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Abstract—We propose a novel integration of interval constraint
propagation (ICP) with SMT solvers for linear real arithmetic
(LRA) to decide nonlinear real arithmetic problems. We use ICP
to search for interval solutions of the nonlinear constraints, and
use the LRA solver to either validate the solutions or provide
constraints to incrementally refine the search space for ICP. This
serves the goal of separating the linear and nonlinear solving
stages, and we show that the proposed methods preserve the
correctness guarantees of ICP. Experimental results show that
such separation is useful for enhancing efficiency.

I. INTRODUCTION

Formal verification of embedded software and hybrid sys-
tems often requires deciding satisfiability of quantifier-free
first-order formulas involving real number arithmetic. While
highly efficient algorithms [10] exist for deciding linear real
arithmetic (QFLRA problems, as named in SMT-LIB [5]),
nonlinear formulas (QFNRA problems [5]) have been a major
obstacle in the scalable verification of realistic systems. Exist-
ing complete algorithms have very high complexity for non-
linear formulas with polynomial functions (double-exponential
lower bound [9]). Formulas containing transcendental func-
tions are in general undecidable. It is thus important to find
alternative practical solving techniques for which the com-
pleteness requirement may be relaxed to some extent ([11],
[12], [20], [8]).

Interval Constraint Propagation (ICP) is an efficient numeri-
cal method for finding interval over-approximations of solution
sets of nonlinear real equality and inequality systems ([15],
[6]). For solving QFNRA formulas in a DPLL(T) framework,
ICP can be used as the theory solver that provides decisions
on conjunctions of theory atoms. What distinguishes ICP from
other numerical solution-finding algorithms (such as Newton-
Raphson or convex optimization) is that it guarantees the
following reliability properties:

• ICP always terminates, returning either “unsatisfiable”,
or “satisfiable” with an interval overapproximation of a
solution (or the solution set).

• When ICP returns an “unsatisfiable” decision, it is always
correct.

• When ICP returns a “satisfiable” decision, the solution
may be spurious; but its error is always within a given
bound that can be set very small.

A detailed discussion of what these correctness guarantees
of ICP imply for decision problems is given in Section
IV. These properties ensure that an ICP solver only relaxes
completeness moderately (see “δ-completeness”, Section IV),

while achieving efficiency. ICP algorithms have been applied
to various nonlinear scientific computing problems involving
thousands of variables and constraints (including transcenden-
tal functions) ([17], [18], [6]).

The HySAT/iSAT solver [11] is a state-of-the-art SMT
solver for QFNRA problems. HySAT uses ICP for handling
nonlinear real constraints. It carefully builds Boolean solving
capacities into ICP by exploiting the similarity between SAT
and interval constraint solving algorithms. HySAT successfully
solved many challenging nonlinear benchmarks that arise from
hybrid system verification problems [3].

However, a problem with HySAT is that it handles both
linear and nonlinear constraints with ICP. It is known that
ICP does not solve linear constraints efficiently enough. In
fact, ICP can suffer from the “slow convergence” problem [7]
on easy linear constraints such as “x ≥ y ∧ x ≤ y”, where it
needs a large number of iteration steps to return an answer.
As there exist highly optimized algorithms for deciding linear
arithmetic problems [10], solving all the constraints in ICP
is suboptimal. Most practical formal verification problems
contain a large number of linear and Boolean constraints, and
only a small number of nonlinear ones. Ideally, we would
like to solve linear and nonlinear constraints differently, and
apply the efficient algorithms for linear constraints as much
as possible.

Such separation of linear and nonlinear solving is not
straightforward to design. In fact, it is suggested as an open
question in the original HySAT paper [11]. There are several
difficulties involved:

• The linear and nonlinear constraints share many variables
in nontrivial problems. For the same variable, the linear
solver returns point solutions while ICP returns interval
solutions. It is not straightforward to check consistency
between the different solutions.

• As both the linear solver and the nonlinear solver return
only one solution (point or interval box) at a time, it is
impossible to enumerate all the solutions in one solver
and validate them in the other solver, since there are
usually infinitely many solutions.

• Linear solvers use rational arithmetic and ICP uses float-
ing point arithmetic. Efficient passing of values between
the two solvers can compromise the guaranteed numerical
error bounds in ICP. (See Example 2).

In this paper, we propose methods that tackle these prob-
lems. The main idea is to design an “abstraction refinement”
loop between the linear and nonlinear solving stages: We use



the ICP solver to search for interval solutions of the nonlinear
constraints, and use the LRA solver to validate the solutions
and incrementally provide more constraints to the ICP solver
for refining the search space. The difficulty lies in devising
procedures that efficiently communicate solutions between the
linear and nonlinear solving stages without compromising
numerical correctness guarantees. Our main contributions are:

• We devise procedures that separate linear and nonlinear
solving in a DPLL(T) framework to enhance efficiency
in solving QFNRA problems.

• We give precise definitions of correctness guarantees
of ICP procedures, named δ-completeness, as used in
decision problems. We show that the devised separation
between linear and nonlinear solving preserves such
correctness guarantees.

• We describe how to exploit ICP in assertion and learning
procedures in DPLL(T) to further enhance efficiency.

The paper is organized as follows: In Section II we briefly re-
view ICP, DPLL(T), and LRA solvers; in Section III, we show
the detailed design of the checking procedures; in Section IV,
we discuss correctness guarantees of ICP in decision problems;
in Section V, we further describe the design of the assertion
and learning procedures. We show experimental results and
conclusions in Section VI and VII.

II. BACKGROUND

A. Interval Constraint Propagation

The method of ICP ([15], [6]) combines interval analysis
and constraint solving techniques for solving systems of real
equalities and inequalities. Given a set of real constraints and
interval bounds on their variables, ICP successively refines an
interval over-approximation of its solution set by narrowing
down the possible value ranges for each variable. ICP either
detects the unsatisfiability of a constraint set when the interval
assignment on some variable is narrowed to the empty set, or
returns interval assignments for the variables that tightly over-
approximate the solution set, satisfying some preset precision
requirement. (See Fig 1.) We will only be concerned with
elementary real arithmetic in this paper. We first use a simple
example to show how ICP works.

Example 1. Consider the constraint set {x = y, y = x2}.
i) Suppose Ix0 = [1, 4], Iy0 = [1, 5] are the initial intervals

for x and y. ICP approaches the solution to the constraint set
in the following way:

Step 1. Since the initial interval of y is Iy0 = [1, 5], to
satisfy the constraint y = x2, the value of x has to lie within
the range of ±

√
Iy0 , which is [−

√
5,−1] ∪ [1,

√
5]. Taking

the intersection of [−
√
5,−1]∪ [1,

√
5] and the initial interval

[1, 4] on x, we can narrow down the interval of x to Ix1 =
[1,

√
5];

Step 2. Given Ix1 = [1,
√
5] and the constraint x = y, the

interval on y can not be wider than [1,
√
5]. That gives Iy1 =

Iy0 ∩ [1,
√
5] = [1,

√
5];

Step 3. Given Iy1 , we can further narrow down the interval
on x, by maintaining its consistency with x = ±√

y, and obtain
Ix2 = Ix0 ∩

√
Iy1 = [1, 4

√
5].

Iterating this process, we have two sequences of intervals
that approach the exact solution x = 1, y = 1:
Ix : [1, 4] → [1,

√
5] → [1, 4

√
5] → [1, 8

√
5] → · · · → [1, 1]

Iy : [1, 5] → [1,
√
5] → [1, 4

√
5] → [1, 8

√
5] → · · · → [1, 1]

ii) On the other hand, ICP detects unsatisfiability of the
constraint set over intervals Ix0 = [1.5, 4] and Iy0 = [1, 4]
easily:
Ix : [1.5, 4] → [1.5, 4] ∩ [1,

√
4] → [1.5, 2] → [1.5, 2] ∩

[
√
1.5,

√
2] → ∅

Iy : [1, 4] → [1, 4] ∩ [1.5, 2] → [1.5, 2] → [1.5, 2] ∩ ∅ → ∅
Note that ICP implements floating point arithmetic, there-

fore all the irrational boundaries are relaxed by decimal
numbers in practice.

  

Fig. 1: Contraction of initial intervals to solution boxes

During the interval narrowing process, ICP can reach a
fixed-point before the precision requirement is satisfied. In that
case, ICP takes a splitting step, and recursively contracts the
sub-intervals. This framework for solving nonlinear constraints
is called the branch-and-prune approach [15].

We give the following formal definitions that will be referred
to in the following sections. Let n be the number of variables
and I = {[a, b] : a, b ∈ R} the set of all intervals over R.
An n-ary constraint σ is a relation defined by equalities and
inequalities over R, i.e., σ ⊆ Rn.

Definition 1. Let σ ⊆ Rn be a constraint, ~I ∈ In an
interval vector whose i-th projection is written as Ii, i.e.,
~I = 〈I1, ..., In〉. We say ~I over-approximates σ, if for all
(a1, ..., an) ∈ σ, ai ∈ Ii.

Definition 2. An interval contractor ] : In → In is a
function satisfying ]~I ⊆ ~I. The result of multiple applications
of an interval contractor on ~I is written as ]∗~I. A contraction
sequence is a sequence of intervals S = (~I1, ..., ~In) where
~Ii+1 = ]~Ii. A contraction step in S is defined as (~I, ]~I) where
~I = 〈I1, ..., Ii, ..., In〉, ]~I = 〈I1, ..., ]Ii, ..., In〉 and

]Ii = Ii ∩ F (I1, ..., Ii−1, Ii+1, ..., In).

F : In−1 → I is an interval-arithmetic function whose graph
over-approximates the constraint σ.

Definition 3. A consistency condition C ⊆ In ×In satisfies:
for any constraint σ ⊆ Rn, if ~I over-approximates σ and
(~I, ]~I) ∈ C, then ]~I over-approximates σ.



B. DPLL(T) and the Dutertre-de Moura algorithm

An SMT problem is a quantifier-free first-order formula
ϕ with atomic formulas specified by some theory T . Most
current SMT solvers use the DPLL(T) framework [19]. A
DPLL(T)-based solver first uses a SAT solver on the Boolean
abstraction ϕB of the formula ϕ. If ϕB is satisfiable, a theory
solver (T-solver) is used to check whether the Boolean assign-
ments correspond to a consistent set of asserted theory atoms.
The T-solver should implement the following procedures:

Check() and Assert(): The Check() procedure provides
the main utility of a T-solver. It takes a set of theory atoms
and returns a “satisfiable”/“unsatisfiable” answer, depending
on whether the set is consistent with respect to the theory T .
The Assert() procedure provides a partial check for detecting
early conflicts.

Learn() and Backtrack(): When the Check() or Assert()
procedure detects inconsistency in a set of theory atoms, the
T-solver provides explanations through the Learn() procedure,
so that a clause can be learned for refining the search space.
When inconsistency occurs, the T-solver performs efficient
backtracking on the theory atoms in Backtrack().

LRA Solvers: The standard efficient algorithm for solving
SMT problems with linear real arithmetic is proposed in [10],
which we will refer to as the Dutertre-de Moura Algorithm.
The algorithm optimizes the Simplex method for solving SMT
problems by maintaining a fixed matrix for all the linear
constraints so that all the operations can be conducted on
simple bounds on variables. In what follows we assume that
the LRA solver implements the Dutertre-de Moura algorithm.

C. Formula Preprocessing

We consider quantifier-free formulas over 〈R,≤,+,×〉. The
atomic formulas are of the form pi ∼ ci, where ∼ ∈ {<,≤
, >,≥,=}, ci ∈ R and pi is a polynomial in R[~x].

Adopting similar preprocessing techniques as in [10], we
preprocess input formulas so that a fixed set of constraints can
be maintained such that the DPLL search can be done only
on simple atoms of the form x ∼ c. For any input formula,
we introduce two sets of auxiliary variables: a set of nonlinear
variables and a set of slack variables.

A nonlinear variable vi is introduced when a nonlinear term
ti appears for the first time in the formula. We replace ti by vi
and add an additional atomic formula (ti = vi) to the original
formula as a new clause.

Similarly, a slack variable si is introduced for each atomic
formula pi ∼ ci, where pi is not a single variable. We replace
pi by si, and add (pi = si) to the original formula.

For instance, consider

ϕ ≡df ((x2 + y ≥ 10 ∧ x · z < 5) ∨ y + z > 0).

We introduce nonlinear and slack variables to get:

(x2 = v1 ∧ x · z = v2)︸ ︷︷ ︸
Nϕ

∧ (v1 + y = s1 ∧ y + z = s2)︸ ︷︷ ︸
Lϕ

∧ ((s1 ≥ 10 ∧ v2 < 5) ∨ s2 > 0)︸ ︷︷ ︸
ϕ′

The new formula is equi-satisfiable with the original formula.
In general, after such preprocessing, any input formula ϕ is
put into the following normal form:

ϕ ≡
n∧

i=1

νi︸ ︷︷ ︸
Nϕ

∧
m∧
i=1

µi︸ ︷︷ ︸
Lϕ

∧
p∧

j=1

(

q∨
i=1

lji)︸ ︷︷ ︸
ϕ′

.

The following notations will be used throughout the paper:
1. V = {x1, ..., xk} denotes the set of all the variables ap-

pearing in ϕ. The set of variables appearing in any subformula
ψ of ϕ is written as V (ψ). In particular, write VN =

∪
i V (νi)

and VL =
∪

i V (µi).
2. In Nϕ, each atom νi is of the form xi0 = fi(xi1 , ..., xir )

where xij ∈ V . Note that xi0 is the introduced nonlinear
variable. fi is a nonlinear function that does not contain
addition/subtraction. We call Nϕ the nonlinear table of ϕ.

3. In Lϕ, each atom µi is of the form
∑
aijxij = 0, where

aij ∈ R and xij ∈ V . Lϕ is called the matrix of the formula
following [10].

4. In ϕ′, each literal li is of the form (xj ∼ ci) or ¬(xj ∼
ci), where xj ∈ V , ci ∈ R and ∼ ∈ {>,≥,=}. The original
Boolean structure in ϕ is now contained in ϕ′.

All the νis and µis are called constraints (nonlinear or
linear, respectively), and Nϕ∧Lϕ is called the extended matrix
of the formula.

III. INTERFACING LINEAR AND NONLINEAR SOLVING IN
THE CHECK() PROCEDURE

A. The Main Steps

As introduced in Section II-B, the Check() procedure pro-
vides the main utility of the theory solver in the DPLL(T)
framework. It takes a set of asserted theory atoms and returns
whether their conjunction is satisfiable in the theory T .

An intuitive way of separating linear and nonlinear solving
is to have the following two stages:

1. The linear constraints are first checked for feasibility, so
that linear conflicts can be detected early.

2. If no linear conflict arises, the nonlinear solver is invoked
to check whether the nonlinear constraints are satisfiable
within the feasible region defined by the linear constraints.

However, the difficulty lies in starting the second step. For
checking linear feasibility, the LRA solver maintains only one
point-solution throughout the solving process. That is, it stores
and updates a rational number for each variable. To obtain the
linear feasible region, extra computation is needed. A direct
way is to use the optimization phase of the Simplex algorithm
and collect optimal bounds of linear variables (their min/max
values), which are used as the initial interval assignments for
ICP. However, this is problematic for several reasons:

• Obtaining bounds on each variable requires solving two
optimization problems involving all the linear constraints
for every variable. This leads to heavy overhead.

• More importantly, the bounds on variables only constitute
a box over-approximation of the linear feasible region.



After obtaining a nonlinear solution within this over-
approximation, we still need to check whether this so-
lution resides in the real feasible region. (See Fig. 2)

• Numerical errors in the optimization procedures are intro-
duced in the decision procedure. They can compromise
the correctness guarantees of ICP.

  

Linear Feasible Region

 Min-Max Approximation

Fig. 2: Box approximations can be too coarse.

Consequently, we need more subtle interaction procedures
between the linear and nonlinear solving stages.

We write the set of asserted theory atoms as Λ, i.e.,

Λ ⊆ {xi ∼ ci : xi ∼ ci is a theory atom in ϕ′},

where ϕ′ is as defined in the preprocessing step. Our Check()
procedure (Fig. 3) consists of the following main steps:

Step 1. Check Linear Feasibility. (Line 2 in Fig. 3)
First, we use the LRA solver to check the satisfiability of

the linear formula Lϕ ∧
∧
Λ. If the formula is unsatisfiable,

there is a conflict in Λ with respect to the matrix Lϕ, and
Check() directly returns “unsatisfiable”.

Step 2. Check Nonlinear Feasibility. (Line 4 in Fig. 3)
If the linear constraints are consistent, we start ICP directly

on the set of nonlinear constraints; i.e., we check the satis-
fiability of the formula Nϕ ∧

∧
Λ. Note that after the linear

solving phase in Step 1, the bounds on linear variables in Λ
are already partially refined by the LRA solver [10] and we
update Λ with the refined bounds. (Line 3 in Fig. 3)

If ICP determines that the nonlinear constraints are inconsis-
tent over the initial intervals specified by Λ, the solver directly
returns “unsatisfiable”.

Step 3. Validate Interval Solutions. (L6 in Fig. 3; Fig. 4)
If ICP determines that the formula in Step 2 is satisfiable,

it returns a vector ~I of interval assignments for all variables
in VN . Since we did not perform nonlinear checking within
the linear feasible region, it is possible that the interval
assignments for VN are inconsistent with the matrix Lϕ. Thus,
we need to validate the interval solutions ~I with respect to the
linear constraints Lϕ. This validation step requires reasoning
about the geometric properties of the interval solutions and
linear feasibility region defined by Lϕ∧

∧
Λ. We give detailed

procedures for the validation step in Section III-B.
Step 4. Add Linear Constraints to ICP. (L7-10 in Fig. 3)
If in the previous step an interval solution ~I is not validated

by the linear constraints, we obtain a set Σ of linear constraints
(specified in Section III-B) that are violated by ~I . Now we

1: Procedure Check(Lϕ, Nϕ,Λ)
2: if Linear Feasible(Lϕ ∧

∧
Λ) then

3: Λ←Linear Refine(Lϕ ∧
∧

Λ)
4: while ICP Feasible(Nϕ ∧

∧
Λ) do

5: ~I ← ICP Solution(Nϕ ∧
∧

Λ)
6: Σ← V alidate(~I, Lϕ,Λ)
7: if Nϕ == Nϕ ∪ Σ then
8: return satisfiable
9: else

10: Nϕ ← Nϕ ∪ Σ
11: end if
12: end while
13: end if
14: return unsatisfiable

Fig. 3: Procedure Check()
1: Procedure Validate(~I = 〈~l, ~u〉, Lϕ,Λ)
2: if Linear Feasible(

∧
(xi =

li+ui
2

) ∧ Lϕ ∧
∧

Λ) then
3: ~y ← ~b /*LRA solver returns ~b as the solution of ~y*/
4: for µ : ~x ≤ ej + ~d

T
j ~y ∈ Lϕ do

5: if ~c
T
j ~aj ≤ ej + ~d

T
j
~b is false then

6: /* See Proposition 1 for the definitions */
7: Σ← Σ ∪ µ
8: end if
9: end for

10: else
11: Σ← Linear Learn(

∧
(xi =

li+ui
2

) ∧ Lϕ ∧
∧

Λ)
12: end if
13: return Σ

Fig. 4: Procedure Validate()

restart ICP and look for another solution that can in fact satisfy
the linear constraints in Σ, by setting Nϕ := Nϕ ∧

∧
Σ and

loop back to Step 2. This is further explained in Section III-C.
In this way, we incrementally add linear constraints into

the set of constraints considered by ICP to refine the search
space. The loop terminates when ICP returns unsatisfiable on
Nϕ because of the newly added linear constraints, or when
the LRA solver successfully validates an interval solution.

Next, we give the detailed procedures for the validation
steps.

B. The Validation Procedures

1) Relations between interval solutions and the linear fea-
sible region: Geometrically, the interval solution returned by
ICP forms a hyper-box whose dimension is the number of
variables considered by ICP. The location of the hyper-box
with respect to the linear feasible region determines whether
the interval solution for the nonlinear constraints satisfies the
linear constraints. There are three possible cases (see Fig. 5
for a two-dimensional illustration):

Case 1: (Box A in Fig. 5) The hyper-box does not intersect
the linear feasible region. In this case, the interval solution
returned by ICP does not satisfy the linear constraints.

Case 2: (Box B in Fig. 5) The hyper-box partially intersects
the linear feasible region. In this case, the real solution of the
nonlinear constraints contained in the solution box could either
reside inside or outside the linear region.



Distinguishing this case is especially important when we
take into account that the LRA solver uses precise rational
arithmetic. The interval assignments returned by ICP satisfy
certain precision requirements and usually have many decimal
digits, which can only be represented as ratios of large integers
in the LRA solver. Precise large number arithmetic is costly in
the LRA solver. To efficiently validate the interval solutions,
we need to truncate the decimal digits. This corresponds to a
further overapproximation of the intervals. For example:

Example 2. Consider (y = x2) ∧ (y − x = s) ∧
(y ≥ 2 ∧ x ≥ 0 ∧ s ≥ 0.6). In Step 2, ICP solves
the formula (y = x2 ∧ y ≥ 2 ∧ x ≥ 0) and re-
turns a solution x ∈ [1.414213562373, 1.414213567742]
and y ∈ [2, 2.000000015186]. Its rational relaxation x ∈
[14/10, 15/10] and y ∈ [2, 21/10] is validated, since y− x ≥
0.6 is satisfied by x = 1.4, y = 2. But the original formula is
unsatisfiable, which can in fact be detected if we use ICP on
the nonlinear and linear constraints together.

  

A

B
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 Rational Approximation of Box B

 Linear Feasible Region

Fig. 5: Positions of hyper-boxes and the linear feasible region.

Case 3: (Box C in Fig. 5) The hyper-box completely resides
in the linear feasible region. In this case, all the points in the
interval solution returned by ICP satisfy the linear constraints
and hence the formula should be “satisfiable”. To distinguish
this case from Case 2, we propose the following consistency
condition.

2) The Sufficient Consistency Check: We check whether
all the points in ~I satisfy the linear constraints in Lϕ. When
that is the case, we say ~I is consistent with Lϕ and accept
the interval solution. This is a strong check that provides a
sufficient condition for the existence of solutions. By enforcing
it we may lose possible legitimate solutions (e.g., Box B may
contain a solution that indeed resides in the linear region). This
problem is handled in the refinement step (Section III-C).

We write variables contained in the nonlinear constraints as
VN = {x1, ..., xn}, and the variables that only occur in linear
constraints as VL \ VN = {y1, ..., ym}.

Definition 4. Let ~I : 〈[l1, u1], . . . , [ln, un]〉 be an interval so-
lution for variables in VN . We write ~I : [~l, ~u], ~x = (x1, ..., xn),
~y = (y1, ..., ym). We say ~I is consistent with the matrix Lϕ,
if

∃ ~y ∀ ~x
[
(~x ∈ ~I) → (Lϕ ∧

∧
Λ)

]
· · · (?)

is true, where ~x ∈ ~I =df

∧
xi∈VN

(li ≤ xi ∧ xi ≤ ui). Note
that Lϕ ∧

∧
Λ is a formula in both ~x and ~y.

This condition states that, for an interval solution ~I to be
consistent with the linear constraints, there must be a feasible
point solution ~b for the remaining linear variables ~y such that
for all the points ~a ∈ ~I , (~a,~b) satisfies the linear constraints.
This is a direct formulation of Case 3.

3) The Validation Steps: We propose the following pro-
cedures for validating interval solution with the LRA solver
(shown in Fig. 4).

Step 3.1. (Line 2-3, Fig. 4) First, we check whether the
center of the hyper-box ~I resides in the linear feasible region
(in fact it can be an arbitrary point of the box), by checking
whether the linear formula:∧

xi∈VN

(xi =
li + ui

2
) ∧ Lϕ ∧

∧
Λ

is satisfiable. This can be done by the LRA solver.
If this formula is unsatisfiable, we know that Condition (?)

is violated, since the center of ~I lies outside linear feasible
region. We can obtain a set of violated linear constraints
provided by the LRA solver (Line 11, Fig. 4). This is further
explained in Section III-C.

If it is satisfiable, the Dutertre-de Moura Algorithm returns
an exact point solution ~b for ~y. (Line 3, Fig. 4)

Step 3.2. (Line 4-7, Fig. 4) Next we need to ensure that,
after the remaining linear variables ~y are assigned ~b, the
interval box ~I resides “far away” from the boundaries of the
linear feasible region.

Since Lϕ ∧
∧
Λ only contains linear constraints, it can be

written as the intersection of k half spaces:

Lϕ ∧
∧

Λ ≡
k∧

j=1

~c
T
j ~x ≤ ej + ~d

T
j ~y.

where ~cj = (cj1, ..., cjn) and ~dj = (dj1, ..., djm).
First, we make the observation that the maximum of each

~c
T
j ~x is obtained when the x variables take the min or max

values in their intervals depending on their coefficients:

Lemma 1. The solution to the linear program

max ~c
T
j ~x with respect to ~x ∈ ~I : [~l, ~u]

is given by ~x = (a1, ..., an), where ai = li when cji ≤ 0 and
ai = ui otherwise.

Further, we know that the universal statement in the consis-
tency condition is satisfied, if the max value of ~c

T
~x is bounded

by the linear constraints ej + ~d
T
j ~y. That is:

Proposition 1. The assertion

∀ ~x. ((~x ∈ ~I) → ~c
T
j ~x ≤ ej + ~d

T
j ~y)

holds for ~y = ~b iff

~c
T
j ~aj ≤ ej + ~d

T
j
~b,



wherein ~aj = (aj1, ..., ajn) satisfying: aji = li when cji ≤ 0,
and aji = ui otherwise.

The condition in Proposition 1 can be verified by simple
calculations: we only need to plug the values of ~x = ~aj
and ~y = ~b in each linear constraint, and check whether the
constraint is satisfied.

To summarize, we use the LRA solver to search for a
candidate solution ~b for the linear variables ~y, and verify
if the strong consistency condition (?) holds when ~y = ~b,
using Proposition 1. If Condition (?) is verified, we return
“satisfiable”.

Again, Condition (?) and Proposition 1 provide a sufficient
condition for the consistency of ~I and Lϕ, which may refute
legitimate solution boxes. This is compensated, because we
use the strong condition to learn the violated linear constraints
instead of directly refuting boxes. This is further explained in
the next section.

C. Refinement of ICP Search Using Linear Constraints

In the validation steps, there are two places where we can
detect that an interval solution has violated linear constraints:

• In Step 3.1, the linear formula is detected unsatisfiable
by the LRA solver. In this case, we use the learning
procedure in the LRA solver that returns a set of linear
constraints.

• In Step 3.2, the condition in Proposition 1 can fail for
a set of linear constraints. These are the constraints that
the box solution does not completely satisfy.

In both cases, we have a set of linear constraints which we
write as Σ. We then add Σ to Nϕ and restart the ICP search on
the updated Nϕ. Now, the new interval solution obtained by
the updated Nϕ should not violate Σ modulo numerical errors
in ICP, since it was obtained by ICP under the constraints in
Σ.

Here, a tricky problem is that ICP allows numerical error (up
to its precision bound). It is possible that even after Σ is added
to ICP, the interval solution ~I that ICP returns may still violate
Σ in terms of precise arithmetic. In such cases, the linear solver
and the ICP solver disagree on the same set of constraints:
Namely, ICP decides that ~I satisfies Σ up to its error bound,
whereas the linear solver can decide that ~I is not consistent
with Σ since it is not validated using precise arithmetic. When
this happens, the same set Σ can be repeatedly violated and
the refinement algorithm may loop forever without making
progress. To avoid this problem, we pose the requirement that
the added Σ should not be already contained in Nϕ. Otherwise,
we directly return “satisfiable” (Line 6 and 7 in Fig. 3). We
will show in the next section that this decision preserves the
correctness guarantees of ICP.

IV. CORRECTNESS GUARANTEES

Originally ICP is used in solving systems of nonlinear
equalities/inequalities over real numbers. Thus, the notion of
correctness of ICP is not directly formulated for the use in
decision procedures. A well-known property [15] of ICP is

that when a system S of real equalities and inequalities has
a solution, ICP always returns an interval solution ~I of S. In
deciding QFNRA problems, this property of ICP implies that
when a system is satisfiable, ICP always returns “satisfiable”.
In other words, when ICP returns “unsatisfiable”, the system
must be unsatisfiable.

Conversely, if whenever ICP returns “satisfiable” the system
is also satisfiable, we would have a sound and complete
solver1. This can not be guaranteed by ICP because of its use
of finite-precision arithmetic. In other words, the “satisfiable”
answers from ICP can not always be trusted. In the design
of HySAT [11], posterior validation procedures of the interval
solutions are applied, and the solver can return “unknown”
when a solution is not validated.

Similar validation procedures can be straightforwardly
adopted in our solver. However, in what follows we aim to
make clear the exact meanings of the answers returned by
ICP algorithms in the context of decision problems. In fact,
we will show that ICP does guarantee a moderately relaxed
notion of soundness and completeness that can indeed prove
useful for certain verification tasks.

Informally, when ICP returns “satisfiable” for a set S of
theory atoms, it must be one of the following two cases:

• S is satisfiable.
• S is unsatisfiable, but if some constant terms in S are

changed slightly, S will become satisfiable.
Contrapositively, if a system S remains unsatisfiable under
small perturbations on its constant terms, ICP indeed returns
that S is “unsatisfiable”. This notion (as a special case of the
formulation in [21]) is made precise in the following definition.

Definition 5 (δ-robustness). Let S be a system of equalities∧k
i=1 fi = 0, where fi ∈ R[~x], and xi ∈ Ii where Ii ⊆ R are

intervals. Let δ ∈ R+ be a positive real number.
S is called δ-robustly unsatisfiable if for any choice of ~c =

(c1, ..., ck) where |ci| ≤ δ,
∧k

i=1 fi = ci remains unsatisfiable.
Each ~c is called a perturbation on S.

We write the system perturbed by ~c as S~c. Note that we only
considered systems of equalities, because inequalities can be
turned into equalities by introducing new bounded variables.
The following example illustrates the definition.

Example 3. Consider the system S : y = x2 ∧ y = −0.01.
S is unsatisfiable. If we set δ1 = 0.1, then there exists a
perturbation c = 0.01 < δ1 such that S(0,c) : y = x2 ∧ y = 0
is satisfiable. However, if we set δ2 = 0.001, then there does
not exist ~c that can make S~c satisfiable with |ci| ≤ δ2. Hence,
we say S is δ2-robustly unsatisfiable.

The bound δ of “undetectable perturbations” corresponds to
the error bound of ICP. It can be made very small in practice
(e.g., 10−6). To be precise, we have the following theorem:

1The notion of soundness and completeness have quite different, although
related, definitions in different communities. We will give clear definitions
when a formal notion is needed (such as δ-completeness). Informally, we will
only use “sound and complete” together to avoid mentioning their separate
meanings that may cause confusion.



Theorem 1. Let S be a system of real equalities and in-
equalities. Let δ be the preset error bound of ICP. If for any
~c satisfying |ci| ≤ δ, S~c is unsatisfiable, then ICP returns
“unsatisfiable” on S.

Proof: First, note that we only need to consider systems
of equalities. This is because by introducing a new variable, an
inequality f(~x) > c can be turned into an equality f(~x) = y
with the interval bound y ∈ (c,+∞).

Now, let S :
∧k

i=1 fi(~x) = 0 be a system of equalities,
where the variables are bounded by the initial interval bounds
~x ∈ ~I0, and fi ∈ R[~x] are polynomials.

Suppose S is decided as satisfiable by ICP. ICP returns an
interval solution I~x for ~x. The δ error bound of ICP ensures
that:

∃~x ∈ I~x [
k∧

i=1

|fi(~x)| ≤ δ].

Let ~a be the witness to the above formula. We then have

(f1(~a) = c1 ∧ c1 ≤ δ) ∧ ... ∧ (fk(~a) = ck ∧ ck ≤ δ).

Consequently, (c1, ..., ck) is indeed a perturbation vector that
makes S(c1,...,ck) :

∧k
i=1 fi(~x) = ci satisfiable with the

solution ~a. As a result, S is not δ-robustly unsatisfiable, which
contradicts the assumption.

This property ensures that ICP is not just a partial heuristic
for nonlinear problems, but satisfies a “numerically relaxed”
notion of completeness, which we call δ-completeness:

• If S is satisfiable, then ICP returns “satisfiable”.
• If S is δ-robustly unsatisfiable, then ICP returns “unsat-

isfiable”.
Consequently, the answer of ICP can only be wrong on

systems that are unsatisfiable but not δ-robustly unsatisfiable,
in which case ICP returns “satisfiable”. We can say such
systems are “fragilely unsatisfiable”.

In practice, it can be advantageous to detect such fragile sys-
tems. In bounded model checking, an “unsatisfiable” answer of
an SMT formula means that the represented system is “safe”
(a target state can not be reached). Thus, fragilely unsatisfiable
systems can become unsafe under small numerical perturba-
tions. In the standard sense, a fragilely unsatisfiable formula
should be decided as “unsatisfiable” by a complete solver, and
such fragility will be left undetected. Instead, ICP categorizes
such fragilely unsatisfiable systems as “satisfiable”. Moreover,
ICP returns a solution. Note that this solution is spurious for
the unperturbed system, but is informative of the possible
problem of the system under small perturbations. On the other
hand, ICP returns “unsatisfiable” on a system if and only if
the system is δ-robustly safe. The error bound δ of ICP can
also be changed to allow different levels of perturbations in
the system.

Our checking and validation procedures are devised to
preserve such correctness guarantees of ICP. Formally, we
have the following theorem.

Theorem 2 (δ-completeness of Check()). Let ϕ be the pre-
processed input formula for Check(), and δ the error bound

of ICP. If ϕ is satisfiable, then the Check() procedure returns
“satisfiable”. If ϕ is δ-robustly unsatisfiable, then the Check()
procedure returns “unsatisfiable”.

A detailed proof of the theorem is contained in our extended
technical report [13].

As a technical detail, we need to mention that the prepro-
cessing procedure may change the actual δ in the robustness
claims. The reason is that when we preprocess a formula ϕ to
ϕ′, new variables are introduced for compound terms, and new
constants are used. Perturbations allowed on the new constants
may accumulate in ϕ′. For instance, x2 = 1∧x = 0 is robustly
unsatisfiable for δ = 1/2. But when it is preprocessed to
x2−h = 0∧h = 1∧x = 0, the perturbations on the first two
atoms can be added, and in effect the formula is no longer
1/2-robustly unsatisfiable (x2 −h = −1/2∧h = 1/2∧x = 0
is satisfiable). Note that the new formula is still 1/3-robustly
unsatisfiable. The change of δ is solely determined by the
number of the new variables introduced in preprocessing. In
practice, when the exact error bound is needed, a new δ′ can
be calculated for the robustness claims that we make for the
original formula. As is usually the case, the error bound is
small enough (e.g. 10−6) such that δ′ and δ are of the same
order of magnitude.

V. ASSERTION AND LEARNING PROCEDURES

In a standard DPLL(T) framework, the theory solver pro-
vides additional methods that facilitate the main checking
procedures to enhance efficiency. First, a partial check named
Assert() is used to prune the search space before the complete
Check() procedure. Second, when conflicts are detected by
the checking procedures, the theory solver uses a Learn()
procedure to provide explanations for the conflicts. Such
explanations consist of theory atoms in the original formula,
which are added to the original formula as “learned clauses”.
Third, when conflicts are detected, the theory solver should
backtrack to a previous consistent set of theory atoms, using
the Backtrack() procedure.

In this section, we briefly describe how these additional
methods can be designed when the interval methods in ICP
are used in the checking procedures. A complete description
of the procedures requires references to more details of ICP,
which can be found in our extended technical report [13].

A. Interval Contraction in Assert()

In the DPLL(T) framework, besides the Check() procedure,
an Assert() procedure is used to provide a partial check of
the asserted theory atoms [10]. We use interval contraction
(Definition 2) to detect early conflicts in Assert() in the
following way:

In each call to Assert(), a new atom x ∼ c is added to the set
Λ of asserted theory atoms. First, the interval assignment on
x is updated by the new atom x ∼ c. Then, Assert() contracts
the interval assignment ~I for all the variables with respect to
the linear and nonlinear constraints. That is, it takes ~I as input,
and outputs a new vector of intervals ~I ′, such that (~I, ~I ′) is a
valid contraction step (Definition 2) preserving the consistency



conditions (Definition 3). If ~I ′ becomes empty, it represents an
early conflict in Λ. Otherwise, Assert() returns the contracted
intervals as the updated ~I .

B. Generating Explanations and Backtracking

1) Generating Explanations: As described in Section II-
A, ICP returns “unsatisfiable” when the interval assignment
on some variable x is contracted to the empty set. When
this happens, we need to recover the set of atoms that has
contributed to the contraction of intervals on the variable x.
This can be done by keeping track of the contraction steps.

Let x be a variable in ϕ, and l a theory atom of the form
y ∼ c in ϕ. For convenience we can write l as y ∈ Iyc . Suppose
x has a contraction sequence Sx = (Ix1 , ..., I

x
n). We define:

Definition 6. The theory atom l is called a contributing
atom for x, if there exists a contraction step (Ixi , I

x
i+1) in

Sx, satisfying that Ixi+1 = Ixi ∩ F (~I), where Iyc appears in ~I .

The contributing atom list for a variable x is defined as
Lx =

∧
{l : l is a contributing atom of x}. We can prove that

when the interval on x is contracted to the empty set, i.e.,
when Ixn = ∅, it is sufficient to take the negation of Lx as the
learned clause:

Proposition 2. Let x be a variable in formula ϕ with a con-
traction sequence (Ix1 , ..., I

x
n). Let Lx be the contributing atom

list of x. Suppose Ixn = ∅, then Nϕ∧Lϕ∧Lx is unsatisfiable.

A detailed proof is contained in [13].
2) Backtracking: When an inconsistent set Λ of atoms is

detected by either Assert() or Check(), the solver calls the SAT
solver to backtrack to a subset Λ′ of Λ and assert new atoms.
The theory solver assists backtracking by eliminating all the
decisions based on atoms in Λ\Λ′, and restores the solver state
back to the decision level where Λ′ is checked by Assert().
Since the Assert() procedure stores interval assignments during
the contraction process, this is accomplished by restoring the
interval assignment at that level.

VI. EXPERIMENTAL RESULTS

We have implemented a prototype solver using the
realpaver package for ICP [14] and the open-source SMT
solver opensmt [4]. We accept benchmarks in the SMT-
LIB [5] format, and have extended it to accept floating-point
numbers. All experiments are conducted on a workstation with
Intel(R) Xeon 2.4Ghz CPU and 6.0GB RAM running Linux.

A. Bounded Model Checking of Embedded Software

Our main target domain of application is bounded model
checking of embedded software programs that contain nonlin-
ear floating point arithmetic. The benchmarks (available online
at [1]) in Table I are generated from unwinding a program that
reads in an array of unknown values of bounded length, and
tries to reach a target range by performing different arithmetic
operations on the input values [16].

In Table I, We show the running time comparison between
LRA+ICP and the HySAT/iSAT tool [3]. (hysat-0.8.6 and

D #Vars #Lϕ #Nϕ #l Result LRA+ICP HySAT
Benchmark Set: AddArray

6 10 3 0 1 UNSAT 0.06s 0.04s
8 36 10 0 1 UNSAT 0.09s 303.03s

31 1634 735 0 1 UNSAT 0.93s mem-out
Benchmark Set: MultiArray-1

5 10 3 20 1 UNSAT 0.23s 0.02s
7 30 8 28 1 UNSAT 0.04s 7.21s
8 121 40 32 1 UNSAT 0.12s 56.46s

16 817 320 64 1 UNSAT 0.32s mem-out
26 1687 670 104 2 SAT 87.45s mem-out

Benchmark Set: MultiArray-2
9 208 75 36 1 UNSAT 0.73s 244.85s

10 295 110 40 1 UNSAT 0.11s 123.02s
11 382 145 44 1 UNSAT 0.12s 3.96s
20 1165 460 80 1 UNSAT 0.30s mem-out
26 1687 670 104 2 SAT 65.72s mem-out

Benchmark Set: MultiArrayFlags
11 861 337 44 1 UNSAT 0.19s mem-out
21 2131 847 84 1 UNSAT 0.93s mem-out
31 3401 1357 124 1 UNSAT 0.65s mem-out
51 5941 2377 204 1 UNSAT 26.17s mem-out

TABLE I: LRA+ICP and HySAT on BMC Benchmarks

name cvc3(s) LRA+ICP name cvc3(s) LRA+ICP

10u05 2.21 8.87 20revert 6.73 36.12
20u10 5.54 14.25 30u15 13.52 120.21
40f10 117.53 89.01 40f25 123.97 175.28
40f50 228.25 99.26 40f99 240.11 215.12
40m10 120.16 86.29 40m25 120.18 153.01
40m50 213.12 111.87 40m99 237.87 217.92
40s10 41.445 280.06 40s25 40.38 180.15
40s50 37.59 180.12 40s99 35.23 189.43
40u20 28.31 231.21 c40f timeout 270.12
c40m timeout 279.45 c40s 34.12 301.76
l40f 15.02 320.12 l40s 20.32 242.75

m40e 25.72 113.23 m40 226.21 182.12

TABLE II: LRA+ICP and CVC3 on QF UFNRA Benchmarks

its new version isat give roughly the same results on the
benchmarks, we picked the best timings.)

In the table, the first column (“D”) is the unrolling depth
of the original program. The number of variables (#Vars),
linear constraints (#Lϕ), and nonlinear constraints (#Nϕ)
are the ones that actually effective in the theory solver, after
preprocessing is done. They can be much lower than the
raw numbers appearing in the benchmark. The “#l” column
is the number of iterations of the linear-nonlinear checking
loop (Step 2-4 in Section III-A) that are used in obtaining
the answer. “mem-out” indicates that HySAT aborted for the
reason that no more memory can be allocated.

For the “UNSAT” instances, the linear solver detects con-
flicts in the linear constraints early on, and avoids solving
the nonlinear constraints directly as in HySAT. For the “SAT”
instances, the two iterations of the linear-nonlinear checking
loop proceed as follows: Initially, no linear conflicts were
detected, and ICP is invoked to solve the nonlinear constraints
and return an interval solution. The linear solver then detects
that the interval solutions violate a set of linear constraints,
which are added to the constraints considered by ICP (Line
6 in Fig. 3). This concludes the first iteration. In the second
iteration, ICP solves the expanded set of constraints and return
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Fig. 6: LRA+ICP and CVC3 on QF UFNRA Benchmarks

a new interval solution. Then the linear solver detects no
further conflict and return “SAT” as the final answer. This
concludes the second iteration.

We see that by separating the linear and nonlinear solving
stages, we can exploit the highly efficient linear solver for
solving the linear constraints and invoke the nonlinear solving
capacity of ICP only when needed. The proposed refinement
loop ensures that the correctness guarantees of ICP are pre-
served under such separation of linear and nonlinear solving.

B. QFNRA Problems from SMT-LIB

We have obtained results on QF UFNRA benchmarks on
SMT-LIB [5]. So far the only solver that solves the same set
of benchmarks is CVC3 [2]. (The HySAT solver uses a special
format. CVC3 does not accept floating point numbers in the
previous set of benchmarks.)

In Table II we compare the LRA+ICP solver with CVC3.
The data are plotted in Fig 6. (The timeout limit is 1000s.)
The timing result is mixed. Note that our solver ensures
δ-completeness and does not have specific heuristics. Con-
sequently, our solver performs rather uniformly on all the
benchmarks, whereas CVC3 can be much faster or slower on
some of them. (We are not aware of the solving strategy in
CVC3.) To evaluate the influence of the error bound δ on
the speed of the solver, we have set it to different values
δ1 = 10−1 and δ2 = 10−6. However, the difference is not
significant on this set of benchmarks. The reason for this may
be that the nonlinear constraints in the benchmarks are all of
the simple form “x = yz” with few shared variables.

VII. CONCLUSION

We have proposed a novel integration of interval constraint
propagation with SMT solvers for linear real arithmetic to
decide nonlinear real arithmetic problems. It separates linear
and nonlinear solving stages, and we showed that the pro-
posed methods preserve the correctness guarantees of ICP.
Experimental results show that such separation is useful for
enhancing efficiency. We envision that the use of numerical
methods with correctness guarantees such as ICP can lead to
more practical ways of handling nonlinear decision problems.
Further directions involve developing heuristics for different

systems with specific types of nonlinear constraints and extend
the current results to transcendental functions.
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