
A Framework for Incremental Modelling and
Verification of On-Chip Protocols

Peter Böhm
Oxford University Computing Laboratory

Oxford, OX1 3QD, England
peter.boehm@comlab.ox.ac.uk

Abstract—Arguing formally about the correctness of on-
chip communication protocols is an acknowledged verification
challenge. We present a generic framework that tackles this
problem using an incremental approach that interleaves model
construction and verification.

Our protocol models are based on abstract state machines
formalized in Isabelle/HOL. We provide abstract building blocks
and generic composition rules to support incremental addition
of protocol features to a parameterized endpoint model. This
structured approach controls model complexity. We can refine
data structures and develop control independently, to create a
concrete instantiation.

To make the verification effort feasible, we combine interactive
theorem proving with symbolic model checking using NuSMV.
The theorem prover is used to reason about generic correctness
properties of the abstract models given some local assumptions.
We can use model checking to discharge these assumptions for
a specific instantiation. We show the utility and breadth of
the framework by sketching two case studies: modelling a bus
protocol, and modelling the PCI Express point-to-point protocol.

I. INTRODUCTION

Formal verification of high-performance on-chip communica-
tion protocols is widely acknowledged to be hard. Modern
multi- or many-core architectures require highly complex
protocols to handle the performance bottleneck due to com-
munication. These protocols implement sophisticated features
to provide the needed performance.

Traditionally, monolithic models are created and proven
correct using post-hoc verification. Given the complexity of the
features and the size of the distributed system, this approach
became often infeasible in time and effort.

We propose a new methodology based on incremental
modelling and step-wise verification to tackle this challenge.
The idea is to encapsulate the complexity of the features into
independent modelling steps and add these features incremen-
tally to the model, starting with a very simple model. At the
same time, we reduce the verification effort with two main
strategies: first the verification process can be spread over the
modelling process such that in each step we only need to verify
the parts added to the model that implement the new feature.
Second we use generic building blocks for which we have
shown correctness results. The verification can be restricted to
discharging local assumptions on the building blocks.

In previous contributions [1], [2], we have illustrated the ap-
proach on two case studies. To explore the utility and breadth
of the approach, we chose two rather different examples: first

the ARM AMBA Advanced High-performance Bus (AHB)
protocol [3], an arbiter-based master-slave bus protocol. As
a second protocol, we picked the PCI Express protocol [4],
a modern point-to-point protocol. We will briefly summarize
the application of the general framework to these protocols in
Section VI.

The development of the framework was driven by these case
studies. After completing the work on both protocols, we were
able to create a protocol independent formalization of a mature
framework which we present here. All the models have been
formalized in higher order logic using the Isabelle theorem
prover [5].

For the case studies, we realized the modelling and verifi-
cation idea using interactive theorem proving only. However,
our final aim was to reduce the theorem proving part to further
increase the feasibility of the approach. Here, we show how
to integrate automatic tools into the verification workflow.
On the one hand, we use automatic theorem provers for
subgoals in first-order logic using the sledgehammer interface
of Isabelle/HOL (Isabelle 2009-1). Sledgehammer invokes the
provers E, SPASS, and Vampire and, if successful, returns a
proof script for the Metis theorem prover.

On the other hand, we integrate the NuSMV symbolic
model checker in the workflow. To use the model checker,
we adapt the oracle-based IHaVeIt interface [6] to Isabelle
2009. We can invoke NuSMV to prove LTL and CTL formulas
from Isabelle. This is especially useful when we instantiate
generic composition operators and need to discharge local
assumptions, such as fairness constraints. We will detail the
integration of automated tools in Section V.
Our main contributions can be summarized as follows:
• A framework based on (abstract) state machines for

modelling and verification of on-chip protocols.
• Generic building blocks and composition rules to create

models incrementally covering basic components such as
buffers to specialised composition schemes.

• A verification methodology that handles the complexity
by restricting the effort to local constraints and global,
generic correctness results.

• Integration of the NuSMV model checker in the verifica-
tion process to further reduce the verification effort with
focus on automatically discharging the local constraints.

These contributions result in a promising prototype system that
has been successfully applied to a variety of protocol features.

A. Related Work

Modelling systems with automata in general is a well studied
field and can be found, for example, in the widely-cited
book by Robert Kurshan [7]. Formalizing state machines in
Isabelle/HOL goes back to at least Nipkow and Slind [8].
They formalized I/O automata and developed a meta-theory
to represent them as objects in the logic. We restrict our
state machine framework to a simpler formalization specialised
to our requirements. Formal verification of protocols using
I/O automata in theorem provers has a long history, e.g. [9],
[10]. Our goal is not to provide yet another specific protocol
verification using I/O automata and a theorem prover, but the
formalization of a methodology.

Suhaib et al. [11] propose an incremental methodology for
developing formal models called XFM. An extendable set
of LTL properties is used to incrementally create a model
that satisfies the set of properties. Their approach focuses on
building prescriptive formal models that capture the behaviour
of natural language specifications. Our methodology tries to
capture specific features in independent models.

Another related approach is the B Method [12], an event-
based method for a refinement-based specification, design and
implementation of software components. Abrial et al. [13]
apply the method to the incremental development of the
IEEE 1394 tree identify protocol. Cansell et al. present an
incremental proof of the producer/consumer property for the
PCI protocol using the approach. Besides being tailored to
software and being event-based, our approach is not only
restricted to refinement steps.

Schmaltz et al. [14] present a generic network on chip
model as a framework for correct on-chip communication.
They identify key constraints on architectures and show pro-
tocol correctness given these constraints. However, their work
focuses on the topologies in general, whereas this work aims
at the verification of sophisticated endpoints.

Chen et al. [15] propose a modular, refinement based
approach to verify transaction-based hardware implementa-
tions against their specification models and illustrate their
methodology using a cache coherency protocol. Their ap-
proach is tailored to a different application area: verifying
implementations against specifications.

Müffke [16] presents a framework for the design of com-
munication protocols. He provides a dataflow-based language
for protocol specification and decomposition rules for inter-
face generation relating dataflow algebra and process algebra.
Aside from noting that correct and verified protocol design
is still an unsolved problem, Müffke does not address the
verification aspect in general.

General hardware verification based on refinement checking
or simulation relations has a long history. Finn and Four-
man [17] present the toolset LAMBDA, a refinement based
general-purpose design assistant using mathematical logic to
represent and manipulate system behaviour. Abadi and Lam-
port [18] show the existence of refinement mappings in their
widely-cited article. McMillan [19] proposes a compositional

rule for hardware verification based on local refinements which
can be efficiently model checked.

The combination of Isabelle/HOL and NuSMV using the
IHaVeIt tool has been applied to a variety of hardware
verification instances. Schmaltz [20] applies it to the area
of clock domain crossing and the time-triggered hardware
implementing it. Alkassar et al. [21] use the tool to show
the correctness of a fault-tolerant real-time scheduler and its
hardware implementation. In both cases, the authors apply a
similar strategy: they use theorem proving to argue about real-
time, asynchronous properties of the system, and the model
checker to prove properties of finite state machines which are
used to model the hardware implementation. A more general
overview of hybrid verification approaches can be found in
the survey from Bhadra et al. [22]

An overview of existing work on specific protocol verifica-
tion such as PCI Express or the AMBA protocol can be found
in our previous contributions covering the case studies [1],
[2]. As this work focuses on the protocol independent, general
methodology, we omit the protocol specific work here.

II. BASICS

A. Notation
To represent data, we often use the option datatype and records
which we introduce in the following. Moreover, we define
discrete time signals and introduce correctness properties.

a) Option Type: To specify a possibly undefined value,
we use the option datatype that is well known from functional
programming languages. For an element of type (α)option,
we write Some x for x ∈ α and None for the two construc-
tors. The selection operator the is used to access a value:
the(Some x) = x and the(None) is left unspecified.

b) Records: We use the Isabelle notation for records.
Let S1, . . . ,Sn be sets and l1, . . . , ln be labels. The record
R = (| l1 : S1, . . . , ln : Sn |) yields the set of all tuples (l1 =
s1, . . . , ln = sn) where si ∈ Si. For r ∈ R, we refer to the
field li with r.li. An update to a field li by a value si ∈ Si
is denoted r(| li := si |). If the context is obvious, we write
li for r.li. For i ∈ [1, n], the domain of field li is given by
dom(li,R) = Si. For a label l, we define the element operator
l∈̃R as ∃j ∈ [1, n]. l = lj .

Given the usual Cartesian product for sets,
∏
i∈[1,n] Si =

S1 × . . .× Sn, we define an analogous operation for records:∏̃
i∈[1,n],LRi = (| l1 :R1, . . . , ln :Rn |) where L : [1 : n] →
{li | i ∈ [1, n]} is a labelling function that assigns a label to
each index. This labelling function can be given as an explicit
function or a set of pairs. We also use this operator for sets
as arguments, i. e. to create a record from sets. A disjoint
union operator over records is given by the set of record
fields:

⊎̃
i∈[1,n]Ri = {li,j | lj∈̃Ri}. Finally, we define the

concatenation of records: Ri = (| li,0 :Si,0, . . . , li,mi
:Si,mi

|):⊙̃
i∈[0,n]Ri = (| l0,0 :S0,0, l0,1 :S0,1, . . . , ln,mn

:Sn,mn
|). We

use R0]̃R1, R0×̃LR1, and R0�̃R1 for the binary variants.
c) Signals: A signal sig is a function from discrete time

to a signal data type α, i.e. sig : N→ α. We denote the value
of a signal sig at time t with sigt.

d) Correctness Properties: In the context of this paper, a
correctness property P is either a propositional logic formula,
an LTL formula, or a CTL formula given a state machine
model M , an external input signal i, and a set of assumptions
A. If the model and the input signal satisfies the correctness
property given the assumptions, we write 〈M , i〉 |=A P .

B. Communicating Abstract State Machines

We use standard Mealy machines to represent components in
the framework. A state machine is specified by an initial state,
a transition function, and an output function together with sets
for the state space, the input space, and the output space.

Definition 1 (Mealy Machine): A Mealy machine is given
by a 6-tuple (S , I ,O , s0 , δ, ω) with domains S , I , O , initial
state s0 ∈ S , transition function δ : S × I → S , and output
function ω : S × I → O . We denote the next state s′ =
δ(s, i) ∈ S and the current output is ω(s, i) ∈ O .

If not stated otherwise, we assume that the domain spaces
are given as records. Given a state machine and an input signal,
we can define the execution trace and the output signal.

Definition 2 (Execution Trace and Output Signal): Given
a state machine M = (S , I ,O , s0 , δ, ω) and an input signal
in : N → I , we define the execution trace τ as τ0M ,in = s0

and τ tM ,in = δ(τ t−1M ,in , in
t−1) for t > 0. The output signal,

outM ,in : N→ O , is given by outtM ,in = ω(τ tM ,in , in
t).

To define composition operators in Section IV, we intro-
duce a model of synchronous communication among state
machines. We model uni-directional communication from a
source to a destination by connecting an output of the source
to an input of the destination. This ‘connection’ is modelled
by defining the input component using the output function of
source state machine. To illustrate the general approach, as-
sume we want to model a communication from output x∈̃Os to
input y∈̃Id. Given an input signal itd ∈ Id, we use the following
definition for its record component y instead of considering
it as an environment input: itd.y = (ωs(τ

t
Ms,ins

, ints)).x.
We can generalize this approach by introducing a global
communication function for a set of abstract state machines.

Definition 3 (Communication Function): Given a set of
state machines M = {M0, . . . ,Mn}. We define communi-
cation as a partial function comM :

⊎̃
iIi →

⊎̃
iOi such that

comM(yi) = xj if output x of Mj is connected to y of Mi

and undef otherwise. We call an input y of Mi external with
respect to M iff comM(yi) = undef and internal otherwise.

C. Standard Interface

We use a simple handshake protocol to realise a uni-directional
communication between two state machines using three sig-
nals: a valid and a data signal provided by the sender, and a
busy from the receiver. The basic idea is that a sender provides
data on the data signal and raises the valid signal to indicate so.
If the receiver’s busy signal is low, it is an acknowledgement
that the receiver samples the data in the same time step. If the
busy signal is active, the receiver cannot sample the data yet
and the sender has to keep its signals stable. We refer to the
three signals with bt ∈ B, vt ∈ B, and dt ∈ D where D is the

set of data elements to be communicated. We use a suffix o
to refer to an output, and a suffix i for an input.

We formalise the protocol in terms of two assumptions: one
that defines valid outputs provided by a sender and one that
specifies the correct sampling behaviour of a receiver.

Assumption 1 (valid outputs): M provides valid output at
time t iff vot =⇒ (dot = x)∧

(
bit =⇒ vot+1 ∧ (dot+1 = x)

)
for some data element x ∈ O .

Assumption 2 (correct sampling): M has to sample input
data x = dit at time t iff vit ∧ ¬bot.

We use the option datatype to model the data signal and
omit the valid signal. The interface consists of two signals:
a busy signal bt ∈ B and a data signal dt ∈ D option. The
valid signal can be obtained by vt ≡ (dt 6= None). Next, we
generalize the concept to specify the input and output records
of a state machine implementing n input interfaces—the data
signal is an input—and m output interfaces—the data signal
is an output. We use the following labelling convention for
the signal names: the k-th data input is dik together with the
k-th busy output bok; analogously for the output interface.
Thus, we restrict the input and output records to the following
generalised constructs:

I =
(∏̃

m,ρbi,m
B
)
�̃
(∏̃

i∈[1,n],ρdi,nDi option
)

= BIm �̃DIn

O =
(∏̃

n,ρbo,n
B
)
�̃
(∏̃

j∈[1,m],ρdo,m
Dj option

)
= BOn �̃DOm

where the labelling ρl,k is given by ρl,k(i) = li for i ∈ [1, k].
Given an element i ∈ I , we use BIm(i) to refer to the m busy
inputs and DIn(i) to refer to the n data inputs. For o ∈ O ,
we use BOn(o) and DOm(o).

Since we use Mealy machines to model abstract compo-
nents, it is possible to create combinatorial loops when we
compose state machines using this handshaking protocol. We
define two interface properties which prevent this. When we
introduce operators for state machine composition, we will use
these properties as local constraints.

Assumption 3 (busy-independent data): Given a state ma-
chine M and an input signal i . M provides busy-independent
data output signals iff ω satisfies for all k ∈ [1,m]:
ω (τ tM ,i, i

t).dok = ω (τ tM ,i, i
t(|bik := T |)).dok

Assumption 4 (data-independent busy): Given a state ma-
chine M and an input signal i . M provides data-independent
busy signals iff ω satisfies for all k ∈ [1, n]: ω (τ tM ,i, i

t).bok =
ω (τ tM ,i, i

t(|dik := None |)).bok

III. ABSTRACT COMPONENTS

In this section, we introduce basic building blocks: a polymor-
phic buffer of finite size for arbitrary data elements that obeys
the standard interface, a component for data modification, and
one for signal routing.

A. Buffer

We model a buffer using a list and specify the basic operations
for buffers or queues: an enqueue operation enq to add a

new element, a dequeue operation deq to remove the oldest
element, and a top operation top to obtain the oldest element.
We use predicates empty and full for corresponding buffer
states. Using lists, all these operations are straightforward. We
put the buffer in a state machine wrapper implementing the
standard interface.

Definition 4 ((α)buffer of finite size): A generic buffer for
datatype α and finite size s ∈ N is given by:

S =(|buf :α list, size :N |), s0 = (|buf =Nil, size=s |)
I =(|bi :B, di :α option |), O = (|bo :B, do :α option |)
δ =λs ∈ S . λi ∈ I . let

s′ = if ¬(i.bi ∨ empty s) then deq s else s
in if (i.di = Some x ∧ ¬full s′) then enq s′ x

else s′

ω=λs ∈ S . λi ∈ I . let
d = if ¬(i.bi ∨ empty s) then Some (top s)

else None
in (|bo = full s, do = d |)

We refer to such a buffer with (α, s)Buf .

B. Data Modification
The data modification component is a minimalistic state ma-
chine implementing modifications to the data element. We
abstract from the modification and model it as a function
f : S×α→ β. A typical use of the component is the extension
of a data element with a sequence number or a check sum.
An optional element opt is added to provide required data;
together with an initial state opt0 and an update function δopt.

Definition 5 (Data Modification): Given a function f : S ×
α→ β, a data modification is a simple state machine with:

S =(|opt :Opt |), s0 = (|opt =opt0 |)
I =(|bi :B, di :α option |), O = (|bo :B, do :β option |)
δ =λs ∈ S . λi ∈ I . (|opt=(δopt (s, i)) |)
ω=λs ∈ S . λi ∈ I . let

d = if (i.di = Some x) then Some (f (s, x))
else None

in (|bo= i.bi, do=d |)
C. Routing
The goal of the routing component is to distribute control
or data flow. Typical applications are the arbitration among
data elements or the generation of messages while stalling
incoming data. We also use an optional state component opt
with initial state opt0 and update function δopt. The core of
the building block are two functions fb and fd which represent
the modification of the busy and data signals.

Definition 6 (Routing Component): Let fb : S → I →∏̃
n,ρbo,n

B and fd : S → I →
∏̃
j∈[1,m],ρdo,m

Dj option be
routing functions. A routing component is given by:

S =(|opt :Opt |), s0 = (|opt =opt0 |)
I =

(∏̃
m,Lbi

B
)
�̃
(∏̃

i∈[1,n],Ldi
Di option

)
O =

(∏̃
n,Lbo

B
)
�̃
(∏̃

j∈[1,m],Ldo
Dj option

)
δ =λs ∈ S . λi ∈ I . (|opt=(δopt (s, i)) |)
ω =λs ∈ S . λi ∈ I . (fb s i)�̃(fd s i)

IV. COMPOSITION OF ABSTRACT COMPONENTS

In this section, we detail ways to compose state machines in
order to incrementally build complex systems. We introduce
two standard operations: parallel and sequential composition.
Parallel composition can be used to combine send and receive
parts of an endpoint model, for example. A typical application
for sequential composition is the modelling of interconnects
or the composition of stack layer models. An overview of the
sequential composition is shown in Fig. 1(a).

Definition 7 (Parallel Composition): The parallel composi-
tion M1parM2 with Mi=(Si, Ii,Oi, s0 i, δi, ωi) is given by:

S =S1×̃LS2, s0 = (|m1=s0 1, m2=s0 2 |)
I = I1×̃LI2, O = O1×̃LO2

δ =λs. λi. (|m1=δ1 (s.m1, i.m1), m2=δ2 (s.m2, i.m2) |)
ω=λs. λi. (|m1=ω1 (s.m1, i.m1), m2=ω2 (s.m2, i.m2) |)

where L = {(1,m1), (2,m2)} is the labelling.
To define the sequential composition in a compact way,
we need to define some internal signals. Assume we want
to compose M1 sequentially with M2, i. e. M1 seqM2. As
illustrated in Fig. 1(a), the busy signals of M1 are connected
to the busy outputs of M2, and vice versa for the data signals.
Since there is a cyclical dependency, we need that either M1

provides busy-independent data outputs (Assumption 3) or M2

provides data-independent busy outputs (Assumption 4). We
first define the sequential composition in Definition 8 assuming
the internal signals bint and dint as depicted. We define these
signals in Definition 9.

Definition 8 (Sequential Composition): Given M1 , M2

with Mi = (Si, Ii,Oi, s0 i, δi, ωi) where I1 = BIm�̃DIn,
O1 = BOn�̃DOm and I2 = BIp�̃DIm, O2 = BOm�̃DOp.
Then, the sequential composition M1 seqM2 is defined as:

S =S1×̃LS2, s0 = (|m1=s0 1, m2=s0 2 |)
I =BIp �̃DIn, O = BOn �̃DOp
δ =λs. λi. (|m1=δ1 (s.m1, bint�̃DIn(i)),

m2=δ2 (s.m2,BIp(i)�̃dint) |)
ω=λs. λi.BOn(ω1 (s.m1, bint�̃DIn(i))) �̃

DOp(ω2 (s.m2,BIp(i)�̃dint))

where the labelling L is {(1,m1), (2,m2)}.
Definition 9 (Internal Signals): Let M = M1 seqM2 be

the sequential composition of M1 and M2 , and it ∈ I be an
input signal. Moreover, let nod =

∏̃
m,ρm,di

None and allb =∏̃
n,ρ(n,bi)T. Then, bint = BOm(ω2 (s.m2, int2)) and dint =
DOm(ω1 (s.m1, allb�̃DIn(i))) if Assumption 3 holds. In
case of Assumption 4, bint = BOm(ω2 (s.m2,BIp(i) �̃nod)
and dint = DOn(ω1 (s.m1, int1)).

A. Replication

The replication operator is the first non-standard composition
that we introduce. The goal is the controlled, parallel execution
of r copies of a component while maintaining the external
input and output interfaces. When we summarise the case
studies in Section VI, we present examples how this operation
is applied. The basic schematics is depicted in Fig. 1(b).

M1

di1 dinbo1

do1bi1

nn

dopbip

bon

pp

M2

mm
dintbint

(a) Sequential Comp.

M

mux

M

arb

di1 dinbo1

do1bi1

selm

nn

sela

r

dombim

bon

mm

(b) Replication

DLLP Support

Virtual Channels/Traffic Classes

Basic TL-TX

Flow Control

Basic TL-RX

Packet
Reordering

Basic DLL-RXBasic DLL-TX

ACK/NAK Protocol

Transaction Layer

Data-Link Layer

CRC Check

(c) PCI Express Study

Fig. 1. Overviews of Composition Operators and PCI Express Case Study

The four main components are a multiplex function mux, an
arbitration function arb, the state machine M to be replicated,
and and additional component opt with initial state opt0 and
step function δopt. An instance of the operator for a state
machine M is given by rep(r,OPT ,mux, arb) where
• r is the number of replications,
• OPT = (Opt, opt0 ∈ Opt, δopt) is the optional part,
• mux : Opt × DIn → ([1, r] → DIn) is the multiplex

function, and
• arb : Opt × ([1, r] → DOm) → (|w : [1, r], do :DOm |)

is the arbitration function.
Definition 10: Let M be the state machine to be replicated.

Then, Mr = rep(n,OPT ,mux, arb)M , is given by:

Sr =(|ms : [1, n]→ S , opt :Opt |), Ir = I , Or = O
s0 r =(|ms=(λw ∈ [1, n].s0), opt=opt0 |)
δr =λs. λi. let

dii = (mux(s.opt,DIn(i)))
doi = λw. ω(s.ms w, (

∏̃
m,ρm,bi

T)�̃dii w)
arbo = arb (s.opt, λw.DOm(doi w))
bii = sela (BIm(i), arbo.w)
ms′ = λw. δ(s.ms w, (bii w)�̃(dii w))

in (ms=ms′, opt=δopt(s.opt))
ωr =λs. λi. let

dii = (mux(s.opt,DIn(i))
doi = λw. ω(s.ms w, (

∏̃
m,ρ(m,bi)T)�̃dii w)

bo = selm (λw.BOn(doi w), dii.w))
in bo �̃ arb (s.opt, λw.DOm(doi w))

where selm : ([1, n]→ BOn× [1, n])→ BOn, sela : (BIm×
[1,m])→ ([1,m]→ BIm) are the busy select functions. Note
that the construction requires M to satisfy Assumption 3.
We conclude the specification of the replication operator by
stating two assumptions which ensures that the construction
makes sense. The first one states that the multiplex function
selects a unique internal component for a given data element.

Assumption 5 (Valid Multiplex Function): Let
id=mux (opt, i). A valid multiplex function mux satisfies:

∃! w ∈ [1 : r]. (id w = i)∧
∀k 6= w. (id k =

∏̃
n,ρ(n,di)None)

The second assumption states similarly that the output of the
arbitration function is coherent.

Assumption 6 (Coherent Arbitration Function): Let
(w, do) = arb (opt, idos). A valid arbitration function
arb satisfies:

∀idos ∈ [1, r]→ DOm. (do = idos w)

B. Multiplex/Arbitrate

The multiplex/arbitrate composition is a similar, but more
general, construct as the replicate operator. The goal is to
parallelise n arbitrary components in a structured way. Thus
we are not restricted to an instantiation with n copies of a
state machine. In order to define a generic construction and
allow arbitrary components, the input and output interface
have to change. We only allow components with the same
number of input and output interfaces. We also assume some
logical relation between the i-th data component of each state
machine. Then, the i-th external input or output interface
provides data elements from the union of the all the i-th
internal interfaces.

Moreover, the multiplex component does not have to be
unique anymore and can select more than one internal state
machine. For example, it might split a data element and
input the two parts to two internal state machines. Similarly,
the arbitration function may select more than one internal
component, but is still only allowed to produce a single output,
of course. Again, an idea may be the data elements that
have been split by the multiplex function are combined again.
Because of space restrictions, we omit the formal definition
here as it is analogous to Definition 10.

C. Communication Channels

To conclude the section on component composition, we in-
troduce models of communication channels. Having modelled
the endpoints, we need to be able to interconnect them. We
introduce both: a model for point-to-point topologies, and a
model for communication busses.

The goal is to specify interconnects with a transmission
delay d ∈ N and a capacity of c ≤ d ∈ N data elements. To
define such a point-to-point channel, we can use previously
specified components: sequential composition, a buffer, a data
modification, and a routing component. The idea is as follows:
we use a buffer of size c to provide the capacity. To model
the delay, we first use a data modification to add a sequence
number seq ∈ [0, d) to a data element. After the buffer, we use
a routing component to check if a counter value cnt ∈ [0, d) is
equal to the sequence number and only in case it is equal, the
data is passed on. Both the sequence number and the counter
are increased in every time step, whether there is a new data
element or not. Note that this works because a buffer generates
a delay of at least one and we ensure that at all times the
sequence number is equal to the counter value.

Definition 11 (Point-to-Point Channel): Let Mseq be the
state machine obtained from instantiating a data modification
unit with Opt = [0, d), opt0 = (| opt = 0 |)), δopt =
λs, i. s.opt + 1, and f = λs, x. (x, s.opt). Moreover, let
Mbuf = (D × [0, d), c)Buf . Finally, let Mdel be a routing
unit with n = m = 1, Opt = [0, d), opt0 = (| opt = 0 |),

and δopt = λs, i. s(| opt := s.opt + 1 |)). The routing
functions are fb = λs, i. s.opt 6= snd(i.di) and fd =
λs, i. if ¬fb (s, i) then Some (fst (i.di)) else None. Then,
(d, c,D)Chan = (Mseq seqMbuf seqMdel).
In order to define a communication bus, we use the channel
and simply compose it with two more routing units to generate
the inputs and outputs to the channel.

Definition 12 (Communication Bus): Let g : I v → I be an
arbitration function to select among v bus inputs the one that
is allowed to use the bus. A bus with delay d, capacity c ≤ d,
inputs v, and outputs w, (d, c, v, w, g)Bus , is constructed as
Marb seq (d, c) Chan seqMmux . Marb is a routing instance
with (n,m) = (v, 1) using g to select an input. Mmux is a
routing instance with (n.m) = (1, w) that forwards the input
to all w outputs.

V. VERIFICATION AND AUTOMATIC TOOL SUPPORT

In this section, we detail our verification approach and the
generic correctness properties of the framework components.
By integrating a model checker and using automated theorem
prover, we react to concerns regarding the feasibility of the
theorem proving approach. The support for automated verifi-
cation tools aims mainly at simplifying the discharging of the
local assumptions. But we were also able to apply them to
parts of the generic correctness argumentation.

Here, we focus on the integration and use of the model
checker. Since our modelling approach is based on state
machines, we can use NuSMV to reason about LTL and CTL
properties. The main use of the model checker is to discharge
the local assumptions when applying one of the specific
composition operators. A good example for the merits of the
model checker is the arbitration function in the replication
composition. As we will see in Section V-B, we require the
arbitration function to be fair with respect to the data signals.
Instead of a tedious induction proof using interactive theorem
proving, we can use the model checker: in the simplest case
we can check whether a given arbitration function satisfies

G(i.dik = Some x) =⇒ F (arb.w = i)

where G and F are the standard LTL operators for globally
and finally.

A proven LTL or CTL property can easily be translated to
the execution trace semantic from Definition 2. This way, we
can integrate model checking in the theorem proving workflow.
Since we use NuSMV mainly to discharge local assumptions
when we apply the framework to a specific protocol, the ‘end-
user’ verification part benefits from the integration. It is a
very promising first step to the final goal of reducing the
theorem prover to a knowledge management system only and
large parts of the framework application steps can already be
automated using NuSMV.

A. Basic Components

In order to argue about correctness in a reasonable way,
we have to introduce an environment assumption first. We
assume in the following that the busy signal provided by

the environment, i. e. by the host system, is fair in the sense
that it is not constantly active. Thus, the environment allows
progress. Assumption 7 formulates this by stating that a busy
signal is only constantly active for a finite time interval.

Assumption 7 (Fair busy Signals): For all external busy
signals b holds: ∀t.∃k.¬bt+k
Note that this is a common assumption for inputs with a
semantics similar to the busy signal. We can easily see that
the definition of the buffer satisfies Assumptions 1, 2, 3,
and 4. Here, we show that the buffer provides stable output
signals as long as the busy input is active. It is basically a
conclusion from Assumption 1. Then, we state the two main
buffer theorems: a liveness and an ordering (FIFO) property.

Lemma 1 (Stable Buffer Outputs): Given a generic buffer
B = (S , I ,O , s0 , δ, ω) and an input signal it ∈ I , B satisfies:

∀x ∈ dom(do,O). bit ∧ (dot = Some x)

=⇒ ∃k. ¬bit+k ∧ (∀k′ ≤ k. dot+k′ = Some x)

Proof: With the integration of the NuSMV model checker,
the lemma is automatically shown by re-stating it as an
LTL formula ((do = Some x)Until (¬bi)). It is then easily
translated to our execution trace semantics in HOL.

Theorem 1 (Buffer Liveness): Given a fair busy signal, a
buffer satisfies the following liveness property:

∀x ∈ dom(di, I). ¬bot ∧ (dit = Some x)
=⇒ ∃k. (dot+k = Some x)

Proof: This theorem can be automatically shown with
NuSMV using the assumption of a fair environment. We show
that ¬bo∧(di = Some x) =⇒ F(do = Some x) and translate
it to the execution trace semantics.
Note that for a simple buffer, dom(di, I) = dom(do,O)
holds since the basic buffer construct does not implement
any data modification. Therefore, we can quantify over
dom(di, I) and argue about the data output.

Theorem 2 (Buffer FIFO Property): A buffer preserves the
ordering of its input data. Let t < t′ such that ¬bot and ¬bot′ ,
then it holds that:

∀x, y ∈ dom(di, I). (dit = Some x) ∧ (dit
′
= Some y)

=⇒ ∃k, k′. (dot+k = Some x) ∧ (dt+k+k
′

o = Some y)

where the delay values k, k′ are given by Theorem 1.
Proof: The liveness part of the statement is shown with

Theorem 1. Since buffers are modelled using lists, the ordering
property is shown using the ordering property of lists.

B. Composition Operators

Given the correctness of the basic building blocks, we need
to argue about the composition operators. Our main goal is
to show that the properties for the basic components are
preserved by the compositions. Informally, the idea is that
if a component satisfies a correctness property P , we aim
at showing that a composed system satisfies a correctness
property P ′ that can be derived from P only using the
construction of the composition.

For the parallel composition, the correctness property is
straightforward: the composed system satisfies the conjunction

of the individual correctness properties. Since parallel compo-
sition only executes the two state machines simultaneously
without any control or data modification, one can easily see
that this is the case.

Lemma 2 (Parallel Composition Correctness): Given state
machines M1 , M2 and corresponding input signals it1 ∈ I1
and it2 ∈ I2. Moreover, let i = λt ∈ N. (|m1 = it1, m2 = it2 |)
be the input signal for the parallel composition M1parM2.
Then, the following holds:

〈M1, i1〉 |=A1
P1 ∧ 〈M2, i2〉 |=A2

P2

=⇒ 〈M1parM2, i〉 |=A1∪A2 P1 ∧ P2

Proof: The proof is straightforward by applying the
definition of parallel composition (Definition 7).
The corresponding lemma for the sequential composition is
slightly more complicated since not every input or output of
the individual system is still an external input or output in
the composed system (cf. Fig. 1(a)). Thus, we need to make
the respective substitutions in the correctness statements. To
describe a substitution of x by y in a formula P in the
following, we use the common notation P [x/y].

Lemma 3 (Sequential Composition Correctness): Given
M1 , M2 and corresponding input signals it1 ∈ I1, it2 ∈ I2.
Let bint and dint be the internal signals from Definition 9,
and let i = λt ∈ N. BIp(it2)�̃DI

nit1 be the input signal to
the sequential composition M = M1seqM2. Then, it holds:

〈M1, i1〉 |=A1
P1 ∧ 〈M2, i2〉 |=A2

P2

=⇒ 〈M , i〉 |=A P1[BI(it1)/bint] ∧ P2[DI(it2)/dint]

where A is the union of A1 and A2 with the respective input
signal substitutions.

Proof: Similar to the proof of Lemma 2, the proof
is basically an application of the definition of sequential
composition (Definition 8). The proof can be obtained using
automatic theorem proving via sledgehammer.
Next, we will provide generic correctness results for the
replication operator. We will state assumptions that have to
be discharged when the composition is instantiated. Given
these assumptions, we can show a generic correctness theorem.
Since the replication operation is more restrictive than the mul-
tiplex/arbitrate composition, we can derive more correctness
properties for the former. Therefore, we also give the former
preference over the latter in the case studies wherever possible.

The assumptions for the replication operator can be sum-
marized as: (i) the inner components are correct and ensure
liveness, (ii) the multiplex function is correct, i.e. it multi-
plexes valid inputs to some inner component (Assumption 5),
and (iii) the arbitration is fair with respect to an active data
signal from an inner component. The following assumption
states the first point. We omit the fairness of the arbitration
function here due to space limitations.

Assumption 8 (Inner Component): Let M be the state ma-
chine to be replicated using the replication operator. Then,
M has to satisfy the busy-independent output assumption and
has to provide stable output signals, i. e. ∀i ∈ I . 〈M , i〉 |=A

Assumptions 1 and 3, where A is the fair environment as-
sumption. Moreover, M has to satisfy liveness:

∀i ∈ [1, n]. ∀x ∈ dom(dii, I). ¬bto ∧ (diti = Some x)

=⇒ (∃j ∈ [1,m], k ∈ N. dot+kj = Some fi,j(x))

where fi,j : dom(dii, I)→ dom(doj ,O) is a potential data
transformation applied by the inner component.
The following theorem states that given Assumption 8 and
the assumptions on the multiplex and arbitration functions,
the derived system satisfies liveness

Theorem 3 (Correctness of Replication): If the inner state
machine satisfies Assumption 8, the system obtained using
the replication operator satisfies this assumption again if
the multiplex and arbitration functions ensure the previously
mentioned assumptions.

Proof: The Isabelle proof of Theorem 3 is mainly ob-
tained by unfolding definitions and assumptions. An induction
is needed to conclude the stable input signals for the time
interval from Assumption 8 and the fairness of the arbitration
function.

VI. CASE STUDIES

The development of the framework was driven by the work
on two case studies covering rather different protocols: first,
the ARM AMBA High-performance Bus (AHB) protocol, an
arbiter-based master-slave bus protocol for system on chips.
Second, the PCI Express protocol, an off-chip point-to-point
high-performance protocol implementing many sophisticated
features of current and future on-chip communication proto-
cols. By choosing two case studies covering a wide range of
protocol features as well as bus and point-to-point network
topologies, we show the utility and breadth of the framework.

A. AMBA High-performance Bus

The AHB protocol is a bus protocol where masters access
data stored in slaves, all connected to a bus. Bus access is
regulated by an arbiter. The bus itself consists of an address
and data bus. Each transfer is split into two, in the simple
case, consecutive phases: an address and a data phase. In two
steps, we add pipelined transfers and burst support.

Pipelined bus transfers are realised using the replication
operator and executing two copies of the sequential master
in parallel. The address and data bus outputs of the sequential
masters are arbitrated such that address and data phases on
the bus are pipelined. Burst transfers are added to either a
sequential or pipelined master by the sequential composition of
a control flow instance and the master. The idea is to generate
a sequence of transfers with an incrementing address counter.

We were able to model two crucial and widely-used features
of bus protocols with only two framework components.

B. PCI Express

The PCI Express case study was more extensive than the initial
AHB study. Our goal was to investigate the approach using an
industrial-sized protocol which implements a series of features
that are used in modern multi- and many-core communication

architectures. The protocol is specified using three stack layers,
each implementing an abstraction layer: a transaction layer
(TL), a data-link layer (DLL), and a physical layer. Our case
study considered the two upper layers with a focus on the TL.
An overview of the case study is shown in Fig. 1(c).

As an example of reducing a complex feature to a small
set of framework operations, we outline the receiver part of
the flow control system. Using simple buffer, a small instance
of the multiplex/arbitrate composition, and finally an instance
of the replication operator, we are able to construct a receiver
model supporting flow control. It is a very nice example of
constructing a complex system incrementally starting with
a very simple one in structured way, applying the generic
correctness results to verify each modelling step.

With the small set of composition operators and basic build-
ing blocks presented here, we were able to model almost all
of the features mentioned in Fig. 1(c). Only for the ACKNAK
protocol we used an ad-hoc modelling approach. But we were
still able to encapsulate the feature in a transformation and
use sequential composition to integrate it in the DLL model.

VII. CONCLUSION

We have formalized a framework for the modelling and
verification of on-chip communication protocols in the Is-
abelle/HOL theorem prover. Our modelling approach is based
on abstract state machines and we specify initial, basic build-
ing blocks. Using composition rules, especially the replica-
tion and multiplex/arbitrate operators, we can incrementally
compose more complex systems. In previous contributions, we
have shown how to apply these principles to model protocol
features independently. With a small set of basic building
blocks and composition rules, we were able to model a broad
variety of protocol features. The framework is flexible enough
so that it is applicable to two very different protocol types
covered by the case studies.

We managed to reduce the verification effort by spreading
it over the modelling process and integrating automated tools
into the methodology such as the NuSMV model checker. We
also prove generic correctness properties for the composition
rules so that we can restrict the verification to discharging local
assumptions when we use the framework to model concrete
feature extensions. By reducing the manual theorem proving
parts compared to out previous case studies, we tackled
frequent concerns regarding the usability of our approach.
Future work includes an even further reduction of the theorem
proving, ideally to a point where automated tools are sufficient
to apply the framework to a specific case study.

Future work in the short-term focuses around two points: in-
tegrating even more automatic tools and linking the models to
hardware descriptions. For the former, we plan on investigating
the integration of an SMT Solver in the approach, for example
the current Isabelle version provides a link to the Z3 SMT
solver. Also the integration of a SAT solver will be considered.
To link actual hardware descriptions to the models, we aim at
further integrating the IHaVeIt interface in Isabelle 2009 as it
also provides generators for Verilog and VHDL code.

Our larger-scale, long-term aim is to provide a feasible
approach to modelling and verification of complex on-chip
protocols as an alternative to monolithic, ad-hoc modelling
and post-hoc verification. We aim at increasing the efficiency
of the model building process, and providing a final model
that has significant merits against ad-hoc models. The merits
of our models is that they are already functionally verified
and independent from the actual implementation or design
architecture which can act as a longer-term reference model.

VIII. ACKNOWLEDGEMENTS

This work is funded by the Engineering and Physical Sciences
Research Council and a donation from Intel Corporation.

REFERENCES

[1] P. Böhm, “Incremental Modelling and Verification of the PCI Express
Transaction Layer,” in MEMOCODE’09. IEEE, 2009, pp. 36–45.

[2] P. Böhm and T. Melham, “A Refinement Approach to Design and
Verification of On-Chip Communication Protocols,” in FMCAD’08.
IEEE, 2008, pp. 136–143.

[3] AMBA Specification Revision 2.0, ARM, 1999.
[4] PCI-SIG, PCI Express Base Specification Revision 2.0, December 2006.
[5] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof

Assistant for Higher-Order Logic. LNCS vol. 2283, Springer, 2002.
[6] S. Tverdyshev, “Formal verification of gate-level computer

systems,” Ph.D. dissertation, Saarland University, Computer Science
Department, 2009. [Online]. Available: http://www-wjp.cs.uni-saarland.
de/publikationen/Tv09.pdf

[7] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes:
the automata-theoretic approach. Princeton University Press, 1994.

[8] T. Nipkow and K. Slind, “I/O automata in Isabelle/HOL,” in TYPES’94,
ser. LNCS, vol. 996. Springer, 1995, pp. 101–119.

[9] L. Helmink, P. A. Sellink, M., and W. Vaandrager, F., “Proof-checking
a data link protocol,” in TYPES’93. Springer, 1994, pp. 127–165.

[10] V. Luchangco, E. Söylemez, S. J. Garland, and N. A. Lynch, “Verifying
timing properties of concurrent algorithms,” in Formal Description
Techniques VII. Chapman & Hall, Ltd., 1995, pp. 259–273.

[11] S. M. Suhaib, D. A. Mathaikutty, S. K. Shukla, and D. Berner, “Xfm: An
incremental methodology for developing formal models,” ACM Trans.
Des. Autom. Electron. Syst., vol. 10, no. 4, pp. 589–609, 2005.

[12] J. R. Abrial, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H.
Sørensen, “The B-method,” in VDM’91, ser. LNCS, vol. 552. Springer,
1991.

[13] J.-R. Abrial, D. Cansell, and D. Méry, “A Mechanically Proved and
Incremental Development of IEEE 1394 Tree Identify Protocol,” Formal
Aspects of Computing, vol. 14, no. 3, pp. 215–227, April 2003.

[14] J. Schmaltz and D. Borrione, “A functional formalization of on chip
communications,” Form. Asp. Comp., vol. 20, no. 3, pp. 241–258, 2008.

[15] X. Chen, S. M. German, and G. Gopalakrishnan, “Transaction Based
Modeling and Verification of Hardware Protocols,” in FMCAD’07.
IEEE, 2007, pp. 53–61.

[16] F. Müffke, “A Better Way to Design Communication Protocols,” Ph.D.
dissertation, University of Bristol, May 2004. [Online]. Available:
http://www.cs.bris.ac.uk/Publications/Papers/2000199.pdf

[17] S. Finn and M. Fourman, “The LAMBDA Logic. Abstract Hardware
Limited, September 1993. In LAMBDA 4.3 Reference Manuals.” 1993.

[18] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theor. Comput. Sci., vol. 82, no. 2, pp. 253–284, 1991.

[19] K. L. McMillan, “A compositional rule for hardware design refinement,”
in CAV ’97. Springer, 1997, pp. 24–35.

[20] J. Schmaltz, “A formal model of clock domain crossing and automated
verification of time-triggered hardware,” in FMCAD ’07. Washington,
DC, USA: IEEE Computer Society, 2007, pp. 223–230.

[21] E. Alkassar, P. Böhm, and S. Knapp, “Correctness of a fault-tolerant real-
time scheduler and its hardware implementation,” in MEMOCODE’08.
IEEE Computer Society, June 2008, pp. 175–186.

[22] J. Bhadra, M. S. Abadir, L.-C. Wang, and S. Ray, “A survey of hybrid
techniques for functional verification,” IEEE Des. Test, vol. 24, no. 2,
pp. 112–122, 2007.

