
Path Predicate Abstraction
by Complete Interval Property Checking

Joakim Urdahl, Dominik Stoffel, Jörg Bormann∗, Markus Wedler, Wolfgang Kunz
Dept. of Electrical and Computer Eng., U. of Kaiserslautern, Germany ∗Abstract RT Solutions, Munich, Germany

Abstract—This paper describes a method to create an abstract
model from a set of properties fulfilling a certain completeness
criterion. The proposed abstraction can be understood as apath
predicate abstraction. As in predicate abstraction, certain concrete
states (calledimportant states) are abstracted by predicates on
the state variables. Additionally, paths between important states
are abstracted by path predicates that trigger single transitions
in the abstract model. As results, the non-important statesare
abstracted away and the abstract model becomes time-abstract
as it is no longer cycle-accurate. Transitions in the abstract
model represent finite sequences of transitions in the concrete
model. In order to make this abstraction sound for proving
liveness and safety properties it is necessary to put certain
restrictions on the choice of state predicates. We show that
Complete Interval Property Checking (C-IPC) can be used to
create such an abstraction. Our experimental results include
an industrial case study and demonstrate that our method can
prove global system properties which are beyond the scope of
conventional model checking.

I. I NTRODUCTION

Even after years of progress in the area of formal property
checking, simulation is still the predominant technique in
industrial practice for verifying the hardware of Systems-on-
Chip (SoCs). There are at least two reasons for that: first,
formal techniques provide a rigorous correctness proof only
for a selected piece of design behaviour. Ensuring such local
correctness is considered valuable, especially in corner cases
of a design. However, in many industrial flows only parts
of the overall design behavior are covered by properties and
confidence in the correctness of the overall design largely still
depends on simulation examining global input stimuli to the
design and their output responses. Sophisticated methodolo-
gies have been developed to achieve full design coverage by
local properties according to rigorous completeness metrics,
as we will consider them in this paper. This can indeed
contribute to replace simulation for SoC module verification
by formal techniques. However, even in such a scenario
simulation will still be needed for chip-level verification. This
is the second reason for the prevailing role of simulation in
SoC hardware verification. Formulating and proving global
system properties spanning across different SoC modules on
the Register-Transfer-Level (RTL) of an SoC is clearly beyond
the capacity of current tools. As an alternative more viable
than proving global properties at the RTL we may resort to
system-level verification based on abstract design descriptions
as they are supported by languages like SystemC [1]. How-
ever, unless the design refinements from these high levels to
lower implementation levels become fully automated and can

possibly be supported by new generation equivalence checking
tools it is apparent that chip-level simulation at the RTL will
still be needed and will contribute substantially to the overall
verification costs.

The techniques proposed in this paper intend to make a
step toward proving global properties for an RTL design im-
plementation. We will prove properties that span over multiple
SoC modules and which are significantly more complex than
what can be proved with available property checkers. Our
approach is not based on boosting the performance of the
proof engines. Instead we propose a methodology to create
design abstractions based on sets of properties fulfilling a
certain completeness criterion.

The proposed approach leverages the significant advances
that have been made over the last years in developingsystem-
atic procedures of writing properties for comprehensively cap-
turing the behavior of a design. In particular, property checking
formulations such as in Symbolic Trajectory Evaluation (STE)
are very suitable for a systematic approach [2], [3], [4]. STE
employs a specific style of formulating properties making
it natural to compose properties into a more comprehensive
design description which is successfully used in industrial
practice. This paper is based on a related industrial property
checking formulation calledInterval Property Checking
(IPC) [5], [6]. IPC stands for proving so calledoperation
propertiesor interval propertieson a bounded circuit model
based on satisfiability (SAT) solving. From a computational
perspective it can therefore also be seen as a variant of
Bounded Model Checking (BMC) [7] while STE is more
related to symbolic simulation and has a different way of rep-
resenting and processing state sets based on Binary Decision
Diagrams (BDDs). Moreover, in this paper we state a rigorous
completeness criterion for sets of IPC properties [8], [9] which
is a prerequisite for the proposed abstraction. Nevertheless,
we believe that the proposed methodology and formalisms
could also be adapted to property checking formulations other
than IPC, in particular to STE and related approaches.

Abstraction in model checking is almost as old as model
checking itself. The most popular abstraction techniques can
be classified in being based on localization reduction [10] and
predicate abstraction [11]. There is tremendous progress to
integrate these abstractions into algorithms that automatically
search for an appropriate abstraction such as [12], [13], [14].
Such techniques contribute substantially to increasing the
scope of model checking to designs with several hundred state
variables. This is often adequate for proving properties inSoC



module verification as described above. However, if designs
with thousands of state variables have to be handled and chip-
level properties must be proved on the RTL additional concepts
for even stronger abstractions are required.

In this paper we propose to create an abstraction based
on complete sets of IPC properties. This means as a starting
point of our approach we assume that individual SoC modules
have first been verified using IPC and a complete set of
properties is available. In [15] so calledcando-objectswere
proposed as abstract but still cycle-accurate design descriptions
obtained from IPC properties. In contrast, the abstraction
proposed here is time-abstract and is referred to as apath
predicate abstraction. It leads to sound models for verifying
both safety and liveness properties if certain restrictions on the
state predicates are fulfilled. In Section II we first introduce
basic notations. Section III introduces the proposed abstraction
and shows that it can be used to prove safety and liveness
properties which are also valid on the concrete model. Then,in
Section IV we explain how this abstraction is created through
the IPC methodology. In Section V we present experimental
results also including an industrial case study.

II. N OTATIONS

A Kripke model is a finite state transition structure
(S, I ,R,A,L) with a set of statesS, a set of initial statesI ⊆ S,
a transition relationR⊆S×S, a set of atomic formulasA, and
a valuation functionL : A 7→ S.

We considerstate predicates, η(s), S(s), X(s), Z(s), Y(s),
that are evaluated for any concrete states. In Kripke models
derived from Moore FSMs the state variables and input
variables may serve as atomic formulas. We may distinguish
between the two kinds of state variables in our notation. The
original state variablesare denoted byzi , the input variables
of the original Moore FSM byx j . If S(s) is expressed only
in terms of input state variables then the predicate describes
an input trigger condition denoted byX(s). If S(s) is ex-
pressed only in terms of original state variables then we write
Z(s). Y(s) denotes output values of the Moore machine in a
states. T(s,s′) is the characteristic function of the transition
relationR.

An l -sequenceπl is a sequence ofl +1 states(s0,s1, . . . ,sl ).
An l -sequence predicateσ(πl )=σ((s0,s1, . . . ,sl )) is a Boolean
function characterizing a set ofl -sequences;l is called the
lengthof the predicate.

Note that we allow anl -sequence predicate to be ap-
plied also to a longer sequence, i.e., to anm-sequence
(s0,s1, . . . ,sl , . . . ,sm) with m> l . The predicate is then evalu-
ated on thel -prefix (s0,s1, . . . ,sl ) of the sequence. In case we
would like to evaluate the predicate on anl -subsequence other
than the prefix we need to shift the predicate in time using the
nextoperator defined as follows:

next(σl ,n)((s0,s1, . . . ,sn−1, sn,sn+1, . . . ,sn+l ))

:= σl ((sn,sn+1, . . . ,sn+l )).

The next(σl ,n) operator shifts the starting point of the

evaluation of a predicateσl to the n-th state in a sequence;
next(σl ,n) is a sequence predicate of length(n+ l).

The usual Boolean operators∨, ∧, ¬, ⇒ are also applicable
to l -sequence predicates. Iflmax is the largest length of all
sequence predicates in a Boolean expression built with these
operators, then the value of the expression is defined only for
m-sequences with lengthm≥ lmax.

We also define a concatenation operation⊙ for l -sequence
predicates:

σl ⊙σk = σl ∧next(σk, l)

This predicate evaluates to true for all sequences that begin
with a sequence of lengthl characterized byσl and continue
with a sequence of lengthk characterized byσk, where the
last state in thel -sequence is the first state in thek-sequence.

A speciall -sequence predicate calledanyl (πl ) is defined to
evaluate to true for every sequenceπl of length l .

Together with the transition relation of the Kripke model,
an l -sequence predicate becomes anl -path predicate:

Pl (πl ) = Pl ((s0,s1, . . . ,sl )) = σ((s0,s1, . . . ,sl ))∧
l∧

i=1

T(si−1,si)

We define the general path predicateispath:

ispath((s0,s1, . . . ,sl )) =
l∧

i=1

T(si−1,si)

It represents an unrolling of the transition relation intol
time frames and evaluates to true if thel -sequence given as
its argument is a valid path in the Kripke model.

III. PATH PREDICATE ABSTRACTION

A. Abstract and Concrete Kripke Model

In path predicate abstractionwe consider a concrete Kripke
model(S, I ,R,A,L) and an abstract Kripke model denoted by
(Ŝ, Î , R̂, Â, L̂). The two are related to each other based on a
mapping ofimportant statesof the concrete model to abstract
states and a mapping offinite paths between important states
to abstract transitions.

Important states are identified and characterized using state
predicatesηi(s). The vector of important state predicate val-
ues,(η1(s),η2(s), . . .), defines an abstract state value for every
concrete states. This is the abstraction function,α(s) :=
(η1(s),η2(s), . . .) mapping a concrete state to an abstract
state. The set̂A of atomic formulas of the abstract Kripke
model comprises one state variable ˆai for every important state
predicateηi(s).

Definition 1: An important-state predicateηi(s) is a predi-
cate evaluating totrue for a set of concrete important statess
and tofalse for all other states. The disjunction of allηi(s) is a
state predicateΨ(s) = η1(s)∨η2(s)∨ . . . characterizing the set
of all important states. Finally, we require that theηi satisfy
the important-state requirementsstated in Def. 3, below.

Definition 2: An operational l-pathbetween two important
states,sB ∈ S and sE ∈ S, is an l -path (sB,s1, . . . ,sl−1,sE)
with l > 0 such thatΨ(sB) = true and Ψ(sE) = true and

2



all intermediate statess1, . . . ,sl−1 are unimportant states, i.e.,
Ψ(s1) = . . .= Ψ(sl−1) = false .

The important state predicates cannot be chosen arbitrarily.
Instead, the choice must satisfy two constraints in order tobe
useful for the proposed abstraction.

Definition 3: The important-state predicates are defined to
fulfill the following important-state requirements:

1) For all pairs of (concrete) important statessB,sE ∈ S
between which there exists an operationall -path, there
is an lmax such that every operationall -path betweensB

andsE is of lengthlmax or shorter:l ≤ lmax.
2) For every pair of important-state predicates,ηB(s),

ηE(s), such that there exists a finite operational path
(s̃, . . . , s̃′) with ηB(s̃) = true and ηE(s̃′) = true it holds
that there also exists an operational path(s, . . . ,s′) for
everystates satisfyingηB(s) = true and somestates′

satisfyingηE(s′) = true .

The first constraint requires thatall cyclic paths in the
concrete model intersect an important state, i.e., there are
only finite operational paths between important states. The
second constraint is more difficult to understand: it ensures
that abstract paths assembled from abstract transitions can
always be mapped to some concrete path, i.e., there are
no false abstract paths. This requirement is “automatically”
fulfilled by the operation-oriented property checking technique
introduced later.

Definition 4: We consider an abstraction functionα such
that the important-state predicatesηi fulfill the requirements
of Def. 3. Then, the transition relation̂R⊆ Ŝ× Ŝof the abstract
model is given by:

R̂= {(ŝ, ŝ′)|∃l : ∃(s0,s1, . . . ,sl ) : ispath((s0,s1, . . . ,sl ))

∧α(s0) = ŝ ∧ α(sl ) = ŝ′ ∧ ¬Ψ(s1)∧ . . .∧¬Ψ(sl−1)

In this definition,(s0,s1, . . . ,sl ) denotes an operational path
of length l (i.e., l transitions andl +1 states) in the concrete
Kripke model. The transition relation contains all pairs(ŝ, ŝ′)
whereŝ and ŝ′ are head and tail of a path between important
states such that all intermediate states are non-important.

Besides mapping a set of concrete states into a single
abstract state as in in standard predicate abstraction, the
proposed path predicate abstraction also maps a set of concrete
paths into a single abstract transition. Therefore, we refer to the
proposed abstraction as a “path predicate abstraction”. Note,
however, that such path predicate abstraction only leads to
sound models since we require certain conditions on the state
predicates to be fulfilled as stated in Def. 3.

B. Model Checking on the Abstract Model

In this section we show that the proposed abstraction can
be used to prove CTL safety and liveness properties of the
concrete model. Similar results could be obtained for other
temporal logics such as LTL.

Theorem 1:Consider a formulaf̂ for the abstract model
from Table I. The formula has the form̂f =<CTL operator>
p̂(â1, â2, . . .), with p̂ being a Boolean formula of only ˆai ∈

abstract formulaf̂ concrete formulaf
EF p̂ EF (Ψ∧ p)
EG p̂ EG (Ψ ⇒ p)
AF p̂ AF (Ψ∧ p)
AG p̂ AG (Ψ ⇒ p)

TABLE I
ABSTRACT FORMULAS VS CONCRETE FORMULAS

Â, i.e., atomic formulas of the abstract model. The corre-
sponding formula f from Table I for the concrete model
has the form f = <CTL operator>(Ψ ∧ p) or the form
f = <CTL operator>(Ψ ⇒ p) , wherep is the Boolean for-
mula obtained by replacing the ˆai in p̂ by their corresponding
important-state predicates:p= p̂(â1 := η1(s), â2 := η2(s), . . .).

If and only if the formula f̂ holds for a state ˆs∈ Ŝ of the
abstract model then the corresponding formulaf from Table I
holds for the corresponding concrete states, i.e., for all states
s∈ S of the concrete model such that ˆs= α(s).

Proof: We prove the theorem for the first row of Table I.
First it is proved that ifEF p̂ holds in an abstract state then
EF (Ψ∧ p) holds in all corresponding concrete states.

If EF p̂ holds in a state ˆs0 in the abstract model then there
exists a finite path(ŝ0, ŝ1, . . . , ŝn) of n abstract transitions
such that ˆp holds in ŝn. For every abstract transition(ŝi , ŝi+1),
according to Def. 4, there exists an operational finitel -path
(si,0,si,1, . . . ,si,l ) from an important concrete statesi,0 such
that α(si,0) = ŝi to an important concrete statesi,l such that
α(si,l ) = ŝi+1. Then, according to requirement 2 of Def. 3,
for every important statesi such thatα(si) = ŝi there exists
an operationall -path (si,0,si,1, . . . ,si,l ) from every important
state si,0 such thatα(si,0) = ŝi to some important statesi,l

such thatα(si,l ) = ŝi+1. (Note that l may be different for
every path.) The same argument holds for the important
states mapped to ˆsi+1. Hence, there must exist a finite path
(s0,0,s0,1, . . . ,s1,0,s1,1, . . . ,sn,l ) from every important states0,0

such thatα(s0,0) = ŝ0 to some important statesn,l such that
α(sn,l ) = ŝn. Since p̂ holds in ŝn and, therefore,Ψ∧ p holds
in all important statessn,l mapped to ˆsn, this means that
EF (Ψ∧ p) holds in all important statess0,0 mapped to ˆs0.

We now prove that ifEF (Ψ ∧ p) holds in an important
concrete state thenEF p̂ holds in the corresponding abstract
state. IfEF (Ψ∧p) holds in an important concrete states0 then
there exists a finite path(s0,s1, . . . ,sn) from s0 to an important
concrete statesn such that(Ψ∧ p) holds in sn. The path can
be split up into segments(si ,si+1, . . . ,sj−1,sj ) such thatsi and
sj are important states and the intermediate statessi+1 . . . ,sj−1

are non-important states. According to Def. 4, for every such
segment of the concrete path there exists an abstract transition
(ŝi , ŝj) ∈ R̂ such thatα(si) = ŝi and α(sj) = ŝj . Hence, there
exists an abstract path from ˆs0 to ŝn. Because(Ψ∧ p) holds
in the concrete statesn the abstract property ˆp holds in ŝn.
Therefore, there exists an abstract path from ˆs0 to a state where
p̂ holds, i.e.,EF p̂ holds in ŝ0.

The proof for the second row of Table I forEG formulas
is very similar to the above proof forEF formulas. The only

3



send

IDLE BUSY SENT

ack

send ack

Fig. 1. Concrete FSM

difference is that in the translation from abstract properties to
concrete properties, the properties are evaluated only on im-
portant states, i.e., ˆp maps to(Ψ⇒ p) and vice versa. We omit
this proof for reasons of space. The proof for the third row of
Table I follows directly fromAF p = ¬EG¬p. Likewise, the
proof for the fourth row follows fromAG p= ¬EF¬p.

The proposed path predicate abstraction is related to the
notion of stuttering bisimulation [16]. It also decomposes
infinite runs into segments of finite length that are matched
segment by segment. However, we only require the important
starting and ending states of the segments to be matched by
the abstraction function and do not care about the intermediate
state predicates. Furthermore, instead of using a theorem prov-
ing approach we use IPC to establish this weaker correlation
of the models.

IV. COMPLETE INTERVAL PROPERTYCHECKING

In this section we revisit Interval Property Checking
(IPC) [5], [6]. We also restate Completeness Checking for sets
of IPC properties as proposed in [8], [9]. An important purpose
of this paper is to show that both together can be used to create
a path predicate abstraction as described in Section III.

Interval property checking is based on standard Mealy- or
Moore-type finite state machine models. CTL model checking
is based on Kripke models. A Moore model can be translated
into a Kripke model in a straightforward way by introducing
“state variables” (i.e., atomic formulas) for every input.We
encode the state space of the Kripke model by the state vector
s= (sz,sx). The sub-state vectorsx represents the set of input
values. Every states contains in its sub-state vectorsx what
combination of input values made the system transition into
the states. (This is equivalent to latching the input variables.)

In the following sections, we use the FSM of Figure 1
as a simple running example. The Moore machine stays in
IDLE until it receives asend command. When the command
comes it moves to stateBUSY , sending out a request (output,
not shown). In stateBUSY it waits for an acknowledgeack .
When the acknowledge comes it moves to stateSENT where
it signals completion to its client (output, not shown). Then it
moves back to stateIDLE .

In our IPC-based abstraction, we adopt an operational view
on the design to come up with a complete set of IPC properties.
An IPC operation property covers the behavior of a design
moving from oneimportant state to another important state
within a finite time interval [6]. Operations in industrial prac-
tice typically describe one or several computational stepsin a
SoC module such as instructions of a processor, or processing
steps of communication structures such as in transactions of a
protocol. An operation (interval) property typically spans up to

BUSY1 SENT

BUSY2

BUSY3

send
ack

ack

IDLE
send ack

ack

ack

Fig. 2. Example of concrete FSM with a timing constraint onack

P1: assume: att: IDLE ; at t: send ;
prove: att +1: IDLE ;

P2: assume: att: IDLE ; at t: send ; at t +1: ack ;
prove: att +2: SENT ;

P3: assume: att: IDLE ; at t: send ; at t +1: ack ; at t +2: ack ;
prove: att +3: SENT ;

P4: assume: att: IDLE ; at t: send ;
at t +1: ack ; at t +2: ack ; at t +3: ack ;

prove: att +4: SENT ;

P5: assume: att: SENT ;
prove: att +1: IDLE ;

TABLE II
OPERATIONAL IPC PROPERTIES

a few hundred clock cycles and can have up to a few million
gates in its cone of influence. By unfolding the design into its
operations IPC provides a functional view on the design that
is orthogonal to the conventional structural view at the RT
level. Industrial practice has proved that this is very effective
in finding bugs.

A. Operations and Important States

Consider the example of Figure 1. The verification engineer
choosesIDLE and SENT to be the important states — this
is indicated by bold circles. We can identify three basic
operations in this design: one staying inIDLE , one moving
from IDLE to SENT and one moving back fromSENT to IDLE .

Obviously, there is an infinite path in the Moore model
between statesIDLE and SENT that cannot be represented
in an IPC property. A technical solution is to add an input
constraint to the model. In our example, we assume thatack

is asserted at most three clock cycles after entering state
BUSY . Note that the verification as well as the abstraction of
Section IV-E are based on the validity of such a constraint. In
most practical cases, however, constraints can be justifiedby
RT-level verification of other modules of the system. Figure2
shows the Moore model resulting from the input constraint.

Table II shows a set of five IPC properties describing all
possible operations between the important statesIDLE and
SENT in the Moore FSM of Fig. 2. Note that IPC properties
are always formulated over finite time intervals, hence the
requirement 1 of Def. 3 is always fulfilled if path predicate
abstraction is based on IPC.

Figure 3 shows the concrete Kripke model of our example.
Since there are 5 states in the constrained Moore FSM we
need (at least) 3 state variables for encoding them. The state
encoding is chosen as follows:IDLE = 000, BUSY1 = 100,
BUSY2 = 101, BUSY3 = 110,SENT = 111. We need 2 more

4



1−
100

0−
100

−0
101

−1
101

−0
110

−1
110unreachable

BUSY3

unreachable

IDLE SENT

BUSY2

BUSY1
1−
000

−1
111

−0
111

0−
000

Fig. 3. Concrete Kripke model

state variables to encode the input variablessend andack . The
state transition graph of the Kripke model in Figure 3 shows
the 5-bit state codes inside each node.

In our examples, if we group states to abstract states this
is indicated by drawing extra circles around these states. The
enclosed states may themselves be abstract states. When we
draw a transition edge such that it ends (or begins) at a
surrounding circle we implicitly mean it to end (or begin,
respectively) at every state represented by that circle.

B. Interval Property Checking

An operation property or interval property P is a
pair (Al ,Cl ) where bothAl (calledassumption) andCl (called
commitment) are l -sequence predicates. The property checker
proves that if the assumption holds on the design (given by
the l -path predicateispath()) the commitment does too, for all
starting statess0:

A((s0,s1, . . . ,sl ))∧ ispath((s0,s1, . . . ,sl ))⇒C((s0,s1, . . . ,sl ))

Both sequence predicatesAl andCl are defined over sequences
of lengthl . The parameterl is called thelengthof the property.
Since the property is implicitly checked for all possible starting
statess0 (not just the initial state of the system) it is a safety
property. The implication can be rewritten in the following
equivalent form:

ispath(πl )⇒ (Al (πl ) ⇒ Cl (πl ))

where πl = (s0,s1, . . . ,sl ) is an l -sequence andispath(πl ) =∧l
i=1T(si−1,si) is the unrolling of the transition relation intol

time frames. The property check can be formulated as a SAT
problem that searches for a a pathπl in the Kripke model
where the implication does not hold. The pathπl is then a
counterexampleof the property. It is a false counterexample
if the states0 in the path is unreachable from the initial state.

In order to rule out unreachable counterexamples in practice,
it is common to add invariants to the proof problem [6]. The
strengthened proof problem looks like this:

(Φ(s0)∧ ispath(πl )) ⇒ (Al (πl )⇒Cl (πl ))

where Φ(s) is a state predicate characterizing an over-
approximation of the reachable state set ands0 is the head
(i.e., the starting state) of thel -sequenceπl . If we re-write the
implication in the following equivalent form:

ispath(πl ) ⇒ ((Φ(s0)∧Al(πl ))⇒Cl (πl ))

we can see that the predicateΦ(s0) may simply be included
in the assumption part of the property in order to add it to the
proof.

The properties we consider in this paper have a special form.
The assumptionAl of a propertyP is an l -sequence predicate
of the form

Al ((s0,s1, . . . ,sl )) = Z(s0)∧Xl((s0,s1, . . . ,sl )). (1)

Here,Z(s0) is a state predicate characterizing an important
state from which the operation starts, andXl (πl ) characterizes
a trigger sequence for the operation. The predicateZ(s0) is
expressed only in state variables of the Moore machine, i.e.,
it is independent of input variables.

The commitmentCl is an l -sequence predicate of the form

Cl ((s0,s1, . . . ,sl )) =Yl ((s0,s1, . . . ,sl ))∧Z(sl )

∧¬Ψ(s1)∧ . . .∧¬Ψ(sl−1)
(2)

The state predicateZ(sl ) characterizes the important state
in which the operation ends. Again,Z(sl ) refers only to state
variables of the Moore machine and not to input variables.
The output sequences produced in the operation are character-
ized byYl (πl ). The state predicate¬Ψ(si) checks that every
intermediate statesi visited in the operation is an un-important
state. This is not needed in conventional IPC but is inserted
here to fulfill Def. 4.

Writing the properties in this way ensures that we only
consider operational paths as defined in Def. 2. In practice,we
can obtain the desired forms of Eq. 1 and 2 by following some
coding conventions for writing properties, e.g., by defining
appropriate macros as supported by commercial tools.

To continue our running example, the assumptions and
commitments of the five properties are given by thel -sequence
predicates listed below. In the commitments, the important-
state predicateΨ(s) is given byΨ(s) = IDLE (s)∨SENT (s).

A1((s0,s1)) = IDLE (s0)∧¬send (s1)
C1((s0,s1)) = IDLE (s1)
A2((s0,s1,s2)) = IDLE (s0)∧ send (s1)∧ack (s2)
C2((s0,s1,s2)) = SENT (s2)∧¬Ψ(s1)
A3((s0,s1,s2,s3)) = IDLE (s0)∧

send (s1)∧¬ack (s2)∧ack (s3)
C3((s0,s1,s2,s3)) = SENT (s3)∧¬Ψ(s1)∧¬Ψ(s2)
A4((s0,s1,s2,s3,s4)) = IDLE (s0)∧ send (s1)∧

∧¬ack (s2)∧¬ack (s3)∧ack (s4)
C4((s0,s1,s2,s3,s4)) = SENT (s4)∧¬Ψ(s1)∧¬Ψ(s2)∧¬Ψ(s3)
A5((s0,s1)) = SENT (s0)
C5((s0,s1)) = IDLE (s1)

C. Property Language

In industrial practice, IPC properties can be formulated, for
example, in SVA, or in ITL (InTerval Language), a proprietary
language developed by OneSpin Solutions [5] that is well
adapted to interval property checking. This language can be
mapped to a subset of LTL as described in the following.

Definition 5: An interval LTL formulais an LTL formula
that is built using only the Boolean operators∧, ∨, ¬ and the
“next-state” operatorX .

Let us define a generalized next-state operatorX t that
denotes finite nestings of the next-state operator, i.e., ifp is
an interval LTL formula, thenX t(p) = X

(

X t−1
)

for t > 0 and
X 0(p) = p.

5



Definition 6: An interval LTL formula is in time-normal
form if the generalized next-state operatorX t is applied only
to atomic formulas.

Since in LTL,X (a∨b) = X a∨X b andX (a∨b) = X a∨X b
and¬X a= X¬a, any interval LTL formula can be translated
to time-normal form. It is easy to see how an interval LTL
formula can be used to specify anl -sequence predicate: The
generalized next-state operator refers to the state variables of
the system at the different “time” points in the sequence.

The ITL language can be used to specify interval LTL
formulas and, hence,l -sequence predicates, using convenient
syntax extensions. Consider the example of the property set
shown in Table II. The “assume” and “prove” keywords are
used to identify the assumption and commitment formulas,
respectively. Each formula is a list of sub-formulas that are
implicitly conjoined. A subformula is a Boolean expression
over design variables, preceded by the definition of a time
point using the “at” keyword. The time point “at t:” corre-
sponds to the operatorX t as defined above.

For usability, ITL has many more syntactic extensions. For
example, several sub-properties can be considered together
disjunctively in a single property. In our example, properties
P2, P3 andP4 would result from a single “property” statement
in ITL, succinctly describing the operation moving fromIDLE

to SENT . Also, expressions can be encapsulated for re-use
and code structuring in so-calledmacros. For example, in our
property set we have two state predicates,IDLE andSENT that
have been formulated as ITL macros over the state variables
of the design. They define the important states that will be the
states of the abstract model.

D. Complete Interval Property Checking

In this section, we describeComplete Interval Property
Checking (C-IPC)[8], [9]. It is based on a completeness
criterion developed independently also by Claessen [17]. We
will see that operation properties match well with this notion
of completeness and that the completeness check becomes
computationally tractable in combination with IPC.

The completeness criterion in [9], [8], [17] answers the
question whether a set of properties fully describes the in-
put/output behavior of a design implementation. The property
suite is calledcompleteif for every input sequence the property
suite defines a unique output sequence that is to be produced
by the implementation, according to somedetermination re-
quirements. The basic idea presented in this section is to prove
this inductively by considering chains of operation properties.

The determination requirements specify the times and cir-
cumstances when specific output signals need to bedetermined
through the design. As an example: data on a bus only needs
to be determined when the “data valid” signal is asserted. A
determination requirement for the data signal could be written
as “if (datavalid = true) then determined(data)”. In general,
a determination requirement is a pair(o,σs) for a signalo
(here: data) and a guardσs given as anl -sequence predicate
(here: datavalid) characterizing the temporal conditionswhen
the signalo is to be determined. A signal is calleddetermined

by an operation at a certain time point if its value at this
time point can be uniquely calculated from the start state
Z of the operation, from its trigger conditionX, or from
other determined signals. These other determined signals can,
for example, belong to the operands of a data path. If the
operation performs an addition then the result signals are
determined if the input operands are determined. It is checked
for the reset state of the system that it fulfills all determination
requirements. This is the induction base of an inductive proof.

In C-IPC the set of operation properties written by the
verification engineer completely covers the state transition
graph of the design’s finite state machine. Any input/output
sequence produced by the design, starting from reset, can
be split up into a corresponding sequence of operations,
each defined by one operation property. For each individual
operation we can verify the functionality and we can check
whether the determination requirements are fulfilled in that
operation, provided the previous operation did also fulfillits
own determination requirements. This is the induction stepof
an inductive proof.

Definition 7: A property set is complete if two arbitrary
finite state machines satisfying all properties in the set are
sequentially equivalent in the signals specified in the deter-
mination requirements at the time points characterized by the
guards of the determination requirements.⋄

Completeness of a set ofn + 1 properties V =
{P0,P1, . . . ,Pn}, with P0 being the reset property, is checked
in the following way. Besides the determination requirements
mentioned above, the user specifies aproperty graph G=
(V,E) where the nodesV = {Pi} are the properties. Each prop-
erty Pi is a pair(Ai ,Ci) where both the assumptionAi and the
commitmentCi arel -sequence predicates;l is called the length
of the propertyPi. Every propertyP has its own lengthlP.
The edges of the property graph describe the concatenation
(sequencing) of operations. There is an edge(Pj ,Pk) ∈ E if
the operation specified byPk can take place immediately after
the operation specified byPj . (This is the case if operationPj

starts in the important state that is reached by operationPk.)
Note that, in principle, the property graph could be deter-

mined automatically from the set of properties. However, for
better debugging an incomplete and possibly incorrect property
suite the user is required to specify the property graph which
only involves a small extra effort.

The completeness engine performs three checks on the
property graphG: a case split test, a successor testand a
determination test, all described below. It is important to
note that the completeness checks are carried out without
consideration of the design.

1) Case Split Test:The case split test checks that all paths
between important states in the design are described by at least
one property in the property suite, i.e., that all input scenarios
in an important state are covered. The set of important states
is given by the commitments{Ci} of the properties{Pi}. For
every important state (given by a commitmentCP) reached in
an operationP it is checked whether the disjunction of the
assumptions{AQj } of all successor propertiesQ j completely

6



covers the commitmentCP, i.e., for every path starting in
a substate of the important stateCP there exists an opera-
tion propertyQ j whose assumptionAQj describes the path.
Let {AQ1,AQ2, . . .} be the set of assumptions, then the case
split test checks if

CP⊙anylQ ⇒ anylP ⊙ (AQ1 ∨AQ2 ∨ . . .)

In this expression,lP is the length of propertyP and lQ
is the length of the longest successor propertyQ j . The anyl
sequence predicate defined in Section II is used to make both
sides of the implication a sequence predicate of lengthlP+ lQ.

If the case split test succeeds this means that for every
possible input trace of the system there exists a chain of
properties that is executed. However, this chain may not be
uniquely determined. Therefore, the following successor test
is performed.

2) Successor Test:The successor test checks whether the
execution of an operationQ is completely determined by ev-
ery predecessor operationP. For every predecessor/successor
pair (P,Q) ∈ E it is checked whether the assumptionAQ of
propertyQ depends solely on inputs or on signalsdetermined
by the predecessorP.

The successor test creates a SAT instance that is satisfied if
there exist two state sequences,π1 andπ2, such thatπ1 repre-
sents an execution of operationP followed by operationQ and
the other represents an execution of operationP followed by
another operation not beingQ, with the additional constraint
that the inputs and determined variables are the same in both
sequences. The execution ofP followed by Q is expressed
through(AP∧CP)⊙AQ, the execution ofP followed by not-
Q is expressed through(AP ∧CP)⊙¬AQ. If the SAT check
succeeds then, according toAQ, triggering of the operation
Q is decided non-deterministically. This is the case if the
assumptionAQ was written such that it depends on some state
variables other than inputs and variables determined byP.

What is most important for our work here is that the
successor test (as a side product) makes sure that for all
pairs(P,Q) ∈ E:

anylP ⊙AQ ⇒ CP⊙anylQ.

The expression states that the successor operationQ always
starts in an (important) statesl that is reached by a predecessor
operationP.

Having established that there exists a unique chain of
operations for every input trace it remains to be shown
that these operations determine the output signals as stated
in the determination requirements. This is the task of the
determination test.

3) Determination Test: The determination test checks
whether each propertyQ fulfills its determination requirements
provided the predecessor operationP, in turn, fulfilled its
determination requirements.

The test creates a SAT instance that is satisfied if a de-
termination requirement is violated. The satisfying set rep-
resents two state sequences,π1 and π2, that both represent
an execution of operationP followed by operationQ, with
the additional constraint that the inputs and the variables

determined byP are the same in both sequences, such that
π1 and π2 have different values for some signal that should
be determined byQ.

The three completeness tests all contribute to an inductive
proof. The induction is rooted at the reset, represented by
the reset propertyP0 that does not have a predecessor. The
induction base is established through a separatereset testthat
checks whether reset can always be applied deterministically
and whether reset fulfills all determination requirements.

E. Abstraction by C-IPC

It is now shown that C-IPC with a set of properties written
in the form of Eq. 1 and Eq. 2 of Section IV-B leads to an
abstract Kripke model that is a path-predicate abstractionof
the design under verification according to Section III.

As described above, the methodology produces a set of
properties,V, and a property graphG = (V,E) for which
the completeness tests have been successfully carried out.A
basic element of the created abstraction are theimportant
statesgiven by state predicates that are used in the prop-
erties to characterize the starting statess0 of an operation
in the assumption and the ending statessl of the operation
in the commitment. The important-state predicates defining
the abstraction functionα(s) are given by the set of all
important-state predicates{Zi(s)} appearing in the properties:
α(s) :=(Z1(s),Z2(s), . . . ). The abstraction function maps every
concrete state of the design to an abstract state.

It must be shown that the transition relationR̂ of the abstract
Kripke model is given by the set of properties in the following
way: there is a transition from one abstract state ˆs to another
oneŝ′ if and only if there exists a proven propertyP describing
an operation that starts in the important state ˆs and that ends
in ŝ′ according to Def. 4. Moreover, the requirements for the
state predicates of Def. 3 must be fulfilled.

The IPC proof engine, when proving the propertyP, verifies
for a given pair of important states forming an abstract
transition(ŝ, ŝ′) that there exists a corresponding operational
path as given in Def. 4. It is obvious that the first requirement
of Def. 3 is always fulfilled in IPC. Since every operation is
proved for all concrete important states described by a state
predicateZi(s) and a trigger conditionXi(s) the Kripke model
will also fulfill the second requirement of Def. 3. Forall
concrete states fulfillingZi(s) there is a path in the Kripke
model to some state fulfilling the ending state condition of the
operation and the trigger condition that leads into this state.

It remains to be shown that there is a property for every
abstract transition fulfilling Def. 4, and for every property there
is an abstract transition. This follows from the case split test
and the successor test. The case split test makes sure that for
every path leaving an important state in the concrete model
there is a property, i.e., an abstract transition, describing that
path. The successor test makes sure that properties describe
only paths actually starting in an important state reached by
some other property, i.e., for every abstract transition there
also exists a succeeding abstract transition.

7



Thus, the abstraction produced by means of C-IPC fulfills
all requirements as stated in Section III and is sound to prove
safety and liveness properties for the concrete system.

01
P

2
, P

2
, P

4

P
5P

1

10

SENTIDLE

Fig. 4. Abstract Kripke model

Fig. 4 shows the abstract Kripke model of our example. The
model has two important statesIDLE and SENT . There is an
edge between two important states if there is an IPC property
describing a path between the two.

V. EXPERIMENTS

Two sets of experiments were made to evaluate the useful-
ness of C-IPC-based abstraction. The first set is a case study
on an experimental serial bus system [18]. The second set
of experiments was made on a system built using Infineon’s
Flexible Peripheral Interconnect (FPI) bus.

In both experiments we have a set of modules commu-
nicating over a bus.Clients connect to the bus throughbus
agents. Each bus agent has one interface to the bus and another
interface to the client. (The client could, e.g., be a CPU core
or a peripheral.)

A. Serial Bus System

The communication system used in the first set of experi-
ments is a custom-made serial bus. The protocol uses certain
elements from different “real-world” serial communication
protocols; for example, it uses CSMA (Carrier Sense Multiple
Access) with bitwise arbitration as in CAN, and synchroniza-
tion is done as in RS232 using start and stop bits.

Using C-IPC with OneSpin 360MV the bus agent was
verified and a complete set of properties was obtained. The
corresponding abstract state machine was manually translated
into VHDL. This step will have to be automated in our ongoing
work, but is here guided by a coding convention that makes the
abstract states and abstract transitions obvious. Note that only
the bus agents were abstracted. The clients and the interface
between a client and its bus agent remained the same so
that properties could be checked on the concrete and the
abstract system. The clients were designed to implement a
token passing mechanism among them.

Number of Concrete system Abstract system
agents CPU time Memory CPU Time Memory

3 0.32s 78MB 0.04s 37MB
5 1.75s 158MB 0.12s 43MB
8 1min 46s 735MB 0.38s 74MB
12 54min 59s 1372MB 1.03s 109MB
15 — — 1.89s 155MB
30 — — 9.09s 514MB

TABLE III
IPC PROPERTY CHECKED ON CONCRETE AND ABSTRACT SYSTEM

Table III shows the results for checking an IPC prop-
erty on different abstract system configurations using One-
Spin 360MV. The design was made such that the number
of bus participants can be configured by a parameter. The
property checks that after reset, token passing is triggered
ensuring that there is only one master in the system. Table III
shows in each row the number of bus participants and the
CPU time and memory consumption for checking the property
on the concrete system and on the abstract system. The
experiments were run on an Intel Core 2 Duo at 3GHz with
4GB main memory.

For the serial bus system, the particular strength of path
predicate abstraction becomes apparent. Each individual agent
in the system has 129 state variables in the concrete and 89
state variables in the abstract model. While this reduction
of about 30% is not drastic the main reduction in proof
complexity comes from temporal abstraction: The individual
operations in the concrete model, having lengths of up to
35 cycles, are mapped to abstract single-cycle transitions. A
system transaction taking more than a hundred clock cycles
of serial transmission is therefore mapped to only a few
transitions in the abstract model, reducing temporal length of
properties by factors as low as 1/35.

Number of Concrete System Abstract System
agents CPU Time Memory CPU Time Memory

2 10s 117MB 4s 119MB
3 26s 115MB 9s 346MB
4 1min 16s 461MB 15s 428MB
5 — — 58s 577MB

TABLE IV
SAFETY PROPERTY CHECKED USING INDUCTION

Table IV shows the results for checking a safety property
using the induction prover built into OneSpin 360 MV. The
safety property ensures that at any time there is only one
master. For more than 4 agents the property cannot be proven
on the concrete system, while on the abstract system it is
proven in very short CPU time.

B. Industrial FPI Bus System

A more comprehensive evaluation of the proposed method
using CTL model checking on the abstract model was done in
an industrial case study. The Flexible Peripheral Interconnect
bus (FPI bus) owned by Infineon Technologies is used for
our experiments. It is an on-chip bus system similar to the
industry standard AMBA. The throughput of the FPI bus is
optimized by pipelining of transactions and extensive use of
combinational logic. This makes it particularly interesting to
examine how our approach can be used to abstract from such
high-performance implementations and how a “clean” model
at the transaction level can be obtained.

The FPI bus is a modular system consisting of master/slave
interfaces, a BCU, an address decoder and a bus multiplexer.
C-IPC was applied to obtain complete property sets for the
modules. From the complete property sets we derived the
abstract modules.

8



In our experiment we implemented our abstraction in the
Cadence SMV input language. By extensive use of macros in
our IPC-based verification tool (OneSpin 360 MV) the signals
of the SoC modules were encapsulated and named so that a
one-to-one mapping with the signals of the abstract module
was obtained. The implementation of the abstraction also here
was a manual step. Correctness can be ensured easily due
to the one-to-one mapping between the macros created in
OneSpin 360MV and the design description used for Cadence
SMV. In this way, abstract modules for the master agent and
the BCU were derived. For the slave agent, the address decoder
and the bus multiplexer the abstract modules were not derived
from C-IPC but created ad-hoc and integrated with the master
agent and the BCU to form an abstract system.

Master agent BCU
RT code inspection, lines of code 4,000 1,500
Number of properties 17 6
Total runtime of properties 1h 19min 15s
Total runtime of completeness checks 41s 10s

TABLE V
FPI BUS MODULE VERIFICATION

Table V shows some information on the complexity of de-
riving the abstract modules by C-IPC. Specifically, it presents
the approximate number of lines of RTL code which had to
be inspected in order to create our abstract models. In general,
the manual effort spent in C-IPC is about 2,000 lines of code
per person month for an average verification engineer. This
figure proved quite accurate also in the case study conducted
here.

Based on these industrial SoC modules we assembled a
system of three master agents, two slaves, the arbiter as well
as bus multiplexers and address decoders. If several complete
property suites are composed to completely describe a design
assembled from several modules additional checks need to
be applied in the completeness methodology to ensure the
correctness of the integration conditions [8].

As a result of the proposed methodology the abstract model
was obtained for the assembled FPI bus. While the concrete
system contained 2,624 state variables only 75 state variables
were included in the abstract system. We now used Cadence
SMV to prove several liveness and safety properties on the
abstract system. All properties are proven on the abstract
model within a few minutes using less than 500 MB.

As a liveness property, we have proved that any request from
a master will finish successfully within a fixed time under
the constraint that a master peripheral only sends requests
complying with the protocol, that the starvation prevention
is switched on, and that a slave does not stay busy forever.
As an example of a safety property, we prove that the bus
is correctly driven at any time. Specifically, we proved that
the various enable signals (data, address, ready) are one-hot-
encoded. According to Theorem 1 this property holds only in
the important states. By adding local properties proving that
the enable signals do not change value in-between important
states we obtain an unrestricted proof of the safety property

that now holds for both the important and the unimportant
states of the concrete model.

VI. CONCLUSION

In this paper we presented a methodology to leverage the
results of a complete property checking methodology, C-
IPC, to create abstractions for system-level verification.Our
approach can be understood also as a light-weight theorem
proving approach. In theorem proving, building a stack of
models to prove system properties is very common. Our
results show that such a paradigm is also feasible for property
checking by an appropriate methodology. Future work will
explore how the proposed abstraction can be integrated intoa
SystemC-based design and verification flow.

REFERENCES

[1] D. Kroening and N. Sharygina, “Formal verification of system c by
automatic hardware/software partitioning,”Formal Methods and Models
for Co-Design, 2005.

[2] J. Yang and C.-J. H. Seger, “Introduction to generalizedsymbolic
trajectory evaluation,”IEEE Transactions on VLSI Systems, vol. 11,
no. 3, pp. 345–353, 2003.

[3] A. J. Hu, J. Casas, and J. Yangpa, “Reasoning about GSTE assertion
graphs,” in Proc. CHARME. Springer, 2003, pp. 170–184, Lecture
Notes in Computer Science Vol. 2860.

[4] R. Sebastiani, E. Singerman, S. Tonetta, and M. Y. Vardi,“GSTE
is partitioned model checking.” inProc. International Conference on
Computer-Aided Verification (CAV), 2004.

[5] Onespin Solutions GmbH, Germany. OneSpin 360MV.
[6] M. D. Nguyen, M. Thalmaier, M. Wedler, J. Bormann, D. Stoffel, and

W. Kunz, “Unbounded protocol compliance verification usinginterval
property checking with invariants,”IEEE Transactions on Computer-
Aided Design, vol. 27, no. 11, pp. 2068–2082, November 2008.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” in Proc. Intl. Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 1999.

[8] J. Bormann, “Vollständige Verifikation,” Dissertation, Technische Uni-
versität Kaiserslautern, 2009.

[9] J. Bormann and H. Busch, “Method for determining the quality of a
set of properties,” European Patent Application, Publication Number
EP1764715, 09 2005.

[10] R. P. Kurshan,Computer-Aided Verification of Coordinating Processes
– The Automata-Theoretic Approach. Princeton University Press, 1994.

[11] S. Graf and H. Saı̈di, “Construction of abstract state graphs with PVS,”
in Proc. International Conference Computer Aided Verification (CAV),
ser. LNCS, vol. 1254. London, UK: Springer-Verlag, 1997, pp. 72–83.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” Journal of
the ACM, vol. 50, no. 5, pp. 752–794, 2003.

[13] E. Clarke, M. Talupur, H. Veith, and D. Wang, “SAT-basedpredicate
abstraction for hardware verification,” inConference on Theory and
Applications of Satisfiability Testing, ser. LNCS, vol. 2919. Springer,
5 2003, pp. 78–92.

[14] H. Jain, D. Kroening, N. Sharygina, and E. M. Clarke, “Word-level pred-
icate abstraction and refinement techniques for verifying RTL Verilog,”
IEEE Trans. on CAD, vol. 27, no. 2, pp. 366–379, 2008.

[15] M. Schickel, V. Nimbler, M. Braun, and H. Eveking, “On consistency
and completeness of property sets: Exploiting the property-based design
process,” inProc. Forum on Design Languages, 2006.

[16] P. Manolios and S. K. Srinivasan, “A refinement-based compositional
reasoning framework for pipelined machine verification,”IEEE Trans-
actions on VLSI Systems, vol. 16, pp. 353–364, 2008.

[17] K. Claessen, “A coverage analysis for safety property lists,” in Proc.
International Conference on Formal Methods in Computer-Aided Design
(FMCAD). IEEE Computer Society, 2007, pp. 139–145.

[18] H. Lu, “A case study on the verification of abstract system models
derived through interval property checking,” Master’s thesis, University
of Kaiserslautern, 2009.

9


