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Abstract—We introduce the notion of careset, a subset of variables [13]-[15], backdoors variables [19], justifioat
variables in a Boolean formula that must be assigned in any gates [10], [18], fanout gates, and variables in dependency
satisfying assignment. We propose a restricted branchingeth- graphs [14], [20]; (I) learning non-trivial circuit clags

nique in a CDCL solver (i.e., DPLL-based SAT solver with clase dina t trv [21 ial qat h XOR
learning) such that every decision path is prefixed with deions corresponding to symmetry [21], special gates such as ’

on such a careset. Although finding a non-trivial careset mayot XNOR, and ITE gates [16], [17]; and (Il re-coding CNF us-
be tractable in general, we demonstrate that for a SAT-based ing circuit observability don’t cares (Cir-ODC) [22]. Hower,

bounded model checking (BMC) application we can derive it these techniques do not exploit system-level information.
automatically from the sequential behaviors of programs. Qir

proposed branching technique significantly reduces the seeh  A. Overview of our approach

effort of a CDCL solver, and leads to a performance improvemat . .

of 1-2 orders of magnitude over well-known heuristics, and ger Although it has been proved [23] that CDCL is expo-
top-ranked solvers of SAT2009 competition, that do not exglit nentially stronger (i.e., the search tree can be exporigntia

system-level information. We also discuss the proof comptély  shorter) than DPLL [2], the size of the search tree of CDCL
of such a restricted CDCL solver. can still be very large as it is sensitive to a branching order
|. INTRODUCTION Choosing the right variables and their order to shorten the

L . .search tree are the primary focus of this paper.
In application domains such as bounded model checkingy js 4 well known fact that not all variables need to be as-

(BMC) of software and hardware [1], the analysis engine "Nagned while determining a satisfiable result. With that indp
to explore paths of bounded length to validate the readbabilye tormalize the notion otareset a subset of variables that

property. The problem instances are typically derived fromy st he assigned in any satisfying assignment. We extend the
transition relation capturing the sequential behaviorarotin- - yefinition to an unsatisfiable instance, by defining careset o
derlying system using suitable transformation. Theselprob ,5ima satisfiable subsets. We propose a restricted hirepch
instances are typically encoded into Boolean_formu_las.,(e.f‘g‘.achmque in a CDCL solver such that every decision path is
CNF DIMACS format). The core of the analysis engine Usesefixed with a sequence of decisions on such a careset. We
a DPLL-based [2] SAT solver to search through a Booleg@ser 1o such a sequence abranching prefix sequenceEven
formula. As paths get longer, the number of possible pathfo,gh finding such a non-trivial set and such a sequence may
and hence the search space, increases exponentially. not be tractable in general, we demonstrate that for a sodtwa

The state-of-the-art SAT solvers use various techniques [rification application we can derive them automaticaiyn
prune the search space faster. Some of the important ones;gge.

o ; - sequential behaviors of programs.
frequent restarts [3], [4], intelligent branching heudst[S],  \ye compare formally the proof complexity [24] of restricted
[6], and learning conflict-driven resolution clauses [7Hdi-

> ‘ CDCL vis-a-vis unrestricted CDCL in terms of the size of the
nary clauses [8]. These solvers are also well-engineelied

X . J USshortest proofs, measured in the number of decisions, ey ¢
techniques such as two-literal watch scheme [6], eﬁ'c'eBFoduce. For a given caresetand its sizelc|, we show that

preprocessing [9], hybrid representation [10], and maheist 6 ghortest proofr() (and its sizelr'|) obtained in restricted
(e.g. [11], [12]). In spite of these improvements, the *lOSScHCL cannot be greater than the shortest prof (and its

of high-level information during encoding can significantl ;76 1) obtained in unrestricted CDCL by more than a factor
degrade their performan_ce. By loss, we imply that systerge f(c) ie., 7| < f(c) - ||, where f(c) = 2! in general.
level structure and behavior cannot be inferred from a Booley g \vever for the software model checking applicatipfr)
formula without knowing the actual transformation steps. ., pe rr’1uch smaller tharic!.

« Structure of the transition relatiorDuring logic synthesis  For such an application, we demonstrate that our branching
(i.e., bit-blasting of the transition relation), there argechnique significantly reduces the search effort of our CDC
substantial losses of structural information such as typgsiver (based on [10]) by helping it learn shorter and useful
of arithmetic and logical modules, connectivity amonglauses earlier during the search process. We observehthat t
such modules (i.e., their dependencies), and independgitigth of clauses learnt are reduced by an order-of-madgmitu
(i.e., controlling) variables. on average. This leads to a performance gain of 1-2 orders of

« System level behavioiThe constraints and sequentiaiagnitude over the well known heuristics such as VSIDS [6]
behaviors get lost during behavioral-level synthesis, (i.eand circuit-based [10], [14], [18], [22]. Even though we bav
during modeling of a system). not yet included the latest and greatest improvements in

Previous experimental studies [10], [13]-[18] have showour solver, we demonstrate an order of magnitude improved

some success in exploiting structural information in a propperformance of such a restricted CDCL solver over the well-
sitional formula to improve CDCL solvers (i.e., DPLL-engineered top-ranked solvers of SAT2009 competition.[25]
based solver using dhflict-Driven Qause _learning). Some  For generality reasons, these advanced solvers do notlinten
of these include: (1) branching restriction on dominatingut to exploit system-level information. However, without buc



information, the performance penalty incurred by theseessl perimental evaluation in Section VII. We give our conclunsio
is in orders of magnitude as observed in our experiments. Qurd future directions in Section VIII.

goal is to draw attention to the SAT community of substantial

progresses that are still possible in branching techniqses [l. PRELIMINARIES

they play decisive role in the SAT performance. CNF. A CNF formulaF is defined as a conjunctive set, i.e.,
B. Related Work AND () of qlauses where egccﬂlause!s a disjunc_tiye set, i_.e.,
’ OR (+) of literals. A literal is a variablev (positive) or its
In [13]-[15], [26], problem structure was exploited to renegationv (negative). Letars(F') andclauses(F') represent
strict the branching only to a smaller set of variables,ref the set of all variables and clauses Iy respectively. An
to as an independent variables set (IVS). These variablessignmentor F is a Boolean functiom : V' — {0, 1}, where
correspond to non-deterministic initial state variablesl a V' C vars(F). We usev € « to denote thaw is assigned
primary input variables for circuit applications [14], et undera. We say an assignment is total if V' = vars(F),
variables in planning applications [13], and task variakile otherwise, it ispartial. A literal [ is false (true)under «
task sequencing problems [23]. By definition, these vagsblif «(l) = 0(1). A variable (and literal) isfree if it is not
dominate others variables that are not in the set i.e., dkgg#n assigned. A clause isatisfiedif at least one of its literals
variables. A total assignment on IVS uniquely determines tlis true. A clause ionflictingif all its literals are false. An
values of the dependent variables. While such restrictiehs assignmenty is satisfyingif all clauses inF' are satisfied by
in specific applications, they can degrade the performafceay and not necessarily all variables be assigned. We use
CDCL exponentially worse when compared to DPLL on somg|,, to denote the simplified formula where the corresponding
other application [27]. assigned variable$e «) are replaced with their assigned
In [19], a notion of backdoor variables was introducedjalues, and false literals and satisfied clauses are reméved
where the branching was restricted only to such variablé® Tmaximal satisfiable subs@¥SS) of F' corresponds to a subset
idea is that once all of these variables have values, thecegtuof clauses off’ that is maximally satisfiable, i.e., adding any
formula can be solved by a polynomial-time solver. For eemaining clause would make it unsatisfiable. For a%ete
constraint Boolean circuit, an IVS is a backdoor set. It wasse|S| to denote its cardinality.
demonstrated [28] that there is a strong correlation betilee A P-Solversolves a Boolean formul&' in polynomial time
size of a backdoor set and the hardness of the correspondirigacceptsE. For example, a 2SAT-Solver that solves 2SAT-
Boolean formula. In general, finding a backdoor set from @NF (i.e., a set of clauses with at most of 2 literals) butakge
given Boolean formula, is intractable [28]. Researchesehaall others, is aP-Solver. A non-empty set of variables is
also studied both theoretically and empirically [29] withet a backdoor[19] in a satisfiableF' if for some assignment
notion of backbone set [30]. A backbone set of a satisfiabde: S — {0, 1}, P-Solver can show|, to be satisfiable. Such
Boolean formula is a set of literals which are assigned umiga set isstrongif for all such «, P-Solver can solve|,, i.e.,
common values in every satisfying assignment. It has beshow it to be sat/unsat. A set of variablgss abackbong30]
shown that finding such a set is also intractable [28]. of satisfiableF' if there is a unique partial assignment S —
Our proposed notion of careset is different from the notiof0, 1} such thatF|, is satisfiable. Note, assigning opposite
of backdoor set or IVS. As we shall see later, a caresetvglue to a backbone variable would maké, unsatisfiable.
a necessary set while a backdoor set (or IVS) is a sufficientGi r cui t . We consider a Boolean circu® represented
set for a satisfiable formula. A careset is also differentnfroas a DAG where each node represents a circuit gateQiRe,
a backbone set, as careset variables need not have a unig®, XOR, or NOT, and each edge connects a gate to its fanout
common assignment in every satisfying assignment. node. We define an assignment féras a Boolean function
In [10], [18], [22] circuit observability don't cares (Cir-« : W +— {0,1}, where W is the set of all gate outputs
ODC) were used to restrict the branching to justificatioregatand primary inputs of7. We say a gate igustified when its
only, and avoid branching on the unobservable gates. In gémput values justify its output value. For example, fpr=
eral, such a branching is oblivious to system-level infaioma AND(a, b), ¢ = 0 can be justified by eithets = 0 or b = 0.
In [31], functional information such as arithmetic typesrave Note, a primary input and a gate with no output value are
used to guide the decision engine. In our previous work [32lways justified. We say a gate tstally justified if its inputs
we bias the decision choice on variables corresponding ace also justified transitively; otherwise, itpartially justified
control state predicates, and thereby, use sequentialioesa A constraint Boolean circuit is a paiiG, 7) where some
to guide the search. In this work, we provide a formaates inG are constrained with an assignmeniNote, without
justification for such biasing, and further improve the demi a constraintr, a Boolean circuit is always satisfiable. We
process using branching prefix sequences. say (G, ) is satisfiable if there exists an assignment, referred
Outline: The rest of the paper is organized as follows: Witls justifying, which (i) preserves the input/output relation of
some background in Section Il, we formalize the notion afach gate, and (ii) each constraint gate is totally justified
careset, and introduce our branching method in Sectionlil. One can encode a constraint Boolean cirg@# ) into an
Section IV, we give an overview of software model checkingqui-satisfiable CNF formulan f ((G, 7)) in linear-time using
For that application, we present a method to generate d¢aretandard “Tseitin translation.”
variables automatically, and describe our branching teeten  CDCL. The basic DPLL procedure [2] has three main steps
in Section V. This is followed by a formal exposition on proofpplied repeatedly: branch on a literal, apphit propagation
complexity of the method in Section VI, and its detailed exUP) rule, i.e., forcing a free literal true when all the athe



literals in a clause are false, and backtrack chronololgical In the sequel, we useareset(F') to denote a non-trivial
when a conflict is observed. It stops when either all clauses @areset of F, which may not be maximum unless noted
satisfied or all branches are explored. Conflict-driven €dauotherwise. Intuitively, a careset is a set of variables thast
learning [7] (CDCL) improves the basic procedure by leagnirbe assigned to “witness” a satisfying assignment.

resolvent clauses after analyzing the causes of a conftict. | Using Proposition 1, we define careset for a Boolean con-
the sequel, we use “CDCL” to denote any implementation etraint circuit(G, 7) ascareset(F) where F = cnf((G, T)).

the CDCL procedure, and use “a CDCL solver” to denote Ror Example 2, non-trivial caresets df7,(x = 1)) are
specific implementation. {z,a},{z, b}, and{z, a, b} asa, b, c are assigned in all MJAs,
i.e., 01 — Bs4. The set{z, a, b} is the maximum careset. These
I1l. CARESET caresets are non-trivial as values @yb cannot be obtained

Before we delve into the formal definition of careset, Wgyvvnlt prtong?rt:ondo?; :tl Wr}”e (o} 'St e: trivial caref_e?. bl
first defineminimally satisfying assignmerfibr a satisfiable e exten € delinition of careéset 1o an unsatstiable
Boolean formulaF" for a given P-Solver. formula F' by defining it on maximal satisfiable subsets of
L - e : . F. Let MSS(F) denote a set of all MSS of’. Then,

Definition 1 (Minimally Satisfying Assignment (MSA)): A Y. Such .
We say an assignment of Boolean formulaF” is minimally ﬁgiﬁﬁg ) v'v_heLriF(,:Z]rté iz(tF%oC?Tg;g“{(Z?s).mal:((i:mu?ncaNr?)feet :
satisfying for a givenP-Solver such that (i) UP rule cannot S , y : : '
be applied onF|, further, (i) F|, can be shown to be non-trivial careset(F') for any MSSF” of F is also a non-

S ' - trivial careset forF'.

tisfiable by theP-Sol d (iii igni t least ;
sansiable by olver, and (i) unassigning at least one Comparing Careset, Backdoor, Backbore contrast to a

variable in« would violate the condition (i) or (ii). We use X : X
MSA(F, P) to denote the set of all MSAs of for a given backbone set, w_here variables are necessr_:mly setto umd]ue
P-Solver. ues, c_:aresetlvarlaples only nef?d to be.aSS|gned,Cnot naté;ssa
_ _ N _,  to unique values, in any satisfying assignment. Compared to

Thiﬁag]ﬂe{];'itgZ)e:(a(ﬁxi—g(?rga&gzcgv(ﬁ_y; g)S(?I'_yS—glc\zer bacl;door Iset, which :;mﬁicien;:sebtl, a garehset is @ecessary

s 7Y - ' set for solving a problem satisfiable. Such a necessary set is
aSFlo = (a +c)(b+¢) is a 2SAT-CNF formula. arguably smaller than a backdoor set, and therefore can help
the decision engine prioritize better.

For Example 2, a backbone sef{is = 1}, a backdoor set is
{z,a,b,c, e, f} (asCkt Si mreturns satisfiable for assignment
(1), a strong backdoor set i, d, e, f} (asCkt Si mreturns
SAT/UNSAT for a total assignment on the primary inputs),
and a careset i§z, a, b}.

Definition 2 (Minimally Justifying Assignment (MJA)):
For a constraint Boolean circufz, 7), we say an assignment
£ is minimally justifying if un-assigning any € g would
leave some constraint gate partially justified.
Example 2:All MJAs (3, — B4 for the constraint circuit
(G,{(x = 1)}) are shown below: Consider &-Solver

A. Branching Strategy using Careset

¢ Br={z=1 1,b=0,e=0,f=0,c=1}
x=1 B1={r=1a=1b=0,e=0,f=0,¢c=1} o )
d g2 = g =La=1b=0e=07=04d :11}} We observe that for a satisfiable instance, a complete
3 = =1l,a=0,6=1,c=0,a=0,e = f - H H “ ” T 1
f b Bi={z=1la=0b=1c=04d=0 f=1} assignmenton careset variables is a “gateway” to a satgpfyi

solution. Intuitively, for such instances we should bramch

that applies arbitrary values to a set of unassigned primdigreset variables first, before branching on the other biesa
input variables, and applies UP rule recursively on theugirc SUch a branching technique is also a good heuristic for
clauses. Such a solver, referredGks Si m can always satisfy Unsatisfiable instances as argued below.

the gate clauses of an unconstraint Boolean circuit. Assume F is unsatisfiable. LetF" € MSS(F), and
Proposition1: 3 is an MJA of (G, 7) iff 3 is an MSA for C = clauses(F)\clauses(F"). Letvars(«) denote the set of
enf({G, 7)) w.rt. aCkt Si mas P-solver. variables assigned underc M SA(F’) andag denote values

One can verify thap, — 3, are MSAs foren f ((G, 7)) w.rta of S variables under assignment As F' is unsatisfiable,
KT S m Note thate — (z— 1.a o 1.5 — 0.¢ - 0.f = 0} 35S C wars(a) such thatag makes some clause € C

is an MSA w.r.t a 2SAT-Solver, but not w.r.t. Gkt Si m conflicting. We sayw is blocked byc. Any 5 € MSA(F") is
also blocked bye € C, if ag = 8s. Since careset variables
In the sequel, we us€kt Si mas the givenP-Solver, and must be assigned in any MSA &', branching on them first
useM SA(F) to denoteM SA(F, Ckt Si m). We now formally ¢an lead to early blockage of MSAs, and faster resolution.
introduce the notion of careset for a satisfiable formala ~ We refer to such a branching techniquebaanching prefix
given Ckt Si m as a P-Solver. Let F,.q denote a reduced S€quenceln contrast to a backdoor set where the (ideal) goal
formula F after applying the UP rule recursively dn. is to obtain the smallest set, our (ideal) goal is to obtam th

Definition 3 (Careset): A non-empty set S of variables max_imL_Jm careset. However, (_)btaining such a set is as hard
vars(F)) is a caresetfor a given formulaF, such that a5 @S fmdlng all MSAs. For practlca_\l reasons, we wo_uld Ilke_ to
variable is assigned in every MSA @, i.e.,v € S — Ya € obtain a careset as large as possible, not _necessarlly maxim
MSA(F). v € a. Such a sefS is maximumwhen it includes e would like to answer three key questions:
all such variables, i.e§ = {v | Va € MSA(F). v € a}. We « How can a non-trivial and useful careset be obtained?
say S is non-trivial if Jv € S. v € vars(F,.q); otherwise, it « How can such a set be exploited in a CDCL solver?
is trivial. « How can the strength of such a CDCL solver be accessed?



In Sections IV-V, we answer the first two questions by BaoANgog 74:---:11
considering a software model checking application, and us; o -
ing the application-specific knowledge to derive a nonidtiv wher.e_w < {i’ ' b 11} ]?:'_ (PC b ), a”‘?'_ b
careset and exploit it in CDCL that is restricted with brangh 92 "~ (@ 2 )a gi6 = (a < b), ga3 = (a < D),
prefix sequence. In Section VI, we compare the relative pr = (b < a), and so on.
complexity of restricted CDCL w.r.t. unrestricted CDCL. |
Section VI, we compare experimentally our restricted CDC
solver against the state-of-the-art CDCL solvers that db no
exploit such application knowledge.

pdate transition relatiofTp(a’, a, ', b, PC)]

a =By 7ap:Bs?(a—b):B7?(a—b):a

=By 7by:B3?(b—a):Bg?(b—a):b

where ag, by are initial symbolic state values af, b, resp.,
IV. APPLICATION: MODEL CHECKING OF SOFTWARE i.e., 1 < ap,bp < 10.

We briefly discuss our model building step (similar to [32]
from a given C program. We first obtain a simplified contr
and data flow graph (CDFG) by flattening the structures a
arrays into scalar variables of simple finite types (Boo)&23
bit integer). We handle pointer accesses using direct mgm
access on a finite heap model, and apply standard slic
and constant propagation. We do not inline non-recursive BMCF .= I ATYF A —¢(s¥) (1)
procedures to avoid blow up, but bound and inline recursiv . .
procedures up to a user-defined depth. From the simplifi}é\%‘ere (st denot.e_s.the predlcatg thatholdsk in states",
CDFG, we build a deterministic extended FSM (EFSM) whedd I denote the initial state predlga}gel, aiftl deir}S)Ltle the
each control state (or block) is identified with a uniqdeWe unrcl)lle‘d ltrangmon reIauor/\OSKk e Where ™ =
use a program countéPC to track the control statel. For T(s',s'"'). Given a bourlld?, aBMC runcomprises checking
the ease of explanation, we focus on simplified CDFGs thi¢ satisfiability of BAIC™ iteratively for0 < k < n using a
have a unique entry blockS¢c) and an error blockrr). We SAT solver. In the sequel,_we focus only on the reachability o
are interested in checking reachability properties suchray  Plock Err from blockSre, i.e.,¢ := F(PC :OE”’)- Whereg“
bounds violations, null pointer dereferencing, and agsert 'S the eventually LTL operator, anbl:= (PC" = Src) A D”,
failures: that is, whether there is an execution trace f&im where DV is the initial state predicate on datapath variables.

to Err block. We use EFSM and CDFG interchangeably t&. Control Flow Reachability

mean the same structure. We use CFG to denote a CDFG without the enabling

Example 3 Consider a low-level C prografmoo as shown . e -
in Figure 1, with its EFSMM. The control states, shown ascond|t|on and update transitions.adntrol pathis a sequence

boxes, correspond to control points in the program, as ao%}lsuccessive control states, denotechd = (co,..., cx),
] ’ . ) 1 H i O,kl
indicated by the line numbers. Note, each control state | ere(c;, ci11) is adirected edge in the CFG. We use o

e
identified with a number in the attached small square box. thrddegc?ﬁdt?stabgfgai;? (Egtraresseqc?r?dnsc?c.) :rimlrj?:ll‘i?dgd':gFG
example Err block 10 corresponds to the assertion in lihe. P b

. . where the transitions after depthis removed, shown as an
Update transitions of data path expressions are shown ht P ’

8% in Fi il
) ample in Figure 1 forl = 7 . A control state reachability
control state. A directed edde, b) between control states b (C'SR) analysis is a breadth-first traversal of the unrolled CFG
corresponds to the control flow between the associatedaion

|

ounded Model CheckinglLet s* denote a state at" step
rgm some initial states’, and T'(s%, s**1) denote the state
transition relation. A BMC instance (denoteda8/C"*) com-
glrises checking if an LTL (Linear Temporal Logic) property
I<{,‘>]gcan be falsified irexactlyk steps fromsy, i.e.,

L ok . . ) ere a control staté is one step reachable fromiff there
gglgtr?algli:wgecgrr?dgitri?)w Each directed edge Is associated w na directed edgé¢a,b). At a given sequential deptl, let

. d) represent the set of control states that can be reached in
Based on such a CDFG, we encode the transition mo G in one step from the statesR{d— 1), with R(0) = co.
T of an EFSM symbolically a¥” := To A Tp, whereTg ComputingCSR for the unrolled CFG ofM (Figure 1),
encodes (control) transition relation f&tC, i.e., the guarded we obtain the setR(d) for 0 < d < 7: R(0) = {1}
transitions between the control states, dngl encodes (data) R(1) = {2,6}, R(2) = {371 7 8}7 R(3) Z 9}’
update transition relation for datapath variables basethen R(4) = {2 1’0 6' 11}, R(5) = ’{3’ 4’ 7 ’8} R(6) = {5’9}’
expressions assigned to the variables in various contst R(7) = {2 ’10 ’6 ’11} ' Ty A
in the model. We illustrate the translationBffor Example 3. p N A
We usev, v’ to denote current and next state varialyg,
to denote the guarded transition predicate at a directed edg capture the following control flow constrainimplicitly.

(i,4), and B, := (PC = r) to denote the control state\ve usev? to denote the unrolled variable in 744+, B

. HEA o) .
predicate. For ease of readability, we use C syntax "Jitors to the Boolean control state predicéfeC? = 7),

to denoteif-then-elseoperator, and other standard relatloriw.e _ whetherPC at depthd is at control state-. It has been

operators. We obtain a Boolean encoding of the update wn that these constraints when added explicitly, improv
the guarded transition relations under the assumption L search [33]

32-bit integer variables (not shown separately). « Reachable Block Constraint (RBC): At least one block is
. . , reachable atl i.e., Ir € R(d). (B?).

Transition relation for PC[To(PC", PC; a,b)] « Mutual Exclusion Constraint (MEC): At most one block
PC' .= B ANgia?72:BiANgig?6:BaANgag?3: is reachable atl, i.e, Vr #t. (Bg — ﬁBf)

We usefrom(r) andto(r) to denote set of blocks reachable
from and tor, respectively. The unrolled transition relation



1. void foo(int a,

2. int b) o

3. { /* precondition */ -

4. assune(1l <a < 10); 1

5. assunme(1 < b < 10);

6. if (a>b) { 2

7. do {

8. if (b<a) a a—b; 3

9. el se b=b—

10. Jwhi | e(b! 0) b:=b-a|la:=ab a:=ab|l b:=b-a 1 (1

11. tel se { (line 9) J| (line 8) (line 14) J{ (line 13)

12. do{ ] . S
e e xf

[

15. whi | e(al =0); ERROR (s 9

16. } b=00=0 | (line 17) " b=0Ca=0 e -
17. assert(!(a==0 && b==0)); b=0Ca%0 : =070 1 @@ M & ®
1)

EFSM M Unroll Depths Unrolled CFG

~

Fig. 1. A sample C code, its EFSM/, and an unrolled CFG for depth

« Forward Reachable Block Constraint (FRBC): rfis A. Branching Prefix Sequence

reachable atl < k, thent < fromd(r; is reachable at  \we introduce the notion of branching prefix sequence
d+1,ie,3t e from(r). (B — B{*). (BPSY, a kind of restrictive branching where every decision

» Backward Reachable Block Constraint (BRBC):rlfis path (starting at decision level 0) is prefixed with a given
reachable atl > 0, thent € to(r) is reachable aff — 1, ordered sequence of branching literals.

ie., 3t € to(r). (B — B{™1). Definition 4: A branching prefix sequencéBPS) for a
formula F' is an ordered sequenee= (ly,---l,,) of literals
V. GENERATING A CARESET FORBMC of F such that a CDCL solver always picks first free literal

As per Eqn 1,BMC* = BY _AD° ATk A BE, , where [; in o (skips the assigned literals), and branches ijtbet
D is initial state predicate on datapath variables. L& to true. If all the literals ino are assigned, default branching
denote a set of all control pathg"* between control states heuristic is applied. During backtracking, some of theréite
a andb, i.e., {7** | co = a,cx = b}. We saycy € I'%* iff in o can become free. At any decision level, the solver always
ca € vOF for somer*F € T'%*. The following theorem will branches on the first free literal in, if one exists. However,
provide a basis for generating a non-trivial careset#dd C*. the literals ofo are neither removed nor reordered. CDCL
Theorem1: A non-trivial careset forBMC* is a set of using a BPS is referred to as CDgL.
control state predicate variables in all the control patosnf ~ We use thecareset(BM C*) variables to obtain a BPS. We

Srcto Err, i.e., {B2 | cq e T57¢E™ 0 < d < k}. first define an ordering relation based on control distancg of
Proof. We consider two cases based on wheth@rC* is careset variabl3y € careset(BMC*).
satisfiable or not. Definition 5: A control distance of a careset varialik €

Case 1: BMC* is satisfiable Clearly, 37%* s.t. yO¢ careset(BMC*) is a functiond : careset(BMC*) —
witnesses the control reachability dr block from Src {0,---,k} such that(Bf) = k — d.
block. Let o be the corresponding MJA oBMC’“. Then, For example,Bj € careset(BMC?) has a control distance
Vea € %% o(BL) = 1, as otherwise,BE, = true 0(Bg)=4-1=3.
would not be totally justified. As per MEC flow constraint, Definition 6: An increasing (decreasing) sequence of lit-
Ve, ¢ € R(d). Bd N ﬁBd,, i.e., control predicate Var|ab|eserals incareset(BMC*) is defined as a total order on the
careset variables (i.e., positive literals) with respextio a
non-decreasing (non- mcreasmg) control distances.alas
with the same control distances are ordered using some
heuristic such as literal count. We ug8* (DS*) to denote
increasing (decreasing) sequencec@feset(BMCF).

An increasing sequendes* for careset(BMC*) is as fol-

in the control paths other thalyP k are implied false. Thus,
the claim holds.

Case 2: BMC* is unsatisfiable We construct an MSS
F’ of BMC* as follows: Initially, F/ = (. We include
the constraintyBY,. A Bf,.,), and add all the constraints

corresponding to the unrolled expressions Rgr' without the . [ od 3 3 9 2 5 >
guarded expressions, i.e, we tr@%t as free input variables. Igws. {gll()(go)’;é 511)' B%(l), %(2)]34('2)’ hB7(b2)’ 68(2)’ f
Note, F’ constructed so far captures only the control flo 2(3), B3(3), By(4)}, where the values in the brackets refer

P . - 0 the respective control distances of the variables. Hexe w
constraints, and is therefore satisfiable. We then add

remaining data path and guarded expressions Ftiecomes foke the tie using the corresponding control stdtdn actual

& implementation, we use the VSIDS [6] scores.
an MSS of BMC*. By definition of a careset and using the Intuitively, an 7S* used as a BPS helps a CDCL solver
argument as in Case 1, the claim follows.

. to prune theinfeasible local path segments that are closer
k
b B(?S.ed ?n the;bO\(/jebthelc(Jremd ‘;VG obtarln;a;?;t(Bj\gg ) to Err block by learning useful clauses with fewer decisions.
b?/ Ii)lng orwar t"’;]n Clgé ward _raxe(rjs_g@fr can d’fr We observed in our experiments that such an approach reduces
ocks, resp. on the » and inciud corresponding -y, o average length of conflict clauses per conflict (denosed a
to a control stater € R(d) that is visited by traversal in

o ) b
both direction. For Example 3 (Figure Ijreset(BMC?) is 1The notion of BPS differs from branching sequence [23] whetiteral
{BY, B}, Bg, B2, Bg’, Bé, B%, Bg, Bg, Bfo}. is chosen once, and may not be assigned on every decision path



AvgCL) and search tree size (i.e., humber of decisions) Imetwork protocol and mobile software. Our experiments were
1-2 orders of magnitude. In Section VII, we provide detailedonducted on a Linux box with Intel Pentium 4 CPU 3.2GHz,
experimental results supporting our intuition. Now we dsz 2GB of RAM. On these models, we used a SAT-based

the proof complexity of such an approach. BMC [17], [33].
We used an incremental hybrid SAT solver [10], [17],
VI. PROOFCOMPLEXITY OF CDCLyp, where a BMC instance is represented in And-Inverter circuit

We use the notion of proof complexity [24] to compare thgraph (AIG) and the learnt clauses are represented in CNF. It
relative power of proof inference systemsand P’ based on implements Chaff algorithm [6] using 1UIP clause learning
the shortest proofs andr’ they can produce, resp. Liet| and scheme [34], and VSIDS [6] for branching. Note, it does
|7’| denote the respective proof sizes. We $dypolynomially not include many recent improvements such as preprocessing
simulatesP when || < 20(109”>(: poly(n)) - |x| for all (SATeLite [9]), learning binary clauses during BCP [8], stna
families of formula overn variables; otherwiseP’ cannot frequent restarts [4], and others (e.g. [11], [12]). Unlike
polynomially simulateP. For example, it was shown [23] thatpure CNF solvey, it has direct access to circuit information.
DPLL cannot polynomially simulate CDCL. Optionally, it uses circuit-based branching heuristidy[114],

In CDCL and CDCly,, proof systems, we measure the siz€L8] (such as branching on the inputs of currently unjustifie
of their shortest proofs in terms of their search tree, thee, gates only). We refer to this branching heuristicGheT.
number of decisions. As CDCL is unrestricted, an identical We also provide such a hybrid solver with a BPS. For each
proof can be obtained in CDCL as in CDgL, by applying BMC* instance, we automatically generate sequenic#s
the same decision order in CDCL as applied in CRgL and DS* (ref. Section V-A). We useé BPS (dBPS) to denote
Thus, the following holds trivially. the branching heuristic whetgs* (DS*) is used as a BPS.

Proposition2: CDCL polynomially simulates CDGl,s. Combining the above heuristics, we consider following four

Unfortunately, we cannot claim in the other direction dugolversB1- B4 for performance comparison.

to branching restriction in CDGJ,;. However, we provide a , B1: VS| DS The CDCL solver withvSI DS heuristic.
worst case bound on the size of its shortest proof. For any, B2: CKT+VSI DS The CDCL solver withCKT heuristic.

unsatisfiable formulad” over n variables, letS be a careset However, when there are many choices at a decision level,

of F, with |S| denoting its size. Letry,s(F") (w(F)) and the tie is broken withvSI DS heursitic.

|Tops ()| (I(F7)| denote the shortest proof and its size, resp.,, B3: j BPS+CKT+VSI DS The CDCL solver withi BPS

obtained in CDCl,s (CDCL). heuristic. When there is no free literal in the BPS, it
Theorem?2: The shortest proof obtained in CDgJ. can- branches a82 until the BPS has a free literal.

not be greater than that obtained in CDCL by more than, B4: dBPS+CKT+VSI DS Similar to B3 but usesdBPS.

a factor ‘g‘f F(9), 18 |mops(F)| < f(S) - [w(F)], where Experiment Set |. We compare the performance of the solvers
f(9) =27, . B1- B4 on benchmarkgl- E8 for each BMC run, comprising
Proof. Consider the search tree of CDLL Let U solving BMC* for eachk > 0 until time out. We gave a
{o1---om} represent a set of unique assignments made g0t of 1200s for each BMC run. In each run, we generate
careset variables before a proof is generated in CRCLLe, 54 solve BMC instances incrementally at deptiDther than

V(i # j).3v € 0i,v € 0;. 04(v) # 0;(v). Clearly, asF IS panching, all other heuristics were kept the same. We show
unsatisfiable, each (partial) assignmentuams(F') that ends the results in Figure 2.

in conflict, includes exactly one; for somei. We claim that In X- axi s we show BMC depths analyzed before timeout
[Tops (F)| = 27" [ops (Flo, )| = 37 [7(Flo)| < SP7(F) < gecyrs) and inv- axi s we show the cumulative solve time (in

25|z (F")|. The first equality holds as assignments on caresgle) after each unrolled depth. We also labeled a few selecte
variables are made before the rest in CQgL The second graphs for better readability

equality holds as branching heu_ristics of CD,g_an_d C.D.CL Clearly, B3 outperformsB1, B2, B4 by several orders of
are the same on non careset variables. The following met;quaEl|7 ’ R

, . ‘magnitude B4 outperformsB1 only in 3 cases, i.eE1, E3,
Eg:g: Zgﬂfg%l“s"sma natural proof system. The last inequali . This shows that branching order is equally important in a

. . CDCL solver. We do not see much improvementB2f over
In practice, we often see conflict before all the cares

. . . . BY. B3 finds two witnesses (at depths 43 and 63, resp.) in
varlables are aSS|gned. Moreover_, all _var|able§|may_ Ot &7 while B4 finds only the shorter witness (i.e., at depth 43).
beh_lr;]dependent,;‘.sex., Esome_ "ﬁre flmlg|lide]\>2[8}€heé59m]I-n B1 or B2 finds neither of them. Clearly, circuit information
\gv '_C CasemBﬁ/lck' TshpeC|a y,lor &‘STC,ETT é an 1. goes not provide much of guidance compared to system-level

= careset( ) (Theorem 1), an (denoting ¢ormation. We do not show separately the comparison data
a set of control paths fromirc to Err), upper bound o/ is

; o Sre Brr with the solver used in [32], wherein the control state pratt
determined by the number 01; COEerI paths, i|&:; - variables are given higher VSIDS scores initially. We oledr
Corollary 1: |myps (F)| < [T745] - |n(F)).

that the performance of such a solver is marginally better or
comparable to that dBl on these BMC runs.

We provide detailed comparison results betwB2randB3

We experimented with eight sets of benchmaBds E8, iy Taple I. For each benchmark, we obtained a lisBaf/ C*
each with 1 to 3 properties. These correspond to software

models and properties generated using software verifitatioz, 5 cnE solver, one can use Cir-ODC CNF encoding [22] to dkplo
platform F- Sof t [32] from real-world C programs such ascircuit information, albeit with additional overhead coangd to [10].

VIl. EXPERIMENTS



instances that were solved 82 and B3 in more than 5s
but less than 1200s. Note, all these instances are undaltisfia

TABLE |

COMPARING B2 AND B3 ON (UNSAT) BMC*k.

i - BMCF Instance [[B2: CKT+VSIDS[|  B3: i BPS+CKT+VSI DS
Afte_r sorting them onk, we sel_ectedmmmum_, medan and BT Tepth - AV #D TAvga [ T #ov [ #D [V Avga T
maxmum instances from the list as shown in Columns 1-2. k |(’ 000) (#1)|(s) || (%D) [(#it)]|(s)
The number of variable$#V) in these instances are about min: 28] 262 || 381] 247 | 5 || 1.1 |710] 100 | 27 | 3
. . 3
200k-1.3M, as shown in Column 3. In Columns 4-6, we |F%med: 38 245 11533 Bo1 1561 11 11979 1001 28 |24
present the results d@2: the number of decisiongtD), the 461 250 11669 275 151 23 1137] 100 27 T 0
average conflict-clause lengt\(gCL), and the time taken ||E2 med: 47 257 (1421} 145 | 5 || 23 |137| 100 | 27 | O
. : max: 49| 271 909 223 9 2.3 |124| 100 30 0
(in sec) ). In Columns 7-11, we present the resultsBY: e T T e 5 i3
the size of careset as percentagetuf(#CV), the number of  ||E3 med: 22| 1121 |[1107 2076 |61|| 0.7 |557| 100 | 35 |17
decisions #D), the number of decisions on careset variablesl_max: 24 1323 ||413] 5984 | 50| 07 | 25| 100 | 201 | 3
as the percentage &fD (#DCV), the average conflict-clause |z | ™ %2 230 (55 a2 |all 5ol 0] 39 |9
lengthAvgCL, and the time takefi(s), resp. We observe that max: 80| 440 |[229¢ 682 |59| 1.2 | 80| 100 | 158 | O
i i i min: 23| 442 [[249] 1547 [ 5 ]| 0.7 [275] 100 | 32 | L
baring a few casesivgCL is about an Qrder of magmtude g 2 %52 iend 1oex lesll 53 15aal 35| 3215
smaller in B3, compared toB2. Clearly,l BPS gwdes the max: 36| 804 ({17524 1773 | 65| 0.7 |198| 100 246 | 1
solver B3 better in learning useful clauses earlier, thereby, [ [min: 93] 223 [[397] 3980 | 5 || 1.4 [280] 25 | 499 | O
reducing the overall solve time significantly. We also finetth ~ ||EGmed: 199 231 | S50 4062 ) 9 1| 14 208} 68 | =37 1 2
the number of careset variables is about 1-3% of the numbef—mm 28223 7223 610 T 5T 10 228 00 010
of variables, and in the most unsatisfiable instances, idesis  ||E7/med: 311 257 )|245) 550 | 8 || L0 j141) 92 1 49 )0
on them are sufficient to solve the instance. = e e R e
E8|med: 35| 250 ||807| 124 | 6 || 1.0 [109] 100 | 8 | O
E1 E2 max: 38| 278 |[102] 67 | 8| 1.0 |109| 100 | 10 | O
1400 g M #V: number of variables in thousands, #D: number of dec&ion
5 1200 7 g ue ‘ [ AvgCL.: average conflict-clause length
g o0 [ g oo = o1 #CV: careset size as % of #V, #DCV: % of #D on careset variabes)
3 /// ¢ TABLE Il
£ o Y S w L NECLA SAT vs SAT2009WINNERS[25].
3 200 200
"1 6 11 16 21 26 31 36 41 46 0 T Sol ver SAT UNSAT Tot al
BMC Denths 1 51 101 ;i;lK:D:U‘:'s 251 30 351 TI nE( S) Tl n,.e( S) Tl n,.e( S)
E3 Ea NECLA | 24 7,042 2,066
w00 20 SAT @) (128) (130)
= 1200 1200 Preco- | 468 | 18,367 18,835
% e T | SAT © (128) (130)
3 wo £ wo - mni- | 372 | 19,475 19,847
8 w0 s 3 - SAT [)) (91) (92)
£ o ///// = o 1,607 (NECLA)|| () # solved cases (out of 130)
< m — . 12,131 (Preco)||  within 1800 sec.
’ 1 6 1 16 21 26 3 36 4@ a6 151 101 151 201 251 301 351 401 a1 gl ucose| 663 39,411 40,074 * Time taken on 92 solved
BVC Desths BMC Depths (1) (111) (112) cases ofri ni SAT
E5 E6 1,78F (NECLA)|| * Time taken on 112 solved
1400 1400 17,38F (Preco) cases ofgl ucose
1200 V— 1200
% 1000 ® / Z 1000
£ 2 . . . - . .
5o o // / g wll " unsatisfiable and 2 are satisfiable. The number of variables i
:w M 3 ] these instances ranges between 120K-2.2M, and the number
R g ™ y of clauses ranges between 350K-6.6M. These benchmarks are

1 6 11 16 21 26 31 36 41 46 51 56 61 €6 71 76 81
BMC Depths

E7

1 26 51 76 101 126 151 176 201 226 251 276 301 326
BMC Depths
E8

1400

& 20 /-,—/ T Lo

3 1000 l l / E om0

£ s S s B4

L Lt 4

3 £ 600

a B3 £ B3
£ o // & w0

5 200 200

1 11 21 31 41 51
BMC Depths

VSIDS(B1)

o T u T T
1 51 101 151 201 251 301 351 401 451 501 551 601 651
BMC Depths

——VSIDS+CKT(B2)

——VSIDS+CKT+iBPS(B3) ——VSIDS+CKT+dBPS(B4)

Fig. 2.

BMC runs on E1-E8

also made publicly available [35].

We usedB3 solver without CKT heuristic, and refer it
as NECLA SAT solve? (For the sake of fair comparison,
and to show the benefits afBPS exclusively, we disabled
circuit heuristics.) We compared this solver wRhecoSAT,

m ni SAT, andgl ucose, the top-ranked solvers in SAT2009
competition under application category [25]. These salver
use explicit or in-built preprocessor (e.g., SATeLite [9])
and smart frequent restarts [4], whidECLA SAT does not
include any of these techniques. We gave a time limit of 1800s
per instance. We provide a summary of the results in Table II.

In Column 1, we list the solvers we compared. In Column
2(3), we present the solve time (in sec) for SAT(UNSAT)
instances. In Column 4 we present the total time taken (ih sec

Experiment Set Il. We obtained DIMACS CNF format from o the solved instances only. In Columns 2-4, we show the

the BMC instances at different depths from Experiment Sgtimper of instances solved by each solver in brackets. Where

. To keep our focus on hard instances, we included thogg solved instances are less than 130, i.e.gfarcose and
on which B3 solver takes more than 5 sec to solve. We

obtained a total of 130 instances; out of which 128 are3NECLA SAT w/o iBPS corresponds tB1 solver.



Cumm. Solve Time (s)

# Decisions

NECLA vs PrecoSAT 1E46

20E+3

1E+5

16E+3

1E+4

12643 163

PRECOSAT

(1]
(2]
(3]
(4]
(5]
(6]

08E+3

1E+2 - ’

T
NECLASA 1641 4

04E+3

1E+0

00E+3 -
1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

NECLA SAT

Benchmarks

Fig. 3. NECLA SAT vs PrecoSAT: Cumm times, and # decisions
nm ni SAT, we also provide the total time taken INECLA
SAT and Pr ecoSAT on those solved instances. 7]

NECLA SAT andPr ecoSAT solve all 130 instances, while
gl ucose and ni ni SAT solve 112 and 92 instances, re-I[8]
spectively. ClearlyNECLA SAT solver outperforms the rest [9]
solvers by about an order of magnitude.

We also comparéNECLA SAT and Pr ecoSAT in more [10]
details as shown in Figure 3. In the left figure, we show
the instances solved (along- axi s), and the cumulative [11]
time taken in sec (alony- axi s). We observe thaNECLA [12]
SAT outperformsPr ecoSAT consistently by about an or-
der of magnitude. In the right figure, we present a scatter
plot comparing the number of decisions betwelBCLA [14]
SAT (along X- axi s) and Pr ecoSAT (along Y- axi s) in
logarithmic scale where each X’ mark corresponds to an
instance solved. We observe that the number of decisionslifl
NECLA SAT are 1-2 orders of magnitude smaller than thfﬂﬂ
in PrecoSAT, as indicated by clustering ofx* between
dotted lines namelyl- OM and 2- OM All the marks on [18]
X-axi s (i.e., with O decision inPr ecoSAT) are instances (19]
solved by the in-built preprocessor [9] & ecoSAT. For
these instanced\ECLA SAT takes about 5-10s, about thd20]
same as the preprocessing tiliECLA SAT also requires an (21]
order of magnitude fewer backtracks comparatively (notsho
separately). Clearly, benefit from usin@PS outweighs many
heuristics inPr ecoSAT.

[15]

[22]

VIIl. CONCLUSION AND FUTURE WORK 129
Branching plays a crucial role in a CDCL solver. We[24
introduce the notion of careset variables and branchinfixprel23]
sequence to guide the decision engine. We derive such?¥
careset from software model checking application, and useg2i7]
to improve the performance of a CDCL solver by an order of
magnitude compared to the latest best SAT solvers that do
exploit system-level information. We also compared fotgnal [29]
the resolution power of restricted CDCL vis-a-vis unresed [30]
CDCL. Overall, our results serve as a proof of concept that th
analysis of system behaviors can be used to improve a ST
solver performance dramatically.

On the one hand, the current advanced SAT solvers E3!
not intend to take advantage of system-level informatian fo
generality reasons, but on the other hand, the performahtd
penalty of not using such information could be in the ordefg,
of magnitude, as observed in our software model checking
experiments. For a better trade-off, we believe that the395]
is a further scope in improving SAT-formulation where on
can generate SAT problems conducive for the state-oftthe-a

solvers. In future, we would also like to detect caresetrdyri
runtime, in contrast to its static determination as presg:nt
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