
Realtime Regular Expressions for Analog and
Mixed-Signal Assertions

John Havlicek
Austin, TX 78728, USA

Email: jwhavlicek@yahoo.com

Scott Little
Freescale Semiconductor
Austin, TX 78729, USA

Email: scott.little@freescale.com

Abstract—Syntax and semantics are proposed for realtime
(i.e., continuous-time) regular expressions, which extend and
generalize existing SVA regular expressions. The extensions
are motivated by practical needs for AMS circuit verification
and were developed as part of the authors’ contribution to
analog assertions work in the Accellera committee standardizing
Verilog-AMS. Given a suitable notion of sampling, we prove
that the realtime semantics provided for the existing SVA
clocked digital regular expressions is equivalent to the original
discrete semantics. As a result, the existing digital operators
can intermix freely with the new realtime operators, which is
a major contribution of our framework. We also investigate the
theoretical relationship between our framework and the timed
regular expressions of Asarin, Caspi, and Maler. We provide
a semantically faithful embedding of timed regular expressions
into our realtime regular expressions, as well as a construction of
timed automata recognizers for our realtime regular expressions.
These constructions show that our realtime regular expressions
are no less expressive than the timed regular expressions of
[1] and no more expressive than the generalized timed regular
expressions of [2]. The automata recognizers also provide the
basis for an implementation strategy for our framework.

I. INTRODUCTION

Over a number of years, assertion-based techniques have
been growing in importance as part of functional verifi-
cation methodologies for industrial semiconductor designs.
This growth is evidenced in part by the standardization of
industrially focused assertion languages, like SystemVerilog
Assertions (SVA) [3] and Property Specification Language
(PSL) [4]. SVA and the Foundation Language of PSL are both
discrete-time temporal logics, based upon Linear Temporal
Logic (LTL) [5] augmented with regular expressions. The
reckoning of time in SVA and in clocked formulas of PSL
is in terms of discretely occurring events.1 The use of events
to define units of discrete time works well for the majority
of applications to digital circuit verification, although complex
timing properties can be challenging to write using event-based
assertions [6]. Applications to analog/mixed-signal (AMS)
circuits require specification of relationships between events
and event-based patterns, but also often involve direct timing
requirements. For example, the notion of settling time is
common in AMS circuits. Settling time is defined as the

See http://www.async.ece.utah.edu/˜little/pubs/realtimeAppendix.pdf for
supplementary material and proofs.

1An unclocked formula of PSL is also interpreted over discrete time, but
the granularity of time is not specified in the formula.

amount of time required for a signal to stabilize after a specific
event. A property to check the settling time of a digital-to-
analog converter (DAC) might ensure that the circuit’s output
has settled for an input pattern of all zeros, then change the
input pattern to all ones and verify that the output settles
to its new expected value within a specified time. There
are many other examples of AMS properties involving direct
timing requirements in the literature [7], [8], [9], [10]. For the
expression of many AMS properties, a first class notion of
time is needed in the assertion language.

Previous work [11], [12] provides a clear roadmap for
extending the LTL features of SVA for AMS applications.
In this paper, we define realtime extensions to SVA regular
expressions.2 Our extensions are motivated by practical needs
for AMS circuit verification and were developed as part of the
authors’ contribution to the work of the Analog Assertions
Subgroup of the Accellera Verilog-AMS Committee [13].
Many AMS properties rely either on continuously varying
quantities whose changes are not confined to clock boundaries
or on time constraints whose starting and ending points are not
clock aligned. Current event-based assertion languages do not
facilitate writing these properties carefully and succinctly. The
realtime regular expressions presented in this paper take an
important step toward enabling accurate verification of AMS
properties. Because of its close alignment with SVA, PSL can
be extended using the same approach.

Our semantic framework is based on bounded intervals of
the real line. The semantics of realtime regular expressions is
defined by a matching relation that specifies when a realtime
regular expression matches over a bounded realtime interval
of a realtime trace. The interval can be empty, open, closed,
or half-open. A fundamental characteristic of our definition is
that it is indeed an extension of the current SVA regular ex-
pressions. For simplicity of exposition, we omit local variables
and the first_match operator from SVA. Our definition
includes realtime semantics for the existing clocked digital
regular expressions, and we prove that the new semantics
is equivalent, through a suitable notion of sampling, to the
original discrete semantics. In this way, the existing digital
operators and forms intermix and combine freely with the new
realtime operators and forms. The enablement of harmonious

2We would like to acknowledge Himyanshu Anand for his insightful
comments during the development of the realtime regular expressions and
their semantics.

interplay between discrete and realtime elements of the regular
expressions is a major contribution of our work; we had to
explore several variations on the semantic framework before
we discovered one that achieved this goal.

Our definition adds only one basic realtime form (immediate
Boolean) and one primitive realtime operator (Boolean smear)
to the existing digital regular expressions.3 We believe that
the preponderance of realtime regular expressions of practical
interest can be written using our extension. As in the discrete
case, the realtime regular expressions are augmented with a
number of useful derived operators. These include flexible
concatenation, concatenation with realtime delay, and the
realtime goto operator.

We provide a semantically faithful mapping from the timed
regular expressions of [1] into our realtime regular expressions,
which shows that our formulation is no less expressive. We
also give a construction of timed automata recognizers for our
realtime regular expressions, which shows that they are no
more expressive than the generalized timed regular expressions
of [2].

The rest of the paper is organized as follows. In Section 2
we introduce some preliminaries and the notation that will
be used throughout the paper. In Section 3 we review digital
sequences and their discrete-time semantics. We also define
realtime semantics for the digital sequences and prove that
the realtime semantics for digital sequences is a faithful
generalization to realtime of the discrete-time semantics. In
Section 4 we define realtime sequences, illustrate their use
in some practical examples, and provide the semantically
faithful mapping from the timed regular expressions of [1]
into our realtime regular expressions. Section 5 describes the
construction of timed automata recognizers for our realtime
regular expressions. Section 6 discusses relationships with
timed regular expressions, and the paper concludes with a brief
discussion of future directions.

II. PRELIMINARIES AND NOTATION

As in SVA, we use the term sequence as a synonym for
regular expression.

R denotes the set of real numbers, R≥0 denotes the set of
non-negative real numbers, B denotes the set {0, 1} of Boolean
values, and N denotes the set of non-negative integers. Let A
and D be finite sets. A will be understood as the set of analog
variables, and D will be understood as the set of discrete
variables. A state (of the variables) is an assignment of an
element of R to each analog variable and an element of B
to each discrete variable. A state may be identified with an
element of the set Σ = RA × BD.

A Boolean expression (over the variables) assigns to each
state of the variables an element in {0, 1}. A Boolean expres-
sion may be identified with an element of the Boolean algebra
BΣ = BRA×BD

. We may think of BΣ as the set of functions
Σ → B in the usual way, so that if b is a Boolean expression

3If an application or implementation restricts Boolean manipulation of
events, then a second realtime operator (sequence without an event) may be
considered primitive rather than derived.

and s is a state, then b(s) ∈ B. We write s |= b iff b(s) = 1.
In this case, b is said to occur at s. An event is a Boolean
expression from a designated class.4 Events are denoted by κ
and ζ in the remainder of this paper. In realtime, we require
events to occur only at isolated points (see below).

A discrete trace, or word, is a function w : {i ∈ N : i ≤ n−
1} → Σ, where 0 ≤ n ≤ ∞. n is said to be the length of the
word, which is also denoted |w|. The empty word has length 0
and is denoted ε. Throughout, u, v, and w are used to denote
words. The concatenation of u and v is denoted by uv. For
i < |w|, we use wi to denote w(i), the (i+1)st letter of w, and
we denote by wi.. the suffix of w starting at index i. We denote
by wi..j the finite sequence of letters starting from index i
and ending in index j. That is, wi..j = (wiwi+1 · · ·wj). A
Boolean expression b is said to occur in w at i iff wi |= b. A
sampling is a strictly increasing function T : N → R≥0 such
that limn→∞ T (n) =∞.

A realtime trace is a function W : R≥0 → Σ. Given a
realtime trace W and a sampling T , W ◦ T is a discrete
trace, where ◦ denotes the composition of functions. Given
a Boolean expression b and a realtime trace W , we say that b
occurs in W at t iff W (t) |= b. The set {t ∈ R≥0 : W (t) |= b}
is the set of times at which b occurs in the trace W . If κ is
an event, then we require that {t ∈ R≥0 : W (t) |= κ} have
no limit point in R. As a result, the points at which a given
event occurs cannot be arbitrarily close together.

Throughout, I ,J denote bounded intervals in the real line
R. They may be open, closed, or half-open.
Definition 1:
(a) I ≤ I ′ iff ∀t ∈ I ∀t′ ∈ I ′ : t ≤ t′.
(b) I < I ′ iff ∀t ∈ I ∀t′ ∈ I ′ : t < t′.

If I is non-empty, then we write |I| = sup I − inf I . We
write |{}| = 0.

III. DIGITAL SEQUENCES

Digital sequences are the discrete regular expressions used
in this paper. They are generated by the following grammar,
where κ denotes an event and b denotes a Boolean expression:

σ ::= @(κ)(b) | σ ##1 σ | σ ##0 σ | σ or σ
| σ intersect σ | σ[*0] | σ[+]

Intuitively, @(κ)(b) specifies that the Boolean expression b
occur at the nearest point where event κ occurs; ##1 and ##0
are the non-overlapping and overlapping concatenation oper-
ators, respectively; or is the union operator; intersect is
the intersection operator; [*0] specifies zero repetitions (i.e.,
the empty word); and [+] specifies one or more repetitions.

Digital sequences mimic SVA syntax and are essentially
the same as SVA sequences and PSL SEREs.5 There are
some differences regarding where events can be written. In
a digital sequence, the event κ can be attached only to a
Boolean expression, as in the form @(κ)(b). This restriction

4Events may be treated differently than other Boolean expressions in certain
tool flows and verification applications, such as digital and analog simulation.

5SERE stands for semi-extended regular expression and is the regular
expression sublanguage of PSL [4].

simplifies reasoning about and defining the semantics of digital
sequences. SVA and PSL are less restrictive: they allow an
event to be specified in more general positions and provide
rules to determine the scope of an event. Let’s say that a
sequence is basic if it does not employ any of the following
constructs: local variables, first_match (SVA only), or
endpoint query methods (triggered and matched in SVA;
ended in PSL). Any SVA sequence or PSL SERE that
is basic can be rewritten as an equivalent digital sequence
by eliminating derived operators ([3], Annex F.3.4; [4], An-
nex B.4); elaborating instances (cf. [3], Annex F.4.1); and
eliminating reliance on the scoping rules for events (cf. [3],
Annex F.5.1; [4], Annex B.5). For example, the SVA sequence
@(κ) x ##0 y[+] ##1 @(ζ) z is equivalent to the digital
sequence @(κ)(x) ##0 (@(κ)(y))[+] ##1 @(ζ)(z).

In a different sense, digital sequences are less restric-
tive than SVA sequences. SVA allows multiply clocked se-
quences to be joined only with ##1 or ##0, while dig-
ital sequences can be combined freely, without regard to
how events appear within them. For example, the digital
sequence(@(κ)(x) or @(ζ)(y))[+] is not a legal se-
quence in SVA.6 Every digital sequence can be regarded as
a PSL SERE by straightforward syntactic translation.

A. Discrete-Time Semantics

Let w = w0w1 · · ·w|w|−1 be a finite word. The discrete-
time semantics of a digital sequence σ is defined by the
matching relation |≡d, which is given recursively as follows:
• w |≡d @(κ)(b) iff |w| > 0 and b and κ occur at w|w|−1

and κ does not occur at any earlier position of w.
• w |≡d σ ##1 σ′ iff there exist u, u′ such that uu′ = w

and u |≡d σ and u′ |≡d σ′.
• w |≡d σ ##0 σ′ iff there exist u, v, u′ such that uvu′ = w

and |v| = 1 and uv |≡d σ and vu′ |≡d σ′.
• w |≡d σ or σ′ iff either w |≡d σ or w |≡d σ′.
• w |≡d σ intersect σ′ iff both w |≡d σ and w |≡d σ′.
• w |≡d σ[*0] iff w is empty.
• w |≡d σ[+] iff there exist n ≥ 1 and u1, . . . , un such

that w = u1 · · ·un and ui |≡d σ for all 1 ≤ i ≤ n.

B. Realtime Semantics

This section defines our interval-based realtime semantics
for digital sequences and presents a correspondence theorem
between the realtime and the discrete-time semantics. Let W
be a realtime trace and I be a bounded interval. The realtime
semantics of digital sequence σ is defined by the relation |≡r ,
given recursively as follows:
• W, I |≡r @(κ)(b) iff {t ∈ I : W (t) |= κ} = {sup I}

and W (sup I) |= b.
• W, I |≡r σ ##1 σ′ iff there exist J, J ′ such that I =
J ∪ J ′ and J < J ′ and W,J |≡r σ and W,J ′ |≡r σ′.

• W, I |≡r σ ##0 σ′ iff there exist J, t, J ′ such that I =
J ∪ J ′ and {t} = J ∩ J ′ and J ≤ {t} and {t} ≤ J ′ and
W,J |≡r σ and W,J ′ |≡r σ′.

6An equivalent non-basic SVA sequence can be written using method
triggered [14].

• W, I |≡r σ or σ′ iff either W, I |≡r σ or W, I |≡r σ′.
• W, I |≡r σ intersect σ′ iff both W, I |≡r σ and
W, I |≡r σ′.

• W, I |≡r σ[*0] iff I is empty.
• W, I |≡r σ[+] iff there exist n ≥ 1 and J1, . . . , Jn such

that Ji < Jj for all 1 ≤ i < j ≤ n and I = J1 ∪ · · · ∪Jn
and W,Ji |≡r σ for all 1 ≤ i ≤ n.

If σ is a digital sequence and if @(κ)(b) appears as a
subsequence of σ, then we say that κ is an event of σ. The
following theorem establishes the correspondence between the
discrete-time and realtime semantics for digital sequences.

Theorem 1: Let σ be a digital sequence, let W be a realtime
trace, and let T : N → R≥0 be a sampling such that T (N)
contains all points of R at which any event of σ occurs in
W . Let w = W ◦ T . Let I be a bounded interval. If I is
empty, then let v be the empty word. Otherwise, assume that
I is right-closed with sup I ∈ T (N) and let v = wi..j , where
i = minT−1(I) and j = maxT−1(I). Then W, I |≡r σ iff
v |≡d σ.

According to Theorem 1, the realtime semantics for digital se-
quences is a faithful generalization to realtime of the discrete-
time semantics. The proof is by induction and makes use of
the following

Lemma 2: Let σ be a digital sequence. If W, I |≡r σ and I
is non-empty, then I is right-closed and at least one of the
events of σ occurs in W at the right endpoint of I .

IV. REALTIME SEQUENCES

This section generalizes digital sequences by adding one
new basic form and one new primitive operator. The new
constructs are motivated by assertion-based applications to
AMS verification. Realtime sequences are generated by the
following grammar, where κ denotes an event, b denotes a
Boolean expression, α denotes a non-negative rational con-
stant, and β denotes either a non-negative rational constant or
the special symbol $, representing ∞:

R ::= @(κ)(b) | R ##1 R | R ##0 R | R or R
| R intersect R | R[*0] | R[+]
| b | b[*α [+]:β [-]]

The realtime semantics of the digital sequence forms and
operators remains as before, while the semantics of the new
constructs is given as follows:
• W, I |≡r b iff there exists t such that I = {t} and W (t) |=
b.

• W, I |≡r b[*α [+]:β [-]] iff α ≤ [<] |I| ≤ [<] β and
W (t) |= b for all t ∈ I .

A. Derived Realtime Forms

Assertion languages for industrial use typically provide
numerous derived forms, with the goal of improving the time
efficiency of the engineers deploying them. Both SVA and
PSL have many derived sequence forms, all of which can
be thought of as extending the present digital and realtime
sequences, with syntax adapted as necessary. For example,

R[*] ≡ R[*0] or R[+] is the usual Kleene operator.
There are also several derived realtime sequence forms that
are useful for AMS assertion applications. These are defined
as follows, where ! denotes Boolean negation and the other
notational conventions are as before:
• b[*α] ≡ b[*α:α] [exact-length smear].
• b[∼>1] ≡ !b[*0.0:$] ##1 b [realtime goto].
• R without @(κ) ≡ R intersect !κ[*0.0:$]

[sequence without an event].
• R #0 R′ ≡ (R ##0 R′) or (R ##1 R′) [flexible

concatenation].7

• R #[α [+]:β [-]] R′ ≡ R #0 1[*α [+]:β [-]]
#0 R′ [concatenation with realtime delay].

• R #[α] R′ ≡ R #[α:α] R′ [concatenation with exact-
length delay].

• R[*] ≡ R[*0] or R[+] [repetition]
• R and R′ ≡ ((R #0 1[*0.0:$]) intersect R

′)
or (R intersect (R′ #0 1[*0.0:$])) [flexible
intersection].

In SVA and PSL, the discrete-time goto b[->1] is gov-
erned by an event and only checks the Boolean condition
at occurrences of that event. It can be derived according
to @(κ)(b[->1]) ≡ @(κ)(!b)[*] ##1 @(κ)(b). The
realtime goto checks the Boolean condition continuously and
advances to the nearest point in time at which the condition
is true. Its direct semantics is W, I |≡r b[∼>1] iff {t ∈
I : W (t) |= b} = {sup I}.

The flexible concatenation is an important realtime operator.
Its direct semantics is the following: W, I |≡r R #0 R′ iff
there exist J, J ′ such that I = J ∪ J ′, J ≤ J ′, W,J |≡r R,
and W,J ′ |≡r R′. The intervals J and J ′ being joined must
leave no gap and can overlap at most in a shared point. This
capability is often needed because the intervals over which
realtime sequences match can be open, closed, or half-open.

Consider, for example, @(κ)(b) ##1 R. @(κ)(b)
matches only a right-closed interval, and ##1 requires the
interval over which R matches to abut but not overlap with
this interval. If R = b′, then the overall sequence cannot
match since the realtime Boolean b′ matches only over a single
point. This incompatibility can be avoided with the flexible
concatenation: @(κ)(b) #0 R.

Flexibility in matching is important to our semantics be-
cause it allows the user to be careful about including or
excluding endpoints when needed and not to worry about ac-
counting for endpoints when it is not important. The semantics
for ##0 requires that it join a right-closed with a left-closed
interval, while ##1 joins a right-closed (resp., -open) interval
with a left-open (resp., -closed) interval. Digital sequences
and smear-free realtime sequences match only over empty
and right-closed intervals. The smear operator introduces the
possibility of matching right-open intervals, but whether a
right-open interval is actually matched depends on the trace.
This flexibility is built into the smear operator, similar to the

7We are grateful to Dejan Nickovic for pointing out that flexible concate-
nation can be derived in this way.

flexible concatenation operator.

B. Realtime Sequence Examples

To illustrate the use of realtime sequences we discuss two
representative examples. The first illustrates the utility of
intermingling digital and realtime sequences. The second illus-
trates the inadequacy of discrete approximations for realtime
specifications.

Let’s examine how the settling time specification mentioned
in the introduction can be written using realtime sequences.
We will make the specification more concrete by specializing
it to an 8-bit DAC. The 8-bit DAC input, in, is latched on the
rising edge of its clock, clk. Settling time measurement begins
when in equals 8’h008 on the input for five cycles, followed
by a change to 8’hff in the next clock cycle. The input is
then required to remain 8’hff throughout the remainder of
the measurement. The DAC output, out, should then settle to
5 V ± 25 mV after 50 ns of latching the 8’hff input. We
understand settled to mean that the output remains within the
specified voltage range for 25 ns after the initial 50 ns period
has passed. The following sequence captures this behavior:

@(posedge clk)(in == 8’h00)[*5] ##1
@(posedge clk)(in == 8’hff) #0
((in == 8’hff)[*0.0:$] intersect

1 #[50.0n](out < 5.25 && out > 4.75)[*25.0n])

The sequence begins by matching the Boolean expression
in == 8’h00 for five cycles followed by in == 8’hff,
sampled at posedges of clk. The sequence then switches to
matching a realtime subsequence where the input remains
constant and the output stays within the specified range for
25 ns after the initial 50 ns period. This is an example of the
usefulness of the intermixing of realtime and clocked operators
within a single sequence.

Many common idioms for AMS circuit verification can be
approximated using digital sequences. These approximations
typically involve user management of the sampling clock and
of auxiliary signals to represent inequalities involving con-
tinuously varying quantities. These approximations result in
both imprecise assertions and usability challenges. Matching a
glitch is an example of one commonly encountered idiom that
illustrates user management of the sampling clock. Assume we
want to write a sequence to match glitches of 25 ns or less on
a signal a. For our purposes a glitch is a short positive pulse
of a Boolean. The Boolean may represent a digital signal or
a threshold crossing of a realtime signal. A digital sequence
to capture these glitches is shown below.

@(posedge a)(1) ##1
@(posedge s)(a)[*0 : 25]##1
@(posedge s)(!a)

s is a clock with a period of 1 ns, which functions as a
sampling clock. This sequence provides a reasonable approx-
imation to the specification, but it may miss glitches, as, for

8The syntax 8’h00 represents the 8-bit number whose hex value is 00.
Similarly, 8’hff is the 8-bit number whose hex value is ff.

example, in the case that the glitch is less than 1 ns in length
and does not stay high across a posedge of s. In fact, the
choice of sampling clock is a key decision that must be made
by the user when coding the sequence. In this encoding, the
sequence is accurate to a precision of 1 ns. Glitches less than
1 ns may be missed, and glitches nearly 27 ns long may result
in an undesired successful match. Also, the user must provide
the sampling clock, which may add additional complication to
the verification environment.

A realtime sequence to match the same types of glitches is
shown below.

@(posedge a)(1) #0 (!a[∼>1] intersect
1 [*0.0:25.0n])

The most notable difference is the time accounting. In the
realtime sequence, no sampling clock is needed because the
ability to describe time is provided in the language. This
sequence matches all of the expected glitches. In a realistic
simulation sampling will occur, but it is likely that the user
will not directly manage the sampling. Simulator controls
that manage sampling should be adequate for most AMS
verification applications.

C. Mapping from Timed Regular Expressions

In this section, we show how to map from the timed
regular expressions of [1] into our realtime sequences. Further
relationships with timed regular expressions are discussed in
Section VI. The definition of timed regular expressions in
[1] uses the following grammar, where b denotes a Boolean
expression and Z denotes an integer bounded interval:

ϕ ::= b | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ∗ | 〈ϕ〉Z

The semantics from [1] can be rendered in our notation by the
satisfaction relation |≡tre defined as follows:
• W, I |≡tre b iff |I| > 0 and W (t) |= b for every t ∈ I .
• W, I |≡tre ϕ · ϕ′ iff there exist J, J ′ such that J < J ′,
I = J ∪ J ′, W,J |≡tre ϕ, and W,J ′ |≡tre ϕ′.

• W, I |≡tre ϕ∨ϕ′ iff either W, I |≡tre ϕ or W, I |≡tre ϕ′.
• W, I |≡tre ϕ∧ϕ′ iff both W, I |≡tre ϕ and W, I |≡tre ϕ′.
• W, I |≡tre ϕ∗ iff there exist n ≥ 0 and J1, . . . , Jn such

that Ji < Jj for all 1 ≤ i < j ≤ n, I = J1 ∪ · · · ∪ Jn,
and W,Ji |≡tre ϕ for all 1 ≤ i ≤ n.

• W, I |≡tre 〈ϕ〉Z iff W, I |≡tre ϕ and |I| ∈ Z.
This casting of the semantics of timed regular expressions
leads directly to a linear syntactic map M into realtime
sequences:
• M(b) = b[*0.0+:$].
• M(ϕ · ϕ′) = M(ϕ) ##1 M(ϕ′).
• M(ϕ ∨ ϕ′) = M(ϕ) or M(ϕ′).
• M(ϕ ∧ ϕ′) = M(ϕ) intersect M(ϕ′).
• M(ϕ∗) = M(ϕ)[*].
• M(〈ϕ〉Z) = M(ϕ) intersect M(Z), where

– M([α, β]) = 1[*α:β]
– M((α, β]) = 1[*α+:β]
– M([α, β)) = 1[*α:β-]

– M((α, β)) = 1[*α+:β-]

Semantic faithfulness of M is given by the following

Proposition 3: W, I |≡tre ϕ iff W, I |≡r M(ϕ).

Proposition 3 holds for any trace W and bounded interval
I . It should be noted that in [1], timed regular expressions
are interpreted over a restricted class of realtime traces, called
signals, that are piecewise constant and left continuous. The
piecewise constant condition requires the set of discontinuities
of the trace to have no limit point in R, so, in particular, there
can be at most finitely many discontinuities in any bounded
interval of the trace. The condition of left continuity implies
that no event can occur in a signal. Furthermore, [1] restricts
the domain of a signal to be a bounded interval that either is
empty or is left open and right closed.

V. AUTOMATA CONSTRUCTION

This section provides a construction for timed automata rec-
ognizers for our realtime regular expressions. The automaton
A constructed for sequence R recognizes R in the sense that
for all W and I , W, I |≡r R iff A has an accepting run whose
trace is satisfied by W over the interval I . These notions will
be made precise below. The construction provides the basis for
an implementation strategy for our framework. The definition
of timed automaton below is based on that in [1].

A. Definition of Timed Automaton

A timed automaton is a tuple A = (Q,C,∆, Γ, L, S, F)
where Q is a finite set of states, C is a finite set of clocks,
∆ is a transition relation (see below), Γ is an alphabet that
we assume to be a Boolean algebra with multiplicative unit 1,
L : Q→ Γ is the state labeling, S ⊆ Q is a set of initial states,
and F ⊆ Q is a set of final (accepting) states. The transition
relation, ∆, consists of tuples of the form (q, φ, ρ, q′) where
q, q′ ∈ Q, ρ ⊆ C (the set of clocks to be reset), and φ is
a Boolean combination of terms of the form (c ∈ I), where
c ∈ C and I is an interval of R≥0 whose endpoints are rational
numbers or ∞.

A clock valuation is a function v : C → R≥0. We denote
the space of all clock valuations by H. By using clocks as
coordinates, a clock valuation can be identified with a vector
in RC . 0 denotes the vector (0, 0, . . . , 0) and 1 denotes the
vector (1, 1, . . . , 1). A configuration of the automaton is a pair
(q,v) ∈ Q×H. Every ρ creates a reset function Resetρ : H →
H defined by

Resetρ(v)(c) =

{
0 if c ∈ ρ
v(c) if c 6∈ ρ

A finite run of the automaton on [a, b] is a sequence

t0, (q0,v0)
d1−→
t1

(q1,v1)
d2−→
t2
· · · dn−→

tn
(qn,vn),

where qi ∈ Q, vi ∈ H, di ∈ ∆, ti ∈ R≥0 are such that
• 0 ≤ a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b and v0 = 0.
• di = (qi−1, ϕi, ρi, qi), where vi = Resetρi(vi−1 + (ti −
ti−1) · 1) and ϕi is satisfied on vi−1 + (ti − ti−1) · 1.

The run is accepting if q0 ∈ S and qn ∈ F . The full trace
of the run is the function T : [t0, tn] → Γ defined by the
following rules:
• If ti < ti+1, then for t ∈ (ti, ti+1), T (t) = L(qi).
• If ti−1 < ti = ti+1 = · · · = tj−1 = tj < tj+1, then
T (ti) = L(qi) ∧ · · · ∧ L(qj−1) ∈ Γ .

• If T (t) is not defined by the preceding conditions, then
T (t) = 1 ∈ Γ .

We assume that each initial and final state is classified either
as inclusive or exclusive. The restricted trace of a run is the
function T |I , where T : [t0, tn] → Γ is the full trace and
I ⊆ [t0, tn] is the interval obtained from [t0, tn] by including
or excluding each of the endpoints t0 and tn in accordance
with the kind, inclusive or exclusive, of the initial and final
states of the run, respectively.9 If the initial and final states
are both exclusive and t0 = tn, then I = {}.

Let W be a realtime trace, A be a timed automaton, and I
be a bounded interval. For I non-empty, we define W, I |≡ A
iff there exists a run of A on [inf I, sup I] such that I is the
domain of the restricted trace of the run and W (t) |= T (t) for
all t ∈ I , where T is the trace (full or restricted) of the run.
We define W, {} |≡ A iff there exists t0 ∈ R≥0 and a run of
A on [t0, t0] such that the domain of the restricted trace of
the run is {}. We say that A recognizes the sequence R if for
all W and I , W, I |≡r R iff W, I |≡ A.

B. Automata Convenience Features

To simplify the exposition of our automata construction
we use additional features and notations described below. By
definition, clock constraints φ appear only on transitions of
a timed automaton. It can be convenient to specify a timing
condition on a state, where the timing condition restricts the
amount of time that a run may spend in a single visit to the
state (distinct visits are treated independently). Such conditions
can be implemented by (at worst) adding a single state clock
η that is reset on every transition and such that the timing
condition of a state is added to each outgoing transition.10 The
state timing condition “0” abbreviates “η = 0”, i.e., no time
elapse in the state. Such a state is called a 0-time state. The
state timing condition “+” abbreviates “η > 0”, i.e., positive
time must elapse in each visit to the state. Such a state is
called a +-time state and is annotated by a “+” in the lower
half of the state in figures.

The label of a state conditions the trace of a run for the
times that the run is in the state. It can be useful also to
condition with a label the times at which a transition is taken.
A transition label can be implemented by inserting a 0-time
state and placing the label on the new state.

Ingresses and egresses provide a graphical notation for
simplified initial and final states and their classification as
inclusive or exclusive. An ingress is an initial state with no

9Inclusion is understood to take precedence over exclusion in the case where
t0 = tn and the classifications of the initial and final states do not agree.

10A final state with a timing condition can be implemented by rendering
the state non-final and adding a companion final state to which it transitions.
The companion state matches the original in its label and classification.

incoming and a single outgoing transition, while an egress is a
final state with no outgoing and a single incoming transition.
The ingress and egress states are 0-time and their state label
is understood to be 1 ∈ Γ . If needed, a labeling condition
may be placed on the incident transition. Inclusive states are
denoted by small closed circles, while exclusive states are
denoted by small open circles. For example, the automaton
in Fig. 1 has three ingresses, one exclusive and two inclusive.
The transitions from the inclusive ingresses are labeled “¬κ”
and “κ∧b”, respectively. The automaton has one egress, which
is inclusive and has no label on its incident transition.

C. Automata Construction

The automata are built by induction on the structure of the
sequences.
• The automaton for @(κ)(b) is shown in Fig. 1.

κ ∧ b

¬κ
+

η = 0

¬κ

κ ∧ b
η > 0

η := 0

Fig. 1. Automaton for a clocked Boolean, @(κ)(b).

• The automaton for R ##1 R′ is created by connecting
the automata for R and R′. The rule for connection
requires that an inclusive ingress/egress be connected
to an exclusive egress/ingress. This rule ensures that
there is no overlap and no gap in the interval matched.
When an ingress/egress is connected it is no longer
an ingress/egress and consequently is no longer an ini-
tial/final state, respectively. An example of how the
connection works is shown in Fig. 2. This connection
rule does not apply to a subautomaton for empty, as
empty is an identity for ##1. Instead, the subautomaton
is combined as though it were an identity.

• The automaton for R ##0 R′ is created by connecting
the automata for R and R′. The rule for connection
requires that inclusive egresses of R be connected to
inclusive ingresses of R′. This ensures that there is a
single point overlap between the matches for R and R′,
which is required by ##0. The connection works in a
manner similar to R ##1 R′.

• The automaton for R or R′ is created using a standard
union of the automata for R and R′.

• The automaton for R intersect R′ is created as a
product automaton for R and R′. The rules for the product
construction are as follows:
– (p, q) is an ingress (resp., egress) iff both p and q are

ingresses (resp. egresses) and either both p and q are
inclusive or both p and q are exclusive.

– (p, q) is a +-time state iff both p and q are +-time
states.

– (p, q) is a 0-time state iff either p or q is a 0-time state.
– Parallel transitions are transitions where both of the

factor automata are changing state. If p α−→ p′ is a

η := 0

¬ζ
+

η = 0¬κ
+

η = 0

¬κ

κ ∧ a
η > 0

η := 0

κ ∧ a

ζ ∧ b
η > 0

η := 0

Fig. 2. An automaton for @(κ)(a) ##1 @(ζ)(b). This demonstrates the connection rules for ##1.

transition of R and q
β−→ q′ is a transition of R′, then

(p, q)
α∧β−→ (p′, q′) is a parallel transition of the product.

– Stutter transitions are transitions where only one of the
factor automata is changing state. The non-changing
state is said to be stuttering. There is a subtlety when
the stuttering state is +-time. The stuttering transition
can lead to gaps in the state label for this factor because
a trace associates a state label with the interior of a
positive length time interval spent in that state. To
avoid gaps, the state label needs to be added to the
stutter transition in certain circumstances. Intuitively,
the case where the state label is added occurs when the
changing state is transitioning from a 0-time state to a
+-time state and the stuttering state has already been
occupied for positive time in this visit. A complete
definition of the rules is found below. Each factor state
is either 0-time, denoted, e.g., 0q, or +-time, denoted,
e.g., +q. A mixed product state is one with one factor
state 0-time and one factor state +-time. It is annotated
with a kind 0 or 1. A kind 0 state indicates that the
+-time factor has not yet been occupied for positive
time in this visit, while a kind 1 state indicates that
the +-time factor has been occupied for positive time
in this visit. A parallel transition is denoted by two
solid arrows, while a stutter transition is denoted by
one solid and one dashed arrow. Rule g shows the
addition of a state label to a stutter transition. Rules
a-h below describe all the transition forms involving
mixed product states of various kinds, up to swapping
the factors of the tuples. Each rule has a dual which
is also valid. In the description, * allows any possible
qualifier and e is a variable used to represent kind 0
or 1.

a.
(∗p
∗q

)
∗

−→
−→

(
0p′
+q′

)
0

b.
(

0p
+q

)
1

−→
−→

(∗p′
∗q′

)
∗

c.
(

0p
+q

)
1

99K
−→

(
0p
∗q′

)
∗

d.
(

0p
∗q

)
∗

99K
−→

(
0p
+q′

)
0

e.
(

0p
+q

)
e

−→
99K

(
0p′
+q

)
e

f.
(

0p
+q

)
0

−→
99K

(
+p′
+q

)

g.
(

0p
+q

)
1

−→
99K
L(q)

(
+p′
+q

)
h.
(

+p
+q

)
−→
99K

(
0p′
+q

)
1.

• The automaton for R[*0] is shown in Fig. 3(a).
• The automaton for R[+] follows the connection rule

for R ##1 R′. A connected ingress/egress no longer

functions as ingress/egress. In a repetition the initial/final
state behavior must be maintained, so ingresses/egresses
for the repetition must be duplicated for use in the
connection. If R has an empty subautomaton, then so
does R[+], but the empty subautomaton does not play
a role in the connections. See Fig. 3(b) for an example.

• The automaton for b is shown in Fig. 3(c).

(a)
η = 0¬κ

+
b

(c)¬κ

κ ∧ b

κ ∧ b
η > 0

η := 0

(b)

Fig. 3. Automata for (a) R[*0], (b) (@(κ)(b))[+], and (c) realtime
Boolean, b.

• The automata for b[*α [+]:β [-]] are shown in Fig. 4.

VI. FURTHER RELATIONSHIPS WITH TIMED REGULAR
EXPRESSIONS

In [1], [2], Asarin, Caspi, and Maler define timed regular
expressions and study their relationship to timed automata. The
main results show that timed regular expressions, generalized
to support renaming, have the same expressive power as timed
automata. This section discusses relationships between our
realtime sequences and timed regular expressions.

The syntax for timed regular expressions is essentially the
same in [1] and [2] and has been given in Section IV-C.
[2] adds syntax for the empty word, analogous to our form
R[*0]. [2] also adds syntax to specify renamings, which have
no analog in our framework.

Several different semantic models are presented in [1] and
[2]. The piecewise constant, left continuous signals of [1]
are, in many regards, the closest to our realtime traces. They
underly the relation |≡tre and provide the basis for the
semantically faithful embedding M presented in Section IV-C.
Signals do not, however, support expression that a condition
hold or an event occur at a specific point in time. These
capabilities are important for applications to AMS verification
and are supported in realtime sequences by the immediate
Boolean (b), clocked Boolean (@(κ)(b)), and concatenations
with overlap (##0, #0, etc.).

Time-event sequences are the primary semantic model in
[2]. A time-event sequence is a sequence of terms, each
of which is either an event or a non-negative real number,
specifying a time elapse. For example, the time-event sequence
r · κ · s · ζ represents that event κ occur after r units of
time and that event ζ occur after another s units of time.
Simultaneity of multiple events is expressible, as in r · κ · ζ,

(a)

b
+

η = 0 b
+

η = 0

b

b
η := 0

b

η ∈ [0.0+ : β[−]]

(b)b
η := 0

b

η ∈ [α[+] : β[−]]

Fig. 4. Automata for (a) the Boolean smear, b[*α [+]:β [-]] with a positive α and (b) the Boolean smear, b[*0.0:β[-]] with α equal to zero.

r · ζ · κ, r · κ · κ, which are all distinct. In [2], timed regular
expressions can specify unbounded regular patterns of events,
all occurring at the same time but with discrete ordering
amongst themselves. For applications to AMS verification, we
do not believe that such capabilities are needed. For example,
we see no practical use for expressing the condition that
the value of a particular analog variable cross a particular
threshold five times, say, at a single instant of time. Our
realtime traces do not admit this granularity of ordering at
a single time. In a realtime trace, an event either occurs or
does not at any particular time. There is no notion of multi-
plicity, and if two events occur at the same time, there is no
distinction of their order. Our realtime sequences can express
the condition that a fixed set of events occur simultaneously,
as in (@(κ)(1) ##0 @(ζ)(1)) intersect 1. This form
also shows a syntactic order of κ before ζ, but our realtime
trace models do not resolve this order.

In Section V we showed a construction of timed automata
recognizers for our realtime sequences. Assuming that suit-
able translation conventions are fixed to convert between
the differing semantic models, this construction shows that
our realtime regular expressions are no more expressive than
the generalized extended timed regular expressions of [2].
Definitive comparison of the two regular expression languages
seems to depend on precise reconciliation of the semantic
models. In mapping from time-event sequences to realtime
traces, multiplicity and ordering of simultaneous events need
to be encoded using analog and discrete variables. In mapping
the other direction, behaviors of analog and discrete variables
to which the relevant Boolean expressions and events are
sensitive need to be represented by regular patterns of events.
The details of such analysis appear non-trivial and merit
consideration in future work.

VII. CONCLUSION

Verification of AMS systems is becoming increasingly im-
portant as AMS designs become more popular and complex.
To meet the needs of AMS verification, we must develop
verification techniques and languages that support both the
clocked and realtime domains. We have proposed syntax and
semantics for realtime regular expressions. This has been
done before [1], [2], but the key feature of our framework
is that it generalizes the framework of the existing SVA
regular expressions. This feature allows free intermingling of
realtime and digital sequences, which enables our realtime
regular expressions conveniently to represent complex proper-
ties that specify both clocked and realtime requirements. We
have investigated how the new syntax and semantics relate

to existing definitions of realtime regular expressions. We
provide a semantically faithful mapping from the timed regular
expressions of [1], which demonstrates that our formalism is
not less expressive. We also provide a construction of timed
automata recognizers for our realtime regular expressions. This
construction demonstrates that our realtime regular expressions
are no more expressive than the generalized timed regular
expressions of [2] and provides a basis for an implementation
strategy.

In the future, we plan to demonstrate how this semantics can
be extended to local variables and the first_match oper-
ator. We also plan to develop similarly compatible semantics
for the SVA property operators. When completed, these pieces
will constitute a realtime extension to the full SVA language.
This new realtime SVA language will provide engineers the
ability to specify complex AMS properties accurately and in
a single assertion language.

REFERENCES

[1] E. Asarin, P. Caspi, and O. Maler, “A Kleene theorem for timed
automata,” in IEEE Symposium on Logic in Computer Science. IEEE
Press, 1997, pp. 160–171.

[2] ——, “Timed regular expressions,” Journal of the ACM (JACM), vol. 49,
no. 2, pp. 172–206, 2002.

[3] IEEE Standard for SystemVerilog (1800-2009), IEEE Computer Society,
Dec. 2009.

[4] IEEE Standard for Property Specification Language (PSL) (1850-2010),
IEEE Computer Society, Jun. 2010.

[5] A. Pnueli, “The temporal semantics of concurrent programs,” Theor.
Comput. Sci., vol. 13, pp. 45–60, 1981.

[6] D. Smith, “Asynchronous behaviors meet their match with SystemVer-
ilog Assertions,” in Design and Verification Conference (DVCON), 2010.

[7] D. Nickovic, O. Maler, A. Fedeli, P. Daglio, and D. Lena. (2007) Analog
case study : PROSYD deliverable 3.4/2. [Online]. Available: http://
www.prosyd.org/twiki/pub/Public/DeliverablePageWP3/prosyd3.4.2.pdf

[8] K. D. Jones, V. Konrad, and D. Nickovic, “Analog property checkers:
a DDR2 case study,” Formal Methods in System Design, vol. 36, no. 2,
pp. 114–130, 2010.

[9] R. Mukhopadhyay, S. K. Panda, P. Dasgupta, and J. Gough, “Instru-
menting AMS assertion verification on commercial platforms,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 14, pp. 21:1–21:47, April 2009.

[10] S. Mukherjee and P. Dasgupta, “Incorporating local variables in mixed-
signal assertions,” in TENCON, 2009, pp. 1–5.

[11] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM, vol. 43, no. 1, pp. 116–146, 1996.

[12] D. Nickovic, “Checking timed and hybrid properties: Theory and appli-
cations,” Ph.D. dissertation, Université Joseph Fourier, 2009.

[13] H. Anand, J. Havlicek, and S. Little. (2010) Some notes on
realtime semantics. [Online]. Available: http://www.vhdl.org/twiki/pub/
VerilogAMS/RequirementsGatheringGroup/semantics.pdf

[14] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, The Power of
Assertions in SystemVerilog. Springer, 2010.

