
5531 7thajt|)6\ < A(Q Aig) £ Ci Qi9) = © answer. Once fre(x) is defined far < x < 2, then we can
e

The entire algorithm to verifyP(z) over the domain extend it to the entire non-zero domain by using equations

o P fre(x x 2) = fre(z)/2 and fre(—2) = —fre(z). Furthermore,
[0, 2,) is given in Fig. 5. Evaluate(&),[xo, x,)) starts by . )
splitting the entire domain into segmentsc;, «; ). We require these equations can be used to extend the proof of Equation 2

that P(z) is a PBF in each segment. For each SengII]?,r x € [1,2) to the the entire domain of. Thus, we focus

it applies the simplification algorithm in Fig. 3 té&(x), onl\'lthe (Ijlotmaww < [.10’| 2) in t.he fOI.IOW'Pg d'SCUSS'Or." tion that
obtainingQ; < C,. If C; < 0, it fails and returnsz; as a ow let us consider a piecewise linear approximation tha

failure point. Otherwise it computes the upper boundof uses eight linear functions for segment [1,2):

If the upper bound is less than or equaldg P(z) holds for %7 455 ¢ fora e [1,2)
the segment and we continue. Otherwise, it splits the segment 17120 | 9L o fora c [9 m)
[x;, ;) Into [z;, 1) and[zy, z;), adds them to S, and repeats F(z)= 1024 128 878
the analysis on the refined segments. The choice;0fs :

arbitrary, but we thinke, = (2; +;)/2 would work in most 8463 273

15
cases. §105 — 1001 X @ forz € [2,2)

If the algorithm returns withS = (), then all segments arelt is easy to prove by analysis that the relative error of
verified, thusP(x) holds for [z, x,). There is no general F(x) is less than 1/256. HoweveF(x) is not what can be
guarantee that the algorithm terminates because the boimglemented as hardware, because hardware can implement
of the error functions may not be strong enough to eithenly finite precision operations. A realistic implementation
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of fre(x) should take the finite bits o and compute the Similarly we can apply the same simplification and upper-
approximation of the linear function. Following definitionbound calculation to other sub-segments. It turns out that, for
fre(z) is one such example: the segment [33/32,133/128), the upper bound is larger than
0 the right-hand side constant. However, in this case, dividing
g) the segment into 4 sub-segments of size 1/512 and repeating
m) the process will successfully prove the inequation.
8 The evaluation attempt also fails for the sub-segment
: [133/128,67/64). However, this time, further refining the sub-
8463 273 (E+FFaCF|d4710(z)) for z € [12,2) segment to smaller segments does not work. The proof attempt
8192 10247\ 8 210 87 of a refined segment [4283/4096,1071/1024) will produce a

Whenz is in [1,9/8), the binary representation oflooks like ~Ci less than 0. In fact, the relative error of fre(4283/4096)
1.000b4b5 - - -. FunctionFracFld 4 1o(z) returnsbybs - - - by as larger than 1/256. In order to correct i, fre(must use 9 bits
a 7-bit integer. This fre(xfunction can be implemented usinginstead of 7 bits of the fraction of for the linear function
a tiny multiply-adder. Mathematical analysis cannot be usé&dlculation. With this fix, our algorithm can successfully verify
for fre(z) because fre(ris not a continuous function with that fr_e(:r,)’s relative error is less than 1/256 over the entire
a derivative. We illustrate how our algorithm can prove thdomain.
relative error requirement of f(e).

First, we convert the requirement formuldfre(z) — . o )
1/z)/1/z| < 1/256 to its equivalent formula255/256 < We implemented our verification algorithm on the ACLZ
F(z)xz < 257/256, as our algorithm can take only a formulgheorem prover [16]. The ACL2 theorem prover is a widely-

of PBF. SinceF(z) is almost always larger thah/z, we used open-source theorem prover, that has been used for
will focus on the second< comparison for the rest of thenardware and software verification in both academia and

arguments. industry [17]. This section assumes some knowledge of the
Our algorithm first divides the target domain ofnto sub- ACL2 theorem prover. Readers who are not interested in

segments. Let us assume that the domainzof divided implementation details may skip to the next sectloq.

into the segment of size 1/128, and we will explain how the There are a number of advantages for us to implement

X FracFld
Hh— i (14 FeEtd) fors e |

1,
1729 91 9 , FracFld 4 io(x) 9
1024 128 X (§+ 210 for z € [§’

fre(z)=

Il. ACL2 | MPLEMENTATION OF ALGORITHM

algorithm works for the sub-segment [1,129/128). the algorithm on the ACI__2 theorem prover. First, thg results
The Simplify algorithm in Fig. 3 first substitutes+ § for of our ver|f|cat|0n algorithm of thg high-level design can
2 in the original formula: be aug_njen_ted with oth_er mechan_lcal proo_fs. I_:or example,
the verification of fre(3 in the previous section in segment
fre(x) x « < 257/256 (3) [1,2) can be extended to all non-zero domain aofwith

interactive theorem proving. Second, we can use the theorem
prover’s rewriting engine to manipulate polynomials, instead
fre(146) x (14 6) < 257/256 of writing a polynomial simplifier from scratch. Third, the
. _ o ACL2 theorem prover provides an interface named clause-
Second, it replaces fre aridlacFld, 1o using the definition of processor [18] to call external formal verification tools such
fre and Equation 1. as a bit-level equivalence checker. We can use this feature to
455 10w 967 957 run an equivalence checker between the high-level model of
(=g X 1+ 0+ Erackid 10(0) X 277) + 15) X (140) < 5 an algorithm and its hardware implementation.
. . One disadvantage of the implementation using ACL2 is
Now we expand, combine same monomials, and move con- . : . e o
. . speed. Especially, our implementation of the verification algo-
stants to the right oK and non-constant monomials to the; . 7 . . .
o fithm is not optimized for speed. It is possible to implement
left, putting into the format of); < C; : ) . )
our algorithm in a typical programming language, and call
57 455 455 455 1 i i -
Errackid s o(0) — —o 52205 Erractidsol0) it from the ACL2 theorem prover using the clause-processor

_ _ <
512 219 — 256 mechanism. However, the clause-processor mechanism does

resulting in:

5120 219

Since the right-hand side is a positive number, we computét guarantee the soundness of the newly integrated system,
the upper bound of the left-hand side, by the rules in Fig. 4because the called program may contain flaws.

We used an approach to implement the algorithm using

U (5%5 - %EFracFld4,1o(5) - %52 - %5EFT35F|C|4,10(5)) computed-hints [19] and a set of rewriting rules. A computed-
_57 y 1 n 455 W14 455 o 1 n 455 " 1 ‘1 h!nt is a user-defined functions .that is use.d to steer the
512~ 128 = 219 512 1282 © 219 7 128 direction of a proof, but the proof itself is carried out by the
_120703 1 pure ACL2 proof engine. It is somewhat like “strategy” [20] in

226 256 the PVS theorem prover [21], or “tactics” in the HOL theorem

This shows that the upper bound of the left-hand side jsover [22], although ACL2 computed-hints may not be able
less than 1/256, finishing the proof the original equation 3 féo specify the proof step-by-step. Unlike clause processors,
[1,129/128). computed-hints do not introduce unsoundness to the ACL2
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(defthm fre-error-1-2

(implies (and (rationalp b) (<= 1 b) (< b 2)) same effect as replacingwith x; +4, with term(xd x x0)
(and (<= 255/256 (* b (fre b)) serving the role of variablé.

s (<= (* b (fre b)) 257/256)) Thewhen-pattern  hint also calls anin-theory ~ hint,
((case-split-segment 'b 1 2 (expt 2 -7)) which opens up the definition dfe. By setting up proper
(when-pattern _ _ rewriting rules, the ACL2 term rewriter applies the same

:('Jsén‘z:tmgar‘?cé@i d'_‘(’j‘g’():)gnf; ('i g’—) ()r(‘(')g'?@)@ 'rl‘(')'av)» simplification as the simplification algorithm in Fig. 3. For

in-theory (enable fre)) this purpose, we need to disable all the built-in rewrite rules of
(bound-poly-prover id clause world))) ACL2, and enable specific rules that mimic the simplification

algorithm, using a script that is not shown here.
Fig. 6. An ACL2 command to verify fre(z). There are two sets of rewriting rules needed for the task.

First is to normalize polynomials. This includes typical rewrite

o . rules for the commutativity, associativity, and distributivity
prover. If a computed-hint is not implemented correctly, thgf + and x, unicity, and rules to combine coefficients. For

proof using the hint may fail, but it never proves an untru@xample we need a rewriting rule (* c0 x) (* cl

statement as a theorem. _ X)) — (* (+ c0 cl) x)) thatis applied only it0 and
In our implementation, a single ACL2 command show - ;
P ' 9 B1 are constants. In addition to that, we need a few tricky

in F!g. 6 pfOYeS the grror requirement for fre(irpm the rewriting rules which combine monomial of the same kind
previous section. A typical ACL2 commar(defthm ~ name located far apart in a polynomial. Such rewriting rules can be

expr :hints_ hint_s) attemp_ts to provexpr with the guid- \jten using thesyntaxp heuristic filter of ACL2.
ance provided b)hlnts,'and, if successful, stores the .theorem The other set of rules are used to bring constants to the
with the name. In Fig. 6, three computational hints arfyp of < and non-constant terms to the left. All rules have

p_rovided _after.h_ints. Briefly_ speaking, the first (?omputed- to be carefully coded and ordered so that it works well with
hint starting with case-split-segment splits the do- the ACL2's rewriting algorithm.

main of = into tiny segments. The second computed-hint 14 final computed-hinbound-poly-prover in Fig. 6

_namedwhen-pattern applies th_e simplification algorithm computes U(Q)of the left-hand side of after the previous
in Flg. 3, and the last computed-hindund-poly-prover __ step produces) < C. If the U(Q) is less than the right-
builds a proof based on the upper bound computed as in F'ghénd side constant C, then it constructs a proof)ok C.

The first computed-hints usingase-split-segment g ig done by instantiating theorems statinge b| = [al[b),
splits thfa domain [1, 2) OD. into small sub-segments of S|ze‘a b| < |a|+ |b], and the inequality bounding error functions,
2-7. This generates 128 independent sub-goals. The restedf aach step of the bounding proof.

the computed hints are applied to each sub-goal. For example, supposé;(z) is an error function that

.The second computed-hirftvhen-pattern pattern . satisfies| B (z)] < 1+ A for lz| < A, and we want to prove
hints) attempts to pattern match sub-terms of the target f < 1=> 6+ 8E;(8) < 3. The proof can be given by the
pattern, and if there is a matchintsare applied to the ACL2 foIIo_wing three ineauatians.:

proof. This computed-hint is an extension described in [23].

Expressions starting with a@sign is a pattern variable, and 0] <1=>|E;(d)] <2

can be matched to any expression. Then the pattern variables

o . - < <2= <

in hints are substituted accordingly. Ol < TAIEF(O)] =2 => |0E;(9)] < 2
In our example in Fig. 6, computed-hinthen-pattern 0] STAOEf(0)] <2=>|0+0E;(d)] <3

looks for anif-expression that matches the pattern. The

previous case-splitting hint must have produced a téand Whtentt_)otur;diﬁoly—provetr h Its calied, Itl adds these tt_hree |
(<= @ %) (< x ,)), and its internal representation is INStantiated theorems to the target goal as assumptions. In

an if-expression that looks exactly like the pattern. As a&Ssence, bound-poly-prover elaborately provides the proof

result,(@ low) and(@ high) are matched ta:; andx; ::Jenpasl :(C))g'iA\CCil;lie,rse?]éZa:[toAfi(r:]Ii_szhOnly needs to perform proposi-

respectively. i ) . .

Then the :use hint instantiates a theorem namedWe did not implement dynamic adjustment of the segment
xd-decomp given as follows: size. Currently we manually adjust the segment size as an
(defthmd xd-decomp argument to thease-split-segment computed-hint.

(implies (and (rationa_lp X) IV. APPLICATIONS

(rationalp x0)) . . . o
(and (rationalp (xd x x0)) We applied the ACL2 implementation of our verification
(equal x (+ x0 (xd x x0)))))) algorithm to a couple of industrial examples. The first example
wherexd is a function defined as: is a reciprocal estimate instruction of one of the POWER

processors. This particular algorithm uses a piecewise linear
approximation with segment size ?f6 for the input between
The definition ofxd is disabled and the ACL2 theorem provedl and 2. It uses 22 bits of the fraction of an input to
treats it as an uninterpreted function. This effectively has tloempute a reciprocal estimate. The relative error must be

(defund xd (x x0) (rfix (- x x0)))
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less than2~'4, It is implemented using a look-up table, aSuch improvements will certainly speed up the verification
small multiplier, adders, bit field extractions, and shifters. Hlgorithm.
is more complicated than our toy example in Subsection II-D,

but the principle remains the same and it can be modeled

as a PBF function. One notable point is that the algorithm Our verification algorithm has been successfully applied
uses one’s complement to negate intermediate results, nott@'s/erify two estimate instructions in an industrial processor.
complement. Since this is just an estimate instruction, thénlike many theorem-proving based methods, our algorithm
difference in the last 1 bit should not matter, but our highruns automatic and can be applied to different examples with
level description models precisely such behavior. minimum human effort.

Our algorithm successfully verifies this high-level model of The current implementation of the verification algorithm
the reciprocal estimate function in the segment [1,2), dividirig given as a set of ACL2 computed hints, and it has not
it to 4048 sub-segments of siz& 2. If the segment size been optimized for performance. Especially the segment size
gets bigger thar2—11, proof failed for some segments. Thes fixed at the beginning of the verification, and it does not
verification took 3652 seconds using a 2.93GHz processttomatically adjust the size. Our investigation shows that
with the ACL2 version 3.6 running on Clozure Common Lispadjusting the sub-segment size is likely to improve the verifi-
We minimized printing by ACL2 intermediate proof goals, asation speed significantly. For example, the frsgrte verification
it would have printed out huge expressions and consumediged the segments 8f 1° for the entire domain of inputs, but
sizable amount of CPU time. No interactive human inputs asegment size af % is sufficient to verify most of the segments

V. DISCUSSION

required during this proof. except a few.
After proving that the estimate function meets its require- More improvements can be implemented for the
ment in [1,2), an interactive theorem proving extends thﬁ)und-poly-prover computed hint. The current

domain from [1,2) to the entire non-zero values, by provi

n : :
the theorem: ﬁnplementatlon adds a large number of irrelevant and

duplicated inequalities to the target, by instantiating lemmas
(defthm fre-correct for each proof step. A smarter implementation can, for
(implies (and (rationalp b) example, avoid repeating the same proof steps for common
(not (equal b 0))) sub-expressions
(<= (abs (/ (- (fre b) (/ 1 b)) (/ 1 b)) , -
1/16384))) We relied on the ACL2 theorem prover for most of the
) . ) heavy work. Majority of the time is spent on the simplification
In this theorem,fre represents the verified reciprocaly nqynomials and propositional reasoning of the bounding

estimate instruction. Also we used oACL2SIXframework a0t “hoth of which are performed by ACL2. It is possible to
[24] and IBM verification toolSixthSens¢25] to check that o jjement a standalone program to accelerate our verification
the algorithm matches the hardware implementation. B“efé)(gorithm.

speaking, ACL2SIX translates an ACL2 expression to VHDL, It is interesting to compare our approach to MetiTarski

and runs SixthSense to verify whether the property holds f%]' which applied series's of upper and lower bounds of

DUT. If the verification fails, a waveform is produced to aSSi%olynomials given by Daumas et. al. [27] to a resolution

debugging. If successful, the ACL2 theorem prover continUggsorem prover, and proved many inequalities with analytical
the proof with the fact that the expression is true.

’ | ) functions such as trigonometric functions and logarithm. It
We also applied the same algorithm to the reciprocal squajes not split input domains to smaller segments explicitly

_root estimate_ instruction of the same prolc4essor._This particujgle our algorithm. We think their system is more suitable
implementation should have less than™ relative errors, o yerifying inequalities used for the control system of, for
meaning reciprocal estimaté) should satisfy: example, avionics, than hardware implementation of arithmetic
_ X circuits. One reason is that it may not handle non-continuous
s(z) —1/Vx < 9-14 . . . .
71/\/5 = . functions _such as_roundln_g and bit-extractions. Hc_)v_vevg-r, we
can combined their techniques to ours for the verification of
This is equivalent to provingl — 2714)2 < s(z)? x * <  trigonometric functions.
(142712, One may ask whether our automatic verification algorithm
The verification required the input domain [1,4) dividedcales to other problems. Next natural targets of our algorithm
into 3072 segments of siz& 0. The algorithm successfully are divide and square root algorithms using an iterative algo-
verified this algorithm, taking 13953 seconds to completdthm such as Newton-Raphson procedure. Their correctness
Although the number of sub-segments are smaller than thatcain be stated that the error of the final approximation before
the reciprocal estimate instruction, evaluation of each segmeotinding is less than a quarter or a half of that of the last
generates far more complex polynomials, thus taking mopesition(ULP), especially if the algorithm uses a special hard-
time to finish. ware rounding mechanism. The ULP of 14523 for single
In the verification of both estimate instructions, the segmeptecision an®2~>2 for double precision operations. Since our
has been 