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Abstract—Certain formal verification tasks require reasoning
about Boolean combinations of non-linear arithmetic congtints
over the real numbers. In this paper, we present a new technige
for satisfiability solving of Boolean combinations of non-inear
constraints that are convex. Our approach applies fundametal
results from the theory of convex programming to realize a
satisfiability modulo theory (SMT) solver. Our solver, CalCS, approximation with affine constraints.
uses a lazy combination of SAT and a theory solver. A key  The main novel contributions of our work can be summa-
step in our algorithm is the use of complementary slackness (ized as follows:
and duality theory to generate succinct infeasibility prods that )
support conflict-driven learning. Moreover, whenever noneonvex °
constraints are produced from Boolean reasoning, we provid

Additionally, even when constraints are restricted to be
convey, it is possible that, during Boolean reasoning, some
of these constraints become negated, and thus the theory
solver must handle some non-convex constraints. We show
how to handle such constraints by set-theoretic reasonidg a

We present the first SMT solver for a Boolean combina-
tion of convex non-linear constraints. Our solver exploits

a procedure that generates conservative approximations othe
original set of constraints by using geometric properties bconvex
sets and supporting hyperplanes. We validate CalCS on sewar
benchmarks including formulas generated from bounded mode
checking of hybrid automata and static analysis of floatingpoint
software.

information from the solution of convex optimization
problems to establish satisfiability of conjunctions of
convex constraints;

o We give a novel formulation that allows us to generate
certificates of unsatisfiability in case the conjunction of

theory predicates is infeasible, thus enabling the SMT
solver to perform conflict-directed learning;

Whenever non-convex constraints originate from convex
constraints due to Boolean negation, we provide a proce-
dure that can still use geometric properties of convex sets
and supporting hyperplanes to generate approximations of
the original set of constraints;

We present a proof-of-concept implementation, CalCS,
that can deal with a much broader category than linear
arithmetic constraints, also including conic constraiats

the ones in quadratic and semidefinite programs, or any
convex relaxations of other non-linear constraints [8]. We
validate our approach on several benchmarks including
formulas generated from BMC for hybrid systems and
static analysis of floating-point programs, showing that

|. INTRODUCTION

The design and verification of certain systems requires,
reasoning about nonlinear equalities and inequalitiesh bo
algebraic and differential. Examples range from mixedialg
integrated circuits (e.g., [1]) that should operate cdtlyec
over process-voltage-temperature variations, to coulesign
for biological or avionics systems, for which safety must be
enforced (e.g., [2]). In order to extend the reach of formal
verification methods such as bounded model checking (BMC)
for such systems [3], [4], it is necessary to develop efficien
satisfiability modulo theories (SMT) solvers [5] for Bootea
combinations of non-linear arithmetic constraints. Hoarev
SMT solving for arbitrary non-linear arithmetic over thaig
involving, e.g., quantifiers and transcendental functioiss
undecidable [6]. There is therefore a need to develop efficie  our approach can be more accurate than current leading
solvers for special cases that are also useful in practice. non-linear SMT solvers such as iSAT [9].

In this paper, we addresthe satisfiability problem for The rest of the paper is organized as follows. In Section &, w
Boolean combinations of convex non-linear constraivt® priefly review some related work in both areas on which this
follow the lazy SMT solving paradigm [7], where a classigyork is based, i.e. SMT solving for non-linear arithmetimeo
David-Putnam-Logemann-Loveland (DPLL)-style SAT solvstraints and convex optimization. In Section IIl, we deseri
ing algorithm interacts with a theory solver based on fundgackground material including the syntax and semantickef t
mental results from convex programming. The theory solveMT problems our algorithm handies. Section IV introduces
needs only to check the feasibility of conjunctions of theorg the convex optimization concepts that our development
predicates passed onto it from the SAT solver. However, whgilds on and provides a detailed explanation of our alborit
all constraints are convex, a satisfying valuation can h@do |n Section V we report implementation details on integmtin
using interior point methods [8], running in polynomial 8m convex and SAT solving. After presenting some benchmark

A central problem in a lazy SMT approach is for the theoryesylts in Section VI, we conclude with a summary of our
solver to generate a compact explanation when the con@mctiyork and its planned extensions.

of theory predicates is unsatisfiable. We demonstrate hwv th

can be achieved for convex constraints using duality thémry Il. RELATED WORK

convex programming. Specifically, we formulate the convex An SMT instance is a formula in first-order logic, where
programming problem in a manner that allows us to easiypme function and predicate symbols have additional inter-
obtain the subset of constraints responsible for unsdiifia pretations related to specific theories, and SMT is the prabl



of determining whether such a formula is satisfiable. ModernAs an example, convex optimization has been used in
SAT and SMT solvers can efficiently find satisfying valuatonelectronic circuit design to solve the sizing problem [13F].
of very large propositional formulae, including combimais Robust design approaches based on convex models of mixed-
of atoms from various decidable theories, such as listayasr signal integrated circuits have also been presented in, [16]
bit vectors [5]. However, extensions of the SMT problem tf7]. While, in these cases, there was no Boolean structure,
the theory of non-linear arithmetic constraints over thalse Boolean combinations of convex constraints arise when the
have only recently started to appear. Since our work conshingrcuit topology is not fixed, or for cyber-physical systems
both SAT/SMT solving techniques with convex programmingyhere continuous time dynamics need to be co-designed with
we briefly survey related works in both of these areas. discrete switching behaviors between modes. It is theeefor
A. SMT solving for non-linear arithmetic constraints necessary to have solvers that can reason about both Boolean
_ . _ and convex constraints.

Current SMT solvers for non-linear arithmetic adopt the | the context of optimal control design for hybrid systems,
lazy _comblna_tlon of a SAT solver with a theory solver f‘?fhe work in [18], [19] proposes a combined approach of
approach to solve Boolean combinations of polynomial NORroblems (CSP), and specifically, convex programming and
linear arithmetic constraints. The current implementatises gaT solvers, as in our work. The approach in [18], [19] is,
non-linear constraints. However, without any other addél first used to perform an initial logic inference and branghin
property for the constraints, such as convexity, the nuraeri stepy on the Boolean constraints. Convex relaxations of the
optimization tool will necessarily produce incompleteults, riginal MIP (including Boolean variables) are then solsd
and possibly incorrect, due to the local nature of the solvg{e optimization routine, which iteratively calls the SAGheer
(all variables need upper and lower bounds). Moreover,$& Caq ensure that the integer solution obtained for the relaxed
of infeasibility, no rigorous procedure is specified to proel  proplem is feasible and infer an assignment for the logic
infeasibility proofs. _ __variables that were assigned to fractional values from tiie M

A completely different approach is adopted by the iSAjgwever, the emphasis in [18], [19] is more on speeding up
algorithm that builds on a unification of DPLL SAT-solvingine optimization over a set of mixed convex and integer con-
and interval constraint propagation [9] to solve arithmetisyrgints, rather than elaborating a decision proceduretioyv
constraints. iSAT directly controls arithmetic consttamnop- feasibility of Boolean combinations of convex constrajrs
agation from the SAT solver rather than delegating a”tm“ee%enerate infeasibility proofs. Additionally, unlike [18119],

decisions to a subordinate solver, and has shown supefior y leveraging conservative approximations, our work cao al
ciency. Moreover, it can address a larger class of formiiae t n5ndle disjunctions of convex constraints.

polynomial constraints, admitting arbitrary smooth, plolss
transcendental, functions. However, since interval siescy I1l. BACKGROUND AND TERMINOLOGY

is a necessary, but not sufficient condition for real-valued\ye cover here some background material on convexity and

satisfiability, spurious solutions can still be generated. define the syntax of the class of SMT formulae of our interest.
To reason about round-off errors in floating point arithmeti Convex Functions. A function f : R* — R is termed

?nnegg'(;ﬁgt dc%:ggrc‘:p;?gggtw;écrggDge%isergcoemﬁ;eggzigﬁgnvexif its domain domf is a convex set and if for all
by Ganai and Ivancic [12]. In their approach, the non-Iinea%fy € domf, andf with 0 < 6 < 1, we have
part of the decision problem needs first to be translatedanto JOxr+(1-0)y) <0f(x)+(1—-06)f(y). 1)
linear arithmetic (LA) formula, and then an off-the-shels ) o )

LA solver and DPLL-style interval search are used to solf@&ometrically, this inequality means that tbigord from z to
the linearized formula. For a given precision requiremtg, ¥ lies above the graph of. As a special case, when (1) always
approximation of the original problem is guaranteed to aoto Nolds as an equality, theyfi is affine All linear functions

for all inaccuracies. are also affine, hence convex. It is possible to recognize
) whether a function is convex based on certain properties. Fo
B. Convex Programming instance, iff is differentiable, thenf is convex if and only

An SMT solver for the non-linear convex sub-theory i domf is convex andf(y) > f(z) + Vf(2)T(y — x)
motivated by both theoretical and practical reasons. Owtiee holds for all z,y € domf, and Vf(z) is the gradient of
hand, convex problems can be solved very efficiently todaf, The above inequality states that ff is convex, its first-
and rely on a fairly complete and mature theory. On the otherder Taylor approximation is always a global underestimat
hand, convex problems arise in a broad variety of applioatio The converse result can be also shown to be trug.isftwice
ranging from automatic control systems, to communicatiordifferentiable, thery is convex if and only ifdom f is convex
electronic circuit design, data analysis and modeling T8le and its HessiaivV? f(z) is positive semidefinite matrix for all
solution methods have proved to be reliable enough to bec domyf. In addition to linear, affine, and positive semi-
embedded in computer-aided design or analysis tool, or ewdgfinite quadratic forms, examples of convex functions may
in real-time reactive or automatic control systems. Mogegpv include exponentials (e.g*"), powers (e.gz® whena > 1),
whenever the original problem is not convex, convex prolslentogarithms (e.g— log(z)), the max function, and all norms.
can still provide the starting point for other local optiiion Convex Constraint. A convex constraint is of the form
methods, or a cheaply computable lower bounds via constrajitz) {<,<,>,>} 0 or h(z) = 0, where f(z) andh(x) are
or Lagrangian relaxations. A thorough reference on convernvex and affine (linear) functions, respectively, of thieal
programming and its applications can be found in [8]. variablesxz € D C R", with D being a convex set. In the



following, we also denote a constraint in the forffir) < 0 feasibility problem for convex constraints can be exprdsse
(f(x) < 0) as aconvex(strictly conveXconstraint (CC), where the form

f(z) is a convex function on its convex domain. A convex find

constraint is associated with a €t {x € R™ : f(z) < 0},

i.e. the set of points in the space that satisfy the congtrain . _ .
SinceC is the 0-sublevel set of the convex functiof(x), C subject to fi(z) <0, i=1,..., m (3)
is also convex. We further denote the negation of a (stictly hy(z) =0 S
convex constraint, expressed in the fofifx) > 0 (f(x) > 0), A= = e p

asreversed convefreversed strictly convgsconstraint (RCC). where the single (vector) variable € R” represents the-

An RCC is, in general, non-convex as well as its satisfyingiple of all the real variablegrs, ..., z,)?, the f; functions
setN = {z € R": f(z) > 0}. The complement of A" is, are convex, and thé; functions are affine. As in any opti-
however, convex. mization problem, ifz is a feasible point andf;(z) = 0, we

Syntax of Convex SMT Formulae.We represent SMT say that thei-th inequality constraintf;(x) < 0 is active at
formulae over convex constraints to be quantifier-free ide® 1. If f;(2) < 0, we say the constrainf;(z) < 0 is inactive
in conjunctive normal form, with atomic propositions ramgi The equality constraints are active at all feasible poiRts.
over propositional variables and arithmetic constraint$e succinctness of presentation, we make the assumption that
formula syntax is therefore as follows: inequalities are non-strict (as listed in (3)), but our aFwh
extends to systems with strict inequalities as well.

ormula = {clauseN}*clause ) . .
f T { X A . In this section, we describe how we construct a theory solver
clause == ({literalV}*literal) ;
. o for a convex SMT formula that generates explanations when
literal == atom| —~atom L ;
o . a system of constraints is infeasible. In general, the gyste
atom = conv_constraint | bool_var

of constraints can have both convex constraints and negated
convex constraints (which can be non-convex). We will first

conv_constraint equation | inequality

equation = affine_function =0 : X ) .
. . _ . , consider the simpler case where all constraints in the syste
inequality = convex_function relation 0 h . L
relation = < | < are convex, and show how explanations for infeasibility can

be constructed by a suitable formulation that leverage$itdua

In the grammar abovegool var denotes a Boolean variable theory (Section IV-A). We later give an alternative forntida

and affine function and convexfunction denote affine and (Section IV-B) and describe how to deal with the presence of

convex functions respectively. The termtomandliteral are negated convex constraints (Section IV-C).

used as is standard in the SMT literature. Note that the onlyAlthough it is possible to directly solve feasibility preihs

theory atoms are convex or affine constraints. Even though W turning them into optimization problems in which the

allow negations on convex constraints (hence allowing nogbjective function is identically zero [8], no informati@tout

convex constraints), we will term the resulting SMT formul#he reasons for inconsistency would be propagated with this

as aconvex SMT formula formulation, in case of infeasibility. Therefore, we calet
Our constraint formulae are interpreted over valuatiorigasibility problem (3) as a combination of optimizatiorpr

u € (BV — B) x (RV — R), whereBV is the set of lems with the addition of slack variables. Each of these pewl

Boolean andRV the set of real-valued variables. The definitiogenerated problems is an equivalent formulation of theiraig

of satisfaction is also standard: a formulas satisfied by a problem (and it is therefore in itself a feasibility problgm

valuation i (1 = ¢) iff all its clauses are satisfied, that iswhile at the same time being richer in informative content.

iff at least one atom is satisfied in any clause. A lite¢rag In particular, given a conjunction of convex constraintar o

satisfied if up (/) =t r ue. Satisfaction of real constraints isframework builds upon the following equivalent formulat&

with respect to the standard interpretation of the aritiene®of (3), namely thesum-of-slackéeasibility problem §SH, and

operators and the ordering relations over the reals. the single-slackfeasibility (SF) problem, both detailed below.
Based on the above definitions, here is an example of a o
convex SMT formula: A. Sum-of-Slacks Feasibility Problem
(x+y—3=0VaV—log(e® +e¥) +10 > 0) In the SSFproblem, a slack variable; is introduced for

every single constraint, so that (3) turns into the follogvin
/\(ﬁb\/||(:v—2,z—3)||2§y—5)/\(x2+y2—4x§0) y sing (3) o

e m—+2
A (maVy < 4.5V max{2x + z,32% + 4y* — 4.8} < 0), IINImIzZe o s
(2) N
. ) subject to  fy(z) —sx <0, k=1,..., m+2p (4
wherea,b € BV, z,y,z € RV, and|| - ||, is the Euclidean
norm onR2. s >0
If the SMT formula does not contain any negated convex ~ N R
constraint, the formula is termed monotone convex SMTwhere fi.(x) = fi(z) for k = 1,...,m, fmi;(z) = hj(x),
formula and fo4pti(z) = —h;(z) for j = 1,...,p. In other

words, every equality constrairtt;(x) = 0 is turned into a
conjunction of two inequalitiesh,(x) < 0 and —h,;(xz) < 0

In optimization theory, the problem of determining whethdvefore applying the reduction in (4). TH&SF problem can
a set (conjunction) of constraints are consistent, and jf dwe interpreted as trying to minimize the infeasibilitiestoé
finding a point that satisfies them, ideasibility problemThe constraints, by pushing each slack variable to be as much as

IV. THEORY SOLVER FORCONVEX CONSTRAINTS



possible close to zero. The optimum is zero and is achievBd Single-Slack Feasibility Problem

if and only if the original set of constraints (3) is feasible While the SSFproblem is the workhorse of our decision
‘Based onduality theory[8], a dual problemis associated procedure, we also present an alternative formulation ef th

with (4), which maximizes thd.agrange dual functioras- feasibility problem, which will be useful in the approxiriat

sociated with (4), under constraints on ttleal variablesor of RCCs.

Lagrange multipliers While the dual optimal value always The SF problem minimizes the maximum infeasibilityof

provides a lower bound to the origingdrimal) optimum, an 3 set of convex constraints as follows
important case obtains when this bound is tight and the two

primal and dual optima coincidetfong duality. As a simple
sufficient condition, Slater’'s theorem states that stromality ) - (6)
holds if the problem is convex, and there exists a strictly subject to  fi(z) —s <0, k=1,..., m+2p

feasible point, such that the non-linear inequality caists

minimize s

hold with strict i lit A fd I_Where inequalities are pre-processed as in Section IV-A& Th
old with strict Inequalities. As a consequence of dualityoy| s clearly to drive the maximum infeasibility below

theory, the following result holds for (4) at optimum: zero. At optimum the sign of the optimal valué provides
Proposition IV.1. Let (z*,s*) € R™™+2 be a primal feasibility_ information. Ifs*_ <0, (6) has_a striptly feas.ible
optimal andz* € R™*+?» be a dual optimal point for(4). solut|.on; if s* > 0 then (6) is infeasible; finally, it* =0 (in
Then: (i) if (3) is feasiblez* provides a satisfying assignmentPractice|s”| < ¢, for some small, > 0) and the minimum
(i) moreover, we obtain: is .attalned,. then th_e set of inequalities is feasible, tht no
strictly feasible. As in (4), complementary slackness Wwild

at optimum, i.e.

2 (fu(@®) =) =0 k=1,....m+2p.

2 (fe(z®) —s5) =0 k=1,...,m+2p. (5)

Proof sketch:The first statement trivially follows from the
solution of problem (4). Since:* is the optimal point, it
also satisfies all the constraints in (4) with = s; = 0,
therefore it is a satisfying assignment for (3). The secdatds
ment follows fromcomplementary slacknesk fact, under
the assumptions in Section lll, (4) is a convex optimizatio
problem. Moreover, it is always possible to find a feasibl
point which strictly satisfies all the nonlinear inequalitisince,
for a any give,nr, the §!ack variables;, can be freely chosen,.c' Dealing with Reversed Convex Constraint
hence Slater's conditions hold. As a result, strong duality _ .

holds as well, i.e. both the primal and dual optimal values ar A negated (reversed) convex constraint (an RCC) is non-
attained and equal, which implies complementary slackne§gnvex and defines a non-convex 2ét Any conjunction of -
as in (5). 0 these non-convex constraints with other convex consgaint

We use complementary slackness to generate infeasibifi ults in genetzral in-a non-cotrlvex_ St.Et' ;I'o deal V\t”th such
certificates for (3). In fact, if a constraiftis strictly satisfied NON-CONVEX SEIS, We Propose Neuristics 1o compute convex

(ie. s = 0 and f(z*) < 0) then the relative dual variable Ve and under-approximations, which can then be solved

) . L~ . efficiently. This section describes these techniques.
is zero, meaning that the constraifit(z*) < 0 is actually Y q

five. C I dual variable will Our approximation schemes are based on noting that the
non-active. LONversely, a non-zero dual variable Will 88aey . slementary sef is convex. Therefore geometric prop-
correspond to either an unfeasible constraifjt$ 0) or to a

wraint that | trictl tisfied(— 0). In both erties of convex sets, such as strict or weak separation [8],
constraint that is non strictly satisfies(= 0). In both cases, can still be used to approximate or boul@dvia a supporting

the constraintf;(+*) < s, is active at optimum and it is 0ne pyperplane. Once a non-convex constraint is replaced with a
of the reasons for the conflict. We can therefore conclude Wi&ounding hyperplane, the resultiagproximate problen¢AP)
the following result: will again be convex, and all the results in Section IV-A will

Proposition 1V.2. The subset of constraints if#) that are be vaIid.for Fh_is approximate proble_m. .
related to positive dual variables at optimum represents th FOr simplicity, we assume in this section that we have

active subset, and therefore provides a succinct reason factly one non-convex constraint (RCC), and the rest of the
infeasibility (certificate). constraints are convex. We will describe the general case in

Sec. IV-D. Letg(x) be the convex function associated with
_Numerical issues must be c_onsidered v_vhile i_mpI(_amentimlge RCC. Our approach proceeds as follows:
this approach. When (3) is feasible, the optimization athor 1) Solve the sum-of-slacks (SSF) problem for just the

Therefore, even when the problem is feasible, whenever a
constraintk is not active, then(f(z*) — s*) # 0 will be
strictly satisfied, and imply;, = 0. Conversely, ifz; # 0,
then the constraintfy (z*) — s*) is certainly active and(z)
ﬁontributes to determine the maximum infeasibility for the
given problem, in the sense thatdf was further pushed to
be more negativef;(x) would be no longer satisfied.

in practice will terminate with| 277" 54| < ¢, thus pro- convex constraints. Denote the resulting convex region
ducing ane;-suboptimal point for arbitrary small, positive. by B.

Accordingly, to enforce strict inequalities such Agz) < 0, If the resulting problem i9UNSAT, report this answer
we modify the original expression with an additional user- along with the certificate computed as described in
defined positive slack constart as fi(z) + es < 0, thus Sec. IV-A.

requiring that the constraint be satisfied with a desiredgimar Otherwise, if the answer returned $AT, denote the

es. All the above conclusions valid for (3) can then be optimal point as; (satisfying assignment) and proceed
smoothly extended to the modified problem. to the next step.



2)

3)

We now detail the under-approximation procedure in Step
As an illustrative example, we use &dimensional region
defined by the following SMT formula:

Add the negation of the RCC (a convex constraint) an
solve the SSF problem again, which we now denote ¢ =
reversed problentRP). There are two cases: / ~

(@) If the answer iSUNSAT, then the RCC regiot\ / Y
does not intersect the convex regiBnThis implies ,F’
that B ¢ N, and hence the RCC is a redundan
constraint. This situation is illustrated in Fig. 1(a). S
Thus, the solver can simply retuSAT (as returned
in the preViOUS Step)- a) Strict separation b) Inclusion
(b) On the other hand, if the answerSaT, we denote

anZ the optimal point of the RP and check whethefig. 1. Two special cases for handling non-convex congsaa) by adding

; egated RCC a new set is generated that is strictly segafiam the
the negated RCC is now redundant, based on tggvious convex set; (b) the negated RCC generates a sébthift includes

shift induced in the optimal point;. In particular, the previous convex set.
if both 2} andz; are inside\, we solve two single-
slack feasibility §F) problems, and we denote as
7y andz} the two optimal points, for the problemAs apparent from the geometrical representation of theisets
having just the convex constraints and for the the RRig. 2 a), the problem is clearly satisfiable and a satisfying
respectively. Similarly, we denote the two optimataluation could be any point in the grey regigh
values ass; ands;. First, we note for this example the results obtained before
As also observed in Section IV-B, for a set othe under-approximation is performed. We solve $i8Fprob-
satisfiable constraintg;, z7;, 5; ands} may contain |em for the convex seB = {(z1,22) € R? : (23 + 23 -1 <
more information than the optimal point§ andz?  0) A (27 + 23 — 42, < 0)}, obtained fromA after dropping
(and their slack variables) for th@SFproblem. In  the RCCN. The problem is feasible, as shown in Fig. 2 (b),
fact, sinces; and s} are also allowed to assumeand the optimal point; = (0.537,0) is returned.
negative (hence different) values at optimum, they Next, the RCC is negated to become convex andSB&
can provide useful indications on how the RC@roblem is now solved on the newly generated formula
has changed the geometry of the feasible set, an
which constraints are actually part of its boundary1 +25 =1 < 0)A (] +a5 — 471 < 0)A (2] +25—2w5 <0)
thus better driving our approximation scheme. Ihich represents the previously defined (RP). The RP will
particular, if we verify thats; = s, @; = 27, and provide useful information for the approximation, thusimgt
B c N, then we implyBN N = (). Hence, the as a “geometric probe” for the optimization and search space
solver can returtJNSAT. Techniques to detect if a Since the RCC is reversed, the RP is convex and generates the
conjunction of convex constraints generates sets thadtC, shown in Fig. 2 (c).
are (exactly or approximately) contained in a convex Let us assume, at this point, that the RP is feasible, as
set are reported in [20], [21]. For instance, whe this example. Ther # (), and an optimal point:* =
both B and A/ are spheres, the conditiafi ¢ A (0.403,0.429) € C is provided. MoreoverA can be expressed
is equivalent to checking that the slack constrairis 3\ C, andz; is clearly outside the convex s&f generated
related to the RCC is not active at optimum in thgy the negated RCC, meaning that we can go to the under-
SF problem. This case is illustrated in Fig. 1(b) forapproximation step without solving the SF problems sinee th
the following conjunction of constraints: negated RCC is certainly non-redundant.
2 2 2 2 The key idea for under-approximation is to compute a

(@1 + 22 —1<0)A (2 + 25— 4> 0) hyperplane that we can use to separate the RCC refjion
where(z?+x3—4 > 0) is the non-convex constraintfrom the remaining convex region. This “cut” in the feasible
defining region\V. If set containment cannot beregion is performed by exploiting the perturbation of the
exactly determined the procedure retudMKNOWN.  optimal point fromz; to z induced by the negated RCC

If none of the above cases hold, we proceed to the né¥t: (¢7 + 23 — 2x2) < 0. At this point, we examine a few
step. For example, this is the case wheneyeis outside POSSible cases: . L . _
N, or on its boundary (i.ey(z) > 0). This implies that _ Case (i):Suppose that; # x¢, and; is outside\" (as in
the negated RCC is not redundant, and we can moveQs" exam*ple). In this case, we find the orthogonal projection
the next step without solving the tw®F problems. p = P(xy) onto N, which can be performed by solving a
In this step, we generate a convex under-approximati6nvex, Lz-norm minimization problem [8]. Intuitively, this
of the original formula including the convex constraint§°TeSPonds to projecting; onto a poinf on the boundary of
and the single non-convex RCC. If the resulting problefi€ regionV. Finally, we compute the supporting hyperplane
is found satisfiable, the procedure retuS&T. Other- 0 N in p. The half-space defined by this hyperplane that
wise, it returnsUNKNOWN. excludesN provides our convex (affine) approximatiok
rn.
fQ'For our exampleN' = {z € R" : 2% + 23 — 225 < 0}.
The affine constraint resulting from the above procedure is
N : —0.06x; 4+ 0.1222+0.016 < 0. On replacing the RCQV

(22 +23—1 < 0)A(2? +22 —4z; < 0)A(22 422 —222 >0).  with N, we obtain a new seP, as shown Fig. 2(d), which is

(7) now our approximation forA.
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a) Original problem b) Convex-only problem ©) Reversed problem d) Approximation

Fig. 2. Geometrical representation of the sets used in @ett-C to illustrate the approximation scheme in CalCS: f&)s the search space (in grey)
for the original non-convex problem including one RCC caaist; (b) B is search space when the RCC is dropped (over-approximatiod); (c) C is the
search space for theversed problemi.e. the problem obtained from the original one in (a) whes RCC is negated; the RP is therefore convex;Z{ds
the under-approximation dP in (a) using a supporting hyperplane.

An SSF problem can now be formulated fBr thus pro- exterior with a supporting hyperplane, e-gz; + 1 < 0, by
viding the satisfying assignment;; = (0.6,—0.33). The simply picking it to be orthogonal to one of the symmetry
approximation procedure will stop here and retAr. axes of the feasible set. The resulting under-approximasio

Notice that, whenever; is on the boundary o/, a similar found SAT and we obtain a satisfying assignment consistent
approximation as described above can be performed. In thigh this approximation.

case,z; is the point through which the supporting hyperplane g completes the description of the under-approximation

needs to be computed, and no orthogonal projection is Necgss ey re of Step 3. We note that we still have the possibilit

sary. The normal direction to the plane needs, however, {0 R¢ e solver to returrUNKNOWN. Depending on the target
numerically computed by approximating the gradieny6f) 5 pjication, the user can interpret this3&T (possibly leading

in . . to spurious counterexamples in BMC) QINSAT (possibly

*CasieOL):A second case occurs wherj 7 7, but bOt*h missing counterexamples). For higher accuracies, theoappr
z, and z; are insideN. In this case, starting frome¢ imation scheme can also be iterated over a set of boundary
we search the closest boundary point along thg — =7) points of the original constraint(z), to build a finer polytope

direction, and then compute the supporting hyperplaneifto hoynding the non-convex set.
this point as in the previous case. In fact, to find an under-

approximation for the feasible regiad, we are looking for D. Overall Algorithm

an over-approximatiorof the set\ in the form of atangent  our theory solver is summarized in Fig. 3. This procedure
hyperplane. Since the optimal poinf, moves toz: after = generalizes that described in the preceding section bylinand
the addltlon of the negfited RCQ/ will be more “centered” mjtiple reversed convex constraints (RCCs). In essehtiee i
aroundz; than aroundr;. Therefore, a reasonable heuristi¢onjynction of all convex constraints and any single RCC is
could be to pick the direction starting frony. and looking q,nd UNSAT, then we reportNSAT. In order to reporBAT,
outwards, namelyz; — z7). L . . onthe other hand, we must consider all convex constraints an
_ Case (iii): Assume now that; =z (with bothzj andz: 5| affine under-approximations of non-convex constraints
inside ), but we haver; # z%, wherei} andi; are the  The details are as follows. For a given conjunction of
two optimal points, respectively, for th8F problem having ccs and RCCs, we first solve tH®SF problem generated
just the convex constraints and for the the RP in$feform, by the CCs alone (Section IV-A). If the problem WNSAT,

as computed in Step 2 (b) above. In this case, to operate {hg algorithm returns the subset of constraints that peothie
“‘cut”, we cannot use the perturbation arf and z7, as in  reason for inconsistency (infeasibility certificate) artdps.
Case (ii), but we can still exploit the information containe Otherwise, each RCC is processed sequentially. For each
in the SF problems. This time, starting froif, we search Rcc, the initial convex problem is augmented and the RP
the closest boundary point along the] — z7) direction, and s formulated and solved. If the RP is unfeasible then, as
then compute the supporting hyperplane through this bayndgiscussed in Section IV-C, the constraint is ignored since

point. § . L it is non-active for the current feasibility problem. On the
Case (iv):Finally, bothz; = z7 and 2 = I can also contrary, if the RP is feasible we proceed by computing an
occur, as for the following formula: approximation.
(22 +22 —1>0)A (22 +22 -4 <0), The Approximate method implements the under-

approximation strategies outlined in Section IV-C and dete

for which A would coincide with the white ring region in mines whether the constraint is non-active or can be dropped
Fig. 1 b) (including the dashed boundary). In this case, by solving additional SE problems (Section IV-B). If the
useful information can be extracted from perturbationshim t negated RCC is fully included in the set generated by the
optimal points. The feasible set appears “isotropic” tchbgt CCs alone, (e.g. the megated RCC and the set generated
andz;, meaning that any direction could potentially be chosdsy the CCs are both circles and the negated RCC is non-
for the approximations. In our example, we infer from ®ié active for the RP) the problem INSAT, meaning that the
problems that the inner circle is the active constraint aed VRCC is incompatible with the whole set of CC (step 2(b) of
need to replace the non-convex constraint correspondiitg toSection IV-C). The full set, including both the CC and the



function [status ouf = Decision Manage(CC, RCC) .
% receive a set of convex (CC) and non-convex constraintCiR@henever inconsistencies are foundNGAT), the reason for

% return SAT/UNSAT/UNKNOWN and MODEL/CERTIFICATE

%

% solve sum-of-slacks feasibility problems with CCs
[status oufl = SoSsolvgCCO);

% OUT contains CERTIFICATE

if (status== UNSAT) return; end

AC

= CC% AC stores all constraints

for (k = 1, k <= length(RCCO), k++)

end

RP = reverséCC, RCQOKk));
[status ouf = SoSsolvgRP);
% strict separation: ignore RCC
if (RP == UNSAT) continue end
% both CC and RP problems are SAT: approximation
[approxCC active drog = Approximat€RCOK));
% RCC incompatible (inclusion)
if ("active
status= UNSAT;
% certificate
out = [CC, RCQK)]; return;
% over-approximation: ignore constraint
elseif (drop continue
else AC = AC U approxCGC
[status oufl = SoS solvgAC);
if (status== SAT)
Check SAT assignment on original constraints

if (original constraints satisfi@¢dstatus= SAT; return;

end
end
end

status= UNKNOWN;

Fig. 3. Pseudo-code for the CalCS decision procedure.

realmodel(satisfying assignment) is also returned. Otherwise,

the conflict (certificate) is encoded into thearned clause
(=l V...V =lg), l1,...,l; being the auxiliary literals as-
sociated with the infeasible constraints. The SAT problem i
then augmented and new SAT queries are performed until
either the SAT solver terminates wittiNSAT or the theory
solver withSAT. To benefit from the most recent advances in
SAT solving, MiniSAT2 [22] is adapted to our requirements
by adding decision heuristics to prune our search space. To
reduce the number of theory calls, we first assign values to
the Boolean variables so as to satisfy as many clauses as
possible. Subsequently, we start assigning values to sédme o
the auxiliary variables, until all clauses are satisfied eWdver

we need to decide an assignment for an auxiliary variable,
we affirm any CC and negate any RCC as a first choice, to
maximize the number of CCs for each theory call, hence the
chances of deciding without approximations. The following
theorems state the properties of CalCS.

Theorem V.1. Let ¢ be a convex SMT formula. Then, if CalCS
reports SAT on ¢, ¢ is satisfiable. Alternatively, if CalCS
reports UNSAT, ¢ is unsatisfiable. O

Note that the converse does not hold in general. If CalCS
reportsUNKNOWN, it is possible that the formula is either
satisfiable or unsatisfiable. In the case of a monotone convex
SMT formula, we have stronger guarantees.

Theorem V.2. Let ¢ be a monotone convex SMT formula.
Then, CalCS reportSAT on ¢t iff ¢+ is satisfiable and
CalCS reportsUNSAT iff ¢T is unsatisfiable. O

The above result follows straightforwardly from the facath

current RCC is returned as an explanation for the confli¢e’ monotone convex SMT formulas, all convex constraints

If an over-approximation is required, then the constrait fre assigned true, so the theory solver never sees nonxconve
ignored. If the constraint is compatible and cannot be dedpp constraints.
the supporting hyperplane is computed and the new under- VI
approximated problem is solved. The algorithm proceeds
with visiting the other RCCs. Finally, when all non-convex In our prototype implementation, we use the Matlab-based
constraints have been processed without returfifN$AT —convex programming packa@@/X [23] to solve the optimiza-
the algorithm is re-invoked on the set of convex constraini®n problems, while theory solver and SAT solver interact
CC and the set of affine under-approximations of non-convéla an external file I/O interface. We therefore allow for
constraints RCC. If this invocation retur8AT, so does the all functions and operations supported by disciplined eanv
overall algorithm; otherwise, it returneNKNOAN. A SAT programming [24]. We first validated our approach on a set
answer is accompanied by a satisfying valuation to vargabl@f benchmarks [25], including geometric decision problems
dealing with the intersection ai-dimensional geometric ob-

V. INTEGRATING CONVEX SOLVING AND SAT SOLVING  jects, and randomly generated formulae obtained fBe8AT

Using the theory solver described in Section IV, we havdassical Boolean benchmarks [26], after replacing some of
implemented a proof-of-concept SMT solver, CalCS, th#te Boolean variables with convex or RC constraints. Table |
supports the convex sub-theory. As in [10], CalCS receiges shows a summary of an experimental evaluation of our tool,
input an SMT formula in a DIMACS-like CNF format, wherealso in comparison with iSAT. To evaluate the impact of gen-
atomic predicates can be both Boolean or convex constrairggating a compact explanation of unsatisfiability (a cesti)
according to the definitions in Section Ill.  Following thewe run CalCS in two modes: in the first modg {n Table I),
lazy theorem proving paradigm, the SMT problem is first subset of conflicting constraints is provided, as detdited
transformed into a SAT problem, by mapping the nonline&ection IV, while in the second mod& (' in Table I), the full
constraints into auxiliary Boolean variables. This Boaoleaset of constraints is returned as simply being inconsis#lht
abstraction of the original formula is then passed to tHeenchmarks were performed or8a&GHz Intel Xeon machine
SAT solver. If the outcome i3JNSAT, the theory manager with 2 GByte physical memory running Linux.
terminates and returddNSAT. Conversely, the assigned aux- Results show that whenever problems are purely convex,
iliary variables are mapped back to a conjunction of CC arnbey are solved without approximation and with full contodl
RCC and are sent to the theory for consistency checkirrgunding errors and can provide results that are more atecura
If the theory solver return$AT, a combined Boolean andthan the ones of iSAT, in comparable time, in spite of our

. EXPERIMENTAL RESULTS



¥ TABLE |
Reset CALCS EXPERIMENTS: IN MODE C' THE UNSAT CORE IS PROVIDED
. WHILE IN MODE NC' THE FULL SET OF CONSTRAINTS IS RETURNED AS
y'=y—2 Ini CONFLICTING; APPROX DENOTES THE NUMBER OFRCC'S
12‘2 APPROXIMATED AS HYPERPLANES .S STANDS FORSAT, U FORUNSAT.
y=3
Invariant File Res. CalCS Approx | Queries iISAT
Py 25<0 x CINC [s] CINC | CINC [s]
_ ®) U 0.5 (U) 0 T 0.05 (9)
Dynamics 9) U 0.2 (U) 0 1 0 (S)
i Cong | U 22723 (U) 5 3 0.05 (S)
Guard i (10) S 02 (S) 0 1 0 U
2?4y —25>0 Booll S 35(S) 1 1 3(S)
Bool2 | S 16 (9) 3 T 0.91 (3)
Fig. 4. Simple hybrid automata with convex guards and iavasi (left) and Bool3 S 27/23 (S) 5/4 2 0.76 (S)
representation of the error traces from CalCS (solid) arAT i§lashed) in Conjt U 8.7/9.5 (U) 3 2 0.3 (U)
the (z, y) plane (right). The safety interval far is [—4, 4]. Bool S 17.9/17.7 (S) 3 1 0.75 (S)
Cong | U 17/23.3 (U) 175 a7 0.4 (U)
Bools | U | 23.5/321.7 (U) | 4/36 5/94 | 0.02 (U)

, , , ] Bools | U 29.8/T0 (U) 5/— 6/— 0.4 (U)
prototype implementation. In particular, the intervakéd rea- Bool7 | S | 267.7/T0 (S) | 24/— 6/— 1.31 (S)
soning scheme can incur inaccuracies and large computation
times when the satisfying sets are lower dimensional sdts wi TABLE I

respect to the full search space including all the real bt TCAS BMC CaseSTupy

in the problems. As a simple example, for the formula:

[ Maneuver type| Crash state [ #queries[ run time [s] |

2 2 2 2 _ UNSAFE CRUISE 2 10.9

(@7 +25 —1<0)A (27 +25 — 621 +5<0), (8) — — . —

: - : : : UNSAFE STRAIGHT 6 50
iISAT returns an interval that contains a spurious solution, SAFE NONE 10 110

while our convex sub-theory can rigorously deal with tight
inequalities and correctly returidNSAT (see (8) and Cofj
in Tab. I). Similarly, CalCS can provide the correct answaer f
the following formulae ((9) and (10) in Tab. 1), mentioned a
prone to unsound or spurious results in [12]:

gfter3 BMC steps g = 3), while iSAT stops at the second step
producing an error trace that is still in the safety regidbe#
on the edge. As an additional case study, we considerec#ircr
(r+y <a)A(x—y <b)A(2x >a+b)A(a=1)A(b=0.1), conflict resolution [27] based on the Air Traffic Alert and
9) Collision_Avoidance System (TCAS) specificatiqns (Tab. 1)
(x <10 A (z4+p>10") A (p=1075%). (10) The hybrid automata in Fig. 5 models a standardized maneuver
that two airplanes need to follow when they come close to each
While for small problem instances (Bde®-3, Conjl) both  other during their flight. When the airplanes are closer than
the ¢ and NC schemes show similar performances, thgistanced,,..., they both turn left byA¢ degrees (which is
advantages of providing succinct certificates becomeseavidkept fixed to a constant value in our maneuver) and fly for a
for larger instances (Bo#i5-6-7, ConR), where we rapidly distanced along the new direction. Then they turn right and
reached a time-over (TO) limit (set 890 queries to the theory fly until their distance exceeds a threshdlg,,.. At this point,
solver) without certificates. A faster implementation wbulthe conflict is solved and the two airplanes can return orr thei
be possible by using commercial, or more optimized, convexiginal route. We verified that the two airplanes stay alsvay
optimization engines. apart, even without coordinating their maneuver with thip he
We have also tested CalCS on BMC problems, consistiag a central unit.
in proving a property of a hybrid discrete-continuous dyi@m  Finally, we have applied CalCS to formulae generated
system for a fixed unwinding depth. We generated a setin the context of static analysis of floating-point numelrica
of hybrid automata (HA) including convex constraints intbotcode, and requiring an SMT solver that can handle non-linear
their guards and invariants. For the simple HA in Fig. 4 we alsarithmetic constraints over the reals. Tab. Ill summarites
report a pictorial view of the safety region for thevariable, performance of CalCS on a set of benchmarks provided by Vo
and the error traces produced by CalCS (solid line) and iSAF al, who are developing a static analyzer to detect floating-
(dashed line). The circle in Fig. 4 represents the HA invariapoint exceptions (e.g., overflow and underflow) [28]. Early
set, while the portion of the parabola underlying theaxis experience with CalCS on this set of benchmarks, mostly
determines the set of poinissatisfying the property we wantincluding conjunctions of linear and non-linear consttsjn
to verify, i.e. {x € R : 2% — 16 < 0}. Our safety region seems promising. After a fast pre-processing step, Cal®S ca
is therefore the closed intervél-4,4]. The dynamics of the deal with the formulae of interest providing an exact answer
HA are represented by the solid and dash lines. As far as {h&easonable computation time even when approximaticas ar
invariant is satisfied, the continuous dynamics hold and theeded, which demonstrates that our solver can be general
HA moves along the arrows on thie, y) plane, starting from enough to be suitable for different application domains.
the point (2,3). When the trajectories intersect the circle’s
boundary, a jump occurs (e.g. fro(8,4) to (3,2) and from VII. CONCLUSIONS
(4,3) to (4,1)) and the system is reset. Initially, both the solid We have proposed a procedure for satisfiability solving of a
and dashed trajectories are overlapped (they are drawnrtlglig Boolean combination of non-linear constraints that arevern
apart for clarity). However, more accurately, we returnafes Our prototype SMT solver, CalCS, combines fundamental
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Fig. 5. Air Traffic Alert and Collision Avoidance System

TABLE Il
BENCHMARKS FROMSTATIC ANALYSIS OF NUMERICAL CODE: APPROX
DENOTES THE NUMBER OFRC'C'S APPROXIMATED AS HYPERPLANES

[ File [ Result [ Time [s] | Approx |
NumI SAT 1.08 0
Num2 SAT 4.35 2
Num3 UNSAT 0.55 0
Numi UNSAT 0.55 0
Numb5 SAT 4.27 2
Num6 SAT 0.49 0
Num7 SAT 2.82 1
Numg UNSAT 2.64 2
Num9 UNSAT 2.10 0
Numio UNSAT 0.53 0

NumIl — 13 | UNSAT 0 0
Numi4 UNSAT 1.91 0
Numi5s UNSAT 1.94 0
Numi6 UNSAT 0.53 0

Numi7 — 18 | UNSAT 0 0
Numi9 UNSAT 0.49 0
Num20 UNSAT 0 0

are

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
El

[10]
[11]
(12]
[13]

[14]

results from convex programming with the efficiency of SATys)
solving. By restricting our domain to a subset of non-linear

constraints, we can solve for conjunctions of constraitab-g

ally and accurately, by formulating a combination of conveyg

optimization problems and exploiting information from ithe

primal and dual optimal values. When the conjunction

theory predicates is infeasible, our formulation can gateer

certificates of unsatisfiability, thus enabling conflictetited
learning. Finally, whenever non-convex constraints oiagg

Niky

(18]

from convex constraints due to Boolean negation, our pro-

cedure uses geometric properties of convex sets to genefadg

conservative approximations of the original set of coristsa

Experiments on several benchmarks, including examples [gf]
BMC for hybrid systems, show that CalCS can be more

accurate than other state-of-the-art non-linear SMT ssla

[21]

the future, we plan to further refine the proposed algorithms
by devising more sophisticated learning and approximatiqaz)

schemes as well as more efficient implementations.
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