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Abstract—Desynchronization is used to synthesize asyn-
chronous circuits from synchronous specifications. Controller
networks used for desynchronization are highly nondetermin-
istic and are not easily amenable for verification. We adapt
the desynchronization controllers for verifiability by imposing
additional sequential dependencies among controller events that
reduces nondeterminism. We deduce properties of the adapted
controllers, which we use to develop methods for reachability
analysis and verification of desynchronized circuits. The methods
are demonstrated using seven desynchronized processor models.

I. INTRODUCTION

The impact of persistent technology scaling results in a
previously ignored set of design challenges such as manu-
facturing and process variability, and increased significance of
wire delays. The challenges threaten to invalidate the effec-
tiveness of synchronous design paradigms at the system-level.
Asynchronous circuits provide several alluring properties—
over their synchronous counterparts—that pose solutions to
many of these challenges. Such properties include locally
generated timing signals in the place of global clocks, potential
performance speedups, robustness towards variability in the
manufacturing process and operating conditions, etc. [7], [5],
[6], [27], [28], [29], [32], [30], [36], [39]. However, design of
asynchronous circuits has been a challenge and currently lacks
support of Computer-Aided Design tools. Desynchroniza-
tion [7], [10] is proposed as a design solution, where pipelined
circuits and systems with a high degree of asynchronocity
are synthesized from synchronous parents in a manner that
exploits existing CAD tool support for synchronous designs.
Desynchronization methods have in fact been successfully
used to design and fabricate circuits that implement the DLX
architecture and the DES encryption/decryption algorithm [7].

For desynchronization to be a feasible design solution, one
of the critical challenges however is verification. Verification
becomes a challenge when the desynchronized circuits are
pipelined. For example, the controller of a desynchronized 5-
stage pipeline can have more than 16*1510 states [7]. Thus,
our approach is focused on verifying desynchronized pipelines
against their non-pipelined synchronous specifications.

One of the more effective formal methods to verify
pipelined circuits and systems is refinement-based verification.
Refinement is a formal correctness notion that can be used
to check the equivalence of an implementation system and a
specification system, even if the implementation and specifi-
cation are at very disparate levels of abstraction. In the context
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of pipelines, refinement is used to verify the pipelined system
(such as a pipelined processor model) against a high-level non-
pipelined specification (such as an instruction set architecture
machine). A number of refinement-based verification solu-
tions have been developed for synchronous pipelines [23][25]
[26][16] [13] [12] [11] [15] [33] [34] [35] [19] [41] [18]
[1] [2]. These verification solutions have been developed in
the context of pipelined microprocessor models. While there
have been some efforts toward the verification of asynchronous
pipelines [20], this area has not been explored as much.

The desynchronized pipeline controller network is highly
non-deterministic in nature and also exhibits a large state
space. These two factors make it hard to track the states of the
controller network that are reachable from the initial or reset
states (reachable states). Identifying reachable states is impor-
tant as unreachable states are often inconsistent and can cause
spurious counter examples. More specifically, there are two
approaches to compute reachable states of the desynchronized
controller network.

1) The first approach is based on symbolic simulation. The
idea is to start from the set of reset states and perform
symbolic simulation until no new states are discovered,
i.e., until a fixed point is reached. Or, start from the set of
all states and perform symbolic simulation until a fixed
point is reached where no new states are eliminated [25].
Approaches based on symbolic simulation of the imple-
mentation model cannot be used because the complexity
of the desynchronized controller network requires a
prohibitively large number of symbolic simulations of
the model.

2) The second approach is to compute invariant properties
of the desynchronized controller network that character-
ize the set of reachable states. We explored this approach
and found that because of the large state space and
the high degree of nondeterminism of the controller
networks, we could not find a systematic approach to
generate invariants to characterize the reachable states
of the controller networks. The primary problem is that
the behavior of a desynchronized controller depends on
the state of controllers on its output side, but, does not
have any dependencies on the input side i.e., the source
controllers. This lack of dependency on the source
side results in a high degree of nondeterminism of the
resulting controller networks.

Since verifiability is an important consideration for design,
we propose changes to the desynchronized controllers intro-
duced by Cortadella et al. [7]. These changes add additional
sequential dependencies between controller events so that the
state space of each controller and resulting controller networks
are simplified and reduced. We refer to the modified con-



trollers as Design For Verification Desynchronization (DFVD)
controllers. We also develop a refinement-based verification
method for desynchronized pipelines. We show that when
the DFVD controllers are used, the resulting desynchronized
pipelines can be verified using our approach. The specific
contributions of our work are:

1) The controller used for desynchronization can hold zero,
one or two tokens. The controller is initialized with one
token and can transition to states with zero tokens or
two tokens. Our contribution is the DFVD controller
that satisfies the following property. If the controller cur-
rently holds one token, then the controller will hold on
to that token until a new token is accepted on its input.
This is not a property satisfied by the original controller
used for desynchronization. Therefore, when the DFVD
controller is initialized with one token, it will always
remain in states where it has one or two tokens. This
property of the DFVD controller makes it possible to
compute reachable states of pipeline controller networks,
which is a requirement for refinement-based verification.
However, the verifiability of the controller is achieved by
trading with performance. We estimate that in the worst
case, pipeline throughput is degraded by the delay of
four transitions of a muller-C element.

2) We analyzed and deduced 15 properties of the DFVD
controller. These properties (an important contribution
of our work) can be used as rules and applied to
systematically generate invariants and characterize the
reachable states of any DFVD controller network.

3) We have also developed a refinement-based verifica-
tion procedure for desynchronized pipelined systems.
Proving refinement requires a refinement map, which
(in this context) is a function that maps states of the
implementation (desynchronized pipelined system) to
states of the specification (non-pipelined synchronous
machine). Defining the refinement map in this context
requires identifying duplicate information in the pipeline
(which is possible in desynchronized pipelines). Our
specific contribution here is to identify conditions of
the controller network state that correspond to duplicate
information in the data path. These duplicate conditions
are generic and can be applied to any DFVD controller
network. The key here is that these conditions are
applicable only for reachable states (which we have been
able to characterize using the DFVD properties).

4) We developed 7 desynchronized processor models of
varying pipeline length (between 5 and 7 stages) and
controller complexity. The models used the DFVD con-
trollers. Our design for verification and verification ap-
proaches are demonstrated by checking the correctness
of these models.

The rest of the paper is organized as follows. Related
work is given in Section II. Desynchronization and DFVD
controllers are described in Section III. The properties of
the DFVD controllers and reachability analysis of desyn-
chronization controller networks are described in Section IV.
The desynchronized processor models used for experiments

are described in Section V. The refinement-based verification
procedure is detailed in Section VI. Experimental results are
given in Section VII and we conclude in Section VIII. The
benchmarks and tools required to reproduce our results are
available in [9].

II. RELATED WORK

Current verification technology for asynchronous circuits
can be classified as property checking approaches [3][43]
or methods based on trace theory [29]. The trace theory
approaches target the verification of gate-level asynchronous
circuits. Our focus is on the verification of desynchronized
pipelined circuits and systems. Verifying pipelines has been
a challenge and warrants specialized techniques. Approaches
based on property checking can be used for desynchronized
pipelined circuits, but, are cumbersome because a large num-
ber of properties are required and also the properties them-
selves can be hard to write leading to erroneous specifica-
tions [29].

Loewenstein [20] verified some properties of a counter-
flow pipeline using the HOL theorem prover. Counter-flow
pipelines are asynchronous in nature with results flowing in
the pipeline in a direction opposite to that of instruction flow.
The desynchronized pipelines we verify do not use the counter-
flow mechanism. Also, our correctness proofs are based on the
use of decision procedures and are highly automated.

Cortadella et al. [7] have used flow equivalence (FE) to
prove the correctness of their desynchronization method and
FE is well suited for this purpose. However, they have not
demonstrated verification based on FE. Why do we use re-
finement instead of FE? Refinement is a more general notion.
For example, one requirement of FE is that the specification
and implementation should have the same set of latches. This
requirement is not satisfied when comparing pipelined systems
with non-pipelined specifications. Also, if after desynchroniza-
tion, optimizations such as retiming or pipelining is applied,
then the design cannot be related back to its synchronous
specification using FE.

In previous work, we have developed a refinement-based
verification method for desynchronized pipelines [38]. The
original desynchronization controllers are used. The approach
for reachability is based on performing symbolic simulation
of the implementation model, starting from reset states, until
no new states are discovered, i.e., until a fixed point is
reached. However, this approach is not viable because the
complexity of the desynchronized controller network requires
a prohibitively large number of symbolic simulations of the
model. As a result, we were only able to verify a small
subset of the reachable states and therefore, the verification
method is only partial. In the current work, our approach is
to generate constraints (also known as inductive invariants)
on the state variables that characterize the reachable states of
the system. This approach is also not viable for the original
desynchronized controllers. Hence we use the design for
verification approach to develop the DFVD controller. For the
DFVD controller network, the latter approach for reachability
is viable as shown in Section IV.



We proposed the idea of using completion functions to de-
fine the refinement map for desynchronized pipelines in [38].
We adopt this approach in our current work. However, the
key difference is how duplicate data is identified in the
pipeline. In [38], we relied on observing the flow of tokens
in the controller network, as symbolic simulation was used
for reachability analysis. However, as stated earlier, using
symbolic simulation for reachability analysis is not viable. In
this work, we have deduced generic conditions of the state of
controller network that identify duplication in the data path,
which can be used for complete safety verification and is
described in Section VI.

III. DESYNCHRONIZATION AND DFVD CONTROLLERS

Fig. 1. A Pipeline Stage with A Latch Controller Network.

Desynchronization is the process of converting a syn-
chronous circuit into an asynchronous one by replacing the
clock network with a network of handshaking latch controllers.
The edge-triggered D-flipflops of the synchronous circuit are
replaced by two D-latches which are transparent when their
clock input is a 1 and are in the hold mode otherwise. The
clock signals or triggers (Ck) for the latches are obtained by
latch controllers with two inputs (Rin,Ao), and two outputs
(Ro,A = ¬Ck). R′s denote a request signal and A′s denote an
acknowledge signal. Consider a synchronous pipeline stage
with a logic block whose inputs are provided by a flipflop and
whose outputs are input to another flipflop. A desynchronized
version of such a stage is shown in Figure 1. Each flipflop is
converted into two latches shown on either side of the logic
block. In a pair of consecutive latches, the left latch is the back
latch and the right is the front latch, indicated by subscripts
“b” (or “B”) and “f” (or “F”), respectively. Each latch has a
controller associated with it. The latch controller used by us is
the semi-decoupled controller in [10]. If G is a signal then G+

corresponds to a rising edge on G and G− corresponds to a
falling edge on G. We now describe the operation of the latch
controller labeled, LC, in Fig 1 with the help of the two latch
controllers , S (for sender), and R (for receiver). LC receives
R+

in from S indicating the availability of data at the input of the
LC latch (F1). LC sends A+ to S indicating that the data has
been captured by F1. LC then sends R+

o to R to indicate that its
output is valid and will be stable until A+

o is received. S sees
A+ and puts out R−in. LC sees R−in and A+

o and puts out A− and
R−o . R puts out A−o when it receives R−o . The above description
of the latch controller (called the 4-phase controller) can be
converted to the following five logic equations.

1. A+ = Rin∧¬Ro
2. A− = ¬Rin∧Ro∧Ao
3. R+

o = A∧¬Ao
4. R−o = ¬A
5. Ck = ¬A

Note that the clock input to the latch is Ck and the delay
element D in Fig. 1 mimics the delay of the logic block. This
kind of desynchronization is similar to that performed in [7]
and has been proven to work well.

One of the important aspects of desynchronization is that it
leads to duplicated tokens in the data path. When a token is
passed from a source latch to a destination latch, the source
latch holds on to a copy of the token until it receives an
acknowledge signal indicating that the token has reached its
destination. Thus, for a period of time, the source and destina-
tion latches both have copies of the same token. Duplication
leads to some issues with refinement-based verification, which
we discuss in Section VI.

A. DFVD Controller
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Fig. 2. DFVD Controller

The proposed Design For Verification Desynchronization
(DFVD) controllers for a pipeline latch pair is shown in
Figure 2. The difference between the proposed controller
and the controller in the desynchronized circuit of [7] is the
feedback of Ro f to the muller-C element that generates Rib
and the feed forward of Ab to the muller-C element that
generates Ao f . The connections are not part of the original
controller. The Ab connection enforces the property that if the
controller currently holds only one token in the F latch, then
the controller will hold on to that token until it has received
a new token in the B latch. The F latch will drop its token
when it receives an acknowledge (A+

o f ). Since Ab is connected
to the muller-C element that generates Ao f , unless latch B
acknowledges the receipt of a new token by asserting Ab, the
F latch will not drop its token.

An additional dependency is enforced by the Ro f connection
that allows the B latch to receive a new token only when the
F latch has signaled a request on the output side. The new
controller results in only minor delays but satisfies properties
that allow for reachability analysis (see Section IV).

We now estimate the worst case increase in delay for the
new controller by estimating the maximum delay between
consecutive R+

ib transitions in the controller of latch B. This



TABLE I
WORST CASE DELAY ANALYSIS OF DFVD CONTROLLER

State State Event Delay
Label 〈AbRibRobA f Ro f Ao f 〉
S1 〈 000100 〉 R−ob N
S2 〈 000110 〉 R+

o f N
S3 〈 010110 〉 R+

ib Y
S4 〈 110110 〉 A+

b N
S5 〈 100110 〉 R−ib Y
S6 〈 100111 〉 A+

o f Y
S7 〈 100011 〉 A−f N
S8 〈 101011 〉 R+

ob N
S9 〈 101001 〉 R−o f N
S10 〈 101101 〉 A+

f N
S11 〈 001101 〉 A−b N
S12 〈 001100 〉 A−o f Y

delay gives us the minimum time between consecutive sets of
data getting stored into a latch. In the new controller circuit Rib
cannot change to 1 (or 0) unless Ri’s (Ri1–Rim) and Ro f are all
1 (or 0). Similarly Ao f cannot change to 1 (or 0) unless Ao’s
(Ao1–Aon) and Ab are all 1 (or 0). The set of transitions that
lead to worst case delay for the proposed controller circuit
is shown in Table I. This has been derived from the state
diagram of an individual semi-decoupled 4-phase controller
of [10] (see Figure 8 in [10]). The controller transitions from
state Si to Si+1, starting at state S1 and until it reaches S12.
From S12, it transitions back to S1. The events that causes the
state transition is also shown in Table I. Delays occur when a
transition of Rib or Ao f has to occur.

From the state diagram it is clear that it takes 12 state tran-
sitions for two consecutive R+

ib transitions to occur. However
without the new connections to Rib and Ao f it takes 8 state
transitions for two consecutive R+

ib transitions to occur. Thus
we obtain a worst case delay of 4 state transitions for the
new controller to have two consecutive R+

ib compared to the
existing semi-decoupled 4-phase controller of [10], which is
usually negligible compared to the delay of pipeline processing
logic in a stage. Also, note that many of the transitions of the
additional muller-C elements can take place simultaneously
with other events in the circuit and on average the performance
degradation could be much lower.

IV. REACHABILITY ANALYSIS OF DFVD CONTROLLER
NETWORK

To perform verification, we need to compute the reachable
states of the desynchronized pipeline controller network. Com-
puting reachable states has two ends. First, unreachable states
can be inconsistent w.r.t. the correctness property and flag
spurious counter examples that hinder the verification process.
Identifying reachable states of the implementation solves this
problem as verification properties can now be checked only on
the reachable states ensuring that spurious counter examples
are eliminated. Second, our procedure for computing refine-
ment maps for desynchronized pipelined machines is based
on reachability analysis. Note that the reachability method
eliminates unreachable states that hinder verification, which
is what is required. The reachable states of the controller

network may in fact only be a subset of the set of states
computed by the reachability method.

We now describe the general invariant generation rules. The
first 8 rules (P1-P8) apply to the DFVD controller shown in
Figure 2. Note that these rules are properties of the DFVD
controller, and should be applied to each of the DFVD
controllers in a DFVD pipeline controller network.

The acknowledge signal for the front and back latches A f
and Ab, respectively, also act as the clock for the front and
back latches. When A f or Ab are asserted, the corresponding
latches are in a hold state, and when A f or Ab are de-asserted,
the corresponding latches are transparent (not holding any data
tokens). Thus Property P1 is a significant property as it implies
that the DFVD controller will always be in a state where
one or both of the latches is in a hold state. In other words,
the DFVD controller will never reach a state where both
latches are empty/transparent. This is not a property satisfied
by the desynchronization controller proposed by [7], which
allows the state where both latches are transparent. Property P1
makes it possible for us to compute reachable states and define
refinement maps in a systematic manner for desynchronized
pipelines.

P1: Ab∨A f

Property P1 is not an invariant by itself, because there are
states of the DFVD controller, which satisfy the property, but
which can transition to states that do not satisfy P1. Therefore,
we need low-level properties P2–P8 that eliminate all such
states.

P2: 〈Ab∧A f ∧Ro f 〉 → (¬Rob)

Properties P3–P5 identify the conditions under which the
muller-C element corresponding to Ao f should hold values of
0 and 1.

P3: 〈Ab∧A f ∧ (¬Ro f )〉 → (¬Ao f )
P4: 〈(¬Ab)∧A f ∧Ro f 〉 → (¬Ao f )
P5: 〈Ab∧ (¬A f )〉 → Ao f

Properties P6–P8 identify the conditions under which the
muller-C element corresponding to Rib should hold values of
0 and 1.

P6: 〈Ab∧ (¬A f )∧ (¬Ro f )〉 → Rib
P7: 〈(¬Ab)∧A f ∧ (¬Ro f )〉 → (¬Rib)
P8: 〈Ab∧A f ∧Ro f 〉 → Rib

The conjunction of properties P1–P8 form an inductive
invariant, which we have verified using the ACL2-SMT ver-
ification system [37] by proving that for every state of the
DFVD controller that satisfies the conjunction of properties
P1–P8, its successor also satisfies the conjunction of P1–P8.

Properties P9–P15 apply to the circuit shown in Figure 3 that
occurs in the desynchronized pipeline controller network when
data is passing from one stage of the pipeline to another. In this
situation, the front latch of the source stage is connected to the
back latch of the destination stage. Hence the front controller
of the source stage (labeled F1 in the figure) is connected to
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Fig. 3. DFVD Controller Circuit for Data Transfer

the back controller of the destination stage (labeled B2 in the
figure).

Properties/rules P9–P15 should be applied to every source to
destination connection in the pipeline including feedback con-
nections as well. The properties P9–P15 are used to eliminate
inconsistent states by identifying the conditions in which the
muller-C elements corresponding to Rib2 and Ao f 1 hold values
of 1 and 0.

P9: 〈(¬A f 1)∧ (¬Ab2)〉 → (¬Rib2)
P10: 〈(¬A f 1)∧Ro f 1〉 → Rib2
P11: 〈A f 1∧ (¬Ab2)∧ (¬Ro f 1)〉 → (¬Rib2)
P12: 〈A f 1∧Ab2∧Ro f 1〉 → Rib2
P13: 〈A f 1∧Ab2∧ (¬Ro f 1)〉 → Ao f 1
P14: 〈A f 1∧ (¬Ab2)∧Ro f 1〉 → (¬Ao f 1)
P15: 〈(¬A f 1)∧Ab2〉 → Ao f 1

The conjunction of properties P9–P15 also form an inductive
invariant, which we have verified using the ACL2-SMT system
by proving that for every state of the circuit shown in Figure 3
that satisfies the conjunction of properties P9–P15, its successor
also satisfies the conjunction of P9–P15.

V. DESYNCHRONIZED PIPELINED MODELS

Five desynchronized pipelined processor models were de-
veloped and used as benchmarks to demonstrate the appli-
cability and efficiency of the proposed verification solution
for desynchronized systems. The models are specified us-
ing the ACL2 programming language [17]. First, a 5-stage
synchronous pipelined processor model based on the DLX
pipeline [31] was constructed. Three desynchronized versions
of the synchronous pipeline were developed, including DPM5-
1, DPM5-2, and DPM5-5. In DPM5-1, one desynchronization
controller is used to control all the stages of the pipeline using
the idea of clustering [8]. Clustering is also used in DPM5-2,
where two desynchronization controllers are employed (one
controller for the fetch and decode stages, and the second
controller for the execute, memory, and write back stages).
DPM5-5 is a fully desynchronized model, where 5 controllers
are used (one for each stage of the pipeline). The fetch stage in
DPM5-5 is further pipelined (resulting in a short instruction
queue) to create DPM6-6 and DMP7-7, both of which are
fully desynchronized models employing one controller for

each pipeline stage. The high-level organization of DPM6-6
is shown in Figure 4.

The models are specified at the term-level [4], [40], an
abstraction level in which the bit-vector data path is ab-
stracted using integers (also called terms in this context). Also,
functions that operate on data are abstracted using Uninter-
preted Functions (black box functions that only satisfy the
property that equal inputs produce equal outputs). Term-level
abstraction is used as it drastically improves the efficiency of
verification.

VI. REFINEMENT-BASED VERIFICATION

The goal of our verification procedure is to show equiva-
lence between a pipelined desynchronized circuit/system and
its non-pipelined synchronous specification. The notion of
equivalence that we use is Well Founded Equivalence Bisim-
ulation (WEB) refinement [22] and is based on stuttering
bisimulation. Proving refinement guarantees that every be-
havior of the implementation is matched by behavior of the
specification and vice versa. A detailed description of the
theory of refinement can be found in [22]. It is enough to check
the following correctness formula [21] to establish refinement
(thereby establish equivalence) between an implementation
and its specification.

Definition 1: (Core WEB Refinement Correctness Formula)

〈∀w ∈ IMPL :: s = r(w) ∧ u = Sstep(s) ∧
v = Istep(w) ∧ u 6= r(v)

→ s = r(v) ∧ rank(v)< rank(w)〉

In the formula above, IMPL denotes the set of implementa-
tion states, Istep is a step of the implementation machine, and
Sstep is a step of the specification machine. The refinement
map r (a mechanism not found in stuttering bisimulation) is a
function that maps implementation states to specification states
thereby making it easy to compare systems at different ab-
straction levels. rank, used for deadlock detection, is a witness
function from implementation states to natural numbers whose
value decreases when there is stutter. The proof obligation
that s = r(v) is the safety component and guarantees that if
the implementation makes progress, then the result of that
progress is correct as given by the specification. The proof
obligation that rank(next-impl) < rank(impl) is the liveness
component and guarantees that the machine will not deadlock,
i.e., will always make forward progress. In this work, we solve
the problem of safety verification for desynchronized pipelines
and reserve liveness verification for future work.

The specific steps involved in a refinement-based verifi-
cation methodology for checking safety are: (a) Compute
the states of the implementation model that are reachable
from reset (known as reachable states). We use the rules
given in Section IV to generate invariant properties that
characterize the reachable states of any desynchronized
pipeline controller network. (b) Construct a refinement map.
(c) The models and the refinement map can now be used to
state the safety component of the refinement-based correctness
formula for the implementation model, which can then be
automatically checked for the set of all reachable states using
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a decision procedure. Verification is performed using ACL2-
SMT [37], a system developed by combining the ACL2 theo-
rem prover [17] with the Yices Satisfiability Modulo Theories
(SMT) solver [42].

Therefore, to perform verification, in addition to the im-
plementation and specification models, and reachability anal-
ysis, we also require a refinement map. Next, we provide a
procedure for computing refinement maps for desynchronized
pipelined systems.

A. Refinement Maps

Our approach for defining refinement maps for desyn-
chronized pipelines is based on the technique of completion
functions proposed by Hosabettu et al. [14]. The idea with the
completion functions approach is as follows. We use the DLX
pipeline as an example, but the approach can be applied to
any pipelined system. For a DLX pipeline, the non-pipelined
specification is its instruction set architecture (ISA) machine.
The state elements of this ISA machine includes its program
counter, register file, data memory, and instruction memory.
In addition to these state elements, a pipelined machine state
also includes pipeline latches that have inflight instructions.
The completion functions approach constructs a refinement
map by completing the partially executed instructions in a
pipelined machine state without fetching any new instructions.
In the resulting, pipelined machine state, the pipeline latches
are empty. Therefore, projecting out the ISA state elements
from such a state would give the corresponding ISA state.

The partially executed instructions are completed by defin-
ing one function for each latch in the pipeline that observes the
contents of that latch and computes how that instruction will
update the ISA state elements. As instructions in the pipeline
can depend on older instructions, the older instructions (in-
structions towards the end of the pipeline) are completed first.
The values of the state elements obtained from completing
older instructions are then used to complete younger instruc-
tions. Therefore, this approach allows younger instructions
access to results of older instructions. Note that refinement
maps based on symbolic simulation of the implementation
model such as commitment [21] [23] or flushing [4] are
not viable because a prohibitively large number of symblolic
simulations are required for desynchronized pipelines.

The completion functions approach is efficient in terms of
computational complexity and works well for synchronous
pipelines. However, for desynchronized pipelines, the problem
is that desynchronization allows for duplication of data in
the data path. This is an issue with the completion functions
approach. Completing the same instruction twice (from two
different latches) will lead to erroneous results. Therefore, the
duplicate instructions/data in the pipeline latches need to be
identified and omitted from being completed.

Since duplication is a result of desynchronization, the
latches that have duplicate data in a desynchronized pipelined
machine state can be determined by observing the controller
state. There are two conditions of the pipeline latch controller
that identify duplicate data in the pipeline, which are given
below.

D1: Ab∧Rob∧A f

The first duplication condition (D1) occurs between the latch
pair used to separate two stages of a pipeline and is depicted
in Figure 2. The condition occurs when the B latch is holding
its data (indicated by Ab), which has also been transmitted to
the F latch (indicated by Rob∧A f ).

D2: A f 1∧Ro f 1∧Rib2∧Ab2

The second duplication condition (D2) occurs between the
F latch of a source latch pair (controller 1) and B latch of a
destination latch pair (controller 2). The corresponding circuit
is shown in Figure 3. The condition occurs when the F latch of
controller 1 is holding its data (indicated by A f 1), which has
also been transmitted to the B latch of controller 2 (indicated
by Ro f 1∧Rib2∧Ab2).

VII. RESULTS

Table II reports the results for safety verification of the
five desynchronized processor models described in Section V.
One indicator of the complexity of the processor models is
the number of lines of term-level ACL2 code required to
specify the models, which is reported in the table. Note that the
models are quite complex. For example, the size of the model
DPM7-7 is 949 lines of term-level ACL2 code (obtained after
abstracting combinational circuits blocks such as the ALU).



TABLE II
VERIFICATION TIMES AND SMT STATISTICS

Processor No. Of Lines ACL2-SMT SMT Statistics
Model ACL2 Code Verification Times (sec) Decisions Conflicts Bool Vars Memory Used (MB)
DPM5-1 687 1.19 6,292 1,202 2,723 9.41
DPM5-2 708 1.98 5,558 1,548 2,798 11.56
DPM5-5 783 4.37 70,662 16,950 3,456 13.09
DPM6-6 866 53.21 834,187 219,160 4,542 17.97
DPM7-7 949 2417.74 25,231,948 7,304,751 5,940 32.49
DPM-B1-5-2 708 1.91 5,665 1,058 2,940 11.62
DPM-B2-5-2 708 1.74 358 49 1,529 11.01

Table II reports the verification time for checking safety
for the desynchronized processor models. The experiments
were conducted using an Intel(R) Core(TM)2 CPU 6400,
with a cache size of 2048 KB. Verification was performed
using the ACL2-SMT system [37], obtained by combining
ACL2 (version 3.3) and the Yices decision procedure (version
1.0.10).

The table also provides SMT statistics that are indicative of
the complexity of the verification problem. Note that overall,
verification is efficient as safety is verified for all the models
with a maximum running time of 2417.74 seconds required
by the DPM7-7 model. A well-known trend in verification of
pipelined machines is the exponential increase in verification
times with increase in the number of pipeline stages [24]. The
results exhibit this trend as well. Compositional approaches
have been successfully demonstrated to improve the scalability
of refinement-based verification of synchronous pipelines [24].
For future work, we plan to explore compositional approaches
for desynchronized pipelines.

Buggy Models: Two buggy variations of the DPM5-2
model were also checked using the verification procedure and
resulted in the ACL2-SMT tool flagging counter examples that
pointed to the source of the bug. The buggy models are DPM-
B1-5-2 and DPM-B2-5-2. In DPM-B1-5-2, we injected a bug
in the data path. In the forwarding path for source operand 2
from memory stage to execute stage, the destination operand
address is compared with the source address of operand 1
instead of operand 2. In DPM-B2-5-2, we injected a bug in
the desynchronized pipeline controller network. The DPM5-
2 model has 2 DFVD controllers. The Rob signal instead of
the Ro f signal of controller 1 is connected to the Rib muller-
C element of controller 2. The verification statistics are also
reported for the buggy models in Table II.

VIII. CONCLUSIONS

Formal verification methods have become an integral part
of the design cycle to ensure reliable IC designs. Therefore,
verifiability has become an important consideration for any de-
sign paradigm. In this work, we propose improved verifiability
for desynchronization, which is achieved with a worst case
performance penalty of 4 muller-C element delay in pipeline
throughput.

For future work, we plan to address liveness verification of
desynchronized pipelines and explore compositional methods
to improve scalability. We also plan to explore design for
verification solutions for desynchronization with lower per-
formance degradation.
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