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Abstract—Semiformal, or hybrid, verification techniques are
extensively used in pre-silicon hardware verification. Most ap-
proaches combine simulation and formal verification (FV) al-
gorithms to achieve better design coverage than conventional
simulation and scale better than FV. In this paper we introduce
a purely SAT-based semiformal verification (SFV) method that is
based on new algorithms for generating multiple heterogeneous
models for a propositional formula. An additional novelty of our
paper is the extension of the SFV algorithm to liveness properties.
The experimental data presented in this paper clearly shows
that the proposed method can effectively find bugs in complex
industrial designs that neither simulation nor FV reveal.

I. INTRODUCTION

Traditionally, Register Transfer Logic (RTL) level design
validation is carried out by applying simulation techniques
throughout the design and formal verification in certain high
risk areas. In simulation, design behavior is checked with
a large number of mostly random tests which cover just a
small fraction of the design space. FV resolves the coverage
issue by exhaustively checking all possible scenarios. It usually
requires building a restricted environment and reduced model,
as it cannot be directly applied on typical industrial-size
designs. One of today’s most efficient FV methods, SAT-based
bounded model checking (BMC) [1], verifies the lack of bugs
in scenarios of bounded length. The maximal reachable BMC
bound is not sufficient in many cases to address structures with
long latency, such as deep queues or counters.

Semiformal verification approaches developed throughout
the last decade trade the completeness of FV for effectiveness.
They aim to detect bugs in larger designs rather than to
prove their correctness. Being incomplete, these approaches
are sound — all reported violations of the properties are
true bugs. SFV approaches that simultaneously apply mul-
tiple verification techniques in a complementary fashion are
referred as hybrid approaches. Bhadra et al. [2] provide a
comprehensive survey of recent advances in hybrid approaches
to functional verification. A major challenge for hybrid tools
is their practical applicability to a wide range of industrial
designs and the soundness of the integration of the individual
technique. As opposed to hybrid approaches, our SFV method
is based on a single FV algorithm – SAT-based BMC.

Previous SFV approaches using a single FV algorithm
suggested heuristics to search in a fraction of the original state
space. This allowed reducing the binary decision diagrams
(BDD) [3] to a manageable size in semiformal symbolic
reachability analysis [4]–[6]. BDD-based algorithms, whose
capacity is limited to hundreds of variables, are unsuitable
for verifying properties in today’s industrial designs, which

often comprise tens of thousands of state elements. Cabodi et
al [7] restrict the BMC SAT engine during the search based
on dynamically computed simplified BDD-based image and
preimage computations. The work in [8] suggests a rarity-
based metric to identify states of a particular depth, searching
from which leads to better coverage.

We use a different approach that utilizes user guidance to
restrict the search within the state space - an idea extending the
“lighthouses” used in the SIVA tool [9]. The user guides the
search by providing a series of waypoints – describing design
behavior throughout the desired scenario. The idea is similar
to [10], but is used in the context of property verification rather
than post-silicon debugging. Some works have suggested ways
to automate the guiding algorithm, as they consider user
guidance as a major drawback. For example, see probabilistic
state ranking in [11] and lighthouse generation automation
in [12], [13]. However, our experience shows that because
verification engineers are well versed in the design, they
can easily specify the required waypoints. Moreover, they
usually prefer to encounter events they are familiar with when
analyzing the resulting counterexamples.

There are other hybrid techniques that augment simulation
with formal searches, as is done in KETCHUM [14], SIVA
[9] and other systems [15], [16]. The biggest challenge for
these tools is the synchronization of the simulation and FV
environments. Random simulation needs to take into account
the FV environment, which is usually modeled with complex
sequential assumptions. Although this problem was partially
addressed in [17], eventuality assumptions, assumptions in-
volving internal or output signals, and assumptions requiring
a lookahead (e.g. G(a → past(b))) are very difficult or im-
possible to account for, thus resulting in false negative results.
Another approach applies multiple shallow FV searches start-
ing from selected cycles in simulation, a technique known as
dynamic FV. Dynamic FV approaches suffer from an inherent
drawback – they require tight coordination between the FV
and simulation environments, which is extremely difficult to
achieve, since in most cases FV is applied at a lower level of
hierarchy than simulation. Moreover, the FV environment is
usually restricted, allowing only a subset of functionalities, a
fact which makes many simulation tests unusable.

Our SFV technique uses user guidance to compose several
applications of purely SAT-based model checking, and ex-
plores the system state space in parts. It can be applied to
all LTL properties, including liveness properties. We address
the known problem that some waypoint states may not be
extendable to the next waypoint. We introduce two new



highly configurable SAT-based algorithms for model sampling
to generate different traces towards waypoints – necessary
for achieving sufficient coverage and detecting corner-case
bugs. This differs from previously suggested approaches, e.g.
periodically tunneling or backtracking between shallow and
deeper waypoints [13]. Our experimental results show the
superior bug-finding ability of our approach, which detected
critical bugs in industrial-scale designs that were “clean” from
FV and simulation perspectives.

The rest of the paper is organized as follows. Section II
describes the proposed BMC-based SFV algorithm. Section III
introduces SAT-based algorithms for model sampling. Sec-
tion IV is dedicated to semiformal verification of liveness
properties. Our experiments are described in Sections V
and VI, the first reviewing the test cases and the second sum-
marizing the results. Conclusions and future work directions
follow in Section VII.

We use a standard LTL notation for temporal properties:
X for next, U for until, G for always, and F for eventually
(see [18]). Instead of repeating X n times we use a shortcut
notation Xn.

II. SAT-BASED SEMIFORMAL VERIFICATION

A. Basic Algorithm

The verification time in BMC grows exponentially with the
bound, and as a result it cannot explore scenarios that require
many clock cycles to execute. The proposed semiformal veri-
fication algorithm applies multiple shallow BMC runs, trading
the exhaustiveness of a search for speed. The user provides
an ordered set of waypoints which direct the search engine
towards the desired deep design state. The algorithm searches
for a path from one waypoint to the next starting from the
initial state, the BMC engine being restarted at each waypoint.
Being familiar with the design behavior, users naturally direct
the search towards the desired area by encoding the waypoints
with cover points. For example, consider a queue that requires
200 clock cycles to be filled. To verify the design in a risky
”full queue” state, possible waypoints could be ”1/4 full
queue”, ”1/2 full queue”, ”3/4 full queue”, each waypoint
being easily reached and the overall verification time being
but a fraction of the original BMC verification time.

The high-level SFV algorithm below is based on the fact that
the properties may be represented with finite automata [18].
Another possibility for handling properties is to generate the
satisfiability formula directly by the syntactic structure of the
temporal assertion [19]. However, this algorithm is much less
efficient than semantic translation based on automata [18],
as shown in [20]; therefore we do not consider syntactic
translation here.

Given a series of cover points ξ1, ξ2, . . . , ξn and the property
ϕ, the algorithm performs the following steps:

1) Calculate the set of relevant assumptions for
ξ1, ξ2, . . . , ξn and run BMC targeting ξ1 from the
set of initial states W0.

2) If a witness has been found, the property automata
are simulated along this witness. BMC and simulation

init q1, . . . , q4 ← 0
next(q1)← a; next(q2)← q1; . . . ;next(q4)← q3

fail← ¬b ∧ q4

Fig. 1: RTL for assumption G(a→ X4b)

are repeated each time using the end point of the last
simulation as the new initial state, targeting consequent
cover points ξ2, . . ., ξn. If a witness is not found for
some ξi, an indeterminate result is reported.

3) Run BMC to determine whether ϕ holds. If there is a
failure, append the counterexample to the concatenation
of witnesses ξ1, . . . , ξn. If a timeout or required BMC
bound is reached, report a lack of failure.

B. Calculation of New Initial States for Safety Properties

Since a safety property automaton can be synthesized into
RTL [21], it may be simulated on the waypoint witness using
a conventional RTL simulator. As an example, consider an
assumption G(a → X4b). Its automaton may be synthesized
as shown in Fig. 1.

If a = 1 in the witness appears in the next to last step, the
initial state of the next BMC run should have q2 = 1. Simu-
lating the property automaton is important: blindly reusing the
initial property condition init q1, . . . , q4 ← 0 would have led
to the discontinuity of the adjacent BMC runs, and potentially
to false negatives and bogus witnesses and counterexamples.

III. USING MULTIPLE SAT MODELS TO ENHANCE
COVERAGE

A. Motivation and Related Work

The experiments conducted, described in Section VI, show
that the proposed basic algorithm will likely miss corner-case
bugs. The reason for this is that a randomly chosen path,
constructed from a series of witnesses each of which satisfies
the corresponding intermediate waypoint, does not exhibit
sufficient coverage of the design space. Greater coverage may
be achieved by advancing towards the desired deep state along
multiple paths in parallel. For each intermediate waypoint, a
heterogeneous set of witnesses is generated instead of a single
witness, and for each such witness a separate verification
process towards the next waypoint is launched. Consider Fig. 2
which illustrates a scenario where using two witnesses for the
waypoints resulted in bug detection, whereas the chances of
detecting the bug would have been much smaller otherwise.

A number of approaches to generating random witnesses
(or solutions, or models) exist in literature. BDD-based,
local-search-based, and arithmetic-based approaches such
as [22], [23], and [24], respectively, are not applicable for our
domain, since our test-cases are too complex for BDD-based
and local-search-based algorithms, and they contain more bit-
vector operations than arithmetical operations.

Modern efficient SAT solvers are able to solve complex
formulas that arise in FV. SAT-based methods can also be used
to sample the solutions of a given formula. One such method,



Fig. 2: Multiple witnesses

called XORSample, was proposed in [25]. XORSample in-
vokes the SAT solver at least k times to generate k models.
For each invocation, the initial formula is augmented with
random XOR constraints. A sampling is not rejected only if
the augmented formula has one and only one model. This re-
quirement was relaxed in [26], whose version of XORSample
does not reject samplings. Another SAT-based method, called
DPLL-based sampling, was mentioned in [24] (we did not find
any reference to a work introducing it). DPLL-based sampling
invokes a SAT solver k times to generate k models on the same
input formula. Model diversification is achieved by making the
first boolean value assignment to a variable random for each
invocation of the SAT solver.

Literature on the AllSAT problem (that is, the problem of
finding all the models for a formula) is also relevant for our
purposes. Most AllSAT engines are built on top of a SAT
solver. When a model is found, a typical AllSAT solver [27],
[28] adds a blocking clause which prevents the solver from
rediscovering the same model in a subsequent search and
restarts the search. Unlike DPLL-based sampling, AllSAT
invokes a SAT solver only once.

B. SAT-Based Algorithms for Generating Multiple Witnesses

In this section we describe two new algorithms for gene-
rating heterogeneous models (witnesses) to a given formula:
Rand-k-SAT and Guide-k-SAT. Both our algorithms surpass
existing approaches in terms of both diversification quality
(formally defined below) and performance. We also present
two modifications to Rand-k-SAT and Guide-k-SAT, called
AllSAT-sampling and BCP-aware Guide-k-SAT, which allow
the user to trade diversification quality for performance.

Given a propositional formula F in conjunctive normal
form (CNF) over variables V = {v1, . . . , vn}, a SAT solver
either finds a complete satisfying assignment (model) for F
or proves that no model for F exists. We define the distance
D(µ1, µ2) between two partial assignments µ1 and µ2 to be
the number of variables that are assigned in both µ1 and µ2

and have different values in µ1 and µ2. Note that our definition
yields that the distance between two models is the Hamming
distance. We define the diversification quality of k models
µ1 . . . µk Q(µ1 . . . µk) to be the average distance between each
pair of models, normalized by the number of variables:
Q(µ1 . . . µk) = (

∑k

i=1

∑k

j=i+1 D(µi, µj))/(n(k2 − k)/2).
For example, consider a formula F = (a∨ b∨ c)∧ (¬a∨ b)

and three models µ1 = {a = 1, b = 1, c = 0}, µ2 = {a =

1, b = 1, c = 1}, and µ3 = {a = 0, b = 0, c = 1}.
Then, D(µ1, µ2) = 1, D(µ1, µ3) = 3, D(µ2, µ3) = 2, and
Q(µ1, µ2, µ3) = (1+2+3)/(3×((32−3)/2)) = 2/3. Note that
since the diversification quality is normalized by the number
of variables, it must lie between 0 and 1.

Given a propositional formula F in CNF and an integer
number k > 0, we are interested in finding k models for
F with the optimization goal of increasing the diversification
quality of the models. We do not intend to guarantee a certain
quality in a theoretical sense, but rather to combine solid
performance with a good model quality for the practical needs
of efficient semiformal verification.

Both our approaches, Rand-k-SAT and Guide-k-SAT, invoke
the SAT solver only once, like AllSAT solvers do. However,
we do not add blocking clauses when models are discovered.
Instead, the solver restarts the search after a model is discov-
ered. Diversification is achieved solely by changing the phase
selection heuristic for variables.

The decision stage of a modern SAT solver chooses a
variable and its phase at each decision point during the search.
The variable decision heuristic selects a variable. The phase
selection heuristic selects a boolean value for the selected
variable. Most modern SAT solvers use RSAT solver’s phase
selection heuristic [29], which tries to refocus the search on
subspaces that the solver has knowledge about. This heuristic
keeps a saved-phase array, indexed by variables. The array
contains boolean values and is initialized with 0’s. The solver
stores the last assignment given to a variable in the saved-
phase array. The phase selection heuristic for variable v always
chooses the value of v from the saved-phase array.

Both Rand-k-SAT and Guide-k-SAT override the traditional
phase selection heuristics. However, they differ from one
another conceptually in their phase selection strategies. Rand-
k-SAT selects the phase randomly on all occasions. Guide-k-
SAT selects the polarity in a non-random manner: explicitly
guides the solver to extend its partial assignment σ so that the
distance between σ and previous models µ1, . . . , µn−1 will
be as large as possible. We designed this strategy keeping
in mind the goal of making the distance between the next
model µn and the previous models as large as possible. More
specifically, Guide-k-SAT uses the following greedy approach.
Suppose a variable v is selected by the variable decision
heuristic. Let p(v)/n(v) be the number of times v was assigned
1/0 in previous models. If p(v) > n(v), v is assigned 0; if
p(v) < n(v), v is assigned 1; if p(v) = n(v) (including the
case where no models have yet been identified), v is assigned
a random value.

The ideas behind Rand-k-SAT and Guide-k-SAT are very
simple and straightforward to implement, yet they turn out
to be powerful and efficient for finding heterogeneously
distributed models on well-structured problems, with an ac-
ceptable performance overhead compared to a modern SAT
solver. On the one hand, we continue using all the modern
SAT strategies, whose goal is to achieve solid performance
on structured instances. On the other, we achieve sufficient
diversification quality, either by selecting the phase randomly



TABLE I: Comparing Approaches to Generating Heterogeneous
Models.

DbS Rand-k-SAT Guide-k-SAT

Mean Quality 0.215 0.313 0.339

Overall Run-Time 47456 30307 28450

or by explicitly guiding the solver away from previous models.
DPLL-based sampling (DbS) is the best previous SAT-based

approach to finding heterogeneous models. We implemented
DPLL-based sampling as well as our algorithms Rand-k-
SAT and Guide-k-SAT, and compared them experimentally
on 66 benchmarks. The number of propositional clauses in
the benchmarks varies from eight thousand to more than three
million. In all the experiments, the required number of models
was 10. All experiments were carried out on a machine with
4Gb of memory and two Intel Xeon CPU 3.60 processors. All
the algorithms were implemented in the latest version of Intel’s
Eureka SAT solver. Eureka’s default phase selection heuristic
is RSAT’s heuristic.

Table I compares DPLL-based sampling (DbS), Rand-k-
SAT, and Guide-k-SAT in terms of mean diversification quality
and overall run-time. Two scatter plots, comparing our best
algorithm, Guide-k-SAT, and DPLL-based sampling in terms
of run-time and quality are provided in Fig. 3. Similar scatter
plots, comparing Guide-k-SAT and Rand-k-SAT, appear in
Fig. 4. Our experiments yield two main conclusions.

First, both our algorithms are clearly preferable to DPLL-
based sampling in terms of both quality and run-time. Table I
confirms the overall advantage. Consider now the the right-
hand scatter plot of Fig. 3 comparing the quality of Guide-
k-SAT and DPLL-based sampling. A significant number of
dots appear near the x-axis, far away from the diagonal,
hinting that the gap is significant for some of the benchmarks.
Now consider the run-time comparison scatter plot to the left.
Guide-k-SAT outperforms DPLL-based sampling on most of
the most difficult instances.

Second, Guide-k-SAT outperforms Rand-k-SAT in terms
of both quality and run-time. The gap in run-time is not
so significant: it stands at 6.5% overall. Also, the run-time
comparison scatter plot in Fig. 4 shows that Guide-k-SAT is
not always preferable to Rand-k-SAT. Now consider diver-
sification quality. While the gap between average quality is
not large, the quality comparison scatter plot clearly shows
that Guide-k-SAT yields better diversification quality on every
one of the benchmarks. Hence, for our examples, to achieve
better performance and model diversification it is preferable
to explicitly guide the SAT solver away from previous models
(using Guide-k-SAT) than to use randomness (using Rand-k-
SAT).

It is also possible to modify our algorithms to trade quality
for run-time. Consider a variation of Rand-k-SAT, called
AllSAT-sampling, that invokes the SAT solver once, but assigns
random values only to variables selected for the first time or
for the first time after a restart. Note that the solver is expected
to keep assigning the same values to the variables for some
restricted time after the beginning of the search or a restart due

TABLE II: Trading Quality for Run-Time in Heterogeneous Model
Generation.

AllSAT-sampling BaG; T =100 BaG; T =100000

Mean Quality 0.124 0.342 0.353

Overall Run-Time 8211 33392 183857

to RSAT’s phase selection heuristic. A comparison of Table I
and Table II shows that AllSAT-sampling is much faster than
both Guide-k-SAT and Rand-k-SAT; however, the distribution
quality is significantly worse. Accordingly, AllSAT-sampling
can be recommended when the problem is computationally
very complex.

Consider now a variation of Guide-k-SAT, called BCP-
aware Guide-k-SAT. BCP-aware Guide-k-SAT tries to take into
consideration the impact of Boolean Constraint Propagation
(BCP) on the distance between the current partial assignment
and the previous models. It performs BCP for both polarities,
and measures the distance between the resulting partial assign-
ments σ and previous models. Eventually, it picks the polarity
that yielded the larger distance.

Specifically, the algorithm operates as follows. Suppose a
variable v is selected by the variable decision heuristic. Let
p(v)/n(v) be the number of times v was assigned 1/0 in
previous models. The variable v is assigned a value p as
follows: if p(v) > n(v), p is 1; otherwise p is 0. Then, BCP is
carried out. Suppose that the set of variables Vp is assigned as
a result of BCP. The algorithm saves the distance Dp between
the partial assignment, induced by {v}∪ Vp, and the previous
models. Afterwards, the algorithm unassigns {v}∪Vp, assigns
v the value ¬p, and propagates it using BCP. Suppose now
that the set of variables V¬p

is assigned as a result of BCP.
The algorithm calculates the distance D¬p between the partial
assignment, induced by {v} ∪ V¬p, and the previous models.
If D¬p > Dp, the algorithm continues to the next decision.
Otherwise, it unassigns {v} ∪ V¬p, assigns v the value p,
propagates using BCP, and continues to the next decision. Note
that the algorithm first tries the polarity p that is less likely to
result in better distance. The reasons is that if ¬p is preferable,
BCP is performed only twice; otherwise it is performed three
times.

BCP-aware Guide-k-SAT is a costly algorithm, since it has
to perform BCP two or three times per decision. Hence we
limit its usage as follows. BCP-aware Guide-k-SAT is used
until a certain number of conflicts T is encountered by the SAT
solver. In addition, BCP-aware Guide-k-SAT is reinvoked after
each model is discovered until T conflicts are encountered.
The algorithm then uses plain Guide-k-SAT until the next
model is encountered. Table II shows that BCP-aware Guide-
k-SAT (BaG) improves distribution quality, but deteriorates
run-time. Observe that it is possible to trade quality for run-
time by changing T .

We also implemented XORSample [25] as well as the
modified XORSample of [26]. We tried a variety of distribu-
tion quality values (0.1, 0.01, . . . , 0.0000001) and the number
of generated XOR constraints (1000, 10000, . . .). Our results
show that, depending on the configuration, XORSample is



either slower by an order of magnitude compared to Rand-k-
SAT and Guide-k-SAT (it timed-out on most of the instances),
or its distribution quality is worse by approximately 10 times
compared to Rand-k-SAT and Guide-k-SAT. Hence, although
XORSample is useful on randomly generated instances and
on small real-world formulas when a large number of models
needs to be generated, it is inferior to other methods on
difficult benchmarks when a small number of models needs to
be generated.

Our experience shows that the best approach for generating
multiple counterexamples in the framework of semiformal
verification is to allow the user some control over the algorithm
used within the tool. As our experimental results demonstrate,
Guide-k-SAT is preferable as the default algorithm, since it
exhibits the most attractive trade-off between run-time and
solution diversification quality (which translates to efficient
verification). However, we encountered a number of especially
difficult cases where AllSAT-sampling was mandatory in order
to satisfy performance requirements. In those cases, AllSAT-
sampling was 25X faster than Guide-k-SAT (1 hour versus
25 hours to generate 10 models), although the diversification
quality was 1.7X worse (0.181 versus 0.307). For easy test
cases we recommend using BCP-aware Guide-k-SAT, where
the trade-off between run-time and solution diversification
quality is controlled by the threshold T .

IV. CHECKING LIVENESS PROPERTIES

A. Motivation

To the best of our knowledge, no attempt at semiformal
verification of liveness properties has ever been described
in the literature. We do not restrict our consideration to
pure liveness properties, and by “liveness” we understand
everywhere general liveness. Verifying liveness properties is
required when the exact timing in end-to-end properties is
not specified, and to check the absence of starvation. FV
of liveness properties without prior aggressive abstraction is
challenging: the complexity of their BMC-based verification
is significantly more expensive than the verification of safety
properties. Therefore the ability to perform semiformal verifi-
cation of liveness properties is important.

One possible way of handling liveness properties would
to convert them to equivalent safety properties, as explained
in [30]. However, this approach is problematic in the semi-
formal verification context for the following reasons: 1) The
number of property variables doubles when transforming a
liveness property into a safety property, and 2) This translation
makes sense when the resulting safety property is exhaustively
checked. Therefore we did not explore this option in our work.

It is well known [31] that a violated liveness property always
has a lasso-shaped counterexample: a state path consisting of
a linear prefix and a loop. As explained in [32], in BMC of
liveness properties these lasso-shapes paths are described with
Boolean formulas parameterized by the size of the prefix and
of the loop. SFV may help get to a design state close to the
beginning of the loop, and/or to a neighborhood of a smaller
loop. For example, to check starvation, it is necessary to bring

the system into a state where resources have been requested by
several clients. Applying BMC directly from the initial state
is useless if the greatest feasible bound is insufficient to bring
the system to such a state.

To apply classical algorithms based on semantic translations
to check liveness properties in semiformal verification, the
main challenge is to simulate their automata along the way-
point witness. Application of the algorithm proposed below
is not limited to BMC-based semiformal verification; it may
also be combined with other semiformal methods such as those
described in [14], [15], [33].

B. Simulation of Non-deterministic Büchi Automata
Liveness properties cannot be represented as finite automata

on finite words, and for their representation a finite automaton
on infinite words (a so called Büchi automaton) is needed [18].
In practice it is more convenient to represent LTL properties
with a more general form of Büchi automata — alternating
Büchi automata [18]. For the sake of simplicity we describe
our algorithm for regular (nondeterministic) Büchi automata
only, but with minimal changes the same method may be
applied to alternating Büchi automata as well. Unlike safety
property automata, Büchi automata representing liveness prop-
erties are simulated symbolically, as described below.

In our algorithm we use a symbolic representation of the
transition relation as a Boolean function of two sets of vari-
ables, current (unprimed) and next (primed) [19]: δ(w, w′).
We also introduce a map β : w′ 7→ w to convert functions of
next variables to functions of current variables. For example,
β(a′ ∧ b′) = a ∧ b.

Let Ui be a symbolic representation of the states reachable
at step i (active states) from one of the initial states while
respecting the given witness. For the witness of the first way-
point, U0 = Q0 — the set of initial states of the automaton. For
other witnesses U0 is the symbolic representation of the end-
point of the automaton simulation along the previous waypoint
witness. Let Vi be the set of pairs (w, w′), where w ∈ Ui is a
current active state, and w′ is the next state reachable from w
according to the transition relation δ, respecting the limitations
imposed by the witness ai at step i: Vi = Ui∧δ∧ai. The next
variables computed this way become current variables for the
next step, and the process is repeated: Ui+1 = β(∃w.Vi). In
this formula the existential quantifier selects the member w′

of the pair (w, w′) ∈ Vi.
We will illustrate this algorithm on the Büchi automaton in

Fig. 5 for a 4-cycle long witness trace shown in Table III. The
symbolic transition relation δ =

∧4
i=0 δi, where

δ0 = q0 → q′0 ∨ ¬a ∧ q′1 ∨ a ∧ q′2
δ1 = q1 → ¬a ∧ q′1 ∨ a ∧ q′2
δ2 = q2 → q′3
δ3 = q3 → ¬b ∧ q′3 ∨ b ∧ q′4
δ4 = (q4 → q′4)

The values of Ui and Vi are shown in Table III. As expected,
the values of Ui contain symbolic representation of the active
states of the automaton at each simulation step. The initial
state of the next BMC run should have q0 ∨ q2 = 1.
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q0

q1

q2 q3 q4

true

¬a

a

¬a

a

¬b

true b

true

Fig. 5: Büchi automaton with accepting states q1 and q4

TABLE III: Simulation of Büchi automaton

Time a b Ui Vi

0 0 0 q0 q0 ∧ ¬a ∧ ¬b ∧ (q′

0
∨ q′

1
) ∧

∧
4

i=1
δi

1 0 0 q0 ∨ q1 (q0 ∨ q1) ∧ ¬a ∧ ¬b ∧ (q0 → q′

0
∨ q′

1
)

∧(q1 → q′

1
) ∧

∧
4

i=2
δi

2 1 0 q0 ∨ q1 (q0 ∨ q1) ∧ a ∧ ¬b ∧ (q0 → q′

0
∨ q′

2
)

∧(q1 → q′

2
) ∧

∧
4

i=2
δi

3 0 0 q0 ∨ q2 —

V. TEST CASES

We implemented the algorithm in Intel’s proprietary FV tool
and chose three CPU design blocks for our experiments. These
design blocks had been extensively tested in simulation and the
design was believed to be mature. The blocks were modeled in
SystemVerilog and included novel features carrying high risk.
The properties were captured using SystemVerilog Assertions
(SVA). We chose blocks of sizes that SAT-based FV engines
could handle — the full cone of influence of a typical assertion
comprised 1K inputs, 5K state elements, and 75K gates. As
a result, the FV confidence level was not high enough in all
test cases, as the BMC bound reached by the traditional BMC
approach was not sufficient. In most cases, after reducing the
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Fig. 6: Request Tracker

models using both manual and automatic techniques, design
scenarios requiring more than forty clock cycles could not
be addressed. It is worth noting that our attempts to apply
industrial semiformal verification tools yielded no tangible
results. This was due to complex environments that needed
to be synchronized and to the unique properties and large size
of the CPU design blocks.

The first block, a Request Tracker, is responsible for mana-
ging various request types and ensuring the correct execution
order of the requests, giving preference to high-priority re-
quests while not starving low-priority requests. Requests arrive
from various sources, and each is associated with a unique
identifier (ID). A high-level diagram of Request Tracker is
shown in Fig. 6.

The different request types vary in the time needed to
process them, e.g. a REQ1 request (path REQ1 — OUT1)
requires considerably fewer clock cycles than a REQ2 request
(path REQ2 — OUT2). We chose to experiment with REQ2,
which had not been properly addressed in FV due to BMC
bound limitations.
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Fig. 7: Resource Manager

The second block, a Resource Manager, is responsible for
controlling resources and making sure that no resource is
allocated twice and that none are lost. The resources are kept
in the pool and allocations/deallocations are recorded using a
cyclic table. See Fig. 7 for a high-level diagram of the block.

The third block, a Flow Manager, implements a mechanism
to control a complex flow involving many agents. It comprises
a central FSM with additional smaller FSMs around it, each
being responsible for a specific flow scenario or sending
and receiving data from a certain agent. The central FSM
controls the flow, supervising all the smaller FSMs around it.
This block was used for algorithm experiments with liveness
properties, as the main concern is that the flow will eventually
finish successfully without getting stuck in live-lock due to a
bug in one of the FSMs.

VI. RESULTS

In this section we describe the results of applying the
proposed SFV algorithm to the RTL blocks described in
Section V. The most important result was the exposure of
three real corner-case bugs described in Section VI-A. We
also inserted several artificial corner-case bugs described in
Section VI-B. We sought to corroborate different characteris-
tics of the algorithm, namely its ability to adequately cover
design state space using the multiple witness approach.

A. Real Corner-Case Bugs in Mature Designs

Our SFV algorithm revealed the following bugs in the
Resource Manager, two of them critical. These bugs could be
revealed neither in simulation, nor using traditional FV, nor
using SFV with a single witness.

• Incorrect STALL calculation in a very specific combina-
tion of allocation requests, which causes resources to be
lost.

• A bug in recovery/restart event handling which results
in not all of the allocated resources being correctly sent
back to the resource pool.

• Corruption, in a scenario involving extremely high allo-
cation traffic, of a mechanism which validates resource
integrity in the Resource Control Unit.

B. Testing the Ability to Adequately Cover Design State

We inserted an artificial corner-case bug in the Request
Completion Logic sub-block which causes a failure when
multiple REQ2 type requests from particular sources and ID
ranges arrive in a particular order. The bug results in one of
the requests being incorrectly marked as completed. This bug
could not be revealed with the simulation regression.

TABLE IV: Resource Manager Verification Results

CP/Asrt BMC SFV, single SFV, multiple
Result Bound Result Bound Result Bound

Line 4 covered 69 covered 69 covered 69
Line 8 covered 71 covered 77 covered 77..83

Line 12 uncov. 24 covered 89 covered 85..95
Line 16 uncov. 26 covered 99 covered 93..107

Line 19 uncov. 26 covered 113 covered 99..119
Line 0 N/A N/A covered 129 covered 107..133

Asrt TO 38 TO 42 failed 142

We used nine different waypoints modeling several REQ2
requests in various pipe stages on a path REQ2 — OUT2; for
example, the one marked by a star in Fig. 6. In this and other
experiments we used general waypoints (waypoints previously
defined by validation engineers for other purposes) in order
to eliminate the possibility that prior knowledge about the
bugs might lead us unconsciously to craft waypoints leading
directly to them. For each waypoint we calculated 5 witnesses,
targeting each of the twelve assertions from 9×5=45 different
initial states defined by these witnesses. The cover points
occurred at bounds 64–70, and verification took 1406–3379
seconds (on a machine with 4Gb memory and two Intel Xeon
CPU 3.60 processors). A failure was detected by one out of
12 assertions from only one initial state, whereas runs from
the other 44 initial states missed the problematic scenario.
It occurred at bound 34 (70+34=104 clock phases from the
original initial state) after 14707 seconds.

We inserted an artificial corner-case bug into the Resource
Manager logic which calculates the condition for next request
STALL. This caused Next free pointer to wrap around early
due to illegal allocation, thereby running over other resources
in the table. We used general cover points as waypoints
asserting that table lines were allocated, and the table was
incrementally filled up until the wraparound. We ran traditional
BMC and SFV with single as well as multiple witnesses. The
assertion verified that resources were not being lost in the
system. In all cases a timeout of 20 hours was used. Results
are summarized in Table IV.

A wraparound happens after the 19th table line is allocated,
as the cyclic allocation table size is 20. BMC could not get
beyond the allocation of line 8, and the multiple witness
approach was needed in order to come across the problem-
atic combination of resource requests. The total number of
verification runs was 3(witnesses)6(waypoints)=729. Note that
the SFV algorithm does not necessarily produce the shortest
counterexample — line 8 was reached with bound 71 using
BMC whereas using SFV it was reached with bound 77 to 83.

We experimented with liveness properties in the Flow
Manager block. The properties validate forward progress with
the control FSM (dispatcher), eventually reaching predefined
control points without getting stuck, e.g. due to a bug in
one of the FSMs. The proof assumes the legal behavior of
the surrounding agents. We used waypoints describing the



state transitions of the dispatcher FSM. Although we did not
find any real design bugs, we validated the correctness of
the algorithm by properly detecting a known deep bug using
our approach. The failure was detected faster: 1575 seconds
(509 seconds towards the waypoint and 1064 seconds to get a
counterexample) vs. 5470 seconds for traditional BMC (3.5X
faster). This is due to the run-time reduction phenomenon
described in Section II-A.

VII. CONCLUSION AND FUTURE WORK

The method suggested in this paper for pure SAT-based
semiformal verification is very simple to grasp and straightfor-
ward to implement, yet it exhibits a superior ability to achieve
good design coverage and detect deep, corner-case bugs in
industrial-scale designs. The experimental results confirm this
by exposing both real and artificial design bugs missed by
simulation (due to coverage limitations) and classic FV (due to
bound limitations). These encouraging results were achieved
with a relatively small amount of work on the part of the
validation engineers, much less than the effort required by the
traditional FV and simulation approaches applied prior to our
experiments. Moreover, the suggested method can save the
substantial effort usually invested in reducing designs to fit
the capacity limitations of FV tools, as it can replace such
activities.

As a by-product, we developed two SAT-based algorithms,
Rand-k-SAT and Guide-k-SAT, that are able to efficiently
find a number of heterogeneous models for a given problem.
We also discuss variations of Rand-k-SAT and Guide-k-SAT
that allow the user to achieve the desired balance between
performance and solution diversification quality. We have also
proposed an extension of the semiformal verification algorithm
for liveness properties.

In our future work we intend to study how different diver-
sification techniques affect bug detection capabilities and to
collect more experimental data on semiformal verification of
liveness properties to better understand the practical utility of
this technique.
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