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Abstract—Structural abstraction/refinement (SAR) [4] holds
promise for scalable bug detection in software since the ab-
straction is inexpensive to compute and refinement employs pre-
computed procedure summaries. The refinement step is key to
the scalability of an SAR technique: efficient refinement should
avoid exploring program regions irrelevant to the property being
checked. However, the current refinement techniques, guided
by the counterexamples obtained from constraint solvers, have
little or no control over the program regions explored during
refinement. This paper presentsinertial refinement (IR), a new
refinement strategy which overcomes this drawback, byresisting
the exploration of new program regions during refinement: new
program regions are incrementally analyzed only when no error
witness is realizable in the current regions. The IR procedure is
implemented as part of a generalized SAR method in theF-SOFT
verification framework for C programs. Experimental compar ison
with a previous state-of-the-art refinement method shows that IR
explores fewer program regions to detect bugs, leading to faster
bug-detection.

I. I NTRODUCTION

Modular program analyzers [30], [28], [12], [6], [32], [31],
[4], [7] that exploit the program structure are more scalable
since they avoid repeated analysis of program regions by com-
puting reusable summaries. Traditional modular methods [30],
[28] target proofs of program assertions by computing and
composing summaries in an intertwined manner. For example,
to compute a summary for a functionF , the methods need to
compute and compose the summaries of all the callees ofF ,
even if many of these callees are irrelevant to checking the
property at hand. Recent methods based on structural abstrac-
tion/refinement (SAR) [4], [31], [12] alleviate this problem by
dissociating summary composition from computation: function
summaries and verification conditions [16] are firstcomputed
locally by skipping the analysis of callees (abstraction phase)
and thencomposed lazilywith callee summaries (refinement
phase). Refinement is property-driven and employs an efficient
constraint solver (e.g., [15], [13]) for the program logic.In
contrast to other abstraction/refinement methods, e.g., predicate
abstraction [17], [5], computing a structural abstractionis
relatively inexpensive, and refinement is done incrementally via
pre-computed function summaries. Owing to these advantages,
several recent methods [31], [4], [2], [7] have exploited the idea
of SAR for scalable bug detection.

By dissociating summary computation from composition,
SAR has the ability toselectwhich regions to explore during
the refinement phase for checking properties efficiently. The
selective refinement strategy determines the efficiency of an
SAR-based verification method. Ideally, we desire anoptimal
strategy, which explores (composes with) exactly those pro-
gram regions which are relevant to a given property. Optimal
refinement is as hard as the (undecidable) program verification
problem since it may require a knowledge of the complete
program behavior for making a selection. Consequently, re-
searchers employ heuristics [4], [31] for performing refine-
ment, guided by the counterexamples obtained when the solver
checks the abstract model [23], [10]. The solver, however, is

oblivious of the program structure, and may produce spuri-
ous counterexamples that continuously drive the refinement
towards newer program regions, even though a witness may
exist undetected in the currently explored regions. Redundant
refinement of this form burdens the solver with irrelevant
summary constraints, leading to dramatic increase in solving
times, and, in many cases, to the failure of an SAR-based
method.

This paper presents a new structure-aware method, called
inertial refinement(IR) to overcome this drawback. TheIR
methodresistsexploring new program regions during refine-
ment, as much as possible, in hope of finding a witnesswithin
the currently explored regions. Given a program assertionA,
our method computes an initial abstracterror condition φ
for violating A, by exploring program paths in a small set
of regions relevant toA, while abstracting the other adjacent
regions. To check ifφ is feasible,IR first symbolicallyblocks
all unexplored program regions involved inφ, by adding
auxiliary constraints to the solver. This forces the solverto
find witnesses toφ that avoid the unexplored regions. If such
a witness exists,IR succeeds in avoiding the costly analysis
of the unexplored regions. Otherwise,IR explores aminimal
set of new program regions that may admit an error witness.
The minimal set of regions are computed in a property-driven
manner by analyzing the proofs of infeasibility inside the
solver (based on the notion ofminimal correcting sets[24]),
which provide hints as to why the currently explored regions
are inadequate for checking the property.IR has multiple
advantages as a refinement method.IR improves the scalability
of SAR-based methods by restricting search to a small set of
program regions, leading to morelocal witnesses than other
methods. Moreover,IR exploits the fact that most bugs can be
detected by analyzing a small number of program regions [3],
[26].

All previous methods based on SAR [31], [4], [2], [7]
restrict structural abstraction to function boundaries. This paper
proposes ageneralizedSAR scheme that may abstract (and
later refine on-demand) arbitrary program regions, including
loops. As a result, SAR can exploit the entire modular program
structure to make a more fine-grained selection of regions to
explore for checking properties efficiently. A consequenceof
this generalization is that we do not statically unroll loops
and recursive functions for checking properties; they are dy-
namically unrolled in a property-driven manner by inertial
refinement. The paper makes the following main contributions:

• We present a modular bug detection method based on a
new generalizedstructural abstraction/refinement (SAR)
approach, which fully exploits the modular structure of
a program (functions, loops and conditionals) to perform
an efficient analysis.

• We propose a new structural refinement method, called
inertial refinement, which avoids exploring new program
regions until necessary. The technique is property-guided
and employsminimal correcting sets[24] produced by
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1 int x,y;
2 void foo ( int ∗p, int c) {
3 if (p == NULL)
4 x = c;
5 else x = bar (∗p);
6 ...
7 assert (x> c);
8 ...
9 if (x == c)

10 y = neg(x );
11 else y = 0;
12 assert (y>= 0);
13 }

1 int neg (int a) {
2 if (a > 0) return −a;
3 else return a;
4 }

1 void loopf ( int n) {
2 int i=0, j=0;
3 while ( i < n) {
4 j = j + 2 ∗ i ;
5 i++;
6 }
7 assert (n>= 0 &&
8 j < 2∗n);
9 }

Fig. 1: Motivating Examples. The complex functionbar is not
described.

constraint solvers [15], [13] to efficiently select new
regions to explore.

• The SAR method with inertial refinement is imple-
mented in the F-SOFT verification framework for C pro-
grams [19]. Experimental results on real-life benchmarks
show that the method explores fewer regions than a state-
of-the-art refinement technique [4], and outperforms the
previous approach on larger benchmarks.

II. OVERVIEW
We illustrate the key ideas of inertial refinement for checking

the functionfoo in Fig. 1: foo contains a call to a complex
function bar (line 5) and two assertions at lines 7 and 12,
respectively. Consider the assertion (sayA) at line 7 infoo:
to check this assertion, SAR first computes anerror condition
(EC) under whichA is violated. This EC, sayφ, represents
the feasibility condition for all program executions infoo
which terminate atA and violateA. To computeφ, our
method exploresfoo locally (cf. Sec. III) by performing
a precise data-flow analysis: a form of forward symbolic
execution [20] with data facts being merged path-sensitively
at join nodes [21], [3]. The analysis propagates data of form
(ψ, σ) throughfoo: ψ is the path condition at the current
program location (summarizing the set of incoming paths to the
location symbolically) andσ is a map from program variables
to their path-sensitive (symbolic) values at the current location.

To avoid exploringbar at line 5, the method performs
structural abstraction ofbar during propagation: the effect
of bar is abstracted by a tuple(πb, [retbar 7→ λb,ret]), where
the placeholder (essentially, a free variable)πb abstracts the
set of paths throughbar symbolically, and the placeholder
λb,ret abstracts the return value ofbar. For example, the
value ofx computed at line 6 (obtained by merging data from
the branches of the conditional at line 3) isx1 = ite(p 6=
0 ∧ πb, λb,ret, c) and the path condition isψ′ = ((p 6=
0 ∧ πb) ∨ (p = 0)). The ECφ computed forA at line 7 (ψ′

conjoined with the negated assertion) isφ = ψ′ ∧ (x1 ≤ c).
Note thatφ depends on the two unconstrained placeholdersπb

and λb,ret corresponding tobar. Now, φ is checked with a
constraint solver, e.g., [15], [13] using structural refinement.
We will see how the placeholderπb plays a crucial role to
avoid exploring paths intobar.

Checkingφ with the solver may return a witness (lines 2-
5-6-7) that includes a call to the complex functionbar. This

witness relies on the abstraction ofbar by πb andλb,ret and
hence may be spurious, e.g., ifbar returns a value always
greater thanc. To check if the witness is an actual one,
refinement will expandπb andλb,ret with the corresponding
precise summaries frombar. Note, however, that line 4 sets
x to c, and hence an actual witness forφ exists insidefoo
(line 2-3-4-6-7) that does not require exploringbar. However,
this is not apparent fromφ syntactically and a naive SAR

checker will perform spurious refinement by expanding both
the placeholders.

More sophisticated refinement procedures may also suc-
cumb to spurious refinement. For example, the state-of-the-
art structural refinement strategy (referred to asDCR) [4],
[3] uses the satisfying model from the constraint solver to
compute a set of irrelevant placeholders, to avoid expanding
them subsequently. SinceDCR is guided only by the structure-
unaware solver, it may expand placeholders spuriously evenif
a witness exists in the current regions. For example, suppose
the solver generates the following model for the ECφ above:
(p 6= 0) and (πb = true). DCR analyzes the expression
for φ guided by this model and concludes that bothπb and
λb,ret are relevant toφ being satisfiable. Therefore,DCR
must perform the costly expansion of both the placeholders.
Similarly, another structural refinement procedure [31] driven
only by models from a constraint solver may also explorebar
when trying to concretize an abstract counterexample.

In contrast, our inertial refinement (IR) procedure (cf.
Sec. IV) resists expansion and checks if a proof/witness to
φ exists within the currently explored region. To this goal, the
analysisblockspaths leading to the unexplored functionbar
by adding a constraint¬πb to φ and then checks for a solution.
If a solution is found, as in this case, the method is able to
avoid the cost of a spurious refinement. Otherwise,IR selects
a minimal set of new regions to explore, which may admit an
error witness (cf. Sec. IV).

Most bug finding approaches [4], [9], [32] statically unroll
the loops to a fixed depth, which may lead to several errors
being missed. Although loops may be also handled as tail-
recursive functions in SAR (as in [31]), conventional static
analysis [11] seldom does so. We propose a structural abstrac-
tion specific to loops, so that inertial refinement corresponds
to dynamicallyunrolling loop iterations in a property-driven
manner (cf. Sec. IV-A). As a result, our method can check
non-trivial assertions, e.g., the assertion at line 7 in theloopf
function in Fig. 1 is violated only whenn ≥ 3.

III. G ENERALIZED STRUCTURAL ABSTRACTION

We start with describing ourgeneralizedstructural abstrac-
tion, which forms the basis of our SAR method and may
abstract arbitrary programregions, as defined below.
Program Regions. A program regionR corresponds to a
structural unit of the program syntax, i.e., a function body, a
loop or a conditional statement. To formalize regions precisely,
we view a sequential C programP as a hierarchicalrecursive
state machine(RSM)M [1]. The RSMM consists of a set of
regions: each region contains a control flow graph, which in
turn consists of (i) a set ofnodes(labeled by assignments), (ii)
a set ofboxes(each box is, in turn, mapped to a region), and
(iii) control flow edges among nodes and boxes (labeled with
guards). Each region also has specialentry and exit nodes.
An unfolding [1] of M is obtained by recursively inlining
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SAR (ProgramP)
R := PartitionP into regions
foreach regionR ∈ R do

(ψR, σR,ΦR) := LOCSUMMARIZE (R)
Φ := HOIST(ΦR)
foreachφ ∈ Φ do

res := REF(φ)
/* Report witness ifres is SAT */

REF(φ)
while φ contains placeholdersdo

if CHECK (φ) = UNSAT then
return UNSAT

Pick a placeholderλ in φ
t = GETSUMMARY (λ)
φ := φ[λ 7→ t]

return SAT

Algorithm 1: A generic modular analysis algorithm SAR.

each box by the corresponding region. An edge from a node
to a box is said to be acall edge. A program regionR1 is
said toprecedeanother regionR2, if R1 contains a box that
maps toR2, i.e., control flow entersR2 on leavingR1. We
also say thatR2 succeedsR1 in this case. We assume that
assertions for property checking, e.g., dereference safety, array
bound violations, etc., are modeled as specialerror nodesin
the RSMM ; the reachability of error nodes implies that the
corresponding assertion is violated.

For example, the program fragment in Fig. 1 consists of
the following top-level regions: function bodiesfoo, neg
and loopf. Regionfoo contains two boxes mapped toif-
then-else(conditional) regionsC1 (lines 3-5) andC2 (lines
9-11); both regions succeed regionfoo. C1 andC2, in turn,
contain boxes mapped tobar and neg function regions,
respectively. Similarly, theloopf function region contains a
box corresponding to theloop body region (lines 3-6). For
ease of description, we will refer to an inlined instance of a
region in a box as a region also. In the following, we use the
standard program analysis terminology [30], [12], extended to
RSM regions in a straightforward manner. In the following, we
will assume that the regions corresponding to conditionalsare
inlined in the corresponding boxes; we will only differentiate
between function and loop regions.
Side-effects. For each program regionR, the side-effects
set M(R) denotes the set of program variables that may
be modified on executingR (together with its successors)
under all possible calling contexts. Theinputs to regionR
consist of the set of variables that are referenced inR. To
compute side-effects for programs with pointers, we assume
that the heap size is bounded (to handle dynamic allocation
and recursive data structures) and employ a whole-program
side-effect analysis [29], [31] to compute the side-effects.
Error Conditions. Given an error nodeeb in the program
RSM and a set of pathsT terminating ateb, the formula
representing the feasibility condition for the setT is said to be
an error condition (EC). In contrast to verification conditions
(VCs) [16], which express sufficient conditions for existence of
proofs, the satisfiability of ECs implies existence of assertion
violations. We say that an ECφ has a witness, ifφ has
a satisfying solution; otherwise, we say that the EC has a
proof. Note that an infinite number of ECs may be derived
from a locationeb (due to loops and recursion). Ourunder-
approximateanalysis checks only a finite subset of all the ECs
and therefore, guarantees only the soundness of bugs detected;
the proofs do not imply thateb is unreachable (cf. Theorem 1).
Structural Abstraction. Analyzing all program regions may

neither be feasible for a given program analysis nor necessary
for checking a given property. Structural abstraction enables a
property-driven modular analysis of programs while avoiding
the analysis of undesired regions, e.g., one or more nested
successor regions of a regionQ can be abstracted during
analysis ofQ. The structural abstraction of a regionR is a
tuple (πR, σR), where (i)πR is a Skolem constant(basically,
a fresh variable) summarizing the paths inR and (ii) σR is
a map with entries of form(v 7→ λv,R), wherev ∈ M(R)
is a side-effect ofR and λv,R is a Skolem constant which
models arbitrary modifications ofv in R. In the following,
the Skolem constantsπR and λv,R are jointly referred to as
placeholdervariables. We also refer to placeholders of form
πR as π-variables. The set of placeholders in the range of
σR are said todependon πR, and are denoted byDep(πR).
For example, the call tobar in the functionfoo in Fig. 1
(cf. Sec. II) is abstracted by the tuple(πb, [retbar 7→ λb,ret]),
whereλb,ret ∈ Dep(πb).

When the analysis encounters a call toR in a preceding
region Q, it conjoins the placeholderπR with the current
path conditionψ, updates the current value mapσ with σR,
and continues analyzingQ. If R is later found relevant to
an assertion inQ, the initial abstraction ofR is refined on-
demand. The abstraction has several advantages: first, it is
cheap (computation of side-effectsM(R) is done once for
the whole program); second, it allows on-the-fly refinement
using a summary ofR, which is computed only once, and
finally, it allows us to analyze programfragmentsin absence
of the whole program. Note that our formalization generalizes
the earlier approaches [31], [4] to handle all modular unitsof
a program, i.e., functions, loops and conditionals, uniformly.
As a result, SAR can perform a more fine-grained selection of
program regions to explore when checking an EC.

Alg. 1 presents a generic modular algorithm SAR for check-
ing assertions in a programP , having these phases:

• The algorithm first partitions the program into a set of
regionsR.

• For each regionR ∈ R, a procedure LOCSUMMARIZE

is used to compute alocal summary (by a forward data
flow analysis over program expressions [21], [3] or using
weakest preconditions [14], [16], [4]) while abstracting all
the successor regions ofR as above. The local summary
(ψR, σR,ΦR) consists of the predicateψR summarizing
the paths inR, the mapσR summarizing the outputs
(side-effects) ofR in terms of symbolic expressions over
inputs toR, and a set of error conditions (ECs)ΦR which
correspond to assertion violations inR.
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• The ECsΦR are local toR; in order to find violating
executions starting from the program entry function, these
ECs arehoisted [3], [7], [16] to the entry function of
the program by the HOIST procedure, which computes
weakest preconditions of ECs with respect to a bounded
set of calling contexts [30] to the regionR. Note that
HOIST may also use structural abstraction during back-
ward propagation [3].

• Finally, the procedure REF is used to check each hoisted
EC φ using structural refinement based on a constraint
solver, e.g., an SMT solver [13], [15]. REF proceeds
iteratively by choosing a placeholderλ in φ, expanding
λ using its summary expressiont (computed by the
GETSUMMARY procedure), and checking if the resulting
φ is satisfiable. The procedure REF terminates when the
solver finds the ECφ unsatisfiable (UNSAT) or ifφ does
not contain any placeholders and is satisfiable (SAT).

In this paper, we assume a partition of the program into only
function and loop regions, i.e., conditionals are inlined in the
predecessor regions. The details of the LOCSUMMARIZE , GET-
SUMMARY and HOIST procedures can be found elsewhere [3],
[21], [7], [16]; we will only concern ourselves with the REF

procedure, which is the prime bottleneck for the SAR method.
SAR is anunder-approximateanalysis, i.e., it analyzes only

a subset of all possible paths reaching an assertion violation.
Hence, it can only detect bugs soundly (cf. Theorem 1). SAR

can natively handle programs with arbitrary recursive functions
and loops: however, it may not terminate if an unbounded
number of iterations ofIR are needed during the check.
Example 1.Recall the program fragment shown in Fig. 1. Our
analysis first partitions the fragment into four regions:foo,
neg, loopf functions, and the loop body region (lines 3-6
in loopf). The procedure LOCSUMMARIZE then summarizes
each region, e.g., the summary offoo (shown below) consists
of path and side-effect summaries,ψfoo and σfoo, resp., and
a set of ECsΦfoo. To summarizefoo, the calls tobar and
neg are abstracted by placeholder pairs (πb, λb,ret) and (πn,
λn,ret) respectively.
ψfoo (ψ1 ∧ ψ2) whereψ1 = (p = 0 ∨ (p 6= 0 ∧ πb)),

ψ2 = ((x1 = c ∧ πn) ∨ (x1 6= c))
σfoo [x 7→ x1, y 7→ y1], wherex1 = ite(p 6= 0 ∧ πb, λb,ret, c)

andy1 = ite(x1 = c ∧ πn, λn,ret, 0)
Φfoo {Φ1,Φ2}; Φ1 = (ψ1 ∧ x1 ≤ c), Φ2 =(ψfoo ∧ y1 < 0)

All the ECs are then hoisted to the entry functions (foo and
loopf here): in this case, the ECs forfoo are already hoisted.
Finally, REF analyzes each ECφ in the entry function by
iteratively checkingφ and expanding placeholders.

Theorem 1:Let SAR compute an ECφ for an error location
l after hoisting. If REF(φ) returns SAT, then there exists a true
error witness tol.
Selective Refinement.In general, many placeholders in an
EC φ are not relevant for finding a proof or a witness, and
expanding them leads to wasteful refinement iterations along
with an increased load on the solver.Selectiverefinement,
therefore, focuses on selecting a subset of placeholders inφ
that are relevant to the property. This allows REF to terminate
early if there exist no relevant placeholders inφ. An additional
benefit of selective refinement is that, in many cases, recursive
programs can be analyzed without unbounded expansion of
the placeholders. We now present a new strategy for selective
refinement, calledinertial refinement.

IV. I NERTIAL REFINEMENT

The key motivation behind inertial refinement (IR) is to
avoid exploring irrelevant regions during modular analysis,
based on the insight that most violations involve only a small
set of program regions. To this goal,IR first tries to find a
witness/proof for an ECinside the program regions explored
currently, sayR. If IR is unsuccessful, thenR is inadequate
for computing a witness or a proof. Therefore,IR augments
R by a minimal set of successor program regions, which may
admit a witness. The new regions are selected efficiently based
on an analysis of why the current region setR is inadequate.
In order to describe the details ofIR, we first introduce the
notion of region blocking.
Region blocking.Recall (cf. Sec. III) that SAR may abstract a
regionR (when analyzing a predecessor regionQ) in form of a
tuple (πR, σR), whereπR is the path summary placeholder of
R andσR maps output variables inR to unique placeholders.
A region blockingconstraint (π-constraint, in short) for aπ-
variableπR is defined to beφπ = ¬πR. Assertingφπ when
checking an ECφ in the regionQ, forces the solver to find
witnesses byblocking the program execution paths that lead
from Q to R.

Figure 2 shows theIR procedure in form of a flow diagram.
IR proceeds by iteratively adding or removingπ-constraints,
until the result is satisfiable (SAT) or unsatisfiable (UNSAT). In
order to resist exploration of irrelevant regions, the procedure
first assertsπ-constraints (Φπ) for all π-variables in the current
EC φ. If φ remains satisfiable even after addingΦπ, the
procedure returnstrue, implying that a witness forφ exists
that does not involve traversing the blocked regions. Otherwise
(the constraints are UNSAT), a subsetφπ of π-constraints
is computed, whose removal leads to a satisfiable solution.
Note that the setφπ corresponds to a set of blocked regions
whose exploration may lead to the discovery of a concrete
witness toφ. If the setφπ is empty, then no witness forφ
exists (see Theorem 2), andIR returnsfalse. Otherwise,IR
performs exploration of the regions corresponding toφπ in
the following way. First, the paths to the blocked regions are
exposed by removing allπ-constraints inφπ. Then,IR refines
φ by expanding the placeholdersVπ in φπ and their depen-
dent placeholdersDep(Vπ) with the corresponding summary
expressions (cf. Sec. III).

The key step in theIR procedure is that of computing
φπ ⊆ Φπ efficiently. To this goal, we employ the notion
of a correction set(CS) of a set of constraints [24]: given
an unsatisfiable set of constraintsΨ, a correction setψ is a
subset ofΨ such that removingψ makesΨ \ψ satisfiable. To
obtain efficient inertial refinement, i.e., explore a small set of
blocked regions, we are interested in aminimal correcting set
(MCS), none of whose proper subsets are correction sets. The
notion of correction sets is closely related to that ofmaximal
satisfiable subsets(MSSs) [24], which is a generalization of
the solution of the well-known Max-SAT problem [24]. An
MSS is a satisfiable subset of constraints that is maximal,
i.e., adding any of one of the remaining constraints would
make it UNSAT. Thecomplementof an MSS consisting of
the remaining set of unsatisfied constraints is an MCS. For
example, the UNSAT constraint set((x), (¬x∨y), (¬y)) admits
three MCSs,(x), (¬x∨y), and(¬y), all of which areminimum.
Note that many approaches utilize unsatisfiable cores [27]
during refinement, e.g., for proving infeasibility of abstract
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Compute the set VΠ of
Add region-blocking π-constraints

Is φ ∧ Φπ

SAT ?

Compute the set φπ of π-constraintsIs φπ

empty?

Let Vπ be the set of π-vars in φπ

Return

Return

π-variables in the EC φ

true

false

whose removal leads to satisfiability

NO

YES

YES

NO

Remove the constraint set φπ

Φπ for variables in the set VΠ

Refine φ by expanding Vπ ∪ Dep(Vπ)

Fig. 2: Flow diagram for checking ECφ using inertial refinement.

counterexamples with predicate abstraction [18] or procedure
abstraction [31]. In contrast to the above approaches whichtry
to prove infeasibility in the concrete model (using cores),we
try to obtain constraints (MCS) that allow a witnessto appear
in the abstract model. The notion of MCSs is also related
to computing aninterestingwitness to a satisfiable temporal
logic formula by detecting vacuous literals [22]. Note that
computing MCSs is NP-hard and hence makesIR expensive
as compared to the light-weightDCR method [4] (cf. Sec. II),
which only needs a model from the solver. However, we expect
that exploring fewer regions inIR will compensate for the
extra cost.

An MCS for a set of constraintsΦ can be computed by
obtaining all the proofs of infeasibility (UNSAT cores) ofΦ
and then computing the minimalhitting literal set for this
set of UNSAT cores [24]. Many modern constraint solvers,
e.g., [15], allow for constraints with weights and solving Max-
SAT (MSS) problems natively. Therefore, we can compute
MCSs of π-constraints using these solvers by first asserting
π-constraints with non-zero weights and then computing the
subset of unsatisfiedπ-constraints in the weighted Max-SAT
solution. In our experiments, however, we used the previous
method of computing hitting sets: Max-SAT results obtained
from [15] were unfortunately erroneous and not usable.

The IR procedure can be implemented efficiently using
an incremental SMT solver (e.g., [15], [13]). These solvers
maintain an internalcontext of constraints to provide in-
cremental checking; constraints can be asserted or retracted
iteratively from the context while checking, and the solveris
able to reuse the inferred results effectively from the previous
checks. Alg. 2 shows the pseudo-code of the inertial refinement
algorithm REF-IR using such an SMT solver. REF-IR replaces
the naive REF procedure in the overall SAR algorithm (cf.
Sec. 1). The description uses the symbolctx to denote the
context of the incremental solver and the methods ASSERT

and RETRACT [15] are used for adding and removing con-
straints to the context incrementally. The procedure starts at
the BEGIN block by asserting the current ECφ in the solver’s
context. Depending on whether the context is satisfiable or
not, the control switches to the locations labeled byBLOCK
and EXPAND respectively (cf. Alg. 2). In theBLOCK case,
the region-blocking constraintsΦπ are asserted first. If the

resultant context is satisfiable, REF-IR returns with SAT result.
Otherwise, the control switches to the UNSAT label. Here, a
MCSφπ of π-constraints is computed to check if removing any
π-constraints may admit a witness toφ. If the MCS is empty,
no witness is possible and the procedure returns UNSAT.
Otherwise, all theπ-constraints in the MCS are retracted and
the ECφ is refined by expandingπ-variablesVπ in φπ together
with their dependent variablesDep(Vπ).

Theorem 2:The inertial refinement procedure REF-IR re-
turns SAT while checking an ECφ only if there exists a
concrete witness to the error node forφ.
Example 2.Recall the summary of the procedurefoo (Fig. 1)
presented in Example 1. The ECφ for the assertion at line 12
is (ψfoo ∧ y1 < 0), wherey1 = ite(x1 = c∧πn, λn,ret, 0) and
x1 = ite(p 6= 0 ∧ πb, λb,ret, c); φ contains twoπ-variablesπb

(bar) and πn (neg). (BEGIN ) Initially, φ is satisfiable, and
REF-IR (Alg. 2) switches to theBLOCK label.
(BLOCK ) The REF-IR procedure first blocks bothπb andπn

(addsπ-constraints¬πb, ¬πn), and checks for a solution. No
solution is found since all feasible paths infoo contain a
function call. Therefore, the control switches toEXPAND.
(EXPAND) Here, REF-IR computes an MCSφπ, which is
(¬πn). Sinceπn corresponds to functionneg, IR must explore
neg to find a witness. The procedure then removes¬πn

and refinesφ by adding summary constraints forπn and the
dependent placeholderλn,ret. These constraints (πn = true
andλn,ret = ite(x1 > 0,−x1, x1) respectively) are generated
by analyzing theneg function (cf. Fig. 1).
(BEGIN ) On checkingφ again after expansion, the solver
finds a witness (lines 2-3-4-6-7-8-9-10-12), with say,c = 1,
p = 0, x1 = 1, y1 = −1. REF-IR now checks if the witness
is an actual one (BLOCK label) by blocking allπ-variables.
Note thatπb is the only π-variable remaining inφ and the
correspondingπ-constraint is already asserted. Therefore, REF-
IR concludes that the witness is an actual one and terminates.
Note how REF-IR avoids the redundant expansion of the
complex functionbar, guided both by the abstract ECφ as
well as the modular program structure. Also, the efficiency of
REF-IR crucially depends on the computed MCSs.

A. Example: IR with Loop-specific Abstraction

Consider the functionloopf in Fig. 1. The assertion at
line 7 checks if on loop exit, the value ofj is less than2 ∗ n,
and is violated only whenn ≥ 3. To see this, consider the data
computed at the loop exit (line 7) by a symbolic execution [20]
of loopf after few initial iterations:(0) (0 6< n, j 7→ 0; i 7→
0), (1) (0 < n∧ 1 6< n, j 7→ 0; i 7→ 1) (path condition reduces
to n = 1), (2) (n = 2, j 7→ 2; i 7→ 2), (3) (n = 3, j 7→ 6; i 7→
3), respectively. Note that the value(3) violates the assertion
at line 7, while(0), (1) and (2) do not.

In general, a violation like above may require an arbitrary
number of iterations of the loop, depending on one or more
inputs. Many bug finding methods [9], [4], [32] unroll all
program loops to a fixed depth, and may miss bugs like
these. The approach in [31] transforms loops to tail-recursive
functions; however, conventional static analysis seldom does
so. In contrast, we show how inertial refinement can be used
to perform adynamicproperty-driven unrolling of loop regions,
with the help of an abstractionspecificto loop regions. Note
that methods based on refining predicate abstractions [5], [18]
may detect this violation by refinement; however, constructing
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REF-IR(ctx, φ)
BEGIN: ASSERT (ctx, φ)

if ctx is satisfiablethen
goto BLOCK

else
goto EXPAND

BLOCK: VΠ := set ofπ-variables inφ
/* Assertπ-constraints */
Φπ := ∧{(v = false) | v ∈ VΠ}
ASSERT(ctx, Φπ)
if ctx is satisfiablethen

return SAT
else

goto EXPAND

EXPAND: φπ := MCS(ctx)
if φπ = false then

return UNSAT
/* Witness may exist */
RETRACT (ctx, φπ)
/* Select placeholders to refine */
Vπ := Variables inφπ

V ′

π := Vπ ∪Dep(Vπ)
foreach λ ∈ V ′

π do
t = GETSUMMARY (λ)
φ := φ[λ 7→ t]

goto BEGIN

Algorithm 2: The REF-IR procedure for checking an ECφ with an incremental SMT solver using inertial refinement. The
variablectx denotes the context of the solver.

and refining predicate abstractions is expensive. In contrast,
SAR with cheap abstraction and inertial refinement using loop
summaries can detect such violations at a much lower cost.

SAR first computes a local loop body summary,(io <
n, [j 7→ jo +2∗ io; i 7→ io +1]), wherejo andio represent the
values ofj and i respectively at the beginning of the body.
Recall that SAR first checksloopf by skipping the loop
region with an abstraction of form(ψ, σ); in this case, however,
the abstraction isspecific to the loop region and allows
dynamic loop unrolling. More precisely, (1)ψ = (π0 ∨ π1+),
where π0 = (n ≤ 0) and π1+ are path conditions after
zero or ≥ 1 loop iterations, respectively, and the map (2)
σ = [j 7→ ite(π0, 0, λj,1+); i 7→ ite(π0, 0, λi,1+)], whereλj,1+

andλi,1+, respectively, are the values ofj andi obtained after
≥ 1 loop iterations (i = j = 0 after zero iterations). Using the
above abstraction, the symbolic data obtained at the assertion
at line 7 is(ψ, σ) so that the ECφ is
φ = ((π0 ∨ π1+) ∧ n ≥ 0 ∧ ite(π0, 0, λj,1+) ≥ 2 ∗ n))

The procedure REF-IR first checksφ by blocking all the loop
iterations, i.e., it adds aπ-constraint¬π1+. The solver checks
(φ ∧ ¬π1+) and returns UNSAT with the MCS¬π1+. As a
result,IR removes¬π1+ and refinesφ by adding summary
constraints forπ1+, λj,1+ andλi,1+, i.e.,π1+ = (n = 1∨π2+),
λj,1+ = ite(n = 1, 0, λj,2+), etc.. IR again proceeds it-
eratively by blockingπ2+, π3+, and so on, obtaining MCSs
and refiningφ. A satisfiable solution is obtained in the fourth
iteration (with π4+ blocked), which corresponds to a true
violation witness.
Note that if a witness requires a large number of loop un-
rollings, refinement usingIR is inefficient. One solution is
to expand multiple loop iterations simultaneously. However,
we observed that in many real-life programs having input-
dependent loops, few loop unrolls are sufficient for finding
bugs; inertial refinement is effective in such cases.

V. EXPERIMENTAL EVALUATION

We implemented the modular analysis SAR (cf. Sec. III) in
the F-SOFT [19] framework for verification of C programs.
The framework constructs aneager memory model for C
programs [19] by bounding the heap, flattening aggregate data
types into simple types (up to depth 2 for our experiments),
and modeling the effect of pointer dereferences by an explicit

case analysis over the points-to sets for the pointer variables.
Also, F-SOFT instruments the program for properties being
checked, e.g., dereference safety (N), array bounds violation
(A) and string related checks (S). Therefore, SAR is able to
check multiple types of properties in an uniform manner in the
F-SOFT framework. The initial model is simplified by the tool
with constant folding, program slicing and other light-weight
static analysis, and is then provided as an input to the SAR

procedure.
We used a wide collection of open-source and proprietary

industrial examples for evaluation: L2 is a Linux audio driver
(ymfpci.c), L9 implements a Linux file-system protocol
(v9fs), M1, M3 are modules of a network controller software,
N1, N2 belong to a network statistics application, F consists of
the ftp-restart module from thewu-ftpd distribution,
and Spin corresponds to the SPIN model checker (without the
parser front-end). The analyzed benchmarks range from LOC
sizes of 1K to 19K. Our analysis focused on discovering known
bugs efficiently.

Our implementation of SAR computes summaries and ECs
for all program regions locally (cf. Alg. 1), stores them
efficiently by representing terms as directed acyclic graphs
(DAGs) and manipulates them using memoized traversal algo-
rithms. The local ECs were hoisted up to the entry function and
checked using the YICES SMT solver [15] in an incremental
manner with refinement (cf. Alg. 1). To precisely model non-
linear operators, e.g., modulo, which occur in many of our
benchmarks, we encode all variables as bit-vectors.

We evaluated four structural refinement schemes: (i)Naive:
expand all placeholders in the EC, (ii)DCR: use don’t-cares
for expansion, expand onlyone selectedplaceholder in each
iteration (cf. Sec. II, similar to the state-of-the-art Calysto
algorithm [4]), (iii) DCR+, same asDCR except expandall
selectedplaceholders (setV ′

π in Alg. 2) in each iteration, and
(iv) IR, the new inertial refinement scheme. In our experi-
ence, expanding all the selected placeholders (set-expansion)
in each refinement iteration converges much faster than one
placeholder at a time (one-expansion), and, therefore, is our
default mode forNaiveandIR schemes. The experiments were
done on a Linux 2.4Ghz Core2Duo machine, with timeout of
1 hr and 8GB memory limit.

Figure 3 shows the experimental comparison between the
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Bm LOC #EC Naive DC-based IR
DCR DCR+

#R T #R T #R T #R T
F-A 1K 48 162 73 75 282 58 71 51 78
F-N 1K 18 78 12 63 71 32 11 51 17
F-S 1.3K 54 100 2044 - TO 27 844 17 2359

N1-N 1.2K 77 4 65 2 62 2 62 0 61
N2-S 1.4K 230 7 9 3 11 3 10 1 9
L2-A 5.4K 135 550 27 292 58 304 29 450 28
L9-A 6K 314 978 279 - TO 549 589 257 162
L9-N 6K 124 721 22 114 139 144 15 205 27
M1-A 6K 356 906 59 - TO 527 64 408 87
Spin 9K 233 662 2173 - TO 295 2018 192 1472
M1-S 12K 196 800 68 338 124 354 62 283 57
M3-S 19K 419 - TO - TO 253 1599 221 1334

Fig. 3: Experimental comparison of structural refinement schemes:(i) (Naive) without any selection of placeholders, (ii)DCR [4] (iii) DCR+

with set-expansion and (iv) the newIR scheme. Benchmarks (Bm) are named in ”Name-Checker” format, where Checker is either A (array
bounds), N (NULL dereference) or S (string checker). LOC shows the lines of code analyzed post-simplification. #EC = the number of ECs
checked for the benchmark. #R denotes the number of regions expanded. Time out (TO) of 3600s. Memory limit 8GB. Best figures are in
bold.
various structural refinement techniques. The results confirm
that structural abstraction methods scale to industrial bench-
marks while retaining precision: many of these examples can-
not be handled by other techniques, e.g., based on monolithic
BMC [9] and predicate abstraction. We report the total time (T)
including the summary computation and EC checking times.
For each benchmark, we report the total number of regions
(#R) expanded during the run. Note that ECs may have either
a proof or a witness, and many of them may be checked
without any refinement. Also, the set of regions explored (#R)
may include the same function under multiple contexts. The
results show thatDCR+ andIR clearly outperform the naive
refinement scheme, which time-outs on the largest example
M3-S, implying that selective refinement is essential. However,
we observe thatDCR time-outs in many cases where evenNaive
with set-expansion finishes. In the following, we compareDCR,
DCR+ andIR systematically.
(DCR vs DCR+). SinceDCR performs one-expansion, it calls
the solver large number of times. As a result, it time-outs
on 40% of the benchmarks, whileDCR+ finishes in time,
showing thatDCR+ converges much faster thanDCR. However,
in most cases whereDCR finishes, it expands fewer regions and
variables thanDCR+, due to one-expansion.
(IR vs DCR). DCR time-outs on many benchmarks, especially
the bigger ones, due to one-expansion, whereasIR finishes.
The results show thatIR outperformsDCR [4] in terms of
run-times on all benchmarks. To permit a fair comparison, we
augmentDCR with set-expansion (DCR+) and compare with
IR below. Note, however, that for benchmarks L2-A and L9-
N, DCR does expand fewer regions thanIR. We discuss this
below.
(IR vs DCR+). Both these approaches use set-expansion and
finish on all benchmarks. We observe that, in most cases,
IR expands fewer regions thanDCR+, showing that inertial
refinement is indeed useful, and that many properties can be
checked while restricting to a smaller region set. For example,
benchmarks N1-N and N2-S show the effectiveness ofIR: in
case of N1-N,DCR+ needs to perform two expansions, while
IR doesn’t need any expansions. On an average,IR expands
about 20% fewer (54% in the best case) regions thanDCR+.
Moreover,IR outperformsDCR+ in terms of run-times on

bigger examples (e.g. Spin, M1-S, M3-S), in spite of being
more computationally expensive (requires computing MCSs).
SinceIR expands fewer regions thanDCR+, we believe that
the improvement will be more dramatic on larger benchmarks.

On a few examples (F-N, L2-A and L9-N), however,IR
expands more regions thanDCR+. This is becauseIR depends
crucially on MCSs generated during refinement, which may
not be optimal; in these examples, non-optimal MCSs led
to exploration of irrelevant program regions. We believe that
using more sophisticated MCS computing algorithms [24],
[25], based on native MAX-SAT solving inside a constraint
solver (as opposed to our method of computing hitting sets of
UNSAT cores, cf. Sec. IV) will lead to faster computation of
MCSs and hence improve the performance significantly.

We were unable to compare thoroughly with the previous
work Calysto [4], [3], since it is not available publicly andthe
memory models used by F-SOFT and Calysto are different.
However, the refinement scheme in Calysto is similar toDCR
with one-expansion; in our experience, set-expansion is more
powerful since the total number of SMT solver calls are
reduced. Refinement based on counterexample-driven analysis
of the concrete model [31] as opposed to abstract models is
orthogonal to our approach; however, these approaches can
also benefit from inertial refinement.

VI. RELATED WORK

Modular methods for sequential programs have been in-
vestigated extensively: most techniques perform an over-
approximate analysis to obtain proofs of assertion validity
via abstract interpretation [11], [12]. In contrast, our focus is
on modular bug finding methods, which perform anunder-
approximate program analysis [12]. Taghdiri and Jackson
proposed a method based onprocedure abstraction[31] for
detecting bugs in Java programs. To analyze a caller function,
the method automatically infers relevant specifications for all
the callee functions: it starts from empty specifications, and
gradually refines them using proofs derived from analyzing
spurious counterexamples in the concrete program model.
Babic and Hu introduced thestructural abstractionmethod-
ology in the tool Calysto [4], [3] for analyzing large-scaleC
programs. Again, the method analyzes the caller by abstract-
ing the callees with summary operators (placeholders). When
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checking abstract verification conditions (VCs) having these
placeholders, structural refinementexpandsthe placeholders
with the corresponding summaries derived from the callees.In
contrast to [31], structural refinement avoids the potentially
expensive analysis of the concrete model: placeholders are
selected by analyzing the abstract VC using adon’t-care
analysis of the abstract counterexample [4]. Both the above
approaches [31], [4] perform refinement based purely on the
counterexamples produced by the solver, which is obliviousof
the program structure, and hence may explore new program
regions even if a witness is realizable in the current regions.

PREfix [6] performs modular bug detection using path-
enumeration based symbolic execution [20] to compute
bottom-up summaries. These summaries only model partial
procedure behaviors and the method may succumb to path ex-
plosion. In contrast, we compute precise summaries effectively
using a merge-based data flow analysis [21], [3], and employ
SAR to explore all program paths relevant to the property
in an incremental fashion. The tool Saturn [32] performs
bit-precise modular analysis for large C programs; however,
the analysis is not path-sensitive inter-procedurally, and leads
to infeasible witnesses. Chandra et al. [7] employ property-
driven structural refinement to incrementally expand the call
graph of Java programs in the presence of polymorphism, to
avoid an initial call graph explosion. The ESC/Java tool [16]
introduced verification condition (VC) generation based on
intra-procedural weakest precondition [14] computation but
requires pre/post specifications to reason inter-procedurally.
In contrast, inter-procedural VCs are generated automatically
in our approach using structural abstraction (cf. Sec. III).
Compositional symbolic execution [2] also uses structural
abstraction of functions with uninterpreted functions to make
coverage-oriented testing more scalable: inertial refinement can
also benefit these methods. In context of symbolic trajectory
evaluation, Chockler et al. [8] present a method to refine circuit
node placeholders using the notion ofresponsibility.

VII. C ONCLUSIONS

We presented a modular software bug detection method
using structural abstraction/refinement, based on analyzing
programregionscorresponding to modular program constructs.
A new inertial refinement procedureIR was proposed to
address the key problem of structural refinement:IR resists
the exploration of abstracted program regions by trying to
find a witness for an assertion inside the program regions
explored previously. The procedureIR implemented in the
F-SOFT framework scales to large benchmarks and is able
to check properties by exploring fewer program regions than
the previous don’t-care based refinement technique [4]. Future
work includes combiningIR with other schemes, e.g.,DCR, for
more effective placeholder selection. Methods to dynamically
expand the heap during analysis will also be investigated.
Partitioning a program automatically for efficient SAR is also
an interesting open problem. Finally, we plan to perform a
detailed usability study of the SAR method for finding bugs in
large benchmarks.
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