Modular Bug Detection with Inertial Refinement

Nishant Sinha
NEC Research Labs, Princeton, USA

Abstract—Structural abstraction/refinement (SAR) [4] holds oblivious of the program structure, and may produce spuri-
promise for scalable bug detection in software since the ab- ous counterexamples that continuously drive the refinement
straction is inexpensive to compute and refinement employsre- qwards newer program regions, even though a witness may
computed procedure summaries. The refinement step is key to __. t undetected in th " lored . Redand
the scalability of an SAR technique: efficient refinement shold ex'_s unaetecte _'n € currently explore reQ'or_‘S'] edn
avoid exploring program regions irrelevant to the property being ~ refinement of this form burdens the solver with irrelevant
checked. However, the current refinement techniques, guide summary constraints, leading to dramatic increase in 13glvi
by the counterexamples obtained from constraint solvers, &ve times, and, in many cases, to the failure of amrSased
little or no control over the program regions explored during method.

refinement. This paper presentsinertial refinement (IR), a new .
refinement strategy which overcomes this drawback, byesisting This paper presents a new structure-aware method, called

the exploration of new program regions during refinement: nev inertial refi_nement(l R) to overcome this d_rawback. Thd?_
program regions are incrementally analyzed only when no emr methodresistsexploring new program regions during refine-

yvitness is realizable in the current regions. The IR.procedte is ment, as much as possible, in hope of finding a witiveitisin
implemented as part of a generalized SAR method in th&-SOFT g currently explored regions. Given a program assettion

verification framework for C programs. Experimental comparison . e
with a previous state-of-the-art refinement method shows tat IR our method computes an initial abstraatror condition ¢

explores fewer program regions to detect bugs, leading to &er for Viqlating A, by exploring program paths in a Sm?‘” set
bug-detection. of regions relevant tod, while abstracting the other adjacent

regions. To check if) is feasible| R first symbolicallyblocks
all unexplored program regions involved i, by adding
Modular program analyzers [30], [28], [12], [6], [32], [31] auxiliary constraints to the solver. This forces the solteer
[4], [7] that exploit the program structure are more scaabfind witnesses ta@ that avoid the unexplored regions. If such
since they avoid repeated analysis of program regions by comwitness existsl R succeeds in avoiding the costly analysis
puting reusable summaries. Traditional modular metho@} [30f the unexplored regions. OtherwideRR explores aminimal
[28] target proofs of program assertions by computing ars#t of new program regions that may admit an error witness.
composing summaries in an intertwined manner. For examplée minimal set of regions are computed in a property-driven
to compute a summary for a functidn, the methods need to manner by analyzing the proofs of infeasibility inside the
compute and compose the summaries of all the calleds, of solver (based on the notion afinimal correcting set$24]),
even if many of these callees are irrelevant to checking tidiich provide hints as to why the currently explored regions
property at hand. Recent methods based on structural ebsteae inadequate for checking the propertyR has multiple
tion/refinement (8R) [4], [31], [12] alleviate this problem by advantages as a refinement metHd®improves the scalability
dissociating summary composition from computation: fiorct of SAR-based methods by restricting search to a small set of
summaries and verification conditions [16] are ficemputed program regions, leading to motecal witnesses than other
locally by skipping the analysis of callees (abstraction phaselethods. Moreovet, R exploits the fact that most bugs can be
and thencomposed lazilwith callee summaries (refinementdetected by analyzing a small number of program regions [3],
phase). Refinement is property-driven and employs an effici¢26].
constraint solver (e.g., [15], [13]) for the program logla. All previous methods based ona8 [31], [4], [2], [7]
contrast to other abstraction/refinement methods, e gdigate restrict structural abstraction to function boundaridgspaper
abstraction [17], [5], computing a structural abstractisn proposes ageneralizedSAR scheme that may abstract (and
relatively inexpensive, and refinement is done incrembnta later refine on-demand) arbitrary program regions, inclgdi
pre-computed function summaries. Owing to these advastageops. As a result, & can exploit the entire modular program
several recent methods [31], [4], [2], [7] have exploitedlithea structure to make a more fine-grained selection of regions to
of SAR for scalable bug detection. explore for checking properties efficiently. A consequeante
By dissociating summary computation from compositiorthis generalization is that we do not statically unroll lsop
SAR has the ability taselectwhich regions to explore during and recursive functions for checking properties; they are d
the refinement phase for checking properties efficientlye Timamically unrolled in a property-driven manner by inertial
selective refinement strategy determines the efficiencynof eefinement. The paper makes the following main contribistion
SAR-based verification method. Ideally, we desireaptimal « We present a modular bug detection method based on a
strategy, which explores (composes with) exactly those pro new generalizedstructural abstraction/refinementAi®)
gram regions which are relevant to a given property. Optimal approach, which fully exploits the modular structure of
refinement is as hard as the (undecidable) program verditati a program (functions, loops and conditionals) to perform
problem since it may require a knowledge of the complete an efficient analysis.
program behavior for making a selection. Consequently, re-e We propose a new structural refinement method, called
searchers employ heuristics [4], [31] for performing refine inertial refinement, which avoids exploring new program
ment, guided by the counterexamples obtained when thersolve regions until necessary. The technique is property-guided
checks the abstract model [23], [10]. The solver, howewer, i and employsminimal correcting set§24] produced by

|. INTRODUCTION

© 00 N O Ul B WN PP

e
w N Rk O

1 int neg (int a) {

int x,y; i ~witness relies on the abstraction lwar by m, and A .. and
. . . 2 if (a> 0)return —a; ; ;
void foo (int #p, int c) { 5 else return a: hence may be spurious, (_e.g.,bhr returns a value always
if (p == NULL) J greater thanc. To check if the witness is an actual one,
X =C; 4} refinement will expandr, and A, ,.; with the corresponding
else x = bar ¢p); .) precise summaries frorar . Note, however, that line 4 sets
1 void loopf (int n) { z 10 ¢, and hence an actual witness forexists insidef 0o
assert (x> c); 2 int i=0, j=0; (line 2-3-4-6-7) that does not require exploringr . However,
3 Wh'lf (i <n { this is not apparent fromp syntactically and a naive AR
if (x==0c¢) 4 J,_;_J T2 checker will perform spurious refinement by expanding both
y = neg(x): > I+ the placeholders.
elsey = 0; 6 _ More sophisticated refinement procedures may also suc-
assert (y>=0); 7 assert (n>— 0 8f& cumb to spurious refinement. For example, the state-of-the-
8 j < 2xn); art structural refinement strategy (referred to RGR) [4],
o } [3] uses the satisfying model from the constraint solver to
Fig. 1: Motivating Examples. The complex functiobar is not compute a set of irrelevant placeholders, to avoid expandin
described. them subsequently. Sin@CR is guided only by the structure-

unaware solver, it may expand placeholders spuriously #gven
) . a witness exists in the current regions. For example, sgpos
constraint solvers [15], [13] to efficiently select newne solver generates the following model for the E@bove:
regions to explore. o . o (»p # 0) and (m, = true). DCR analyzes the expression
« The $\R method with inertial refinement is imple-fo; guided by this model and concludes that bathand
mented in the F—S_FT verification framewo_rk for C pro- Avre: are relevant top being satisfiable. Therefored)CR
grams [19]. Experimental results on real-life benchmarkgyst perform the costly expansion of both the placeholders.
show that the method explores fewer regions than a stagmjlarly, another structural refinement procedure [31jeh
of—th_e—art refinement technique [4], and outperforms tr’@my by models from a constraint solver may also exploae
previous approach on larger benchmarks. when trying to concretize an abstract counterexample.
1. OVERVIEW In contrast, our inertial refinement R) procedure (cf.
We illustrate the key ideas of inertial refinement for chagki Sec. V) resists expansion and checks if a proof/witness to
the functionf oo in Fig. 1: f oo contains a call to a complex ¢ exists within the currently explored region. To this gohk t
function bar (line 5) and two assertions at lines 7 and 12nalysisblockspaths leading to the unexplored functibar
respectively. Consider the assertion (séyat line 7 inf oo: by adding a constraintr, to ¢ and then checks for a solution.
to check this assertion,AR first computes amrror condition If a solution is found, as in this case, the method is able to
(EC) under whichA is violated. This EC, say, represents avoid the cost of a spurious refinement. Otherwide selects
the feasibility condition for all program executions froo a minimal set of new regions to explore, which may admit an
which terminate atA and violate A. To compute¢, our error witness (cf. Sec. V).
method explored oo locally (cf. Sec. Ill) by performing Most bug finding approaches [4], [9], [32] statically unroll
a precise data-flow analysis: a form of forward symbolithe loops to a fixed depth, which may lead to several errors
execution [20] with data facts being merged path-sengjtivebeing missed. Although loops may be also handled as tail-
at join nodes [21], [3]. The analysis propagates data of formecursive functions in &R (as in [31]), conventional static
(v, 0) throughf oo: ¢ is the path condition at the currentanalysis [11] seldom does so. We propose a structural abstra
program location (summarizing the set of incoming path&io ttion specific to loops, so that inertial refinement corregson
location symbolically) and is a map from program variablesto dynamicallyunrolling loop iterations in a property-driven
to their path-sensitive (symbolic) values at the currecatmn. manner (cf. Sec. IV-A). As a result, our method can check
To avoid exploringbar at line 5, the method performsnon-trivial assertions, e.g., the assertion at line 7 inl thepf
structural abstraction obar during propagation: the effectfunction in Fig. 1 is violated only when > 3.
of bar is abstracted by a tupler,, [retyer — Apret]), Where
the placeholder (essentially, a free variabig) abstracts the Il. GENERALIZED STRUCTURAL ABSTRACTION
set of paths througibar symbolically, and the placeholder We start with describing ougeneralizedstructural abstrac-
Xo.ret @bstracts the return value dfar. For example, the tion, which forms the basis of ourA® method and may
value ofx computed at line 6 (obtained by merging data frorabstract arbitrary programegions as defined below.
the branches of the conditional at line 3)ads = ite(p # Program Regions. A program regionR corresponds to a
0 A m, Xpret; ¢) @and the path condition ig)’ = ((p # structural unit of the program syntax, i.e., a function haoaly
0Am)V (p=0)). The EC¢ computed forA at line 7 ¢’ loop or a conditional statement. To formalize regions zelyi
conjoined with the negated assertion)dis= ¢’ A (1 < ¢). we view a sequential C prograf as a hierarchicakecursive
Note that¢ depends on the two unconstrained placeholdgrs state machindRSM) M [1]. The RSM M consists of a set of
and X\, ¢ corresponding tdar . Now, ¢ is checked with a regions each region contains a control flow graph, which in
constraint solver, e.g., [15], [13] using structural refirent. turn consists of (i) a set afodes(labeled by assignments), (ii)
We will see how the placeholder;, plays a crucial role to a set ofboxes(each box is, in turn, mapped to a region), and
avoid exploring paths intbar . (iii) control flow edges among nodes and boxes (labeled with
Checking¢ with the solver may return a witness (lines 2guards). Each region also has spe@alry and exit nodes.
5-6-7) that includes a call to the complex functibar . This An unfolding [1] of M is obtained by recursively inlining

SAR (ProgrampP) REF(¢)
R := Partition’? into regions while ¢ contains placeholderdo
foreach region R € R do if CHECK (¢) = UNSAT then

(YRr,o0Rr, Pr) := LOCSUMMARIZE (R) L return UNSAT

¢ = HoIST(®R) Pick a placeholdeh in ¢

foreach¢ € ® do t = GETSUMMARY ()

L res := REF(¢) ¢ = P 1]

[* Report witness ifres is SAT */
return SAT

Algorithm 1: A generic modular analysis algorithms.

each box by the corresponding region. An edge from a nodeither be feasible for a given program analysis nor necgssa
to a box is said to be a&all edge A program regionR; is for checking a given property. Structural abstraction éeshb

said toprecedeanother regionR,, if R; contains a box that property-driven modular analysis of programs while avaidi
maps toR», i.e., control flow enters?, on leavingR;. We the analysis of undesired regions, e.g., one or more nested
also say thatRs succeedsR; in this case. We assume thasuccessor regions of a regiad can be abstracted during
assertions for property checking, e.g., dereferenceysafieny analysis of(). The structural abstraction of a regidd is a
bound violations, etc., are modeled as speerabr nodesin tuple (7g,or), where (i)7r is a Skolem constantbasically,

the RSM M ; the reachability of error nodes implies that tha fresh variable) summarizing the pathsinand (ii) o is
corresponding assertion is violated. a map with entries of formv — X\, r), Wwherev € M(R)

For example, the program fragment in Fig. 1 consists &f @ side-effect of? and A, r is a Skolem constant which
the following top-level regions: function bodidsoo, neg Models arbitrary modifications of in R. In the following,
and| oopf . Regionf 0o contains two boxes mapped tb the Skolem constantsr and A\, r are jointly referred to as
then-else(conditional) regionsC; (lines 3-5) andC, (lines Placeholdervariables. We also refer to placeholders of form
9-11); both regions succeed regiéwo. C; and C», in turn, 7r as m-variables The set of placeholders in the range of
contain boxes mapped tbar and neg function regions, cr are said todependon 7, and are denoted bep(mr).
respectively. Similarly, thé oopf function region contains a For example, the call tdar in the functionf oo in Fig. 1
box corresponding to théoop bodyregion (lines 3-6). For (cf. Sec. Il) is abstracted by the tuples, [retpar — Ap ret)),
ease of description, we will refer to an inlined instance of Wherey .c; € Dep(m).
region in a box as a region also. In the following, we use the When the analysis encounters a call Roin a preceding
standard program analysis terminology [30], [12], extehtte region @), it conjoins the placeholderrr with the current
RSM regions in a straightforward manner. In the following, wpath conditiony, updates the current value mapwith o,
will assume that the regions corresponding to conditioneds and continues analyzing. If R is later found relevant to
inlined in the corresponding boxes; we will only differeaté an assertion i), the initial abstraction ofR is refined on-
between function and loop regions. demand. The abstraction has several advantages: first, it is

Side-effects. For each program regioR, the side-effects cheap (computation of side-effects{(fz) is done once for
set M(R) denotes the set of program variables that mdf)¢ whole program); second, it allows on-the-fly refinement
be modified on executing? (together with its successors)using a summary ofz, which is computed only once, and
under all possible calling contexts. Thieputs to region R finally, it allows us to analyze prografragmentsin absence
consist of the set of variables that are referencedkinTo Of the whole program. Note that our formalization geneesiz
compute side-effects for programs with pointers, we assurthe earlier approaches [31], [4] to handle all modular uofts
that the heap size is bounded (to handle dynamic allocati®rProgram, i.e., functions, loops and conditionals, umfigr
and recursive data structures) and employ a whole-progrédy @ result, r can perform a more fine-grained selection of
side-effect analysis [29], [31] to compute the side-effiect ~ Program regions to explore when checking an EC.

Error Conditions. Given an error nodeb in the program _ Alg. 1 presents a generic modular algorithmrSfor check-
RSM and a set of pathd terminating ateb, the formula INg assertions in a prograf, having these phases:
representing the feaSlblllty condition for the géis said to be e The a|gorithm first partitions the program into a set of
an error condition (EC). In contrast to verification conditions regionsR.

(VCs) [16], which express sufficient conditions for existerof « For each regionkR € R, a procedure bCSUMMARIZE
prOOfS, the Satlelablllty of ECs |mp||eS existence of asser is used to Compute mcal summary (by a forward data
violations. We say that an E@ has a witness, if¢ has flow analysis over program expressions [21], [3] or using
a satisfying solution; otherwise, we say that the EC has a weakest preconditions [14], [16], [4]) while abstractirl a
prOOf. Note that an infinite number of ECs may be derived the successor regions o&f as above. The local summary
from a locationeb (due to loops and recursion). Ounder- (g, or, ®r) consists of the predicatér summarizing
approximateanalysis checks only a finite subset of all the ECs the paths inR, the mapor summarizing the outputs
and therefore, guarantees only the soundness of bugsettect (side-effects) ofR in terms of symbolic expressions over
the proofs do not imply thatb is unreachable (cf. Theorem 1). inputs toRR, and a set of error conditions (EGB); which
Structural Abstraction. Analyzing all program regions may correspond to assertion violations i

o« The ECs®p are local toR; in order to find violating V. INERTIAL REFINEMENT
executions starting from the program entry function, these The key motivation behind inertial refinemenitR) is to
ECs arehoisted[3], [7], [16] to the entry function of avoid exploring irrelevant regions during modular analysi
the program by the HIST procedure, which computeshbased on the insight that most violations involve only a $mal
weakest preconditions of ECs with respect to a boundegt of program regions. To this godIR first tries to find a
set of calling contexts [30] to the regioR. Note that witness/proof for an EGnsidethe program regions explored
HolsT may also use structural abstraction during backurrently, sayR. If | R is unsuccessful, theR is inadequate
ward propagation [3]. for computing a witness or a proof. TherefoteR augments
« Finally, the procedure &= is used to check each hoistedr by a minimal set of successor program regions, which may
EC ¢ using structural refinement based on a constraigéimit a witness. The new regions are selected efficientlgdas
solver, e.g., an SMT solver [13], [15]. Bk proceeds on an analysis of why the current region gtis inadequate.
iteratively by choosing a placeholdarin ¢, expanding In order to describe the details R, we first introduce the
A using its summary expression (computed by the notion of region blocking
GETSUMMARY procedure), and checking if the resultingRegion blocking. Recall (cf. Sec. Ill) that 8R may abstract a
¢ is satisfiable. The procedureeR terminates when the regionR (when analyzing a predecessor reginin form of a
solver finds the E@ unsatisfiable (UNSAT) or ifs does tuple (rg, or), wherery is the path summary placeholder of
not contain any placeholders and is satisfiable (SAT). R andor maps output variables iR to unique placeholders.
In this paper, we assume a partition of the program into onfy region blockingconstraint f-constraint, in short) for ar-
function and loop regions, i.e., conditionals are inlinadtie variablery is defined to bep, = —7mr. Assertinge, when
predecessor regions. The details of thedSummARIZE, GET- checking an ECyp in the region@, forces the solver to find
SUMMARY and HoIsT procedures can be found elsewhere [3Jvitnesses byblocking the program execution paths that lead
[21], [7], [16]; we will only concern ourselves with theeR from Q to R.
procedure, which is the prime bottleneck for theRGSmethod. Figure 2 shows théR procedure in form of a flow diagram.
SAR is anunder-approximat@nalysis, i.e., it analyzes only! R proceeds by iteratively adding or removingconstraints,
a subset of all possible paths reaching an assertion \dalatiuntil the result is satisfiable (SAT) or unsatisfiable (UN$AR
Hence, it can only detect bugs soundly (cf. Theorem &R S order to resist exploration of irrelevant regions, the phae
can natively handle programs with arbitrary recursive fioms ~ first assertsr-constraints ¢) for all 7-variables in the current
and loops: however, it may not terminate if an unbounddeC ¢. If ¢ remains satisfiable even after addidg;, the
number of iterations of R are needed during the check. ~ procedure returngrue, implying that a witness for) exists
Example 1.Recall the program fragment shown in Fig. 1. Outhat does not involve traversing the blocked regions. Qtrser
analysis first partitions the fragment into four regiohsio, (the constraints are UNSAT), a subsgt of 7-constraints
neg, | oopf functions, and the loop body region (lines 3-8s computed, whose removal leads to a satisfiable solution.
in | oopf). The procedure bcSUMMARIZE then summarizes Note that the set. corresponds to a set of blocked regions
each region, e.g., the summaryfaio (shown below) consists Whose exploration may lead to the discovery of a concrete
of path and side-effect summarieg;., and o¢.,, resp., and witness to¢. If the seto, is empty, then no witness fap
a set of EC3D;,,. To summarize 00, the calls tobar and exists (see Theorem 2), ahdR returns false. Otherwise,| R
neg are abstracted by placeholder pairs,(\,..:) and ¢r,, Performs exploration of the regions correspondinggto in

An,ret) FESpectively. the following way. First, the paths to the blocked regions ar
Vtoo (1 A Pz) Where g = (p =0V (p Z0A), exposed by removing alt-constraints inp,.. Then,l Rrefines
o = (w1 =cAmn)V (z1 #¢)) ¢ by expanding the placeholdels in ¢, and their depen-
Ot | [¥ — x1,y — y1], Wherexzy =ite(p # 0 A, Ap,ret,) dent placeholder®ep(V;) with the corresponding summary
andy, = ite(z1 = ¢ A Tn, Anret, 0) expressions (cf. Sec. IIl).
Proo | {P1, P2} @1 = (Y1 A 21 < 0), P2 =(Wro0 A1 <0) The key step in thd R procedure is that of computing

All the ECs are then hoisted to the entry functioh®¢ and ¢. C @, efficiently. To this goal, we employ the notion
| oopf here): in this case, the ECs fboo are already hoisted. Of a correction set(CS) of a set of constraints [24]: given
Finally, REF analyzes each E® in the entry function by an unsatisfiable set of constrains a correction set) is a
iteratively checkingp and expanding placeholders. subset ofl such that removing> makesV \ ¢ satisfiable. To
Theorem 1:Let SAR compute an E@ for an error location obtain efficient inertial refinement, i.e., explore a small sf
| after hoisting. If FEF(¢) returns SAT, then there exists a truglocked regions, we are interested iménimal correcting set
error witness td. (MCS), none of whose proper subsets are correction sets. The
Selective RefinementIn general, many placeholders in arotion of correction sets is closely related to thahwximal
EC ¢ are not relevant for finding a proof or a witness, angatisfiable subsetéMSSs) [24], which is a generalization of
expanding them leads to wasteful refinement iterationsgalothe solution of the well-known Max-SAT problem [24]. An
with an increased load on the solvéelectiverefinement, MSS is a satisfiable subset of constraints that is maximal,
therefore, focuses on selecting a subset of placeholdegs ie., adding any of one of the remaining constraints would
that are relevant to the property. This allowsfRo terminate make it UNSAT. Thecomplemenbf an MSS consisting of
early if there exist no relevant placeholderssinAn additional the remaining set of unsatisfied constraints is an MCS. For
benefit of selective refinement is that, in many cases, raeursexample, the UNSAT constraint sgt:), (-zVy), (-y)) admits
programs can be analyzed without unbounded expansiontiyfee MCSs(z), (—zVy), and(—y), all of which areminimum
the placeholders. We now present a new strategy for sedectiVote that many approaches utilize unsatisfiable cores [27]
refinement, callednertial refinement during refinement, e.g., for proving infeasibility of afastr

l resultant context is satisfiableER IR returns with SAT result.
Compute the set Vi of A region-bocking m-constraints Otherwise, the control switches to the UNSAT label. Here, a
m-variables in the EC ¢ | "] B, o variables i the et Vi MCS ¢ o_f w-constramts is co_mputed to check if removing any
i m-constraints may admit a witness ¢o If the MCS is empty,
l no witness is possible and the procedure returns UNSAT.
Otherwise, all ther-constraints in the MCS are retracted and
the EC¢ is refined by expanding-variablesV;. in ¢ together
with their dependent variableBep(V7;).

Theorem 2:The inertial refinement procedureeRIR re-
turns SAT while checking an EC¢ only if there exists a
concrete witness to the error node for
Example 2.Recall the summary of the proceddreo (Fig. 1)
presented in Example 1. The E£for the assertion at line 12
iS (00 A1 < 0), Wherey; = ite(x1 = ¢ ATy, A ret, 0) and

YES x1 =ite(p # 0 ATy, Apret, €); ¢ CONtaINs twor-variablesr,
Return false (bar) and m, (neg). (BEGIN) Initially, ¢ is satisfiable, and
REF-IR (Alg. 2) switches to the8LOCK label.
Fig. 2: Flow diagram for checking E@ usinginertial refinement. (BLOCK) The ReF-IR procedure first blocks both, and,
(addsm-constraints—m;,, —m,), and checks for a solution. No
counterexamples with predicate abstraction [18] or praoed solution is found since all feasible paths froo contain a
abstraction [31]. In contrast to the above approaches winych function call. Therefore, the control switchesB&PAND.
to prove infeasibility in the concrete model (using core®, (EXPAND) Here, REF-IR computes an MCSp,, which is
try to obtain constraints (MCS) that allow a witne@ssappear (-,). Sincer,, corresponds to functioneg, | Rmust explore
in the abstract model. The notion of MCSs is also relaten:bg to find a witness. The procedure then removes,
to computing aninterestingwitness to a satisfiable temporaland refinesp by adding summary constraints far, and the
logic formula by detecting vacuous literals [22]. Note thadependent placeholdé{n,mt_ These constraintst, = true
computing MCSs is NP-hard and hence mak&expensive and Mnret = ite(z1 > 0, —x1, 1) respectively) are generated
as compared to the light-weigBICR method [4] (cf. Sec. II), by analyzing theneg function (cf. Fig. 1).
which only needs a model from the solver. However, we equgE(_‘.ﬂN) On Checkingqs again after expansion, the solver
that exploring fewer regions ih R will compensate for the finds a witness (lines 2-3-4-6-7-8-9-10-12), with say-= 1,
extra cost. p=0, 2 =1,y = —1. REF-IR now checks if the witness

An MCS for a set of constraintd can be computed by js an actual oneBLOCK label) by blocking allr-variables.
obtaining all the proofs of infeasibility (UNSAT cores) 6f Note thatm, is the only r-variable remaining inp and the
and then computing the minimdlitting literal set for this corresponding-constraint is already asserted. ThereforerR
set of UNSAT cores [24]. Many modern constraint solversr concludes that the witness is an actual one and terminates
e.g., [15], allow for constraints with weights and solving#4 Note how ReF-IR avoids the redundant expansion of the
SAT (MSS) problems natively. Therefore, we can computmplex functionbar , guided both by the abstract E€ as
MCSs of 7-constraints using these solvers by first assertingell as the modular program structure. Also, the efficienty o
m-constraints with non-zero weights and then computing t=r-IR crucially depends on the computed MCSs.
subset of unsatisfied-constraints in the weighted Max-SAT . - .
solution. In our experiments, however, we used the previofis EXample: IR with Loop-specific Abstraction
method of computing hitting sets: Max-SAT results obtained Consider the functiod oopf in Fig. 1. The assertion at
from [15] were unfortunately erroneous and not usable. line 7 checks if on loop exit, the value gfis less thar2 * n,

The | R procedure can be implemented efficiently usingnd is violated only when > 3. To see this, consider the data
an incremental SMT solver (e.g., [15], [13]). These solvermputed at the loop exit (line 7) by a symbolic executior [20
maintain an internalcontext of constraints to provide in- of | oopf after few initial iterations(0) (0 £ n,j — 0;i —
cremental checking; constraints can be asserted or rettadl), (1) (0 <nA1l £ n,j— 0;i+— 1) (path condition reduces
iteratively from the context while checking, and the solier ton=1), (2) (n =2,j — 2;i+—2), () (n=3,j +— 6;i —
able to reuse the inferred results effectively from the jmmes 3), respectively. Note that the valy8) violates the assertion
checks. Alg. 2 shows the pseudo-code of the inertial refimemet line 7, while(0), (1) and(2) do not.
algorithm ReF-IR using such an SMT solver.BR-IR replaces In general, a violation like above may require an arbitrary
the naive RF procedure in the overall &R algorithm (cf. number of iterations of the loop, depending on one or more
Sec. 1). The description uses the symbot to denote the inputs. Many bug finding methods [9], [4], [32] unroll all
context of the incremental solver and the methodssART program loops to a fixed depth, and may miss bugs like
and RETRACT [15] are used for adding and removing conthese. The approach in [31] transforms loops to tail-recers
straints to the context incrementally. The procedure statt functions; however, conventional static analysis seldaasd
the BEGIN block by asserting the current E€in the solver’s so. In contrast, we show how inertial refinement can be used
context. Depending on whether the context is satisfiable trperform adynamicproperty-driven unrolling of loop regions,
not, the control switches to the locations labeledBiyDCK with the help of an abstractiospecificto loop regions. Note
and EXPAND respectively (cf. Alg. 2). In theBLOCK case, that methods based on refining predicate abstractions18], [
the region-blocking constraint®,. are asserted first. If the may detect this violation by refinement; however, consingct

Remove the constraint set ¢,
Let V; be the set of w-vars in ¢,
Refine ¢ by expanding V; U Dep(V;)

Return

YES true

NO Compute the set ¢, of m-constraints
whose removal leads to satisfiability

REF-IR(ctz, ¢)

BEGIN: ASSERT(ctz, ¢) EXPAND: ¢, := MCS(ctx)
if ctx is satisfiablethen if ¢ = false then
| gotoBLOCK L return UNSAT
else [* Witness may exist */
L goto EXPAND RETRACT (ctz, ¢r)
[* Select placeholders to refine */
BLOCK: Vi := set ofr-variables ing V, := Variables in¢,
* Assert-constraints */ "=V, U Dep(Vy)
@, = NM(v = false) | v e Vi} foreach \ € V/ do
ASSERTctz,) t = GETSUMMARY ()
if ctx is satisfiablethen L ¢ = PN —t]
| return SAT
else goto BEGIN

| goto EXPAND

Algorithm 2: The ReFIR procedure for checking an EE with an incremental SMT solver using inertial refinementeTh
variablectr denotes the context of the solver.

and refining predicate abstractions is expensive. In ceptrecase analysis over the points-to sets for the pointer Viasab
SAR with cheap abstraction and inertial refinement using loodso, F-SOFT instruments the program for properties being
summaries can detect such violations at a much lower costchecked, e.g., dereference safety (N), array bounds idalat
SAR first computes a local loop body summary, < (A) and string related checks (S). ThereforeRrSis able to
n,[j — Jo+2x%i,; i +— i,+ 1]), wherej, andi, represent the check multiple types of properties in an uniform manner & th
values ofj and: respectively at the beginning of the bodyF-SoFT framework. The initial model is simplified by the tool
Recall that 3R first checksl oopf by skipping the loop with constant folding, program slicing and other light-glef
region with an abstraction of forify, o); in this case, however, static analysis, and is then provided as an input to the S
the abstraction isspecific to the loop region and allows procedure.
dynamic loop unrolling. More precisely, (¥) = (m V m14), We used a wide collection of open-source and proprietary
where myp = (n < 0) and w4 are path conditions after industrial examples for evaluation: L2 is a Linux audio ériv
zero or > 1 loop iterations, respectively, and the map (2)ynf pci.c), L9 implements a Linux file-system protocol
o = [j — ite(mo, 0, \j14); 4 — ite(mo, 0, Xi14)], whereX; 14 (v9f s), M1, M3 are modules of a network controller software,
and); 14, respectively, are the values paindi obtained after N1, N2 belong to a network statistics application, F cossist
> 1 loop iterations { = j = 0 after zero iterations). Using thethe f t p-r est art module from thewu- f t pd distribution,
above abstraction, the symbolic data obtained at the &sserand Spin corresponds to the SPIN model checker (without the
at line 7 is(v, o) so that the EGp is parser front-end). The analyzed benchmarks range from LOC
¢ = ((mo Vmiy) An > 0Aite(mo,0,Aj14) > 2%n)) sizes of 1K to 19K. Our analysis focused on discovering known
The procedure BFIR first checksy by blocking all the loop bugs efficiently.
iterations, i.e., it adds a-constraint-m;, . The solver checks Our implementation of 88 computes summaries and ECs
(¢ A —m14) and returns UNSAT with the MCSy . As a for all program regions locally (cf. Alg. 1), stores them
result, | R removes—m; ¢ and refinesp by adding summary efficiently by representing terms as directed acyclic gsaph
constraints forry o, Aj 14+ and; 14, i.e.,m4 = (n = 1Vmay), (DAGs) and manipulates them using memoized traversal algo-
Ny = dte(n = 1,0,);24), etc.. | R again proceeds it- rithms. The local ECs were hoisted up to the entry functich an
eratively by blockingm,, 734, and so on, obtaining MCSs checked using the YICES SMT solver [15] in an incremental
and refininge. A satisfiable solution is obtained in the fourthmanner with refinement (cf. Alg. 1). To precisely model non-
iteration (with 74, blocked), which corresponds to a trudinear operators, e.g., modulo, which occur in many of our
violation witness. benchmarks, we encode all variables as bit-vectors.
Note that if a witness requires a large number of loop un-We evaluated four structural refinement schemes\éive
rollings, refinement using R is inefficient. One solution is expand all placeholders in the EC, (DCR: use don't-cares
to expand multiple loop iterations simultaneously. Howgevefor expansion, expand onlgne selecteglaceholder in each

we observed that in many real-life programs having inputeration (cf. Sec. Il, similar to the state-of-the-art @b
dependent loops, few loop unrolls are sufficient for findingigorithm [4]), (i) DCR', same asDCR except expandll
bugs; inertial refinement is effective in such cases. selectedplaceholders (set’ in Alg. 2) in each iteration, and

(iv) I R, the new inertial refinement scheme. In our experi-
ence, expanding all the selected placeholdses-éxpansion

We implemented the modular analysisrs(cf. Sec. Ill) in in each refinement iteration converges much faster than one
the F-SFT [19] framework for verification of C programs. placeholder at a timeoQe-expansion and, therefore, is our
The framework constructs asager memory model for C default mode foNaiveandl Rschemes. The experiments were
programs [19] by bounding the heap, flattening aggregate ddone on a Linux 2.4Ghz Core2Duo machine, with timeout of
types into simple types (up to depth 2 for our experiments),hr and 8GB memory limit.
and modeling the effect of pointer dereferences by an akplic Figure 3 shows the experimental comparison between the

V. EXPERIMENTAL EVALUATION

Bm LOC #EC Naive DC-based IR
DCR DCRT
#R T #R T #R T #R T

F-A 1K 48 162 73 75 282 58 71 51 78

F-N 1K 18 78 12 63 71 32 11 51 17

F-S 1.3K 54 100 2044 - TO 27 844 17 2359
N1-N 1.2K 77 4 65 2 62 2 62 0 61
N2-S 1.4K 230 7 9 3 11 3 10 1 9
L2-A 5.4K 135 550 27 292 58 304 29 450 28
L9-A 6K 314 978 279 - TO 549 589 257 162
L9-N 6K 124 721 22 114 139 144 15 205 27
M1-A 6K 356 906 59 - TO 527 64 408 87
Spin 9K 233 662 2173 - TO 295 2018 192 1472
M1-S 12K 196 800 68 338 124 354 62 283 57
M3-S 19K 419 - TO - TO 253 1599 221 1334

Fig. 3: Experimental comparison of structural refinement scherfig@Naive) without any selection of placeholders, @R [4] (i) DCR™
with set-expansion and (iv) the nevR scheme. Benchmarks (Bm) are named in "Name-Checker” forwiare Checker is either A (array
bounds), N (NULL dereference) or S (string checker). LOCwshthe lines of code analyzed post-simplification. #EC = thmlper of ECs
checked for the benchmark. #R denotes the number of regiqrended. Time out (TO) of 3600s. Memory limit 8GB. Best figusge in
bold.

various structural refinement techniques. The results wonfibigger examples (e.g. Spin, M1-S, M3-S), in spite of being
that structural abstraction methods scale to industriache more computationally expensive (requires computing MCSs)
marks while retaining precision: many of these examples ca®incel R expands fewer regions thddCR", we believe that
not be handled by other techniques, e.g., based on momolittiie improvement will be more dramatic on larger benchmarks.
BMC [9] and predicate abstraction. We report the total tifie (On a few examples (F-N, L2-A and L9-N), howevériR
including the summary computation and EC checking timesxpands more regions th&®CR™". This is becauséR depends
For each benchmark, we report the total number of regioosucially on MCSs generated during refinement, which may
(#R) expanded during the run. Note that ECs may have eithmt be optimal; in these examples, non-optimal MCSs led
a proof or a witness, and many of them may be checkéal exploration of irrelevant program regions. We believatth
without any refinement. Also, the set of regions explored) (#Rsing more sophisticated MCS computing algorithms [24],
may include the same function under multiple contexts. TH25], based on native MAX-SAT solving inside a constraint
results show thabCR™ and | R clearly outperform the naive solver (as opposed to our method of computing hitting sets of
refinement scheme, which time-outs on the largest exampl®&ISAT cores, cf. Sec. 1V) will lead to faster computation of
M3-S, implying that selective refinement is essential. Homve MCSs and hence improve the performance significantly.

we observe thaDCR time-outs in many cases where eaive We were unable to compare thoroughly with the previous
with set-expansion finishes. In the following, we compa@R, work Calysto [4], [3], since it is not available publicly atite
DCR"™ and| R systematically. memory models used by FeBT and Calysto are different.
(DCR vs DCRt). Since DCR performs one-expansion, it callsHowever, the refinement scheme in Calysto is similaD&R

the solver large number of times. As a result, it time-ouith one-expansion; in our experience, set-expansion iesmo
on 40% of the benchmarks, whilBCR" finishes in time, powerful since the total number of SMT solver calls are
showing thaDCR* converges much faster th&@CR. However, reduced. Refinement based on counterexample-driven @&alys
in most cases whelfgCR finishes, it expands fewer regions an@f the concrete model [31] as opposed to abstract models is

variables tharDCR*, due to one-expansion. orthogonal to our approach; however, these approaches can
(I R vs DCR). DCR time-outs on many benchmarks, especiall§/so benefit from inertial refinement.
the bigger ones, due to one-expansion, wheteRdinishes. VI. RELATED WORK

The results show thaltR outperformsDCR [4] in terms of ~ Modular methods for sequential programs have been in-
run-times on all benchmarks. To permit a fair comparison, westigated extensively: most techniques perform an over-
augmentDCR with set-expansionOCR") and compare with approximate analysis to obtain proofs of assertion validit

I R below. Note, however, that for benchmarks L2-A and L9ia abstract interpretation [11], [12]. In contrast, oucts is

N, DCR does expand fewer regions thaRR. We discuss this on modular bug finding methods, which perform ander-
below. approximate program analysis [12]. Taghdiri and Jackson
(I R vs DCR™). Both these approaches use set-expansion gmwposed a method based procedure abstractiori31] for
finish on all benchmarks. We observe that, in most casefgtecting bugs in Java programs. To analyze a caller fumctio
I R expands fewer regions thddCR", showing that inertial the method automatically infers relevant specificatiornrsaib
refinement is indeed useful, and that many properties canthe callee functions: it starts from empty specifications] a
checked while restricting to a smaller region set. For edampgradually refines them using proofs derived from analyzing
benchmarks N1-N and N2-S show the effectivenessRifin spurious counterexamples in the concrete program model.
case of N1-N,DCR" needs to perform two expansions, whilBabic and Hu introduced thstructural abstractionmethod-

| R doesn’t need any expansions. On an averageexpands ology in the tool Calysto [4], [3] for analyzing large-scale
about 20% fewer (54% in the best case) regions th@R". programs. Again, the method analyzes the caller by abstract
Moreover, | R outperformsDCR" in terms of run-times on ing the callees with summary operators (placeholders).nWhe

checking abstract verification conditions (VCs) havingsthe
placeholders, structural refinemeexpandsthe placeholders
with the corresponding summaries derived from the callkes.
contrast to [31], structural refinement avoids the potdgtia
expensive analysis of the concrete model: placeholders a[rzé
selected by analyzing the abstract VC usingden’t-care [3]
analysis of the abstract counterexample [4]. Both the abovg
approaches [31], [4] perform refinement based purely on th[e]
counterexamples produced by the solver, which is oblivi@fus [5]
the program structure, and hence may explore new program
regions even if a witness is realizable in the current regiion [g)

PREfix [6] performs modular bug detection using path-
enumeration based symbolic execution [20] to comput]
bottom-up summaries. These summaries only model partigy;
procedure behaviors and the method may succumb to path ex-
plosion. In contrast, we compute precise summaries effdgti g
using a merge-based data flow analysis [21], [3], and empl&y
SAR to explore all program paths relevant to the propert
in an incremental fashion. The tool Saturn [32] performid®
bit-precise modular analysis for large C programs; however
the analysis is not path-sensitive inter-procedurallyl Erads [11]
to infeasible witnesses. Chandra et al. [7] employ property
driven structural refinement to incrementally expand thié cgy
graph of Java programs in the presence of polymorphism, to
avoid an initial call graph explosion. The ESC/Java tool] [1613]
introduced verification condition (VC) generation based ofy
intra-procedural weakest precondition [14] computatian b[15]
requires pre/post specifications to reason inter-proadigur
In contrast, inter-procedural VCs are generated autoalbtic
in our approach using structural abstraction (cf. Sec.. Il
Compositional symbolic execution [2] also uses structurgi’]
abstraction of functions with uninterpreted functions taka
coverage-oriented testing more scalable: inertial refer@roan [18]
also benefit these methods. In context of symbolic trajgcto[rlg]
evaluation, Chockler et al. [8] present a method to refineudtir
node placeholders using the notionresponsibility

(1]

[16]

(20]

VII. CONCLUSIONS [21]

We presented a modular software bug detection methiBdl
using structural abstraction/refinement, based on amagyzi[23]
programregionscorresponding to modular program constructs.
A new inertial refinement procedureR was proposed to [24]
address the key problem of structural refinemérR: resists
the exploration of abstracted program regions by trying {es]
find a witness for an assertion inside the program regiopz%]
explored previously. The proceduteRr implemented in the
F-SofFT framework scales to large benchmarks and is able
to check properties by exploring fewer program regions thagv]
the previous don’t-care based refinement technique [4LrEut
work includes combiningy Rwith other schemes, e.d>CR, for
more effective placeholder selection. Methods to dynaltyica
expand the heap during analysis will also be investigatqgg]
Partitioning a program automatically for efficienA® is also
an interesting open problem. Finally, we plan to perform
detailed usability study of theA® method for finding bugs in
large benchmarks.

Acknowledgements. We would like to thank Domagoj [31]
Babic and the members of the Verification group at NEfzy
for several useful discussions. We are also indebted to the
anonymous reviewers for their helpful feedback.

(28]

oy

REFERENCES

R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Repand
M. Yannakakis. Analysis of recursive state machineACM Trans.
Program. Lang. Syst27(4):786-818, 2005.

S. Anand, P. Godefroid, and N. Tillmann. Demand-drivemgpositional
symbolic execution. INTACAS pages 367-381, 2008.

D. Babic. Exploiting Structure for Scalable Software Verification
Dissertation, Univ. of British Columbia, Vancouver, Caap2008.
Domagoj Babic and Alan J. Hu. Structural abstraction oftware
verification conditions. IMCAV, pages 366-378, 2007.

T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamanhutomatic
predicate abstraction of C programs.RhaDI, volume 36(5), pages 203—
213. ACM Press, June 2001.

W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static anatyfor finding
dynamic programming error&oftw. Pract. Exper30(7):775-802, 2000.
S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: wegal
approach to weakest preconditions. RhDI, pages 363-374, 2009.
H. Chockler, O. Grumberg, and A. Yadgar. Efficient auttimaste
refinement using responsibility. IMACAS pages 233-248. Springer-
Verlag, 2008.

E. Clarke, D. Kroening, and F. Lerda. A tool for checkingN&I-C
programs. In K. Jensen and A. Podelski, editdi&CAS volume 2988
of LNCS pages 168-176. Springer, 2004.

E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Geuexample-
guided abstraction refinement for symbolic model checkindACM,
50(5):752—-794, Sept. 2003.

P. Cousot and R. Cousot. Abstract interpretation: Aiedilattice model
for static analysis of programs by construction or appration of
fixpoints. InPOPL, pages 238-252, 1977.

Patrick Cousot and Radhia Cousot. Modular static @oganalysis. In
CC, pages 159-178. Springer-Verlag, 2002.

L. de Moura and N. Bjgrner. Z3: An efficient smt solver. TACAS
pages 337-340, 2008.

Edsger Dijkstra.A Discipline of ProgrammingPrentice-Hall, 1976.

B. Dutertre and L. de Moura. A fast linear-arithmetidvaes for DPLL(T).
In CAV, pages 81-94, 2006.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, B. Saxe, and
R. Stata. Extended static checking for java. AhDI, pages 234-245,
2002.

S. Graf and H. Saidi. Construction of abstract stagphs with PVS. In
Orna Grumberg, editoiCAV'97, volume 1254 ofLNCS pages 72-83.
Springer-Verlag, June 1997.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, Kedneth L.
McMillan. Abstractions from proofs. IPOPL, pages 232-244, 2004.
Franjo Ivancic, Zijiang Yang, Malay K. Ganai, Aarti Guap llya
Shlyakhter, and Pranav Ashar. F-soft: Software verificatatform.
In CAV, pages 301-306, 2005.

J. C. King. Symbolic execution and program testirgommun. ACM
19(7):385-394, 1976.

A. Kolbl and C. Pixley. Constructing efficient formaladels from high-
level descriptions using symbolic simulatiddPP, 33(6):645-666, 2005.
O. Kupferman and M. Y. Vardi. Vacuity detection in termabmodel
checking. STTT 4(2):224-233, 2003.

Robert P. Kurshan.Computer-aided verification of coordinating pro-
cesses: the automata-theoretic approaéhinceton U.P., 1994.

Mark H. Liffiton and Karem A. Sakallah. Algorithms for mgputing
minimal unsatisfiable subsets of constraints]l. Autom. Reasoning
40(1):1-33, 2008.

Mark H. Liffiton and Karem A. Sakallah. Generalizing eeguided max-
sat. INSAT, pages 481-494, 2009.

A. Loginov, E. Yahav, S. Chandra, S. Fink, N. RinetzkgdaV. Nanda.
Verifying dereference safety via expanding-scope analylsi|[SSTA'08
pages 213-224, NY, USA, 2008.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SalM.
Chaff: Engineering an efficient SAT solver. pages 530-535MAPress,
June 2001.

Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precisgprocedural
dataflow analysis via graph reachability. ROPL, pages 49-61, NY,
USA, 1995. ACM.

B. G. Ryder, W. A. Landi, P. A. Stocks, S. Zhang, and R.uslter. A
schema for interprocedural modification side-effect asialyvith pointer
aliasing. ACM Trans. Program. Lang. Sys23(2):105-186, 2001.

M. Sharir and A. Pnueli. Two approaches to interprocedlidata flow
analysis. InProgram Flow Analysis: Theory and Applicatign®lume 5,
pages 189-234. Prentice Hall, 1981.

M. Taghdiri and D. Jackson. Inferring specificationsditect errors in
code. Autom. Softw. Eng14(1):87-121, 2007.

Yichen Xie and Alex Aiken. Saturn: A scalable framewdik error
detection using boolean satisfiabilithCM Trans. Program. Lang. Syst.
29(3):16, 2007.

