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Abstract—We introduce the notion of careset, a subset of
variables in a Boolean formula that must be assigned in any
satisfying assignment. We propose a restricted branching tech-
nique in a CDCL solver (i.e., DPLL-based SAT solver with clause
learning) such that every decision path is prefixed with decisions
on such a careset. Although finding a non-trivial careset maynot
be tractable in general, we demonstrate that for a SAT-based
bounded model checking (BMC) application we can derive it
automatically from the sequential behaviors of programs. Our
proposed branching technique significantly reduces the search
effort of a CDCL solver, and leads to a performance improvement
of 1-2 orders of magnitude over well-known heuristics, and over
top-ranked solvers of SAT2009 competition, that do not exploit
system-level information. We also discuss the proof complexity
of such a restricted CDCL solver.

I. I NTRODUCTION

In application domains such as bounded model checking
(BMC) of software and hardware [1], the analysis engine has
to explore paths of bounded length to validate the reachability
property. The problem instances are typically derived from
transition relation capturing the sequential behaviors ofan un-
derlying system using suitable transformation. These problem
instances are typically encoded into Boolean formulas (e.g.,
CNF DIMACS format). The core of the analysis engine uses
a DPLL-based [2] SAT solver to search through a Boolean
formula. As paths get longer, the number of possible paths,
and hence the search space, increases exponentially.

The state-of-the-art SAT solvers use various techniques to
prune the search space faster. Some of the important ones are
frequent restarts [3], [4], intelligent branching heuristics [5],
[6], and learning conflict-driven resolution clauses [7] and bi-
nary clauses [8]. These solvers are also well-engineered using
techniques such as two-literal watch scheme [6], efficient
preprocessing [9], hybrid representation [10], and many others
(e.g. [11], [12]). In spite of these improvements, the “loss”
of high-level information during encoding can significantly
degrade their performance. By loss, we imply that system-
level structure and behavior cannot be inferred from a Boolean
formula without knowing the actual transformation steps.

• Structure of the transition relation: During logic synthesis
(i.e., bit-blasting of the transition relation), there are
substantial losses of structural information such as types
of arithmetic and logical modules, connectivity among
such modules (i.e., their dependencies), and independent
(i.e., controlling) variables.

• System level behavior: The constraints and sequential
behaviors get lost during behavioral-level synthesis (i.e.,
during modeling of a system).

Previous experimental studies [10], [13]–[18] have shown
some success in exploiting structural information in a propo-
sitional formula to improve CDCL solvers (i.e., DPLL-
based solver using Conflict-Driven Clause Learning). Some
of these include: (I) branching restriction on dominating input

variables [13]–[15], backdoors variables [19], justification
gates [10], [18], fanout gates, and variables in dependency
graphs [14], [20]; (II) learning non-trivial circuit clauses
corresponding to symmetry [21], special gates such as XOR,
XNOR, and ITE gates [16], [17]; and (III) re-coding CNF us-
ing circuit observability don’t cares (Cir-ODC) [22]. However,
these techniques do not exploit system-level information.

A. Overview of our approach

Although it has been proved [23] that CDCL is expo-
nentially stronger (i.e., the search tree can be exponentially
shorter) than DPLL [2], the size of the search tree of CDCL
can still be very large as it is sensitive to a branching order.
Choosing the right variables and their order to shorten the
search tree are the primary focus of this paper.

It is a well known fact that not all variables need to be as-
signed while determining a satisfiable result. With that in mind,
we formalize the notion ofcareset, a subset of variables that
must be assigned in any satisfying assignment. We extend the
definition to an unsatisfiable instance, by defining careset on
maximal satisfiable subsets. We propose a restricted branching
technique in a CDCL solver such that every decision path is
prefixed with a sequence of decisions on such a careset. We
refer to such a sequence as abranching prefix sequence. Even
though finding such a non-trivial set and such a sequence may
not be tractable in general, we demonstrate that for a software
verification application we can derive them automatically from
the sequential behaviors of programs.

We compare formally the proof complexity [24] of restricted
CDCL vis-a-vis unrestricted CDCL in terms of the size of the
shortest proofs, measured in the number of decisions, they can
produce. For a given caresetc, and its size|c|, we show that
the shortest proof (π′) (and its size|π′|) obtained in restricted
CDCL cannot be greater than the shortest proof(π) (and its
size|π|) obtained in unrestricted CDCL by more than a factor
of f(c) i.e., |π′| ≤ f(c) · |π|, wheref(c) = 2|c| in general.
However, for the software model checking applicationf(c)
can be much smaller than2|c|.

For such an application, we demonstrate that our branching
technique significantly reduces the search effort of our CDCL
solver (based on [10]) by helping it learn shorter and useful
clauses earlier during the search process. We observe that the
length of clauses learnt are reduced by an order-of-magnitude
on average. This leads to a performance gain of 1-2 orders of
magnitude over the well known heuristics such as VSIDS [6]
and circuit-based [10], [14], [18], [22]. Even though we have
not yet included the latest and greatest improvements in
our solver, we demonstrate an order of magnitude improved
performance of such a restricted CDCL solver over the well-
engineered top-ranked solvers of SAT2009 competition [25].

For generality reasons, these advanced solvers do not intend
to exploit system-level information. However, without such



information, the performance penalty incurred by these solvers
is in orders of magnitude as observed in our experiments. Our
goal is to draw attention to the SAT community of substantial
progresses that are still possible in branching techniquesas
they play decisive role in the SAT performance.

B. Related Work

In [13]–[15], [26], problem structure was exploited to re-
strict the branching only to a smaller set of variables, referred
to as an independent variables set (IVS). These variables
correspond to non-deterministic initial state variables and
primary input variables for circuit applications [14], action
variables in planning applications [13], and task variables in
task sequencing problems [23]. By definition, these variables
dominate others variables that are not in the set i.e., dependent
variables. A total assignment on IVS uniquely determines the
values of the dependent variables. While such restrictionshelp
in specific applications, they can degrade the performance of
CDCL exponentially worse when compared to DPLL on some
other application [27].

In [19], a notion of backdoor variables was introduced,
where the branching was restricted only to such variables. The
idea is that once all of these variables have values, the reduced
formula can be solved by a polynomial-time solver. For a
constraint Boolean circuit, an IVS is a backdoor set. It was
demonstrated [28] that there is a strong correlation between the
size of a backdoor set and the hardness of the corresponding
Boolean formula. In general, finding a backdoor set from a
given Boolean formula, is intractable [28]. Researches have
also studied both theoretically and empirically [29] with the
notion of backbone set [30]. A backbone set of a satisfiable
Boolean formula is a set of literals which are assigned unique
common values in every satisfying assignment. It has been
shown that finding such a set is also intractable [28].

Our proposed notion of careset is different from the notion
of backdoor set or IVS. As we shall see later, a careset is
a necessary set while a backdoor set (or IVS) is a sufficient
set for a satisfiable formula. A careset is also different from
a backbone set, as careset variables need not have a unique
common assignment in every satisfying assignment.

In [10], [18], [22] circuit observability don’t cares (Cir-
ODC) were used to restrict the branching to justification gates
only, and avoid branching on the unobservable gates. In gen-
eral, such a branching is oblivious to system-level information.
In [31], functional information such as arithmetic types were
used to guide the decision engine. In our previous work [32],
we bias the decision choice on variables corresponding to
control state predicates, and thereby, use sequential behaviors
to guide the search. In this work, we provide a formal
justification for such biasing, and further improve the decision
process using branching prefix sequences.

Outline: The rest of the paper is organized as follows: With
some background in Section II, we formalize the notion of
careset, and introduce our branching method in Section III.In
Section IV, we give an overview of software model checking.
For that application, we present a method to generate careset
variables automatically, and describe our branching technique
in Section V. This is followed by a formal exposition on proof
complexity of the method in Section VI, and its detailed ex-

perimental evaluation in Section VII. We give our conclusions
and future directions in Section VIII.

II. PRELIMINARIES

CNF. A CNF formulaF is defined as a conjunctive set, i.e.,
AND (·) of clauses where eachclauseis a disjunctive set, i.e.,
OR (+) of literals. A literal is a variablev (positive) or its
negationv̄ (negative). Letvars(F ) andclauses(F ) represent
the set of all variables and clauses inF , respectively. An
assignmentfor F is a Boolean functionα : V 7→ {0, 1}, where
V ⊆ vars(F ). We usev ∈ α to denote thatv is assigned
underα. We say an assignmentα is total if V = vars(F ),
otherwise, it ispartial. A literal l is false (true) under α
if α(l) = 0(1). A variable (and literal) isfree if it is not
assigned. A clause issatisfied if at least one of its literals
is true. A clause isconflicting if all its literals are false. An
assignmentα is satisfyingif all clauses inF are satisfied by
α, and not necessarily all variables be assigned. We use
F |α to denote the simplified formula where the corresponding
assigned variables(∈ α) are replaced with their assigned
values, and false literals and satisfied clauses are removed. A
maximal satisfiable subset(MSS) ofF corresponds to a subset
of clauses ofF that is maximally satisfiable, i.e., adding any
remaining clause would make it unsatisfiable. For a setS, we
use|S| to denote its cardinality.

A P-Solversolves a Boolean formulaF in polynomial time
if it acceptsF . For example, a 2SAT-Solver that solves 2SAT-
CNF (i.e., a set of clauses with at most of 2 literals) but rejects
all others, is aP -Solver. A non-empty set of variablesS is
a backdoor [19] in a satisfiableF if for some assignment
α : S 7→ {0, 1}, P -Solver can showF |α to be satisfiable. Such
a set isstrong if for all such α, P -Solver can solveF |α, i.e.,
show it to be sat/unsat. A set of variablesS is abackbone[30]
of satisfiableF if there is a unique partial assignmentα : S 7→
{0, 1} such thatF |α is satisfiable. Note, assigning opposite
value to a backbone variable would makeF |α unsatisfiable.
Circuit. We consider a Boolean circuitG represented

as a DAG where each node represents a circuit gate, i.e,OR,
AND, XOR, orNOT, and each edge connects a gate to its fanout
node. We define an assignment forG as a Boolean function
α : W 7→ {0, 1}, where W is the set of all gate outputs
and primary inputs ofG. We say a gate isjustified, when its
input values justify its output value. For example, forg =
AND(a, b), g = 0 can be justified by eithera = 0 or b = 0.
Note, a primary input and a gate with no output value are
always justified. We say a gate istotally justified, if its inputs
are also justified transitively; otherwise, it ispartially justified.

A constraint Boolean circuit is a pair〈G, τ〉 where some
gates inG are constrained with an assignmentτ . Note, without
a constraintτ , a Boolean circuit is always satisfiable. We
say〈G, τ〉 is satisfiable if there exists an assignment, referred
as justifying, which (i) preserves the input/output relation of
each gate, and (ii) each constraint gate is totally justified.
One can encode a constraint Boolean circuit〈G, τ〉 into an
equi-satisfiable CNF formulacnf(〈G, τ〉) in linear-time using
standard “Tseitin translation.”
CDCL. The basic DPLL procedure [2] has three main steps

applied repeatedly: branch on a literal, applyunit propagation
(UP) rule, i.e., forcing a free literal true when all the other



literals in a clause are false, and backtrack chronologically
when a conflict is observed. It stops when either all clauses are
satisfied or all branches are explored. Conflict-driven Clause
learning [7] (CDCL) improves the basic procedure by learning
resolvent clauses after analyzing the causes of a conflict. In
the sequel, we use “CDCL” to denote any implementation of
the CDCL procedure, and use “a CDCL solver” to denote a
specific implementation.

III. C ARESET

Before we delve into the formal definition of careset, we
first defineminimally satisfying assignmentfor a satisfiable
Boolean formulaF for a givenP -Solver.

Definition 1 (Minimally Satisfying Assignment (MSA)):
We say an assignmentα of Boolean formulaF is minimally
satisfying for a givenP -Solver such that (i) UP rule cannot
be applied onF |α further, (ii) F |α can be shown to be
satisfiable by theP -Solver, and (iii) unassigning at least one
variable inα would violate the condition (i) or (ii). We use
MSA(F, P ) to denote the set of all MSAs ofF for a given
P -Solver.

Example 1:Let F be(a+x̄+d)(ā+x+c)(b+ȳ+d̄)(b̄+y+c̄).
Then,α = {x = 0, y = 0} is an MSA w.r.t. a 2SAT-Solver,
asF |α = (ā + c)(b̄ + c̄) is a 2SAT-CNF formula.

Definition 2 (Minimally Justifying Assignment (MJA)):
For a constraint Boolean circuit〈G, τ〉, we say an assignment
β is minimally justifying if un-assigning anyv ∈ β would
leave some constraint gate partially justified.
Example 2: All MJAs β1 − β4 for the constraint circuit
〈G, {(x = 1)}〉 are shown below: Consider aP -Solver
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d

e

f

x=1
a

b

β1 = {x = 1, a = 1, b = 0, e = 0, f = 0, c = 1},
β2 = {x = 1, a = 1, b = 0, e = 0, f = 0, d = 1},
β3 = {x = 1, a = 0, b = 1, c = 0, d = 0, e = 1},
β4 = {x = 1, a = 0, b = 1, c = 0, d = 0, f = 1}.

that applies arbitrary values to a set of unassigned primary
input variables, and applies UP rule recursively on the circuit
clauses. Such a solver, referred asCktSim, can always satisfy
the gate clauses of an unconstraint Boolean circuit.

Proposition1: β is an MJA of〈G, τ〉 iff β is an MSA for
cnf(〈G, τ〉) w.r.t. aCktSim asP -solver.

One can verify thatβ1−β4 are MSAs forcnf(〈G, τ〉) w.r.t a
CktSim. Note thatα = {x = 1, a = 1, b = 0, e = 0, f = 0}
is an MSA w.r.t a 2SAT-Solver, but not w.r.t. aCktSim.

In the sequel, we useCktSim as the givenP -Solver, and
useMSA(F ) to denoteMSA(F,CktSim). We now formally
introduce the notion of careset for a satisfiable formulaF ,
given CktSim as a P -Solver. Let Fred denote a reduced
formula F after applying the UP rule recursively onF .

Definition 3 (Careset):A non-empty set S of variables(⊆
vars(F )) is a caresetfor a given formulaF , such that aS
variable is assigned in every MSA ofF , i.e., v ∈ S → ∀α ∈
MSA(F ). v ∈ α. Such a setS is maximumwhen it includes
all such variables, i.e.,S = {v | ∀α ∈ MSA(F ). v ∈ α}. We
sayS is non-trivial if ∃v ∈ S. v ∈ vars(Fred); otherwise, it
is trivial .

In the sequel, we usecareset(F ) to denote a non-trivial
careset ofF , which may not be maximum unless noted
otherwise. Intuitively, a careset is a set of variables thatmust
be assigned to “witness” a satisfying assignment.

Using Proposition 1, we define careset for a Boolean con-
straint circuit〈G, τ〉 as careset(F ) whereF = cnf(〈G, τ〉).
For Example 2, non-trivial caresets of〈G, (x = 1)〉 are
{x, a},{x, b}, and{x, a, b} asa, b, c are assigned in all MJAs,
i.e., β1 −β4. The set{x, a, b} is the maximum careset. These
caresets are non-trivial as values ona, b cannot be obtained
by unit propagation onx = 1, while {x} is a trivial careset.

We extend the definition of careset to an unsatisfiable
formula F by defining it on maximal satisfiable subsets of
F . Let MSS(F ) denote a set of all MSS ofF . Then,
careset(F ) := ∪F ′∈MSS(F )careset(F ′). Such a careset is
maximum, when careset for eachF ′ is maximum. Note, a
non-trivial careset(F ′) for any MSSF ′ of F is also a non-
trivial careset forF .

Comparing Careset, Backdoor, Backbone. In contrast to a
backbone set, where variables are necessarily set to uniqueval-
ues, careset variables only need to be assigned, not necessarily
to unique values, in any satisfying assignment. Compared toa
backdoor set, which is asufficientset, a careset is anecessary
set for solving a problem satisfiable. Such a necessary set is
arguably smaller than a backdoor set, and therefore can help
the decision engine prioritize better.

For Example 2, a backbone set is{x = 1}, a backdoor set is
{x, a, b, c, e, f} (asCktSim returns satisfiable for assignment
β1), a strong backdoor set is{c, d, e, f} (asCktSim returns
SAT/UNSAT for a total assignment on the primary inputs),
and a careset is{x, a, b}.

A. Branching Strategy using Careset

We observe that for a satisfiable instance, a complete
assignment on careset variables is a “gateway” to a satisfying
solution. Intuitively, for such instances we should branchon
careset variables first, before branching on the other variables.
Such a branching technique is also a good heuristic for
unsatisfiable instances as argued below.

Assume F is unsatisfiable. LetF ′ ∈ MSS(F ), and
C = clauses(F )\clauses(F ′). Let vars(α) denote the set of
variables assigned underα ∈ MSA(F ′) andαS denote values
of S variables under assignmentα. As F is unsatisfiable,
∃S ⊆ vars(α) such thatαS makes some clausec ∈ C
conflicting. We sayα is blocked byc. Any β ∈ MSA(F ′) is
also blocked byc ∈ C, if αS = βS . Since careset variables
must be assigned in any MSA ofF ′, branching on them first
can lead to early blockage of MSAs, and faster resolution.

We refer to such a branching technique asbranching prefix
sequence. In contrast to a backdoor set where the (ideal) goal
is to obtain the smallest set, our (ideal) goal is to obtain the
maximum careset. However, obtaining such a set is as hard
as finding all MSAs. For practical reasons, we would like to
obtain a careset as large as possible, not necessarily maximum.
We would like to answer three key questions:

• How can a non-trivial and useful careset be obtained?
• How can such a set be exploited in a CDCL solver?
• How can the strength of such a CDCL solver be accessed?



In Sections IV-V, we answer the first two questions by
considering a software model checking application, and us-
ing the application-specific knowledge to derive a non-trivial
careset and exploit it in CDCL that is restricted with branching
prefix sequence. In Section VI, we compare the relative proof
complexity of restricted CDCL w.r.t. unrestricted CDCL. In
Section VII, we compare experimentally our restricted CDCL
solver against the state-of-the-art CDCL solvers that do not
exploit such application knowledge.

IV. A PPLICATION: MODEL CHECKING OF SOFTWARE

We briefly discuss our model building step (similar to [32])
from a given C program. We first obtain a simplified control
and data flow graph (CDFG) by flattening the structures and
arrays into scalar variables of simple finite types (Boolean, 32-
bit integer). We handle pointer accesses using direct memory
access on a finite heap model, and apply standard slicing
and constant propagation. We do not inline non-recursive
procedures to avoid blow up, but bound and inline recursive
procedures up to a user-defined depth. From the simplified
CDFG, we build a deterministic extended FSM (EFSM) where
each control state (or block) is identified with a uniqueid. We
use a program counterPC to track the control stateid. For
the ease of explanation, we focus on simplified CDFGs that
have a unique entry block (Src) and an error block (Err). We
are interested in checking reachability properties such asarray
bounds violations, null pointer dereferencing, and assertion
failures; that is, whether there is an execution trace fromSrc
to Err block. We use EFSM and CDFG interchangeably to
mean the same structure.

Example 3: Consider a low-level C programfoo as shown
in Figure 1, with its EFSMM . The control states, shown as
boxes, correspond to control points in the program, as also
indicated by the line numbers. Note, each control state is
identified with a number in the attached small square box. For
example,Err block 10 corresponds to the assertion in line17.
Update transitions of data path expressions are shown at each
control state. A directed edge(a, b) between control statesa, b
corresponds to the control flow between the associated control
points in the program. Each directed edge is associated with
an enabling condition.

Based on such a CDFG, we encode the transition model
T of an EFSM symbolically asT := TC ∧ TD, whereTC

encodes (control) transition relation forPC, i.e., the guarded
transitions between the control states, andTD encodes (data)
update transition relation for datapath variables based onthe
expressions assigned to the variables in various control states
in the model. We illustrate the translation ofT for Example 3.
We usev, v′ to denote current and next state variable,gij

to denote the guarded transition predicate at a directed edge
(i, j), and Br := (PC = r) to denote the control state
predicate. For ease of readability, we use C syntax ’?:’
to denote if-then-elseoperator, and other standard relation
operators. We obtain a Boolean encoding of the update and
the guarded transition relations under the assumption of
32-bit integer variables (not shown separately).

Transition relation for PC[TC(PC′, PC, a, b)]

PC′ := B1 ∧ g12 ? 2 : B1 ∧ g16 ? 6 : B2 ∧ g23 ? 3 :

B2 ∧ g24 ? 4 : · · · : 11

where∀r ∈ {1, · · · , 11} Br := (PC = r), and
g12 := (a ≥ b), g16 := (a < b), g23 := (a < b),
g24 := (b ≤ a), and so on.

Update transition relation[TD(a′, a, b′, b, PC)]
a′ := B1 ? a0 : B4 ? (a − b) : B7 ? (a − b) : a
b′ := B1 ? b0 : B3 ? (b − a) : B8 ? (b − a) : b

where a0, b0 are initial symbolic state values ofa, b, resp.,
i.e., 1 ≤ a0, b0 ≤ 10.

Bounded Model Checking.Let si denote a state atith step
from some initial states0, and T (si, si+1) denote the state
transition relation. A BMC instance (denoted asBMCk) com-
prises checking if an LTL (Linear Temporal Logic) property
φ can be falsified inexactlyk steps froms0, i.e.,

BMCk := I ∧ T 0,k ∧ ¬φ(sk) (1)

whereφ(sk) denotes the predicate thatφ holds in statesk,
and I denote the initial state predicate, andT 0,k denote the
unrolled transition relation

∧
0≤i<k T i,i+1 where T i,i+1 :=

T (si, si+1). Given a boundn, a BMC runcomprises checking
the satisfiability ofBMCk iteratively for 0 ≤ k ≤ n using a
SAT solver. In the sequel, we focus only on the reachability of
blockErr from blockSrc, i.e.,φ := F (PC = Err), whereF
is the eventually LTL operator, andI := (PC0 = Src)∧D0,
whereD0 is the initial state predicate on datapath variables.

A. Control Flow Reachability

We use CFG to denote a CDFG without the enabling
condition and update transitions. Acontrol pathis a sequence
of successive control states, denoted asγ0,k = (c0, . . . , ck),
where(ci, ci+1) is a directed edge in the CFG. We usec ∈ γ0,k

to denote thatc belongs to the sequence. Anunrolled CFG
for depthd is a DAG that corresponds to an unfolded CFG
where the transitions after depthd is removed, shown as an
example in Figure 1 ford = 7 . A control state reachability
(CSR) analysis is a breadth-first traversal of the unrolled CFG
where a control stateb is one step reachable froma iff there
is a directed edge(a, b). At a given sequential depthd, let
R(d) represent the set of control states that can be reached in
CFG in one step from the states inR(d−1), with R(0) = c0.

ComputingCSR for the unrolled CFG ofM (Figure 1),
we obtain the setR(d) for 0 ≤ d ≤ 7: R(0) = {1},
R(1) = {2, 6}, R(2) = {3, 4, 7, 8}, R(3) = {5, 9},
R(4) = {2, 10, 6, 11}, R(5) = {3, 4, 7, 8}, R(6) = {5, 9},
R(7) = {2, 10, 6, 11}.

We usefrom(r) andto(r) to denote set of blocks reachable
from and tor, respectively. The unrolled transition relation
T 0,k capture the following control flow constraintsimplicitly.
We usevd to denote the unrolled variablev in T d,d+1. Bd

r

refers to the Boolean control state predicate(PCd = r),
i.e., whetherPC at depthd is at control stater. It has been
shown that these constraints when added explicitly, improve
the search [33].

• Reachable Block Constraint (RBC): At least one block is
reachable atd i.e., ∃r ∈ R(d). (Bd

r ).
• Mutual Exclusion Constraint (MEC): At most one block

is reachable atd, i.e, ∀r 6= t. (Bd
r → ¬Bd

t )



1. void foo(int a,
2. int b)
3. { /* precondition */
4. assume(1 ≤ a ≤ 10);
5. assume(1 ≤ b ≤ 10);
6. if (a≥b) {
7. do {
8. if (b≤a) a=a−b;
9. else b=b−a;
10. }while(b!=0);
11. }else {
12. do{
13. if (a≤b) b=b−a;
14. else a=a−b;
15. }while(a!=0);
16. }
17. assert(!(a==0 && b==0));
18.}
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SINK (line 18)
a=0∧b≠0b=0∧a≠0
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Fig. 1. A sample C code, its EFSMM , and an unrolled CFG for depth7.

• Forward Reachable Block Constraint (FRBC): Ifr is
reachable atd < k, then t ∈ from(r) is reachable at
d + 1, i.e., ∃t ∈ from(r). (Bd

r → Bd+1
t ).

• Backward Reachable Block Constraint (BRBC): Ifr is
reachable atd > 0, thent ∈ to(r) is reachable atd − 1,
i.e., ∃t ∈ to(r). (Bd

r → Bd−1
t ).

V. GENERATING A CARESET FORBMC

As per Eqn 1,BMCk = B0
Src ∧D0 ∧ T 0,k ∧Bk

Err, where
D0 is initial state predicate on datapath variables. LetΓa,b

denote a set of all control pathsγ0,k between control states
a and b, i.e., {γ0,k | c0 = a, ck = b}. We saycd ∈ Γ0,k iff
cd ∈ γ0,k for someγ0,k ∈ Γ0,k. The following theorem will
provide a basis for generating a non-trivial careset forBMCk.

Theorem1: A non-trivial careset forBMCk is a set of
control state predicate variables in all the control paths from
Src to Err, i.e., {Bd

cd
| cd ∈ ΓSrc,Err, 0 ≤ d ≤ k}.

Proof. We consider two cases based on whetherBMCk is
satisfiable or not.

Case 1: BMCk is satisfiable. Clearly, ∃γ0,k s.t. γ0,k

witnesses the control reachability ofErr block from Src
block. Let α be the corresponding MJA ofBMCk. Then,
∀cd ∈ γ0,k. α(Bd

cd
) = 1, as otherwise,Bk

Err = true
would not be totally justified. As per MEC flow constraint,
∀cd, c

′
d ∈ R(d). Bd

cd
→ ¬Bd

c′
d

, i.e., control predicate variables

in the control paths other thanγ0,k are implied false. Thus,
the claim holds.

Case 2: BMCk is unsatisfiable. We construct an MSS
F ′ of BMCk as follows: Initially, F ′ = ∅. We include
the constraints(B0

Src ∧ Bk
Err), and add all the constraints

corresponding to the unrolled expressions forPC without the
guarded expressions, i.e, we treatgd

ij as free input variables.
Note, F ′ constructed so far captures only the control flow
constraints, and is therefore satisfiable. We then add the
remaining data path and guarded expressions untilF ′ becomes
an MSS ofBMCk. By definition of a careset and using the
argument as in Case 1, the claim follows.2

Based on the above theorem, we obtain acareset(BMCk)
by doing forward and backward traversal fromSrc andErr
blocks, resp. on the CFG, and includingBd

r corresponding
to a control stater ∈ R(d) that is visited by traversal in
both direction. For Example 3 (Figure 1),careset(BMC4) is
{B0

1 , B1
2 , B2

3 , B2
4 , B3

5 , B1
6 , B2

7 , B2
8 , B3

9 , B4
10}.

A. Branching Prefix Sequence

We introduce the notion of branching prefix sequence
(BPS)1, a kind of restrictive branching where every decision
path (starting at decision level 0) is prefixed with a given
ordered sequence of branching literals.

Definition 4: A branching prefix sequence(BPS) for a
formula F is an ordered sequenceσ = (l1, · · · lm) of literals
of F such that a CDCL solver always picks first free literal
li in σ (skips the assigned literals), and branches withli set
to true. If all the literals inσ are assigned, default branching
heuristic is applied. During backtracking, some of the literals
in σ can become free. At any decision level, the solver always
branches on the first free literal inσ, if one exists. However,
the literals ofσ are neither removed nor reordered. CDCL
using a BPS is referred to as CDCLbps.

We use thecareset(BMCk) variables to obtain a BPS. We
first define an ordering relation based on control distance ofa
careset variableBd

r ∈ careset(BMCk).
Definition 5: A control distance of a careset variableBd

r ∈
careset(BMCk) is a function δ : careset(BMCk) 7→
{0, · · · , k} such thatδ(Bd

r ) = k − d.
For example,B1

6 ∈ careset(BMC4) has a control distance
δ(B1

6) = 4 − 1 = 3.
Definition 6: An increasing (decreasing) sequence of lit-

erals in careset(BMCk) is defined as a total order on the
careset variables (i.e., positive literals) with respective to a
non-decreasing (non-increasing) control distances. Variables
with the same control distances are ordered using some
heuristic such as literal count. We useISk (DSk) to denote
increasing (decreasing) sequence ofcareset(BMCk).

An increasing sequenceIS4 for careset(BMC4) is as fol-
lows: {B4

10(0), B3
5(1), B3

9(1), B2
3(2), B2

4(2), B2
7(2), B2

8(2),
B1

2(3), B1
6(3), B0

1(4)}, where the values in the brackets refer
to the respective control distances of the variables. Here we
broke the tie using the corresponding control stateid. In actual
implementation, we use the VSIDS [6] scores.

Intuitively, an ISk used as a BPS helps a CDCL solver
to prune theinfeasible local path segments that are closer
to Err block by learning useful clauses with fewer decisions.
We observed in our experiments that such an approach reduces
the average length of conflict clauses per conflict (denoted as

1The notion of BPS differs from branching sequence [23] wherea literal
is chosen once, and may not be assigned on every decision path.



AvgCL) and search tree size (i.e., number of decisions) by
1-2 orders of magnitude. In Section VII, we provide detailed
experimental results supporting our intuition. Now we discuss
the proof complexity of such an approach.

VI. PROOF COMPLEXITY OF CDCLbps

We use the notion of proof complexity [24] to compare the
relative power of proof inference systemsP andP ′ based on
the shortest proofsπ andπ′ they can produce, resp. Let|π| and
|π′| denote the respective proof sizes. We sayP ′ polynomially
simulatesP when |π′| ≤ 2O(logn)(= poly(n)) · |π| for all
families of formula overn variables; otherwise,P ′ cannot
polynomially simulateP . For example, it was shown [23] that
DPLL cannot polynomially simulate CDCL.

In CDCL and CDCLbps proof systems, we measure the size
of their shortest proofs in terms of their search tree, i.e.,the
number of decisions. As CDCL is unrestricted, an identical
proof can be obtained in CDCL as in CDCLbps by applying
the same decision order in CDCL as applied in CDCLbps.
Thus, the following holds trivially.

Proposition2: CDCL polynomially simulates CDCLbps.
Unfortunately, we cannot claim in the other direction due

to branching restriction in CDCLbps. However, we provide a
worst case bound on the size of its shortest proof. For any
unsatisfiable formulaF over n variables, letS be a careset
of F , with |S| denoting its size. Letπbps(F ) (π(F )) and
|πbps(F )| (|π(F )| denote the shortest proof and its size, resp.,
obtained in CDCLbps (CDCL).

Theorem2: The shortest proof obtained in CDCLbps can-
not be greater than that obtained in CDCL by more than
a factor of f(S), i.e., |πbps(F )| ≤ f(S) · |π(F )|, where
f(S) = 2|S|.
Proof. Consider the search tree of CDCLbps. Let U =
{σ1 · · ·σm} represent a set of unique assignments made on
careset variables before a proof is generated in CDCLbps, i.e,
∀(i 6= j).∃v ∈ σi, v ∈ σj . σi(v) 6= σj(v). Clearly, asF is
unsatisfiable, each (partial) assignment onvars(F ) that ends
in conflict, includes exactly oneσi for somei. We claim that
|πbps(F )| = Σm

i |πbps(F |σi
)| = Σm

i |π(F |σi
)| ≤ Σm

i |π(F )| ≤
2|S| · |π(F )|. The first equality holds as assignments on careset
variables are made before the rest in CDCLbps. The second
equality holds as branching heuristics of CDCLbps and CDCL
are the same on non careset variables. The following inequality
holds as CDCL is a natural proof system. The last inequality
holds asm ≤ 2|S|. 2

In practice, we often see conflict before all the careset
variables are assigned. Moreover, all variables inS may not
be independent, i.e., some are implied by others inS, in
which casem ≪ 2|S|. Especially, forF = BMCk (Eqn 1),
S = careset(BMCk) (Theorem 1), andΓSrc,Err (denoting
a set of control paths fromSrc to Err), upper bound onU is
determined by the number of control paths, i.e.,|ΓSrc,Err|.

Corollary 1: |πbps(F )| ≤ |ΓSrc,Err| · |π(F )|.

VII. E XPERIMENTS

We experimented with eight sets of benchmarksE1-E8,
each with 1 to 3 properties. These correspond to software
models and properties generated using software verification
platform F-Soft [32] from real-world C programs such as

network protocol and mobile software. Our experiments were
conducted on a Linux box with Intel Pentium 4 CPU 3.2GHz,
2GB of RAM. On these models, we used a SAT-based
BMC [17], [33].

We used an incremental hybrid SAT solver [10], [17],
where a BMC instance is represented in And-Inverter circuit
graph (AIG) and the learnt clauses are represented in CNF. It
implements Chaff algorithm [6] using 1UIP clause learning
scheme [34], and VSIDS [6] for branching. Note, it does
not include many recent improvements such as preprocessing
(SATeLite [9]), learning binary clauses during BCP [8], smart
frequent restarts [4], and others (e.g. [11], [12]). Unlikea
pure CNF solver2, it has direct access to circuit information.
Optionally, it uses circuit-based branching heuristics [10], [14],
[18] (such as branching on the inputs of currently unjustified
gates only). We refer to this branching heuristic asCKT.

We also provide such a hybrid solver with a BPS. For each
BMCk instance, we automatically generate sequencesISk

andDSk (ref. Section V-A). We useiBPS (dBPS) to denote
the branching heuristic whereISk (DSk) is used as a BPS.

Combining the above heuristics, we consider following four
solversB1-B4 for performance comparison.

• B1:VSIDS The CDCL solver withVSIDS heuristic.
• B2:CKT+VSIDS The CDCL solver withCKT heuristic.

However, when there are many choices at a decision level,
the tie is broken withVSIDS heursitic.

• B3:iBPS+CKT+VSIDS The CDCL solver withiBPS
heuristic. When there is no free literal in the BPS, it
branches asB2 until the BPS has a free literal.

• B4:dBPS+CKT+VSIDS Similar to B3 but usesdBPS.

Experiment Set I. We compare the performance of the solvers
B1-B4 on benchmarksE1-E8 for each BMC run, comprising
solving BMCk for eachk ≥ 0 until time out. We gave a
timeout of 1200s for each BMC run. In each run, we generate
and solve BMC instances incrementally at depthk. Other than
branching, all other heuristics were kept the same. We show
the results in Figure 2.

In X-axis we show BMC depths analyzed before timeout
occurs, and inY-axis we show the cumulative solve time (in
sec) after each unrolled depth. We also labeled a few selected
graphs for better readability.

Clearly, B3 outperformsB1,B2,B4 by several orders of
magnitude.B4 outperformsB1 only in 3 cases, i.e.,E1, E3,
E7. This shows that branching order is equally important in a
CDCL solver. We do not see much improvement ofB2 over
B1. B3 finds two witnesses (at depths 43 and 63, resp.) in
E7 while B4 finds only the shorter witness (i.e., at depth 43).
B1 or B2 finds neither of them. Clearly, circuit information
does not provide much of guidance compared to system-level
information. We do not show separately the comparison data
with the solver used in [32], wherein the control state predicate
variables are given higher VSIDS scores initially. We observed
that the performance of such a solver is marginally better or
comparable to that ofB1 on these BMC runs.

We provide detailed comparison results betweenB2 andB3
in Table I. For each benchmark, we obtained a list ofBMCk

2In a CNF solver, one can use Cir-ODC CNF encoding [22] to exploit
circuit information, albeit with additional overhead compared to [10].



instances that were solved byB2 and B3 in more than 5s
but less than 1200s. Note, all these instances are unsatisfiable.
After sorting them onk, we selectedminimum, median and
maximum instances from the list as shown in Columns 1-2.
The number of variables(#V ) in these instances are about
200k-1.3M, as shown in Column 3. In Columns 4-6, we
present the results ofB2: the number of decisions (#D), the
average conflict-clause length (AvgCL), and the time taken
(in sec) (T). In Columns 7-11, we present the results ofB3:
the size of careset as percentage of#V (#CV), the number of
decisions (#D), the number of decisions on careset variables
as the percentage of#D (#DCV), the average conflict-clause
lengthAvgCL, and the time takenT(s), resp. We observe that
baring a few cases,AvgCL is about an order of magnitude
smaller in B3, compared toB2. Clearly, iBPS guides the
solver B3 better in learning useful clauses earlier, thereby,
reducing the overall solve time significantly. We also find that
the number of careset variables is about 1-3% of the number
of variables, and in the most unsatisfiable instances, decisions
on them are sufficient to solve the instance.
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Fig. 2. BMC runs on E1-E8

Experiment Set II. We obtained DIMACS CNF format from
the BMC instances at different depths from Experiment Set
I. To keep our focus on hard instances, we included those
on which B3 solver takes more than 5 sec to solve. We
obtained a total of 130 instances; out of which 128 are

TABLE I
COMPARING B2 AND B3 ON (UNSAT) BMCk .

BMCk Instance B2: CKT+VSIDS B3: iBPS+CKT+VSIDS
Ex Depth #V #D AvgCL T #CV #D #DCV AvgCL T

k (’000) (#lit) (s) (%#V) (%#D) (#lit) (s)

min: 28 262 381 247 5 1.1 710 100 27 3
E1 med: 38 445 1533 691 56 1.1 1977 100 99 21

max: 43 522 1400 1081 62 1.1 595 100 251 25

min: 46 250 669 275 5 2.3 137 100 27 0
E2 med: 47 257 421 145 5 2.3 137 100 27 0

max: 49 271 909 223 9 2.3 124 100 30 0

min: 16 582 242 350 8 0.7 435 100 28 13
E3 med: 22 1121 1107 2076 61 0.7 557 100 35 17

max: 24 1323 413 5984 50 0.7 25 100 201 3

min: 42 194 855 75 5 1.3 46 100 30 0
E4 med: 49 239 1293 85 8 1.3 47 100 63 0

max: 80 440 2296 682 59 1.2 80 100 158 0

min: 23 442 249 1547 5 0.7 275 100 32 1
E5 med: 33 721 1844 1262 66 0.7 386 100 286 2

max: 36 804 1752 1773 65 0.7 198 100 246 1

min: 93 223 397 3980 5 1.4 280 25 499 0
E6 med: 100 241 550 4062 9 1.4 204 68 537 1

max: 130 320 1240 8773 88 1.4 320 77 675 2

min: 28 223 243 610 5 1.0 248 100 70 0
E7 med: 31 257 245 550 8 1.0 141 92 49 0

max: 40 359 973 1189 56 1.0 348 50 226 1

min: 33 231 766 76 5 1.0 121 100 9 0
E8 med: 35 250 807 124 6 1.0 109 100 8 0

max: 38 278 1021 67 8 1.0 109 100 10 0
#V: number of variables in thousands, #D: number of decisions

AvgCL: average conflict-clause length
#CV: careset size as % of #V, #DCV: % of #D on careset variabes)

TABLE II
NECLA SAT VS SAT2009WINNERS [25].

Solver SAT UNSAT Total
Time(s) Time(s) Time(s)

NECLA 24 2,042 2,066
SAT (2) (128) (130)

Preco- 468 18,367 18,835
SAT (2) (128) (130)

mini- 372 19,475 19,847
SAT (1) (91) (92)

1,601† (NECLA) (.) # solved cases (out of 130)
12,131† (Preco) within 1800 sec.

glucose 663 39,411 40,074 † Time taken on 92 solved
(1) (111) (112) cases ofminiSAT

1,789‡ (NECLA) ‡ Time taken on 112 solved
17,381‡ (Preco) cases ofglucose

unsatisfiable and 2 are satisfiable. The number of variables in
these instances ranges between 120K-2.2M, and the number
of clauses ranges between 350K-6.6M. These benchmarks are
also made publicly available [35].

We usedB3 solver without CKT heuristic, and refer it
as NECLA SAT solver3 (For the sake of fair comparison,
and to show the benefits ofiBPS exclusively, we disabled
circuit heuristics.) We compared this solver withPrecoSAT,
miniSAT, andglucose, the top-ranked solvers in SAT2009
competition under application category [25]. These solvers
use explicit or in-built preprocessor (e.g., SATeLite [9]),
and smart frequent restarts [4], whileNECLA SAT does not
include any of these techniques. We gave a time limit of 1800s
per instance. We provide a summary of the results in Table II.

In Column 1, we list the solvers we compared. In Column
2(3), we present the solve time (in sec) for SAT(UNSAT)
instances. In Column 4 we present the total time taken (in sec)
for the solved instances only. In Columns 2-4, we show the
number of instances solved by each solver in brackets. Where
the solved instances are less than 130, i.e., forglucose and

3NECLA SAT w/o iBPS corresponds toB1 solver.
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miniSAT, we also provide the total time taken byNECLA
SAT andPrecoSAT on those solved instances.
NECLA SAT andPrecoSAT solve all 130 instances, while

glucose and miniSAT solve 112 and 92 instances, re-
spectively. Clearly,NECLA SAT solver outperforms the rest
solvers by about an order of magnitude.

We also compareNECLA SAT and PrecoSAT in more
details as shown in Figure 3. In the left figure, we show
the instances solved (alongX-axis), and the cumulative
time taken in sec (alongY-axis). We observe thatNECLA
SAT outperformsPrecoSAT consistently by about an or-
der of magnitude. In the right figure, we present a scatter
plot comparing the number of decisions betweenNECLA
SAT (along X-axis) and PrecoSAT (along Y-axis) in
logarithmic scale, where each ‘x’ mark corresponds to an
instance solved. We observe that the number of decisions in
NECLA SAT are 1-2 orders of magnitude smaller than that
in PrecoSAT, as indicated by clustering of ‘x’ between
dotted lines namely,1-OM and 2-OM. All the marks on
X-axis (i.e., with 0 decision inPrecoSAT) are instances
solved by the in-built preprocessor [9] ofPrecoSAT. For
these instances,NECLA SAT takes about 5-10s, about the
same as the preprocessing time.NECLA SAT also requires an
order of magnitude fewer backtracks comparatively (not shown
separately). Clearly, benefit from usingiBPS outweighs many
heuristics inPrecoSAT.

VIII. C ONCLUSION AND FUTURE WORK

Branching plays a crucial role in a CDCL solver. We
introduce the notion of careset variables and branching prefix
sequence to guide the decision engine. We derive such a
careset from software model checking application, and use it
to improve the performance of a CDCL solver by an order of
magnitude compared to the latest best SAT solvers that do not
exploit system-level information. We also compared formally
the resolution power of restricted CDCL vis-a-vis unrestricted
CDCL. Overall, our results serve as a proof of concept that the
analysis of system behaviors can be used to improve a SAT
solver performance dramatically.

On the one hand, the current advanced SAT solvers do
not intend to take advantage of system-level information for
generality reasons, but on the other hand, the performance
penalty of not using such information could be in the orders
of magnitude, as observed in our software model checking
experiments. For a better trade-off, we believe that there
is a further scope in improving SAT-formulation where one
can generate SAT problems conducive for the state-of-the-art

solvers. In future, we would also like to detect careset during
runtime, in contrast to its static determination as presented.
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[32] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, and P. Ashar. Efficient
SAT-based Bounded Model Checking for Software Verification. In
Proceedings of ISOLA, 2004.

[33] M. K. Ganai and A. Gupta. Accelerating high-level bounded model
checking. InProc. of ICCAD, 2006.

[34] L. Zhang and C. F. Madigan and M. H. Moskewicz and S. Malik.
Efficient conflict driven learning in a boolean satisfiability solver. In
Proc. of ICCAD, 2001.

[35] System Analysis and Verification Team. NECLA SAV
Benchmarks. http://www.nec-labs.com/research/system/systemsSAV-
website/benchmarks.php.


