
Verifying Shadow Page Table Algorithms
Eyad Alkassar∗, Ernie Cohen†, Mark Hillebrand†, Mikhail Kovalev∗, and Wolfgang J. Paul∗

∗Saarland University, Saarbrücken, Germany
{eyad,kovalev,wjp}@wjpserver.cs.uni-saarland.de

†European Microsoft Innovation Center (EMIC GmbH), Aachen, Germany
{ecohen,mahilleb}@microsoft.com

Abstract—Efficient virtualization of translation lookaside
buffers (TLBs), a core component of modern hypervisors, is
complicated by the concurrent, speculative walking of page tables
in hardware. We give a formal model of an x64-like TLB,
criteria for its correct virtualization, and outline the verification
of a virtualization algorithm using shadow page tables. The
verification is being carried out in VCC, a verifier for concurrent
C code.

I. INTRODUCTION

Virtual addressing is the most common way for a host
program (typically an OS or hypervisor), to virtualize the
memory of a guest program. In a typical implementation,
the translation from virtual addresses (VAs) to physical ad-
dresses (PAs) is controlled by page tables (PTs) in memory;
the hardware concurrently walks these page tables, setting
accessed (A) and dirty (D) bits in the page table entries (PTEs)
as appropriate, and caching the translations in a translation
lookaside buffer (TLB). When the guest addresses memory,
the processor uses the TLB to translate virtual to physical
addresses. If a suitable translation is not available, a hardware
page fault (#PF) throws control to the host, giving it an
opportunity to intercede. The processor automatically flushes
the TLB in certain circumstances (e.g., on an address space
switch), but it is generally up to the host to manage the
coherency of the TLB.

Virtual addressing does not in itself provide correct virtu-
alization for guests that edit their own page tables, such as
operating systems. A standard solution1 to this problem is
to control guest address translation using a separate set of
shadow page tables (SPTs), invisible to the guest, each of
which “shadows” one of the guest page tables (GPTs). When
a guest memory access results in a #PF, the host #PF handler
walks the GPTs (simulating the TLB hardware), setting A and
D bits in the GPT entries, and caching the translation (perhaps
with an additional level of translation) in the SPTs. This allows
the hardware to subsequently walk the SPTs to cache the SPT
translations into the hardware TLB (HTLB). Thus, the SPTs,
the #PF handler, and the HTLB act in concert to provide a
virtual TLB (VTLB) to the guest.

Because walking the page tables slows down program exe-
cution, high-performance memory managers running in a guest
are often very aggressive in their use of the TLB, flushing
translations only when absolutely necessary, allowing the TLB

1Recent Intel and AMD processors provide a hardware alternative, in the
form of an extra address translation layer not visible to the guest OS [1], [2].

to cache stale translations to some extent, with its correctness
depending on fine details of the TLB semantics (e.g., exactly
when A bits are set). High performance hypervisors are equally
aggressive in flushing translations from the SPTs and HTLB
only when necessary; for example, the SPT algorithm in
the Hyper-VTM [3] hypervisor shares SPTs between different
processors and address spaces, and selectively write-protects
GPTs from guest edits to keep them in sync with their SPTs
(so that they don’t have to be flushed on a guest address-space
switch) [4]. This combination makes SPT algorithms difficult
to test (particularly since an error is likely to manifest in a
guest failure long after the SPT entry leading to it has been
flushed); for example, one bug in the aforementioned SPT
algorithm required seven thread switches to manifest. This
makes SPT algorithms an ideal target for formal verification.

We describe the verification of a simple shadow page table
algorithm. We formulate the main invariants and present a veri-
fication pattern in VCC, an automatic verification environment
for concurrent C code (available at http://vcc.codeplex.com/).

II. TLB VIRTUALIZATION PROBLEM

A. Hardware Model

The type of n-bit strings {0, 1}n is denoted by Bn. We
interpret a string a ∈ B64 either as a 64-bit string, a natural
number, or a PTE. We consider a word (64 bits) addressable
memory, 45-bit long VAs, and PAs 49 bits long. We call the
top-most 36 bits (for the VAs) or 40 bits (for the PAs) the
page frame number (PFN). We decompose a virtual address
a ∈ B45 into page table indices a.px[i] for i ∈ [1 : 4] of 9 bits
each and a 9-bit physical page displacement a.px[0].

An x64 multi-core/multi-processor machine is modeled with
the record h :: x64conf , where h.p[i] denotes the hardware
configuration of the processor i, and h.mm :: B49 7→ B64

represents the shared memory of the system. A processor
configuration consists of a register CR3 giving the address of
the root PT, a (processor local) TLB tlb, and an uninterpreted
variable state encapsulating the rest of the processor state.
A PT consists of 512 PTEs, each being a struct with five
fields: the SPT page frame number pfn at which the entry
is pointing, accessed and dirty bits a and d, a present bit p,
and the set of access rights r (e.g., writing access r[rw]).
We define the less-or-equal operator on set of rights as
r1 ≤ r2 = ∀j.r1[j] ≤ r2[j].

The TLB state is modeled as a set of page table walks,
each of which summarizes a partial or complete traversal of

TABLE I: Semantics of the Abstract TLB

Transition name Guard on the configuration h Resulting configuration h′

createwtlb(i, va, r) h/{.p[i].tlb = h.p[i].tlb ∪ {winit(h.p[i].CR3 , va, r)}
deletewtlb(i, w) w ∈ h.p[i].tlb h/{.p[i].tlb = h.p[i].tlb \ {w}}
extendwtlb(i, w) w ∈ h.p[i].tlb ∧ pte(h,w).a ∧ pte(h,w).p h/{.p[i].tlb = h.p[i].tlb ∪ {wext(h,w)}}

∧ (pte(h,w).d ∨ w.l > 1 ∨ ¬w.r[rw]) ∧ w.l > 0

setaccesstlb(i, w) w ∈ h.p[i].tlb ∧ w.l > 0 ∧ pte(h,w).p h/{.mm[w.pfn][w.va.px[w.l]].a = 1}
setdirtytlb(i, w) w ∈ h.p[i].tlb ∧ w.l = 1 ∧ ¬fault(h,w) h/{.mm[w.pfn][w.va.px[w.l]].d = 1}

∧ w.r[rw] ∧ pte(h,w).r[rw] ∧ pte(h,w).a

mov2cr3cpu(i, pto) h.p[i].tlb = ∅ ∧ instr(h.p[i]) = mov2cr3 h/{.p[i].state = step(h, i), .p[i].CR3 = pto}
invlpgcpu(i, va) h.p[i].tlb ∩ {w | w.va = va ∨ w.l > 0} = ∅ h/{.p[i].state = step(h, i, va)}

∧ instr(h.p[i].state) = invlpg

transl okcpu(i, va, r, pa) w ∈ h.p[i].tlb ∧ w.va = va ∧ w.l = 0 h/{.p[i].state = step(h, i, pa)} ∧ pa = w.pfn ◦ va.px[0]
∧ r ≤ w.r ∧ instr(h.p[i]) = mem instr

transl pfcpu(i, va, r, f) w ∈ h.p[i].tlb ∧ w.va = va ∧ fault(h,w) h/{.p[i].state = step(h, i, f)} ∧ f
∧ r ≤ w.r ∧ instr(h.p[i]) = mem instr

the page tables for a given VA. Each walk is given by a virtual
address va, a level l giving the number of page table levels
remaining to be walked,2 the page frame number pfn of the
next page table to be used for translation, and a set r of access
rights giving all rights not denied by the walk gathered thus
far. A walk is complete if its level is 0, and partial otherwise.

The function winit(pfn, va, r) returns a walk with level 4
and the other components initialized according to the given
parameters. The extension wext(h,w) of a walk w in the
hardware configuration h is defined as follows (s/{.c = v}
denotes update of field c of struct s to value v):

pte(h,w) = h.mm[w.pfn ◦ w.va.px[w.l]]
fault(h,w) = ¬pte(h,w).p ∨ ¬(w.r ≤ pte(h,w).r)
wext(h,w) =

w/{ .pfn = pte(h,w).pfn,

.l = w.l − 1,

.r = λi. w.r[i] ∧ pte(h.w).r[i] }

A complete walk can be used to address memory iff the walk’s
VA matches the requested VA and the walk provides rights
(write, execute, etc.) at least equal to those requested. A #PF
can be generated only from a partial walk leading to a PTE
that is non-present or provides insufficient rights.

Table I gives the behavior of our TLB model, expressed
as a transition relation on the hardware configuration h. For
some operations we introduce additional parameters, such that
virtual address va, physical address pa, and #PF flag f in
case of a CPU address translation. While the first five actions
(indexed with tlb) model autonomous behavior of the TLB, the
last four actions (indexed with cpu) abstractly model the CPU
behavior, using the uninterpreted function step() to update
the CPU state. Note also that operations such as INVLPG that
flush the TLB are modeled instead as blocking when the TLB
contains offending entries; these models are equivalent because
the TLB is allowed to delete walks at any time.

2To simplify the presentation, we do not consider large pages and legacy
addressing modes here, so each complete walk goes through exactly four page
tables. Also, we do not consider tagged TLBs or global page translations.

B. Correctness Criteria

A hypervisor provides to each guest the illusion of running
on its own private memory, processors and TLBs. In the
following we provide this illusion for a single guest,3 modeled
as a virtual machine g :: x64conf .This guest g is implemented
on a single host machine running the hypervisor code, linked
to this implementation by a coupling invariant. Hypervisor
correctness is established by proving that execution of the
host machine preserves this invariant, and that g behaves
accordingly—in particular, that (i) the VTLBs g.p[j].tlb of the
guests satisfy the transition relation of Table I, and (ii) that any
virtual memory access of this virtual processor is justified by
a complete walk in its VTLB.

Given the transitive closure →∗tlb of permissible TLB steps
as defined in Table I, we can formulate the first property in
form of forward simulation:

Invariant 1: Let h and h′ be pre and post states of a host
step, and g and g′ be the abstracted guest machine states
respectively. Then the changes to the TLB of any virtual
processor (VP) j form a valid TLB transition:

g.p[j].tlb→∗tlb g′.p[j].tlb (1)

To formulate the second invariant we need to introduce
parts of the coupling invariant. The function vp2hp(j) de-
fines for a VP j on which host processors it is currently
scheduled to run. The memory of the guest is mapped to
some region of the shared memory of the hardware machine.
Then, the memory mapping is defined by the injective function
gpa2hpa :: B40 7→ B40, which maps a guest physical PFN into
the host physical PFN.

The second invariant establishes a relation between the
VTLB and the implementation model. The walks contained
in the HTLB should be present in the VTLB with respect to
the guest memory projection. A function hw2gw(w) translates
a complete host walk w into a respective guest walk applying
the gpa2hpa−1 mapping to the field w.pfn and leaving the
other fields of the walk w unchanged.

3This can be easily generalized to multiple guests mapped to disjoint host
memory portions.

The VTLB is given by the result of an abstraction function
on the host configuration. In this case it will usually contain
more complete walks than the HTLB. Nevertheless, every
complete walk present in the HTLB should correspond to a
complete walk in the VTLB.

Invariant 2: Let a complete walk w be present in the
HTLB. Then a VTLB contains the walk hw2gw(w).

w ∈ h.p[i].tlb ∧ w.l = 0 =⇒ (2)
∃j. vp2hp(j) = i ∧ hw2gw(w) ∈ g.p[j].tlb

In order to infer the second invariant after a TLB step we
also need an invariant dealing with partial walks in the HTLB.
The statement of this invariant depends on the definition of
the VTLB. Note, that the VTLB is not obliged to store partial
walks, because their presence in the TLB is not mandatory.

III. SPT ALGORITHM

In this section we describe a basic implementation of a
shadow page table algorithm, define the abstracted VTLBs,
and state the required invariants to prove the correctness
criteria from the previous section.

A. Overview on the Implementation
We assume that the gpa2hpa map is static, and that appro-

priate data structure and functions are given to store and query
it. The SPTs are located in an array SPT[0 : (n−1)]. We define
the functions i2a :: N 7→ B40 to return the host PFN of the SPT
stored in each array element, and the function a2i :: B40 7→ N
as the inverse function on these PFNs. Every SPT may either
be free or in use by a single VP j (more precisely the HTLB
of the host processor it runs on). For each VP j we let gwo(j)
denote the current value of its CR3 register, and hwo(j) denote
the CR3 used on the host when the guest is actually running.
The latter CR3 designates the top-level SPT used for VP j in
the SPT array. We organize the SPTs for each VP as a tree
of SPTs, and assign to each SPT a level ranging from 4 (top-
level) to 1 (terminal) and a VA range for the addresses of the
walks that might go through to this SPT (prefix of the SPT).
The entries of non-terminal SPTs point to other SPTs, while
the entries of terminal SPTs point to memory of the guest
(under the gpa2hpa map). The predicate walks to(i, px, j)
denotes that SPT with index i points to SPT j.

walks to(i, px, j) = (SPT[i][px].pfn = i2a(j))

Guest instructions and exceptions that operate on the TLBs
are intercepted so that they can be virtualized in the SPTs.

Every SPT has an additional Page Table Info (PTI) data
structure associated with it, which keeps auxiliary information
about SPTs. The fields of PTI[i] include gpfn (the guest
physical PFN of the GPT) and l (the level of the SPT).

The algorithm maintains the SPTs by handling the following
intercepts:

1) Flushing/Switching of CR3: Flushes of the guest (e.g.,
by executing mov2cr3) are intercepted by the hypervisor. The
intercept is handled by freeing all the VP’s SPTs, allocating
a fresh top-level SPT (which has all its entries set to non-
present), and executing an HTLB flush.

2) #PF intercept: When a host #PF is intercepted, the
hypervisor walks the GPTs to determine the reason for the
fault. If a GPTE is reached that has insufficient rights for the
page-faulting operation or has the present bit not set, a page
fault is injected into the guest (and the hypervisor returns).
Simultaneously with walking the GPTs, the hypervisor also
walks the associated SPTs down from the top-level SPT. If
a non-present (non-terminal) SPTE is encountered during the
walk, we update the SPTE to point to a newly allocated, zero-
filled SPT; the new SPT shadows the GPT referenced by the
corresponding GPTE. For a present SPTE we check whether
rights and PFN still correspond to the GPTE. If not, the old
SPT subtree is detached (and a hardware INVLPG executed on
the faulty VA) before allocating, initializing, and pointing to
a new SPT as before. A GPTE’s A bit is set when the #PF
handler walks it; A bits in SPTEs are always set. Note that
all not dirty terminal SPT entries are kept write protected to
propagate a D bit to the guest before it is set by the HTLB.

3) INVLPG intercept: The implementation walks down the
SPTs for the INVLPG address and, when reaching a terminal
SPTE, marks it non-present. Then it performs a hardware
INVLPG on the faulty VA.

B. VTLB Abstraction

To define the virtual TLB abstraction and verify the in-
variants we introduce ghost fields in the PTI structure, which
are used only for verification but are ignored by the imple-
mentation. The field vpid stores the index of the VP using
the associated SPT, the field vpfn stores the SPT’s prefix, the
field r stores the accumulated rights from the top-level SPT
to the given SPT, the reachability bit re distinguishes whether
the HTLB can walk the SPT, and for terminal SPTs, the array
gp[0 : 511] in the PTI stores the ghost present bits of the
terminal PTEs denoting whether the complete walks through
the PTEs might be present in the HTLB.

Next, we define the coupling invariant. Every guest com-
ponent is abstracted from the hardware machine h. General
purpose registers of the VP j are either loaded into the
hardware registers of the processor vp2hp(j) or are stored
in some implementation data structure.

We define the VTLB as the set of walks corresponding to
the complete walks that might be cached by HTLB. Formally,
we use the ghost fields of the PTI data structure to construct
the set walks(i), containing walks sitting on the SPT i.

walks(i) = {w | w.r ≤ PTI[i].r ∧ w.pfn = i2a(i)

∧ w.l = PTI[i].l ∧ ∀j ∈ [PTI[i].l + 1 : 4]. w.va.px[j]

= PTI[i].vpfn[9 · j − 1 : 9 · (j − 1)]}

We define the set of indices of the terminal SPTs belonging
to the VP j by

tSPT (j) = {i | PTI[i].l = 1 ∧ PTI[i].vpid = j}.

The set of complete walks of the VP j is defined as follows:

cwalks(j) = {wext(h,w) | w ∈ walks(i) ∧ i ∈ tSPT (j)
∧PTI[i].gp[w.va.px[0]] ∧ w.r ≤ SPT[i][w.va.px[0]].r}

The VTLB is defined as a translation of complete shadow
walks into the respective walks over the GPTs:

g.p[j].tlb = {hw2gw(w) | w ∈ cwalks(j)}

Note, that the VTLB definition does not use the implemen-
tation SPTE present bit, because some complete walks through
present SPTEs may be flushed out of the HTLB by INVLPG.

C. Invariants

In this section we specify implementation dependent invari-
ants used to prove Invariants 1 and 2.

We introduce the notion of reachable SPTs, to mark those
SPTs which may have been walked by the HTLB since the last
flush. Thus we store where partial HTLB walks may reside.

We maintain reachability using the ghost flag PTI[i].re and
the following invariants.

∀j. PTI[a2i(gwo(j))].re (3)
PTI[i].re ∧ walks to(i, px, i′) =⇒ PTI[i′].re (4)
w ∈ h.p[k].tlb ∧ w.l > 0 (5)
=⇒ w ∈ walks(a2i(w.pfn)) ∧ PTI[a2i(w.pfn)].re
PTI[i].re ∧ SPT[i][px].p =⇒ PTI[i].gp[px] (6)

Invariant 3 states that the top level SPT is always reachable.
Invariant 4 states that if a SPT is reachable then its descendants
in the SPT tree are also reachable. Invariant 5 states about the
partial walks in the HTLB, namely that all partial walks in the
HTLB are sitting on the reachable SPTs. Invariant 6 states a
connection between the reachable bit of the terminal SPT and
the ghost present bits of the terminal SPTEs. It states that if
a present bit in the SPTE of a reachable terminal SPT is set,
then the ghost present bit for this entry is also set. Note, that
for maintaining the invariants, whenever we detach a shadow
subtree we have to perform a hardware INVLPG and reset the
reachability bits for the SPTs in the subtree.

IV. VERIFICATION

To verify the C implementation of the algorithm we use
VCC, a deductive verifier for concurrent C code.VCC extends
C with ghost data (possibly of non-C types, such as mathemati-
cal integers and maps), ghost functions, function contracts, and
(2-state) data invariants that constrain how fields of a “valid”
object are allowed to change in a legal system step. The use
of 2-state invariants both allows us to model abstract automata
(like TLBs) and to prove forward simulations internally (via
code annotation), rather than at the meta-level.

In VCC, the TLB state and its transition relation can be
specified as a ghost type and a ghost predicate. These are
used at two places: (i) we represent the HTLB as a C struct
type with a field of this type storing its contents and the TLB
transition relation used as a 2-state invariant on this field.
(ii) we use the TLB transition relation on the abstracted VTLB
state as a 2-state invariant of the SPT structures, obliging VCC
to show that SPT updates satisfy TLB semantics.

Next, we (very briefly) sketch the correctness arguments for
INVLPG handling and HTLB steps.

1) INVLPG intercept: The INVLPG intercept handler with
annotations is shown below:

Walk ws[4]; Pte pte;
ws[4] = initwalk(gwo[j], va, r); y = 4;
while (ws[y].l && !ws[y].f) {

atomic (SPT) { /∗ atomic read ∗/
pte = SPT[a2i(ws[y].pfn)][px(va,y)]; }

ws[y−1] = wext(pte, ws[y]);
y = y−1; }

if (l == 0)
atomic (SPT) { /∗ atomic write ∗/

SPT[a2i(ws[1].pfn)][px(va,0)].p = 0; }
asm invlpga(va);
spec(/∗ ghost code ∗/

for(k = 0; k < n; k++) {
if (PTI[k].l == 1 && PTI[k].vpfn == pfn(va) && PTI[k].vpid == j)

PTI[k].gp[px(va,0)] = 0; })

The ghost construct atomic(o) checks that the subsequent
block of statements is being executed atomically by the
implementation, with no updates other than on volatile fields
of the designated object o. The spec(. . .) wraps regular ghost
code—in our case the code that resets the ghost present bits for
the invalidated VA by iterating over all terminal SPTs. Since
the VTLB abstraction depends on both ghost present bits and
terminal SPT entries, the above ghost and implementation code
implicitly alters the VTLB content.

The intercept handler emulates the following guest steps
preserving Invariant 1: (i) for each w ∈ g.p[j].tlb such that
w.va = va do deletewtlb(j, w), and (ii) invlpgcpu(j, va).

The other invariants hold due to the fact that after the
hardware INVLPG is performed every walk belonging to HTLB
is a walk that was sitting there before the intercept happened.

2) Hardware TLB steps: The HTLB can add walks, extend
walks, remove walks, set A and D bits. The VTLB in this case
remains unchanged. Invariant 5 follows from Invariants 3 and
4. Invariant 2 follows from Invariants 5 and 6, and the VTLB
definition, specifically from the fact that VTLB contains all
complete walks over the SPTs accessible by the VP.

The verification of the complete SPT algorithm in VCC is
an ongoing effort.

ACKNOWLEDGMENT

This work was partially funded by the German Federal Min-
istry of Education and Research (BMBF) in the Verisoft XT
project under grant 01 IS 07 008. Work of the third author done
while at DFKI GmbH, Saarbrücken, Germany.

REFERENCES

[1] Intel 64 and IA-32 Architectures Software Developer’s Manual – Volume
3B, Intel Corporation, June 2009.

[2] AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, 3rd ed., Advanced Micro Devices, Sep. 2007.

[3] Microsoft Corp., “Windows Server 2008 R2 – virtualization with Hyper-
V,” http://www.microsoft.com/windowsserver2008/en/us/hyperv-main.
aspx, 2008.

[4] J. T.-J. Sheu, M. D. Hendel, L. Wang, E. S. Cohen, R. A. Vega, and S. A.
Nanavati, “Reduction of operational costs of virtual TLBs,” U.S. Patent
20 080 134 174, Jun. 5, 2008.

