Path Predicate Abstraction
by Complete Interval Property Checking

Joakim Urdahl, Dominik Stoffel, Jorg BormanhrMarkus Wedler, Wolfgang Kunz
Dept. of Electrical and Computer Eng., U. of Kaiserslaut€&ermany *Abstract RT Solutions, Munich, Germany

Abstract—This paper describes a method to create an abstract possibly be supported by new generation equivalence chgcki
model from a set of properties fulfilling a certain completeress tools it is apparent that chip-level simulation at the RTLI wi

criterion. The proposed abstraction can be understood as @ath — gy pe needed and will contribute substantially to the rayle
predicate abstraction. As in predicate abstraction, certain concrete verification costs

states (calledimportant states) are abstracted by predicates on ; . . .
the state variables. Additionally, paths between importab states ~ 1he techniques proposed in this paper intend to make a
are abstracted by path predicates that trigger single trangions step toward proving global properties for an RTL design im-

in the abstract model. As results, the non-important_ statesare plementation. We will prove properties that span over rplti
abstracted away and the abstract model becomes time-abstt SoC modules and which are significantly more complex than

as it is no longer cycle-accurate. Transitions in the abstret hat b d with ilabl tv check o
model represent finite sequences of transitions in the conete what can be proved with available property checkers. Qur

model. In order to make this abstraction sound for proving approach is not based on boosting the performance of the
liveness and safety properties it is necessary to put certai proof engines. Instead we propose a methodology to create
restrictions on the choice of state predicates. We show that design abstractions based on sets of properties fulfilling a
Complete Interval Property Checking (C-IPC) can be used to certain completeness criterion

create such an abstraction. Our experimental results inclde Th d hi the sianifi t ad
an industrial case study and demonstrate that our method can € proposed approach leverages the significant advances

prove global system properties which are beyond the scope of that have been made over the last years in develapistem-
conventional model checking. atic procedures of writing properties for comprehensively cap-

turing the behavior of a design. In particular, propertyattieg
formulations such as in Symbolic Trajectory Evaluation E$T
Even after years of progress in the area of formal properye very suitable for a systematic approach [2], [3], [4]EST
checking, simulation is still the predominant technique iamploys a specific style of formulating properties making
industrial practice for verifying the hardware of Systeams- it natural to compose properties into a more comprehensive
Chip (SoCs). There are at least two reasons for that: firdgsign description which is successfully used in indulstria
formal techniques provide a rigorous correctness prooy onpractice. This paper is based on a related industrial ptpper
for a selected piece of design behaviour. Ensuring sucH locaecking formulation calledinterval Property Checking
correctness is considered valuable, especially in corasesx (IPC) [5], [6]. IPC stands for proving so calledperation
of a design. However, in many industrial flows only partpropertiesor interval propertieson a bounded circuit model
of the overall design behavior are covered by properties abdsed on satisfiability (SAT) solving. From a computational
confidence in the correctness of the overall design largély sperspective it can therefore also be seen as a variant of
depends on simulation examining global input stimuli to thBounded Model Checking (BMC) [7] while STE is more
design and their output responses. Sophisticated metirodatlated to symbolic simulation and has a different way of rep
gies have been developed to achieve full design coveragerbgenting and processing state sets based on Binary Decisio
local properties according to rigorous completeness oggtriDiagrams (BDDs). Moreover, in this paper we state a rigorous
as we will consider them in this paper. This can indeetbmpleteness criterion for sets of IPC properties [8], [B]ak
contribute to replace simulation for SoC module verificatiois a prerequisite for the proposed abstraction. Neverskele
by formal techniques. However, even in such a scename believe that the proposed methodology and formalisms
simulation will still be needed for chip-level verificatiomhis could also be adapted to property checking formulationeroth
is the second reason for the prevailing role of simulation than IPC, in particular to STE and related approaches.
SoC hardware verification. Formulating and proving global Abstraction in model checking is almost as old as model
system properties spanning across different SoC modulesabrecking itself. The most popular abstraction techniquss c
the Register-Transfer-Level (RTL) of an SoC is clearly b&yo be classified in being based on localization reduction [1@] a
the capacity of current tools. As an alternative more viabl@edicate abstraction [11]. There is tremendous progmess t
than proving global properties at the RTL we may resort fategrate these abstractions into algorithms that auticalbt
system-level verification based on abstract design dea&mgp search for an appropriate abstraction such as [12], [14]. [1
as they are supported by languages like SystemC [1]. Houch techniques contribute substantially to increasing th
ever, unless the design refinements from these high levelsstmpe of model checking to designs with several hundred stat
lower implementation levels become fully automated and caariables. This is often adequate for proving propertieSoc

|. INTRODUCTION

module verification as described above. However, if desigasaluation of a predicate; to the n-th state in a sequence;
with thousands of state variables have to be handled and chipx{oj,n) is a sequence predicate of lengti-1).
level properties must be proved on the RTL additional cotecep The usual Boolean operatovs A, —, = are also applicable
for even stronger abstractions are required. to I-sequence predicates. llfax is the largest length of all

In this paper we propose to create an abstraction basstjuence predicates in a Boolean expression built witrethes
on complete sets of IPC properties. This means as a startoggrators, then the value of the expression is defined onmly fo
point of our approach we assume that individual SoC modulessequences with lengtim > I ax
have first been verified using IPC and a complete set ofWe also define a concatenation operatiorior |-sequence
properties is available. In [15] so callethndo-objectsvere predicates:
proposed as abstract but still cycle-accurate design igéscrs
obtained from IPC properties. In contrast, the abstraction
proposed here is time-abstract and is referred to gmth This predicate evaluates to true for all sequences thahbegi
predicate abstractionlt leads to sound models for verifyingwith a sequence of lengthcharacterized by, and continue
both safety and liveness properties if certain restriction the with a sequence of lengtk characterized byy, where the
state predicates are fulfilled. In Section Il we first introdu last state in thé-sequence is the first state in tkesequence.
basic notations. Section Il introduces the proposed abtstm A speciall-sequence predicate calledy (17) is defined to
and shows that it can be used to prove safety and livenessluate to true for every sequermeof lengthl.
properties which are also valid on the concrete model. Timen, Together with the transition relation of the Kripke model,
Section IV we explain how this abstraction is created thtougn |-sequence predicate becomesl| grath predicate
the IPC methodology. In Section V we present experimental |

results also including an industrial case study. () =R ((S0,51,.-,9)) = 0((S0,51,--,9)) A A T(5-1,5)
i=1

0] ® 0k = 0] Anex{ o,)

II. NOTATIONS

A Kripke model is a finite state transition structure We define the general path predicapath

[
(S1,R,AL) with a set of state§, a set of initial state$ C S, ispath((so,s1,....5)) = A T(s_1.S
a transition relatiorRC Sx S, a set of atomic formula8, and Pati{(=0,,...9)) i/:\l (8-1,8)

a valuation functiorL : A— S, . " S
It represents an unrolling of the transition relation ito

We considerstate predicatesn(s), S(s), X(S)’. Z(s), Y(S), time frames and evaluates to true if theequence given as
that are evaluated for any concrete statén Kripke models
|tf<, argument is a valid path in the Kripke model.

derived from Moore FSMs the state variables and inpu
variables may serve as atomic formulas. We may distinguish I1l. PATH PREDICATE ABSTRACTION
between the two kinds of state variables in our notation. TI'Ae
original state variablesare denoted by;, theinput variables “~
of the original Moore FSM byx;. If S(s) is expressed only In path predicate abstractiowe consider a concrete Kripke
in terms of input state variables then the predicate dessrignodel(S,1,R A,L) and an abstract Kripke model denoted by
an inputtrigger condition denoted byX(s). If §(s) is ex- (SI,RAL). The two are related to each other based on a
pressed only in terms of original state variables then wéewrimapping ofimportant stateof the concrete model to abstract
Z(s). Y(s) denotes output values of the Moore machine in gfates and a mapping &hite paths between important states
states. T(s,g) is the characteristic function of the transitiorfO abstract transitions.
relationR. Important states are identified and characterized usirig sta
An |-sequence is a sequence dft 1 stateg, S, .., S). predicateq);(s). The vector of important state predicate val-
An |-sequence predicaté™) = 0((So,S1,...,5)) is a Boolean Ues,(N1(s),N2(s),...), defines an abstract state value for every
function characterizing a set dfsequencest is called the concrete states. This is the abstraction functiorg(s) :=
length of the predicate. (n1(s),nz2(s),-..) mapping a concrete state to an abstract
Note that we allow an|-sequence predicate to be apstate. The sefA of atomic formulas of the abstract Krlpke
plied also to a longer sequence, i.e., to ERsequence model comprises one state variabjéor every important state
(S0,S1,---,S,--.,Sm) with m> |. The predicate is then evalu-predicaten;(s).
ated on thd-prefix (s,s1,...,5) of the sequence. In case we Definition 1: An important-state predicatgi(s) is a predi-
would like to evaluate the predicate on lasubsequence othercate evaluating tarue for a set of concrete important states
than the prefix we need to shift the predicate in time using ti&d tofaise for all other states. The disjunction of &li(s) is a

Abstract and Concrete Kripke Model

nextoperator defined as follows: state predicat®(s) =ni(s)Vnz(s) V... characterizing the set
of all important states. Finally, we require that thesatisfy
nex{oy,Nn)((So,St,---,S—1, Sy Sntdy---5Sntl)) the important-state requirementgated in Def. 3, below.

Definition 2: An operational |-pathbetween two important
states,ss € S and s € S, is an |-path (ss,s1,...,5-1,5)
The nex{oj,n) operator shifts the starting point of thewith | > 0 such that¥(sg) = true and W(sg) = true and

= 01((S,Sn+1,- -5 Snl)-

all intermediate states,...,§_1 are unimportant states, i.e., abstract formulaf | concrete formulaf
WY(s)=...=¥(g_1) =false. EFP EF(WAP)

The important state predicates cannot be chosen arbyjtraril EGp EG (W= p)
Instead, the choice must satisfy two constraints in orddreto AFp AF (WA p)
useful for the proposed abstraction. AG P AG(WY=p)

Definition 3: The important-state predicates are defined to
fulfill the following important-state requirements TABLE |

. . ABSTRACT FORMULAS VS CONCRETE FORMULAS
1) For all pairs of (concrete) important stategsse € S

between which there exists an operationahth, there .)
is anlmax such that every operationpath betweerss A, i.e., atomic formulas of the abstract model. The corre-
andse is of lengthlmax or shorter! < Imax. sponding formulaf from Table | for the concrete model

2) For every pair of important-state predicategs(s), 1as the formf = <CTL operator-(¥ A p) or the form
Ne(s), such that there exists a finite operational path= <CTL operator-(¥ = p) , wherep is the Boolean for-

(§...,8) with ng(8) = true andne(&) = true it holds mula obtained by replacing trfleﬂiﬁ p by theiAr corresponding
that there also exists an operational ph..,s') for Important-state predicatep:= p(&: :=na(s), & :=na(s),.-.).

everystates satisfyingna(s) = true and somestates’ If and only if the formulaf holds for a states & S of the
satisfyingne(s') = true . abstract model then the corresponding formtlaom Table |

The first constraint requires thatll cyclic paths in the holds for the corresponding concrete states, i.e., fortates

: . se Sof the concrete model such thet&="0(s).
concrete model intersect an important statee., there are) .
- . . Proof: We prove the theorem for the first row of Table I.
only finite operational paths between important states. T I o .
S e o itst it is proved that ifEF p holds in an abstract state then
second constraint is more difficult to understand: it ensur . .
. F (YA p) holds in all corresponding concrete states.
that abstract paths assembled from abstract transitions ca - ! ~
. If EF P holds in a statesy”in the abstract model then there
always be mapped to some concrete path, i.e., there are - A . .
. . L exists a finite path(%,%:,...,%&) of n abstract transitions
no false abstract paths. This requirement is “automagitall S VPO
. such thatpholds ins,. For every abstract transitiof$,5.+1),
fulfilled by the operation-oriented property checking teiciue . . : 0
introduced later according to Def. 4, there exists an operational fihigath
Definition 4: We consider an abstraction functi@n such t(r?éotﬁ’(ls’-) ,S,|§) ti;oarlr;] ?r:: |Onr1tp;1c:1rtta::r:)tni(r);(ériz&sata$%hSl:ﬁ:t
that the important-state predicatgs fulfill the requirements 0 P A

of Def. 3. Then, the transition relatiddC Sx Sof the abstract a(S1) = $§1. Then, according to requirement 2 of Def. 3,
o . for everyimportant states such thata(s) = § there exists
model is given by:

an operational-path (s 0,5 1,...,S,) from every important
R={(5%)/3l: 3(s0,S1,.-,5) : ispath((so,S1,. - -,9)) states o such thata(sp) = § to some important stats
Aa(so) =S Aa(s) =8 A-W(s)A.. . A-¥(5_1) such thata(s) = §:1. (Note thatl may be different for
every path.) The same argument holds for the important
In this definition,(so,s1,...,9) denotes an operational pathstates mapped tg,3. Hence, there must exist a finite path
of lengthl (i.e., | transitions and + 1 states) in the concrete(syo,%01,...,51.0,S1.1,---,S) from every important statey o
Kripke model. The transition relation contains all paigsS) such thata(soo) = $% to some important stats, such that
wheres’ands are head and tail of a path between importani(s,) = &. Sincep holds ins, and, therefore¥ A p holds
states such that all intermediate states are non-important in all important statess,; mapped tos;, this means that
Besides mapping a set of concrete states into a single (¥ A p) holds in all important statesyo mapped tosy.
abstract state as in in standard predicate abstraction, th&/e now prove that ifEF (W A p) holds in an important
proposed path predicate abstraction also maps a set ofatenceoncrete state thedF p holds in the corresponding abstract
paths into a single abstract transition. Therefore, wa'tefthe state. IfEF (W A p) holds in an important concrete statgthen
proposed abstraction as a “path predicate abstractionte,Ncthere exists a finite patfsy, s, . ..,S) from s to an important
however, that such path predicate abstraction only leadsciencrete state, such that(W A p) holds ins,. The path can
sound models since we require certain conditions on the stae split up into segments;,si;1,...,Sj—1,Sj) such that and
predicates to be fulfilled as stated in Def. 3. sj are important states and the intermediate stgtas..,sj_1
. are non-important states. According to Def. 4, for everyhsuc
B. Model Checking on the Abstract Model segment of the concrete path there exists an abstractticansi
In this section we show that the proposed abstraction cé,§j) € R such thata(s) = § and a(sj) = §j. Hence, there
be used to prove CTL safety and liveness properties of thgists an abstract path fromy fo &,. Becausg¥ A p) holds
concrete model. Similar results could be obtained for othar the concrete stats, the abstract propertp holds in ;.
temporal logics such as LTL. Therefore, there exists an abstract path fegrto a state where
Theorem 1:Consider a formulaf for the abstract model p holds, i.e.,EF p holds in<p.
from Table I. The formula has the forfni=< CTL operator> The proof for the second row of Table | f&G formulas
p(&1,82,...), with p being a Boolean formula of onlg € is very similar to the above proof f@&F formulas. The only

send ack

IDLE

Fig. 1. Concrete FSM

difference is that in the translation from abstract praperto Fig. 2. Example of concrete FSM with a timing constraint amk
concrete properties, the properties are evaluated onlymen i
portant states, i.ep rhaps to(W = p) and vice versa. We omit p. assume: at: IDLE : att: send:
this proof for reasons of space. The proof for the third row of prove: att+1:IDLE;
Table | follows directly fromAF p = —-EG —p. Likewise, the P»: assume: at: IDLE; att: send; att+1: ack ;
proof for the fourth row follows fromAG p=—-EF-p. ® prove: att+2: SENT; -
The proposed path predicate abstraction is related to th& assume: aat:—&-lngEl?lfl't send; att+1:ack; att+2: ack;
notion of stuttering bisimulation [16]. It also decomposes P Zssun'qe: at IDLE _ att:’ send -
infinite runs into segments of finite length that are matched att+ 1 ack: att+2: ack: att+3: ack:
segment by segment. However, we only require the important prove: att+4: SENT;
starting and ending states of the segments to be matched I3%: assume: at: SENT;

the abstraction function and do not care about the interatedi prove: att+1:IDLE;
state predicates. Furthermore, instead of using a theoreva p TABLE Il
ing approach we use IPC to establish this weaker correlation OPERATIONAL IPC PROPERTIES

of the models.

a few hundred clock cycles and can have up to a few million

gates in its cone of influence. By unfolding the design inso it
In this section we revisit Interval Property Checkingperations IPC provides a functional view on the design that

(IPC) [5], [6]. We also restate Completeness Checking fts ses orthogonal to the conventional structural view at the RT

of IPC properties as proposed in [8], [9]. An important ple@o level. Industrial practice has proved that this is very etffe
of this paper is to show that both together can be used toecreigt finding bugs.

a path predicate abstraction as described in Section III. _

Interval property checking is based on standard Mealy- 6r Operations and Important States
Moore-type finite state machine models. CTL model checking Consider the example of Figure 1. The verification engineer
is based on Kripke models. A Moore model can be translatedoosesiDLE and SENT to be the important states — this
into a Kripke model in a straightforward way by introducinds indicated by bold circles. We can identify three basic
“state variables” (i.e., atomic formulas) for every inpMte operations in this design: one staying IBLE, one moving
encode the state space of the Kripke model by the state vedtom IDLE to SENT and one moving back frolSENT to IDLE .
S= (S, %). The sub-state vectay represents the set of input Obviously, there is an infinite path in the Moore model
values. Every state contains in its sub-state vectsf what between statesbLE and SENT that cannot be represented
combination of input values made the system transition inie an IPC property. A technical solution is to add an input
the states. (This is equivalent to latching the input variables.gonstraint to the model. In our example, we assume dtiat

In the following sections, we use the FSM of Figure 1s asserted at most three clock cycles after entering state
as a simple running example. The Moore machine staysBosy . Note that the verification as well as the abstraction of
IDLE until it receives asend command. When the commandSection IV-E are based on the validity of such a constramt. |
comes it moves to sta®usy , sending out a request (outputmost practical cases, however, constraints can be justifjed
not shown). In stat@usy it waits for an acknowledgeck. RT-level verification of other modules of the system. FigRre
When the acknowledge comes it moves to sg#RT where shows the Moore model resulting from the input constraint.
it signals completion to its client (output, not shown). The Table Il shows a set of five IPC properties describing all
moves back to stat®LE . possible operations between the important staibes and

In our IPC-based abstraction, we adopt an operational vi@ENT in the Moore FSM of Fig. 2. Note that IPC properties
on the design to come up with a complete set of IPC propertiese always formulated over finite time intervals, hence the
An IPC operation property covers the behavior of a desigequirement 1 of Def. 3 is always fulfilled if path predicate
moving from oneimportant state to another important stateabstraction is based on IPC.
within a finite time interval [6]. Operations in industriatgz- Figure 3 shows the concrete Kripke model of our example.
tice typically describe one or several computational ste@s Since there are 5 states in the constrained Moore FSM we
SoC module such as instructions of a processor, or progessieed (at least) 3 state variables for encoding them. The stat
steps of communication structures such as in transactibas @ncoding is chosen as followsLE = 000, BUusy1 = 100,
protocol. An operation (interval) property typically spaup to Busy2 = 101,BuUsY3 = 110,SENT = 111. We need 2 more

IV. COMPLETEINTERVAL PROPERTYCHECKING

4

— unreachable The properties we consider in this paper have a special form.
The assumptiody of a propertyP is anl-sequence predicate
of the form

A((s0,81,---,9)) = Z(s0) AX ((S0,815---,9)). (1)

Here,Z(sp) is a state predicate characterizing an important
state from which the operation starts, afdm) characterizes
a trigger sequence for the operation. The predigd®) is
Fig. 3. Concrete Kripke model expressed only in state variables of the Moore machine, i.e.
it is independent of input variables.
The commitmenC; is anl-sequence predicate of the form

state variables to encode the input variakles andack . The
state transition graph of the Kripke model in Figure 3 shows
the 5-bit state codes inside each node. Ci((s0,S1,---55)) = Yi((%0,51,---,9)) AZ(S)

In our examples, if we group states to abstract states this A-W(s)A...A=W(S_1) @

is indicated by drawing extra circles around these staths. T

enclosed states may themselves be abstract states. When wWd€ State predicat&(s) characterizes the important state

draw a transition edge such that it ends (or begins) atiaWhich the operation ends. Agai(s) refers only to state
surrounding circle we implicitly mean it to end (or beginvarlables of the Moore machine and not to input variables.

respectively) at every state represented by that circle. _Ll'he output sequences produc_ed in the operation are characte
ized byY|(1). The state predicate¥(s) checks that every
B. Interval Property Checking intermediate statg visited in the operation is an un-important

An operation property or interval property P is a state. This is not needed in conventional IPC but is inserted

pair (A,C) where bothA (calledassumptiopandC; (called he\rﬁ _tc_> fquirI]I Def. 4. ies in thi h |
commitmerjtarel-sequence predicates. The property checker r.|ctj|ng the propelrtlesh n td|sf_vvaé/ .enDsufrezs } at we only
proves that if the assumption holds on the design (given ans' er operational paths as defined in Det. 2. In praotee,

thel-path predicatéspati()) the commitment does too, for all n_obtain the dgsired form;t of Eq.1 an.d 2 by following some
starting stateso; coding conventions for writing properties, e.g., by definin

appropriate macros as supported by commercial tools.
A((so0s1,---,5)) Aispath((so,st, .- .,9)) = C((0,S1,---,9)) To continue our running example, the assumptions and
Both sequence predicatdsandC; are defined over sequencesommitments of the five properties are given by lsequence
of lengthl. The parametdris called thdengthof the property. predicates listed below. In the commitments, the important
Since the property is implicitly checked for all possiblarting state predicat&(s) is given byW(s) = IDLE (S) V SENT (s).
statessy (not just the initial state of the system) it is a safety Av((s0,51)) IDLE (So) A —send (y)

property. The implication can be rewritten in the following Cy((sp,s1)) ;IDLE (s1)

equivalent form: AZEES(LSLSZ%; = IDLE (?o))/\send((sl)) Aack (sp)
. Cr((%0,51,S = SENT () A—=¥(s1
ispath(m) = (A () = Gi(m)) Aa((0,51,%2:%)) = IDLE (So)A\

where T = (s0,51,...,5) is anl-sequence anispath(Ty) = _ send (sy) A —ack (sp) Aack (s3)

A_,T(s_1,5) is the unrolling of the transition relation into Ca((s0,51,%,%8)) = SENT (s3) A ~W(s1) A =W(sp)

A4((50,51,%2,%3,%4)) = IDLE (s0) Asend (s1)A

time frames. The property check can be formulated as a SAT A—ack (S) A —~ack (Sg) Aack (Su)
problem that searches for a a pathin the Kripke model Ca((S0,51,5,53,54)) = SENT (54) A—~W(51) A=W (5) A —~W(s3)
where the implication does not hold. The pathis then a As((s0,51)) = SENT ()

counterexampl®f the property. It is a false counterexample ~ Cs((S0,51)) = IDLE (1)

if the states in the path is unreachable from the initial state.
In order to rule out unreachable counterexamples in pmcti€C. Property Language

it is common to add invariants to the proof problem [6]. The |, inqustrial practice, IPC properties can be formulated, f

strengthened proof problem looks like this: example, in SVA, or in ITL [nTerval Languagg a proprietary
(P(s0) Aispath(g)) = (A(T1) = G (M) language developed by OneSpin Solutions [5] that is well

where ®(s) is a state predicate characterizing an ovefdapted to interval property checking. This language can be

approximation of the reachable state set ands the head MapPped to a subset of LTL as described in the following.

(i.e., the starting state) of tHesequence. If we re-write the Definition 5: An interval LTL formulais an LTL formula

implication in the following equivalent form: that is built using only the Boolean operatarsV, — and the
. “next-state” operatoK .
ispath(my) = ((P(s0) AAI(TE)) = Gi(TT)) Let us define a generalized next-state operatorthat

we can see that the predicatésy) may simply be included denotes finite nestings of the next-state operator, i.ep, i
in the assumption part of the property in order to add it to the interval LTL formula, therx!(p) = X (xt‘l) fort >0 and
proof. X%(p) = p.

Definition 6: An interval LTL formula is in time-normal by an operation at a certain time point if its value at this
form if the generalized next-state operatdris applied only time point can be uniquely calculated from the start state
to atomic formulas. Z of the operation, from its trigger conditioX, or from

Since in LTL,X (avb) =XaVvXb andX (avb)=XaVvXb other determined signals. These other determined sigaals ¢
and—-Xa= X —a, any interval LTL formula can be translatedfor example, belong to the operands of a data path. If the
to time-normal form. It is easy to see how an interval LTloperation performs an addition then the result signals are
formula can be used to specify &sequence predicate: Thedetermined if the input operands are determined. It is abeck
generalized next-state operator refers to the state Vasiai for the reset state of the system that it fulfills all deteration
the system at the different “time” points in the sequence. requirements. This is the induction base of an inductivepro

The ITL language can be used to specify interval LTL In C-IPC the set of operation properties written by the
formulas and, henceé;sequence predicates, using conveniemerification engineer completely covers the state traositi
syntax extensions. Consider the example of the property geaph of the design’s finite state machine. Any input/output
shown in Table Il. The “assume” and “prove” keywords arsequence produced by the design, starting from reset, can
used to identify the assumption and commitment formuldse split up into a corresponding sequence of operations,
respectively. Each formula is a list of sub-formulas that aeach defined by one operation property. For each individual
implicitly conjoined. A subformula is a Boolean expressiooperation we can verify the functionality and we can check
over design variables, preceded by the definition of a tinvehether the determination requirements are fulfilled int tha
point using the “at” keyword. The time point “at t:” corre-operation, provided the previous operation did also fuitfdl
sponds to the operata! as defined above. own determination requirements. This is the induction step

For usability, ITL has many more syntactic extensions. Fan inductive proof.
example, several sub-properties can be considered tagethéefinition 7: A property set is complete if two arbitrary
disjunctively in a single property. In our example, profst finite state machines satisfying all properties in the set ar
P,, P; and P, would result from a single “property” statementsequentially equivalent in the signals specified in the rdete
in ITL, succinctly describing the operation moving frome mination requirements at the time points characterizechby t
to SENT . Also, expressions can be encapsulated for re-ugeards of the determination requirements.
and code structuring in so-calledacros For example, in our ~ Completeness of a set o + 1 properties V =
property set we have two state predicatesg andSeENT that {Po,Pi,...,Py}, with Py being the reset property, is checked
have been formulated as ITL macros over the state variableghe following way. Besides the determination requiretaen
of the design. They define the important states that will lee timentioned above, the user specifiepraperty graph G=
states of the abstract model. (V,E) where the node¢ = {P,} are the properties. Each prop-
erty P, is a pair(A;,Ci) where both the assumptidh and the
commitmenC; arel-sequence predicatddss called the length

In this section, we describ€omplete Interval Property of the propertyP. Every propertyP has its own lengthp.
Checking (C-IPC)[8], [9]. It is based on a completenessThe edges of the property graph describe the concatenation
criterion developed independently also by Claessen [14. Wsequencing) of operations. There is an edBgF) € E if
will see that operation properties match well with this onoti the operation specified By can take place immediately after
of completeness and that the completeness check becomhesoperation specified b9;. (This is the case if operatidp
computationally tractable in combination with IPC. starts in the important state that is reached by operdion

The completeness criterion in [9], [8], [17] answers the Note that, in principle, the property graph could be deter-
question whether a set of properties fully describes the imined automatically from the set of properties. However, fo
put/output behavior of a design implementation. The prigpetbetter debugging an incomplete and possibly incorrectgntgp
suite is calleccompletdf for every input sequence the propertysuite the user is required to specify the property graph fwhic
suite defines a unique output sequence that is to be produoaty involves a small extra effort.
by the implementation, according to sordetermination re- The completeness engine performs three checks on the
quirementsThe basic idea presented in this section is to propgoperty graphG: a case split testa successor tesand a
this inductively by considering chains of operation prajgst determination testall described below. It is important to

The determination requirements specify the times and citete that the completeness checks are carried out without
cumstances when specific output signals need tebermined consideration of the design.
through the design. As an example: data on a bus only need4) Case Split TestThe case split test checks that all paths
to be determined when the “data valid” signal is asserted. fetween important states in the design are described bgst le
determination requirement for the data signal could betewit one property in the property suite, i.e., that all input scers
as “if (datavalid = true) then determined(data)”. In geheran an important state are covered. The set of importantsstate
a determination requirement is a pdw,os) for a signalo is given by the commitment§C;} of the propertie§ P }. For
(here: data) and a guaa} given as ar-sequence predicateevery important state (given by a commitmé&p) reached in
(here: datavalid) characterizing the temporal conditiwhen an operationP it is checked whether the disjunction of the
the signalo is to be determined. A signal is calleiétermined assumptiongAq, } of all successor properti€3; completely

D. Complete Interval Property Checking

6

covers the commitmenEp, i.e., for every path starting in determined byP are the same in both sequences, such that
a substate of the important sta@ there exists an opera-m and o have different values for some signal that should
tion propertyQj whose assumptiohq, describes the path. be determined by.
Let {Ag;,Aq,,...} be the set of assumptions, then the case The three completeness tests all contribute to an inductive
split test checks if proof. The induction is rooted at the reset, represented by
the reset property, that does not have a predecessor. The
CP@anMQ = A, © (Ao VAQ, V.- induction base is established through a sepaeset testhat

. It?] thlls e;(hprefs;:onllp 'S tt:e length of propert)ﬁ_hand lo checks whether reset can always be applied determinigtical
'S the length of the longest successor prop&jy The any d whether reset fulfills all determination requirements.

sequence predicate defined in Section Il is used to make bgﬂ1
sides of the implication a sequence predicate of lehgthlo.

If the case split test succeeds this means that for evgy
possible input trace of the system there exists a chain ofit is now shown that C-IPC with a set of properties written
properties that is executed. However, this chain may not ethe form of Eq. 1 and Eqg. 2 of Section IV-B leads to an
uniquely determined. Therefore, the following successst t abstract Kripke model that is a path-predicate abstraaifon
is performed. the design under verification according to Section .

2) Successor TestThe successor test checks whether the As described above, the methodology produces a set of
execution of an operatioQ is completely determined by ev-properties,V, and a property grapl = (V,E) for which
ery predecessor operatiéh For every predecessor/successahe completeness tests have been successfully carriedout.
pair (P,Q) € E it is checked whether the assumptidg of basic element of the created abstraction are ithportant
propertyQ depends solely on inputs or on signdistermined statesgiven by state predicates that are used in the prop-
by the predecessdt. erties to characterize the starting stasgsof an operation

The successor test creates a SAT instance that is satisfiegh ithe assumption and the ending stasef the operation
there exist two state sequencas,andy, such that repre- in the commitment. The important-state predicates defining
sents an execution of operatiBrfollowed by operatiorQ and the abstraction functioru(s) are given by the set of all
the other represents an execution of operaRoiollowed by important-state predicatgg;(s)} appearing in the properties:
another operation not bein@, with the additional constraint o(s) := (Z3(s),Z»(s), ...). The abstraction function maps every
that the inputs and determined variables are the same in bedhcrete state of the design to an abstract state.
sequences. The execution Bffollowed by Q is expressed |t must be shown that the transition relati@mf the abstract
through (Ap A Cp) © Aq, the execution oP followed by not- Kripke model is given by the set of properties in the follogin
Q is expressed througtie ACp) ©—Aq. If the SAT check way: there is a transition from one abstract s&te another
succeeds then, according A, triggering of the operation ones’ if and only if there exists a proven propeRydescribing
Q is decided non-deterministically. This is the case if thgn operation that starts in the important stat@nd that ends
assumptiorAg was written such that it depends on some stafig &’ according to Def. 4. Moreover, the requirements for the
variables other than inputs and variables determine®.by state predicates of Def. 3 must be fulfilled.

What is most important for our work here is that the The |PC proof engine, when proving the propertyverifies
successor test (as a side product) makes sure that forfgll 5 given pair of important states forming an abstract
pairs (P,Q) € E: transition (5,§') that there exists a corresponding operational

any, ©Aq = Cpoanyy,. path as given in Def. 4. It is obvious that the first requireten
The expression states that the successor oper@iaiways of Def. 3 is always fulfilled in IPC. Since every operation is
starts in an (important) stagethat is reached by a predecessagproved for all concrete important states described by & stat
operationP. predicateZ;(s) and a trigger conditiofX;(s) the Kripke model

Having established that there exists a unique chain wfll also fulfill the second requirement of Def. 3. Fal
operations for every input trace it remains to be showoncrete states fulfillingZi(s) there is a path in the Kripke
that these operations determine the output signals asdstateodel to some state fulfilling the ending state conditionhef t
in the determination requirements. This is the task of thaperation and the trigger condition that leads into thisesta
determination test. It remains to be shown that there is a property for every

3) Determination Test: The determination test checksabstract transition fulfilling Def. 4, and for every propettiere
whether each propert fulfills its determination requirementsis an abstract transition. This follows from the case splt t
provided the predecessor operatiBn in turn, fulfilled its and the successor test. The case split test makes sure that fo
determination requirements. every path leaving an important state in the concrete model

The test creates a SAT instance that is satisfied if a dbere is a property, i.e., an abstract transition, desugilthat
termination requirement is violated. The satisfying seqi-repath. The successor test makes sure that properties describ
resents two state sequences, and Tp, that both represent only paths actually starting in an important state reached b
an execution of operatio® followed by operationQ, with some other property, i.e., for every abstract transitiogreh
the additional constraint that the inputs and the variablatso exists a succeeding abstract transition.

Abstraction by C-IPC

Thus, the abstraction produced by means of C-IPC fulfills Table 1l shows the results for checking an IPC prop-
all requirements as stated in Section Il and is sound togrogrty on different abstract system configurations using One-
safety and liveness properties for the concrete system. Spin 360MV. The design was made such that the number
of bus participants can be configured by a parameter. The
property checks that after reset, token passing is trighgere

P,,B,P X . .
10 2r 2’4 01 ensuring that there is only one master in the system. Table Il
P shows in each row the number of bus participants and the
IDLE SENT CPU time and memory consumption for checking the property

on the concrete system and on the abstract system. The
experiments were run on an Intel Core 2 Duo at 3GHz with

. . 4GB main memory.

Fig. 4 shows the abstract Kripke model of our example. The For the serial bus system, the particular strength of path

model has two important statésLE andSENT . There is an . . T
. . . redicate abstraction becomes apparent. Each individigaita
edge between two important states if there is an IPC propeELIy ; .
describina a path between the two i’the system has 129 state variables in the concrete and 89
gap ’ state variables in the abstract model. While this reduction
of about 30% is not drastic the main reduction in proof

complexity comes from temporal abstraction: The individua

Two sets of experiments were made to evaluate the usefgiperations in the concrete model, having lengths of up to
ness of C-IPC-based abstraction. The first set is a case stdg@ycycles, are mapped to abstract single-cycle transitians
on an experimental serial bus system [18]. The second §¥pteém transaction taking more than a hundred clock cycles
of experiments was made on a system built using Infineor®é Serial transmission is therefore mapped to only a few
Flexible Peripheral Interconnect (FPI) bus. transitions in the abstract model, reducing temporal lermgt

In both experiments we have a set of modules comm@roperties by factors as low as 1/35.
nicating over a busClients connect to the bus throudbus
agents Each bus agent has one interface to the bus and another Number of cConcrete System Abstract System
interface to the client. (The client could, e.g., be a CPUecor agents CPU Time Memory CPUTime Memory

Fig. 4. Abstract Kripke model

V. EXPERIMENTS

2 10s 117/MB 4s 119MB
or a peripheral.) 3 26s 115MB 9s 346MB
4 1min 16s 461MB 15s 428MB
A. Serial Bus System > o8 STVB
TABLE IV
The communication system used in the first set of experi- SAFETY PROPERTY CHECKED USING INDUCTION

ments is a custom-made serial bus. The protocol uses certai
elements from different “real-world” serial communicatio
protocols; for example, it uses CSMA (Carrier Sense Mutipl

Access) with bitwise arbitration as in CAN, and synchronizas"’ucety property ensures that at any time there is only one

fon = o a5 1 RS232 using St and siop b, TS’ [T MO 1 ages e proper cannot e proven
Using C-IPC with OneSpin 360MV the bus agent wa y ' y

verified and a complete set of properties was obtained. T %oven in very short CPU time.
corresponding abstract state machine was manually tltadsIaB
into VHDL. This step will have to be automated in our ongoing
work, but is here guided by a coding convention that makes theA more comprehensive evaluation of the proposed method
abstract states and abstract transitions obvious. Notetiya using CTL model checking on the abstract model was done in
the bus agents were abstracted. The clients and the irgerfao industrial case study. The Flexible Peripheral Inteneci
between a client and its bus agent remained the samebss (FPI bus) owned by Infineon Technologies is used for
that properties could be checked on the concrete and thg experiments. It is an on-chip bus system similar to the
abstract system. The clients were designed to implemenindustry standard AMBA. The throughput of the FPI bus is

Q‘able IV shows the results for checking a safety property
using the induction prover built into OneSpin 360 MV. The

Industrial FPI Bus System

token passing mechanism among them. optimized by pipelining of transactions and extensive use o
combinational logic. This makes it particularly interestito
Number of Concrete system Abstract system examine how our approach can be used to abstract from such
agents CPU time Memory CPU Time Memory high-performance implementations and how a “clean” model
3 0.32s 78MB 0.04s 37MB ; ;
: 175« 158MB P i at the transactlgn level can be obtalned.- .
8 1min 46s 735MB 0.38s 74MB The FPI bus is a modular system consisting of master/slave
12 54min 59s 1372MB 1.03s 109MB interfaces, a BCU, an address decoder and a bus multiplexer.
15 — — 1.89s 155MB . :
30 _ _ 909 514MB C-IPC was applied to obtain complete property sets for the

modules. From the complete property sets we derived the

TABLE Il abstract modules.
IPCPROPERTY CHECKED ON CONCRETE AND ABSTRACT SYSTEM

In our experiment we implemented our abstraction in thtbat now holds for both the important and the unimportant
Cadence SMV input language. By extensive use of macrosstates of the concrete model.
our IPC-based verification tool (OneSpin 360 MV) the signals
of the SoC modules were encapsulated and named so that a
one-to-one mapping with the signals of the abstract moduleln this paper we presented a methodology to leverage the
was obtained. The implementation of the abstraction alse héesults of a complete property checking methodology, C-
was a manual step. Correctness can be ensured easily ffe to create abstractions for system-level verificationr
to the one-to-one mapping between the macros created@pproach can be understood also as a light-weight theorem
OneSpin 360MV and the design description used for Caderf¥@®Ving approach. In theorem proving, building a stack of
SMV. In this way, abstract modules for the master agent afigPdels to prove system properties is very common. Our
the BCU were derived. For the slave agent, the address decd@8ults show that such a paradigm is also feasible for ptpper
and the bus multiplexer the abstract modules were not derivéhecking by an appropriate methodology. Future work will
from C-IPC but created ad-hoc and integrated with the masg¢plore how the proposed abstraction can be integratecainto

VI. CONCLUSION

agent and the BCU to form an abstract system. SystemC-based design and verification flow.
REFERENCES
Master agent BCU . . o
RT code inspection, lines of code 4000 1,500 [1] D. Kroe_nmg and N. Sharygina, ‘_‘I_:or_mal verification of s® c by
Number of properties 17 6 automatic hardware/software partitioninggdrmal Methods and Models
Total runtime of properties 1h 19min 15s for Co-Design 2005. . _ _ _
Total runtime of completeness checks 4A1s 10s [2] J. ‘Yang and CJ H. Seger, Intrqductlon to generalizgdanbolic
trajectory evaluation,”IEEE Transactions on VLS| Systemsl. 11,
TABLE V no. 3, pp. 345-353, 2003.
EPIBUS MODULE VERIFICATION [38] A. J. Hu, J. Casas, and J. Yangpa, “Reasoning about GS$&rtas

graphs,” inProc. CHARME Springer, 2003, pp. 170-184, Lecture
Table V shows some information on the complexity of de- Notes in Computer Science Vol. 2860.

- _ e - 4] R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vaf@iSTE
rving the abstract modules by C-IPC. Specmcally, It prese is partitioned model checking.” ifProc. International Conference on

the approximate number of lines of RTL code which had to computer-Aided Verification (CAVP004.
be inspected in order to create our abstract models. In gknerl5] Onespin Solutions GmbH, Germany. OneSpin 360MV.

: : :] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. $&bf and
the manual effort spentin C-IPCis ab(_)l_’lt 2_’000 Im_es of COdE W. Kunz, “Unbounded protocol compliance verification usinggerval
per person month for an average verification engineer. This property checking with invariants JEEE Transactions on Computer-
figure proved quite accurate also in the case study conducted Aided Designvol. 27, no. 11, pp. 2068-2082, November 2008.
here [7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic meldchecking

’ without BDDs,” in Proc. Intl. Conference on Tools and Algorithms for
Based on these industrial SOC modules we assembled a the Construction and Analysis of Systems (TACAS99.

System Of three master agentsy two SlaveS, the arbiter as W@ﬂ J. Bormann, “Vollsténdige Verifikation,” Dissertatip Technische Uni-

. versitat Kaiserslautern, 2009.
as bus multiplexers and address decoders. If several ctMPIy; ; gormann and H. Busch, “Method for determining the tyabf a

property suites are composed to completely describe amesig set of properties,” European Patent Application, PuliticatNumber
assembled from several modules additional checks need tg EP1764715, 09 2005.

b lied in th let thodol t {F‘Ioé R. P. KurshanComputer-Aided Verification of Coordinating Processes
€ applied In the completeness methodology 1o ensure — The Automata-Theoretic ApproachPrinceton University Press, 1994.

correctness of the integration conditions [8]. [11] S. Graf and H. Saidi, “Construction of abstract staigphs with PVS”

As a result of the proposed methodoloay the abstract model in Proc. International Conference Comp_uter Aided Verificati©CAV)
. prop 9y . ser. LNCS, vol. 1254. London, UK: Springer-Verlag, 1997, pp-83.
was obtained for the assembled FPI bus. While the concret) . clarke, 0. Grumberg, S. Jha, Y. Lu, and H. Veith, “Crauexample-

system contained 2,624 state variables only 75 state Vasiab guided abstraction refinement for symbolic model checkidgurnal of

; ; the ACM vol. 50, no. 5, pp. 752794, 2003.
were included in the ab.StraCt system. We now use.d Caden%? E. Clarke, M. Talupur, H. Veith, and D. Wang, “SAT-basprkdicate
SMV to prove several liveness and safety properties on the" apstraction for hardware verification,’ iGonference on Theory and

abstract system. All properties are proven on the abstract Applications of Satisfiability Testinger. LNCS, vol. 2919. Springer,

e . . 5 2003, pp. 78-92.
model within a few minutes using less than 500 MB. 14] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, ‘\¥devel pred-

As a liveness property, we have proved that any request from' jcate abstraction and refinement techniques for verifyifig, Rerilog,”
a master will finish successfully within a fixed time under IEEE Trans. on CADvol. 27, no. 2, pp. 366-379, 2008.

: : M. Schickel, V. Nimbler, M. Braun, and H. Eveking, “On mgistency
the constraint that a master peripheral only sends requééﬂ and completeness of property sets. Exploiting the pro d design

complying with the protocol, that the starvation preventio process,” inProc. Forum on Design Language2006.
is switched on, and that a slave does not stay busy foreJé¢] P. Manolios and S. K. Srinivasan, “A refinement-basethpositional

reasoning framework for pipelined machine verificatiolEEE Trans-
As an example of a safety property, we prove that the bus actions on VLSI Systemeol. 16, pp. 353-364, 2008.

is correctly driven at any time. Specifically, we proved thai7] k. Claessen, “A coverage analysis for safety propeisis) in Proc.
the various enable signa|s (data, address, ready) areaine-h International Conference on Formal Methods in Computetedli Design

: : : (FMCAD). |EEE Computer Society, 2007, pp. 139-145.
encoded. ACCOI’dlng to Theorem 1 this property holds Only FJ-.'S] H. Lu, “A case study on the verification of abstract systenodels

the important states. By adding local properties provirgf th derived through interval property checking,” Master'ssise University
the enable signals do not change value in-between important of Kaiserslautern, 2009.

states we obtain an unrestricted proof of the safety prgpert

