
Per Bjesse and Anna Slobodová (Editors)
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Preface

The International Conference on Formal Methods in Computer-Aided Design, FMCAD, is a series of
conferences on the theory and application of formal methods to the computer-aided design and verification
of hardware and systems. The eleventh conference in the series, FMCAD 2011, was held in Austin, Texas,
USA, October 30th – November 2nd.

In the past, FMCAD took place in the United States on even years and its sister conference CHARME
was held in Europe on odd years. In 2006, these two conferences merged to form an annual conference
with a unified international community. The merged conference inherited the name FMCAD, and is
now held yearly. It provides a leading international forum for researchers and practitioners in academia
and industry to present and discuss novel methods, technologies, theoretical results and tools for formal
reasoning about computing systems.

This year, the conference received in-cooperation status with ACM under the Special Interest Group
on Programming Languages and the Special Interest Group on Software Engineering. It also received
technical sponsorship from the IEEE Council on Electronic Design Automation.

Three additional events were co-located with the conference this year: the ACL2 Workshop, the Design
and Implementation of Formal Tools and Systems (DIFTS) Workshop, and the Hardware Model Checking
Competition (HWMCC).

The FMCAD 2011 conference received 72 submissions. Each submission was reviewed by at least
four reviewers, and some submissions received five or six reviews. After a long decision process that
involved often vigorous discussions by Program Committee members and subreviewers, 26 submissions
were eventually selected for presentation at the conference — 21 as regular papers and 5 as short papers.
The accepted papers covered topics ranging from model checking and solver technology to design for
verification. Moreover, they addressed a broad spectrum of abstraction levels ranging from analog and
mixed-signal, and real-time systems to traditional synchronous hardware and C code.

Besides reviewed submissions, our program was enriched by five invited tutorial speakers. Aarti Gupta,
a senior researcher at NEC, talked about “Verifying Concurrent Programs”. John Hughes, a Professor at
Chalmers University of Technology and CEO of QuviQ, gave a talk about “Specification Based Testing
with QuickCheck”. Vigyan Singhal, President and CEO of Oski Technology, presented “Planning for End-
to-End Formal using Simulation-based Coverage”. Fabio Somenzi, Professor at University of Colorado
Boulder, gave a presentation on a recently developed decision method for model checking in his talk
“IC3: Where Monolithic and Incremental Meet”. Ivan Sutherland, the 1988 Turing Award winner, gave a
talk titled “Self-Timing: a Step Beyond Synchrony”.

The Keynote speaker for the conference, J Moore, delved into the question of “The Role of Human
Creativity in Mechanized Verification”. He argued that “by highlighting the minor decisions that represent
major breakthroughs in the problem, we serve our science better because we identify the key problems
yet to be solved”.

Two panel sessions contributed to the vibrancy of the conference. Lee Pike from Galois moderated
“Pervasive Formal Verification in Control System Design” with panelists Darren Cofer (Rockwell Collins),
Eric Feron (Georgia Institute of Technology), Tom Hawkins (Eaton Corp.), and Hakan Yazarel (Toyota).
Murali Talupur of Intel Corp. was the moderator of the panel “Hardware Model Checking: Status,
Challenges and Opportunities”. The panelists were Pranav Ashar (RealIntent), Jason Baumgartner (IBM),
Bob Brayton (UC Berkeley), and Erik Seligman (Intel).

The 2011 Proceedings of FMCAD are available through the ACM Digital Library, at IEEE Xplore
Digital Library, or as a free download from the FMCAD website.
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Verifying Concurrent Programs
(Tutorial Talk)

Aarti Gupta
NEC Laboratories America, Inc.

ABSTRACT

The proliferation of multi-core hardware has led to widespread use of concurrent programs. However,
these programs are notoriously difficult to get right and to debug for developers. Even for automated
verification, it is a big challenge to reason about subtle synchronization between communicating threads
or processes, combined with an exponential number of interleavings. This tutorial will focus on the main
ideas that have been used to handle synchronization and interleavings in automatic verification techniques
for concurrent programs. These ideas have been applied in many settings, inspired by successful verification
efforts for finite state systems on one hand, and for sequential programs on the other.

We will start by describing model checking efforts on concurrent programs based on pushdown system
(PDS) models. PDS-based model checking and dataflow analysis have been successfully used for sequential
program verification. However, extending these techniques to a system of interacting PDSs is challenging,
due to undecidability of basic reachability checking when recursive programs interact using certain kinds of
synchronization. Existing methods get around this by using various abstractions or restricting the patterns
of synchronization allowed.

While PDSs can naturally model programs, the large model sizes for real programs and the complexity
of model checking prohibit their application in practice. Instead, practical model checkers operate over
finite state abstractions, typically by inlining procedures (without precisely modeling recursion). Often,
they target standard concurrency-related bugs such as dataraces, deadlocks, atomicity violations, etc. Some
pioneering efforts used explicit state model checking, with partial order reduction to reduce the number of
interleavings. More recently, the success of SAT/SMT solvers has been leveraged for symbolic exploration
in bounded settings, where memory consistency axioms implicitly encode the allowable set of interleavings.

On the program analysis front, capturing thread interference plays a key role. A general sequentialization
technique has been proposed to lift any sequential program analyzer to bounded context analysis of multi-
thread programs. Here, thread interference along a bounded schedule is represented using nondeterministic
values on shared data, on which consistency is checked later according to individual threads. For un-
bounded analysis, techniques have been proposed to utilize automatically generated invariants (via abstract
interpretation) to refine an over-approximation of thread interferences, or to incrementally propagate them
starting from an under-approximation, until a fixpoint. The ultimate abstraction is to view interference
from other threads as the environment, motivating efforts based on thread-modular and compositional
verification.

Finally, we will describe trace-methods that utilize given dynamic test executions as a starting point
to systematically explore alternate interleavings. Dynamic partial order reduction and preemptive context
bounding techniques are based on controlling the scheduler to dynamically explore other interleavings.
Another interesting direction is predictive analysis, where a predictive model is derived from a given trace
and explored to predict violations in alternate interleavings of the same events.

The tutorial will highlight the progress made along these fronts, and the many challenges that remain
in practical settings.
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Self-Timing: a Step Beyond Synchrony
(Tutorial Talk)

Ivan Sutherland
Portland State University

ABSTRACT

Each part of a self-timed system starts work as soon as all its inputs are available, taking whatever
time it needs to do its job and signaling when it is done. Each part waits for its predecessors to finish.
The parts operate concurrently but not synchronously. Self-timed systems use local timing signals rather
than a global clock

Self-timing eliminates the rigidity and energy consumption of a global clock. Self-timed systems operate
over a wide range of power supply voltage. They automatically go slower at reduced voltage, saving
energy both from lower voltage and from reduced speed. Their power-saving properties are making them
increasingly attractive.

The design challenge posed by self-timing is the subject of this tutorial. Self-timed systems need
the usual proofs of logical correctness. In addition, because they can take advantage of average rather
than worst-case delay, analysis of circuit delay based on data statistics will be important. Of course, it’s
essential to check the timing of local signals, but commercial timing tools all check timing against a global
“clock” signal that’s absent from self-timed systems. Instead, self-timing focuses attention on the relative
timing of pairs of signals. Self-timed systems pose all the elusive problems of concurrency: deadlock,
non-determinism, and arbitration.

SHORT BIOGRAPHY

Ivan Sutherland and Marly Roncken started the Asynchronous Research Center (ARC) at Portland State
University in 2009. Ivan was previously a Fellow at Sun Microsystems for nearly 25 years. Ivan holds an
ACM Turing Award and is a member of the National Academy of Engineering and the National Academy
of Sciences.
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IC3: Where Monolithic and Incremental Meet
Fabio Somenzi

Dept. of Electrical, Computer, and Energy Engineering
University of Colorado at Boulder

Email: fabio@colorado.edu

Aaron R. Bradley
Summit Charter Middle School
Email: arbrad@cs.stanford.edu

Abstract—IC3 is an approach to the verification of safety
properties based on relative induction. It is incremental in the
sense that instead of focusing on proving one assertion, it builds
a sequence of small, relatively easy lemmas. These lemmas are
in the form of clauses that are derived from counterexamples
to induction and that are inductive relative to reachability
assumptions. At the same time, IC3 progressively refines ap-
proximations of the states reachable in given numbers of steps.
These approximations, also made up of clauses, are among the
assumptions used to support the inductive reasoning, whiletheir
strengthening relies on the inductive clauses themselves.This
interplay of the incremental and monolithic approaches lends
IC3 efficiency and flexibility and produces high-quality property-
driven abstractions. In contrast to other SAT-based approaches,
IC3 performs very many, very inexpensive queries. This is
another consequence of the incrementality of the algorithmand
is a key to its ability to be implemented in highly parallel fashion.

I. I NTRODUCTION

This paper discusses the IC3 technique for model checking
safety properties. It is meant as a companion to [13]. Sec-
tion II illustrates the approach on examples, while the rest
of this introduction and Section III put the algorithm in its
historical and ideological context by showing its relationto
other methods for finite-state verification.

A. Induction

Induction is fundamental to the verification of safety prop-
erties [1], [2]. The only question is how it should be applied.

Consider a finite state system,S : (i, x, I(x), T (i, x, x′)),
consisting of primary inputsi, state variablesx, a proposi-
tional formulaI(x) describing the initial configurations of the
system, and a propositional formulaT (i, x, x′) describing the
transition relation. Primed state variablesx′ represent the next
state.

Suppose that one wants to prove that every reachable state
satisfies state assertionP (x). Beginner’s luck might allow one
to proceed as follows:

• Show that the initial configuration of the system satisfies
P : I(x) ⇒ P (x), where⇒ corresponds to implication.
That is, all states that satisfy the initial conditionI also
satisfyP .

• Show that aP -state can only be followed by anotherP -
state:P (x) ∧ T (i, x, x′) ⇒ P (x′).

These two steps—sometimes calledinitiation andconsecution,
respectively—comprise induction overS.

B. Monolithic and Incremental Methods

Outside of a classroom, such a direct application of in-
duction is bound to fail. The development of safety model
checking has essentially been the study of what one should
do when, as usual, it does fail. InTemporal Verification of
Reactive Systems: Safety[3], Manna and Pnueli write,

We present two solutions to this problem, which can
be summarized by the following strategies:

1) Use a stronger assertion, or
2) Conduct an incremental proof, using previously

establishedP -invariants.
They go on to endorse the latter approach when engaging in
manual or computer-aided verification:

We strongly recommend [an incremental proof]
whenever applicable. Its main advantage is that of
modularity.

The former approach, however, is the one that has been most
pursued from an algorithmic point of view in the context of
hardware model checking. The formal basis for this approach
is the following. If

• I(x) ⇒ F (x)
• F (x) ∧ T (i, x, x′) ⇒ F (x′)
• F (x) ⇒ P (x)

thenP is an invariant ofS. In words, if F is inductive over
S and impliesP , then bothF andP are invariants.

Traditional model checkers, based on BDDs [4] or SAT [5],
explicitly compute post-conditions to compute the strongest
possible strengthening ofP , namely the reachable set of
states, or pre-conditions to compute the weakest possible
strengthening ofP , namely all states except those that can
lead to a violation ofP . Bounded model checkers (BMC)
exploit the finiteness of the state graph to enable a complete
approach based on unrollingT and searching, with a SAT
solver, for a counterexample trace [6]. An alternative to relying
on a property of the state graph is to strengthen consecution
simply by considering multiple time steps at once:k-induction
assumes thatP holds over multiple time steps to increase the
likelihood thatP holds in the next time step [7]. BDD-based
algorithms that compute backward reachability can also be
interpreted as computing increasingly strong consecutions: the
number of iterations required for the fixpoint computation to
converge to the weakest possible invariant that impliesP gives
the number of time steps to be considered to turnP into an
inductive assertion.
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Finally, one can abstract the post-condition in order to
ease the computation, as in abstract interpretation [8]. Even
better, one can abstract it with respect to the property, as in
interpolation-based model checking, in which interpolants are
derived from failed BMC queries [9].

We refer to these methods asmonolithicbecause they spend
all of their resources in computing one inductive assertion.
Furthermore, their success is fundamentally tied to the rea-
soning engines—either the BDD package or the SAT solver.
The representation of states reachable from the initial ones or
states that can reach the target ones often entails prohibitively
large BDDs. BMC,k-induction, and interpolant-based model
checking fail when the SAT solver is overwhelmed by the
number of unrollings ofT .

One must then wonder whether anincrementalapproach,
which is so successful for humans, might not be a bad idea
as the basis for an algorithm. An incremental approach would
compute many inductive assertions that all together strengthen
P . It would thus have the modularity that Manna and Pnueli
highlight—each assertion need only refer to an aspect ofS—
as well as the potential of not taxing the reasoning engines
quite so much. Moreover, the incremental approach would
be property directed, like the interpolant-based method: each
intermediate assertion would arise to eliminate some hypoth-
esized error.

The formal basis for an incremental approach is the follow-
ing. Consider a sequenceϕ1(x), . . . , ϕn(x) of assertions such
that

• every assertion is satisfied by the initial states: for each
j, I(x) ⇒ ϕj(x),

• each assertion obeys consecution under the assumption
that its predecessors hold: for eachj,

∧

1≤k≤j

ϕk(x) ∧ T (i, x, x′) ⇒ ϕj(x
′) ,

• and all together they implyP :
∧

1≤j≤n

ϕj(x) ⇒ P (x) .

If P also satisfies initiation, then it is an invariant ofS. In this
version of consecution (the second condition), we say thatϕj

is inductiverelative toϕ1, . . . , ϕj−1.
In the incremental approach, one might as well assumeP .

If

• P is satisfied by the initial states:I(x) ⇒ P (i),
• every assertion is satisfied by the initial states: for each

j, I(x) ⇒ ϕj(x),
• each assertion obeys consecution under the assumption

that its predecessors andP hold: for eachj,
∧

1≤k≤j

ϕk(x) ∧ P (x) ∧ T (i, x, x′) ⇒ ϕj(x
′) ,

• andP is inductive relative to the assertions,
∧

1≤j≤n

ϕj(x) ∧ P (x) ∧ T (i, x, x′) ⇒ P (x′) ,

thenP is an invariant ofS.
Bradley and Manna proposed the first incremental safety

model checking algorithm [10], [11]. It discovers inductive
subclauses of the negation of states that lead, not necessarily
directly, to violations ofP . Such clauses eliminate the states
from which they are derived while generalizing to eliminate
many other states as well. Each clause is an assertionϕj that is
indeed typically inductive only relative to prior assertions but
not on its own. As expected, deriving the clauses is relatively
easy: the employed SAT solver solves many, often hundreds or
thousands, of queries per second, in stark contrast to BMC,k-
induction, and the interpolant method. An unexpected benefit
is that this instance of the incremental approach is effectively
parallelizable—and easily so. This characteristic has carried
through in subsequent work.

Besides modularity and reduced labor, the incremental ap-
proach has one more benefit: induction-based generalization
is a powerful mechanism for property-directed abstraction.
Induction tends to find semantic relationships among states
rather than simply adjacency, or structural, relationships, as
in traditional model checking. The clause that eliminates
a states may well eliminate states that are far, or even
disconnected, froms in the state graph. When induction is
applied throughout the analysis rather than being the goal of a
monolithic propagation, it abstracts the system in a property-
directed fashion.

Unfortunately, this algorithm suffers from a common pitfall
of incremental methods. Manna and Pnueli write:

There are cases in which the conjunctionϕ1 ∧ϕ2 is
inductive, but it is not the case thatϕ1 is inductive
andϕ2 is inductive relative toϕ1.

In the context of the algorithm, a states can be encountered
such that¬s does not contain a subclause that is inductive
relative to known information. In such situations, the algorithm
falls back on state enumeration until sufficient information is
acquired to resume inductive clause construction. Yet when
such a situation does not occur, the algorithm is extremely
effective [11].

This weakness of the incremental method is not an issue
for manual or computer-assisted verification, as the human can
provide an insight. But in an algorithmic context, one typically
limits the form of assertions in order to control computational
costs [8]. Is an algorithmic incremental method thus doomed
from the start?

C. IC3: A Monolithic-Incremental Hybrid

While an incremental method may be limited in the form of
its assertions, Bradley eventually realized that the constructed
clauses need not be truly inductive. The machinery of induc-
tion can be applied just as well when stronger information
is assumed—information that is not necessarily valid for
the entire state space. In particular, stepwise assumptions—
assertions that hold for some number of timesteps rather than
for all time—could be combined with relative inductive clause
generation to yield a hybrid monolithic-incremental method in
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which relatively inductive clauses are guaranteed to existif
P is invariant. IC3 is the result of this insight [12], [13].

IC3 is incremental in that it finds inductive subclauses of the
negations of states, just as the first approach does—except that
these clauses are now inductive relative to certain assumptions.
Its use of SAT solvers is thus similar: hundreds to thousands
of queries are solved per second. Additionally, the clausesare
the right compromise between effort and information content,
so that they can be traded effectively among parallel processes.

IC3 is monolithic in that it computes over-approximations
to the sets of states reachable in one step, two steps, etc.,
until it converges upon an inductive strengthening assertion.
Each major iteration propagates the clauses that comprise the
timestep approximations forward in time as much as possible.
These over-approximations are the information relative to
which new clauses are generated.

Hence, IC3 alternates between an incremental mode, in
which it uses states that lead, not necessarily directly, to
violations of P to discover new relatively inductive clauses,
and a monolithic mode, in which it propagates clauses forward
across time steps. Models on which the original method [10]
devolves into enumerating states cause IC3 to go through
more major iterations, yielding long sequences of stepwise
over-approximations. Models on which the original method
succeeds are just as easy, and often easier, for IC3, and result
in short sequences of stepwise over-approximations beforethe
final inductive strengthenings are formed. And many other
models cause IC3 to adapt either a more monolithic or a more
incremental strategy at various stages. The power of IC3 is that
it can quickly deduce lemmas for certain aspects of a model
while working harder—and, at times, more monolithically—
for other lemmas that require more clauses.

II. EXAMPLES

This section presents IC3 by way of two examples. The
objective is to show the nature of the algorithm. Certain
optimizations omitted from this exposition are essential in
practice for good performance.

A. A Passing Property

Figure 1 shows the state transition graph of a systemS with
no primary inputs and state variablesx = {x1, x2} such that

I(x) = ¬x1 ∧ ¬x2

T (x, x′) = (x1 ∨ ¬x2 ∨ x′
2) ∧ (x1 ∨ x2 ∨ ¬x′

1)

∧ (¬x1 ∨ x′
1) ∧ (¬x1 ∨ ¬x′

2) ∧ (x2 ∨ ¬x′
2)

P (x) = ¬x1 ∨ x2 .

Each state in the figure is annotated with its encoding. The
incoming arrow designatesq0 as initial, while the shaded state
(q3) violates P . Inspection of Fig. 1 reveals that the only
reachable state ofS is q0 and thatS |= P . This example is
not meant to highlight the efficiency of IC3. On the contrary,
it provides the opportunity for a rather extensive tour of the
algorithm in spite of its simplicity. (The reader is however
cautioned that interesting aspects of IC3, like its abilityto

00 01 11 10

q0 q1 q2 q3

Fig. 1. The state transition graph of a simple system.

quickly compute long counterexamples, or to find large sets
of mutually inductive clauses, are better understood via the
algorithm’s fundamental intentions. This section only provides
a stepping stone in that direction.)

The initial check performed by IC3 establishes that there
are no counterexamples of length 0 or 1. Therefore, the over-
approximations (or stepwise assumptions)

F0 = I = ¬x1 ∧ ¬x2

F1 = P = ¬x1 ∨ x2

satisfy the fundamental IC3 invariants fork = 1:

I ⇒ F0

Fi ⇒ Fi+1 0 ≤ i < k

Fi ⇒ P 0 ≤ i ≤ k

Fi ∧ T ⇒ F ′
i+1 0 ≤ i < k .

Together, these invariants assert the “reasonableness” ofthe
stepwise assumptions. In particular, since no counterexample
of length up tok exists, all states reachable in at mostk steps
are P -states. TakingFk to be P is therefore a valid over-
approximation. If IC3 eventually increasesk to 2, it is because
it has established that there are no counterexamples of length
up to 2. In general, if IC3 increasesk from n to n + 1, it is
because it has established that there are no counterexamples
of length up ton + 1. It does so by proving that there are no
counterexamples-to-induction (CTI) states that are reachable
in at mostn steps from some initial state. For that, it checks
whetherFn ∧ T ⇒ P ′ can be violated.

The checkF1∧T ⇒ P ′ producess = x1∧x2 as CTI. (Note
that this check is equivalent toP ∧ T ⇒ P ′, the inductive
step of a simple inductive proof.) IfS |= P , a CTI must be
unreachable from the initial states. If¬s ∧ F1 ∧ T ⇒ ¬s′,
unreachability is proved. If, however, the implication does not
hold, the CTI may still be unreachable (as in this case) and IC3
tries to learn something useful about it: specifically, it tries to
bound the length of a counterexample that goes through the
CTI. Hence,¬s = ¬x1 ∨ ¬x2 is checked for inductiveness
relative to the variousFi’s. It is not inductive relative toF1

because of the transition betweenq1 and q2. It is, however,
inductive relative toF0. (Otherwise,P would not hold.)

The inductiveness check has established that the CTI is
not reachable in one step. Therefore, it would be possible to
remove it fromF1 by adding the clause¬s to it. However,
removing one CTI at a time is not practical for all but the
simplest systems. Instead, IC3 looks for more states, be they
CTIs or not, that, like the one at hand, are not reachable in
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one step and such that they are all described by a subclause
of ¬s. That is, IC3 tries to generalize¬s.

Generalization of¬s is thus attempted at level0. The
algorithm may find either¬x1 or ¬x2 as subclauses of¬s,
because both satisfy both initiation and consecution. In fact,
the conjunction of either clause withF0 yieldsF0 itself, from
which no state violating either¬x1 or ¬x2 may be reached.
For the execution of the algorithm, however, which clause is
the result of generalization makes a difference. Suppose¬x2

is found. Then the update ofF1 produces

F1 = (¬x1 ∨ x2) ∧ ¬x2 ,

which is equivalent toF0. While this observation suffices to
prove termination, IC3 first checks whetherF1 ∧T ⇒ P ′; that
is, it checks whether the strengthening ofF1 has gotten rid
of the CTI. Since the answer is positive, it increasesk to 2,
instantiatesF2 = ¬x1 ∨ x2, and then propagates¬x2 from
F1. That is, it adds¬x2 to F2 becauseF1 ∧ T ⇒ ¬x′

2. The
addition causesF1 andF2 to be identical and terminates the
proof becauseF1 = (¬x1 ∨ x2) ∧ ¬x2 has been shown to be
inductive (I ⇒ F1 andF1 ∧ T ⇒ F ′

1) and is known to imply
P . (F1 is initially P and can only get stronger through the
run of IC3.)

If, instead of¬x2, the generalization of¬x1∨¬x2 produces
¬x1, the update of the reachability over-approximations results
in

F1 = (¬x1 ∨ x2) ∧ ¬x1 ,

which is equivalent to¬x1. This F1 is not as strong as in the
previous case, and in particular does not excludeq1, but it is
still sufficient to satisfyF1 ∧ T ⇒ P ′. Therefore, IC3 setsk
to 2, instantiatesF2 = ¬x1 ∨ x2 and tries to strengthen it by
propagating clause¬x1 from F1. However,

F1 ∧ T 6⇒ ¬x′
1 ,

because of the transition fromq1 to q2; hence, no strengthening
takes place. States = x1 ∧ x2 is found once again as a CTI.
The difference from the previous iteration is that it is now
known that no counterexample of length less than3 may go
through it. IC3 then tries to prove that no counterexample of
length3 exists. The next step is therefore findingi such that

(¬x1 ∨ ¬x2) ∧ Fi ∧ T ⇒ (¬x′
1 ∨ ¬x′

2) .

SinceF2 = P andF0 has not changed, the answers fori = 2
and i = 0 are already known. It remains to ascertain whether
F1 is strong enough to support¬s. Once again, the transition
betweenq1 andq2 causes the answer to be negative. Therefore,
¬s is inductive at level0, but not at level1. Generalization of
this clause also proceeds as in the previous iteration and may
result in either literal being dropped. If¬x2 is found, then its
addition toF1 makes it inductive, so that both¬x1 and¬x2

are propagated toF2 causing termination.
If, on the other hand,¬x1 ∨¬x2 is generalized to¬x1, then

no changes toF1 result and no clause propagation ensues.
SinceF2 has not changed, the CTI has not been removed. To
guarantee termination, IC3 identifies a predecessor ofs = q2

that is anF1 state, but not anF0 state. The only choice is
t = ¬x1 ∧ x2. If this state is proved unreachable, progress is
made. More generally, if all predecessors ofs in F1 are shown
to be unreachable in at most one step, thens is not reachable
in at most two steps and hence there is no counterexample of
length up to3 through it.

IC3 therefore recurs ont to find which is the leasti (if any)
such that

¬t ∧ Fi ∧ T ⇒ ¬t′ .

Since ¬t is itself inductive (q1 in Fig. 1 has no incoming
transitions from other states)i = 2. Sincex1 does not satisfy
initiation, the only generalization of¬t is ¬x2. The addition
of this clause to bothF1 and F2 makes them identical and
causes termination.

In this case,F1 is exact at termination. That is,F1 describes
exactly the states reachable in at most one step from the
initial states. Oftentimes, though, the ability to prove properties
quickly stems from the ability to keep the over-approximations
loose. This is one reason why IC3 does not decompose the
initial condition into a set of strong clauses that can be
propagated.1

In contrast to IC3, the approach of [10] focuses on removing
each CTI by generalizing its negation to an inductive clause.
For the system of Fig. 1, this entails generalizings = ¬x1 ∨
¬x2 by checking whether it contains a subclaused such that

d ∧ P ∧ T ⇒ d′ .

The solution is in this cased = ¬x2. Once this clause is
discovered, it is possible to prove that¬x2 ∧ P ∧ T ⇒ P ′,
which in turn provesS |= P . However, if the encoding of the
states is changed so thatq2 = x1 ∧ ¬x2 and q3 = x1 ∧ x2,
then the negation of the CTI¬s = ¬x1 ∨ x2 has no inductive
generalization and the approach of [10] falls back on removing
the CTI alone from further consideration. While this is hardly
a disadvantage when there are only four states, it is the main
weakness of that method. IC3 is also affected by the change
of encoding, in that¬s = ¬x1 ∨ x2 can only be generalized
to ¬x1, but relatively inductive clauses can always be found.

B. A Failing Property

Figure 2 shows the transition graph of a systemU with no
primary inputs and state variablesx = {x1, x2, x3} defined
by

I(x) = ¬x1 ∧ ¬x2 ∧ ¬x3

T (x, x′) = (x1 ∨ ¬x′
2) ∧ (¬x1 ∨ x′

2)

(x2 ∨ ¬x′
3) ∧ (¬x2 ∨ x′

3)

P (x) = ¬x1 ∨ ¬x2 ∨ ¬x3 .

Stateqi has codei. For example,q3 is ¬x1 ∧ x2 ∧ x3. As in
Fig. 1, the shaded state violates propertyP .

1Implementations rely on pre-analysis of the model that easily discovers
most state variables that can only take one value. Using any remaining
literals from the initial condition typically lengthens the analysis because it
overconstrains the early over-approximations.
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Fig. 2. Transition graph for a system with a failing property.

Having checked that there are no counterexamples of length
up to 1, IC3 setsk = 1 and chooses

F0 = I = ¬x1 ∧ ¬x2 ∧ ¬x3

F1 = P = ¬x1 ∨ ¬x2 ∨ ¬x3

as stepwise assumptions. Checking whetherF1 ∧ T ⇒ P ′

yields s = ¬x1 ∧ x2 ∧ x3 as CTI. Inductiveness of¬s is
established at level0 and the generalization of¬s is ¬x2.
After the strengthening ofF1,

F1 = P ∧ ¬x2 ,

F1 ∧ T ⇒ P ′. Therefore,k increases to2 and F2 = P is
instantiated. No clause is propagated fromF1 to F2. Therefore,
the same CTI as before is found whenF2 ∧T ⇒ P ′ is tested.
Since¬s∧F1 ∧T 6⇒ ¬s′, inductiveness is again established at
level 0 and the generalization is again¬x2. Nothing changes
in the stepwise assumptions, and the CTI remains anF2 state.
IC3 therefore looks for a predecessor ofs that is in F1. The
choice is between¬x1 ∧ ¬x2 ∧ x3 andx1 ∧ ¬x2 ∧ ¬x3. The
former is immediately shown to be a successor of the initial
state because its negation is not inductive even at level0.
Therefore the minimum-length counterexampleq0, q1, q3, q7

is found.
If, instead of¬x1 ∧ ¬x2 ∧ x3, IC3 choosest = x1 ∧ ¬x2 ∧

¬x3 as F1 predecessor of the CTI,¬t is proved inductive
at level 1 because the two predecessors oft are not inF1.
Generalization of¬t produces¬x1, which is added to both
F1 andF2 eliminatingx1 ∧¬x2 ∧¬x3 from both. This forces
the choice of¬x1 ∧ ¬x2 ∧ x3 as F1 predecessor of the CTI
and leads to the same counterexample as before. It should be
noted how the refinement of the stepwise assumptions acted
as guidance in the search for the counterexample.

IC3 does not guarantee counterexamples of minimum
length. Whilek cannot increase beyond the length of a shortest
counterexample, IC3 may find a counterexample well beforek
matches its length. This ability proves an important advantage
when the transition relation is such that refining the stepwise
assumptions beyond a certain point becomes difficult. This
may be the case when the CTIs and the states that should be
removed from one of theFi’s to get out of an impasse have
codes that are different enough that the generalized inductive
clauses do not cover the “problem” states.

When refinement of the stepwise assumptions proves diffi-
cult, IC3 often finds that the negation of the target state (CTI
or one of its predecessors) is inductive at the level immediately
preceding that of the target state. It then chooses a predecessor

at the same level, producing a path with several states for one
Fi until either the path eventually crosses intoFi−1 or new
clauses are generated that cause a refinement of the stepwise
assumptions. Under these circumstances IC3 may still discover
a deep counterexample even thoughk is small.

III. D ISCUSSION

A. What Problem is IC3 Trying to Solve?

Interpolation andk-induction address the practical incom-
pleteness of BMC. The latter combines BMC with a consecu-
tion check:

P ∧
k−1∧

i=0

(T (i) ∧ P (i)) ⇒ P (k) .

When that check fails,k is increased, corresponding to a
further unrolling ofT . In practice,k can be prohibitively large.

The interpolant method goes further: it suggests forming
over-approximate stepwise reachability setsFi using a fixed
unrolling. It addresses the failure of the following implication
by increasingk:

Fi ∧
k−1∧

i=0

(T (i) ∧ P (i)) ⇒ P (k) .

Because the implication does not hold, no interpolant exists
that lies between thei-step over-approximationFi and the
k-step unrolling leading to a violation ofP . The interpolant
method thus increasesk for the next round, yielding better
over-approximationsFi.

Hence, neitherk-induction nor the interpolant method drop
the regime of unrolling that BMC introduced. While they
attempt to reduce the number of necessary unrollings, their
completeness—both practically and theoretically—is still fun-
damentally tied to unrolling.

IC3 entirely sidesteps the need for unrolling and thus sets
out on a new trail than that blazed by BMC. When confronted
with a problem similar to the one in interpolation (though
lacking any unrolling), that is, the failure of the implication

Fi ∧ T ⇒ P ′ ,

it refines thei-step over-approximationFi itself—and typically
earlier stepwise over-approximations—in order to make the
refined implication come closer to holding. It accomplishes
this refinement by incrementally generating stepwise-relative
inductive clauses in reaction to the CTI that the implication’s
failure reveals. In the end, the sequence of over-approximate
stepwise assertionsFi can be seen as a possible outcome of
the interpolant method—though derived in a fundamentally
different manner.

B. The Incremental Method: Beyond IC3

The purely incremental method fails when the space of
assertions is too poor to provide lemmas for all possible
situations. In the case of safety model checking, clauses are
too weak to be the basis of a robust algorithm. IC3 provides a
stronger framework in which to use a weak, but expressively
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complete, assertion domain. However, a pure incremental
approach can work on its own in other settings.

In this conference, we present an incremental approach
to model checking LTL properties of systems [14]. The
fundamental insight is thatSCC-closed regionsof the state
graph, which are a fundamental characterization used in BDD-
based techniques [15], can be discovered through induction.
Hence, inductive assertions, as discovered by IC3, are the
intermediate lemmas of this approach. Unlike the relationship
between error states and clauses in safety model checking,
every hypothesized error—which we call askeleton—that does
not correspond to an actual error has a corresponding inductive
proof. Thus, the algorithm is purely incremental, and it enjoys
the usual benefits: modular reasoning, natural abstraction, and
opportunities for parallelization.
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Abstract—Model checking tools are gaining traction as a
practical formal verification solution for industrial designs.
However, the use of absraction models is key to overcoming
complexity barriers in applying these tools. Coverage has been a
useful metric to determine when simulation-based verification is
complete. In this paper, we show how similar coverage metrics
can be used to determine the completeness of a formal verification
setup. We also show how coverage can be used to determine
effectivness of different abstraction models are. This methodology
can be used to set formal verification goals, and to measure the
progress of the work, thereby placing formal verification in a chip
design schedule. We use a real-world design with a large state
space, and present quantitative coverage metrics to illustrate the
methodology, and its benefits for faster run-time, faster discovery
of bugs, and higher coverage.

I. INTRODUCTION

During the last decade, formal verification tools have been
increasingly more popular for the pre- and post-silicon verifi-
cation of a diverse class of IC designs, varying from custom
processor designs to general-purpose ASICs. While multiple
formal verification technologies are used in the industry (e.g.
model checking, theorem proving, C-vs-RTL sequential equiv-
alence checking), model checking tools account for most of the
usage, judging from the number of available commercial tools
as well as verification users in place. Furthermore, major EDA
vendors (Cadence, Mentor Graphics and Synopsys) as well as
a few startups (Averant, Jasper, OneSpin and Real Intent) offer
competitive solutions. In this paper, we will use the term model
checking synonymously with formal verification.

The extent to which an ASIC design tapeout schedule
depends on formal verification is greatly contingent upon the
scope of verification addressed by formal. Most often, formal
is used as a supplement to simulation, to prove some specific
difficult-to-verify behavior, local embedded RTL assertions,
or interface protocol checks between blocks. Less often is
formal used for end-to-end verification to replace simulation,
where formal verifies most or all the functionality of a design,
and replaces simulation at that level – simulation may still be
used at a higher chip-level or system-level verification. End-
to-end formal usually requires almost the entire logic in the
design to be analyzed by the formal tool, and poses significant
complexity barriers.

Formal verification tool developers as well as users have

long used abstraction techniques to overcome the computa-
tional complexity problem. Most tools deploy sophisticated
abstraction-refinement algorithms under the hood [5], [19].
On top of that, formal users can deploy manually crafted
abstractions [4], [6], [7], [11], [13] to further reduce the
complexity of the proofs. In this paper, we will take a complex
design with a large state space, and show how the use of
abstraction models can help achieve end-to-end formal for this
design.

Coverage metrics are widely used in simulation-based veri-
fication to improve the quality of the test suite and estimate the
progress of the verification task [9], [18]. Coverage can help
identify important gaps in the stimuli provided to the design-
under-test, although it has a known limitation that coverage
does not evaluate the quality of the simulation checkers. The
same coverage metrics can be deployed for formal verification
with the same limitation [16]. Besides identifying uninten-
tional over-constraints in a formal environment, formal cover-
age can estimate the effectiveness of the abstraction techniques
being deployed – for example, a set of abstraction techniques
is useful, if it enables many more lines or expressions of code
to be reachable in the same amount of CPU time.

In this paper, we use formal coverage metrics to quanti-
tatively demonstrate that suitable abstraction models achieve
convergence. We begin by introducing end-to-end formal
verification in Section II, and the components required to
build such an environment. We mention the role of abstraction
techniques to solve end-to-end formal in Section III. Next,
in Section IV we discuss how coverage is used for formal
verification, and introduce a coverage-driven flow for formal
verification. In Section V, we introduce the design we have.
This design has a state space that is fairly large for a typical
model checker to handle, more than 1 million flops. The
design is an integral part of a large real-world ASIC switch.
Section VI describes some of the constraints and checkers
needed for formal verification, including the most important
end-to-end data checker. In Section VII, we describe the
abstraction models deployed to overcome complexity barriers.
We present the coverage results in Section VIII.
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Fig. 1. End-to-end verification setup

II. END-TO-END FORMAL

A. Checkers and Constraints

Besides reading the design-under-test (DUT), a model
checker requires a set of checkers and constraints as inputs.
The checkers and constraints can be written as properties in
SystemVerilog Assertion language (SVA) [8]. However, often
these checkers and constraints require supporting modeling
code written in synthesizable SystemVerilog.

Checkers can vary widely in scope:
• Local checkers, also known as assertions. These checkers

verify local properties of the design, and belong to one
of the following:

– Embedded RTL assertions. These assertions are local
properties about the implementation details in the
DUT, such as a state machine always stays one-hot
encoded, or that a full FIFO is never written to. These
assertions are typically written by the RTL designer,
and embedded in the RTL code [21].

– Interface assertions. These assertions encode the
handshake protocol requirements for any of the in-
terfaces of a design. These requirements can vary
from a simple request-acknowledgement protocol to
a more complex ARM AMBA AXI [15] or DDR2
protocol [6].

• End-to-end checkers (Fig. 1). These checkers primarily
use a significant modeling code to encode a reference
model for the required behavior of the design, by relating
the correctness of the output data path of a design, given
the transactions on the input datapath.

Bugs found through any of these checkers are useful. However,
if formal is to be relied upon as a primary verification
methodology for a design, simply verifying local checkers
is not enough – a significant number of end-to-end checkers
must be used to achieve adequate verification. Not surprisingly,
proving the end-to-end checkers is usually computationally
much more complex than local checkers, although there may
be exceptions to this, and some local checkers may be difficult
to prove too.

B. Complexity

The largest barrier to formal verification achieving the
desired results is the complexity barrier faced by the tools.
All known algorithms are worst-case exponential in the size

of the cone-of-influence of the checks and constraints. For
end-to-end formal verification, the model checking engine
which is often the most effective is Bounded Model Checking
(BMC) [1]. Although BMC can only find counterexamples,
and not establish the full proof of any checks, the bounded
proofs are good enough if the bounds are greater than the
interesting corner-case behavior of the design, as judged by
the verification or the design engineer.

Two complexity problems can interfere with BMC reaching
acceptable proof bounds:

• the size of the logic in the cone-of-influence, including
the number of flops as well as the combinational logic;
and

• the state space diameter of the design, especially in
presence of large counters, or sequentially deep logic.

The use of abstractions, discussed in the next section is the
best strategy to overcome these complexity problems.

III. ABSTRACTION TECHNIQUES

Abstraction techniques [3] are used to reduce the state space
of the design, so that formal verification tools can solve a
computationally easier problem. An abstraction is considered
sound if does not reduce any design behavior, even if it adds to
the design behaviors. We will only consider sound abstractions
in this paper. Such abstractions can find proofs or failures
faster. Every proof is guaranteed to be a proof on the original
design. Each failure can be debugged to determine if it is a true
counterexample due to an RTL bug, or a false counterexample
due to an over-abstraction.

Examples of various abstraction techniques include:
1) Cut-points. Any internal logic in the design can be

replaced by a cut-point, allowing that net to freely take
a random value at any time [6], [12]. If a checker proves
with such an abstraction, we can achieve significant
reductions in run-time (of course, it also implies the
need for additional checkers, since the proven checker
is clearly independent of the excised logic).

2) Counter abstraction. Many designs have deep counters,
for example, the initialization phase for DDR2 memory
controllers last for hundreds of milliseconds, consuming
millions of clock cycles. Many useful checks can be
proved by abstracting the 2n-state graph of an n-bit
counter to a few states, e.g. 0, 1, at-least-one, at-least-
zero [14].

3) Symmetric datatypes. Certain systems [7], [13] allow the
users to specify that certain data types in the design are
symmetric, and the values of this type are used only in
certain symmetric ways (e.g. only compared for equality,
or used as indices for arrays). This allows the system to
reduce multiple symmetric proofs into a single one.

4) Data independence. When a design moves data across
the design, and does not use the data contents for
controlling the movement of the data, a few finite
instantiations of data values are sufficient to establish
the correctness of any checkers [20]. This abstraction
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has been used to prove data correctness for many data
transport hardware designs [11], [17].

5) Tagging. Often systems deal with a finite but large set of
distinct data values [13]. Portions of such systems can
be abstracted by simplifying the structure with respect
to a specific or a symbolic tag.

Often, using an abstraction technique requires cut-pointing a
section of the design, and adding constraints on the cut-points.
The abstraction can be used to prove the desired checks. To
complete the compositional proof [13] however, a second step
is required – the constraints need to be converted into checks,
and proven on the previously excised logic.

IV. COVERAGE

A. Coverage in Simulation

In simulation-based verification, coverage metrics are used
heavily to determine when simulation is complete. The most
common coverage metric is code coverage, including line,
expression, FSM and toggle coverage. Line coverage, for
example, computes what percentage of RTL statements in the
DUT were exercised by a given set of tests. For example,
consider:

1: always @(posedge clk) begin
2: if ((a && b) || c)
3: e <= d1;
4: else
5: e <= d2;
6: end

This example results in two line coverage targets, corre-
sponding to lines 3 and 5. If a test causes c to be 1, the line
3 will be marked as covered. If no test in a test suite covers
line 5, line coverage for the suite will be reported at 50%.

100% judged line coverage (given, say 99% automated cov-
erage) is frequently a requirement for an ASIC tapeout – each
line that is not automatically reported as covered in simulation,
must be manually judged to be either redundant, or legacy
code, or symmetric to another tested line. Tapeout would be
delayed until more tests are written to cover the remaining
lines. 100% line coverage does not imply an absence of bug.
Still, line coverage helps measure the continuous progress of
verification completeness in a dynamic chip design schedule,
and often points to important coverage holes.

B. Formal Coverage Metrics

The same coverage metrics used in simulation can be
applied to answer the question of whether the planned formal
verification tasks are complete, or how much the formal
verification tasks complement the simulation effort [16].

Simulation-based line (or expression) coverage metrics can
be used to mean exactly the same in formal – given the
constraints used and the proof depths reached in BMC (say, n
cycles), report what percentage of line (or expression) targets
are reachable in n cycles. For the example in Section IV-A, if
((a && b) || c), in line 2, is reachable in n cycles, this
line would be reported as covered, and otherwise, not. Thus,

Fig. 2. Formal verification coverage flow

line coverage numbers would mean the same in simulation –
whether a certain coverage target is exercised or not. And
for formal, this would measure the quality of constraints (i.e.
absence of over-constraints), as well as the BMC proof depths.
Abstraction techniques, described in Section III, can help in
achieving higher proof depths, improving the coverage results
and thereby increasing the value of formal verification. and
valid of formal verification. difference in the coverage results
and the value of formal verification Commercial formal tools
are beginning to support the measurement of formal coverage.

C. Formal Coverage Flow

Refer to Fig. 2 for the flow we use for a coverage-
driven formal verification deployment. Like simulation, code
coverage results are measured to identify missing gaps in the
formal verification implementation. Abstraction models are
used heavily to increase the coverage to acceptable levels on
complex designs where formal would otherwise be infeasible.

Since we are using the same coverage metrics, we can
even merge coverage results. It is often the case that one
block is verified end-to-end with formal, and a larger block
containing this block is verified with simulation. Even if the
line coverage with formal is not 100% for the block, as long
as the unified simulation and formal line coverage is 100%,
verification is considered complete from the perspective of
line coverage goals. This of course relies on an important
assumption – that the set of formal checkers is as complete as
the set of simulation checkers. Although formal coverage helps
determine the quality of constraints as well as sequential depth
reached, like simulation, coverage does not imply anything
about the completeness of checkers. This has to be evaluated
independently.

V. CELLREFORMATTER DESIGN

The Packet Rewrite Module (PRM) design modifies in-
coming packets from multiple ports and reformats these
packets before passing them on. Fig. 3 shows the sequence
of operations on a packet when it passes through various
stages of PRM. The four stages are Fragmentation (Stage #1),
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Fig. 3. Various stages of PRM

Insert/Strip/Replace operations on packet payload (Stage #2),
CellReformatting (Stage #3) and Repacking (Stage #4).

A. Functional Specification
By the end of Stage #1, each packet is fragmented into

single/multiple subpacket(s), called cells, depending upon the
payload size. A cell has three main attributes: start of packet
(SOP), end of packet (EOP) and number of payload bytes
carried (ValidBytes). Some desired properties of the cells are:

1) The first and only the first cell has SOP as 1
2) The last and only the last cell has EOP as 1
3) A cell with EOP as 0 will have ValidBytes as 128
4) A cell will have ValidBytes greater than 0

e.g. As an example, suppose at the end of Stage #1, cell #1
has SOP as 1, EOP as 0 and ValidBytes as 128, cell #2 has
SOP as 0 and EOP as 0 and ValidBytes as 128 and cell #N
(N = 3) has SOP as 0, EOP as 1 and ValidBytes as 120.

Stage #2 modifies bytes of payload of a cell by performing
insert, strip and replace operations. ValidBytes of each cell
also gets modified accordingly. In Fig. 3, for the simplicity
of illustration, we show that only cell #2 is being modified –
i.e., the payloads of other cells do not undergo any change.
Payload of cell #2 gets modified to payload #2’ by insertion
of two new payloads, one before, and one after the original
payload, as depicted by Modified cell in the figure. In the
actual design, Stage #2 can modify any or all N cells. With a
combination of insert, strip and replace operations, ValidBytes
of a modified cell can vary between 1 and 256. Suppose, in
our example, after Stage #2, ValidBytes of cell #2 is 144,
resulting in ValidBytes of 128, 144 and 120, respectively,
for the three cells. Due to these modifications, a cell may
not satisfy the desired properties on ValidBytes listed in the
previous paragraph, at the end of Stage #2. The purpose of the
next Stage #3, which constitutes our DUT, the CellReformatter
design, is to rectify this.

CellReformatting (Stage #3) reformats the modified cells
so that they satisfy the desired ValidBytes properties and can

Fig. 4. Toplevel of CellReformatter

be repacked into a packet in the next stage. The number of
cells for a packet at end of Stage #3 may be different than
the number of cells at the beginning of the stage, depending
upon reformatting. In our example, the payload of the non-
EOP cell #2, at start of stage #3, does not satisfy the non-
EOP ValidBytes property. So, in the CellFormatter stage, this
cell gets reformatted to comprise of the first 128 bytes of the
input cell. The remaining 16 (= 144−128) bytes are appended
before the payload of cell #3, resulting a modified cell #3 of
128 bytes. The 8 (= 120 + 16 − 128) trailing bytes of the
original cell #3 constitute a new cell #4.

Repacking (Stage #4) repacks the reformatted cells into a
packet, that can be forwarded to port(s).

B. Micro-Architecture

CellReformatter supports reformatting of cells for packets
from 56 different concurrent ports. Cells for a packet on one
port may be interleaved with cells from other ports. This
increases the design and verification complexity. Fig. 4 shows
the interfaces of the CellReformatter design, the interface to
Stage #2 on the left side, and the interface to the Stage #4
on the right side. portIdIn refers to incoming port. cellIn
represents incoming cell, varying between 1 and 256 bytes
long. cellInAttri is a structure consisting of cell attributes,
including SOP, EOP, ValidBytes. validIn and validOut indicate
the validity of inputs and outputs of CellReformatter respec-
tively. Inputs are valid if they are transmitted when validIn is
high. Similarly, outputs are valid if they arrive when validOut
is high. flowCtrlOut is a feedback to Stage #2 to stop it from
sending more cells for the relevant port. Thus this acts as
a throttle and prevents the overflow of internal FIFO(s) for
the port. flowCtrlOut is a 56-bit wide signal with each bit
corresponding to a port.

Memory Design: CellReformatter has FIFOs for storing
the reformatted cells (dataFifo) and its attributes (statusFifo).
Each of dataFifo and statusFifo is implemented as an SRAM
memory, with separate regions for different ports. The least-
significant bit of portId, called oddBank, is used to determine
which of the two banks is used, while the remaining higher-
significant bits, called streamId, are used as memory address:

portId = {streamId, oddBank}

As shown in Fig. 5, the memory in each bank is logically
divided into 28 streamId’s. Each bank of the dataFifo memory
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Fig. 5. Banked architecture of dataFifo

is further divided into two separate single-port SRAMs 128-
bytes wide, called MSB and LSB. Further, each port occupies
a depth of 8 entries in each of MSB and LSB. Note that in
one clock at most 256 bytes will arrive from Stage #2 for a
given port. Depending on where we wrote last for this port,
this data will cause one or two writes into the MSB and/or
the LSB section for that port. For the example in Section V-A,
when cell #1 arrives, all of its 128 bytes are written into LSB,
at depth of 0. When cell #2 arrives, 128 of its least significant
bytes are written to MSB at depth of 0, and the remaining 16
bytes are written to LSB at depth of 1. Finally, when cell #3
arrives, its 112 (= 128−16) least significant bytes are shifted
up by 16 bytes and written to LSB at depth of 1, and the
remaining 8 (= 120− 112) bytes are written to MSB at depth
1.

CellReformatter has another FIFO (stateFifo) for remember-
ing the current write and read address pointers into dataFifo
for a port. This FIFO is also implemented by a single-port
two-bank SRAM memory.

Latency: The fastest end-to-end latency of CellReformatter
is 6 clock cycles; the FIFO write operation has a 4-cycle
latency and the FIFO read operation has a 3-cycle latency.
A constraint on the design, that oddBank toggles every clock
cycle, ensures that bank contention is avoided for simultaneous
read and write operations.

C. Challenges to Formal

The major challenges to achieving convergence with formal
are:

TABLE I
DESIGN SUMMARY OF CELLREFORMAT

Parameters Values

Inputs 4,425

Outputs 3,488

Total flops 1,048,481

1) Large number of flops. Greater than 1 million storage
elements (Table I) is enough to create a state space
search problem that cannot be solved without the use
of abstraction models. This large count is dominated by
the number of flops needed for dataFifo: due to number
of ports (56), number of per-port cells stored (16) and
the size of each cell (128 bytes).

2) High sequential depth due to latency. No input port
at input is allowed to appear more than once in 4
consecutive clock cycles. This constraint, along with
the latency of CellReformatter and the FIFOs depths,
implies that a high sequential depth is required for
proofs.

VI. CHECKERS AND CONSTRAINTS

The CellReformatter design has following interface con-
straints:

1) For a port, between 2 cells at input with SOP as 1, there
should be a cell with EOP as 1

2) For a port, between 2 cells at input with EOP as 1, there
should be a cell with SOP as 1

3) For a port, the next valid cell after an EOP as 1 must
have SOP as 1

4) For a port, input cell should have ValidBytes > 0
5) For a port, input cell should have ValidBytes < 256
6) The oddBank should toggle each cycle
7) A port at input should appear no more than once in 4

consecutive clock cycles
The interface checkers are as follows:

1) For a port, between 2 cells at output with SOP as 1,
there should be a cell with EOP as 1

2) For a port, between 2 cells at output with EOP as 1,
there should be

3) For a port, the next valid cell after an EOP as 1 must
have SOP as 1

4) For a port, output cell should have ValidBytes > 0
5) For a port, output cell with EOP as 0 should have

ValidBytes as 128
End-to-end checkers are written using a reference model that
tracks the outstanding cells for a port, and also reformats
them into 128-byte cell boundaries. Examples of end-to-end
checkers:

1) For a port, the valid output (validOut) can be 1 only if
there are outstanding cells in flight that have not been
sent out
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2) For a port, payload of a cell at the output should
correspond to payload of expected cell in the reference
model, computed based on payloads that arrived at the
input in the past

Consider this last end-to-end checker, the most important
checker for this DUT. The checker is written in SVA as:

property cellOutMatch_a;
@(posedge clk) disable iff(reset)
(validOut &&
(portIdOut == watchedPort)) |->

(cellOut[watchedByte][watchedBit] ==
referenceBit);

endproperty
cellOutMatch_A:
assert property(cellOutMatch_a);

We used the following symbolic variables in this checker:
1) watchedPort. This variable, varying between 0 and 55,

represents the specific port that is being verified. While
the design interleaves the inputs and outputs across
multiple ports, in one trace, we can verify the outputs
for a specific port.

2) watchedByte. This variable, varying between 0 and 127,
represents the specific byte number in an output cell that
is being verified in this trace.

3) watchedBit. This variable, varying between 0 and 7, rep-
resents the specific bit being verified in the watchedByte
byte.

Since these variables are symbolic, all possible output data
bits from all possible ports are verified with the end-to-end
checker. In any given trace of execution, these variables can
be kept constant with SVA constraints like the following:

property watchedPort_r:
@(posedge clk) disable iff(reset)
(##1 $stable(watchedPort));

watchedPort_R:
assume property(watchedPort_r);

This end-to-end checker also depends on the predicted value
of the output bit from the reference model, referenceBit. The
reference model is implemented in SystemVerilog, and using
the three watched symbolic variables, implementing a queue of
watched bits in flight in the design. The value of referenceBit
equals the bit at the top of the queue. We will discuss an
abstraction in Section VII-B, that shows how to implement
this reference model more efficiently.

VII. ABSTRACTION MODELS

We have a design with more than 1 million state elements.
This will lead to state space explosion with any existing
formal verification tool. Abstractions are essential to achieve
convergence on a design like this.

A. Memory Abstraction

The dataFifo memory stores up to 16 cells for every port, 8
cells in LSB, and 8 in MSB. The memory stores the reformatted

Fig. 6. Deploying memory abstraction for dataFifo

cells, after performing the necessary shifting, described in Sec-
tion V-B. Since the main end-to-end checker (cellOutMatch A
in Section VI) uses symbolic watched variables for the port
number and the verified bit in a cell, each flop in dataFifo is
essential to establish the correctness of the proof. This places
a tremendous burden on a formal verification tool.

Using the three ’watched’ symbolic variables, we create
an abstraction for dataFifo, shown in Fig. 6. This abstraction
model contains only 16 flops, 8 for an abstraction of the LSB
section of the memory banks, and 8 for an abstraction for the
MSB section.

We tie the inputs of the abstract dataFifo to the inputs
of the RTL dataFifo (implemented by the SystemVerilog
bind construct). In addition, watchedPort, watchedByte and
watchedBit are extra inputs to the abstract dataFifo.

When there is write to the RTL memory, if the write address
input matches watchedPort, we pick the watchedBit bit from
the watchedByte of the write data input to the memory, and
store that in one of the 16 bits in the abstract memory (4 least
significant bits of the write address input determine which of
the 16 per-port cells was being written by the write command).

To enable the abstraction, we add cut-points at the read data
outputs of the RTL dataFifo. Further, we add a constraint that
if the read address input matches watchedPort, then watchedBit
bit of watchedByte read data output byte equals the value
stored in the i-th (of 16) abstract dataFifo bits (where i equals
the 4 least significant bits in the read address input). This
enables the read data for the watched bit to be faithful to
what is in the RTL, and the remaining bits or read data
output for a non-watched port to be arbitrary. But, since the
checker is checking only the watched port and watched bit,
the abstraction should not give a false negative.

Using this abstraction model, we have reduced 917,504 flops
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Fig. 7. State machine for pattern 0?110ω detection

in the RTL dataFifo that were in the cone-of-influence of the
end-to-end checker to the 16 flops in the abstract dataFifo.
More important, this abstraction does not introduce any false
negatives with respect to the end-to-end checker. Similar
abstraction models were built for statusFifo and stateFifo,
albeit only with respect to watchedPort. See Table II for the
reductions in the cone-of-influence; note that there are other
peripheral flops in the memories because the memories have
additional flops due to the latency, as well as some parity-
checking flops.

Note that to complete the proof with abstractions using
compositional reasoning, we also need to separately prove
that the abstract dataFifo is a sound abstraction of the RTL
dataFifo. We do this by removing the cut-points on the read
data outputs, and reversing the constraints on the read data
outputs to checkers, then proving them independently of the
main end-to-end checker.

B. Data Independence Abstraction

The main end-to-end checker (cellOutMatch A in Sec-
tion VI) requires a reference model for the expected behavior
of the referenceBit bit. Even after the memory abstraction in
the previous section, we know that there are at least 16 bits in
flight for the watched bit we want to track. However, this is
just a lower bound, since there may be additional bits on the
way to dataFifo, or on the way from dataFifo. Suppose there
are at most n bits in flight we need to track; to implement the
reference model with a FIFO, we will need at least n entries
in the reference model FIFO.

Fortunately, we can use a variant of the data independence
abstraction [20], to avoid the dependence on the unknown n,
and more importantly to verify with more efficient state space.
The data independence theorems state that for certain data-
independent designs (when data is merely transported across
the design, and not queried to make the routing decisions),
a small set of finite data values is sufficient for end-to-end
proofs. For our end-to-end checker, it is sufficient to prove
the preservation of infinite streams of the form 0?110ω across
the design. Each stream in this set has a finite but arbitrary
number of 0’s followed by two consecutive 1’s, followed by

an infinite sequence of 0’s; for example, input sequences like
11000 · · ·, 011000 · · ·, and 000 · · · 011000 · · ·. Note that given
the three ’watched’ symbolic variables, we need to apply this
abstraction only to the consecutive bits that will be written to
the abstract dataFifo from the previous section.

We add a constraint to the inputs of the DUT so that watched
bits create this sequence by using the state machine in Fig. 7.
We constrain the inputs so that the error state S3 is never
reachable. Next, we use an identical state machine to verify
the output watched bit from the DUT. We modify the checker
so that the expected referenceBit is not allowed to be 0 is state
S1, or to be 1 in state S2 – all other values are allowed for
referenceBit.

Using this data indendence abstraction, we do not have
to implement a reference FIFO, whose depth is design-
dependent. We save additional flops in the cone-of-influence,
and proofs run much faster.

VIII. EXPERIMENTAL RESULTS

We used the Cadence R© Incisive R© Enterprise Verifier (IEV)
tool [2] for this verification. Since the un-abstracted design
has more than 1 million flops, hence it is not feasible to run
formal without deploying the abstraction models described in
Section VII.

The verification setup for the DUT consists of the CellRe-
formatter RTL, checkers and constraints (using the necessary
reference models), and the abstraction models described in
Section VII. There are 23 checkers and 21 constraints. We
found 15 bugs in the RTL design.

As expected, BMC was the most effective engine for ver-
ifying the main end-to-end checker. For the shortest possible
packet, the data can be seen at the output of the design at
a BMC proof depth of 7 clock cycles. However, the most
interesting behavior of the design occurs when dataFifo is full
before data is unloaded to the outputs. By understanding the
design micro-architecture, including the latencies and memory
depths, it was determined that a proof depth of 63 cycles
is sufficient to hit this extreme behavior (the constraint that
successive input data for the same port must be 4 cycles apart
is responsible for much of this depth).

We use the IEV code coverage feature to report the amount
of coverage hit to determine if the use of abstractions was suc-
cessful in covering the design. Coverage results are reported
in Table III. We notice that the expression coverage is 100%
and the line coverage is almost 100% at a proof depth of 63.
The missing coverage holes need to be judged and possibly
waived by the design engineers. For the un-abstracted design,
the BMC proof depths reached at similar run-times are close
to 0, hence the corresponding coverage results are close to 0%
(not surprising given the amount of state in the DUT).

The level of coverage reached is very much in line with the
desired verification coverage, if we were verifying this design
using simulation. We must remind the reader that the desired
coverage result must be considered in conjunction with the
confidence in the completeness of checkers. Unfortunately, as
with simulation, formal code coverage by itself does not yet
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TABLE II
COMPARISON OF RTL AND ABSTRACT MEMORIES

Memory Flops in Flops in

RTL abstract memory

dataFifo 948,636 204

statusFifo 89,986 4,854

stateFifo 2,394 268

TABLE III
FORMAL COVERAGE RESULTS

Proof Line Expression

depth coverage coverage

7 96.5% 100.0%

15 99.5% 100.0%

63 99.7% 100.0%

determine the completeness of checkers. However, we do know
that with the use of the abstraction models, we were able to
exercise almost all the RTL code. Without these abstraction
models, we would not get much more than 0% coverage,
and formal verification would not have been able to replace
simulation on this design.

IX. CONCLUSION

In this work, we show how end-to-end formal can replace
simulation efforts and provide faster verification with higher
coverage. Without the use of abstraction models, formal veri-
fication is often infeasible for end-to-end verification. With the
use of abstraction models, we can counter state space explo-
sion, and reach acceptable levels of quantifiable code coverage
metrics. These results can be integrated with simulation-based
code coverage results on neighboring designs, or the rest of
the system.
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Specification Based Testing with QuickCheck
(Tutorial Talk)

John Hughes
Chalmers University of Technology and QuviQ AB

ABSTRACT

QuickCheck is a tool which tests software against a formal specification, reporting discrepancies as
minimal failing examples. QuickCheck uses properties specified by the developer both to generate test
cases, and to identify failing tests. A property such as

∀xs : list(int()). reverse(reverse(xs)) = xs

is tested by generating random lists of integers, binding them to the variable xs, then evaluating the
boolean expression under the quantifier and reporting a failure if the value is false. If a failing test case
is found, QuickCheck “shrinks” it by searching for smaller, but similar test cases that also fail, terminating
with a minimal example that cannot be shrunk further. In this example, if the developer accidentally wrote

∀xs : list(int()). reverse(xs) = xs

instead, then QuickCheck would report the list [0, 1] as the minimal failing case, containing as few
list elements as possible, with the smallest absolute values possible. The approach is very practical:
QuickCheck is implemented just a library in a host programming language; it needs only to execute the
code under test, so requires no tools other than a compiler (in particular, no static analysis); the shrinking
process “extracts the signal from the noise” of random testing, and usually results in very easy-to-debug
failures.

First developed in Haskell by Koen Claessen and myself, QuickCheck has been emulated in many
programming languages, and in 2006 I founded QuviQ to develop and market an Erlang version. Of
course, customers’ code is much more complex than the simple reverse function above, and requires
much more complex properties to test it. The challenge in applying QuickCheck to real code is in finding
ways to formulate properties that are simple enough for people to use easily, concise enough to make
property-based testing cost-effective, and avoid the trap of replicating the mistakes of the implementation
in the specification. To this end we have extended QuickCheck with state machine formalisms, and
standardized serializability properties that can expose harmful race conditions in concurrent code. I will
present examples using these formalisms, and discuss our experiences of applying property-based testing
in the telecoms, automotive, and distributed database industries.

SHORT BIOGRAPHY

John Hughes began research in functional programming in 1980 as a D.Phil. student at the University
of Oxford, graduating in 1983. He wrote Why Functional Programming Matters in 1985 while a post-doc
at Chalmers University—a functional manifesto which is still one of the most widely read papers in the
field. He took up a Chair at Glasgow University from 1985–1992, where he was a founder member of
the Haskell design committee (and later its co-Chair for the Haskell 98 standard). In 1992 he moved
to a Chair at Chalmers University, Gothenburg. He and Koen Claessen began work on QuickCheck in
1998—initially just for fun—and published the first paper on it in 2000. In 2006, he and Thomas Arts
founded Quviq AB to commercialize the QuickCheck approach, and since then he has shared his time
between Chalmers and Quviq. In 2010, the first QuickCheck paper received the ACM SIGPLAN award
for the Most Influential Paper of ICFP 2000.
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The Role of Human Creativity in Mechanized
Verification

(Invited Talk)

J Strother Moore
University of Texas at Austin

ABSTRACT

In a presentation at FMCAD 1996 I decried industry’s expectations that the creative insights of highly-
paid, world-class hardware designers “should” be checkable by “push-button” tools. In the associated paper,
my co-authors and I observed that unequivocal rejection of “lightweight” tools is impossible because of
the role of “heavyweight thinking” in their use: problems that are impossibly large can often be rendered
tractable by push-button means if the user is clever or persistent enough to create the right abstractions.
The sensitivity of “tractability” to apparently minor modeling decisions is a well-known phenomenon
for all of our tools. The decision not to model a certain bit or to avoid a certain form of definition,
while appearing coincidental to the reader, may in fact be a crucial choice and we ought to highlight
such decisions when we are aware of their importance. That we sometimes do not highlight them is not
intellectual dishonesty but concern for clarity. Like mathematicians who revise a proof repeatedly for
publication, the key insights are often lost as the presentation is polished. In this talk I again delve into
the key question of the role of human creativity in mechanized verification. I argue that the more explicit
we make that role, the better. Unlike mathematicians, we are fundamentally concerned with automating
the methods of theorem discovery and proof. By highlighting the “minor decisions” that represent major
breakthroughs in the problem, we serve our science better because we identify the key problems yet to
be solved.
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Interpolants from Z3 proofs
Kenneth L. McMillan Microsoft Research

Abstract—Interpolating provers have a number of applications
in formal verification, including abstraction refinement and
invariant generation. It has proved difficult, however, to construct
efficient interpolating provers for rich theories. We consider
the problem of deriving interpolants from proofs generated by
the highly efficient SMT solver Z3 in the quantified theory
of arrays, uninterpreted function symbols and linear integer
arithmetic (AUFLIA) a theory that is commonly used in program
verification. We do not directly interpolate the proofs from Z3.
Rather, we divide them into small lemmas that can be handled
by a secondary interpolating prover for a restricted theory.
We show experimentally that the overhead of this secondary
prover is negligible. Moreover, the efficiency of Z3 makes it
possible to handle problems that are beyond the reach of existing
interpolating provers, as we demonstrate using benchmarks
derived from bounded verification of sequential and concurrent
programs.

I. INTRODUCTION

Interpolating provers have a number of applications in
formal verification, including abstraction refinement [9] and
invariant generation [17]. Given a valid implication P → Q,
an interpolating prover can produce an interpolant for the
implication, that is, a formula I , expressed using the common
vocabulary of P and Q, such that P → I , I → Q. There
are various methods to accomplish this, but a common one
is to extract the interpolant from a proof refuting P ∧ ¬Q,
using an interpolation calculus [18]. Typically, one computes
interpolants modulo a theory, for example, the theory of linear
arithmetic over the integers. In this case, the interpolant is
allowed to contain any interpreted symbols of the theory. The
required proof may be obtained from a satisfiability modulo
theories (SMT) solver, instrumented to produce proofs.

A significant practical difficulty with this approach is to
obtain an efficient SMT solver that produces proofs in the
required proof system. The theory solvers in a modern SMT
solver are complex, in part due to the requirement of fast
incremental operation to support backtracking, and in part due
to the complexity of the theories themselves (for example,
efficient solving of integer linear arithmetic constraints has
long been a topic of research). Because of the difficulty of
producing efficient proof-generating theory solvers, existing
interpolating provers are typically less efficient than state-
of-the-art SMT solvers, or do not support all of the desired
theories. In practice, this inefficiency has been compensated
somewhat by reducing the complexity of the input formulas,
for example by considering only a single program execution
path, as in [9], [19]. If interpolating solvers matching the per-
formance of the best SMT solvers were available, however, it
might be possible to use interpolation in a broader context, for
example, considering more complex control flow, or perhaps
concurrency.

In this paper, we consider the problem of deriving inter-
polants from proofs generated by the state-of-the-art SMT
solver Z3 [8] in a rich theory, namely, the quantified theory
of arrays and linear integer arithmetic (AUFLIA, according to
the SMT-LIB nomenclature [2]).

Z3’s proof calculus is complex, and rich enough to poly-
nomially simulate proofs systems such as extended resolution
that do not admit feasible interpolation1. Moreover, it allows
“theory lemmas” that can introduce any validity of the theory
without proof. Thus, for example, to refute a pair of complex
formulas A and B, the proof system would allow a theory
lemma that simply says A∧B → FALSE. As a result, there is
no reason in principle why a Z3 proof should contain sufficient
information to construct an interpolant.

For this reason, we will take an approach that considers a Z3
proof as guide for construction of a proof by a secondary, less
efficient, interpolating prover. We will translate Z3 proofs into
a proof calculus that does admit feasible interpolation, with
“gaps”, or lemmas, that must be discharged by the secondary
prover. This approach succeeds if the secondary prover can
in practice discharge these lemmas in time that is small in
relation to the time Z3 used to construct the original proof.
A key test in this regard is the number of backtracks that
the secondary solver must perform. If this is low, then the
secondary solver need not have highly efficient incremental
theory solvers. There is then no need to modify Z3 for the
purpose of interpolant generation.

An additional benefit of this approach is that the secondary
solver need not implement the entire theory. Our secondary
solver implements only the quantifier-free theory of linear
arithmetic and uninterpreted function symbols (QF UFLIA).
Quantifier instantiation is performed by Z3, as is instantiation
of the axioms of the array theory. Thus, we can in principle
use any of the available interpolating provers for QF UFLIA
as our secondary solver [3], [4].

To test these ideas, we use a collection of interpolation
problems in AUFLIA, derived from bounded verification of
sequential and concurrent programs using the Poirot tool [15].
Because these formulas have complex Boolean structure, they
exploit the ability of Z3 to backtrack efficiently. We observe
experimentally that interpolants can be efficiently derived from
the Z3 proofs, while existing interpolating provers are unable
to handle these formulas.
Related work Previous to this work there were no interpolat-
ing provers available for AUFLIA. A number of interpolating
SMT solvers have been produced for subsets of this theory,

1Extended resolution proofs generalize resolution proofs by allowing res-
olution on arbitrary formulas, rather than just propositional atoms. This
system is known, under cryptographic assumptions, not to admit feasible
interpolation [13].
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including Princess [3] (UFLIA), MathSAT4 [4] (QF UFLRA)
and SMTInterpol2 (QF LIA). Their performance is not com-
parable to Z3, as we will observe in in section V, using Z3
to instantiate the quantifiers and array axioms. Any solvers
supporting QF UFLIA can be used as the secondary solver in
the present approach.

Interpolation has also been implemented in the first-order
prover Vampire [10], however it is complete only in the ground
case and applies only to rational (not integer) arithmetic.
Moreover, it lacks an SMT solver’s efficiency in combining
Boolean and theory reasoning.

Interpolation in the theory of arrays has been handled in
different ways. The method of [11] is based on discovery of
local instantiations of the array axioms (a local predicate is
expressed entirely in the vocabulary of A or the vocabulary of
B). It is necessarily incomplete, but is guaranteed to produce
quantifier-free interpolants for quantifier-free formulas. The
present method is complete but may introduce quantifiers in
the interpolants caused by non-local axiom instantiations. The
method of [12] is similar to the present one in this respect.
The primary difference is that it eagerly instantiates the array
axioms, whereas here we rely on instantiations generated by
Z3. Also, we should note that the present method is not specific
to the array theory. It can handle any theory which Z3 handles
by axiom instantiation (though it cannot in general handle
axiom schemas).

In [5] an entirely different approach to arrays is taken,
extending the signature of the array theory to allow quantifier-
free interpolation. If such an approach were used in the
secondary solver, we could safely discard the array axiom
instances produced by Z3. In this way, the present method can
either accommodate the weaknesses or exploit the strengths of
the secondary interpolating prover.

A significant hurdle in interpolating proofs generated by
SMT solvers is that interpolating proof calculi require the
pivots of resolution steps to be local, but SMT solvers may
for various reasons resolve on non-local predicates. In [6] a
method is introduced to raise non-local pivots to the leaves of a
resolution proof by re-ordering resolution steps. This method
is worst-case exponential. Here we take a less general but
linear-time approach that relies on knowledge of the structure
of Z3 proofs. It is sufficient to raise resolutions on non-
local pivots introduced by equational rewriting in Z3, which
accounts for most cases of non-local resolution pivots. The
remaining cases are handled by a different technique called
“lemma extraction”.

Overview of the paper In the next section, we cover some
background including definitions and notations used in the
paper. Section III introduces a simple proof calculus allowing
feasible interpolation, while section IV describes our approach
of translating Z3 proofs into this calculus. Section V then
describes our experimental evaluation.

II. BACKGROUND

We use standard first-order logic over a countable vocabu-
lary Σ of function and predicate symbols, with associated ari-

2http://swt.informatik.uni-freiburg.de/research/
tools/smtinterpol

ties. Function symbols with arity zero will be called constants.
We will use t, u, v to represent first-order terms and φ, ψ, p, q
and capital Roman letters to represent first-order formulas. We
distinguish a finite subset ΣI of Σ as interpreted symbols. In
particular, we assume that ΣI contains the binary predicate
symbol =, representing equality. We assume a countable
set V of variables, distinct from Σ. We will use x, y, z to
represent variables. The vocabulary of a term or formula φ,
denoted L(φ) is the set of uninterpreted function and constant
symbols occurring in φ. If S is a vocabulary, we say L(S) is
the set of first-order terms and formulas φ such that L(φ) ⊆ S.
We will also write L(φ) for L(L(φ)) and s � φ to indicate
that a symbol s occurs in φ.

A theory is a set of first-order formulas over Σ. We say a
formula φ is valid relative to a theory T if every model of
T is a model of φ, and we write this |=T φ. We use capitol
Greek letters Γ and ∆ to stand for multisets of formulas. We
will write a formula multiset as list of formulas and formula
multisets. Thus, if Γ is a multiset of formulas and φ a formula,
then Γ, φ represents Γ∪{φ}. We write ∧Γ for the conjunction
of the formulas in Γ, ∨Γ for the disjunction and ¬Γ for the
multiset of negations of formulas in Γ.

A sequent is written Γ ` ∆, where Γ and ∆ are multisets
of formulas. Here, Γ is said to be the antecedent and ∆ the
consequent. We also call the elements of Γ assumptions. This
sequent is valid if the conjunction of the formulas in Γ implies
the disjunction of the formulas in ∆, given a background
theory T . That is, Γ ` ∆ is valid if |=T

∧
Γ → ∨

∆.
An empty antecedent or consequent will be represented by
a blank. Thus ` φ means φ is valid, and φ ` means φ is a
contradiction (implies the empty disjunction or FALSE). We
will sometimes use calligraphic letters such as J to stand for
sequents.

A formula or term is said to be ground if it contains no
variables. A position π is a finite sequence of natural numbers,
representing a syntactic position in a term or formula. If φ
is a formula or term, then φ|π represents the subformula or
subterm of φ at position π. Thus, φ|ε is φ itself, φ|i is the i-th
argument of φ, φ|ij is the j-th argument of the i-th argument,
and so on. The notation φ[ψ]π means φ with ψ substituted in
position π.

An interpolant for a valid implication A→ B is a formula
I such that A → I and I → B are valid, and such that I
is written using the vocabulary common to A and B, that is,
I ∈ L(A) ∩ L(B). The Craig interpolation lemma [7] states
that an interpolant always exists for a valid implication in
first order logic (FOL). Validity in this definition may also be
relative to a theory T , though interpolants may not always
exist in this case. When dealing with refutation systems, it is
more convenient to speak of an interpolant for an unsatisfiable
conjunction A∧B. An interpolant for the conjunction A∧B
is a formula I ∈ L(A)∩L(B) such that A→ I and B → ¬I
are both valid. In the sequel, let A and B be fixed formulas.

An inference is of the form

P1 · · · Pk
C

where P1 · · · Pk is a multiset of sequents called premises
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(which we will often abbreviate {Pi}) and C is a sequent
called the conclusion. An inference is sound if validity of
the premises implies validity of the conclusion. Generally,
inferences are instances of inference rules, or patterns. Such
a rule is sound when every instance matching the pattern, and
satisfying any side conditions, is sound.

A derivation tree is a directed tree whose nodes are labeled
with inferences. The premises of each node must contain
the multiset of conclusions of its children. A derivation tree
may be open, however, in the sense that some premises of
inferences are not conclusions of any child. We call these
unproved sequents the premises of the derivation tree. A tree
with no premises is said to be closed. The conclusion of a
derivation tree is the conclusion of its root node.

III. INTERPOLATING PROOF CALCULI

We begin by introducing a very simple proof calculus and
a corresponding interpolation calculus [18] that allows us
to derive interpolants from proofs. Our eventual goal is to
translate proofs from Z3 into this calculus.

We will say a formula is local when it is expressed either in
the the vocabulary of A or in the vocabulary of B. A sequent is
local when all its formulas are expressed in the the vocabulary
of A, or all are expressed in the vocabulary of B. That is, Γ `
∆ is local when Γ,∆ ⊆ L(A) or Γ,∆ ⊆ L(B). We will say
that a sequent is strict if each individual formula in the sequent
is local, that is, if Γ,∆ ⊆ L(A)∪L(B). Similarly, we will say
that an inference or derivation tree is local (respectively strict)
if all of its premises and conclusions are local (respectively
strict). In writing proof rules, we will use the notation Γ `l ∆
to indicate a local sequent and Γ `s ∆ to indicate a strict
sequent.

We should note that strictness is not an issue in purely
propositional clausal proofs. Every clause in such a proof is
necessarily strict because every propositional atom in it occurs
in either A or B. In the current more general setting, non-
strictness may occur either because of mixed terms within an
atomic formula, or because the formulas in the sequent are not
atomic.

The rules of our proof calculus SP are as follows:

LOCAL
Γ `l ∆

|=T ∧Γ→ ∨∆

RES
Γ `s ∆, p Γ `s ∆′,¬p

Γ ∪ Γ′ `s ∆ ∪∆′

CONTRA(Γ)
Γ,Γ′ `s
Γ′ `s ¬Γ

The first rule, LOCAL, allows us to introduce any valid local
sequent. As we will see, computing interpolations for local
sequents is trivial. The second rule, RES, allows us to resolve
two strict sequents on some pivot formula p. Note that resolv-
ing two local sequents might result in a strict but not local
sequent, since the pivot p might be in both L(A) and L(B).
Note also that the pivot p need not be an atomic formula. It
is only required to be local. The third rule, CONTRA, allows
us to move formulas Γ from the left- to the right-hand side of

a strict sequent. That is, if assuming Γ entails a contradiction,
then one of the formulas in Γ must be false. Notice that the
rules of our system allow us to produce only strict sequents.
The soundness of these rules is easily verified. Completeness is
also easily shown for theories that have the Craig interpolation
property, though this is not relevant to the current discussion.

Now, given a derivation of a sequent A,B `, we would like
to derive an interpolant for A ∧ B. We can do this using an
interpolation calculus in the style of [18]. We sketch one such
system here, though a detailed understanding of this system is
not needed for what follows.

For any set Γ of formulas, we will write ΓB for Γ ∩ L(B)
and ΓA for Γ\L(B) (note the asymmetry in these definitions).
A sequent in the interpolation calculus (also called an inter-
polation) is of the form (A,B) ` ∆ [φ]. The antecedent is
a pair of formulas, A and B, the consequent is a multiset of
formulas ∆ and the formula φ acts as an interpolant for the
sequent. The sequent is said to be valid when

1) A and ¬∆A imply φ,
2) B and ¬∆B imply ¬φ, and
3) φ ∈ L(A) ∩ L(B).

Another way to say this is that the interpolation is valid
when φ is an interpolant for A ∧ (∧¬∆A) and B ∧ (∧¬∆B).
Moreover, when ∆ is the empty set, φ is an interpolant for
A∧B. The set of interpolation rules SI , shown in Figure 1 is
sound in the sense that they produce valid interpolations from
valid interpolations. These rules can be interpreted roughly as
follows. To interpolate a purely local sequent on the A side,
we take the disjunction of the formulas of ∆ that are in the
common vocabulary of A and B. To interpolate a purely local
sequent on the B side, we simply take TRUE as the interpolant.
If we resolve on an A-side formula, we take the disjunction
of the interpolants, while resolving on the B side gives the
conjunction. The rule for proof by contradiction has no effect
on the interpolation.

Now suppose we have a derivation in system SP of a
sequent A,B `s. This is, we have proved that formulas
A and B are inconsistent. We can transform this into a
derivation of an interpolation (A,B) ` [φ] in the system
SI . To do this, we replace each inference in the proof by a
corresponding inference in SI , so that each sequent Γ ` ∆
in the proof is replaced by an interpolation of the form
(A,B) ` ¬(Γ \ {A,B}), ∆ [φ]. That is, in the derived
interpolation, the assumptions other than A and B are moved
to the consequent side. As an example transformation step, if
ψ ∈ L(A) ∩ L(B), and φ ∈ L(A) \ L(B), we have

LOCAL
A, φ `l ψ → LOCALA

(A,B) ` ¬φ ∨ ψ [ψ]

Because we move assumptions to the right in the translation,
the CONTRA rule becomes particularly trivial. For example,
we have:

CONTRA
A,ψ `l
A `l ¬ψ → CONTRA

(A,B) ` ¬ψ [φ]
(A,B) ` ¬ψ [φ]

Note that our ability to replace each inference of SP by
a corresponding inference of SI depends critically on the
strictness and locality conditions in SP . For example, we can
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LOCALA
(A,B) ` ∆ [∨∆B ]

∧A |=T ∨∆, ∆ ⊆ L(A)

LOCALB
(A,B) ` ∆ [TRUE]

∧B |=T ∨∆, ∆ ⊆ L(B)

RESA
(A,B) ` ∆, p [φ] (A,B) ` ∆′,¬p [φ′]

(A,B) ` ∆ ∪∆′ [φ ∨ φ′] p ∈ L(A) \ L(B)

RESB
(A,B) ` ∆, p [φ] (A,B) ` ∆′,¬p [φ′]

(A,B) ` ∆ ∪∆′ [φ ∧ φ′] p ∈ L(B)

CONTRA
(A,B) ` ∆ [φ]
(A,B) ` ∆ [φ]

Fig. 1. Interpolation system SI .

always replace an instance of LOCAL by an instance of either
LOCALA or LOCALB because the locality condition demands
that Γ ` ∆ is written in either L(A) or L(B).

IV. TRANSLATING Z3 PROOFS

Our goal in this section will be to convert proofs from Z3
into proofs in our simple proof calculus SP , and from there
into our interpolation calculus SI to obtain an interpolant.

Given a set of assumptions Γ that are inconsistent relative
to a theory T that Z3 supports, it can produce a proof
of a sequent Γ `. However Z3’s proof system is much
richer than the simple one we have sketched. At present the
system contains 38 documented rules. Many of these relate to
particular theories that Z3 supports such as linear arithmetic
and the theory of arrays. There is a also a rule, for example,
for universal quantifier instantiation. The system also contains
rules equivalent to our RES and CONTRA rules.

A very powerful rule in the Z3 system is the THLEMMA
rule. This rule takes an arbitrary set of sequents as premises
and can produce as a conclusion any sequent implied under
one of Z3’s theories. The theory solver may provide some
hints as to how the proof should be performed, but in general
complete proofs of theory lemmas are not provided.

To cope with this, our approach will be to construct a
proof in SP that is as detailed as possible, leaving unproved
“lemmas” at the leaves of the derivation tree. To fit within our
system, these lemmas must be strict. It will be the job of a
secondary prover to provide interpolations for these lemmas.
In the worst case, the proof might reduce to a single big lemma
of the form A,B `. In practice, though, we will observe that
the lemmas tend to be small, and are easily handled by an
interpolating prover much less efficient than Z3. Moreover,
the lemmas never require quantifier instantiation or the theory
of arrays, allowing us to use a secondary prover supporting
only equality and integer arithmetic.

We approach the proof translation in several stages. The
first stage, called axiom elimination, removes any non-local
instances of axioms. In the next stage, localization, we find
any possible applications of the LOCAL rule. Any closed sub-
tree of the proof whose conclusion is local can be simply
replaced by a single instance of the LOCAL rule. This typically

removes a large fraction of the proof. In the last stage, lemma
extraction we eliminate any inferences that are not available
in SP . This is done by replacing sub-trees of the proof with
lemmas to be interpolated by a secondary prover.

We now consider each of the proof translation stages in de-
tail, beginning with the simplest, localization, and proceeding
to lemma extraction and axiom elimination. We then cover a
few additional optimizations. We will describe these transfor-
mations in terms of replacement rules, that is, substitutions of
a sound derivation sub-tree by another sound derivation tree
with the same premises and conclusion.3

A. Localization
Any local closed sub-tree of a derivation can be replaced

by an instance of the LOCAL rule. We represent this by the
following replacement rule:

∗
Γ `l ∆

→ LOCAL
Γ `l ∆

We use the label ∗ here to indicate application of any number
of sound inference rules. This rule says that any closed sub-
tree using rules of the Z3 proof calculus whose conclusion is
Γ `l ∆ can be replaced with an instance of LOCAL with the
same conclusion. A maximal local sub-tree is a local closed
sub-tree that is not a sub-tree of any other local sub-tree. In
the localization stage, we apply this replacement rule to all
maximal local sub-trees.

B. Lemma extraction
Consider a sound (possibly open) sub-tree whose premises

`l p1 through `l pk are local and whose conclusion `s ∆ is
strict. This sub-tree demonstrates that the premises imply the
conclusion, that is, the sequent ` ¬p1, . . . ,¬pk,∆ is valid.
We can thus introduce this as a lemma, using the following
rule, which we add to SP to allow introduction of any valid
strict sequent:

LEMMA
Γ `s ∆

|=T ∧Γ→ ∨∆

3We should also note that in the proof representation provided by Z3, the
antecedents of sequents are not explicit. These can be reconstructed, however,
by a preliminary pass over the proof structure.
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Note that the LEMMA rule generalizes the LOCAL rule in that
it allows a conclusion that is strict but not necessarily local.

Having introduced ` ¬p1, . . . ,¬pk,∆ as a lemma, we can
then resolve it with all the premises ` pi in turn to obtain
the conclusion ` ∆. This gives us a way to replace sub-trees
with lemmas. This is important, as Z3 often sprinkles short
segments of equality reasoning between resolution steps in its
proofs. To express this transformation as a replacement rule,
we will use the notation RES∗ to indicate multiple applications
of the resolution rule. We then have the following replacement
rule:

∗ {Γi `s pi}∪iΓi `s ∆
→

RES∗
LEMMA ∪iΓi `s {¬pi} ∪∆

{Γi `s pi}

∪iΓi `s ∆

We can make several improvements to this basic transforma-
tion. First, note that it requires all assumptions in the premises
to be present in the conclusion. If this is not the case, we can
rewrite a premise Γi,Γ

′
i `s pi to Γi `s (∧Γ′i)→ pi, where Γ′i

are not assumptions in the conclusion, provided (∧Γ′i) → pi
is local.

Moreover, assumptions in the conclusion can be dropped
if they are not actually used in the sub-tree. The resulting
lemma will still be valid. In fact, there is only one rule in the
Z3 calculus that uses assumptions. This is the ASSUMP rule,
introducing sequents of the form φ ` φ. If an assumption
does not appear in an occurrence of ASSUMP within the sub-
tree, it can be dropped from the lemma. Finally, we can use
the LOCAL rule in the replacement instead of LEMMA if the
lemma happens to be local, saving a lemma.

We will call the above transformation lemma extraction.
Lemma extraction applies to any subtree that is strict, where
the consequents of all premises are singletons4. We will call
such a sub-tree extractable. Every node is contained in a
unique minimum extractable subtree. This sub-tree can be
found by moving up the tree to the first ascendant with
a strict conclusion, then extending downward to the first
descendant along each branch whose conclusion is strict and
has a singleton consequent. Note that a minimum tree must
exist containing any given node, because the conclusion of the
root node of the tree is A,B ` which is strict.

We wish to use lemma extraction to remove from the proof
any inferences that do not occur in SP . The question is which
sub-trees to transform into lemmas. Since we want the lemmas
to be as small as possible, we will always extract minimal
extractable subtrees.

We will say that an inference is foreign if it does not occur
in SP . This can be because it uses a rule not present in SP , or
because it does not meet the strictness condition. A derivation
tree node is foreign if the inference labeling it is foreign. A
foreign node is maximal foreign in a given derivation if it
is not a strict descendant of any foreign node. In applying

4In fact it can be generalized to the case where the consequents of the
premises are local multisets, though this has not been implemented and does
not appear to be necessary in practice

lemma extraction, we eliminate the minimal extractable sub-
tree of some maximal foreign node. Note that this sub-tree
contains the foreign node, but not always at the root. This
process is repeated until no foreign nodes remain. Thus, lemma
extraction proceeds from the root to the leaves of the proof
tree, extracting the smallest possible lemmas. Of course it is
conceivable that the root node is foreign, and the the minimal
extractable sub-tree is the entire tree. In this case the entire
proof reduces to one large lemma, and we have gained nothing.
However, in practice we find that the extracted lemmas are
quite small.

Finally, having introduced the LEMMA rule into our proof
calculus, we require a corresponding interpolation rule:

LEMMA
(A,B) ` ∆ [φ]

†

The side condition † is that φ is an interpolant for (∧¬∆A)∧A)
and (∧¬∆B) ∧ B. This is just a statement of the condition
for validity of the conclusion. We have no syntactic way of
computing an interpolant for a lemma. Rather, we use the
secondary interpolating prover to compute an interpolant φ
for the formulas ((∧¬∆A) ∧ A) and ((∧¬∆B) ∧ B). Thus,
each lemma we introduce by lemma extraction entails one call
to the secondary prover.

C. Axiom elimination

Z3 uses a variety of axioms in its proofs. Instances of these
axioms are introduced as conclusions of the form ` φ with no
premises. If the secondary prover is unaware of these axioms
(for example, it does not support the theory of arrays) then
it is essential to capture the axiom instances in the Z3 proof
using the LOCAL rule. Otherwise, the secondary prover may
fail to prove a lemma.

Unfortunately, axiom instances are not always local. A
prominent example of this is the axiom for universal quantifier
instantiation:

QUANTI ` (∀x. φ)→ φ[t/x]
t is ground

This says that a formula universally quantified over variable
x implies the same formula under substitution of any ground
term t for free instances of x. The difficulty with this rule is
that t is an arbitrary ground term. Thus, the conclusion of the
rule may not be local, even if φ is local.

We can, however, force an axiom instance to be local if it
is truly needed, at the possible expense of adding quantifiers
to the interpolant. To do this we add a fresh set of localization
symbols X to ΣI . That is, we take these symbols to be
interpreted so they do not count as part of the vocabulary of a
term and may always occur in interpolants. We assume a total,
well-founded order ≺ on X . We will write s .

= t to stand for
an equation s = t such that s ∈ X and t is a ground term such
that for all symbols s′ ∈ X occurring in t, s′ ≺ s. Such an
equation will be called a definition. Note that the well-founded
order prevents circular definitions.
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We introduce the following rule to allow us to drop a
definition no longer in use:

ELIM
s
.
= t,Γ `s ∆

Γ `s ∆
s 6� Γ,∆

Now consider an axiom φ[·], with a placeholder to be filled
by an arbitrary term of a given sort. Suppose that φ itself is
local, but we are given an instance φ[t] that is not local. Let π
be a highest local position in t. That is, π is a syntactic position
in formula t such that t|π is local, but no higher position in
t is local. We can eliminate this non-locality by choosing a
fresh localization symbol s, defining s .

= t|π , and substituting
s into position π in t. Note that for this to be legitimate, the
symbol s must be greater in the order ≺ than any localization
symbol occurring in t|π .

We can apply this idea to localize axiom instances using
replacements of the following form:

∗ ` φ[t] {Ji}
Γ `s ∆

→ ELIM

∗ ` φ[t[s]π] {Ji}
s
.
= t|π,Γ `s ∆

Γ `s ∆

That is, suppose we can prove some strict sequent Γ `s ∆
from the axiom instance φ[t] and some other premises {Ji}.
If we assume the definition s

.
= t|π , we can prove the same

result from the alternative axiom instance φ[t[s]π]. This can be
done by carrying the assumption up to the level of the axiom
instance and applying substitution to yield the original formula
φ[t]. A definition elimination step is then used to remove the
assumption. Note this inference is strict since the definition
s
.
= t|π is constructed to be local. In this way we obtain the

original conclusion Γ `s ∆ from the altered axiom instance
φ[t[s]π].

By repeated applying this rule, we eventually reach the top
position of t. At this point, we obtain φ[s], which is a local
instance of the axiom. Thus it can be replaced with an instance
of the LOCAL rule. Note this procedure easily generalizes
to axioms with multiple placeholders. We apply the above
transformation to all the minimal closed strict sub-trees of
the proof. The result is that all axiom instances are eliminated
from the proof, hence the secondary prover need not be aware
of these axioms.

Now, since we have introduced the ELIM rule into our proof
system, we must also introduce corresponding interpolation
rules. These rules are as follows:

ELIMA
(A,B) ` s .

= t,∆ [φ]
(A,B) ` ∆ [∃s. φ]

s 6� A,B,∆ t ∈ L(A)\L(B)

ELIMB
(A,B) ` s .

= t,∆ [φ]
(A,B) ` ∆ [∀s. φ]

s 6� A,B,∆ t ∈ L(B)

Notice that eliminating a definition on the A side adds an
existential quantifier to the interpolant, while eliminating a
definition on the B side adds a universal. Also note that the
side condition that s not occur in A or B is critical to the
soundness of the rule. That is, if A implies φ and s does not
occur in A, then A implies ∀s. φ. Similarly, if A and s = t
imply φ and s does not occur in A, then A implies ∃s. φ,
with t providing the witness for the existential.

Finally, notice that in case multiple definitions are intro-
duced, their order of elimination is the reverse of the order of
introduction. Thus, definitions corresponding to larger terms
produce the inner quantifiers.

In practice, we apply this transformation to three ax-
ioms: the quantifier instantiation axiom shown above, and the
two standard axioms of the non-extensional array theory. In
general, this method can be applied to any theory that is
finitely axiomatizable in FOL, provided the prover provides
the required axiom instances. However, it does not apply to
axiom schemas (such as the congruence axiom schema for the
theory of uninterpreted functions) because we cannot quantify
over functions and predicates in FOL. Though the ELIM rule
introduces quantifiers in the interpolants, in practice these
can often be eliminated using simple rules, for example, by
replacing ∃s. s = x ∧ φ with φ[x/s].

D. Accounting for rewriting

One of the most common reasons that non-strict inferences
occur in Z3 proofs is rewriting. That is, if resolution is only
performed on predicates that occur in the original assumptions
A and B, then only strict inferences can occur in a resolution
tree. However, Z3 typically generates some non-local predi-
cates by rewriting. That is, for some predicate p occurring in
A or B, Z3 infers p⇔ p′, where p′ is not local, by rewriting p
with some unconditional equations in A and B. The non-local
predicate p′ is then substituted for p, resulting in resolutions
on non-local predicates. Since non-strict inferences result in
larger lemmas, we would like to substitute the original p back
in for p′ in the proof to increase strictness.

There may be many possible ways to achieve this. We
briefly sketch here one simple approach that has proved
effective. We first scan the proof for any sequents of the form
Γ ` p⇔ p′, where Γ ⊆ {A,B}, p is local, and p′ is not local.
We can use this equivalence to push resolutions on p′ towards
the leaves of the derivation tree. From the equivalence p⇔ p′,
we can derived the two implications p→ p′ and p′ → p. Let
RPL(p′, p) be a shorthand for a derivation tree of the following
form:

RES
Γ ` ∆, p′ ∗

Γ ` p′ → p
Γ ` ∆, p

That is, RPL(p, p′) uses the implication p → p′ to replace p
with p′. Now we can replace any occurrence of resolution on
p′ using the following rule:

RES
Γ ` ∆, p′ Γ ` ∆′,¬p′

Γ ∪ Γ′ ` ∆ ∪∆′
→

RES

RPL(p′,p)
Γ ` ∆, p′

Γ ` ∆, p
RPL(¬p′,¬p)

Γ′ ` ∆′,¬p′
Γ′ ` ∆′,¬p

Γ ∪ Γ′ ` ∆ ∪∆′

That is, we eliminate a resolution on p′ by replacing p′ with
the equivalent p and resolving on p. The resulting instances
of RPL can be pushed up the resolution tree by simply re-
ordering resolutions. Here we show only one case (omitting

FMCAD 2011, Page 24



the RES labels to save space):

Γ ` ∆, p′, q Γ′ ` ∆′,¬q
Γ,Γ′ ` ∆,∆′, p′

∗
Γ,Γ′ ` p′ → p

Γ,Γ′ ` ∆,∆′, p
→

Γ ` ∆, p′, q ∗
Γ,Γ′ ` p′ → p

Γ,Γ′ ` ∆,∆′, p, q
Γ′ ` ∆′,¬q

Γ,Γ′ ` ∆,∆′, p

In this way, the resolutions on non-local atoms are pushed
upward in the derivation tree until they meet a non-resolution
inference. Since these resolutions are foreign they will even-
tually be eliminated by lemma extraction. By moving them
upward in the derivation tree, we make the resulting minimal
extractable sub-trees smaller and thus reduce the size of
lemmas that must be proved by the secondary prover.

E. Accounting for sub-tree sharing

The proofs generated by Z3 are represented not as trees, but
as DAG’s. That is, in the proof representation it is possible
(and in fact common) for two nodes to share children. Of
course we must take care not to process shared sub-trees
twice in the translation process. This is easily done for the
localization step, which remains linear time in the proof size.
Lemma extraction is quadratic on DAG-like proofs because
the minimal extractable sub-trees of distinct foreign inferences
can overlap. In practice, though, since these sub-trees tend to
be small, this effect is insignificant. Axiom elimination is in
principle also quadratic on DAG’s, since the definitions needed
to localize each axiom instance may need to be eliminated at
many nodes in the DAG. If this is a problem in practice, it
can be solved by placing all instances of ELIM at the root of
the derivation tree. The method of Section IV-D is also linear
time for DAG-like proofs.

F. Summary of interpolation procedure

To summarize, the translation from a Z3 proof of A,B `
to an interpolant for A ∧ B proceeds in the following steps.
We first push resolutions on non-local atoms upward in the
derivation by using proved equivalences with local atoms. Next
we convert the axiom instances to local formulas. This involves
introducing fresh defined symbols, which are later eliminated
using the ELIM rule. The localization phase then eliminates
all closed sub-trees with local conclusions (including axiom
instances) using the LOCAL rule. Lemma extraction is then
used to eliminate sub-trees that cannot be represented in
SP . This phase introduces the LEMMA rule. The resulting
proof is translated inference-by-inference into a derivation
in the interpolation calculus SI . In this process, lemmas
are interpolated by calls to the secondary prover. Quantifiers
are introduced in translating the ELIM rule. The result is a
derivation of (A,B) ` [φ] where φ is an interpolant for A∧B.

V. EXPERIMENTAL RESULTS

In this section, we describe some experiments to evaluate
the efficiency of the above approach in practice.

Our implementation is written in C++, calling directly to
Z3 via its API. We use version 2.19 of Z3 without modifi-
cation. This is important because we do not wish to degrade
the performance of Z3 in any way, except insofar as proof
generation degrades performance. Except for proof generation,
we use Z3 with default options. Our secondary prover is a
simple SMT solver supporting QF UFLIA and interpolation. It
uses a standard Nelson/Oppen theory combination, with theory
propagation. Linear arithmetic is handled by the Simplex algo-
rithm, with a branch-and-cut approach for integer arithmetic.
Interpolation is done using essentially the system of [18], with
the addition of the DIV rule of [22] to handle Gomory cuts.
In principle, however, any interpolating prover that handles
QF UFLIA can be used as the secondary prover.

For benchmarks, we need a set of problems that require
the power of Z3, and at the same time are representative of a
realistic application of interpolation. Unfortunately, existing
benchmarks are either very simple or not realistic. Earlier
evaluations, such as [14], have used either formulas involving
a single program execution path, or synthetic benchmarks
derived from arbitrarily partitioning formulas derived from
SMT-LIB benchmarks into conjuncts A and B. The former
are inappropriate because by construction they are too simple
to test the performance of the solver, while the latter are
inappropriate because of the arbitrary partitioning. Since the
performance of our method depends on locality in the proof,
a realistic partitioning is essential for evaluation. Moreover,
we would like to evaluate the method on problems for which
interpolation is actually relevant.

For these reasons, we instead use a set of benchmark
interpolation problems derived from bounded verification of
safety properties of sequential and concurrent programs. These
formulas are generated by the tool Poirot [15]. This tool
unwinds the loops in a program and in-lines procedure calls
up to some determined bound. The result is a conjunction of
formulas in AUFLIA, each of which represents the semantics
of a single procedure instance, plus one additional constraint
representing a standard background theory and containing
quantifiers. The procedure instances form a tree, such that the
children of any node represent the procedures called within
that node. The formulas may represent an under-approximation
of the program behavior, in which case the leaf procedures are
replaced by the summary FALSE, or an over-approximation,
in which case the leaves are replaced by the summary TRUE.
The conjunction of the formulas is satisfiable when the given
safety property fails in the given over- or under-approximation.

For our benchmarks, we use the under-approximations,
which are typically unsatisfiable. We choose the sub-tree
rooted at an arbitrary procedure instance as the A formula,
and the remainder of the conjuncts as the B formula. An
interpolant for this pair is a formula involving only symbols
that represent the pre-state and post-state of this particular
procedure instance. Note that this can in principle be a large
set of symbols, since it can include symbols representing any
global variables referenced in the procedure or any of its
transitive callees. This can include symbols representing the
state of the heap.

We can think of the interpolant for A ∧ B as a potential
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summary for the given procedure. It is guaranteed by the
procedure instance and is sufficient to prove the given property
in the given calling context. However, since the unwinding is
approximate, this summary is also approximate. Nonetheless,
it is possible that such approximate summaries can be used
to construct true inductive summaries, as in [21], or to derive
predicates for predicate abstraction, as in [9] or that they can
themselves be used as approximations of procedures in further
unwinding of the call tree.

For our purposes, the interest of these benchmarks is that,
because they represent a large space of possible program exe-
cutions, they cannot be easily solved by existing interpolating
provers. To evaluate our method using these problems, we
will measure two quantities: the overhead incurred in the
interpolation process, relative to the run time of Z3, and the
relative performance of our method compared to three existing
provers. The former is easy to measure. The latter is made
difficult by the fact that no interpolating provers exist that can
handle the full AUFLIA theory.

To work around this problem, we will make things easier
for the existing provers by providing them with the necessary
quantifier instantiations and array axiom instances. We can
do this by first applying axiom elimination to the Z3 proof,
then applying lemma extraction to the entire proof tree, less
the axiom instances. The result is an interpolation problem in
QF UFLIA. It should be kept in mind that the performance of
a prover on this problem puts a lower bound on performance
on the original problem, since the prover is relieved of the
need to handle quantifier instantiation and the array theory.

The results are summarized in Table I. All run times are
using one core of a 4-core 3.06 GHz Intel Xeon processor.
Memory usage is limited to 2.5GB. The first column gives
a name for the benchmark, the subscripts indicating different
under-approximations and sub-trees. The “mouser”, “serial”
and “fdc” examples are safety properties of Windows device
drivers from the Windows Static Driver Verifier [1]. The
“ndisprot” and “wmm” examples are derived from threaded
programs via the Lal/Reps construction [16], the latter using
a weak memory model. The next two columns give the size
of the A and B formulas in number of procedure instances
(not considering those approximated by the summary FALSE).
The next column shows the size of the Z3 proof in number
of inferences. The next three columns show the Z3 run time,
the interpolation time (including execution of the secondary
prover) and the fractional overhead introduced by interpola-
tion. The next column shows the number of lemmas produced.

Finally, the last three columns show the run times of
three existing interpolating provers on the full problems plus
quantifier and array axiom instantiations generated by Z3.
Run times longer than 1800s are notated > 1800. Memory
exhaustion is indicated by MEM. The MathSAT4 solver [4]
supports quantifier-free linear rational and integer difference
bound arithmetic. Though it does not support full LIA, we still
find that it can handle the smaller problems (meaning these
problems have no models in the LRA or difference bound
theories). It is, however, one to two orders of magnitude slower
than Z3 on these problems (note Z3 is handling quantifiers and
array axioms, while MathSAT4 is not). On the larger problems,

MathSAT4 exhausts memory. In two cases marked CRASH,
MathSAT4 crashed. The Princess prover [3] handles UFLIA.
Though in principle it can handle quantifiers, we nonetheless
eliminated the quantifiers from the input formulas. Despite
this, Princess failed to solve any problem within 1800s. We
also tested the SMTInterpol solver, which supports QF LIA,
but this tool exhausted memory on all problems.5

We can make two general observations from these data.
First, the overhead of interpolation relative to proof production
in Z3 is small, and in fact is smaller on the larger proofs.
This is in spite of the fact that the secondary prover is far
less sophisticated than Z3. By dividing the proof into relative
small lemmas, we have lessened the burden on the secondary
prover to the point that run time is dominated by Z3.

Second, these problems are out of range for existing in-
terpolating provers. Even with assistance provided by Z3 in
instantiating quantified formulas and axioms, the best of the
existing provers can handle only the smaller problems. By
exploiting a state-of-the-art SMT solver, we have obtained a
multiple order-of-magnitude performance improvement.

VI. CONCLUSION

In this work we have described an interpolating prover
that is simultaneously as efficient as state-of-the-art SMT
solvers and that handles the rich theory required by program
verification. This was accomplished by using an efficient
proof-generating SMT solver as a guide to a less efficient
interpolating prover. By dividing the proof generated by Z3
into small lemmas, we create interpolation problems small
enough for the interpolating prover to handle efficiently. In this
way, we obtain a heuristically efficient interpolation procedure
without requiring Z3 to produce proofs in a restricted system
that allows feasible interpolation. In fact, the system does not
depend on the specific set of proof rules used by Z3, with
the exception of a few, such as RES and CONTRA. Thus,
the Z3 proof system can potentially be expanded without
any modification to the interpolation system. Moreover, any
interpolating prover can be used as the secondary prover. This
may allow a variety of interpolation methods to be used.

Evaluation on a set of benchmarks derived from program
verification seems to indicate that the performance of an
efficient solver such as Z3 can expand the range of application
of interpolating provers beyond what was previously possible.
This might in turn support new classes of interpolation-based
algorithms for verification. One such class might be algorithms
that analyze whole programs rather than program paths.

An interesting question to address in the future is how this
method affects the quality of interpolants produced. Some
methods have been proposed that, in effect, search the space
of available proofs for one producing an interpolant satisfying
certain criteria, with the goal of preventing the interpolants
from diverging with deeper unwindings [11], [20]. It seems
possible that using larger lemmas may allow greater flexi-
bility to the secondary prover in constructing high quality
interpolants. Thus a trade-off of performance and interpolant

5The benchmarks and scripts to run the provers are available at
http://www.kenmcmil.com/z3interp.
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Problem Procedures Proof Time (s) interp/Z3 Lemmas Time (s)
A B size Z3 interp MathSAT4 Princess SMTInterpol

mouserA1 22 12 15864 0.098 0.010 0.102 5 0.986 > 1800 MEM
mouserA2 1 34 24270 0.421 0.011 0.026 0 1.804 > 1800 MEM
mouserA3 1 38 23331 0.232 0.008 0.034 0 1.718 > 1800 MEM

serial1 111 23 69006 3.309 0.042 0.013 11 115.947 > 1800 MEM
serial2 1 138 70341 3.375 0.039 0.012 0 121.928 > 1800 MEM

mouserB1 456 12 253078 28.0 0.345 0.012 162 MEM > 1800 MEM
mouserB2 454 12 249548 29.4 0.276 0.009 176 MEM > 1800 MEM
mouserB3 1 468 269550 26.2 0.183 0.007 21 MEM > 1800 MEM

fdc1 148 5 115090 3.78 0.107 0.028 91 MEM > 1800 MEM
fdc2 1 153 114109 3.67 0.101 0.028 0 MEM > 1800 MEM
fdc3 1 155 115420 3.28 0.073 0.022 16 MEM > 1800 MEM

ndisprot1 1 29 31468 0.460 0.089 0.193 283 CRASH > 1800 MEM
ndisprot2 1 71 133863 5.61 0.208 0.037 0 CRASH > 1800 MEM
wmm1 1 2 15657 0.082 0.014 0.170 20 0.313 > 1800 MEM

TABLE I
RESULTS OF INTERPOLATION EXPERIMENTS ON POIROT FORMULAS.

quality might be achieved by adjusting the proof translation
process.
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Beyond quantifier-free interpolation in extensions of Presburger arith-
metic. In VMCAI, pages 88–102, 2011.

[4] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto
Griggio, and Roberto Sebastiani. The MathSAT 4 SMT solver. In CAV,
pages 299–303, 2008.

[5] Roberto Bruttomesso, Silvio Ghilardi, and Silvio Ranise. Rewriting-
based quantifier-free interpolation for a theory of arrays. In RTA, pages
171–186, 2011.

[6] Roberto Bruttomesso, Simone Rollini, Natasha Sharygina, and Aliaksei
Tsitovich. Flexible interpolation with local proof transformations. In
ICCAD, pages 770–777, 2010.

[7] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating model
theory and proof theory. J. Symbolic Logic, 22(3):269–285, 1957.

[8] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient
SMT solver. In TACAS, pages 337–340, 2008.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In POPL, pages 232–244. ACM, 2004.
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Effective Word-Level Interpolation
for Software Verification

Alberto Griggio ∗
Embedded Systems Unit – FBK-IRST – Trento, Italy.

Abstract—We present an interpolation procedure for the the-
ory of fixed-size bit-vectors, which allows to apply effective
interpolation-based techniques for software verification without
giving up the ability of handling precisely the word-level opera-
tions of typical programming languages. Our algorithm is based
on advanced SMT techniques, and, although general, is optimized
to exploit the structure of typical interpolation problems arising in
software verification. We have implemented a prototype version of
it within the MATHSAT SMT solver, and we have integrated it into
a software verification framework based on standard predicate ab-
straction. Our experimental results show that our new technique
allows our prototype to significantly outperform other systems on
programs requiring bit-precise modeling of word-level operations.

I. INTRODUCTION AND RELATED WORK

Since the seminal paper of McMillan [1], (Craig) inter-
polation has been recognized to be a substantial tool for
formal verification. In particular, one of its most successful
applications is in the context of software verification based
on counterexample-guided abstraction-refinement (CEGAR),
where interpolants of quantifier-free formulas in suitable the-
ories are computed for automatically refining abstractions in
order to rule out spurious counterexamples [2], [3].

Most programming languages use a fixed amount of bits
for representing values of primitive data types, such as inte-
gers. However, most interpolation-based software verification
tools represent primitive types using mathematical integers
or rational numbers, encoding program operations into e.g.
a combination of linear arithmetic and uninterpreted func-
tions. This results in loss of precision, which might not only
lead to the generation of false alarms, in which correct pro-
grams are classified as incorrect, but also, and worse, to fail-
ures in detecting bugs. As a simple example, the code frag-
ment if (x > 0 && y > 0) { assert(x + y > 0); }

is wrongly classified as safe if variables are modeled using
unbounded integers.

One of the main reasons for not using a more accurate
modeling of program operations is the lack of effective in-
terpolation procedures for the theory of bit-vectors (BV), that
allow bit-precise representation of operations while retaining
the advantages of reasoning at the word-level structure of
problems. Although a significant amount of work has been
done on interpolation procedures for several important theories

∗ Supported by Provincia Autonoma di Trento and the European Commu-
nity’s FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-
GA-2008-226070 “progetto Trentino”, project ADAPTATION.

(including theories of equality, linear arithmetic, data struc-
tures) [4], [5], [6], [7], [8], [9], [10], [11], interpolation for
bit-vectors has received very little attention so far. To the best
of our knowledge, the only complete interpolation algorithm
for BV is based on naı̈vely mapping a bit-level propositional
interpolant into BV (by replacing propositional variables with
bit-extraction terms and Boolean connectives with bit-wise
operations), which however completely destroys the word-level
structure of the original problem, thus defeating all the benefits
of reasoning at a level of abstraction higher than that of single
bits. The first partial solution for this problem was proposed in
[12], where an algorithm is given for constructing a word-level
interpolant from a bit-level proof of unsatisfiability. The ap-
proach, however, was limited to equality logic only. A different
direction is explored in [13], where a rewrite-based procedure
for a fragment of BV is presented. The procedure is incomplete
in general, but the authors show that their specialised rewrite
rules are often enough for successfully verifying programs, in
particular in the domain of device drivers.

In this paper, we present a novel, complete interpolation
procedure for BV which tries to retain as much as possible
the word-level structure of the input problem. Our approach
is based on lazy/DPLL(T ) SMT techniques for interpolation
[7], and generates interpolants from DPLL(T )-proofs of un-
satisfiability by combining a layered hierarchy of different
interpolation procedures for conjunctions of BV-constraints, of
increasing power and complexity, with a standard Boolean in-
terpolation algorithm. Although general, the BV-interpolation
layers are optimized for the kind of formulas arising in software
verification, exploiting “definitional” equalities and interpola-
tion procedures for linear integer arithmetic, and falling back to
a bit-level algorithm when none of the specialised techniques
can be applied.

We have implemented a prototype version of our procedure
within the MATHSAT [14] SMT solver, and we have integrated
it into a software verification framework based on standard
predicate abstraction and interpolation-based refinement. Our
prototype significantly outperforms other systems on programs
requiring a bit-precise modeling of word-level operations,
which could not be verified when using linear arithmetic and
uninterpreted functions instead of BV.

Paper Outline. We introduce some background concepts in
Sec. II. In Sec. III we describe a simple bit-level interpola-
tion algorithm for BV. Our new procedure is described and
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discussed in Sec. IV, and experimentally evaluated in Sec. V.
We conclude in Sec. VI with directions for future work.

II. BACKGROUND

A. Terminology and Notation

We work in the setting of standard first-order logic. We
denote formulas with ϕ, ψ, A, B, I , variables with x, y, z,
terms with s, t, predicates with p, q, possibly adding sub- and/or
superscripts. As usual in the SAT and SMT community, we
call 0-arity predicates Boolean variables. In the following, we
only deal with quantifier-free formulas, in which all variables
are implicitly existentially quantified. We use the standard
definitions of theory, model, satisfiability, validity. If ψ is a
logical consequence of ϕ in a theory T , we write ϕ |=T ψ.
If ϕ is unsatisfiable in T , we write ϕ |=T ⊥. A (fixed-width)
bit-vector, or word, is a list of bits of fixed size n. We denote
bit-vector terms of size n with t[n]. We use the definition of
the theory of bit-vectors, BV, given e.g. in [15]. BV-operators
include sub-word selection t[n][i : j] (where 0 ≤ j ≤ i ≤ n),
concatenation t1[n] :: t2[m], arithmetic operations (addition +,
subtraction−, multiplication ·, signed and unsigned division /s
and /u, and signed and unsigned remainder %s and %u), shifts
(<< and >>), and bitwise operations (bitwise not ∼, bitwise
and &, or | and xor ˆ). BV-predicates include equality = and
signed and unsigned inequalities ≤s and ≤u.

B. Interpolation for Software Verification

Given an ordered pair of formulas (A,B) in a theory T , a
(Craig) interpolant is a formula I that satisfies the following
constraints: (i) A |=T I; (ii) B ∧ I |=T ⊥; and (iii) all the
uninterpreted (in T ) symbols occurring in I occur in bothA and
B (i.e., they are AB-common). Interpolants have important ap-
plications in software verification, and in particular in software
model checking based on counterexample-guided abstraction-
refinement (CEGAR) [16]. When using predicate abstraction,
predicates for automatic abstraction refinement can be extracted
from interpolants generated from formulas representing (sets
of) spurious counterexamples (i.e. program paths leading to
an error location which are feasible in the abstract space but
infeasible in the concrete program) [2]. Similarly, interpolants
from spurious counterexamples can also be used for directly
representing and refining program abstractions without the
need of computing predicate abstractions [3]. Both techniques
proved to be quite effective, and are now implemented within
many model checking tools (e.g. [17], [13], [18], [19], [20]).

C. Bit-Vectors in SMT

For many important theories T , the currently most-popular
approach for checking the satisfiability of a formula ϕ in T ,
SMT(T ), is the so-called “lazy” or “DPLL(T )” approach [21],
in which a DPLL-based SAT solver is used for enumerating
truth-assignments for the propositional skeleton of ϕ, which are
then checked for T -satisfiability by a decision procedure for
conjunctions of constraints in T (T -solver).

However, bit-vectors are an exception to this trend. Al-
though several different algorithms have been proposed in

recent years (see e.g. [15] for a survey), most current state-
of-the-art SMT(BV)-solvers (e.g. [22], [23], [24], [25]) are
based on (i) preprocessing the input BV-formula by applying
several word-level simplification techniques followed by (ii) ea-
gerly encoding the result of such preprocessing into a purely-
propositional formula (“bit-blasting”), which is then given to
an efficient SAT solver. In a nutshell, bit-blasting consists
of encoding each bit-vector t[n] using n Boolean variables
pt0, . . . , p

t
n−1 representing its bits, and then translating each BV

operation into an equivalent Boolean circuit, possibly introduc-
ing fresh auxiliary Boolean variables.

III. SIMPLE INTERPOLATION FOR BV

From the purely theoretical point of view, computing in-
terpolants in the theory of bit-vectors is an easy problem. It
is solved by a conceptually-simple algorithm, based on bit-
blasting, which exploits the availability of off-the-shelf (and
efficient) algorithms for interpolation for propositional logic
(e.g. [1]).

Given a pair of BV-formulas A and B, an interpolant I for
(A,B) can be generated from a propositional interpolant as
follows.

– First, A and B are converted via bit-blasting into two purely-
Boolean formulas Ap and Bp. For interpolation, it is im-
portant that A and B are bit-blasted using disjoint sets of
auxiliary variables (see Sec. II-C).

– Ap and Bp are then converted to CNF1 and given to an
interpolating SAT solver, which checks the satisfiability of
Ap ∧ Bp and computes a propositional interpolant Ip for
(Ap, Bp).

– By construction, Ip contains only variables that occur in
both Ap and Bp, and so it can not contain auxiliary Boolean
variables introduced by bit-blasting or CNF conversion. Each
variable ptj in Ip then corresponds to a single bit j of a bit-
vector term t[n] that occurs in both A and B. An interpolant
I for (A,B) can therefore be obtained from Ip by replacing
each variable ptj with the bit-extraction t[n][j : j], and each
Boolean connective with its corresponding bitwise operator
(i.e. ¬ with ∼, ∧ with & and ∨ with | ).
This procedure is simple both to define and to implement.

It has, however, an obvious and major drawback: it completely
destroys the word-level structure of the problem, since it only
generates interpolants as Boolean combinations of individual
bits. Clearly, this completely defeats the benefits of reasoning
at a higher level of abstraction, for instance by making it very
difficult to apply effective word-level simplification techniques
which are crucial for the efficiency of current state-of-the-art
SMT solvers for BV [22], [26], [25], or to extract useful high-
level information which can be effectively exploited in software
verification, like “good” word-level predicates for abstraction
refinement.

1CNF conversion might introduce more auxiliary “label” variables. As
before, it is important that the sets of label variables for Ap and Bp are disjoint.
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IV. A LAYERED APPROACH TO BV INTERPOLATION

The above reasons make the simple bit-level interpolation
procedure of the previous section not very appealing in practice.
Rather, we would like to obtain an interpolation procedure that
retains as much as possible the word-level structure of formulas.
At the same time, we would also like to keep the performance
benefits of bit-blasting, which is still the dominant technique for
SMT(BV), adopted by the most efficient state-of-the art solvers
([22], [26], [23], [24], [25]).

In the rest of the section, we present our solution to this
problem. Its main idea is that of reducing the problem of inter-
polant generation for BV-formulas with an arbitrary Boolean
structure to that of computing interpolants for conjunctions of
BV-constraints, which can then be interpolated using a lay-
ered approach, by applying a hierarchy of different techniques
which try to retain as much as possible the word-level structure
of the input problem.

This reduction to dealing only with conjunctions of con-
straints is standard in interpolation for SMT when using the
lazy/DPLL(T ) approach, in which interpolants can be extracted
from proofs of unsatisfiability consisting of a Boolean skeleton,
to which a propositional interpolation algorithm is applied,
and a set of T -inconsistent conjunctions of constraints, cor-
responding to negations of the T -lemmas occurring in the
proof, which are handled by T -specific interpolation procedures
[4], [7]. However, SMT solvers based on bit-blasting typically
follow the eager approach, for which such reduction is harder
to achieve, and to the best of our knowledge has been done
only for equality logic [12]. Here, we exploit the combination
of bit-blasting and DPLL(T ), which allows us to generate
proofs of unsatisfiability which can be easily partitioned into
Boolean and T -specific parts while still retaining as much
as possible the performance advantage of SAT encodings for
solving BV-formulas. After having generated such proofs, we
then tackle interpolation for the conjunctions of BV-constraints
corresponding to the negated BV-lemmas in the proof using
a layered hierarchy of four different techniques of increasing
power and complexity.

A. Lazy bit-blasting in DPLL(T )

Lazy bit-blasting is a simple technique for integrating a
decision procedure for BV based on SAT encoding within an
SMT solver based on the DPLL(T ) approach. It is the default
strategy used by the MATHSAT SMT solver [14], a state-of-
the-art solver for BV.2

The main idea of lazy bit-blasting is that of using two (DPLL-
based) independent SAT solvers, DPLLBool and DPLLBV, or-
ganized in a hierarchy. DPLLBool corresponds to the “DPLL”
part of the standard DPLL(T ) approach, whereas DPLLBV takes
the role of the T -solver. More precisely, when solving a BV-
formula ϕ, DPLLBool is used to reason on the Boolean skeleton

2The latest version MATHSAT was the winner of the 2011 SMT competition
on the “BV+uninterpreted functions” (QF UFBV) and the “incremental BV”
(QF BV application) categories, and performed better than the winner of 2010
on the “plain BV” (QF BV) category (see http://smtcomp.org/2011/).

of (the CNF conversion of) ϕ, like in the usual DPLL(T ) ap-
proach, whereas DPLLBV is used for checking the consistency
of truth-assignments of BV-atoms enumerated by DPLLBool.
This is done by exploiting the capability of modern SAT
solvers of reasoning under assumptions [27], [28]. DPLLBV
is initialized by adding to it, for each BV-atom a occurring
in ϕ, the clauses resulting from the bit-blasting of the formula
(la ↔ a), where la is a fresh Boolean variable, which we call
the label for a. Notice that this means that the set of clauses in
DPLLBV is always satisfiable. When DPLLBV is asked to check
the consistency of a set of BV-literals L1, . . . , Ln generated
by DPLLBool, the corresponding labels l1, . . . , ln are added as
temporary assumptions to DPLLBV (if Li is a negative literal,
¬li is added as assumption instead of li). If the resulting
formula becomes unsatisfiable, then it is possible to compute
the (typically small) subset of assumptions lj , . . . , lk (some of
which possibly negated) which is responsible for the inconsis-
tency (see e.g. [28]). From this set, a BV-conflict setLj , . . . , Lk

is computed, whose negation ¬Lj ∨ . . . ∨ ¬Lk is a BV-lemma
that is given back to DPLLBool as usual in DPLL(T ).

B. BV Interpolation via EUF layering

A good “side-effect” of using lazy bit-blasting is that it
enables the use of layering of theory solvers. In particular, since
BV-constraints are not bit-blasted at the main DPLL level, truth
assignments can be checked using a solver for equality and
uninterpreted functions (EUF) before invoking DPLLBV. In this
way, “cheap” conflicts that are due to the violations of equality
axioms can be handled efficiently, without resorting to the
potentially-expensive SAT checks in DPLLBV. In such cases,
interpolants can be computed by efficient existing algorithms
for EUF, starting from the proofs of unsatisfiability generated
by the EUF solver [4], [9]. This is therefore the first layer of our
procedure.

Example 1: Consider the BV-interpolation problem:

A
def
=(x1[32] = 3[32]) ∧ (x3[32] = x1[32] · x2[32])

B
def
=(x4[32] = x2[32]) ∧ (x5[32] = 3[32] · x4[32])∧
¬(x3[32] = x5[32]).

In order to detect the unsatisfiability of A ∧ B, it is not
necessary to take the precise semantics of the BV multiplica-
tion operation ·. In fact, a solver for EUF, which treats · as
an uninterpreted function, is enough to construct a proof of
unsatisfiability for A∧B. From such proof, the BV-interpolant
I

def
= (x3[32] = 3[32] · x2[32]) can be computed using an efficient

algorithm for EUF interpolation. �

C. BV Interpolation via Equality Substitution

Equalities can still be exploited even when EUF is not
enough for detecting unsatisfiability. As an example, consider
an interpolation problem for an inconsistent pair (A,B) of
formulas in whichA is of the form (x = e)∧ϕ, x does not occur
in e and x is the only non-common symbol between A and B.
Then, it is easy to see that the formula obtained by replacing x
with e everywhere in ϕ (denoted ϕ[x 7→ e]) is an interpolant
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for (A,B). Similarly, if it is B to be of the form (x = e) ∧ ψ,
then ¬ψ[x 7→ e] is also an interpolant for (A,B). These
two examples are just special cases of the well-known general
algorithm for computing interpolants via quantifier elimination
(for theories for which this is possible): roughly speaking,
given an inconsistent pair (A,B) of formulas, an interpolant
can be computed by performing the existential elimination of
all the non-common variables either from A or from ¬B.3 In
general, however, existential quantification for BV can be quite
expensive, it may require bit-blasting (and a consequent loss of
word-level structure), and it may cause a blow-up in the size of
the formula.

The idea of our second technique is that of detecting situa-
tions in which interpolation via existential elimination amounts
to performing substitutions using equalities.

More in detail, given an inconsistent conjunction of BV-
constraints partitioned into A and B, we remove from A a
positive equality (x = e) in which x is a variable that does not
occur in e and x is not AB-common. We then replace x with e
in the rest of the constraints of A, and repeat the process until
either all the non-AB-common variables have been eliminated,
or a fixpoint is reached. If the result A′ of this procedure
contains no non-AB-common variable, then we can return A′

as an interpolant. Otherwise, we try eliminating non-common
variables from B, obtaining B′, and if this operation succeeds,
we return ¬B′ as an interpolant. Notice that this procedure
requires no satisfiability checks, and is therefore very cheap.

Example 2: Consider the BV-interpolation problem:

A
def
=(0[32] ≤s (0[24] :: x1[8])− 1[32]) ∧ (x2[8] = x1[8])

B
def
=(x3[8] = (−(0[24] :: x2[8]))[7 : 0]) ∧ (x3[8] = 0[8]).

The unsatisfiability of A ∧ B cannot be determined with the
EUF layer alone. However, using equality substitution, we can
easily compute an interpolant for (A,B). The only non-AB-
common symbol in A is the variable x1[8], which can be elimi-
nated by exploiting the equality (x2[8] = x1[8]), thus generating
the BV-interpolant I def

= (0[32] ≤s (0[24] :: x2[8])− 1[32]). �

D. BV Interpolation via LIA Encoding

In the third layer of our procedure, we try to reduce the
problem of generating interpolants for BV to the computation
of interpolants in linear arithmetic over the integers (LIA).

In principle, the idea is similar to the reduction to propo-
sitional logic described in Sec. III: given an unsatisfiable
conjunction of BV-constraints partitioned into A and B, the
algorithm consists of: (i) generating two LIA-formulas ALIA
and BLIA using the encoding described in [29], (ii) building
an interpolant ILIA for (ALIA, BLIA) using any off-the-shelf
efficient interpolation algorithm for LIA (e.g. [10], [30], [11]),
and finally (iii) “translating back” ILIA in order to obtain a BV-
interpolant I for (A,B). In practice, however, reduction to LIA

3It can be observed that this algorithm always generates the strongest or
the weakest interpolant (wrt. logical implication) for (A,B), the former when
starting from A, the latter when starting from ¬B.

presents several difficulties that do not occur in the case of
reduction to propositional logic:

– First, from the theoretical point of view the problem of
obtaining a BV-interpolant I from a LIA-interpolant ILIA is
non-trivial. In particular, in the translation of arithmetic op-
erations and predicates from LIA to BV, issues like overflow
or signed/unsigned semantics should be properly taken into
account. (We shall give examples of some of the problems
that may arise later in this section, after having given some
details of the encoding of BV into LIA.)

– Moreover, from the practical point of view, encoding of
BV constraints into LIA might result in very challenging
SMT(LIA)-formulas, which might be out of reach of current
state-of-the-art SMT(LIA)-solvers, even for BV-problems
that current SMT(BV)-solvers can easily handle. This might
happen especially when encoding BV-operations that require
a “mixed LIA/bit-blasting” approach, like e.g. multiplication
of two variables [29].

We address the above two issues by taking an optimistic
approach. First, in the encoding of BV constraints into LIA, we
abstract away all the operations that require a mixed LIA/bit-
blasting approach, in order to reduce the likelihood of gener-
ating difficult SMT(LIA)-formulas, by simply encoding them
with integer variables. Further, we set bounds (dependent on
the size of the input problem) to the resources available (time
and memory) for solving and constructing the proof of unsatis-
fiability of the SMT(LIA)-formula ALIA ∧ BLIA resulting from
the encoding of the BV-interpolation problem (A,B). If the
formula ALIA ∧ BLIA turns out to be satisfiable (because of the
abstraction) or its unsatisfiability can not be determined within
the resource bounds, we resort to the last layer of our procedure,
described in Sec. IV-E. Otherwise, we compute an interpolant
ILIA for (ALIA, BLIA), and we translate it back to a BV-formula
I using an optimistic naı̈ve approach that essentially disregards
overflow and signed/unsigned issues. We then check whether
I is actually an interpolant for (A,B), by testing whether the
BV-formula (A ∧ ¬I) ∨ (B ∧ I) is unsatisfiable,4 again using
bounded resources. If the check succeeds, then we return I as
an interpolant. Otherwise, we resort to the last layer of our
procedure.

In the rest of this section, we provide some details of the
encoding and the construction of a BV-interpolant from a LIA-
interpolant, giving also examples of why this might fail.

Encoding of BV constraints into LIA. We use the LIA encoding
of BV constraints described, e.g., in [29]. Each BV term t[n]
of n bits is encoded as a LIA variable xt, together with the
constraint

(0 ≤ xt) ∧ (xt ≤ 2n − 1). (1)

(In what follows, we shall denote (1) as xt ∈ [0, 2n).) Each
BV-operation/predicate is encoded as a Boolean combination
of LIA constraints, possibly introducing some auxiliary LIA

4As described later in this section, I contains only AB-common symbols by
construction.
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Selection: t[i−j+1]
def
= t1[n][i : j] becomes (xt = m) ∧ (xt1 =

2i+1h+2jm+l)∧l ∈ [0, 2i)∧m ∈ [0, 2i−j+1)∧h ∈ [0, 2n−i−1),
where h,m, l are fresh.
Concatenation: t[n+m]

def
= t1[n] :: t2[m] becomes (xt = 2mxt1 +

xt2).
Addition: t[n]

def
= t1[n] + t2[n] becomes (xt = xt1 +xt2 − 2nσ)∧

(0 ≤ σ) ∧ (σ ≤ 1), where σ is fresh.
Multiplication by constant: t[n]

def
= t1[n] · k becomes (xt =

k · xt1 − 2nσ) ∧ (0 ≤ σ) ∧ (σ ≤ k), where σ is fresh.
Left-shift by constant: t[n]

def
= t1[n] << k becomes (xt =

2kxt1[n−k−1:0]), where xt1[n−k−1:0] is the LIA variable for the
selection t1[n− k − 1 : 0]

Equality: (t1[n] = t2[n]) becomes (xt1 = xt2).
Unsigned ≤: (t1[n] ≤u t2[n]) becomes (xt1 ≤ xt2).
Signed ≤: (t1[n] ≤s t2[n]) becomes ITE(((xt1 ≤ 2n−1 − 1) ∧
(xt2 ≤ 2n−1 − 1)) ∨ ((xt1 ≥ 2n−1) ∧ (xt2 ≥ 2n−1)), (xt1 ≤
xt2), (xt1 ≥ 2n−1)), where ITE(c, t, e) is a shorthand for (c →
t) ∧ (¬c→ e).

Fig. 1. LIA encoding of some BV operations and predicates.

and Boolean variables. Some examples are shown in Fig. 1.5

As already mentioned before, for performance reasons we ab-
stract BV-terms t requiring a mixed LIA/bit-blasting encoding
[29] (i.e. non-linear multiplication/division/remainder, bit-wise
operations between two non-constant terms, and shift by a
non-constant term) by simply using the corresponding LIA-
variable xt, without additional constraints (other than (1)). As
in the bit-blasting approach (see Sec. III), we assume that when
generating an interpolant for a pair of formulas (A,B), A and
B are encoded using disjoint sets of auxiliary variables.

Constructing a BV-interpolant from a LIA-interpolant. Current
interpolation algorithms for LIA allow to produce interpolants
in an extension of LIA with either divisibility predicates [10]
or with the floor function b·c [11].Once a LIA-interpolant ILIA
(in either of the two extended signatures) for the encoded pair
of formulas (ALIA, BLIA) has been generated, we translate it
back to a candidate BV-interpolant I for the original pair
(A,B), by replacing LIA-variables with the corresponding
BV-variables, LIA-numbers with their BV-encoding, and LIA-
operations with the corresponding BV-operations. More for-
mally, we proceed as follows.

1) Let β be a (partial) mapping from LIA-terms/predicates
to BV-terms/predicates. β is initialized by setting, for
every LIA-variable xt occurring in ILIA, β(xt) to the
corresponding BV-term t. Notice that, similarly to the case
of interpolation via bit-blasting, ILIA contains no auxiliary
variables, since A and B were encoded using disjoint sets
of such variables.

2) Integer constants k occurring in ILIA are mapped to BV
constants using a 2’s complement representation. The size
of the target BV-constant β(k) is determined by examin-
ing the context in which k occurs. In particular, if k is the

5Several optimizations are possible, but they are not discussed here. We refer
to [29] for the full details.

argument of a binary LIA-term or predicate t ./ k, we
encode k with a bit-vector of the same width n as β(t), 6

simply truncating if k does not fit in n bits.
3) LIA-additions and multiplications are mapped to BV-

additions and multiplications respectively, without consid-
ering potential overflow issues. (If the bit-width of β(t1)
and β(t2) are different, we extend the shortest of the
operands by padding it with zeros).

4) For floor terms b tk c, where k is a positive constant,7

β(b tk c) is set to β(t)/uβ(k).
5) LIA-equalities (t1 = t2) and inequalities (t1 ≤ t2) are

mapped to BV-equalities (β(t1) = β(t2)) and unsigned
inequalities (β(t1) ≤u β(t2)) respectively.

6) For divisibility predicates k|t, where k is a positive con-
stant, β(k|t) is set to the BV-equality (β(t)%uβ(k) =
0n), where n is the bit-width of β(t).

7) We construct I from ILIA by replacing each LIA-atom a
occurring in ILIA with β(a).

Example 3: Consider the BV-interpolation problem:

A
def
=(y1[8] = y5[4] :: y5[4]) ∧ (y1[8] = y2[8]) ∧ (y5[4] = 1[4])

B
def
=¬(y4[8] + 1[8] ≤u y2[8]) ∧ (y4[8] = 1[8]).

Encoding A and B into LIA (see Fig. 1) results in the
following:

ALIA
def
=(xy2

= 16xy5
+ xy5

) ∧ (xy1
= xy2

) ∧ (xy5
= 1)∧

(xy1
∈ [0, 28)) ∧ (xy2

∈ [0, 28)) ∧ (xy5
∈ [0, 24))

BLIA
def
=¬(xy4+1 ≤ xy2) ∧ (xy4+1 = xy4 + 1− 28σ)∧
(xy4 = 1)∧
(xy4+1 ∈ [0, 28)) ∧ (xy4 ∈ [0, 28)) ∧ (0 ≤ σ ≤ 1)

ALIA ∧ BLIA is LIA-inconsistent, and an interpolant for
(ALIA, BLIA) is ILIA

def
= (17 ≤ xy2). Using β, we obtain the

formula I def
= (17[8] ≤u y2[8]), which is a BV-interpolant for

(A,B). �

Notice that, since we encoded A and B using disjoint sets
of auxiliary variables, a formula I generated via β from a LIA-
interpolant ILIA is guaranteed to fulfill the third condition of the
definition of interpolant. However, I is not guaranteed to be an
interpolant for (A,B), as shown by the following examples.

Example 4: Consider the BV-interpolation problem:

A
def
=(y2[8] = 81[8]) ∧ (y3[8] = 0[8]) ∧ (y4[8] = y2[8])

B
def
=(y13[16] = 0[8] :: y4[8])∧
(255[16] ≤u y13[16] + (0[8] :: y3[8]))

6Notice that we can always assume w.l.o.g. that ILIA is normalized such that
all integer constants occur as argument of binary terms/predicates in which the
other argument is not a constant.

7Notice that the interpolation procedure of [11] always produces floor terms
of this form.
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and its LIA-encoding:

ALIA
def
=(xy2 = 81) ∧ (xy3 = 0) ∧ (xy4 = xy2)∧
(xy2

∈ [0, 28)) ∧ (xy3
∈ [0, 28)) ∧ (xy4

∈ [0, 28))

BLIA
def
=(xy13

= 28 · 0 + xy4
) ∧ (255 ≤ xy13+(0::y3))∧

(xy13+(0::y3) = xy13
+ 28 · 0 + xy3

− 216σ)∧
(xy13 ∈ [0, 216)) ∧ (xy13+(0::y3) ∈ [0, 216))∧
(0 ≤ σ ≤ 1).

A LIA-interpolant for (ALIA, BLIA) is ILIA
def
= (xy3

+ xy4
≤

81). However, the formula I def
= β(ILIA)

def
= (y3[8] + y4[8] ≤u

81[8]) is not an interpolant for (A,B), because I ∧ B 6|=BV ⊥.
The problem is that in BV, addition might overflow. In fact, if
we make sure this does not happen in I , then we obtain a correct
interpolant I ′ for (A,B):

I ′
def
= ((0[1] :: y3[8]) + (0[1] :: y4[8]) ≤u 81[9]).

�
The above example shows that, in the translation from ILIA

to I , overflows are an issue. However, they are not the only
problem that might arise.

Example 5: Consider the BV-interpolation problem:

A
def
=¬(y4[8] + 1[8] ≤u y3[8]) ∧ (y2[8] = y4[8] + 1[8])

B
def
=(y2[8] + 1[8] ≤u y3[8]) ∧ (y7[8] = 3[8])∧
(y7[8] = y2[8] + 1[8])

and its LIA-encoding:

ALIA
def
=¬(xy4+1 ≤ xy3) ∧ (xy2 = xy4+1)∧
(xy4+1 = xy4 + 1− 28σ1)∧
(xy2

∈ [0, 28)) ∧ (xy3
∈ [0, 28)) ∧ (xy4

∈ [0, 28))∧
(xy4+1 ∈ [0, 28)) ∧ (0 ≤ σ1 ≤ 1)

BLIA
def
=(xy2+1 = xy3

) ∧ (xy7
= 3) ∧ (xy7

= xy2+1)∧
(xy2+1 = xy2 + 1− 28σ2)∧
(xy7 ∈ [0, 28)) ∧ (xy2+1 ∈ [0, 28)) ∧ (0 ≤ σ2 ≤ 1).

A LIA-interpolant for (ALIA, BLIA), computed with the algo-
rithm of [11], is ILIA

def
= (−255 ≤ xy2

− xy3
+ 256b−1xy2

256 c).
Applying β to it, we obtain I def

= β(ILIA)
def
= (1[8] ≤u y2[8] −

y3[8]+0[8] ·(255[8] ·y2[8]/u0[8]), because of the truncations that
occur when converting the LIA-constants −255 and 256 into
8-bit BV-constants. I is not an interpolant for (A,B), since
both A 6|=BV I and B ∧ I 6|=BV ⊥. However, in this case
avoiding overflows (e.g. by using 16-bit words) is not enough:
the formula I ′

def
= (65281[16] ≤u (0[8] :: y2[8]) − (0[8] ::

y3[8]) + 256[16] · (65535[16] · (0[8] :: y2[8])/u 256[16])) is still
not an interpolant for (A,B), since A 6|=BV I ′. In this case,
we could fix the problem by using a signed inequality predicate
instead of the unsigned one in I ′: the formula

I ′′
def
= (65281[16] ≤s (0[8] :: y2[8])− (0[8] :: y3[8])+

256[16] · (65535[16] · (0[8] :: y2[8])/u 256[16]))

is a correct BV-interpolant for (A,B). �
Using signed inequality, however, does not always work.
Example 6: Consider again the interpolation problem of Ex-

ample 4 and the interpolant I ′ def
= ((0[1] :: y3[8]) + (0[1] ::

y4[8]) ≤u 81[9]) for (A,B). If we replace ≤u with ≤s in I ′,
the resulting formula is not an interpolant for (A,B) anymore.
�

As mentioned before, currently we address the potential
failures in the translation from ILIA to I by explicitly checking
whether I is a correct interpolant for (A,B), which amounts
to checking whether the BV-formula (A ∧ ¬I) ∨ (B ∧ I)
is unsatisfiable. If the test fails, we simply discard I and
resort to the last layer of our procedure. The investigation of
more effective ways of extracting BV-interpolants from LIA-
interpolants is part of ongoing and future work.

E. When Everything Else Fails

When none of the above techniques can be successfully
applied to the current conjunction of BV-constraints, we resort
to the bit-level interpolation procedure described in Sec. III.
This makes our algorithm trivially complete. Clearly however,
the effectiveness of our procedure crucially depends on how
often this last layer is needed in practice. We discuss this topic
in the following section.

F. Discussion

In the worst case, our procedure does not behave much
differently from the simple bit-level algorithm of Sec. III.
Furthermore, our algorithm is also typically more expensive
to apply, since it might result in several extra calls to an SMT
solver (for both LIA and BV) for each of the (negations of the)
theory lemmas occurring in the DPLL(T )-proof of unsatisfi-
ability, whereas the bit-level algorithm requires only one call
to an eager proof-producing SMT(BV)-solver. In fact, it is not
too difficult to craft some SMT(BV)-formulas for which our
technique will always need to resort to the bit-level interpola-
tion layer. On the other hand, for formulas for which this last
layer is not needed, our procedure has the clear advantage of
producing interpolants which preserve the word-level structure
of BV-constraints, rather than flattening everything down to the
bit level. Generally, this advantage will show up in all the cases
in which the bit-level layer is needed only for a small fraction
of the (negations of the) theory lemmas occurring in the proof
of unsatisfiability.

We argue that for interpolation problems arising in software
verification, the good cases are much more likely to occur than
the bad cases, for the following reasons.

First, as already observed by other authors (e.g. [31], [13]),
in important domains in which interpolation-based software
verification has been successfully applied (e.g. device drivers),
programs typically do not contain complex arithmetic expres-
sions. In such cases, our experiments have shown that the LIA-
based interpolation procedure of Sec. IV-D typically produces
correct BV-interpolants in practice.

The second reason is that in software verification, interpo-
lation is applied to formulas representing unrollings of the
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TABLE I
PERFORMANCE RESULTS ON C PROGRAMS REQUIRING BIT-PRECISION

KRATOS SATABS WOLVERINE
Program BV-1 BV-2 BV-3 BV-4 BV-5
byte add 1.c 31.00 T.O. M.O. 57.30 31.54 T.O. T.O.
byte add 2.c 47.98 T.O. M.O. 72.17 44.42 T.O. T.O.
num conversion 1.c 1.85 3.20 3.67 2.67 1.13 23.78 2.16
num conversion 2.c 48.04 776.53 72.12 763.16 47.73 T.O. T.O.
gcd 1.c 1.75 20.45 20.56 1.05 1.27 FAIL 515.31
gcd 2.c 29.21 M.O. M.O. 39.21 28.21 339.86 185.56
gcd 3.c 70.05 T.O. M.O. 209.34 70.59 T.O. 290.03
gcd 4.c 3.58 M.O. T.O. T.O. 4.25 T.O. 1.26
interleave bits.c 45.90 T.O. T.O. T.O. 49.01 836.78 T.O.
modulus.c 4.87 34.00 M.O. 3.30 4.15 T.O. M.O.
parity.c 387.56 M.O. M.O. T.O. 391.84 T.O. T.O.
soft float 1.c.cil.c 48.02 T.O. T.O. T.O. T.O. T.O. 136.88
soft float 2.c.cil.c 61.34 T.O. T.O. 70.02 T.O. 1101.54 177.63
soft float 3.c.cil.c T.O. T.O. T.O. T.O. T.O. T.O. T.O.
soft float 4.c.cil.c 51.67 T.O. M.O. 247.31 49.88 T.O. T.O.
soft float 5.c.cil.c 61.70 T.O. T.O. 78.54 T.O. T.O. 193.76
s3 clnt 1.BV.c.cil.c 41.06 50.82 T.O. 48.77 42.32 FAIL T.O.
s3 clnt 2.BV.c.cil.c 20.96 9.92 116.03 8.59 22.01 T.O. T.O.
s3 clnt 3.BV.c.cil.c 7.66 T.O. 93.77 T.O. 6.68 T.O. T.O.
s3 srvr 1.BV.c.cil.c 11.59 35.91 240.77 34.74 11.63 160.74 T.O.
s3 srvr 2.BV.c.cil.c 150.64 62.22 116.54 61.26 152.10 342.11 T.O.
s3 srvr 3.BV.c.cil.c 48.35 124.32 43.63 125.19 48.36 405.48 T.O.
jain 1.c 0.34 0.39 0.30 0.12 0.36 FAIL T.O.
jain 2.c 0.43 0.48 0.35 0.21 0.44 FAIL T.O.
jain 4.c 0.55 0.60 0.40 0.33 0.54 FAIL T.O.
jain 5.c T.O. T.O. T.O. T.O. T.O. FAIL T.O.
jain 6.c 0.18 0.12 0.09 0.15 0.16 FAIL T.O.
jain 7.c 0.29 0.23 0.15 0.26 0.27 FAIL T.O.
TOTAL (solved / time) 26 / 1176.57 14 / 1119.19 13 / 708.38 21 / 1823.69 23 / 1008.89 7 / 3210.29 8 / 1500.43
Execution times are in seconds. T.O. indicates timeouts (using a cutoff value of 1200 seconds), M.O. memory outs (3GBytes), FAIL
other kinds of errors (e.g. failure in computing interpolants or in refining the abstraction). All the programs are safe.

control-flow graph of programs, represented using a Static
Single Assignment (SSA) form. Such formulas make heavy use
of “definitional” equalities, i.e. equalities of the form (x = t)
in which x does not occur in t. For example, all equalities
representing an assignment statement in SSA form are of this
kind. Such equalities are exactly the kind of constraints that are
exploited by our substitution-based technique of Sec. IV-C.

Finally, as regards performance, we remark that the BV-
interpolation layers are invoked only on the (negations of the)
BV-lemmas occurring in the final DPLL(T )-proof of unsatisfia-
bility for the input problemA∧B. At solving time, only the lazy
bit-blasting procedure of Sec. IV-A is used, whose efficiency
is typically comparable to that of eager encodings into SAT. In
general, only a fraction of all the BV-lemmas discovered during
search occur in the final proof of unsatisfiability. Moreover,
such lemmas typically involve only a subset of the constraints
occurring in the formula. In fact, although not guaranteed
to be minimal, they contain very often almost no redundant
constraints, and are thus usually much easier to solve than the
whole input problem.

V. EXPERIMENTAL EVALUATION

We have implemented the procedure described in the previ-
ous section within the MATHSAT SMT solver, and we have
integrated it within KRATOS [17], a software model checker
implementing a CEGAR-based lazy predicate abstraction al-
gorithm with interpolation-based refinement in the style of [2]

(but using the “large-block” encoding introduced in [32] for
better exploiting the underlying SMT solver). In this section,
we experimentally evaluate the effectiveness and efficiency of
our technique in the context of software model checking.

All the experiments have been run on a Linux machine
with a 2.2GHz Intel Xeon CPU, using a memory limit of
3GB. All the data and executables needed for reproducing
the experiments are available at http://es.fbk.eu/people/griggio/
papers/fmcad11 bv interpolation.tar.bz2.

A. Effectiveness

In order to evaluate the effectiveness of our technique, we
have collected a set of C programs whose verification requires
the use of a bit-precise modeling of operations. These programs
can not be proved safe by KRATOS in its default configuration,
since by default it models program variables using rational
numbers, and program operations using linear rational arith-
metic (LRA) and uninterpreted functions. In particular, we use
the following benchmark sets:
– byte add and num conversion implement arithmetic opera-

tions using shifts and bit-wise operations;
– gcd check simple assertions on Euclid’s algorithm for com-

puting the greatest common divisor;
– interleave bits, modulus and parity check the correct-

ness of some “bit twiddling hacks” described at http://
www-graphics.stanford.edu/∼seander/bithacks.html;
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– soft float check simple assertions on the software floating-
point implementation used in the Picosat [33] SAT solver;

– s3 clnt and s3 srvr are modified versions of some SSH
programs used in several papers on software model checking,
in which some bit-wise and non-linear operations have been
introduced;

– jain are the simple programs used in [8].
We compare KRATOS using BV-interpolation against the

only other two software model checkers supporting BV (to the
best of our knowledge): SATABS, which implements CEGAR-
based predicate abstraction but uses weakest preconditions for
refinement [34], and WOLVERINE [35], which implements the
interpolation-based lazy abstraction of [3], using an incom-
plete rewrite-based procedure for BV-interpolation [13]. 8 For
KRATOS, we use not only the configuration in which all the
layers described in Sec. IV are active (called “BV-1”), but also
configurations in which some of the layers have been disabled
or rearranged: “BV-2” does not use equality substitution, “BV-
3” uses only the bit-level algorithm, “BV-4” tries LIA encoding
before equality substitution, and “BV-5” does not use LIA
encoding. The results of our experiments are reported in Ta-
ble I. They show that not only KRATOS outperforms the other
systems, but also that all the layers of our procedure contribute
to the performance of KRATOS, since the default configuration
“BV-1” is the clear winner. In particular, our full procedure can
solve twice as many instances as the naı̈ve configuration “BV-
3” which uses only the bit-level algorithm of Sec. IV-E. Using
“BV-1”, the final bit-level layer is needed only for four of the
programs, and always for less than 1% of the BV-interpolation
problems, and in many cases the equality substitution layer
alone is enough.

B. Efficiency

In order to evaluate the efficiency of our technique, we
compare KRATOS-BV with the default version of KRATOS
using linear rational arithmetic and uninterpreted functions, on
programs that can be verified without the need of a bit-precise
modeling of program variables and operations. We use common
benchmarks for software model checking with predicate ab-
straction, used e.g. in [18]. The results are reported in Table II.9

They show that, when the additional precision given by using
bit-vectors instead of rationals is not needed, our procedure
introduces very little overhead: KRATOS-BV-1 can solve only
one instance less than KRATOS-LRA, but in fact there are cases
in which KRATOS-BV-1 is one order of magnitude faster than
KRATOS-LRA.10 It is somewhat surprising to observe that, for
these programs, even the naı̈ve configuration “BV-3” which
uses only the bit-level interpolation layer is not dramatically
inferior to KRATOS-LRA.

8We used the latest versions of SATABS and WOLVERINE, i.e. version 2.6
and 0.5 respectively. For SATABS, we used Cadence SMV as underlying model
checker.

9We omit the results for “BV-4” and “BV-5”, as they are very similar to those
for “BV-2” and “BV-1” respectively.

10Such differences are due to the fact that the two versions of KRATOS in
general discover different sets of predicates, which lead to the exploration of
different abstract search spaces.

TABLE II
PERFORMANCE RESULTS ON C PROGRAMS NOT REQUIRING

BIT-PRECISION

KRATOS configuration
Program LRA BV-1 BV-2 BV-3
cdaudio simpl1.cil.c 37.03 61.79 53.05 59.47
diskperf simpl1.cil.c 40.14 89.25 52.63 64.55
floppy simpl3.cil.c 18.37 41.06 28.61 33.55
floppy simpl4.cil.c 36.75 91.73 47.44 58.97
kbfiltr simpl1.cil.c 1.37 1.66 1.38 1.90
kbfiltr simpl2.cil.c 1.68 2.70 2.43 2.94
s3 clnt 1.cil.c 5.59 5.20 65.34 10.62
s3 clnt 2.cil.c 4.71 5.33 20.72 7.33
s3 clnt 3.cil.c 8.52 4.87 14.72 4.86
s3 clnt 4.cil.c 3.20 6.04 29.41 T.O.
s3 srvr 1.cil.c 69.35 7.97 166.88 14.71
s3 srvr 2.cil.c 65.95 224.63 313.30 16.08
s3 srvr 3.cil.c 35.54 8.52 97.51 12.24
s3 srvr 4.cil.c 99.67 185.83 312.21 T.O.
s3 srvr 6.cil.c 90.48 25.60 24.71 163.21
s3 srvr 7.cil.c 218.26 15.10 17.28 40.26
s3 srvr 8.cil.c 72.94 13.83 170.53 23.27
s3 srvr 9.cil.c 5.43 22.92 24.50 53.44
s3 srvr 10.cil.c 9.82 14.68 14.14 255.90
s3 srvr 11.cil.c 36.47 15.49 19.03 156.01
s3 srvr 12.cil.c 19.56 60.78 47.94 328.75
s3 srvr 13.cil.c 289.77 T.O. 82.42 T.O.
s3 srvr 14.cil.c 18.16 22.50 61.08 99.72
s3 srvr 15.cil.c 24.55 27.77 27.28 20.00
s3 srvr 16.cil.c 57.93 12.13 39.05 46.38
TOTAL 25 / 24 / 25 / 22 /
(solved / time) 1271.24 967.38 1733.59 1474.16
Execution times are in seconds. T.O. indicates timeouts (cutoff time of
600 seconds). All the programs are safe.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an interpolation procedure for bit-vectors
based on lazy SMT and on a layer of different techniques
optimized for exploiting the structure of typical interpola-
tion problems arising in software verification. We have inte-
grated it in KRATOS, a CEGAR-based software model checker
with interpolation-based refinement, and our experiments have
shown that the new procedure makes it possible to verify
programs requiring a bit-precise modeling of operations which
could not be verified by KRATOS before.

For future work, we plan to explore several directions. First,
we want to investigate in more depth the problem of computing
BV-interpolants by reduction to LIA, in particular to identify
smarter ways of generating a correct interpolant in BV from
an interpolant for the LIA-encoding of the problem. Second,
we plan to experiment with the integration of other layers in
our procedure, e.g. based on the application of rewriting rules
in the style of [13]. Finally, we would also like to investigate
the problem of constructing a word-level interpolant from a bit-
level proof of unsatisfiability, by exploring the possibility of
extending the work of [12] for equality logic to more general
cases.
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Abstract—Minimally Unsatisfiable Subformulas (MUSes) find
a wide range of practical applications. A large number of MUS
extraction algorithms have been proposed over the last decade,
and most of these algorithms are based on iterative calls to a
SAT solver. In this paper we introduce a powerful technique
for acceleration of MUS extraction algorithms called recursive
model rotation — a recursive version of the recently proposed
model rotation technique. We demonstrate empirically that
recursive model rotation leads to multiple orders of magnitude
performance improvements on practical instances, and pushes
the performance of our MUS extractor MUSer2 ahead of the
currently available MUS extraction tools.

I. INTRODUCTION

A minimally unsatisfiable subformula (MUS) of an unsatis-
fiable CNF formula F is any minimal, with respect to set
inclusion, subset of clauses in F that is still unsatisfiable.
MUSes find a wide range of practical applications. For exam-
ple, MUS are used in a number of verification tasks to extract a
concise description of inconsistency. As a result, development
of effective MUS extraction algorithms is currently a very
active area of research — examples of most recent work
include [1], [2], [3], [4], [5], [6]. MUS algorithms can be
roughly categorized as constructive (or, insertion-based), as
destructive (or, deletion-based), or dichotomic. At the moment,
destructive and hybrid MUS extraction algorithms outperform
other approaches by a wide margin [1]. However, irrespective
of the approach, the main bottleneck of MUS algorithms is
the number of repeated calls to a SAT oracle.

Model rotation [1] is a method for detection of clauses that
are included in all MUSes of a given formula via the analysis
of models returned by a SAT oracle. While theoretically the
technique does not guarantee the reduction in the number of
SAT calls, in practice it does, and has been reported in [1] to
provide for considerable performance gains (up to a factor of
5). In this paper we push the idea further — we propose a
modification to the technique that in practice results in a very
large reduction in the number of invocations of SAT oracle,
significantly boosting the performance of our MUS extractor
MUSer2. One of the key aspects of the proposed technique,
which we call recursive model rotation, is that in principle it
could be used with any type of MUS extraction algorithm.

Model rotation and recursive model rotation are described
in Section III, following the necessary background in Section
II. In Section IV we demonstrate the power of the new

technique empirically. The paper is concluded in Section V
with the discussion of some of the related work and possible
enhancements to the proposed techniques.

II. BACKGROUND

While we assume the familiarity with classical propositional
logic (CPL) and SAT, here we clarify and fix the terminology
used in this paper. We focus on formulas in CNF (formulas,
from hence on), which we treat as (finite) sets of clauses. We
assume that clauses do not contain duplicate variables.

Given a formula F we denote the set of variables that
occur in F by V ar(F ), and the set of variables that occur
in C ∈ F by V ar(C). An assignment h for F is a map
h : V ar(F ) → {0, 1}. By h|¬x be denote the assignment
(h\{〈x, h(x)〉})∪{〈x, 1−h(x)〉}. Assignments are extended
to formulas according to the semantics of CPL. If h(F ) = 1,
then h is a model of F . If a formula F has (resp. does not
have) a model, then F is satisfiable (resp. unsatisfiable) and
we write F ∈ SAT (resp. F ∈ UNSAT ).

By Unsat(F, h) we denote the set of clauses falsified by
h, i.e. Unsat(F, h) = {C | C ∈ F and h(C) = 0}. If F ∈
UNSAT and for some clause C ∈ F , we have F \ {C} ∈
SAT , then C is called a transition clause for F .

Formula F is called minimally unsatisfiable, in symbols
F ∈MU , if F ∈ UNSAT and for any F ′ ⊂ F , F ′ ∈ SAT .
Equivalently, F is minimally unsatisfiable, if every clause in F
is a transition clause. Given a formula F ∈ UNSAT , a min-
imally unsatisfiable subformula of F , in symbols MUS(F ),
is any F ′ ⊆ F such that F ′ ∈ MU . In general, a given
unsatisfiable formula may have more than one MUS. Clauses
that belong to all MUSes of F are called necessary for F [7]
— clearly, every transition clause is necessary and vice versa,
as such the terms are often used interchangeably.

Most of the algorithms computing MUSes rely on the
identification of the necessary clauses of the input formula
F or its subformulas. In the constructive approach the clauses
of F are added to an initially empty set F ′ until F ′ becomes
unsatisfiable. Then, the last clause added to F ′ is necessary for
F ′. In the destructive approach the clauses are removed from
F until the resulting formula F ′ becomes satisfiable. Then, the
last clause C removed from F is necessary for F ′ ∪{C}. We
refer the reader to [1] for an overview of the state-of-the-art
in MUS computation algorithms.
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III. RECURSIVE MODEL ROTATION

Let F be an unsatisfiable formula, let C ∈ F be a transition
clause, and let h be a model of F \ {C}. Note that this
implies Unsat(F, h) = {C}. In fact, we have the following
observation [1]:

Proposition 1: Let F be an unsatisfiable formula. Then C ∈
F is a transition clause if and only if there exists an assignment
h such that Unsat(F, h) = {C}.

Proof: C is a transition clause iff F \ {C} ∈ SAT iff
there exists an assignment h such that Unsat(F \{C}, h) = ∅
iff Unsat(F, h) = {C}.

Model rotation exploits Proposition 1 to detect additional
transition clauses during the computation of MUS. Assuming
the destructive approach, let C be a transition clause detected
by invoking a SAT solver on the formula F ′ = F \ {C} —
that is, the SAT solver determined that F ′ is satisfiable, and
returned a model h of F ′, while F is known to be unsatisfiable.
A similar situation occurs in the constructive approach when
C is the clause that caused unsatisfiability of the current
subset of F . In most MUS extraction algorithms the model
h is discarded (a notable exception is MiniUnsat [5] — in
Section V we discuss the relationship of our technique with
this algorithm). However, consider the assignment h′ = h|¬x
for some x ∈ V ar(C). Clearly, C /∈ Unsat(F, h′), but
Unsat(F, h′) 6= ∅. Furthermore, if the set Unsat(F, h′)
contains exactly one clause C ′, then by Proposition 1, C ′ is
a transition clause. The model h′ (of F \ {C ′}) is said to be
obtained by the rotation of the model h with respect to clause
C and variable x. Note that now, the model h′ can be rotated
again — this time, with respect to clause C ′ and some variable
x′ ∈ C ′ — possibly giving another transition clause. Note that
x′ should be different from x, as otherwise the rotation will
give the initial model h.

Example 1: Let F = {C1, . . . , C5}, where

C1 = ¬x1 ∨ ¬x2 C3 = x2 ∨ ¬x3 C5 = x1 ∨ x2
C2 = x1 ∨ ¬x2 C4 = x2 ∨ x3

The formula F is unsatisfiable, and the clause C1 is a
transition clause for F , i.e. F1 = F \ {C1} ∈ SAT . Let
h1 = {x1, x2, x3} be the model of F1 returned by a SAT
solver. We have Unsat(F, h1) = {C1}. Let h2 = h1|¬x1

, that
is h2 = {¬x1, x2, x3}. We have Unsat(F, h2) = {C2}, and
therefore, C2 is another transition clause.
In model rotation the process is continued until for some
clause Cf and the corresponding model hf of F \ {Cf}, for
every variable x ∈ Cf the set Unsat(F, h|¬x) is either not a
singleton, or contains a clause that is already known to be a
transition clause. In the above example, the rotation stops at
h2 as Unsat(F, h2|¬x2

) = {C3, C5}.
This stopping criterion guarantees that the total number of

model rotations during the execution of an MUS computation
algorithm on formula F is at most |M | ·cmax, where M is the
computed MUS of F , and cmax is the maximum among the
lengths of clauses in M . On the other hand, each successful
model rotation (i.e. the one that detects a new transition clause)

saves a potentially expensive call to a SAT solver. Given that
in practical instances the size of MUSes rarely exceeds a few
tens of thousands of clauses, it is not surprising that model
rotation often provides for significant performance gains — in
Section IV we demonstrate these gains empirically.

We now note that in model rotation at most one variable
from each necessary clause C is used for rotation — the
original motivation in [1] was to keep the model rotation
a low overhead technique. We observe, however, that the
stopping criterion described above still guarantees that number
of rotations is linear in the size of the computed MUS, even if
all variables from C are used for rotation. On the other hand,
we have the following result:

Proposition 2: Let F be an unsatisfiable formula, let C ∈ F
be a transition clause, and let h be a model of F \{C}. Then,
the sets Unsat(F, h|¬x) for x ∈ V ar(C) are pairwise disjoint.

Proof: Let x be a variable in C, and let C ′ be some clause
in Unsat(F, h|¬x). Since C ′ /∈ Unsat(F, h), the literal of
variable x was critical in C ′ under h (that is, the only literal
in C ′ that evaluates to 1 under h). Since every clause has at
most one critical literal, the fact follows.
Hence, by performing model rotation on different variables
of C we are guaranteed to obtain disjoint sets of clauses,
thus increasing the likelihood of detecting additional transi-
tion clauses. Consider again the formula F in Example 1,
and assume that the model rotation stopped at assignment
h2 = {¬x1, x2, x3} due to the stopping criterion. We can now
“backtrack” to the assignment h1 and attempt to rotate h1 with
respect to C1 on variable x2. The rotation results in the assign-
ment h′2 = {x1,¬x2, x3}, and since Unsat(F, h′2) = {C3}
we have a new transition clause C3. Rotation of h′2 on x3
results in the assignment h3 = {x1,¬x2,¬x3}, which gives
another transition clause C4. Rotating h3 on x2 results in the
assignment h4 = {x1, x2,¬x3} at which point the rotation
terminates, because Unsat(F, h4) = {C1} and C1 is already
known to be a transition clause. In this example, such recursive
model rotation allows to detect all of the transition clauses of
F . Remarkably, as demonstrated in Section IV, the cases when
the recursive model rotation finds all, or close to all, of the
necessary clauses do occur often on practical instances. The
sketch of the algorithm for the recursive model rotation is
presented in Algorithm 1. The algorithm is invoked whenever
an MUS extractor detects a new transition clause as a result
of a call to a SAT solver.

We now note that the “if” direction of Proposition 1 can be
generalized as follows:

Proposition 3: Let F be an unsatisfiable formula. Then, for
any assignment h the set Unsat(F, h) contains at least one
clause from each of the MUSes of F .

Proof: If not, then the set F \ Unsat(F, h) includes an
MUS of F , and so must be unsatisfiable.
Proposition 3 justifies the following heuristic for selection of
clauses in deletion-based MUS extraction algorithms: when-
ever the recursive model rotation arrives at an assignment
h with |Unsat(F, h)| > 1, try to remove the clauses from
Unsat(F, h) next. The idea is that for instances with many
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Algorithm 1 RECURSIVE-MODEL-ROTATION(F , M , C, h)
Input: F — an unsatisfiable CNF formula

M ⊆ F — a set of transition clauses of F
C ∈M — a transition clause
h — a model of F \ {C}

Effect: M may contain additional transition clauses of F

1: for all x ∈ V ar(C) do
2: h′ ← h|¬x
3: if Unsat(F, h′) = {C ′} and C ′ /∈M then
4: M ←M ∪ {C ′}
5: RECURSIVE-MODEL-ROTATION(F , M , C ′, h′)
6: end if
7: end for

MUSes chances are that the clauses from this set belong to
different MUSes, and so among the next few calls to the
SAT solver, there will be UNSAT results — these, in turn,
are beneficial for the deletion algorithms which use clause set
refinement [1] to remove the clauses outside of unsatisfiable
core. Our experiments, reported in Section IV, confirm that
this rotation-based re-ordering of clauses is indeed beneficial
on some classes of problems.

IV. EXPERIMENTAL STUDY

The algorithm for recursive model rotation (RMR) is im-
plemented in our new MUS extractor MUSer2. MUSer2 is
a slightly optimized version of MUSer — an MUS extractor
from [1]. Both MUSer2 and MUSer implement HYB — a
deletion-like MUS computation algorithm that employs clause
set refinement, redundancy removal and (non-recursive) model
rotation. The results of the experimental evaluation of HYB
reported in [1] show clearly that it significantly outperforms
all of the publicly available MUS extraction algorithms — we
also reproduce some of the data from [1] in this section.

To evaluate the effectiveness of recursive model rotation
we performed a comprehensive experimental study on 500
benchmarks submitted to the MUS track of SAT Competi-
tion 2011 (http://www.satcompetition.org/2011) — this is also
the same set of instances that was used in [1] to evaluate
HYB. The benchmark instances were obtained from various
industrial applications of SAT, including hardware bounded
model checking, FPGA routing, hardware and software veri-
fication, equivalence checking, abstraction refinement, design
debugging, functional decomposition and bioinformatics. Note
that the benchmarks are pre-processed via trimming [1]. The
benchmarks are available for download at http://logos.ucd.ie/
∼jpms/Drops/SAT11. The experiments were performed on an
HPC cluster, where each node is dual quad-core Xeon E5450
3 GHz with 32 GB of memory. The timeout was set at 1200
seconds, and memory was limited at 4 GB.

Figure 1 presents the incremental-time plot that provides
an overview of the results of our experimental study. The
plot contains data from [1] for SAT4J [8] MUS extractor
in destructive mode (SAT4J-D), a destructive MUS algorithm
Picomus from the Picosat distribution [9], and the algorithm
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Fig. 1. Incremental-time plot showing data for all MUS extractors. To keep
the plot legible, the data for the first 225 instances in not shown.

TABLE I
SUMMARY OF THE PERFORMANCE OF THE VARIANTS OF MUSER2
MUSer2 Solved Total Total Avg. MUS Avg. % of
variant (from time SAT size (% of tr. clauses

500) (sec) calls input size) by rot
no MR 457 44227 1741954 93.44 n/a

with MR 474 20249 797490 93.45 61.33
+RMR 488 12609 570303 93.46 77.57

+RMR+reorder 490 12153 570867 93.44 77.44
Columns 3-6 contain data for instances solved by all variants of MUSer2.
The last column shows the percentage of transition clauses in the computed
MUS that were detected by model rotation.

HYB implemented in MUSer. The former two are the top
performing publicly available MUS extractors among those
evaluated in [1]. In addition, the plot contains data for:
MUSer2 with model rotation disabled (MUSer2 no MR),
MUSer2 (with model rotation), MUSer2 with recursive model
rotation (MUSer2 + RMR), and, finally, MUSer2 + RMR with
rotation-based reordering of clauses described in Section III.

The following conclusions can be drawn. First, we note
that MUSer2 has a clear performance edge on the currently
publicly available MUS extraction tools. Second, the compar-
ison between MUSer2 and MUSer2 without model rotation
demonstrates that model rotation, even in the form introduced
in [1], is an extremely powerful acceleration technique for
MUS extraction algorithms. Third, we note that recursive
model rotation increases the power of model rotation fur-
ther. Finally, it appears that rotation-based clause re-ordering
heuristic might also result in a slight performance edge.

Table I provides additional evidence of the power of model
rotation in general, and recursive model rotation in particular.
The table presents the number of solved instances for each of
the variants of MUSer2 in the second column. The data in the
remaining columns is for instances solved by all of the four
variants. We note that the addition of recursive model rotation
results in significant reduction in overall MUS extraction time,
and allows to solve significantly more instances. We also
point out that RMR is really a clear-win technique for MUS
extraction algorithms as the size of computed MUSes is not
affected negatively. Finally, the last column in Table I shows
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Fig. 2. MUSer2 with model rotation vs. recursive model rotation: CPU time.

the percentage of MUS clauses detected by model rotation —
over 77% on average for RMR.

Both Figure 1 and Table I show that the addition of recursion
to model rotation results in a significant performance edge.
Nevertheless, we present additional scatter plots comparing
the two versions of the technique. The plot in Figure 2 shows
that on many problems the addition of recursion results in
1, 2 and in some cases 3 orders of magnitude speed-ups.
The analysis of our experimental data suggests that recursion
allows to detect significantly more necessary clauses, in many
cases all of them.

The effect of recursive model rotation on some of the
specific classes of instances from our benchmark set are
demonstrated in Table II — debug refers to design debugging
instances, decomp refers to functional decomposition instances
(cf [10]), ibm refers to benchmarks from IBM, and intel are the
abstraction-refinement benchmarks from [6]. While for some
of the classes the performance improvements are moderate
(although exceeding a factor of 2), on instances from design
debugging and abstraction refinement we observe over 2 orders
of magnitude speed-ups.

Finally, in Table III we compare the performance of
MUSer2 with that of the resolution-based destructive MUS
extraction algorithm 1MN [6]. Since the solver that imple-
ments the latter is not publicly available, we reproduce the data
from [6]. For this experiment we used the original, untrimmed
instances, and set the timeout to 2 hours, as in [6], and
memout to 4 GB. The hardware used in our experiments
appears to be similar to the one reported in [6]. We note
that with the exception of two 4pipe instances, MUSer2 has a
clear performance advantage over 1MN — on some instance
(longmult) we observe 2 orders of magnitude speed-ups. On
4pipe MUSer2 is slower by a factor of 1.5, and on 4pipe k
it runs out of memory. The reason for the latter is the SAT
solver used in this set of experiments (picosat-935), as our
techniques have negligible memory overhead. It should be
noted that MUSer2 uses SAT solver as a black-box (as opposed
to resolution-based approach of [6] which requires significant
modifications to a SAT solver). We suspect that switching to
a more efficient SAT solver will resolve this issue.

TABLE II
MUSER2: NO ROTATION VS. RECURSIVE ROTATION, SELECTED CLASSES

Class no rotation recursive rotation
(total num time SAT num time SAT % by
num) solv. (sec) calls solv. (sec) calls rot.

debug(120) 103 7041 129651 120 65 5713 94.82
fdec(143) 143 9738 874946 143 4679 307422 64.79
ibm(45) 42 5156 204134 42 2255 66563 84.38
intel(49) 41 7441 31640 48 38 346 97.27

TABLE III
MUSER2 + RMR VS. 1MN [6]: CPU TIME (SEC)

Instance 1MN MUSer-2 + RMR MUSer-2 + RMR
+ reorder

4pipe 1417 2101 1776
4pipe 1 ooo 1528 425 477
4pipe 2 ooo 2383 1070 1227
4pipe 3 ooo 2560 593 779
4pipe 4 ooo 2432 568 600

3pipe k 167 104 90
4pipe k 1426 MO MO
barrel5 68 9 10
barrel6 348 95 150
barrel7 849 115 103
barrel8 4115 1270 2338

longmult4 14 0.4 0.4
longmult5 143 2.5 1.6
longmult6 968 13 10
longmult7 5099 103 40

V. CONCLUDING REMARKS

The analysis of models returned by a SAT solver during
MUS extraction can be attributed to [5], where it was explored
in the context of constructive MUS extractor MiniUnsat.
Nevertheless, model rotation differs fundamentally from this
work. In our view, recursive model rotation (and clause re-
ordering) is just one example of structure-based techniques
for MUS extraction. – we are currently investigating additional
techniques of similar nature.
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Abstract—We revisit pseudo-Boolean Solving via compilation
to SAT. We provide an algorithm for solving pseudo-Boolean
problems through an incremental translation to SAT that works
with any incremental SAT solver as a backend. Experimental
evaluation shows that our incremental algorithm solves industrial
problems that previous SAT-based approaches do not. We also
show that SAT-based algorithms for solving pseudo-Boolean
problems should be a part of any portfolio solver.

I. INTRODUCTION

Boolean Satisfiability (SAT) has been the subject of inten-
sive research over the past decade. Many powerful solvers
have been developed, and SAT has been successfully applied
to problems in a variety of fields, like electronic design
automation, hardware verification, AI planning, and others.
In many domains, the need for non-propositional constraints
like linear inequalities naturally arises. The Pseudo-Boolean
(PB) formalism accommodates linear constraints over Boolean
variables.

Definition 1. A Pseudo-Boolean constraint is a constraint of
the form

c1p1 + c2p2 + · · ·+ cnpn � r (1)

where � is one of the relations <, ≤, =, <, or ≥, the variables
pi (for 1 ≤ i ≤ n) can take the values 0 and 1 and the
coefficients ci are integers.1 The integer r is the right-hand
side. We call cipi a term. A PB problem is a conjunction of
PB constraints.

Several kinds of solvers can deal with PB problems. PB
satisfiability (or optimization) is a restriction of Integer Linear
Programming to 0-1 variables. As a result, ILP solvers can be
used. PB constraints can also be thought of as a generalization
of clauses. Thus, SAT techniques can be applied, e.g., the
DPLL procedure can be modified to handle PB constraints [1,
2]. An alternative is to compile PB constraints to CNF and
use an off-the-shelf SAT solver [3, 4, 5].

We revisit PB solving via compilation to SAT. An advantage
of this approach is that tools based on it automatically become
more competitive as the performance of the underlying SAT
solvers they depend on improves. Furthermore, SAT solvers
provide flexible, robust, mature, and well-engineered interfaces

1We convert the constraints to a normal form with only positive coefficients
and no relation other than ≥. In this normal form, variables can appear
negated.

that have found a plethora of interesting applications. Finally,
it is desirable to have a portfolio of complementary solvers
that in aggregate provide good performance over a large class
of PB problems arising in practice. We show that SAT-based
approaches should be an integral part of any such portfolio:
while they are not competitive on some PB problems (e.g.,
those that benefit from ILP-based techniques such as cutting
planes), they do very well on other types of problems (e.g.,
those where the ratio of propositional to arithmetic constraints
is high).

We propose an algorithm for PB solving that uses a SAT
solver for the efficient exploration of the search space, but
at the same time exploits the high-level structure of the PB
constraints to simplify the problem and direct the search. We
are primarily concerned with industrial problems and show
that our algorithm can tackle industrial PB instances that were
previously beyond the reach of SAT-based solvers.

The rest of the paper is organized as follows. In section II,
we present a class of incremental algorithms for solving PB
problems. Our algorithms are parameterized by a method for
translating from PB constraints to CNF, and in section III,
we analyze several different encoding schemes. We experi-
mentally evaluate our solver in section IV. We review related
work in section V, and conclude with section VI.

II. INCREMENTAL SOLVING

Our PB solver, PB-SAT, works by translating constraints to
CNF incrementally, in stages and performs multiple SAT calls.
Knowledge we acquire after each call allows us to simplify
the remaining untranslated constraints.

Algorithm 1 shows the basic structure of our solver. We
assume the existence of a function TRANSLATE that converts
a PB constraint C to an equisatisfiable propositional formula
TRANSLATE(C). The algorithm is independent of the specifics
of TRANSLATE.

In Algorithm 1, Φ corresponds to the set of clauses we
have generated so far. We initialize Φ so that it contains PB-
clauses: PB constraints of the form l1 + l2 + . . . + ln ≥ 1,
where the li’s are literals. Optionally, we can conjoin to Φ the
translations of cardinality constraints and other constraints that
can be efficiently encoded as clauses. Ψ, initialized to contain
the non PB-clauses, is used to record the PB constraints that
have not yet been translated to CNF.
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Algorithm 1 PB Solving by incremental translation to SAT
1: procedure PB-SAT(Ψ)
2: Φ← {φ ∈ Ψ : φ is a PB-clause}
3: Ψ← {ψ ∈ Ψ : ψ is not a PB-clause}
4: while true do
5: A,U ← SAT(Φ)
6: if A = UNSAT then return UNSAT
7: Ψ← SIMPLIFY(Ψ, U)
8: if A satisfies Ψ then return A
9: Ψ′ ← {ψ ∈ Ψ : ψ falsified by A}

10: if Ψ′ = ∅ then Ψ′ ← SELECT(Ψ)

11: Ψ← Ψ \Ψ′

12: for all ψ ∈ Ψ′ do Φ← Φ ∧ TRANSLATE(ψ)

After initialization, our algorithm enters a loop where it calls
the SAT solver on the current set of clauses, Φ (line 5). If Φ
is unsatisfiable, the SAT solver returns “UNSAT” for A and
the input to the algorithm is also unsatisfiable. Otherwise, the
SAT solver returns a partial satisfying assignment A and the
set of known unit literals, U . In line 7, we use U to simplify
Ψ, the constraints we have yet to translate. How this is done
is explained later. Now, if any full assignment that extends A
also satisfies Ψ, then A is a partial assignment that satisfies
the input to our algorithm, so we return A. Otherwise, any PB
constraints that are false under every full assignment extending
A are stored in Ψ′. The idea is to only translate these falsified
constraints in the next round, but it may turn out that A does
not falsify any of the remaining constraints. In that case, we
select a non-empty subset of Ψ to translate. (Note that Ψ 6= ∅
is an invariant holding right after line 8). Next, in line 11,
we update Ψ to reestablish the invariant that it contains the
constraints left to translate. We end the loop by translating all
the PB constraints in (the non-empty) Ψ′.

Note that we translate all constraints falsified by inter-
mediate partial assignments. However, a lazier version of
our algorithm could translate only a subset of the falsified
constraints. While there are many ways of deciding what to
translate during each iteration, the essence of our approach is
to incrementally translate constraints in order to obtain useful
information that is used to simplify the remaining constraints.

A. Simplification

The SIMPLIFY function in algorithm 1 uses units discovered
by the SAT solver during the incremental queries to simplify
the remaining constraints. We explain this with an example.

Example 1. Given the units x1 and ¬x2, we simplify the
constraint 2x1 + 2x2 + x3 + x4 ≥ 4 to x3 + x4 ≥ 2, which
we further simplify to the units x3, x4.

Notice that we propagate knowledge in both directions:
(i) we use units from SAT solving to simplify the PB
constraints, and (ii) we learn new units from PB constraint
propagation. SIMPLIFY propagates the units we know at the
PB level, as described above. This process may modify the

constraints and return new units. We give these units to
the SAT solver, and perform Boolean Constraint Propagation
(BCP). If BCP leads to more units, we repeat. We stop when
we reach a fixpoint (we no longer learn anything new).

Our incremental strategy works by considering only a subset
of the PB constraints: the ones falsified by intermediate
assignments. This lazy approach is very useful in applications
like synthesis, where we expect the PB constraints to be
satisfiable. For such applications, our approach tends to steer
the SAT solver towards satisfying assignments. In addition
since we return partial assignments, we can return many
solutions simultaneously. If the formula is unsatisfiable, by
focusing on the PB constraints that are falsified, we may wind
up discovering an unsatisfiable core of PB constraints without
encoding all the PB constraints.

B. Discovering More Units

SAT solving and propagation at the PB level as per algo-
rithm 1 may not discover all possible units. The reason is
that a SAT solver does not discover all the units implied by a
propositional formula during the search process. Algorithm 2
offers a practical way to discover more units implied by Φ. The
basic idea is as follows: we first find A, a satisfying (partial)
assignment for Φ. Now, suppose that literal l is true under A,
then l may be a unit (certainly ¬l is not), which we check with
the SAT query Φ∧¬l. We can control the time this operation
takes by imposing a limit on a resource R, for example the
decisions or the propagation steps that the SAT solver performs
(call to SAT-LIMITED in line 9).

Relying on a single assignment is not a good idea. Instead,
we maintain a set α that contains different assignments for Φ.
We only perform queries of the form Φ ∧ ¬l on variables for
which every assignment in α assigns a value (recall assign-
ments are partial) and all these values are equal (condition in
line 7). We note that this check and the assignment in line 8
can be implemented efficiently using bit-vectors. If a query on
a formula Φ ∧ ¬l returns an assignment, this assignment also
satisfies Φ, so we add it to the set α.

Algorithm 2 Extracting units implied by a formula Φ

1: procedure MORE-UNITS(Φ)
2: A,U ← SAT(Φ)
3: if A = UNSAT then return UNSAT
4: α← {A}
5: for all l ∈ U do Φ← Φ ∧ l
6: for all variables v s.t. v /∈ U ∧ ¬v /∈ U do
7: if ∀A1, A2 ∈ α : A1(v) = A2(v) then
8: l← POLARITY(A′, v) for some A′ ∈ α
9: B ← SAT-LIMITED(Φ ∧ ¬l, R)

10: if B = UNSAT then
11: U ← U ∪ {l}
12: Φ← Φ ∧ l
13: else α← α ∪ {B}
14: return PICK(α), U
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In addition to the units implied by Φ, MORE-UNITS returns a
satisfying assignment if there is one. The assignment returned
can be any of the assignments in α. Notice that we can
simply instantiate SAT in algorithm 1 with MORE-UNITS. In
our implementation, we use MORE-UNITS only on the initial
formula that contains PB-clauses and cardinality constraints.

C. Optimization

Algorithm 1 can be extended to handle optimization prob-
lems. Assume that the problem is minimizing the objective
function f(X). Whenever we get a satisfying assignment
such that f(X) = V , we add the constraint f(X) < V in
order to obtain solutions that decrement f(X) by at least
1. We also reset the variable phases to random values, so
that the next assignment will not be a small variation of the
current assignment. When the problem becomes unsatisfiable,
we report the last known V and the corresponding assignment.

Solving optimization problems by decrementing by 1 is
naive, but straightforward to implement using an incremental
SAT solver. We could have used binary search or some related
approach. That would require backtracking, which can be
implemented using assertion literals. Our preliminary analysis
indicated that using binary search would not have helped us
solve more optimization problems in the PB Competition [6],
hence we did not implement it. However, as we note in Sec-
tion IV, the community needs more industrial PB benchmarks.

III. TRANSLATION TO CNF

In this section, we explain how different encodings of
PB constraints affect the behavior of our incremental solver.
Encodings of PB constraints into CNF differ (i) in the size of
the resulting formulas, and (ii) with regards to the implications
preserved between the variables.

The notion of arc-consistency captures the desired property
of preserving implications: an encoding (say the one generated
by the function TRANSLATE) is arc-consistent if an assignment
that can be propagated on the original constraints can also
be propagated on the translated constraints. For a partial
assignment A, a PB constraint C and a literal l, if A can
be extended to a model of C but A ∪ {l} cannot, then
unit propagation on TRANSLATE(C) and A will produce ¬l.
Choosing an encoding is a trade-off between (proximity to)
arc-consistency and size.

We implemented translations through adders and BDDs, as
described in [3]. The encoding through adders is linear, but
it does not maintain arc-consistency. It works by synthesizing
a network of adders that adds up the terms in the left-hand
side, and a circuit comparing the sum to the right-hand side.
The encoding for the sum bit of full adders requires ternary
XORs, which are known to be problematic for SAT solvers.
However, adder-based encodings have the advantage that they
lead to small formulas. The benefit of an incremental approach
in this case is that we detect implications of the units we learn
by performing PB unit propagation, and simplify the problem
accordingly. Some of these implications would be lost if we
translated everything at once.

In contrast to adders, translation through BDDs is arc-
consistent; however, the size of the resulting BDDs is expo-
nential in the worst case. In our examples, some of the original
PB constraints are practically impossible to translate through
BDDs. Translation becomes possible after we learn units and
simplify the problem. In fact, our lazy algorithm sometimes
allows us to solve problems without even constructing BDDs
for PB constraints we could not directly translate.

Another reason to prefer BDDs is that they can represent
conjunctions of constraints. Frequently there are sets of PB
constraints with identical sets of variables. We can hash all
constraints with the sorted list of variables as the signature,
and conjoin the constraints mapped to the same hash value.
It is straightforward to adapt the BDD construction algorithm
of [3] to build BDDs for conjunctions of constraints. This can
lead to more compact encodings. More importantly, we can
achieve arc-consistency for the conjunction of constraints.

In general, we can mix encodings and pick the most suitable
for each constraint. We use adders only when the BDD is
too big, but we could also use sorters. Incremental translation
allows us to use BDDs more frequently.

IV. EXPERIMENTAL EVALUATION

PB-SAT is implemented in Common Lisp and uses Pi-
coSAT [7] as the backend. In principle we can use any SAT
solver that provides incremental functionality. The source code
is publicly available.2 We evaluate PB-SAT with instances
arising from industrial design problems, and with instances
from the 2010 PB Competition [6]. We used three servers
equipped with two 4-core Xeon X5677 (3.47GHz) CPUs each,
and 32GB or 96GB of RAM. In Section IV-A, we provide
evidence of one of our claimed contributions, viz., that we
have improved the state of the art in SAT-based approaches to
solving PB problems. In Section IV-B, we provide evidence
that SAT-based PB solvers should be part of any portfolio of
solvers.

A. Industrial Design Problems

We used our solver with a family of 20 industrial PB
instances generated by the CoBaSA design tool [8], where
16 are satisfiable, and 4 unsatisfiable. The instances encode
system assembly problems: an assignment is a way to assemble
system components so that various requirements are met. The
basic components in these problems are anywhere from 8
to 22 cabinets that provide resources (including CPU time,
memory and networking), about 200 applications that consume
resources, and up to 300 memory spaces. Applications and
memory spaces have to be mapped to cabinets subject to
various constraints, which we are going to briefly describe.
See [9] for a detailed description of these problems.

The most important variables in these instances are called
map variables: Mc,p is true iff the resource consumer c (e.g.,
an application or memory space) is mapped to cabinet p. Each

2http://www.ccs.neu.edu/home/vpap/pb-sat.html
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# instances CPLEX bsolo wbo SAT4J MS+ PB-SAT VPS1 VPS2
aardal 1 14 14 14 14 14 14 14 14 14

uclid 50 23 45 44 44 48 49 48 49
tsp 100 90 98 100 100 100 100 100 100

wnqueen 100 97 100 100 100 100 100 100 100
dbst 15 13 15 15 15 15 15 15 15
fpga 57 57 57 39 38 39 39 57 57

armies 12 7 6 6 7 6 8 10 10
pigeon 40 39 21 4 3 3 2 39 39

j{30,60,90,120} 81 66 65 68 68 67 67 68 68
rest 17 10 9 7 9 7 8 13 13
all 486 416 430 397 398 399 402 464 465

average time (sec) - 135.8 38.0 70.3 67.8 83.1 67.7 - -
(a) Decision Problems

# instances CPLEX bsolo wbo SAT4J PB-SAT VPS1 VPS2
feature subscription 20 0 19 10 20 19 20 20

caixa 21 21 21 21 21 21 21 21
j{30,60,90,120} 80 47 52 55 55 55 55 55

area 69 69 25 47 11 22 119 120
logic synthesis 74 71 51 27 24 30 71 71

routing 15 15 15 15 15 15 15 15
primes 156 124 105 105 104 114 127 131
factor 192 192 192 190 192 192 192 192

rest 212 137 100 109 100 72 160 167
all 939 676 580 579 542 540 780 792

average time (sec) - 30.8 50.2 48.8 25.7 81.3 - -
(b) Optimization Problems

Fig. 1. Experimental Results: Small Integers, Linear Constraints (timeout after 1800 seconds, 2GB RAM limit)

application j has to reside on exactly one cabinet, so we have
cardinality constraints of the form

∑

p∈P

Mj,p = 1,

where P is the set of cabinets in the system. We also have
resource requirements. For a cabinet p that provides rp units
of the resource r, let Cp be the set of consumers that can be
potentially be mapped to p. Each c ∈ Cp needs rc units of the
resource r. We thus have an inequality

∑

c∈Cp

rcMc,p ≤ rp.

In addition, we have structural requirements, like co-
location or separation of components. These requirements
are expressible as propositional constraints. For example, if
the applications j1 and j2 have to be co-located, for every
cabinet p there is a constraint Mj1,p ⇐⇒ Mj2,p. Therefore,
the instances contain a balanced mix of propositional and
arithmetic constraints.

The ILP and native PB solvers we tried worked very
well for this class of problems, unlike existing SAT-based
approaches. To understand why, we look at a representative
instance in more detail. The best result with MiniSat+ [3] is
91 minutes: CNF generation through sorters takes 80 minutes,

and PicoSAT can find a satisfying assignment in 11 minutes.
All other translation schemes and different SAT solvers give
worse results. For example, we ran MiniSat+ using a BDD
encoding for 2 hours, at which point it failed to complete
and was using over 80GB of RAM. In contrast, PB-SAT can
solve the instance in 32 seconds (21 seconds of PicoSAT
time) using BDDs for the translation, with the units extraction
mechanism of subsection II-B disabled. The reason is that we
learn a significant number of units that allow us to simplify
the problem. Constraint propagation reveals 7938 units. Before
the 7th and last call to PicoSAT, we know 8240 PB units.
Algorithm 2 leads to even more learned units, even with a
limit of 10 decisions per query: its execution takes 0.5 seconds,
and after its execution we know 8506 PB units. These units
improve the running time to 19 seconds. SAT solving accounts
for 9 seconds.

The instances have between 14000 and 21000 variables
and between 68000 and 93000 constraints. PB-SAT solves all
instances, taking 62 seconds on average; MiniSat+ timed out
(1800 seconds) for all instances and translation schemes.

B. Pseudo-Boolean Competition Instances

For the sake of completeness, we include experimental
results for instances from the PB competition (figure 1).
We only provide results for instances with small integers
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and linear constraints, because a wide range of solvers is
available for these. We compare against bsolo [10], wbo [11],
SAT4J [12], CPLEX [13] and MiniSat+. We run the best
known configuration of each solver: bsolo with cardinality
constraint learning, and the resolution version of SAT4J. In
the case of MiniSat+, we generate CNF formulas and run
PicoSAT, for a direct comparison with our solver. PB-SAT
solves 35 decision instances less than the best solver. The
difference can be attributed to hand-crafted instances, some of
which contain pigeonhole-like problems (e.g., “pigeon” and
“fpga”).

The results include two virtual portfolio solvers. VPS2
stands for a solver that would run all solvers in parallel and
report the best result. VPS1 is VPS2 minus PB-SAT. VPS1
“solves” 30 more decision instances than the best solver, and
our solver adds an extra instance to the mix. The combination
of PB-SAT and CPLEX [13] solves the same instances as
VPS1. The combination of CPLEX and any other solver
follows closely (1-3 instances less), while any combination
of two without CPLEX solves at most 443 instances. PB-SAT
contributes 12 extra optimization instances. According to this
analysis, the number of solved instances a solver contributes
to a portfolio of solvers is valuable information, due to the
diversity of techniques. Translation to SAT is a useful addition.

Interestingly, we do not learn any units before the last
SAT query for 448 out of the 486 decision instances. These
instances either consist entirely of clauses and cardinality
constraints, in which case we encode everything at once,
or the intermediate formulas do not imply any units. For
these problems, our incremental approach obviously does not
yield any improvements. These benchmarks problems are not
characteristic of the industrial problems we have seen, and we
encourage the community to contribute industrial PB problems
to the PB competition benchmark suite.

V. RELATED WORK

Different encodings of PB constraints into SAT have been
proposed. Bailleux et al. [4] describe a variant of the BDD
encoding. Een and Sorensson implemented the MiniSat+ PB
solver [3], which uses adders, sorters, and BDDs. Bailleux
et al. [5] present the first polynomial arc-consistent encoding.
Abio et al. [14] revisit BDDs, and provide a polynomial, arc-
consistent, BDD-based encoding. In addition, encodings for
cardinality constraints (an interesting special case) have been
explored (e.g., [15]).

Our algorithm can be viewed from the perspective of
lazy SMT [16], as we introduce just enough information for
the SAT solver to find a consistent assignment, or prove
unsatisfiability. SMT has already been used to tackle PB
problems: Cimatti et al. [17] extend the SMT framework with
the theory of costs C, and use it to express PB constraints.
Our approach differs from SMT in that we actually encode the
PB constraints, as opposed to learning a clause that precludes
a single theory-inconsistent conjunction of literals.

Our technique also bears resemblance to Abstraction-
Refinement, e.g., as applied to the theory of arrays [18].

We abstract the problem by omitting information from the
encoding, and then refine the abstraction based on assignments
that satisfy the partial encoding but not the PB formula.

VI. CONCLUSIONS

We presented an algorithm for pseudo-Boolean solving by
incremental translation to SAT, and implemented a solver
based on this algorithm. Incrementality allows our solver to
use unit literals derived from intermediate SAT queries to
simplify pseudo-Boolean constraints. In addition, we learn
units from constraint propagation at the pseudo-Boolean level.
Experimental evaluation on industrial problems shows that our
solver improves the state of the art in SAT-based approaches to
pseudo-Boolean problems and that any portfolio solver should
include a SAT-based solver.
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Abstract—A method for analyzing designs and their specifica-
tions is presented. The method makes essential use of an interac-
tive theorem prover, but is fully automatic. Given a design and a
specification, the method returns one of three possible answers.
It can report that the design does not satisfy the specification,
in which case a concrete counterexample is provided. It can
report that the design does satisfy the specification, in which
case a formal proof to that effect is provided. If neither of these
cases hold, then a summary of the analysis is reported. We have
implemented and experimentally validated the method in ACL2s,
the ACL2 Sedan.

I. INTRODUCTION

Many formal methods techniques have been developed that
help designers build complex, dependable systems. At one
extreme we have interactive theorem proving, which places
few restrictions on the kinds of systems and properties that
can be verified, but which requires well trained professionals
with a deep understanding of logic and proof. At the other
extreme, we have methods that find certain classes of errors
in a fully automated way, but which place severe restrictions
on the kinds of systems and properties they can analyze.

Is it possible to have the best of both worlds? Is it possible
to have a powerful, expressive modeling language with a
powerful deductive engine that can be used to interactively
prove theorems and that can be used to automatically generate
counterexamples? In this paper, we show how to do just that.
We present an algorithm that makes essential use of interactive
theorem proving technology but analyzes specifications in a
fully automated way.

Our algorithm allows us to turn an interactive theorem
prover into an extensible, automatic, analysis tool that can be
used by regular engineers to provide increased assurance in the
correctness of their designs. The user is responsible only for
modeling and specifying the properties of their design; they
are not responsible for providing proofs. It is in this regard
that our approach is automatic. Our approach is extensible
because it can exploit any existing or newly developed libraries
of definitions, theorems and proof techniques. For example,
the use of libraries for reasoning about non-linear arithmetic,
set theory, the theory of lists, etc, can lead to significant
improvements in the ability to prove theorems and to generate
counterexamples.

The main idea of our algorithm is to use the deductive
verification engine of an interactive theorem prover to se-

mantically decompose properties into subgoals that are either
shown to be true or that can be tested to find counterexamples.
Deduction and testing proceed in an interleaved, synergistic
fashion. When the deductive engine generates a subgoal that
it cannot further simplify, we test it by selecting a variable in
the subgoal and assigning it a value. We then use the deductive
engine to propagate the consequences of that assignment,
which may lead to further deductive simplifications or to
backtracking if propagation reveals a conflict. At this level of
abstraction, the process is similar to the DPLL select, assign,
propagate loop. There are significant differences with DPLL,
however. Variables can be over infinite domains, so selecting
variables and assigning them reasonable values requires a care-
ful analysis. Propagation in our context can involve arbitrary
deductive reasoning, e.g., it can prune away infinite subspaces.
Backtracking also requires care because it is very difficult to
analyze conflicts when variables range over infinite domains.

We present an abstract algorithm that makes minimal as-
sumptions about the underlying interactive theorem prover.
The assumptions are outlined in Section II and the abstract
algorithm is presented in Section III. We have implemented
our algorithm in the ACL2 Sedan (ACL2s), a freely available,
open-source, well-supported theorem prover that uses ACL2
as its core reasoning engine. ACL2s is an Eclipse plug-in
that provides a modern integrated development environment
designed to bring computer-aided reasoning to the masses.
ACL2s has been used in several sections of a required fresh-
man course at Northeastern University to teach several hundred
undergraduate students how to reason about programs. We
evaluate our algorithm in Section IV. We present a case study
on hardware verification and we also compare our algorithm
with Alloy on a collection of examples from the literature.
In addition, our algorithm was used by freshmen students
to debug their programs and specifications. For this purpose,
the algorithm was very successful, as in almost all cases, it
was able to automatically to generate counterexamples when
students made mistakes. Related work appears in Section V
and conclusions in Section VI.

II. PRELIMINARIES

In this section, we outline the assumptions our algorithm
depends on. We assume that the specification language L
is a multi-sorted first-order logic which can be extended by
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introducing new function and predicate symbols using well-
founded recursive definitions, and that L executable.

We further assume that properties (also interchangeably
referred to as formulas, conjectures, or specifications\) have
no nested quantifiers and are of the form hyp1∧· · ·∧hypn ⇒
concl . Properties are implicitly universally quantified.

We assume the existence of an Interactive Theorem Prover
(ITP) than can reason about specifications written in L. We
will treat the ITP as a blackbox and all that we require from
the ITP are two procedures: SMASH and SIMPLIFY.

SMASH takes as input a goal, a well-formed formula written
in L, and returns a list of subgoals. We require that SMASH
preserves validity, i.e., the conjunction of the subgoals returned
is valid iff the original goal is valid. Modern interactive theo-
rem provers use various techniques for this, including decision
procedures for Boolean logic, case analysis, evaluation, linear
arithmetic, congruence closure, and rewriting.

SIMPLIFY takes as input an L-formula, c, and a list of
assumptions, H . SIMPLIFY simplifies c assuming H is true,
and returns a single formula that is equivalent to c under
assumptions H .

An assignment of a formula is a mapping from the free
variables in the formula to values in the domain of L. An
assignment may fail to satisfy all hypotheses, hyp1, · · · hypn

of a formula P . In such a case, we say that the assignment is
vacuous. Vacuous assignments are not helpful. For example,
suppose that we are analyzing a compiler, whose specifica-
tion says that the compiler transforms well-formed programs
into semantically equivalent well-formed programs. That this
property holds for ill-formed programs is trivial, and not
interesting. Therefore, we classify assignments as either: (1)
vacuous, assignments that do not satisfy all of the hypotheses,
(2) counterexamples, assignments that satisfy all the hypothe-
ses, but not the conclusion or (3) witnesses assignments that
satisfy all the hypotheses and also the conclusion. We note

Algorithm 1 Analyze
Input: Property P

1: n := 0
2: while ¬SCond ∧ n ≤ SLIMIT do
3: A,n := Search(P ), n+ 1
4: update summary (record counterexample)
5: if SCond then
6: print summary and exit
7: S := SMASH(P )
8: if S 6= {P} ∧ S 6= {} then
9: for all p ∈ S do

10: Analyze(p)
11: if P is “goal” then
12: print summary and exit
13: return

that in order to simplify the presentation, in this paper we use
assumptions that are stronger than they really need to be. For
example, in ACL2s, we do not require that all functions are

executable.

III. THE ABSTRACT ANALYZE ALGORITHM

Analyze (algorithm 1) takes as input a property P and ana-
lyzes P by recursively decomposing P into simpler properties
and searching for counterexamples to them.

Analyze first (lines 2-4) tries to repeatedly search for coun-
terexamples until either a user-defined stopping condition is
satisfied or limit on the number of search attempts is reached.
The limit is a user-defined parameter stored in SLIMIT. The
procedure Search (described next) uses a DPLL-like algo-
rithm to incrementally search for falsifying assignments to P .
Assignments obtained are checked (if they are indeed complete
falsifying assignments) and recorded as counterexamples.

Useful information is tracked in a global data structure
summary. It is used to record counterexamples, successful
proofs (if P was proved by the theorem prover), subgoals
that failed to provide either proofs or counterexamples (these
subgoals, which correspond to a particular case of the original
property can be examined more closely by the user) and other
statistics like, the number of unsuccessful search attempts,
the number of counterexamples and witnesses found,1 and the
number of subgoals analyzed.

The user-specified stopping condition is a predicate on
summary, for example a typical stopping condition would be:
number of counterexamples found should be greater than 3; a
more intricate stopping condition would involve some notion
of coverage. If the user-specified stopping condition is satisfied
a summary of the analysis is printed and the procedure exits.
Otherwise the property is semantically decomposed (line 7)
using the SMASH procedure of the theorem prover into simpler
properties. Each such simpler property is recursively analyzed
(lines 9-10). In case the theorem prover is unable to simplify
the input property, or it successfully proves the validity of the
input property, the appropriate information is recorded and the
procedure simply returns, unless the input property is the top-
level goal, in which case (lines 11-12), we print the summary
and exit.

Searching for counterexamples

Search (Algorithm 2) takes as input a property P and
searches for a counterexample by incrementally constructing a
complete (falsifying) assignment to P . The algorithm proceeds
by selecting a free variable, assigning it a value and propa-
gating this new information to obtain a partially instantiated
property P ′. If P ′ is clearly inconsistent, then we backtrack,
otherwise we continue till we obtain a complete assignment.

The partial assignment is stored in the local stack A. Stacks
S and B record information necessary to backtrack to an
earlier state (iteration) of the search process. S stores the
sequence of partially instantiated properties. B stores the
sequence of variables in the order in which they were selected.
B also associates two values with each variable, i) number of
assigns made to the variable and ii) a string recording the type

1To simplify the exposition we only show how counterexamples are found,
but witnesses can also be found in a similar manner.
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of assignment to the variable, if it was decided by Assign,
string “decision” is stored, else string “implied” is stored.

Algorithm 2 Search
Input: Property P ,

1: local Assignment A
2: local Stack B (of (var, # assigns, type of assign))
3: local Stack S (of Property)
4: A,S :=[ ], push(P, S)
5: x0 := Select(P )
6: push((x0, 0, “na”), B)
7: while A is not complete do
8: P := head(S)
9: (x, i, ) := head(B)

10: if P has a constraint of form x = c then
11: v := [|c|]; t := “implied”
12: else
13: v, t := Assign(x, P )
14: /*Update # and type of assign of x*/
15: pop(B); push((x, i+ 1, t), B)
16: if x = x0 and i > BLIMIT then
17: return fail
18: P ′ := Propagate(x, v, P )
19: hyps := hyps(P ′); concl := conclusion(P ′)
20: if false 6∈ hyps ∧ concl 6= true then
21: A,S := push((x, v), A), push(P ′, S)
22: B := push((Select(P ′), 0, “na”), B)
23: else /*Inconsistent assignment */
24: repeat
25: S,B,A := pop(S), pop(B), pop(A)
26: (x′, i′, t′) := head(B)
27: until (t′ = “decision” ∧ i′ < BLIMIT) ∨

size(B) ≤ 1
28: if x′ = x0 ∧ (t′ = “implied” ∨ i′ = BLIMIT)

then
29: return fail
30: return A

Procedure Search first initializes A to be empty and pushes
P onto stack S. It calls the procedure Select (described next)
to choose the first variable x0 to be assigned. x0 is pushed
onto stack B, its assign counter(number of times the variable
is assigned) is initialized to 0 and the string specifying the
type of assignment is set to “na” (denoting not assigned).

The main search loop (lines 7-29) implements the iterative
construction of A. The selected variable x and property P
in the current iteration of the search loop are obtained by
reading the top of the stacks B and S. If x is constrained
by an equality(x = c where c is a constant expression), then
we simply assign x the value v (obtained by evaluating c),
otherwise, the instantiation is performed by the procedure
Assign which returns the value v to be assigned to x and
also the type of assignment t. The assign counter for x is
incremented and the type of assignment is recorded in B. We
will defer discussing the details of Assign to the next section,
for now think of it as an oracle that finds a value v that satisfies

simple local constraints involving only x. . 2

The procedure Propagate (described later) is used to
simplify P using the theorem prover in light of the new
assignment to x, deducing as much new information as possi-
ble, resulting in either a partially concretized property(P ′) or
an inconsistency. Inconsistency is (syntactically) recognized
if either false is found in the hypotheses(of P ′) or the
conclusion(of P ′) is equal to true .

If no inconsistency was found (checked in line 20), the
assignment A is extended, the partially concretized property
P ′ is pushed onto S and a free variable from P ′ is selected
and pushed onto B to be instantiated in the next iteration of
the main search loop (lines 21-22).

If an inconsistency is found, we backtrack to the last
decision (by popping the stacks and undoing the assigns in
A) that has not exhausted its limit, SLIMIT (lines 24-27).
While backtracking to the last decision, we never pop the first
variable selection stored in B at the start of the search loop.
If assigns to x0 are exhausted, then Search fails (lines 16-
17, 28-29), moreover if we backtracked to x0 and it’s type
of assign is “implied” then too we return fail. The search is
repeated until all free variables have been assigned values (line
7) returning a complete assignment (line 30).

Algorithm 3 Select
Input: P is a property

1: Do congruence closure on P
2: G := buildVariableDependencyGraph(P )
3: dagG := ComputeSCCs(G);
4: sortedListdagG := TopologicalSort(dagG)
5: X := pickLast(sortedListdagG )
6: if X is set (of mutually-dependent variables) then
7: return some vertex in X
8: else
9: return X

Selecting variables to assign

Select (Algorithm 3) procedure describes the mechanism
to choose a variable in a property. It takes as input a property
P , performs static analysis to determine a certain type of de-
pendency relationship among the variables (described below)
of P , and selects the variable with the least dependency. We
will motivate this notion of dependency in the context of the
Search algorithm with an example. In the following x, y, z, w
are constrained to be integers and hash is a standard hash
function.

P : z = y2 ∧ y = hash(x) ∧ w = hash(y)⇒ z > w2

Since we are interested in finding counterexamples, we have
four constraints to satisfy, the first three are the hypotheses,
and the final constraint is the negated conclusion. Lets assume

2In the concrete algorithm (next section) we randomly sample the variable’s
type domain, but in general one could use more heavyweight methods such
as constraint-solving.

FMCAD 2011, Page 48



there is some procedure available for assigning a value to
a variable without falsifying any constraint. Which variable
should we (select and) assign first? Notice that equality
constraint fixes the value of y as soon as x is assigned, and the
value of z and w as soon as y is assigned a value that does not
falsify other constraints. Clearly choosing x before choosing y
is beneficial from the point of view of computation i.e., we just
evaluate hash(x) to obtain the value of y. Selecting y before
x, causes difficulty in satisfying the constraint y = hash(x),
since computing the inverse hash function might be non-trivial.
Moreover, any constraint solver used in Assign might not
be powerful enough to handle non-linear arithmetic of hash .
Treating equality in a special manner we can see that there is
a certain relation among the variables of the constraints that is
similar to the notion of data dependency in compiler literature.
We shall call such a relation a v-dependency which we define
more precisely below. The idea behind the algorithm is to
select the variable with the least dependency, breaking down
the task of simultaneously solving the constraints, into a more
local directed approach of solving the constraints one by one;
we want to finally select variables in an order such that we
can reduce the chances of running into an inconsistency and
backtracking. We construct a directed graph with variables as
nodes and the directed edges in the graph denote the depends
on binary relation. The edges are also annotated with the
logical relation that caused the edge to be drawn in the first
place. We call an edge annotated with relation R an R-edge.
The variable dependency graph for P initially consists of
only nodes, one for each variable and no edges. The graph
is constructed by iterating over the constraints of P using
the following rules, which form the core of the procedure
buildVariableDependencyGraph. We assume x and y are
(distinct) free variables of P and term is inductively defined
to be either a variable, a constant expression, or a function
application with arguments that are terms.

1) If P has a constraint of the form x = c, where c is a
constant expression, we force x to be a leaf node (no
outgoing edges). Once a node is marked leaf, it overrides
the other rules.

2) If P has a constraint of the form x = fterm such that
y ∈ freeVars(fterm) and x /∈ freeVars(fterm), we add
an =-edge from node x to node y. fterm is a function
application as defined above.

3) If P has a constraint of the form x ./ fterm such that
./ is a binary relation, y ∈ freeVars(fterm) and x /∈
freeVars(fterm), we add an ./-edge from node x to node
y.

4) If P has a constraint of the form x ./ y where ./ ∈ {<
,≤, >,≥} we don’t draw an edge.

5) If P has a constraint of the form R(term1, term2,
. . ., termn), such that x ∈ freeVars(termi), y ∈
freeVars(termj), i 6= j, n ≥ 2 and R is an arbitrary n-ary
relation, then we perform the following. Let n= and n./
be the number of incoming edges to a node labeled with
= and ./ respectively. If x and y have no incoming or

outgoing edges, we add a bidirectional R-edge between
x and y, else we add a R-edge between x and y pointing
to the node (variable) that has a greater (n=, n./) value
lexicographically, else we don’t add an edge.

Using the above definition of v-dependency, procedure
Select constructs the variable dependency graph for P after
applying congruence closure (replace equivalent variables by
their representative chosen lexicographically) to P (lines 1-
2). Congruence closure helps simplify the graph since con-
straints such as x = y are quite common. After the graph
is constructed, using the forementioned rules, its strongly-
connected components are computed (lines 2-3). The resultant
directed acyclic graph (dag) obtained is topologically sorted.
The algorithm then picks the component (a set of variables)
which has no outgoing edges (i.e., has no dependency on other
components). If the component has just one variable, then
usually it is the node which is a leaf (i.e., no dependency),
in which case we return it. If there are more than one
variables to choose from (in case of multiple variables in
the connected component), the procedure returns the variable
with the lexicographically smallest name (lines 4-6). Note that
Select tries to ensure the following rule of thumb: select a
variable only when every variable it depends on has already
been assigned a value; this is not always the case.

Algorithm 4 Propagate
Input: Var x, Value v, Property P

1: hyps := hyps(P )
2: hyps.add(x = v)
3: shyps := simplifyAssumingRest(hyps)
4: concl := conclusion(P )
5: sconcl := SIMPLIFY(concl , shyps)
6: P ′ :=

∧
shyps ⇒ sconcl ; return P ′

Propagating new assignments

After a variable is assigned a concrete value, this new
information is propagated, in a way more powerful than naive
constant propagation, employing the ITP to deduce more
information. Propagate shown in algorithm 4, takes as input,
variable x, the value v (assigned to x) and the property
P . It adds the constraint x = v to the list of hypotheses
(of P ) hyps . The procedure simplifyAssumingRest takes
the modified list hyps and for each hypothesis in the list,
calls the ITP procedure SIMPLIFY to simplify the hypothesis
as much as possible, under the assumption that the rest of
the hypotheses in the list are true, resulting in a new list
of formulas shyps (line 3). Similarly, the conclusion too is
simplified by the theorem prover assuming all the formulas
in the list shyps are true (lines 4-5). Finally the partially
grounded property P ′ incorporating new deduced information
is returned in the standard form (recall that properties should
be in implication form).
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Example

We illustrate the working of Search on a simple example
involving numbers and some arithmetic functions. Consider
the following property P defined on integers x, y, z, w; hash
and min are textbook hash and minimum functions.

x = hash(y)∧y = hash(z)∧z > 0∧w < min(x, y)⇒ w < z

Before the main search loop begins, a variable is selected to be
instantiated. The variable dependency graph for P (constructed
following the forementioned rules) is shown in Figure 1.

X Y Z
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= =
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Fig. 1. Variable dependency graph for P

The graph has two strongly-connected components, one
containing just z, the other containing x, y, w. The topological
sort returns the vertices in decreasing finish times of the depth-
first search on the dag. We pick the last component (i.e.,
the one with the least dependency). Since this component z
is not a set we simply return z. After having selected the
variable to instantiate (z), we use Assign to pick a value
for it, satisfying the local constraint on it, z > 0, along
with the implicit constraint that z is an integer. Lets say the
oracle procedure Assign picked 1. Then we propagate this
assignment by adding the constraint z = 1 in P and using the
ITP to simplify the hypotheses and conclusion in light of this
new information. Propagate returns the following simplified
property:

P ′ : x = hash(y)∧y = 5184444∧w < min(x, y)⇒ w < 1

whose dependency graph is shown in Figure 2.

Y

X

W

=

<

<

Fig. 2. Dependency graph for P ′

Since false does not appear in the hypotheses(and neither
does true in the conclusion), P ′ is not inconsistent and we
add z = 1 to the partial assignment A and the search for
the rest of the assignment is continued. Note that Propagate
helps eliminate some edges in the variable dependency graph
of P , breaking cycles(mutual dependency) in the connected
component, invariably helping the Select algorithm in the next
iteration of the main search loop.

The motivation for Propagate is that one assignment to a
variable, should result in assignment of the maximum number
of remaining variables. In this case, the assignment to z, results
in y being selected (because it is a leaf node) and being
directly assigned a value by virtue of the equality constraint
y = 5184444. Notice that this is an assignment of type
“implied” and was propagated due to the decision assignment
(z = 1) by the oracle procedure Assign in the previous
iteration. This information is again propagated resulting in the
furthur grounded property:

P ′′ : x = 5562452 ∧ w < min(x, 5184444)⇒ w < 1

whose dependency graph is shown in Figure 3

X W<

Fig. 3. Dependency graph for P ′′

Notice that since x is constrained to be equal to the constant
expression 5562452, it is a leaf node and this eliminates the
edge that existed in Fig 2 from x to w. The last node in the
topological sort of the dag of Fig 3, x, is returned by Select,
thereby forcing a value satisfying the equality constraint x =
5562452. This assignment is further propagated, resulting in
the almost grounded property having just one free variable:

P ′′′ : w < 5184444⇒ w < 1

Assigning w (using implicit constraint that w is an integer
and the local constraints w < 5184444 and w ≥ 1) a
value 0 or value 5184445, will lead to inconsistency (after
the propagation), in which case we need to throw away the
current assign. If in the process we exhaust the limit on number
of assigns (BLIMIT) for w we backtrack all the way to the
decision variable z, by undoing the assignment for x and y,
in A, popping P ′′ and P ′ from S and continuing (the main
search loop). If an assign to w, say w := 2, did not lead to
an inconsistency, then we have a complete assignment A, we
quit the loop and return A, which is a counterexample of P .

We have implemented the proposed method in ACL2
Sedan [10]. We employ the ACL2 interactive theorem proving
system [15] to provide the interface methods SIMPLIFY and
SMASH. The engineering of the interface with the ACL2
theorem prover and the extension to ACL2, in support of this
interface, is described in [5]. We will briefly describe how we
implemented the Assign method that was left unspecified. In
view of delegating most of the heavy work to the theorem
prover we incorporated the lightweight method of random
testing inspired by the success of Quickcheck-like tools [6].
ACL2 formulas tend to be executable, hence testing in ACL2
simply involves executing a formula under an instantiation of
its free variables. To assign a value to a variable, we need
to know its domain, which in a given formula is decided
by the “type-like” hypotheses constraining the variable. The
domain can be characterized by an enumerator which is a
surjective function from natural numbers to elements of the
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domain. In our implementation we enable automatic testdata
generation by supporting a notion of an enumerable type in the
otherwise untyped language of ACL2. Separation of concerns
between enumerators and random number generators also
gives us the flexibility to choose between pseudo-geometric,
pseudo-uniform random testing and bounded exhaustive test-
ing. Assign does static analysis to infer the (enumerable) type
of a variable from the type hypotheses of P , if the domain
of the type is greater than one, we decide a value to return
(using the enumerator and the chosen sampling distribution),
otherwise, we simply return the implied singleton value.

IV. EXPERIMENTAL EVALUATION AND DISCUSSION

We present two experiments3 to evaluate our method. In
Section IV-A, we present an in-depth hardware case-study,
analyzing the design of a simple, yet non-trivial, pipelined
machine, demonstrating the effectiveness of our method in
uncovering subtle design errors. In Section IV-B we compare
our method with the popular Alloy method (Alloy modeling
language and Alloy Analyzer). We modeled various Alloy
examples in ACL2 and analyzed them with our method.
We find counterexamples to all failed properties (falsified by
Alloy), but more importantly we prove all the properties that
Alloy posits are theorems (based on the absence of small coun-
terexamples). Surprisingly, in addition to the counterexamples,
we also found all the proofs, automatically.

A. Hardware: Finding hazards in a Pipeline Machine

Pipelining is a key optimization technique used to increase
performance in modern microprocessors. The instruction-set
architecture (ISA) model is a natural functional specification
for any pipelined design. The correctness of the implemen-
tation i.e., machine architecture (MA) can be established
by showing that all behaviors (execution traces) of MA are
observationally equivalent to behaviors of its specification
(ISA).

We analyze a three stage pipeline, consisting of fetch,
read, and execute/write-back stages. The machine fetches an
instruction pointed to by the program counter in the fetch
stage, reads the source register from the register file in the
read stage, and updates the destination register with the result
of the operation it performs (execution) in the write-back
stage. The primary challenge in designing a correct pipeline
implementation is respecting program dependency and avoid-
ing resource conflicts among instructions that are in different
stages of the pipeline. Consider the following sequence of
ADD instructions:

I1 : r3 = r2 + r1

I2 : r4 = r3 + r2

Instruction I2 will read stale data for register r3, if read
phase of I2 overlaps with the execution phase (write-back)
of instruction I1. In such a scenario (called Read-after-Write

3We recommend the reader download the experiments from
http://ccs.neu.edu/home/harshrc/fmcad11

data hazard), to correctly handle the data dependency, the
pipeline must be stalled to allow the older instruction (I1)
to execute and update the destination register (r3) before the
younger dependent instruction (I2) reads it. In our pipeline
machine model, we will on purpose introduce a design error
by failing to stall the read for I2 in the above scenario. Another
scenario that we consider is related to handling of branch/jump
instructions. By the time, the program counter is updated to
fetch from the target of a BEZ/JMP instruction, subsequent
instructions from the sequential program code have already
been fetched. To prevent the wrongly fetched instruction
from polluting the architectural state (control hazard), it is
required to invalidate the latches holding information related
to instructions from the wrong execution path. A common
error occurring in initial phases of the design of a pipeline
machine, is to forget invalidating latch 2, in the scenario that
latch 1 is invalid (explain a little more).

The objective of the experiment was to evaluate the ef-
fectiveness of our method to find these important and subtle
design errors (data and control hazards). How do we find these
bugs using our method? Given that the designer has written
both the ISA and MA models of the pipeline machine, one just
needs to formalize the aforementioned correctness definition
and analyze it. We will use a notion of refinement, where the
main idea is to show that infinite behavior of MA and ISA
are observationally equivalent under an appropriate refinement
map. By using the theory of Well-founded equivalence bisim-
ulation (WEB) refinement, we can establish this by proving a
local property that only requires reasoning about MA states,
their successors, and ISA state and their successors [17]. The
refinement map is straightforward, except for the matter of
relating the program counters of MA and ISA states. Since
the observable effect of any instruction only appears in the
write-back stage, the observable program counter is simply
the PC value of the oldest instruction in the pipeline. Let M ′

denote the state of the machine after it has taken one step
i.e., it has been run for one hardware clock cycle. Then the
safety part of our WEB refinement proof obligation is that if
ISA state S and MA state M are observationally equivalent,
and both take a step to S′ and M ′ respectively, then either S
is observationally equivalent to M ′, or S′ is observationally
equivalent to M ′ (stepping MA for one cycle resulted in an
observable architecturalfallback change) i.e., (obs= S M)
⇒ (obs= S M’) ∨ (obs= S’ M’)

Analyzing this high-level property, our method is able to
uncover both the design errors in our MA machine which
manifested as hazards. The counterexamples (instances of
MA that falsified the safety property) were illuminating; they
pointed out the kind of hazards and the scenarios in which they
occurred. We recommend the reader to play around with the
model provided to see if the tool can uncover other scenarios
he/she has seen before.

A few observations are in line. No assertions were provided.
No lemmas were written down. No manual tests (micropro-
grams) were provided as inputs. No test driver needed to be
given. The only effort on part of the designer was in writing
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the ISA and MA models in ACL2, defining the datatypes (used
for automatic test data generation), specifying the abstraction
function (for observational equivalence) and formulating the
high-level correctness property.

B. Software: Comparison with Alloy

Alloy [13] is a declarative modelling language based on
sets and relations, primarily used for describing high-level
specifications and designs. Alloy Analyzer [14] is a tool
that supports automatic analysis of models written in Alloy.
Given a bound on the number of model elements, called
scope, the Alloy Analyzer (AA) translates Alloy models (and
its specifications\) into Boolean formulas, uses off-the-shelf
SAT solvers to generate satisfying instances and translates
them back to corresponding set and relation instances of the
objects in the model. Alloy is a first-order relational logic
with transitive closure, which allows expressing rich structural
properties using succinct expressions. However to enable fea-
sible automatic analysis, it has poor support for two features
that we feel naturally apply in many types of modelling/design
examples: recursive definitions and arithmetic. The ACL2
language, on the other hand, has excellent support for recursive
definitions (in fact, most interesting properties are expressed
using recursive definitions\) and arithmetic [19]. In view of this
(and our limited Alloy expertise), we avoid doing a comparison
on problems that we perform well (e.g., the property involving
hash function in Section III is inexpressible in Alloy due to
absence of multiplication), and restrict ourselves to examples
(from the Alloy distribution) that we think Alloy performs well
on.

Alloy Analyzer Our method
Property Scope Time Result Time Result

delUndoesAdd 31 80.91 – 0.07 QED
addIdempotent 31 112.66 – 0.19 QED

addLocal 3 0.05 CE 12.63 CE
lookupYields 3 0.05 CE 0.83 CE

writeRead 44 179.89 – 0.02 QED
writeIdempotent 29 98.03 – 0.01 QED
hidePreservesInv 87 86.03 – 0.26 QED

cutPaste 3 0.19 CE 0.49 CE
pasteAffectsHidden 29 138.34 – 0.42 QED
markSweepSound 8 29.03 – 0.28 QED

markSweepComplete 7 46.51 – 0.34 QED

TABLE I
COMPARISON WITH ALLOY ANALYZER (AA)

We analyzed 11 properties from 4 Alloy problems (speci-
fications\), except the markSweep problem, all the others are
from the Alloy book [13] and can alternatively be downloaded
from the Alloy distribution.4 Table 1 shows results, comparing
the performance of our method implemented in ACL2s, with
the performance of the Alloy Analyzer (AA). The time (in
seconds) is measured on an Intel Core i3, 2.8GHz, 4GB
memory machine. The Alloy analysis time is the total of the
time spent on generating CNF and solving it using the SAT4J

4Alloy Analyzer 4: http://alloy.mit.edu/alloy4

solver. The time taken by our method is what the ACL2 macro
time$ reports and includes the time taken by the ACL2
theorem prover. The Scope column for AA either denotes the
minimum scope that finds a counterexample, or the maximum
scope for which AA can check the property before reaching the
timeout fixed at 180 seconds. The Result column shows either
’CE’,’QED’ or ’–’, that stand for Counterexample found, Proof
found, Neither Counterexample nor Proof found, respectively.

The first 4 properties are from the model of an email client’s
address book supporting aliases and groups, the writeRead
and writeIdempotent properties are from the abstract memory
problem, the next 3 properties are from an Alloy model de-
scribing the design of a media file management software. The
last 2 rows are the Soundness and Completeness properties of
the mark-and-sweep model, where live (reachable from root)
nodes of the heap are marked and garbage (unreachable from
root) nodes are sweeped into a freelist. The mark-and-sweep
Alloy model was taken from an experiment in [12] where
Alloy specifications are automatically translated to SMT2
language supported by the Z3 SMT solver [9].

We took the above examples and modelled them in the
ACL2 language; mimicking the original formulation in Alloy
as much as possible. In particular we used set types and map
types i.e., binary relations, which are part of the rich datatype
support provided by ACL2s [10]. These respectively make use
of the ordered sets library [8] and the records library [16]) in
the ACL2 standard library distribution. These libraries provide
a generic collection of reasoning rules (used in rewriting)
about sets and records. In fact they are powerful enough
to prove all the properties that Alloy exhaustively checked
within the scope. No intermediate lemmas were provided,
no hint or guidance was offered to the theorem prover, the
proof of pasteAffectsHidden by ACL2s was as unassisted as
the counterexample generated by Alloy for cutPaste. The
counterexamples generated by our method, in few cases,
required a change in the ACL2s settings when random testing
(default) was not good enough to catch the counterexample,
we had to revert to bounded exhaustive testing, which is also
as automatic as Alloy, but not as efficient, as we observe in
Table 1 in the entry of addLocal.

In experiments shown in [12], it is found that the correct-
ness of the translated (from Alloy into Z3) mark-and-sweep
model could not be proven by Z3; the authors mention that
this problem is particularly difficult due to the fact that the
simulation of recursion involved in mark-and-sweep by transi-
tive closure results in deeply-nested quantifiers that Z3 cannot
handle. We modelled the problem in ACL2, used sets and maps
as mentioned before, the mark procedure (involving transitive
closure) is modelled using a simple recursive definition. We
then formalize the following properties that imply correctness:
Soundness: No live node appears in the freelist
Completeness: All garbage nodes are eventually collected
We were able to prove the above properties automatically.
Again, no domain-specific lemmas were used, no hints were
given to the theorem prover, no expert knowledge of theorem
prover was required. This might seem surprising, and we
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must deflate some optimism here, by pointing out that this
automation will not scale for non-trivial models, but surely
we must not overlook the effectiveness of powerful libraries
(e.g., set reasoning) by the tool-writer put to use by the choice
of right abstractions (e.g., using set datatypes) by the designer.

V. RELATED WORK

Counterexample Generation in Interactive Theorem Provers

Random Testing is a well-studied, scalable, lightweight
technique for finding counterexamples to executable formulas.
Many Interactive Theorem Provers motivated by the success
of QuickCheck and related random testing tools [6] have
implemented random testing libraries e.g., Isabelle/HOL [1],
Agda [11] and PVS [18]. The other standard technique for
generating counterexamples for a conjecture is to use a SAT or
SMT solver. This requires translating from a rich, expressive
logic to a restricted logic with limited expressiveness. The
major constraint on such approaches is that a counterexample
to the translated formula should also be a counterexample
to the original formula. However, the absence of a coun-
terexample does not imply that the conjecture is true. Some
tools making use of the above technique are Pythia [20],
SAT Checking [21], Refute [22] and Nitpick [2]. The work
mentioned above has the same goal as our work: automatically
exhibit counterexamples to false properties. However, unlike
our work, none of the above mentioned approaches use the
interactive theorem prover to generate counterexamples for
arbitrary properties.

Combining Testing and Interactive Theorem Proving

Ideas for combining formal specifications and testing date
back to at least 1981 [4]. One of the first examples of
combining testing and interactive theorem proving was carried
using Agda [11]. Random testing was used to check for
counterexamples, and the point was made that the user could
apply random testing also to subgoals. Another instance of
leveraging a theorem prover to improve testing is the HOL-
Testgen tool [3] which was designed for specification-based
testcase generation. Compared to the above approaches, our
method has a more fine-grained and tighter integration with
the interactive theorem prover.

A. Automatic Analysis tools

Alloy is a declarative specification language based on re-
lations and sets. The Alloy Analyzer can automatically find
small counterexamples to Alloy specifications. This is done by
translating the Alloy specification into a boolean satisfiability
formula and using an off-shelf SAT Solver to find a solution.
Model checking [7].

VI. CONCLUSIONS

We presented an algorithm that uses an interactive theorem
prover to automatically analyze models and specifications. Our
approach has several advantages over related work. It allows
designers to use expressive languages to model systems at
various levels of abstraction, with support for data structures,

arithmetic, and recursive procedures. It is fully automated
and compares favorably to existing methods for analyzing
high-level models. Our algorithm is implemented and freely
availabe in ACL2s, the ACL2 Sedan.
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Abstract—Networks of Hybrid Automata are a clean modelling
framework for complex systems with discrete and continuous
dynamics. Message Sequence Charts (MSCs) are a consolidated
language to describe desired behaviors of a network of interacting
components. Techniques to analyze the feasibility of an MSC over
a given HA network are based on specialized bounded model
checking techniques, and focus on efficiently constructing traces
of the network that witness the MSC behavior. Unfortunately,
these techniques are unable to deal with the “unfeasibility” of
the MSC, i.e. that no trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility:
first, we propose specialized techniques to prove that an MSC
can not be satisfied by any trace of a given HA network; second,
we show how to explain why an MSC is unfeasible.

The approach is cast in an SMT-based verification framework,
using a local time semantics, where the timescales of the automata
in the network are synchronized upon shared events. In order
to prove unfeasibility, we generalize k-induction to deal with
the structure of the MSC, so that the simple path condition
is localized to each fragment of the MSC. The explanations
are provided as formulas in the variables representing the time
points of the events of the MSCs, and are generated using
unsatisfiable core extraction and interpolation. An experimental
evaluation demonstrates the effectiveness of the approach in
proving unfeasibility, and the adequacy of the automatically
generated explanations.

I. INTRODUCTION

Complex embedded systems (e.g. control systems for rail-

ways, avionics, and space) are made of several interact-

ing components, and feature both discrete and continuous

variables. Networks of communicating hybrid automata [18]

(HAs) are increasingly used as a formal framework to model

and analyze the behavior of such systems: local activities of

each component amount to transitions local to each HA; com-

munications and other events that are shared between/visible

for various components are modelled as synchronizing transi-

tions of the automata in the network; time elapse is modelled

as implicit shared timed transitions.

A fundamental step in the design of these networks is the

validation of the models performed by checking if they accept

some desired interactions among the components. The lan-

guage of Message Sequence Charts (MSCs) and its extensions

are often used to express scenarios of such interactions. MSCs

are especially useful for the end users because of their clarity

and graphical content.

The ability to check whether a network of HAs may exhibit

behaviors that satisfy a given MSC is an important feature

to support user validation. Efficient techniques to analyze the

feasibility of an MSC over a given HA network are based on

specialized bounded model checking techniques, and focus on

efficiently constructing traces of the network that witness the

MSC behavior. Unfortunately, these techniques are unable to

deal with the unfeasibility of the MSC, i.e. the case where no

trace of the network satisfies the MSC.

In this paper, we tackle the problem of MSC unfeasibility,

along two main directions: first, we propose specialized tech-

niques to prove that an MSC cannot be satisfied by any trace

of a given HA network; second, we show how to explain why

an MSC is unfeasible.

In order to prove unfeasibility, we propose a specialized

algorithm, which generalizes k-induction to deal directly with

the structure of the MSC. The search is structured around the

events in the MSC, which are used as intermediate “islands”.

In addition to pre-simplifying the encoding of the fragments of

the MSC between events, we apply the simple path condition

to each fragment, so that the encoding length of each fragment

is no longer increased as soon as we detect that no new states

can be reached. The MSC is deemed unfeasible for the network

when no fragment can be further extended.

In order to explain why an MSC is unfeasible, our approach

can generate various information. One is a subset of the MSC

that is itself unfeasible for the network, which helps to focus

on a subset of the messages, and on the HAs in the network

that are involved. Another one is a set of timing conditions

over the events in the MSC, which are themselves sufficient

to conclude unfeasibility. The explanations are provided as

formulas in linear arithmetic, constraining the assignments

to the variables representing (some of) the time points of

the events of the MSCs. To the best of our knowledge, this

is the first work explaining MSC unfeasibility. We remark

that here we are trying to provide diagnostic information in

case of a false existential property, and thus the traditional

diagnostics used in model checking for universal properties

(e.g. simulation traces) provides no help.

The technical underpinning of this work is the “local time”

semantics [6] for HAs, which exploits the fact that automata

can be “shallowly synchronized”. The intuition is that each au-

tomaton can proceed based on its individual “local time scale”,

unless they perform a synchronizing transition, in which case

they must realign their absolute time. The framework allows

to reason locally about the simple path conditions for each

process, and also to extract more structured explanations,

possibly not involving all the processes in the network and
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the MSC events.

We implemented the approach and carried out an extensive

evaluation, over a wide set of networks and benchmark MSCs.

The new approach is able to effectively refute MSCs, signif-

icantly outperforming the corresponding approaches based on

automata construction, and to provide interesting explanations.

The paper is structured as follows. In Section II, we present

some background on networks of HAs, on SMT, and on k-

induction. In Section III-A, we describe the language we use

to describe the scenarios and the SMT encoding based on their

structure. In Section IV, we discuss MSC-direct induction. In

Section V, we discuss method to find explanations of unfeasi-

bility. In Section VI, we discuss related work. In Section VII,

we experimentally evaluate our approach. In Section VIII, we

draw some conclusions.

II. BACKGROUND

A. Networks of hybrid automata

A Labelled Transition System (LTS) is a tuple 〈Q,A,Q0, R〉
where Q is the set of states, A is the set of actions/events

(also called alphabet), Q0 ⊆ Q is the set of initial states,

R ⊆ Q×A×Q is the set of labeled transitions.

A trace is a sequence of events w = a1, . . . , ak ∈ A∗.

Given A′ ⊆ A, the projection w|A′ of w on A′ is the sub-

trace of w obtained by removing all events in w that are not

in A′. A path π of S over the trace w = a1, . . . , ak ∈ A∗

is a sequence q0
a1→ q1

a2→ . . .
ak→ qk such that q0 ∈ Q0 and,

〈qi−1, ai, qi〉 ∈ R for all i such that 1 ≤ i ≤ k. We say that

π accepts w.

The parallel composition S1||S2 of two LTSs S1 =
〈Q1, A1, Q01, R1〉 and S2 = 〈Q2, A2, Q02, R2〉 is the LTS

〈Q1 ×Q2, A1 ∪A2, Q01 ×Q02, R〉 where:

R :={〈〈q1, q2〉, a, 〈q′
1, q

′
2〉〉 |〈q1, a, q′

1〉 ∈ R1, 〈q2, a, q′
2〉 ∈ R2}

∪{〈〈q1, q2〉, a, 〈q′
1, q2〉〉 | 〈q1, a, q′

1〉 ∈ R1, a 6∈ A2}
∪{〈〈q1, q2〉, a, 〈q1, q′

2〉〉 | 〈q2, a, q′
2〉 ∈ R2, a 6∈ A1}.

The parallel composition of two or more LTSs S1|| . . . ||Sn

is also called a network. If an event is shared by two or more

components, we say that the event is a synchronization event;

otherwise, we say that the event is local. We denote with τi
the set of local events of the i-th component.

Given a network N and a state q ∈ Q1 × . . . × Qn, the

reachability problem is the problem of checking if there is a

path q0
a1→ q1

a2→ . . .
ak→ qk of S with qk = q.

Hybrid Automata (HAs) [18] enrich the discrete states and

transitions of LTSs with continuous variables and further

conditions that constrain how these variables continuously

evolve within a discrete state. In particular, a HA is a tuple

〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where:

• Q is the set of states,

• A is the set of events,

• Q0 ⊆ Q is the set of initial states,

• R ⊆ Q×A×Q is the set of discrete transitions,

• X is the set of continuous variables,

• µ : Q → P (X, Ẋ) is the flow condition,

• ι : Q → P (X) is the initial condition,

• ξ : Q → P (X) is the invariant condition,

• θ : R → P (X,X ′) is the jump condition,

where X ′ represent the value of variables X after a discrete

transition, Ẋ represent the derivative of variables X during a

continuous evolution, and P represents the set of predicates

over the specified variables.

A Linear HA (LHA) is an HA where all the conditions

are Boolean combinations of linear inequalities and the flow

conditions contain variables in Ẋ only. We assume also

that the invariant conditions of a LHA are conjunctions of

inequalities.

A network H of HAs is the parallel composition of two

or more HAs. We consider the local-time semantics, which is

equivalent to the standard global-time semantics of [18], but

instead of synchronizing the components on a shared timed

event, it enriches all shared events with time-stamps, intro-

duces local timed events, and synchronizes the components on

shared events forcing the time-stamps to be equal [6], [10].

In the following, we consider a network H = H1|| . . . ||Hn

of HAs with Hi = 〈Qi, Ai, Q0i, Ri,Xi, µi, ιi, ξi, θi〉 such that,

for all 1 ≤ i < j ≤ n, Xi ∩Xj = ∅ (i.e. the set of continuous

variables of the hybrid automata are disjoint).

The local-time semantics (or time-stamps semantics) of H
is the network of LTSs NLOCTIME(H) = S1|| . . . ||Sn with Si =
〈Q′

i, A
′
i, Q

′
0i, R

′
i〉 where:

• Q′
i = {〈q, x, t〉 | q ∈ Qi, x ∈ R|Xi|, t ∈ R≥0},

• A′
i = {〈a, t〉 | a ∈ Ai, t ∈ R≥0} ∪ {TIMEi},

• Q′
0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},

• R′
i = {〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈

Ri, 〈x, x′〉 ∈ θi(q, a, q
′), x ∈ ξi(q), x

′ ∈ ξi(q
′)} ∪

{〈〈q, x, t〉, TIMEi, 〈q, x′, t′〉〉 | there exists f satisfying

µi(q) s.t. f(t) = x, f(t′) = x′, f(ǫ) ∈ ξi(q), ǫ ∈
[t, t′], t ≤ t′}.

The definition of the local-time semantics is such that the

set of actions of each LTS contains a local timed event TIMEi

and couples containing a discrete action and a time-stamp (i.e.

the amount of time elapsed in the automaton). Thus, each

automaton performs the time transition locally, changing its

local time-stamp. When two automata synchronize on 〈a, t〉
they agree on the action a and on the time-stamp t. Instead,

in the global-time semantics, all the automata are forced to

synchronize on the time transition 〈TIME, δ〉, agreeing on the

time elapsed during the transition (δ variable).

B. SMT encoding of hybrid automata

As described in [18], LHAs can be analyzed with symbolic

techniques. Let us consider a network H = H1|| . . . ||Hn

of LHAs whose semantics is given by the network of LTSs

S1|| . . . ||Sn where Si = 〈Qi, Ai, Qi0, Ri〉. The states Qi can

be represented by a set Vi of symbolic variables. The events of

Ai can be represented by a set of symbolic variables Wi. Sets

of states are represented with formulas over Vi, while sets of

transitions are represented with formulas over Vi, Wi, and V ′
i ,

which are the next values of Vi. In particular, it is possible to

define a formula Ii(Vi) that represents the initial states and a

formula Ti that represents the transitions of Hi.
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The details of the encoding we use can be found in [8].

Here, we just notice that we use a scalar input variable ε to

represent the events of Hi adding two distinguished values,

namely T and S, to represent a timed transition and stuttering,

respectively. When stuttering, the system does not change any

variable. Moreover, when using the local-time semantics, the

variable ti represents the local time of Hi and is also used as

time-stamp of the events (thus, to ensure that shared events

happen at the same time).

As standard in Bounded Model Checking, given an integer

k, we can build a formula whose models correspond to all

paths of length k of the represented LTS S. The formula

introduces k+1 copies of every variable in the encoding of the

automata. Given a formula φ, we denote with φi the result of

substituting the current and next variables of φ with their i-th
and (i+ 1)-th copy, respectively. The paths of S of length k
can be encoded into the formula path(k) := I0 ∧ ∧

0≤i<k T
i.

A typical optimization used in BMC for timed and hybrid

systems is to force the alternation of timed and discrete

transitions [1], [4].

Most of modern solvers, both for SAT and SMT, have an

incremental interface such that, if a problem is fed to the solver

incrementally, the solver can first tackle smaller parts of the

problem and then pass to large parts managing to reuse the

lemmas discovered during the previous searches.

C. K-induction

K-induction [32] is a technique that proves that if a set of

states is not reachable in k steps, then it is not reachable at all.

On the lines of the induction principle, it consists of a base

step, which solves the bounded reachability problem with a

given bound k of steps, and an inductive step, which concludes

that k is sufficient to solve the (unbounded) reachability

problem. The idea of the inductive step is to check either

if the initial states cannot reach new (non-visited) states in

k + 1 steps, or if the target set of states cannot be reached in

k+1 steps (hereafter, we will consider only the first condition).

These checks can be solved by means of satisfiability.

The formula simple(k) :=
∧

0≤i<j≤k ¬∧
v∈V v

i = vj can

be used to strengthen the path encoding to represent only

simple (loop-free) paths. If the formula kind(k) := I(V 0) ∧
π(k+1)∧simple(k+1) is unsatisfiable, then there is no initial

simple path with more than k states. Thus, if, for all i ≤ k,

path(k) ∧ targetk is unsatisfiable and kind(k) is unsatisfiable

as well, then target is not reachable.

If the target is not reachable in a finite-state LTS, there is a

k for which the above conditions are unsatisfiable. In hybrid

systems, it is very common that the LTSs contain infinite paths,

typically with monotonically increasing variables (such as the

local time) and, therefore, it is difficult to apply k-induction.

In [33], k-induction has been integrated with predicate

abstraction [16] to deal with infinite-state systems. Typically,

an abstraction defines an equivalence relation EQα among the

the concrete states that are not distinguished by the abstraction.

As for predicate abstraction, given a certain set P of predicates

over the variables V , the equivalence relation is defined as

EQP(V, V ) :=
∧

P∈P P (V ) ↔ P (V ).
Abstract k-induction embeds the definition of the predicate

abstraction in the encoding of the path. In particular, the for-

mula pathα(k) :=
∧

1≤h<k(T (V h−1, V h) ∧ EQα(V h, V h)) ∧
T (V k−1, V k) is satisfiable iff there exist a path of k steps in

the abstract state space. The formula simpleα(k) is defined

as simpleα(k) :=
∧

0≤i<j≤k ¬EQα(V i, V j). The formula

pathα(k) ∧ simpleα(k) is satisfiable iff there exists a simple

path of length k in the abstract state space. Finally, the

formula kindα, defined as kindα(k) := I(V 0)∧EQα(V 0, V 0)∧
pathα(k) ∧ simpleα(k), is satisfiable iff there exists an initial

simple path of length k.

Similarly to the concrete case, if, for all i ≤ k, pathα(k) ∧
EQα(V k, V k)∧ targetk is unsatisfiable and kindα(k) is unsat-

isfiable as well, then target is not reachable in the abstraction

(and therefore also in the concrete state space).

III. MSC FEASIBILITY

A. Constrained Message Sequence Charts

A Message Sequence Chart (MSC) [20] defines a single

(partial-order) interaction of the components of a network N .

MSCs have been extended in several ways. We consider here a

particular variant, enriched with additional constraints, which

turns out to be very useful and easy to handle with the SMT-

based approach.

An MSC m is associated with a set of events Am ⊆
AN , subset of the events of the network. We assume that

Am contains all and only the shared events of the network

(Am =
⋃

1≤i<j≤nAi∩Aj). In particular, in the case of hybrid

automata the timed events are not part of Am.

The MSC defines a sequence of events for every component

S of the network, called instance of S. An instance σ for the

LTS S is a sequence a1; . . . ; al ∈ (Am ∩ AS)∗ of events of

S. S accepts the instance (S |= σ) iff there exists a trace w
accepted by S such that the sub-sequence of events in Am is

equal to σ (w|Am
= σ). In other words, S accepts the instance

iff there exists a path π of S over a trace compatible with the

instance σ. In such cases, we say that π |= σ.

We denote the j-th event aj of the instance σi with σi[j], the

number l of events in σi with |σi|, the local segment between

the event σi[j] and σi[j + 1] of σi with lsg(σi[j]), where the

first local segment before a1 is lsg(σi[0]) and the final local

segment after a|σi| is lsg(σi[|σi|]).
If π |= σ, π must be in the form q0

τ→ . . .
τ→ qh1

σ[1]→
qh1+1

τ→ . . .
τ→ qh|σ|

σ[|σ|]→ qh|σ|+1

τ→ . . .
τ→ qh|σ+1| , where

qh ∈ Q and τ are local events of S. We denote the sub-

sequences of the path π in which it is split by σ as follows:

• prej(π) = qhj
, it is the source state of the transition

labeled with σ[j] in π.

• postj(π) = qhj+1, it is the destination state of the

transition labeled with σ[j] in π.

• locj(π) = qhj+1; . . . ; qhj+1
, it is the sequence of states

between the j-th and the j + 1-th shared events, where

we denoted 0 with h0.
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An MSC is the parallel composition σ1|| . . . ||σn where σi

is an instance of Si. The network N of LTSs accepts the MSC

m (N |= m) iff there exists a trace w accepted by N such

that, for every Si, the sub-sequence of events in Am ∩ASi
is

equal to σi (w|(Am∩ASi
) = σi). In other words, N accepts the

instance iff there exists a path of N over a trace compatible

with every instance of the MSC. If H is a network of HAs,

then we say that H |= m iff NLOCTIME(H) |= m.

We define a Constrained MSC (CMSC) as a pair 〈m,φ〉
where m is an MSC σ1|| . . . ||σn and φ is a formula over the

variables vi[j] with 1 ≤ i ≤ n and 1 ≤ j ≤ |σi|, where vi[j]
represents the value of the variable v of the i-th component

at the time of the j-th event σi[j] of σi. N |= 〈m,φ〉 iff

there exists a path π = π1|| . . . ||πn such that πi |= σi and the

assignments of prej(πi) to vi[j] satisfy φ.

The model checking problem for a CMSC 〈m,φ〉 is the

problem of checking if a network satisfies a CMSC. The

classical approach is based on the construction of a monitor

(or a network of monitors) that, composed with N , forces N
to follow only paths that satisfy the MSC.

An MSC σ1|| . . . ||σn is consistent iff for every pair of

instances σi and σj the projection on the common alphabet is

the same, i.e., if A = Ai ∩ Aj , σi|A = σj|A. Henceforth, we

assume that the MSCs are consistent. The check of consistency

is trivial and can be done syntactically with a simple traversal

of the MSC’s structure.

B. Scenario-driven encoding

The drawbacks of the traditional SMT-based encoding is

that it cannot exploit the sequence of messages prescribed by

the MSC in order to simplify the search because of the uncer-

tainty on the number of local steps between two events. We

encode the path of each automaton independently, exploiting

the local time semantics, and then we add constraints that

force shared events to happen at the same time, as in shallow

synchronization [8]. Moreover, we fix the steps corresponding

to the shared events and we parametrize the encoding of the

local steps with a maximum number of transitions.

We extend the encoding presented in [10] with different

numbers of steps for different local segments of the MSC.

Let us consider a network H = H1|| . . . ||Hn of LHAs and

the encoding 〈Vi,Wi, Ii, Ti〉 representing the LHA Hi, for 1 ≤
i ≤ n, in the local-time semantics. We denote with Ti|φ the

transition condition restricted to the condition φ, i.e., Ti|φ =
Ti ∧ φ. We abbreviate Ti|ε=a with Ti|a and Ti|ε∈τi∪{S} with

Ti|τ (notice that τi, the set of local actions, contains also the

timed event T).

We associate a bound ki[j] to the j-th segment lsg(σi[j]) of

the i-th instance. ki[j] is used to limit the number of transitions

in the local path locj(π) of a path π satisfying the instance

σi. We use ki to denote 〈ki[0], . . . , ki[hi]〉 and k to denote

〈k1, . . . , kn〉.
Note that the event σi[j] is preceded by

∑j−1
v=0 ki[v] + j −

1 transitions consisting of local transitions (
∑j−1

v=0 ki[v]) and

shared events (j− 1). idxi[j] defines the index used to encode

the event σi[j] as idxi[j] :=
∑j−1

v=0 ki[v] + j − 1.

The following encoding represents all paths of the network

compatible with the MSC where the local transitions of the j-
th segment of the i-th instance have been unrolled up to ki[j]
times (note that the “up to” is due to the ability of stuttering):

enc(m, k) :=
∧

1≤i≤n

enc(σi, ki) ∧

∧

1≤j<i≤n

sync(σj , σi) ∧ (t
∑|σj |

v=0 kj [v]
j = t

∑|σi|
v=0 ki[v]

i )

enc(σi, ki)) := I0
i ∧

∧

1≤h≤k0
i

Th−1
i|τ ∧

∧

1≤j≤|σi|
(T

idxi[j]
i|aj

∧
∧

1≤h≤ki[j]

T
idxi[j]+h
i|τ )

sync(σj , σi) :=
∧

1≤z≤|σj|A |=|σi|A |
t
idxi[f

ij
i (z)]

i = t
idxj [f

ij
j (z)]

j

where A = Ai ∩Aj and the function f ij
i maps the z-th event

az shared between σi and σj to the index of az in σi. More,

specifically, if σj|A = σi|A = a1; . . . al, then f ij
i , f

ij
j : N → N

are such that az = σi(f
ij
i (z)) = σj(f

ij
j (z)), for 1 ≤ z ≤ l.

Intuitively, enc(m, k) encodes the unrolling of each compo-

nent according to its instance and guarantees that the different

unrollings have the same time for every occurrence of a shared

event and the same final time.

In order to encode the paths that satisfy a CMSC we have

just to conjoin the additional constraints:

enc(〈m,φ〉, k) := enc(m, k) ∧ φ[v
idxi[j]
i /vi[j]]

where for all the instances i, 1 ≤ i ≤ n, and all events j,
1 ≤ j ≤ |σi|, we substitute vi[j] in φ with the timed variable

v
idxi[j]
i .

Theorem 1: If enc(〈m,φ〉, k) is satisfiable then H |=
〈m,φ〉. Vice versa, if H |= 〈m,φ〉, then there exists integers

k such that enc(〈m,φ〉, k) is satisfiable.

IV. SCENARIO-DRIVEN INDUCTION

In this section, we describe how the structure of the MSC

can be exploited to tailor k-induction to prove the unfeasibility

of the scenario. For the base case, we use the encoding

of [10]. For the inductive step, we apply the simple path

condition to each segment of the scenario and prove that

such partitioned simple-path condition is equivalent to the

path condition applied to composition of the network and

the scenario monitor. The use of different local bounds as

presented in Section III-B allows k-induction to stop the

unrolling of the local path at different depths according to the

local structure of the component at the considered segment.

A. Partitioned simple-path condition

Our goal is to find an inductive condition kind(〈m,φ〉, k)
such that, in the finite-state case, N 6|= 〈m,φ〉 if and only if

there exist k such that enc(〈m,φ〉, k) and kind(〈m,φ〉, k)
are unsatisfiable. In the hybrid case, we would like that

the “if” condition still holds, while the “only if” condition
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should hold when the corresponding inductive condition for

the composition of the network with the MSC monitor holds

(relatively complete). The difficulties are that:

• the projection of a simple path on a component may be

not a simple path;
• if a simple path is the concatenation or the parallel

composition of two paths, these may be not the longest

simple paths of their segments.

The CMSC 〈m,φ〉 defines a partial order <m among the

segments of m defined as the reflexive and transitive closure

of the smallest relation such that:

• lsg(σi[j]) <m lsg(σi[j
′]) if 0 ≤ j < j′ ≤ hi;

• lsg(σi[j]) <m lsg(σi′ [j
′]) if there exists lsg(σi′′ [j

′′]) such

that there is a synchronization between σi[j] and σi′′ [j
′′]

and lsg(σi′′ [j
′′]) <m lsg(σi′ [j

′]).

Given a CMSC 〈m,φ〉 and the local path lsg(σi[j]) we

define the partial CMSC 〈mi[j], φi[j]〉 where:

• mi[j] = σ1|| . . . ||σn such that for all 1 ≤ v ≤ n,

|σv| ≤ |σv| and for all 1 ≤ z ≤ |σv| σv[z] = σv[z]
and lsg(σv[z]) <m lsg(σi[j]) or lsg(σv[z]) = lsg(σi[j]),
while for all |σv| < z ≤ |σv| lsg(σv[z]) 6<m lsg(σi[j]).

• φi[j] contains only the constraints of φ which are over

variables in mi[j].

We define the local simple path condition as follows:

kindi[j] := enc(〈mi[j], φi[j]〉, k) ∧ simplei[j]

simplei[j] :=
∧

1≤h,z≤ki[j]

s
idxi[j]+h
i 6= s

idxi[j]+z
i

Theorem 2: If there exist k s.t. enc(〈m,φ〉, k) is unsatisfi-

able and, for all i, j, kindi[j] is unsatisfiable, then N 6|= m.

In order to check if k-induction holds incrementally, we

visit the MSC m according to the partial order <m. We

incrementally apply the partitioned simple path condition to

the local segments of m. The incremental checks exploit the

standard Push/Pop/Assert incremental interface of the solver.

B. K-induction for hybrid systems

1) Alternation of timed and discrete transitions: The al-

ternation of timed and discrete transitions has been proposed

in different works to optimize the search of BMC for timed

and hybrid systems [1], [4]. With k-induction, the alternation

is fundamental to allow a concrete search to close. In fact,

without forcing the alternation, the system will likely have

infinite loop-free paths where timed transitions change some

continuous variables infinitely often.

In order to enhance k-induction with alternation, the follow-

ing points must be taken into account:

• since consecutive discrete transitions are possible, the

timed transition must permit the elapsed time to be zero;

therefore, the loop-free condition of k-induction must be

relaxed in order to allow self loops with a timed transition

with no elapsed time;

• the scenario-based encoding of the bounded model check-

ing problem exploits stutter transitions in order to encode

paths with up to k steps (instead of exactly k steps);

the stuttering makes the alternation ineffective because

it allows infinite loop-free paths alternating timed and

stutter transitions; therefore, it is fundamental to avoid

stuttering when considering the simple path condition.

2) Enabling a partitioned abstraction: The structure of

local transitions between two shared events is often simple and

without loops. In these cases, the alternation without stuttering

allows k-induction to prove the unfeasibility of scenarios.

If instead there are loops in the local structure, they may

correspond to infinite loop-free paths. In order to prove the

unfeasibility of scenarios also in these cases, we combine k-

induction with predicate abstraction as in [33].

We can associate to different segments of the MSC different

abstractions of the local transition relation. This way, we can

obtain a fined-grained abstraction which abstract away the

continuous components only where necessary.

V. UNFEASIBILITY EXPLANATION

We identify the following types of explanations to under-

stand the reasons of the unfeasibility of the CMSC 〈m,φ〉:
1) which parts of the CMSC cannot be executed by the

network;

2) why the paths of the network consistent with m cannot

satisfy φ;

3) why the paths of a component consistent with the

corresponding instance of m are inconsistent with the

rest of the CMSC.

We answer these questions by exploiting both unsat cores

and interpolation. The unsatisfiable core for an unsatisfiable

formula φ is a formula ψ iff ψ is unsatisfiable and φ = ψ∧ψ′,
for a (possibly empty) formula ψ′. Given two formulas A and

B, with A∧B |= ⊥, the Craig interpolant of A∧B is a formula

I such that |= A → I , B ∧ I |= ⊥, and which contains only

variables common to A and B. Intuitively, the interpolant is

an over-approximation of A “guided” by B.

In particular, after reaching the maximum bound in ev-

ery local segment of the CMSC, we can build the proof

of unsatisfiability of the BMC problem with such bounds.

The unsat core extracted from the proof contains a subset

of the unrolling of the components along the MSC and a

(possibly empty) subset of the CMSC constraints which are

incompatible. Since the local paths, events, and constraints are

asserted in different conjuncts of the encoding, the unsat core

is fine-grained enough to distinguish them.

By partitioning the encoding into the constraints obtained by

unrolling the network (A) and the constraints of the CMSC

(B), we can compute an interpolant of their unsatisfiability.

This way, we obtain a formula over the variables at the time

of the events implied by the network executing the MSC and

inconsistent with the constraints of the CMSC. Note that if

the interpolant is false, we can deduce that the constraints are

not responsible of the unfeasibility and that the unrolling of

the network is inconsistent by itself.

Finally, by partitioning the encoding into the unrolling of

one component along its instance (A) and the rest (B, i.e.,
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other components and constraints), the interpolation produces

a formula over the variables at the time of the events implied

by the component executing the instance and inconsistent with

the other components or with the constraints of the CMSC.

Note that if the interpolant is true, it means that the component

does not play a role in the unfeasibility. On the contrary, if

the interpolant is false, the component does not have a path

compatible with the instance.

Note that, when the abstraction is used to prove the unfea-

sibility of the scenario, the explanations based on unsat core

and interpolation are still valid.

VI. RELATED WORK

MSCs [20] are a basic building block to describe the inter-

actions among components. Several works, such as High-Level

Message Sequence Charts [26] and Live Sequence Charts

(LSC) [12], extend the language of the MSCs increasing their

expressive power. We consider a basic version of MSCs which

describes a single (partial-order) composition of sequences

of events, augmented with additional constraints [2], [5]. We

consider a trace-based semantics for the MSC, where the MSC

predicates over the observable events of a system [23], [24].

While several works use MSCs to describe the entire system

[3], [28], we instead use the MSC as a specification language.

A common approach to deal with the verification of MSC

specifications consists in translating the scenario into automata

or temporal logic formulas. LSCs are translated into timed

automata in the UPPAAL model checker [25], while in [22]

the authors propose a translation from charts with timing

constraints and synchronous events to Timed Büchi Automata.

These works deal with expressive specification languages but

they do not exploit the structure of the scenario. Moreover,

in case of unfeasibility, these techniques do not provide

explanations that narrow the events of the scenario or that

gives meaningful information about a specific component.

The approach which translates the MSC into an automaton

reduces the feasibility problem of the MSC to a reachabil-

ity problem. Thus, the works on Bounded Model Checking

(BMC) for hybrid systems [1], [4], [8], [14], [15], [34] can be

used to solve the feasibility problem. The BMC encodings for

hybrid automata can be further optimized exploiting the step

semantics [17], [21], which allows independent transitions of

different automata to be executed in parallel. However, BMC is

unable to prove the unfeasibility of the MSC. When we encode

the MSC into an automaton the unfeasibility problem can be

solved using unbounded model checking techniques, such as k-

induction [32]. K-induction is complete for finite state systems,

but it was applied also to infinite state systems in [13], [29],

[33]. In [13] the authors use k-induction to verify timed and

hybrid automata and they generalize the simple path condition

to simulation relations. K-induction is combined with predicate

abstraction [16] in [33]. These works are not tailored to the

problem of deciding the unfeasibility of a scenario and do not

provide explanations in the case of unsatisfiability.

In [10] we propose a Bounded Model Checking encoding

tailored to check the feasibility of a scenario in a network of

hybrid automata. This approach turns out to be very efficient in

dealing with complex scenarios, since it exploit the local-time

semantics [6] in order to partition the encoding with respect

to the MSC structure. However, the approach is unable to

prove the unfeasibility of the scenario. We extend that work

in order to prove the unfeasibility of a scenario and to provide

meaningful explanations of unfeasibility.

Unsat cores and interpolation are often used to explain

and generalize the source of unsatisfiability. Unsat cores are

typically subsets of the conjuncts forming the unsatisfiable

formula. However, other forms are possible, especially in

the context of temporal unsatisfiability [31]. Interpolation

for temporal properties is proposed in [30] as a theoretical

framework for analyzing vacuity for discrete systems; the

practical implications are not addressed in depth. In [31], it

is suggested that k-induction can be used to find a k for

which the BMC encoding of a temporal formula yields its

unsatisfiability and that the unsat core contains the relevant

parts of the formula that cause the unsatisfiability. However,

mapping the BMC unsat core back to the original problem is

not always easy. We achieve this by exploiting the scenario-

based encoding that respects the structure of the scenario.

VII. EXPERIMENTAL EVALUATION

The techniques discussed in the previous sections were im-

plemented in an extension of the NuSMV model checker [9],

which is able to deal with networks of HAs, formalized in

the HYDI language [11]. The NuSMV extension features an

SMT-based approach to the verification of hybrid systems, and

is tightly integrated with MathSAT [7], a state-of-the-art, full-

fledged Satisfiability-Modulo-Theory solver (SMT). MathSAT

provides the functionalities of incremental reasoning, unsat-

isfiable core extraction, and interpolation, which are used for

bounded model checking, inductive reasoning, and explanation

extraction.

In the experimental evaluation, we used the following

benchmarks: the Distributed Controller [19], the Audio Pro-

tocol proposed in [19], the Nuclear Reactor [35], a hybrid

version of the Fischer mutual exclusion protocol, and the

Electronic Height Control System (EHC) described in [27]. All

the test cases, the executable and the results of the evaluation

are available at http://es.fbk.eu/people/mover/tests/FMCAD11/.

A. Scenario-driven Induction vs K-Induction

First, we compared the scenario-based induction with k-

induction applied to the monolithic encoding of the network

of HAs and the automata translated from the MSC.

The monolithic encoding is obtained composing the network

with the automata obtained from the MSC. The construction

of the monitor automata is described in details in [10]. In

particular, we rely on the “distributed” monitor automata,

where we build a monitor for each instance of the MSC,

and the step semantics, which enables multiple transition to

be executed in parallel. The combination of both approaches

demonstrated to be the most efficient among the different

automata construction and encoding presented in [10].
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Fig. 1. Run times (sec.): monolithic induction (x axes) vs. scenario-induction
(y axes)

In order to test the scalability of both approaches, we

considered a set of unfeasible MSCs of different lengths, and

parameterized the number of HAs in the network. We set a

time out of 300 seconds and a memory out of 2 GB. The

scatter plot in Figure 1 shows the execution time for both

methods on all the instances. The Scenario-based induction

is clearly superior to monolithic k-induction. This is due to

the exploitation of the structure of the scenario: this results

in localized simple path conditions, that are both simpler, and

more effective, so that unsatisfiability is detected with a much

shorter unrolling.

B. Unfeasibility Explanation

Then, we analyzed the unfeasibility explanations on the

three benchmarks with non-trivial scenarios, showing their

usefulness in identifying the causes of unfeasibility.

1) Distributed Controller [19]: the benchmark models the

interactions of two sensors (sensor1 and sensor2) with a

controller of a robot. The two sensors interact with a scheduler

to access a shared processor. The time needed for computation

by the two sensors is bounded but it is non-deterministic, and

is tracked in the scheduler with two stopwatches (x1 and x2).

Also the controller sets a time-out (variable z = 0) after the

receipt of the first message. If the time-out expires (z = 10)

the controller discards all the received data.

The MSC shown in Figure 2 models the interaction where

sensor1 requests the processor; the scheduler grants it for a

total duration of x2 time; sensor2, which has a higher priority,

requests and receives grant to the processor; when sensor2
finishes its computation (event read2), sensor1 finishes to read

data while, in parallel, sensor2 sends its data to the controller;

finally, the sensor1 and the controller synchronize on send1 and

ack1. The time spent to process the data of sensor1 is given

by the stopwatch x1. In Figure 2 x1 is the sum of the intervals

x′
1 and x′′

1 . Moreover, we add two additional conditions on the

duration of x1 and x2 in the scheduler (x2 = 1.5 and x1 =
1.1), and we fix the maximum time spent by the controller

Ack2

Send1

Send2

Request2

Read2

Ack1

Read1

Request1

x′′
1

x′
1

x′
1 + x′′

1 =
11
10

x2 =
3
2

z < 1

SchedulerSensor1 ControllerSensor2

Fig. 2. The MSC for the distributed controller

before receiving the data from sensor1 (z < 1). The MSC

augmented with these constraints is unfeasible.

We prove the unfeasibility of the scenario directly on the

concrete system, since all the automata cannot loop performing

only local transitions. The analysis takes 3 seconds and the

longest simple path is 2 in the controller automaton, and 1

in the other automata. In the Figure 2 we outline in gray

the elements of the scenario, events and constraints, which

contribute to the unfeasibility. In particular, we find that the

unfeasibility depends on all the events of the MSC apart from

the events Ack1 and Ack2. Moreover, we discover that all the

additional constraints of the scenario, x2 = 1.5, x1 = 1.1 and

z < 1, contribute to the unfeasibility.

We exploit the interpolation techniques to get the constraints

z >= x1. In fact, z counts the time elapsed in the controller

between the send1 event and the send2 event. This means

that the controller cannot receive the send1 message before

x1 seconds, which is the time spent to process data from

sensor1. If we fix z >= 1.1 then the scenario is feasible.

We find a similar result if we look at the interpolant obtained

partitioning the encoding in the constraints from sensor1 (the

A formula) and the rest of the network and the scenario (the

B formula). We denote with timeeventcomponent the time variable

of component when performing event. The interpolant is

6 <= time
request1
sensor1 −timeread1sensor1

+timesend1sensor1
. Since time

request1
sensor1

is 6, from the initial condition and invariants of sensor1, we can

infer that the scenario and the other processes in the network

do not allow timeread1sensor1
<= timesend1sensor1

, which is a necessary

condition for sensor1.

2) Audio Control Protocol [19]: this protocol transmits

an arbitrary-length bit sequence from a sender to a receiver

based on the timing-based Manchester encoding. The protocol

relies on division of the elapsed time in slots. Every slot

corresponds to a bit. The sender transmits a signal up in the

slots corresponding to bits with value 1 (thus, a slot without

signals correspond to bit 0). The protocol is robust to bounded

errors in the timers used by the sender and receiver.

The considered scenarios consist of unfeasible timed se-

quences of up. For example, the sequence 〈up, 4〉, 〈up, 8〉,
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Fig. 3. The automaton structure of the EHC controller with a line that traces
the scenario sequence of events.

〈up, 12〉, 〈up, 16〉, 〈up, 19〉, 〈up, 23〉 does not respect the pro-

tocol, since the 4-th and 5-th events must be separated by 3
seconds.

Scenario-based induction proves that the scenario is un-

feasible in 41 seconds. The explanation extracted from the

unsat core identifies the 4-th and 5-th events as the cause of

unfeasibility. Interpolation “explains” that the inconsistency

arises because the sender requires the 5-th event to happen

after at least 3.8 seconds; it also shows that the receiver does

not play any role in the inconsistency.

3) Electronic Height Control System [27]: this benchmark

presents a case where the concrete k-induction is not able to

prove the unfeasibility. We therefore rely on abstraction and

we show that, despite the over-approximation, the explanation

is effective in pinpointing the cause of unfeasibility.

This industrial case study models a system that controls the

height of a car’s chassis. A timer tells the controller when to

read the height from a filter, while disturbances which changes

the height of the vehicle are modelled by the environment.

The structure of the controller is depicted in Figure 3. The

MSC describes a scenario where the height of the chassis

falls outside the allowed thresholds, first below and then above

the permitted height intervals. The sequence of events in the

scenario is highlighted by the dashed line.

The scenario is not feasible due to the timing constraints

imposed by the timer on each event and to the dynamics of

the environment which requires an incompatible time to pass

from the initial level of the chassis to a value read outside

the allowed threshold. More precisely, the timer forces every

event to happen every second, while the filter chassis level

f read by the sensors evolve according to the differential

equation ḟ = h−f
T , where h represents the current level. This

is approximated by the linear-phase portrait partitioning which

linearizes the differential equation into flow conditions of the

form ḟ ∈ [a, b]. The constants fixed by the authors of [27] are

sufficient to prove the inconsistency.

K-induction proves that the controller and the timer do

not have a simple path longer than 1 alternating timed and

discrete transitions (since there is no local transition). While,

on the concrete state space of the environment, the portrait

partitioning creates discrete loops that correspond to infinite

simple paths. Therefore we rely on abstraction. We use a set of

predicates in the form t ∈ [i, i+1], h ∈ [at, bt] and f ∈ [at, bt]
where i is an integer while a and b are the constants used in the

partitioning. We localize the abstraction by using t ∈ [i, i+1]
only in the i-th event and considering the partition consistent

with the initial values.

With this setting, the tool proves the unfeasibility of the

scenario in 4.4 seconds reaching a depth of the longest abstract

simple path equal to 6 for the local path before the first event

and 9 as for the local path before the second event. The tool

correctly reports an unsat core which identifies the first two

events as the cause of unfeasibility. The interpolation with

regards to components reports that while the timer requires

that the second event must happen in no more then 3 seconds,

the environment requires the same event to happen at least

after 3.3 seconds.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a new approach to proving

that a network of hybrid automata has no trace that satisfies

a given MSC. We have also proposed the first algorithm

to explain the unfeasibility of a scenario. The approach

is made practical by the use of segments of the MSC to

guide the search, and on the localization of simple paths.

The experiments show that the proposed method significantly

outperforms techniques based on the reduction to reachability,

and is able to construct interesting explanations.

In the future, we will address the issue of non-linear hybrid

systems, the use of hierarchical information that is often

available in the network, and an automation of the abstraction-

refinement loop.
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[17] K. Heljanko and I. Niemelä. Bounded LTL model checking with stable
models. Theory and Practice of Logic Programming, 3(4-5):519–550,
2003.

[18] T. A. Henzinger. The Theory of Hybrid Automata. In LICS, pages
278–292. IEEE CS, 1996.

[19] T. A. Henzinger and P. Ho. Hytech: The cornell hybrid technology tool.
In Hybrid Systems II, LNCS 999, pages 265–293, 1995.

[20] ITU-T. Recommendation Z.120 - Message Sequence Charts. 1996.
[21] Dubrovin J., T. Junttila, and K. Heljanko. Exploiting step semantics

for efficient bounded model checking of asynchronous systems. Sci.

Comput. Program., 2011.
[22] J. Klose and H. Wittke. An automata based interpretation of live

sequence charts. In TACAS, pages 512–527, 2001.
[23] P. Ladkin and S. Leue. On the semantics of message sequence charts.

In FBT, pages 88–104, 1992.
[24] Peter B. Ladkin and Stefan Leue. Interpreting message flow graphs.

Formal Asp. Comput., 7(5):473–509, 1995.
[25] S. Li, S. Balaguer, A. David, K. G. Larsen, B. Nielsen, and S. Pusinskas.

Scenario-based verification of real-time systems using uppaal. Formal

Methods in System Design, pages 200–264, 2010.
[26] S. Mauw and M. A. Reniers. High-level message sequence charts. In

SDL Forum, pages 291–306, 1997.
[27] O. Müller and T. Stauner. Modelling and verification using linear hybrid

automata - a case study. Mathematical and Computer Modelling of

Dynamical Systems, 71, 2000.
[28] M. Pan, L. Bu, and X. Li. Tass: Timing analyzer of scenario-based

specifications. In CAV, pages 689–695, 2009.
[29] L. Pike. Real-time system verification by k-induction. Technical Report

NASA/TM-2005-213751, NASA, 2005.
[30] M. Samer and H. Veith. On the Notion of Vacuous Truth. In LPAR,

pages 2–14, 2007.
[31] V. Schuppan. Towards a notion of unsatisfiable and unrealizable cores

for LTL. Science of Computer Programming, In press, 2010. DOI:
10.1016/j.scico.2010.11.004.

[32] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
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Post-Silicon Fault Localisation
Using Maximum Satisfiability and Backbones
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Abstract—The localisation of faults in integrated circuits is
a challenging problem and a dominating factor in the overall
verification effort. Electrical bugs, in particular, surface only
in the fabricated prototypes, leading to behaviour deviating
from the golden model. Limited observability complicates their
localisation: Logging mechanisms such as trace buffers allow us
to retain only a limited execution history.

A symbolic analysis of the RTL design can find discrepancies
between the values recorded in the trace buffer and the intended
behaviour. Contemporary MAX-SAT solvers are then able to
identify a maximal subset of the RTL design that is consistent
with the observed behaviour. The elements in the complement of
this subset represent potential locations of the fault.

The scalability of contemporary decision procedures dictates
the size of a window of execution cycles which we can analyse
using symbolic techniques. Current MAX-SAT-based fault locali-
sation techniques require this window to span the fault as well as
the error it causes. To address the scalability issues resulting from
large window sizes, we propose to slide a smaller window along
the temporal axis, constraining it with the information recorded
in the trace buffer for the respective execution cycles.

In this scenario, the localisation attempt may fail: The limited
information provided by the trace buffer may be insufficient
to pin down the exact temporal and spatial location of the
fault. We propose to use backbones to identify information that
can be propagated across sliding windows. The backbone of a
symbolic representation of a circuit is the set of signals that are
immutable under the given constraints (e.g., the output and trace
buffer values). This additional information has several benefits:
Firstly, it may be instrumental in locating the fault. Secondly,
it may enable a reduction of the size of the of trace buffers
and the sliding window. Our preliminary experimental results
demonstrate that the use of backbones allows us to reduce the
size of the sliding windows or the trace buffer.

I. INTRODUCTION

The localisation of faults in fabricated prototypes, referred
to as silicon debug or post-silicon validation, is a challenging
and time-consuming problem. According to [1], the temporal
and spatial isolation of a fault “typically dominate[s] the
effort expended during the debug process for a bug.” One
of the aspects that distinguishes post-silicon validation from
simulation or formal verification of the RTL design is the
ability to execute long test scenarios. This comes at the cost of
limited observability of signals in integrated circuits. Logging
techniques such as trace buffers enable us to track a relatively
small number of signals over a limited amount of time (e.g., a
few thousand execution cycles). If a test case reveals an error,
this limited execution history has to suffice to locate the fault
causing the erroneous behaviour of the chip.

To locate the fault, we require sufficient information about
the execution history to reconstruct the scenario that led to

s1
s2...
sj

t1
t2...
tj

i11 · · · i1m

o11
· · · o1n

i21 · · · i2m

o21
· · · o2n

i31 · · · i3m

o31
· · · o3n

i41 · · · i4m

o41
· · · o4n

C1 C2 C3 C4

Fig. 1: Unfolded circuit encoding four execution cycles

the error. Such information can be obtained by augmenting
the processor with hardware recorders (referred to as trace
buffers) that keep track of limited information to enable the
reconstruction of the instruction sequence leading up to the
error. An architecture-specific analysis such as IFRA [2] can
then be used to narrow down the location of the fault. The
advantage of this approach is that the reproduction of the
failure is not required for localisation purposes. The design of
such an analysis, however, requires considerable insight and
needs to be adapted for individual processor architectures.

We propose an adaptation of a fault-localisation technique
which is architecture independent and has been successfully
applied for fault diagnosis [3] as well as design debugging [4],
[5], [6], [7]. Given the RTL design in a language such as
Verilog, it is possible to construct a symbolic representation
of k execution steps by unfolding the combinational logic
C of the sequential circuit. The unfolding yields an iterative
logic array [8] as illustrated in Figure 1. The resulting formula
encodes all correct executions within a window of length k.

To identify the spatial and temporal location at which the
behaviour of the device under test deviates from that of the
golden model, we constrain the symbolic representation with
the values recorded in the trace buffers. If the resulting formula
is unsatisfiable, the fault must have occurred within the given
window. Using the techniques presented in [9], [10], one
can then compute the maximal subsets of the circuit which
are consistent with the observed behaviour of the integrated
circuit. The complements of these subsets (known as minimal
correction sets) identify potential locations of the fault.

The success of this technique hinges on the size of the
window and the information recorded in the trace buffers. The
former is dictated by the scalability of the underlying decision
procedure. The latter is determined by practical issues such as
cost and required performance of the integrated circuit.

Figure 2a illustrates the situation in which a transient
electrical fault in execution cycle i causes an error after cycle
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(b) Additional state bits inferred using backbones

Fig. 2: Error localisation with and without backbones

n. The dashed bars represent the state bits of the circuit for
each execution step, and the shaded area indicates the fraction
of those bits recorded in the trace buffer. The diagram suggests
that we have near-complete information about the state bits
in the crash state (obtained by means of scan chains [11]),
but very limited information about what happened before the
error occurred. The curly brackets at the bottom of Figure 2a
illustrate two attempts to use a window of size four to locate
the fault. The first attempt fails because the fault does not
lie within the window. The second attempt fails because the
information recorded in the trace buffer is insufficient to derive
a contradiction: By shifting the window to the left, the analysis
drops crucial information about the crash state.

Figure 2b illustrates the use of backbones to infer additional
information that can be propagated across the sliding windows.
The backbone of an unfolding of a circuit is the set of
signals that are immutable under the respective constraints
(i.e., the bits of the crash state and the trace buffer values).
For instance, the backbone of the formula (x ⊕ y) · (x + z)
under the constraint x 7→ 1 is {x 7→ 1, y 7→ 0}. The
backbone of an unfolding (possibly smaller than the window
used for localisation) that is constrained by the recorded
state bits potentially provides additional state bits (indicated
by the black bars in Figure 2b) which can be subsequently
used in overlapping windows. Thus, backbones (which can
be computed using the algorithms in [12]) can be used to
propagate information from the crash state backwards in time
to earlier cycles. This additional information can be crucial to
fault localisation. We emphasise that our analysis is static and
therefore not restricted to reproducible permanent faults.

Contributions: We address the scalability limits of sym-
bolic reasoning by sliding an analysis window of fixed size
along the temporal axis. We present a novel application of
backbones allowing us to reduce the loss of information
resulting from limited observability in post-silicon validation.

D Q

R

oi2

i1

(a) A sequential circuit

r

i22o1i12

i11

s

i21 t

o2

À Á

(b) A 2-cycle unfolding

cycle À (r i11) (r s) (i
1
1 s r) (i12 o

1) (s o1) (o1 i12 s)

cycle Á (t i21) (t r) (i
2
1 r t) (i22 o

2) (r o2) (o2 i22 r)

(c) CNF encoding of unfolded circuit. As usual, the operators + and ·
are dropped for compactness. The clauses are grouped with respect to
the gates and cycles by which they are contributed.

Fig. 3: A simple example

II. FAULT LOCALISATION USING MAX-SAT

In the following we use propositional operators (·,+,⊕) and
atoms (i, o, s, . . .) to represent gates and signals, respectively.
As usual, a literal is either an atom or its negation, a clause
is a sum of literals, and a formula in conjunctive normal form
(CNF) is a product of clauses. Every unfolded combinational
circuit has an equi-satisfiable representation in CNF which can
be obtained in polynomial time [13]. Each instance of a gate
in the unfolded circuit corresponds to a group of clauses in
the corresponding CNF representation. We use Ci to denote
the CNF instantiation of the combinational logic of the RTL
design representing the ith execution cycle (c.f. Figure 1).
Similarly, we use Ti, a conjunction of literals, to represent the
state bits recorded by the trace buffer after the ith execution
step. Note that Ti is simply 1 if no state bits were recorded
at that point. Moreover, we assume that T0 and Tn represent
the information available about the initial and the crash state,
respectively. Finally, Ii and Oi represent the input and output
constraints of cycle i. Accordingly, the CNF formula

W k
m

def
=

m+k−1∧

i=m

T(i−1) · Ii︸ ︷︷ ︸
input constraints

· Ci︸︷︷︸
circuit

· Oi · Ti︸ ︷︷ ︸
output constraints

(1)

represents a window of k consecutive execution cycles starting
at cycle m constrained with the corresponding inputs, outputs,
and state bits recorded by the trace buffer.

Given an unsatisfiable instance of (1), the goal is to find the
clauses (gates, respectively) that are most likely responsible
for the fault. This can be achieved by identifying a minimal
correction set (MCS), i.e., a minimal set of gates that need to
be dropped from (1) such that the formula becomes satisfiable.
This corresponds to finding the maximum set of clauses that
are consistent, an NP-hard optimisation problem commonly
known as MAX-SAT. More specifically, we are only interested
in dropping clauses that correspond to gates; the constraints
introduced by trace buffer values and inputs or outputs are
hard constraints. This specialisation of MAX-SAT is known
as partial MAX-SAT. Algorithms to solve partial MAX-SAT
instances are discussed in [9] and [10], for instance.
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Consider the sequential circuit in Figure 3a. After a reset
of the flip-flop, we expect the output o to remain 0 as long
as the input signal i2 is constantly 0. Assume, however,
that we observe an output value of 1 after two cycles when
executing the described scenario on the chip. Figure 3b depicts
a two-cycle unfolding of the circuit. Figure 3c shows the
corresponding CNF encoding. Assume that we observe and
record the values o1 7→ 0 and o2 7→ 1 during a test-run with
the initial state s 7→ 0 and the stimuli i12 7→ 0, and i22 7→ 0.
Note that we have no information about the signal r. These
observations contribute the hard constraint o1 · o2 · s · i12 · i22,
which is not satisfiable in conjunction with the formula in 3c.
Using a MAX-SAT solver, we can derive that the conjunction
becomes satisfiable if we drop either (r s) or (o2 i22 r) (both of
which are an MCS) from 3c. Accordingly, either the AND-gate
in cycle one or the OR-gate in cycle two must have defaulted.

This approach also addresses multiple faults by using fault
cardinality constraints [3]. Existing MCS-based fault localisa-
tion techniques require the window W k

m (Formula 1) to span
the fault as well as the crash state, which may result in a large
formula exceeding the capabilities of the decision procedure.

In contrast, we restrict the analysis to a window of fixed
size which we slide along the temporal axis. In the following
section, we discuss a novel application of backbones allowing
us to reduce the loss of information resulting from the limited
window size.

III. PROPAGATING INFORMATION USING BACKBONES

We will now consider the case in which the scalability
of the underlying decision procedure dictates a window size
smaller than the number of cycles of the entire test run. For
the purpose of an example, we revisit the scenario in Figure 3
and assume that the window size is limited to a single cycle.
Observe that neither the first line of Figure 3c in conjunction
with o1 · s · i12 nor the second line in conjunction with o2 · i22
yields a contradiction; the technique introduced in §II fails.
The reason is that we lack crucial information, namely the
value of the signal r. We propose the use of backbones to aid
the reconstruction of this information.

Formally, the backbone of a satisfiable propositional for-
mula F comprises the values of all atoms p in F for which
either (F + p) or (F + p) holds, i.e., p takes the same value
in all satisfying assignments of F . We use a SAT solver to
compute an initial satisfying assignment and subsequently try
to flip the value of each literal, thus changing the assignment.
Literals whose values differ in subsequent assignments are not
part of the backbone. This algorithm performs one call to the
SAT solver per literal in the worst case. Only the first call
has to solve the instance from scratch; the subsequent calls
are incremental, making the algorithm practical on large scale
circuits [12]. The backbone of the formula from our example

(t i21) (t r) (i
2
1 r t) (i

2
2 o

2) (r o2) (o2 i22 r)︸ ︷︷ ︸
cycle Á

(o2) (i22)︸ ︷︷ ︸
hard constraints

,

is o2 7→ 1 i22 7→ 0, and r 7→ 1. This backbone provides a value
for the previously unknown signal r. In general, backbones

under-approximate the information available to the SAT solver
in the analysed time-frame.

Effectively, this computation propagates the error encoded
in the constraint (o2) (i22) backwards. By propagating the
newly learnt information to cycle À we obtain the desired
contradiction:

(r i11) (r s) (i
1
1 s r) (i

1
2 o

1) (s o1) (o1 i12 s)︸ ︷︷ ︸
cycle À

(o1) (s) (i12)︸ ︷︷ ︸
constraint

(r)︸︷︷︸
backbone

As expected, a MAX-SAT solver is able to determine that
(rs) must be dropped, and that the AND-gate in cycle À
is a potential culprit. Notably, we missed the second fault
candidate due to the limited window size and the resulting lack
of information.1 We emphasise, however, that in the absence
of the information provided by the backbone, the approach
described in §II is unable to diagnose the fault altogether.

In general, we use the information provided by the backbone
of an instance of Formula (1) for a given m and k to augment
the trace buffer (c.f. Figure 2b) of windows overlapping the
interval of cycles [m − 1,m + k). To this end, we compute
the largest conjunctions B(m−1), . . . , B(m+k−1) of literals
over the signals in the respective cycles which are implied by
Formula (1). Accordingly, Bi ⇒ Ti for i ∈ [m − 1,m + k).
We use Bk

m
def
=
∧m+k

i=m B(i−1) to denote the backbone of W k
m.

Let W k
m and W l

n be two satisfiable windows with overlap o
(i.e., n = m + k − o and 0 ≤ o ≤ min(k, l)). Then, W k

m ·
W l

n =W
(k+l−o)
m , according to Formula (1). Now assume that

W
(k+l−o)
m is unsatisfiable but too large for a MAX-SAT solver.

Using backbones, we approximate W l
n using Bl

n, i.e., W l
n ⇒

Bl
n. The information in Bl

n can enable the localisation of faults
that W k

m failed to reveal. We construct Ŵ k
m = W k

m · Bl
n. If

Ŵ k
m is unsatisfiable, we use the approach described in §II to

find the gates that need to be dropped from W k
m to make Ŵ k

m

satisfiable. Since W k
m ·W l

n ⇒ Ŵ k
m, these gates are necessarily

a subset of the gates that need to be dropped to make W k
m ·W l

n

(i.e., the larger window W
(k+l−o)
m ) satisfiable.

IV. EXPERIMENTAL RESULTS

We evaluated our approach using the 68hc05 and 8051
processor designs used as case study in [14] (obtained from
opencores.org). We converted the Verilog RTL designs into the
DIMACS CNF format using the following translation steps:

Verilog Altera Quartus2−−−−−−−−→ blif
ABC3

−−−−→ aig
AIGER4

−−−−→ cnf

We randomly injected permanent stuck-at-constant faults
(though we emphasise that our approach supports arbitrary
fault models) into the RTL designs and obtained 26 failing test
scenarios (13 for each design) of 2000 cycles length by means
of SAT-based symbolic simulation. In each test scenario, we
injected one fault at a time for the smaller 68hc05 design

1Note though, that a forward analysis yields the second fault candidate in
our example: The backbone of cycle À under the constraint o1 · s · i12 yields
r 7→ 0, which is inconsistent with the observations in cycle Á.

2altera.com 3www.eecs.berkeley.edu/∼alanmi/abc/ 4fmv.jku.at/aiger/
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of 3 for the 68hc05 and 5 for the 8051 design)

Fig. 4: Experimental evaluation of backbones

and five faults at a time for the 8051 logic. All faults surface
up to 1000 cycles before the end of the trace.

We recorded different percentages of the latches (chosen at
random) in the trace buffer. We used the tool CAMUS [10],
which implements the fault localisation algorithm discussed in
§II, and the iterative SAT-testing algorithm described in [12]
to compute backbones. The window size k is the same for
computing backbones and localisation. Our implementation
uses a fixed overlap of o = k − 1. We slid the window
backwards in time along the temporal axis of the test scenarios,
propagating the backbones from previously analysed windows.

Using this setup, we ran two experiments: We (a) deter-
mined the minimum window size required to detect a fault for
a fixed trace buffer size of 5% (Figure 4a) and (b) fixed the
window size and increased the size of the trace buffer until
the fault could be detected (Figure 4b). (Spiked bars indicate
values that are off the scale.) We found that backbones enable
a significant reduction of (a) the window size as well as (b)
the size of the trace buffer required to locate faults.

V. RELATED WORK

Instruction footprints [2] (c.f. §I) enable the localisation of
faults by providing sufficient information about the execution.
This approach requires a design dependent localisation analy-
sis which needs to be adapted for individual architectures.

Smith et al. [3] describes a technique similar to the one
in §II. The approach covers multiple faults and different fault
models, but requires the window to span all cycles of the test
run. The work does not address limited observability.
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IFRA [2]

Smith & al. [3] MAX-SAT +
backbones

The figure to the
right relates our ap-
proach and the work
presented in [2] and
[3]. Our approach ad-
dresses limited ob-

servability and window-size using a generic SAT-based analy-
sis. Yang et al. [15] proposes a SAT-based technique that, given
a test scenario that results in a failure, identifies signals that are
relevant to the analysis of the failure and should therefore be
recorded in (configurable) trace buffers. This technique could
potentially be helpful to increase the size of the backbones.

Paula et al. [14] proposes to compute signatures of states
to narrow down the set of predecessor states of the crash
state, effectively enabling backwards stepping. This allows to
identify the error in an earlier cycle in a subsequent test run.
The approach requires the repeated reproduction of the failure,
which renders the approach infeasible for the localisation of
transient electrical faults (which our approach makes possible).

There is a number of papers based on the the approach
described in §II that address pre-silicon debugging (with full
observability) by constraining a faulty RTL model with correct
input/output pairs (given as a specification) [4], [5], [6], [7].

VI. CONCLUSION

We presented a novel fault localisation technique which
addresses the limited observability in post-silicon validation
and demonstrated its applicability using small case studies.
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†Lab-STICC, Université de Bretagne Sud, Lorient, France

email: andre.rossi@univ-ubs.fr

Keywords: Formal verification, Equivalence checking,

Arithmetic bit level, SMT

Abstract—The paper describes an algebraic approach to func-
tional verification of arithmetic circuits specified at bit level. The
circuit is represented as a network of half adders, full adders, and
inverters, and modeled as a system of linear equations. The proof
of functional correctness of the design is obtained by computing
its algebraic signature using standard LP solver and comparing
it with the reference signature provided by the designer. Initial
experimental results and comparison with SMT solvers show that
the method is efficient, scalable and applicable to large arithmetic
designs, such as multipliers.

I. INTRODUCTION

With the increased size and complexity of integrated circuits

(IC) and systems on chip (SoC), design verification becomes a

dominating factor of the overall design flow. Of particular im-

portance (and difficulty) is verification of arithmetic datapaths

and their components, such as multipliers. Unlike gate-level

logic designs, which can be handled using Boolean methods,

arithmetic designs require treatment on higher abstraction lev-

els. Techniques based on decision diagrams or SAT solvers that

work at the bit level are not scalable for complex arithmetic

systems as they require “bit-blasting”, flattening of the entire

design into bit-level netlists. Modern verification methods use

SMT solvers and symbolic algebra techniques, but they suffer

from lack of adequate models that can harness the inherent

bit-level nature of arithmetic circuits.

The work described in this paper aims at overcoming some

of these limitations. It presents a novel approach to functional

verification of bit-level arithmetic circuits using linear algebra

techniques. The proof of correctness is obtained by modeling

the arithmetic circuit as a network of half/full adders and

computing its algebraic signature using a standard LP solver.

The computed signature is then compared to the reference

signature provided by the designer.

II. PREVIOUS WORK

Several approaches have been proposed to check an arith-

metic circuit against its specification at a higher level of

abstraction. Different variants of decision diagrams and canon-

ical graph-based representations have been proposed for this

purpose, including BDDs [1], BMDs [2], TEDs [3] and others.

BDDs have been used extensively in logic synthesis, symbolic

simulation and SAT but their application to verification of

arithmetic circuits is limited due to high memory requirements.

BMDs and TEDs provide more efficient representation of

arithmetic circuits but require word-level information about

the design, which is often not available or is hard to extract

from bit-level netlists.

Computer symbolic algebra methods have been applied to

model arithmetic designs as polynomials over finite rings [4].

Their applicability to verification of arithmetic circuits is also

limited as it relies on a word-level representation of the datap-

aths. An approach to verification of bit-level implementations

using theory of Grobner basis over fields has been proposed by

[5] and adopted by others. A technique based on term rewriting

was proposed [6] for RTL equivalence checking, using a

database of rewrite rules for typical multiplier implementation

schemes. However, the method cannot be automated for non-

standard implementations.

In [7] a gate level network of an addition circuit (a basic

component of the multiplier) is modeled as a network of half

adders, called arithmetic bit-level (ABL) network. ABL com-

ponents are modeled by polynomials over unique ring, and the

normal forms are computed w.r.t. the Grobner basis over rings

Z/2n using modern computer algebra algorithms. In our view

this model is unnecessarily complicated and does not scalable

to practical designs. A simplified version of this technique has

been recently proposed whereby the expensive Grobner base

computation is replaced by direct generation of polynomials

representing individual outputs in terms of the primary inputs

[8]. However, no general method for deriving such (potentially

very large) polynomials and comparing them in a systematic

way against the specification has been proposed. Our paper

addresses this issue using efficient linear algebra techniques.

Another approach to solving arithmetic verification prob-

lems is based on SMT (Satisfiability Modulo Theories). SMT

techniques combine SAT with specialized solvers for some

well-defined theories, such as Boolean logic, linear integer

arithmetic, theory of equality of uninterrupted functions, and

others [9] [10]. While the application of SMT solvers to

property and model checking is unquestionable, their use in

functional verification of custom arithmetic circuits has not

been yet addressed. This paper proposes a new theory that

can enhance capabilities of SMT solvers.

III. ALGEBRAIC MODEL

It can be shown that any (logic or arithmetic) circuit

can be expressed as a network of half-adders (HA), full-

adders (FA) and inverters. Each arithmetic or logic operator

is then modeled with a set of linear equations that relate the

input and output signals. This section describes modeling of
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the arithmetic network and its components using algebraic

equations.

A half-adder (HA) with binary inputs a, b and outputs S
(sum) and C (carry out) is represented as

a + b = 2C + S (1)

Similarly, a full adder (FA) with inputs a, b, cin and outputs

S and C is represented as

a + b + cin = 2C + S (2)

Logic gates can be similarly represented by algebraic equa-

tions by deriving their functions from a half adder. Specifically,

XOR(a, b) is simply a sum output, S, of the half adder

HA(a, b), and the AND(a, b) is the carry-out output, C, of

HA(a, b). Equations for an OR gate, d =OR(a, b), can be

similarly derived from the carry out (AND) output of the HA by

inverting its inputs and outputs, (1−a)+(1−b) = 2(1−d)+S,
resulting in a+ b = 2d−S. Combining this equation with the

equation (1) for HA gives C +S = d. As a result, an OR(a, b)
gate can be modeled with the following equations involving

two half adders: {
a + b = 2C + S
C + S = d

(3)

Figure 1 shows the HA model for basic logic gates (AND,

OR, XOR). The correctness of the equations can be veri-

fied with the attached truth table. Finally, the inverter gate

y =INV(x) can be trivially modeled by the following equation:

x + y = 1.

a b

HA1

C S

C S

HA2

C S

d

a b C S d
0 0 0 0 0

1 0 0 1 1

0 1 0 1 1

1 1 1 0 1

Fig. 1. Modeling of logic gates using HA operators: a+b = 2C+S;C+S =
d, where S =XOR(a, b), C =AND(a, b) and d =OR(a, b).

Using these models, an arithmetic circuit can be represented

by a system of linear equations, with variables x representing

inputs (xI ), outputs (xO) and internal signals (xS). There is

one equation for each HA, FA, XOR gate or AND gate, and a

pair of equations (3) for an OR gate (c.f. Figure 1).

Algebraic equations representing the network are then com-

bined in order to eliminate the internal variables from the

equations and to represent the outputs of the circuit solely in

terms of the primary inputs. The resulting expression is called

Algebraic Signature of the design, denoted Sig(N). Formally,

algebraic signature is obtained by finding a linear combination

of the network equations that results in an expression that

relates the input and output variables.

The algebraic signature is then compared to the Reference

Signature of the network, Ref(N), which provides the ex-

pected relationship between primary inputs and outputs of

the network (the golden model). The reference signature is

basically the difference between the n-bit encoding of the

output word (output signature) and a linear combination of

input signals (input signature).

Reference signature is provided by the designer and can

be obtained directly from the specification of the design. For

example:

7-3 counter: The input signature of the 7-3 counter is simply

the sum of the input bits, x1, . . . , x7. With the output encoded

in three bits, x8, x9, x10 the reference signature is

Ref(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(4)

n-bit adder: For an n-bit binary adder, NA, with

inputs {a0, . . . , an−1, b0, . . . , bn−1} and outputs

{S0, . . . , Sn−1, Cn}, the reference signature is given

by:

Ref(NA) = 2nCn +

n−1∑

i=0

2iSi − (

n−1∑

i=0

2iai +

n−1∑

i=0

2ibi) (5)

2 × 2-bit unsigned multiplier: Since the multiplier is a non-

linear circuit, we first need to convert its primary inputs

{a0, a1, b0, b1} into new variables (partial product terms), ppI ,

as follows:

A · B = (2a1 + a0).(2b1 + b0)
= 4a1b1 + 2a1b0 + 2a0b1 + a0b0

= 4pp3 + 2pp2 + 2pp1 + pp0

(6)

The variables ppi are primary inputs to the multiplier. As-

suming that the multiplier’s result is encoded in 4 bits,

{z0, z1, z2, z3}, the reference signature is given by:

Ref(NM2) = (8z3+4z2+2z1+z0)−(4pp3+2pp2+2pp1+pp0)
(7)

The reference equation for signed multiplier can be derived

similarly.

We shall now illustrate the idea of computing the algebraic

signature using the following example.

Example 1. Figure 2 represents a 7-3 counter, a circuit

that counts the number of 1s at the inputs {x1, . . . , x7} and

encodes the result in a 3-bit word S2, S1, S0 = {x8, x9, x10}.
The following equations can be derived for this network

using the FA model described above.




x1 + x2 + x3 − 2x11 − x12 = 0
x4 + x5 + x6 − 2x13 − x14 = 0
x12 + x14 + x7 − 2x15 − x10 = 0
x11 + x13 + x15 − 2x8 − x9 = 0

(8)

The algebraic signature of the 7-3 counter is obtained by

multiplying the individual rows of equation 8 by coefficients

α = {-1, -1, -1, -2}, respectively, and adding them to produce

the following expression:

Sig(N) = (4x8+2x9+x10)−(x1+x2+x3+x4+x5+x6+x7)
(9)

As we can see, the computed algebraic signature is identical

to its reference signature (4) proving that the design is correct,

i.e., it performs the expected function.

FMCAD 2011, Page 68



x1 x2 x3

FA1

C S

x12

x4 x5 x6

FA2

C S
x14

x7

FA3

C S

x10

x11 x13

x15

FA4

C S
x8 x9

S2 S1 S0

Fig. 2. Arithmetic network of a 7-3 counter.

IV. MATHEMATICAL FORMULATION

Let n be the total number of signals in the network, each

represented by a variable, and m be the number of linear

equations in the system. The network can be represented in

matrix form as

Ax = b (10)

where A is an m×n matrix, x is an n-vector representing the

signals, and b is a constant vector of size m. Vector x of signal

variables is further partitioned into the set of input signals xI ,

output signals xO , and internal signals xS so the above system

of equations can be written as: AIxI + AOxO + ASxS = b.
AI , AO, AS are sub-matrices of A restricted to the columns

associated with input, output and internal signals, respectively.

For the 7-bit counter of Fig. 2 we have xI = [x1, · · · , x7]
T ,

xO = [x8, x9, x10]
T , xS = [x11, x12, x13, x14, x15]

T , and b=0.
Matrix A is given as follows:

A =




1 1 1 0 0 0 0 0 0 0 −2 −1 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 −2 −1 0
0 0 0 0 0 0 1 0 0 −1 0 1 0 1 −2
0 0 0 0 0 0 0 −2 −1 0 1 0 1 0 1




(11)

Similarly, the reference signature can be represented in this

system as

Ref(N) = [rO, −rI ]
T · [xO, xI ] (12)

where xO and xI are the sets of variables representing output

and input signals, and rO , rI are integer signature vectors

associated with these variables. For the 7-3 counter example,

with xO = [x8, x9, x10]
T and xI = [x1, · · · , x7]

T , we have

Ref(N) = [4 2 1 , −1 −1 −1 −1 −1 −1 −1]·[xO, xI ] (13)

Given the reference signature Ref(N), provided by the

user, and its corresponding reference vector [rO, −rI ], the sys-
tem computes the algebraic signature vector r = [rO, −rI , rS ]

of the network. The goal is to determine if the computed al-

gebraic signature Sig(N) = rT x matches the given reference

signature Ref(N) = [rO, −rI ]
T · [xO, xI ]

As explained in Section III, signature Sig(N) = rT x is

obtained as a linear combination α of the rows of Ax. Our
goal is to compute vector α such that

[AO, AI , AS ]T α = [rO, −rI , rS ] (14)

This is done by first solving the following linear system for

α using standard LP solver:
{

AT
Oα = rO

AT
I α = −rI

(15)

Here rS is relaxed, i.e., the internal variables are not taken

into account. If this system has no solution, i.e., there is

no linear combination of rows of Ax that will produce an

algebraic signature whose inputs and outputs match those of

the reference signature Ref(N), the circuit is incorrect (w.r.t.
that signature). If the system has a solution, the signature

vector rS associated with internal variables is computed as

follows:

rS = AT
S α (16)

Ideally we are interested in having the internal variables

eliminated (rS = 0) as a condition for satisfying the reference

signature. Applying this approach to the 7-3 counter circuit,

we obtain αT = [-1 -1 -1 -2], from which the signature vector

can be calculated as r = AT α. The computed r = rO and

rI match those of the reference equation and rs = AT
Sα = 0;

that is, all the internal signals have been eliminated from the

signature.

But what if the computed signature Sig(N) contains inter-

nal signals, i.e., if rS 6= 0? We refer to such an expression

as a residual expression, RE(N) = Sig(N)− Ref(N). Does
the existence of RE(N) mean that the system does not satisfy

the reference signature and the design is incorrect? It can be

shown that this is not necessarily the case and that rS = 0 is

a sufficient but not a necessary condition for the design to be

correct. In fact, a sufficient and necessary condition for circuit

correctness is that RE reduces to zero for all the variable

valuations that are produced by the network. In this case the

network signature matches exactly the reference signature and

the design is correct. This is illustrated with the following

example.

Example 2. Consider a 2×2 signed multiplier network, shown

in Figure 3. The combination of HA3 and HA4 models an OR

gate. Inputs to the network are partial product terms ppi, gen-

erated from the actual inputs of the multiplier, a1, a0, b1, b0,

by a standard partial product generator. Hence, the expected

input signature for the network is:

SigI(N) = (−2a1 + a0)(−2b1 + b0)
= 4a1b1 − 2a1b0 − 2a0b1 + a0b0

= 4pp3 − 2pp2 − 2pp1 + pp0

(17)

Hence the reference signature for this design is: Ref(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0, where

the first four terms are the output signature, obtained directly

from the encoding of the output bits.
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Fig. 3. Signed 2 × 2 multiplier network.

The algebraic signature Sig(N) computed by the system is:

Sig(N) =
−8z3 + 4z2 + 2z1 + z0 − 4pp3 + 2pp2 + 2pp1 − pp0

+16x9 − 4x8 + 4x17

(18)

We note that the signature contains a residual expression

RE = −16x9 + 4x8 − 4x17. However, it can be shown that

this expression always evaluates to zero. Namely, x9=0 since

it is the carry-out C output of HA4 modeling the OR gates,

which is always zero (refer to the truth table in Figure 1).

The remaining variables, x8, x17, are two equivalent outputs

S of HA2 and HA3 that share the same inputs. Hence x8=x17,

which reduces RE to zero. Such an analysis of internal

equivalences allows one to determine whether the residual

expression evaluates to zero. If it does, the network performs

the desired function expressed by the reference signature

and the circuit is considered correct. Otherwise the circuit is

incorrect, i.e., it does not perform the function described by

the reference signature.

V. EXPERIMENTAL RESULTS

The arithmetic verification technique described in the paper

has been implemented as a prototype program written in C.

The program uses GLPK package [11] to solve the linear

system needed to compute an algebraic signature of the

network.

A detailed flow of the verification procedure based on

algebraic signature computation is shown in Fig. 4. The input

to the system is the description of the arithmetic network N ,

composed of arbitrary logic gates, HA and FA operators, along

with the reference signature provided by the designer. The

system computes a complete signature of the network and

reports if there is a non-empty residual expression RE(N).
If RE 6= 0, additional constraints need to be extracted from

the network and imposed on RE in an attempt to prove that

it is zero. These constraints come in two flavors: 1) signal

equalities, caused by fanout of internal signals, e.g., x8 = x17

in Example 2; and 2) Boolean constants, such as x9=0 in

Example 2.

Fig. 4. Flowchart of the functional verification system.

Note that by construction (equation 15) the signature vector

of a correctly designed circuit will always match its reference

signature, otherwise the system has no solution and the circuit

is declared incorrect.

We conducted a set of experiments on a number of arith-

metic circuits, including large integer multipliers. First, a bit-

level structural verilog code was generated for each multiplier

using a generic multiplier generator software. (courtesy of the

University of Kaiserslauten). The verilog code was parsed to

transform the multiplier circuit to a network of HA, FA and

basic logic gates from which a system of linear equations was

generated, as described in Section IV. Finally, our program

with link to GLPK was used to compute the algebraic signature

for the network, given the expected reference signature.

Since multipliers are non-linear networks, we concentrated

on the part of the designs which uses partial products as

its inputs. Equation 17 illustrates the generation of partial

product, aibj , for a 2-bit area multiplier. Similar expressions

can be readily obtained for Booth-recoded products. Such

recoded product generator can be easily proved using Boolean

methods.

Table I shows our results for a set of signed integer multi-

pliers up to 256 × 256 bits. The experiment was conducted

on a 2 GHz machine running Linux, with Intel(R) Dual

Core(TM) T3200 processor and 3GB RAM. Since most of the

research in this field has been done in the context of property

checking rather than strictly functional verification, we could

only compare our results to those in [12], for arithmetic proof

(AP) of integer multipliers. The table gives the size of the

multiplier (in the number of bits n of each operand); the

number of linear equations (constr); the CPU time to compute
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the signature and the CPU time for arithmetic proof (AP) of

integer multipliers, reported in [12]. The AP results were

computed on a comparable 64-bit 2 GHz Power5 machine,

and reported only for 24, 53 and 64 bit integer multipliers.

The computed signatures were free of residual expressions

after imposing simple Boolean constraints (constants 0) related

to the OR gate configuration discussed earlier.

Size (n) This work AP
mult n × n [12] Z3 Yices

Constr. CPU (sec) sec sec sec
3 21 0.00 - 0.23 0.02

4 44 0.00 - 466.36 0.05

8 216 0.00 - MO TO

16 944 0.02 - MO TO

24 2184 0.04 7 MO TO

30 3450 0.07 MO TO

32 3936 0.09 - MO TO

53 8268 0.77 480 MO TO

64 12096 1.14 840 MO TO

128 48768 17.09 - MO TO

192 110016 45.23 - MO TO

256 195840 151.95 - MO TO

TABLE I
CPU TIME FOR COMPUTING ALGEBRAIC SIGNATURE OF n-BIT
INTEGER SIGNED MULTIPLIERS. (MO = OUT OF MEMORY 3 GB;

TO = TIMEOUT AFTER 1800 SEC)

The runtime complexity of the procedure to compute al-

gebraic signature of the network is less then O(n2) in terms

of the number of gates in a gate-level implementation of the

design, c.f. Figure 5. In principle, given a network N described
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Fig. 5. Runtime complexity of the computation of algebraic signature.

by a linear system Ax = b, checking if the network satisfies

the reference signature Ref(N) can be cast as a SAT problem.

Specifically, we need to show that (Ax = b)∧ (Ref(N) 6= 0)
is unsatisfiable (unSAT). We performed this test for the

multiplier circuits using two SMT solvers, Yices and Z3, that

support Linear Integer Arithmetic as one of their theories. The

results are shown in the last two columns of Table I. The SMT

solvers were not able to solve this problem for multipliers with

more than 8 bits. Z3 runs out of memory (3 GB) while Yices

is unable to complete the computation in 30 minutes.

VI. CONCLUSIONS AND FUTURE WORK

The purpose of this work was to show a potential of the

proposed algebraic technique to verify functionality of arith-

metic circuits. The method is based on computing algebraic

signature and comparing it with the reference signature that

uniquely defines behavior of the design. If the computed signa-

ture contains non-zero residual expression RE, the signature

computation must be followed by a proof that RE reduces to

zero. This requires extracting constraints that are not properly

captured by the linear model. Alternatively, such constraints

can be imposed on the linear system directly. In this case the

correct design should have no residual expression. In fact this

was the case with the multipliers presented in Section V. We

believe that such constraints are not hard to extract and are

related to only a few types of configurations, such as constant 0

and equivalence of signals derived from a fanout, as discussed

earlier. This issue is currently under investigation.

The described technique is also applicable to property

checking, by representing the property by its algebraic sig-

nature and checking if it is consistent with the signature of

the network. The feasibility of the resulting linear system will

indicate whether such a consistency is maintained or not.

Finally, the method is limited to designs with known

reference signature and such a signature must be a linear

expression. This is certainly the case for portions of the designs

composed of half adder networks (such as Wallace trees) often

encountered in complex arithmetic designs. Application to

other types of circuits needs to be examined.
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Abstract—Real-Time Embedded Software (RTES) constitutes
an important sub-class of concurrent safety-critical programs.
We consider the problem of verifying functional correctness of
periodic RTES, a popular variant of RTES that execute periodic
tasks in an order determined by Rate Monotonic Scheduling
(RMS). A computational model of a periodic RTES is a finite
collection of terminating tasks that arrive periodically and must
complete before their next arrival.

We present an approach for time-bounded verification of safety
properties in periodic RTES. Our approach is based on sequen-
tialization. Given an RTES C and a time-bound W , we construct
(and verify) a sequential program S that over-approximates
all executions of C up to time W , while respecting priorities
and bounds on the number of preemptions implied by RMS.
Our algorithm supports partial-order reduction, preemption
locks, and priority locks. We implemented our approach for C
programs, with properties specified via user-provided assertions.
We evaluated our tool on several realistic examples, and were
able to detect a subtle concurrency issue in a robot controller.

I. INTRODUCTION

Real-Time Embedded Software (RTES) is an important

sub-class of concurrent safety-critical programs. They play a

crucial role in controlling systems ranging from airplanes and

cars, to infusion pumps and microwaves. We are increasingly

reliant on these cyber-physical systems to maintain our modern

technology-driven way of life. As such, verifying the correct

operation of RTES is an important and open challenge. Ad-

dressing this challenge is the subject of our paper.

Specifically, we focus on systems that receive as input a

collection of periodic tasks, where each task τi has, among

other things, a terminating task body Ti and a period Pi. The

tasks are prioritized in a Rate-Monotonic [1] fashion, which

means that tasks with shorter periods have higher priorities.

We call such an input pattern a periodic program.

A periodic program C is executed by running its tasks peri-

odically and concurrently with asynchronous priority-sensitive

interleaving. Thus, at each scheduling point, the active task

with the highest priority is selected for execution. A task τi

becomes inactive at the end of its body Ti, and is reactivated

after Pi time has passed since its last activation. A single

execution of a task body is called a job. It is convenient to

view an execution of C as an asynchronous priority-sensitive

interleaving of the jobs statements, where the statements arise

from the infinite job streams corresponding to the periodic

execution of the task bodies.

Periodic programs constitute an important fragment of

RTES that interact with the physical world. In particular, the

task periods are dictated by the physical environment and

the underlying control algorithms. Consider, for example, the

nxt/OSEK-based [2] LEGO MINDSTORM robot controller.

It has three periodic tasks: a balancer, with a 4 millisecond

(ms) period, maintains the balance of the robot; obstacle, with

a 50 ms period, monitors a sonar sensor to detect obstacles;

and bluetooth, with a 100 ms period, monitors a bluetooth

link for remote commands from the user. Another example is

a generic avionic mission system that was described in [3]. It

includes 10 periodic tasks, including weapon release (10 ms),

radar tracking (40 ms), target tracking (40 ms), aircraft flight

data (50 ms), display (50 ms) and steering (80 ms). Other

examples of periodic programs include phase-array radars and

aircraft collision-avoidance systems.

These examples demonstrate the fact that periodic programs

are used for developing a wide range of RTES that interact

with the physical world, and play an important role in the

correct operation of safety-critical systems. Statically predict-

ing behavior – by verifying logical and timing properties of

periodic programs – is a problem of great practical relevance.

Despite a wide body of work, the state-of-the-art in verifi-

cation of real-time and concurrent programs does not address

logical properties of periodic programs (with the exception

of the recent work of Kidd et al. [4], which we discuss in

Sec. VIII). On one hand, techniques for verifying properties

of timed systems [5], [6] are based on Timed Automata [7].

They abstract away significantly the behavior (i.e., control- and

data-flow) of target systems, and, therefore, are unsuitable for

analyzing logical properties. On the other hand, approaches

for concurrent software verification (e.g., [8]) employ a non-

deterministic scheduler model (i.e., tasks do not have priorities

or periods), and thus cannot handle the execution semantics

of periodic programs. Against this backdrop, our main con-

tribution is the development and evaluation of an approach to

verify logical properties of periodic programs.

Specifically, we present an approach for time-bounded ver-

ification of safety properties of periodic programs. The inputs

are: (i) a periodic program C; (ii) a safety property expressed

via an assertion A embedded in C, (iii) an initial condition Init
of C, and (iv) a time boundW . Time-bounded verification can

be seen as an analogue of Bounded Model Checking (BMC)

for RTES, since time is a natural way to bound an execution

of a periodic program for the purpose of verification.

Our solution for the time-bounded verification problem

is based on sequentialization – reducing verification of a

concurrent program to verification of a sequential program. It

is inspired by work on sequentialization for Context-Bounded
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Analysis [8], [9], [10], [11], [12] (CBA) and Bounded Model

Checking [13] (BMC). A key distinguishing aspect of our

work is that instead of bounding the number of context

switches (as in CBA), or the number of execution steps (as in

BMC), the input time bound W translates in our model to a

bound on the number of jobs. This is a natural consequence

of the fact that tasks are periodic and, therefore, are activated

a finite number of times within W . Our solution also handles

two types of locks used commonly in periodic programs, and

incorporates two forms of partial-order reduction aimed at

reducing analysis time.

We have implemented our solution in a tool, called REK.

Our tool is able to verify periodic programs implemented in C

where tasks communicate via shared variables and synchronize

via locks. We have used it to verify several variants of a

nxt/OSEK-based [2] LEGO MINDSTORM robot controller.

In some instances, we found subtle concurrency issues in the

controller using our tool. We have also evaluated our tool on

several custom versions of the reader-writer protocol.

The rest of the paper is structured as follows: in the

next section we formally define a periodic program and its

semantics. In Sec. III, we describe time-bounded and job-

bounded abstractions. In Sec. IV, we describe our encoding

method. In Sec. V, we extend our model with locks, and

in Sec. VI describe partial-order reduction. In Sec. VII, we

describe our case study and experimental results. Finally, we

discuss related work in Sec. VIII, and conclude in Sec. IX.

II. PRELIMINARIES

A task τ is a tuple 〈I, T, P, C, A〉, where I is a task

identifier, T – a bounded procedure (i.e., no unbounded loops

or recursion) called the task body, P – a period, C – the worst

case execution time of T , and A, called the release time, is the

time at which the task is first enabled1. An N -task periodic

program C is a set {τ0, . . . , τN−1} of N tasks. For simplicity,

we assume that the id of task τi is i.
In this paper, we restrict the priorities of the tasks to be

rate-monotonic – tasks with smaller period have higher base

priority. For simplicity, we assume that the index of a task

represents its base priority. Thus, a task with a lower id has a

lower base priority (and higher period).

A periodic program is executed by running each task

periodically, starting at the release time. For k ≥ 0 the k-th job

of τi becomes enabled at time Ak
i = Ai+k×Pi. The execution

is asynchronous and priority-sensitive – at each point the CPU

is given to an enabled task with the highest priority. Priorities

can change dynamically, but must avoid priority inversion –

when a low base priority task preempting a higher base priority

task. This is known, somewhat misleadingly, as a fixed-priority

preemptive scheduling.

Formally, the semantics of an N -task periodic program C =
{τ0, . . . , τN−1} is the asynchronous concurrent program:

‖N−1
i=0 ki := 0 ; while(WAIT(τi, ki)) (Ti ; ki := ki + 1) (1)

1We assume that time is given in some fixed time unit (e.g., milliseconds).

4 8 12 16

τ0

τ1

τ2

Fig. 1. A schedule of three tasks from Example 1.

where ki is a numeric variable and WAIT(τi, ki) returns FALSE

if the current time is greater than Aki
i , and otherwise it disables

τi until the time is Aki
i and then returns TRUE.

An execution of each task body Ti in (1) is called a job.

A job’s arrival is the time when it becomes enabled (i.e.,

WAIT(τi, k) in (1) returns TRUE); start and finish are the times

when its first and last instructions are executed, respectively;

response time is the difference between its finish and arrival

times. The response time of a task is the maximum of response

times of all of its jobs in all possible executions.

Note that WAIT in (1) returns TRUE if a job has finished

before its next period. If this is always the case, i.e., WAIT

never returns FALSE, then the program is called schedulable.

Formally, a periodic program C is schedulable if for each

task τi, the response time RTi is less than the period Pi.

Response times are computed using Rate Monotonic Analysis

(RMA) [14]. For a periodic program C = {τ0, . . . , τN−1}, the
response time RTi of task τi is the smallest solution to the

following equation

RTi = Ci +
∑

i<k<N

⌈RTi

Pk
⌉ · Ck . (2)

Intuitively, the response time of a task is equal to its worst-case

execution time plus the time taken by all higher-priority tasks

that preempted it. RTi is computed by solving (2) iteratively

starting with RTi = Ci [14]. Note that for the highest-priority

task the response time RTN−1 is its execution time CN−1.

Example 1 Consider the task set:

Task Ci Pi

τ2 1 4

τ1 2 8

τ0 8 16

Solving (2) gives us RT2 = 1, RT1 = 3 and RT0 = 16. A
schedule demonstrating these values is shown in Fig. 1.

In this paper, we are interested in logical properties of periodic

programs. We assume that any program we analyze meets its

basic timing constraints. For that reason, we only deal with

schedulable periodic programs.

III. TIME-BOUNDED PERIODIC PROGRAMS

In this section, we present time-bounded semantics of

periodic programs and define a job-bounded abstraction that

is the formal foundations of our verification technique.

FMCAD 2011, Page 73



Given a periodic program C = {τ0, . . . , τN−1) and a time-

bound W , the time-bounded program CW executes like C for

timeW and then terminates. We assume thatW is divisible by

the period of each task. Furthermore, we assume that the first

job of each task finishes before its period, i.e., Ai ≤ Pi−RTi.

Under these assumptions, the time bound imposes a natural

limit on the number of jobs Ji of each task:

Ji =
W
Pi

. (3)

Therefore, the semantics of CW is equivalent to the asyn-

chronous concurrent program:

‖N−1
i=0 ki :=0;while(ki < Ji∧WAIT(τi, ki)) (Ti ;ki :=ki +1) .

(4)

This is analogous to the semantics of C in (1) except that each

task τi executes Ji jobs.

Job-bounded Abstraction. Since we are interested in logical

properties, we need to abstract the absolute time in (4) with

relative order of execution. A simple abstraction is to interpret

WAIT as a non-deterministic delay, effectively replacing a

time-bound with a job-bound. We further refine this abstraction

using the following observation about RMA (2). Let τi and τj

be two tasks of a schedulable periodic program C such that

i < j. Then RMA defines the preemption bound of i by j,
written PBj

i , as follows

PBj
i = ⌈RTi

Pj
⌉ . (5)

That is, PBj
i is an upper bound on the number of times

τj can preempt τi. Thus, in addition to treating WAIT as a

non-deterministic delay, we only allow for a job of task j to

preempt a job of task i if j > i and it does not violate the

preemption bound PBj
i . In other words, we only schedule at

most PBj
i jobs of τj while a job of τi is active. We call this

the job-bounded abstraction of CW and denote it by CJ(W).

Theorem 1 (Soundness of Job-bounded Abstraction) For

a periodic program C = {τ0, . . . , τN−1} and a time-bound

W s.t. ∀i · (Ai ≤ Pi−RTi)∧ (W|Pi), every execution of CW
is also an execution of CJ(W).

Obviously, job-bounded abstraction is incomplete, i.e.,

CJ(W) may have more executions than CW . The primary

reason being that the preemption bounds are only upper

bounds since they are computed from the worst-case execution

times, and rounded upwards in (5). The incompleteness due

to rounding up is shown by the following example.

Example 2 Let C = {τ0, τ1} such that P0 = 25, RT0 = 22
and P1 = 10, RT1 = 10, and W = 100. Then, PB1

0 = 3
and, therefore, in CJ(W) two consecutive jobs of τ0 can be

preempted three times, each, by jobs of τ1. However, in CW
two consecutive jobs of τ0, taken together, can be preempted

at most five times by jobs of τ1.

In the next section, we give an algorithm for constructing

and verifying the job-bounded abstraction CJ(W) from a

periodic program C.

IV. SEQUENTIALIZATION OF A PERIODIC PROGRAM

We use a two-step approach to verify an N -task periodic

program C = {τ0, . . . , τN−1} under a time boundW . The first

step, sequentialization, outputs a non-deterministic sequential

program with assume statements S , as shown in Alg. 1.

The program S is semantics preserving w.r.t. CJ(W) (see

Theorem 2). The second step is the verification of S with

an off-the-shelf program verifier. In the rest of this section,

we focus on sequentialization.

A. Sequentialization: Intuition

Our key insight is that any execution π of C can be

partitioned into scheduling rounds in the following way: (a) π
begins in round 0, and (b) a round ends and a new one begins

every time a job ends (i.e., the last instruction of some task

body is executed). For example, the bounded execution shown

in Fig. 1 is partitioned into 7 rounds as follows: round 0 is

the time interval [0, 1] – the end of the first job of τ2, round 1

is [1, 3] – the end of the first job of τ1, round 2 is [3, 5] – the

end of the second job of τ2 (note that there is only one job of

τ0 and it ends at time 16), round 3 is [5, 9], etc.
Observe that in each round, the tasks are executed sequen-

tially in the order of their priority starting with the task of the

lowest priority. Furthermore, a bounded execution in which

exactly k jobs start and end has exactly k rounds.

The basic idea of our sequentialization is to reduce a

bounded concurrent execution with k jobs into a sequential

execution with k rounds. Initially, jobs are allocated (or sched-

uled) to rounds. Then, each round is executed independently

(and sequentially) starting from a guessed initial state. Finally,

we check for each 0 ≤ i < (k − 1), that the guessed initial

state at round i + 1 is the final state of round i.
Our sequentialization is inspired by the work of Lal and

Reps [9], but differs from it in several significant ways. First,

we deal with periodic programs and not non-deterministically

scheduled concurrent programs. Second, since we are not

exploring non-deterministic schedules, we use a more refined

scheduling scheme than the non-deterministic round-robin

used in [9]. Third, we partition each task (or, correspondingly,

a thread in [9]) into jobs and preserve all executions in which

all jobs terminate. In contrast, [9] only preserves executions

with a bounded number of thread-preemptions. Finally, we

take into account that preemption between tasks must respect

priorities and preemption bounds.

B. Sequentialization: Details

The sequential program S starts in MAIN (see Alg. 1). It

first allocates jobs to rounds (line 5), initializes global variables

(lines 6–8), executes all jobs of all tasks sequentially starting

with the first job of the lowest priority task (lines 9–13), and

finally checks correctness of guessed variables and assertions

(lines 14–15).

Job scheduling. A job schedule is a pair of mappings start
and end that map each job of each task to a starting and ending

round, respectively. We say that a job schedule is legal iff it

satisfies the following three properties: (a) jobs are sequential
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– for a given task, for any pair i < j, job i starts and finishes

(i.e., precedes) job j, and (b) jobs are well-nested – if a higher

and a lower priority jobs overlap, then the higher priority job

must start and end within the rounds of the lower priority one,

and (c) jobs respect preemption bounds – no more than PB
tj

ti

jobs of task tj are scheduled inside any job of task ti.

SCHEDULEJOBS fills arrays start and end with a non-

deterministic legal job schedule. Line 24 ensures that the jobs

are sequential, while line 25 ensures that they are well-nested,

and line 26 ensures that they respect preemption bounds. To

understand line 26, suppose that PBt2
t1 = 3, j2 = 4 and that

j2 is nested in j1. Then, to satisfy PBt2
t1 , we require that job 1

of t2 has ended before j1 started. Otherwise, because the jobs

are sequential and well-nested, j1 contains jobs 1, 2, 3, and 4
of t2 – that is, it is preempted by more than three t2 jobs.

Global variables. For every global variable g, we create two
arrays g[ ] and vg[ ] such that g[i] is the value of g in round

i, and vg[i] is the guess of the initial value of g in round i.
The element g[0] is initialized in line 7 to the user-specified

initial value ig , and each other elements g[r] is assigned the

corresponding initial guess vg[r] in line 8.

In addition, a variable rnd tracks the current round, job
tracks the current job, and endRnd is the scheduled end round

of the current job.

Tasks. For each task t, MAIN uses a modified version T̂t

obtained from the original task body Tt by preceding each

statement st with a call to CS to emulate a preemption, and

replacing every global variable g in st with g[rnd]. This is

based on an assumption, without loss of generality, that each

global variable g is explicitly loaded and stored, i.e., g only

appears in statements of the form g := l or l := g, where l is
a local variable.

Preemption. CS models a preemption (a context switch to

a higher priority task) by increasing non-deterministically the

value of rnd to the round in which this task resumes execution.

However, not every round between the start and end of the

current job is legitimate. Line 21 ensures that the execution

is not resumed in a round used by a higher-priority task. CS

returns TRUE iff a preemption has occurred. This value is used

later in Sec. VI.

Prophecy-Check. Line 14 ensures that the value of each

global variable at the end of a round is equal to its guessed

value at the beginning of the next round.

Assertions. Assertions need special handling. They can only

be checked after the guesses have been validated via Prophecy-

Check. Without loss of generality, we assume a single call to

assert in the body of each task. We use an array localAssert

that maps a task and a job to the value of the assertion in it.

The element localAssert[t][j] is initialized to TRUE (line 6), set

to the value of the asserted expression (line 29), and asserted

to be TRUE (line 15) after the Prophecy-Check.

Our sequentialization procedure is semantic preserving as

expressed in the following theorem.

Theorem 2 Let C be a periodic program and W a time-

bound satisfying the conditions in Theorem 1. Then, for every

execution π of CJ(W ) that violates an assertion in job j of

task t, there is a corresponding execution π′ of the sequential

program S that violates localAssert[t][j], and vice versa.

V. LOCKS

We support two types of locks: preemption locks and

priority ceiling locks. These locks are common in periodic

programs because they are non-blocking (acquiring a lock

always succeeds) and avoid common pitfalls such as priority

inversion and deadlocks.

A periodic program has a single preemption lock pl. Ac-
quiring pl disables the scheduler, preventing all priority-based

preemptions. Releasing pl re-enables the scheduler. An exam-

ple of such a mechanism is the taskLock / taskUnlock

routines in VxWorks [15].

Priority ceiling locks, or priority locks for short, are

based on dynamically raising the priority of the current job.

Each priority lock lck is associated with a fixed priority

LOCKPRIORITY(lck), which is given to a task if it acquires

lck. It is illegal for a task with current priority p to acquire a

priority lock lck such that LOCKPRIORITY(lck) is less than p.
Releasing a lock restores the priority. Priority locks are used

in the Highest Locker-Priority (HLP) protocol [16], where the

priority of a resource r is as high as the priority of any task

accessing r. This guarantees mutual exclusion (assuming there

is only one CPU) while avoiding blocking, deadlocks, and

priority inversion. Multiple priority locks must be acquired in

increasing order of priority, but can be released in an arbitrary

order. We now show our encoding of these locks.

Preemption locks. The preemption lock pl is modeled by

introducing a Boolean variable lock into T̂t. Specifically,

lock = TRUE iff the current task has acquired pl. The variable
is FALSE initially and is reset to FALSE at the end of a job.

Finally, calls to CS are conditioned by lock = FALSE.

Priority locks. To model priority locks, we need to model

the dynamic priority of each task. Let BASEPRIORITY(t) be a
function that returns the base priority of task t. We introduce

an array priority such that for every round r, priority[r] is
the priority of the task currently executing in round r. The
array is maintained by the function T̂t-WRAPPER (shown in

Alg. 2) that wraps the body T̂t of each task t. The wrapper

function saves the current priority (line 2), ensures that it is

below the base priority of the current task (line 3), raises the

priority to the priority of the current task (line 4), executes

the task body (line 5), and finally resets the priority (line 6).

Note that the task body is only executed if the task has higher

priority than the current dynamic one, and that the priority can

be raised further inside the task body itself.

We model priority locks with two functions GETLOCK and

RELEASELOCK shown in Alg. 2. The set of all locks held by

a task is maintained in a set lockSet that is local to each

task. Information about locks of other tasks is propagated

through priorities. Acquiring a lock (GETLOCK) raises the

dynamic priority to the one of the lock, releasing a lock

(RELEASELOCK) resets the priority to the base priority of the

task or to the priority of the highest lock in the lockSet in
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Algorithm 1 A sequential program S for a periodic program C bounded by time W . Notation: T is the set of tasks of C; G is

the set of global variables of C; J(t) is the set of jobs of task t; R =
∑

t∈T,j∈Job(t) |J(t)| is the number of rounds, last(t, j)
is true iff j is the last job of t ∈ T; for ti, tj ∈ T, ti < tj is true iff ti is of lower priority than tj ; ‘∗’ is a non-deterministic

value.

1: var rnd, job, endRnd, start[ ][ ], end[ ][ ]
2: ∀g ∈ G · var g[ ], vg[ ]
3: var localAssert[ ][ ]

4: function MAIN( )

5: SCHEDULEJOBS()

6: ∀t ∈ T, j ∈ J(t) · localAssert[t][j] := TRUE

7: ∀g ∈ G · g[0] := ig
8: ∀g ∈ G∀r ∈ [1, R) · g[r] := vg[r]
9: for t ∈ T, job ∈ J(t) do

10: rnd := start[t][job]
11: endRnd := end[t][job]
12: T̂t()

13: assume(rnd = endRnd)

14:
∀g ∈ G, r ∈ [0, R− 1) ·
assume(g[r] = vg[r + 1])

15: ∀t ∈ T, j ∈ J(t) · assert(localAssert[t][j])

16: function CS(Task t)
17: if (*) then return FALSE

18: o := rnd
19: rnd := *

20: assume(o < rnd ≤ endRnd)

21:

∀t′ ∈ T, j′ ∈ J(t′) ·
assume(
t < t′ ⇒
(rnd ≤ start[t′][j′] ∨ rnd > end[t′][j′]))

22: return TRUE

23: function SCHEDULEJOBS( )

// Jobs are sequential

24:

∀t ∈ T, j ∈ J(t) ·
assume(
0 ≤ start[t][j] ≤ end[t][j] ≤ R ∧
(¬last(t, j)⇒ end[t][j] ≤ start[t][j + 1]))

// Jobs are well-nested

25:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume((

t1 < t2 ∧
start[t1][j1] ≤ end[t2][j2] ∧
start[t2][j2] ≤ end[t1][j1]

)
⇒

(start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]))

// Jobs respect preemption bounds

26:

∀t1 ∈ T, t2 ∈ T, j1 ∈ J(t1), j2 ∈ J(t2) ·
assume((

t1 < t2 ∧ j2 ≥ PBt2
t1 ∧

start[t1][j1] ≤ start[t2][j2] ≤ end[t2][j2] < end[t1][j1]
)
⇒

end[t2][j2 − PBt2
t1 ] < start[t1][j1])

27: function T̂t( )

Same as Tt, but

each statement ‘st’ is replaced with:

28: CS(t) ; st[g ← g[rnd]],
and each ‘assert(e)’ is replaced with:

29: localAssert[t][job] := e

case this set is not empty. Note that this allows for acquiring

multiple locks and releasing them in an arbitrary order. We

check that the priority of the locks is assigned correctly (i.e.,

acquiring a lock must never lower the dynamic priority) by

adding an assertion that checks this in line 8 of GETLOCK.

Correctness. We need to show that CS and SCHEDULEJOBS

in Alg. 1, which are based on the base priorities, are still

correct when priorities can change due to priority locks.

First, we need to show that the schedules permitted by

SCHEDULEJOBS cover the legitimate schedules in the presence

of priority locks. This is indeed the case because priority-

locks cannot lead to priority inversion – a situation in which

a job with a low base priority preempts a job with a high

base priority. We will demonstrate this using jobs j1 and j2
with base priorities 1 and 2, respectively. j1 cannot preempt

j2 even if it raises its own priority to 3, simply because j2
is not running when j1 acquires the lock. It can, therefore,

only delay the start time of j2, not preempt it. Thus, it is not

necessary to explore schedules in which a low-base-priority

job preempts a high-base-priority job.

Next, consider CS. Line 21 in CS guarantees that j1 does

not resume control in a round in which j2 is still active. If j1
raises its priority then j2 cannot preempt it, and therefore this

constraint blocks a computations in which j1 resumes when j2
was initially scheduled to run. Such a computation is illegal,

however, because it corresponds to a preemption of a high-

priority job j1 by a lower-priority job j2, it is accordingly

blocked by the assume statement on line 3 of T̂t-WRAPPER.

Finally, since j1 can raise its priority, it seems that we also

need the opposite constraint (i.e., that j2 does not resume

control in a round in which j1 is still active). However, there

is no need for this constraint because SCHEDULEJOBS does

not allow a schedule in which j1 preempts j2.

VI. PARTIAL-ORDER REDUCTION

Computations of a concurrent system have a natural parti-

tioning: two computations are in the same class iff they reach

the same observable states. Thus, for verification, it suffices

to examine only one representative from each class. This is

known as Partial-Order Reduction (POR) [17], [18].

POR is used widely and effectively in explicit-state Model

Checking (e.g., [19]). Recently, it has been shown to be
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Algorithm 2 Priority locks.

1: function T̂t-WRAPPER( )

2: sp := priority[rnd]
3: assume(sp ≤ BASEPRIORITY(t)))
4: priority[rnd] := BASEPRIORITY(t)
5: T̂t( )
6: priority[rnd] := sp

7: function GETLOCK(Lock lck)
8: assert(LOCKPRIORITY(lck) ≥ priority[rnd])
9: lockSet := lockSet ∪ {lck}
10: priority[rnd] := LOCKPRIORITY(lck)

11: function RELEASELOCK(Task t, Lock lck)
12: lockSet := lockSet \ {lck}
13: if lockSet = ∅ then
14: priority[rnd] := BASEPRIORITY(t)
15: else

16: priority[rnd]:=priority of highest lock in lockSet

effective for symbolic methods as well [20]. In symbolic

verification, POR translates into additional constraints to the

underlying verification engine (in our case, CBMC and SAT).

This does not always makes the solver faster. We report on

our experience with this reduction in Sec. VII.

We propose two approaches for POR: syntactic and se-

mantic. In syntactic POR, we first partition global variables

into two groups – task local (accessed by a single task) and

shared (accessed by multiple tasks). Intuitively, task local

variables are local to a task, but preserved across jobs (e.g.,

static variables in C). Second, we allow preemptions only

before statements that access a shared variable. Note that this

also reduces the number of variables in the sequentialization

since global variables that are not shared do not need to be

guessed across rounds. We do not describe this reduction in

more details since it is well-known and used by many other

sequentialization approaches (e.g. [9]).

The idea behind semantic POR is to allow, for each shared

variable g, a task to be preempted: (i) before a store g := l
only by a computation that loads or stores g, and (ii) before a

load l := g only by a computation that stores g. Intuitively, if
a preempting computation does not affect the access to g then

it is scheduled after the access, while preserving behavior.

The semantic POR is implemented by adding Boolean

global read/write flags Wg and Rg for each shared g to

indicate whether g was stored or loaded, respectively. These

flags are treated as regular shared variables (i.e., guessed at

the beginning of each round and checked at the end of the

program). Each task body is changed as shown in Alg. 3.

Only the case for a store g := l is shown; the load l := g is

similar and is illustrated later with an example.

When a preemption happens before g := l, the read/write

flags of g are reset (line 4) in the round in which the pre-

emption happens. Then, at least one of the flags is assumed to

become true in the round in which the task resumes. Thus, any

computation in which the current task is preempted but g is not

Algorithm 3 A fragment of T̂t from Alg. 1 with POR. Only

the case of a store to shared variable g is shown.

1: function T̂t( )

Same as Tt, but

each statement ‘g := l’ is replaced with:

2: oldRnd := rnd
3: if CS(t) then

4: Wg[oldRnd] := Rg[oldRnd] := FALSE

5: assume(Wg[rnd] ∨Rg[rnd])

6: Wg[rnd] := TRUE

7: g[rnd] := l

accessed, is blocked. Note that since in the sequential program

we can access any round at any time, the resetting of the

read/write flags (line 4) follows the preemption sequentially,

but precedes it in the execution order. Finally, line 6 sets Wg

to true to indicate that g was stored.

Example 3 Under semantic POR, the two assignments

1: x := g ; g := y

in Tt, where x, y are local and g is shared, become the

sequence in T̂t that appears in Fig. 2.

1: oldRnd := rnd
2: if CS(t) then

3: Wg[oldRnd] := Rg[oldRnd] := FALSE

4: assume(Wg[rnd])

5: Rg[rnd] := TRUE

6: x := g[rnd]
7: oldRnd := rnd
8: if CS(t) then

9: Wg[oldRnd] := Rg[oldRnd] := FALSE

10: assume(Wg[rnd] ∨Rg[rnd])

11: Wg[rnd] := TRUE

12: g[rnd] := y

Fig. 2. An encoding for Example 3.

Let Spo denote the sequentialization with POR. The follow-

ing theorem shows that it is semantics preserving.

Theorem 3 Let C, W and S be as in Theorem 2 and Spo

the corresponding POR. Then, for every execution π of S that

violates a local assertion localAssert[t][j] of task t and job

j there is a corresponding execution π′ of Spo that violates

localAssert[t][j], and vice versa.

VII. CASE STUDIES

We implemented our approach in a tool called REK. REK

is built on top of CIL [21]. It takes as input C programs

annotated with entry points of each task, their periods, worst

case execution times, and the time bound W . The output is a

sequential C program S that is then verified by CBMC [22].
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Fig. 3. Analysis time versus frequency of the highest-period time in ‘aso’.

To evaluate our approach, we have used REK to verify

several periodic programs. In the rest of this section, we report

on this experience. The tool and the case studies are available

at: http://www.andrew.cmu.edu/user/arieg/Rek.

Robot controller. The NXTway-GS controller, nxt for short,

runs on nxtOSEK [2] – a real-time operating system ported

to the LEGO MINDSTORM platform. nxtOSEK supports

programs written in C with periodic tasks and priority ceiling

locks. It is the target for Embedded Coder Robot NXT – a

Model-Based Design environment for using Simulink models

with LEGO robots.

The basic version of the controller has 3 periodic tasks: a

balancer, with period of 4ms, that keeps the robot upright and

monitors the bluetooth link for user commands, an obstacle,

with period 50ms, that monitors a sonar sensor for obstacles,

and a 100ms background task that prints debug information

on an LCD screen.

We verified several versions of this controller. All of the

properties verified involved the high-frequency balancer task.

The balancer goes through 3 modes of execution: INIT,

CALIBRATE, and CONTROL. In INIT mode all variables

are initialized, and in CALIBRATE a gyroscope is calibrated.

After that, balancer goes to CONTROL mode in which it

iteratively reads the bluetooth link, reads the gyroscope, and

sends commands to the two motors on the robot’s wheels.

The results are shown in the top part of Table I. We have

used W = 100ms, which is the minimum time needed for

all tasks to execute at least once. We did not enable semantic

POR since it was irrelevant in this case (all shared variables

were accessed by all tasks in all paths).

Experiments nxt.ok1 (nxt.bug1) check that the balancer is in

a correct (respectively, incorrect) mode at the end of the time

bound. Experiment nxt.ok2 checks that the balancer is always

in one of its defined modes. Experiment nxt.bug3 checks that

whenever balancer detects an obstacle, the balancer responds

by moving the robot. We found that since the shared variables

are not protected by a lock there is a race condition that causes

the balancer to miss a change in the state of obstacle for one

period. Experiment nxt.ok3 is the version of the controller

where the race condition has been resolved using locks.

For the second part of the robot case study, we modified

the original design to separate handling of each sensor by

a separate task. Our design, called ‘aso’ has 3 tasks: bal-

TABLE I
Experimental results. OL and SL = # lines of code in the original C

program and the generated sequentialization S, respectively; GL = size of
the GOTO program produced by CBMC; Var and Clause = # variables and
clauses in the SAT instance, respectively; S = verification result – ‘Y’ for

SAFE and ‘N’ for UNSAFE; Time = verification time in sec.

Name Program Size SAT Size S Time (s)
OL SL GL Var Clause

nxt.ok1 377 2,265 7,848 136K 426K Y 22.16
nxt.bug1 378 2,265 7,848 136K 426K N 9.95
nxt.ok2 368 2,322 8,572 141K 439K Y 13.92
nxt.bug2 385 2,497 10,921 144K 451K N 17.48
nxt.ok3 385 2,497 10,905 144K 449K Y 18.32

aso.bug1 401 2680 13106 178K 572K N 16.32
aso.bug2 400 2,682 13060 176K 566K N 15.01
aso.ok1 398 2,684 13,026 175K 560K Y 66.43
aso.bug3 426 3,263 19,211 373K 1,187K N 59.66
aso.bug4 424 3,250 18,503 347K 1,099K N 31.51
aso.ok2 421 3,251 18,589 348K 1,101K Y 328.32

RW1 190 3,428 5,860 42K 125K Y 20.74
RW1-PO 190 5,021 7,626 45K 134K Y 14.71

RW2 239 4,814 8,121 52K 152K Y 165.89
RW2-PO 239 7,356 10,388 56K 164K Y 162.20

RW3 285 7,338 21,163 139K 419K Y 436.86
RW3-PO 285 12,002 26,283 153K 467K Y 199.13

RW4 244 7,255 19,745 117K 350K Y 321.25
RW4-PO 244 12,272 24,261 130K 392K Y 59.66

RW5 188 3,198 5,208 41K 119K Y 47.83
RW5-PO 188 4,791 7,138 45K 131K Y 20.35

RW6 257 5,231 7,634 54K 157K Y 165.33
RW6-PO 257 8,235 10,119 59K 173K Y 157.43

ancer, observer, and bluetooth. The first two are the same

as before, and the bluetooth is responsible for the bluetooth

communication. We wanted a design in which the balancer

task is lock-free, which was challenging. During our design,

we unintentionally introduced subtle concurrency errors which

were detected by REK.

The results of these experiments are shown in the second

part of Table I. We checked consistency of communication

between the tasks. The experiments are: aso.bug1 and aso.bug2

– initial versions with inadequate locking leading to race

conditions. aso.ok1 is a correct design with preemption locks.

aso.bug3 is our first attempt at a lock-free implementation

that was fundamentally flawed and had to be abandoned.

aso.bug4 and aso.ok2 are a buggy and a correct version of

the final design in which obstacle and bluetooth synchronize

via priority locks and balancer is lock-free.

During the case study, we found it very convenient to

increase the period of the highest priority task (thus decreasing

its frequency). In many cases, this dramatically reduced verifi-

cation time, while allowing us to draw meaningful conclusions

from the counterexamples. Of course, this approach is not

sound in general. Fig. 3 shows the relationship between the

analysis time and the frequency of balancer for a correct and

an incorrect version of the controller. In case the design is

buggy, the time increased monotonically with the frequency.

However, for a safe design, the time behaves erratically: e.g.,

increasing the frequency from 20 to 26 made it easier to verify.

Such erratic behavior is common with SAT.

Reader-Writer. Reader-Writer (RW) is a common communi-

cation pattern in concurrent programs. We implemented three
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lock-free flavors of a RW protocol (RW1, RW3, and RW5),

and their counterparts with locks (RW2, RW4, and RW6).

We checked consistency of communication between the tasks.

Each protocol was analyzed with 3 to 6 tasks (depending on

the protocol), with W such that every task executes once, and

with an increasing number of shared variables. The results are

shown in Table I. For each protocol, we only report on the

hardest instance solved in under 10 mins. In these examples,

semantic POR yields significant reduction in verification time.

The results with POR are shown in Table I in rows named

“PO”. Note that in all cases, the number of variables and

clauses with POR is larger, yet the verification time is smaller.

VIII. RELATED WORK

There is a large body of work in verification of logical prop-

erties of both sequential and concurrent programs (see [23] for

a recent survey). However, these techniques abstract away time

completely, by assuming a non-deterministic scheduler model.

In contrast, we use a priority-sensitive scheduler model, and

abstract time partially via our job-bounded abstraction.

A number of projects [5], [6] verify timed properties of

systems using discrete-time [24] or real-time [7] semantics.

They abstract away data- and control-flow, and verify models

only. We focus on the verification of implementations of

periodic programs, and do not abstract data- and control-flow.

Recently, Kidd et al. [4] showed a number of decidability

results for reachability in finite-state periodic programs with

recursion and locks. They apply sequentialization as well. The

key idea is to share a single stack between all tasks and model

preemptions by function calls. However, they not report on an

implementation. In contrast, we focus on a practical solution

to a bounded version of this problem.

In the context of concurrent software verification, several

flavors of sequentialization have been proposed and evalu-

ated (e.g., [9], [10], [11], [12]). Our procedure is closest to

the LR [9] style. However, it differs from LR significantly,

as discussed earlier (see Sec. IV-A), and provides a crucial

advantage over LR for periodic programs, as discussed next.

In both cases, ours and LR, the number of variables is

proportional to the number of rounds, R. However, LR al-

lows more computations since it does not enforce priority

constraints. In addition to yielding fewer false warnings, our

approach guarantees better coverage for the same number of

variables, as shown below:

Take two programs: (i) an N -task periodic program C with

a time bound that permits exactly one job per task; (ii) the

analogue of C, called C′, in a non-real-time setting, i.e., N
threads scheduled non-deterministically, each executing one

task of C. Consider the value of R required to cover all

reachable states, in our encoding S vs. the LR encoding of C′.
For LR, R is the number of possible context switches, which

by itself is proportional to the number of statements over

shared variables in C′. This value of R is needed to explore

a pathological path in C where, in each round, a single thread

is executed and the threads are picked in reverse-round-robin

order. In contrast, our approach only needs R = N , a much

smaller value in most practical cases. In fact, the pathological

path above is illegal, since scheduling tasks in reverse-round-

robin order violates priority constraints.

IX. CONCLUSION

Periodic programs, i.e., periodic RTES with rate-monotonic

scheduling, are an important sub-class of embedded real-time

software. In this paper, we address the time-bounded verifica-

tion of safety properties of periodic program implementations.

We present a solution involving two steps – convert the target

periodic program to a non-deterministic sequential program,

and then verify it with an off-the-shelf verification tool. Our

approach is sound, preserves both data- and control-flow, and

abstracts the effect of time via preemption-bounds. Some

of our techniques are applicable to other types of systems.

Specifically, note that we only used the assumption that the

verified system follows RMS in order to compute preemption

bounds. Other periodic RTES can be modeled with our method

by either supplying these bounds as part of the input, or by

removing line 26 in Alg. 1 (this may hinder completeness,

however). In addition, our partial order reduction is not re-

stricted to periodic RTES, and is applicable when analyzing

general multi-threaded programs.

We have implemented our approach in a tool, and used it

to identify subtle concurrency errors in a robot controller. We

believe that our work opens up several avenues for future

work in real-time software verification, notably unbounded

verification of periodic programs and the use of automated

abstraction refinement techniques.
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Abstract— Timing analysis is a key step in the design of depend-
able real-time embedded systems, yet existing analysis tools do
not work well for interrupt-driven code, which is commonly used
in embedded systems. In this paper, we present a technique for
timing analysis of interrupt-driven software. We show that for
systems that use priority pre-emptive scheduling, if there is a
finite arrival time between interrupts, one can use bounds on
the number of context switches to perform timing analysis. Our
work builds upon prior work on timing analysis for sequential
programs. We present empirical evidence to show that we can
accurately predict the execution time along any path of an
interrupt-driven program on a standard micro-controller.

I. INTRODUCTION

Timing is central to the correctness of real-time embedded
systems. Timing properties are determined by the behavior of
both the control software and the platform the software exe-
cutes on. The verification of such properties is made difficult
by their heavy dependence on characteristics of the platform,
including details of the processor and memory hierarchy. Even
so, over the past two decades, there has been steady progress
in the field of timing analysis for purely sequential software
(see [1], [2]). Most of the progress has been on the classic
problem of estimating the worst-case execution time (WCET)
of a terminating software task. Such an estimate can be used as
conservative checks on real-time constraints as well as for use
in scheduling algorithms. While determining a bound on the
WCET has many uses, it is not the only problem of interest.
As tools typically overestimate the WCET, when the WCET
exceeds the timing bound, one cannot be sure whether the
program can really miss its deadline. One would also like
to find a test case demonstrating that the program can miss
its deadline. Recent methods [2] have sought to address this
problem for sequential programs.

In practice, though, embedded software is not purely sequen-
tial. In many real-world applications, the control software com-
prises several tasks that execute concurrently. Programming
with interrupts is an extremely common form of concurrency
that the control software uses to obtain sensor data from its
physical environment. Apart from a main function, the control
software has one or more interrupt-service routines (ISRs). An
ISR is invoked when its corresponding interrupt is raised, e.g.,
when a new sensor sample is available. For such an interrupt-
driven program, there is a need to ensure that the task meets
its deadline even in the presence of interrupts. However, the
state-of-the-art of timing analysis for interrupt-driven software

is extremely poor. For instance, in NASA’s recent report on
“unintended acceleration” in certain Toyota automobiles [3],
several limitations of state-of-the-art timing analysis tools are
noted, including the lack of support for interrupts.

The reason for this lack of progress on timing analysis
of interrupt-driven software is not hard to guess. It is the
exponential explosion in the number of interleavings of various
software tasks (such as the main function and the ISRs for
various interrupts). This path explosion especially impacts
timing analysis, since timing is a highly path-sensitive property
— the execution time of a basic block of a program can
depend a great deal on the path it lies on. This is in contrast
with verifying invariants (such as assertion violations), where
one is concerned with checking if a particular “error” location
is reachable without regard to how it is reached. Moreover,
interrupts also impact processor operation, e.g., by flushing
the CPU pipeline. Most current state-of-the-art WCET analysis
techniques are based on using abstract interpretation to create
an abstract timing model of the processor [1]. Even for
sequential programs, the creation of an abstract timing model
is an extremely tedious manual process. With interrupt-driven
programs, the process is even harder due to the need to model
the impact of interrupts on hardware and also due to the
severe imprecision abstract interpretation suffers due to the
large number of joins required on reconvergent interleaved
paths.

Even with these challenges, good embedded software design
often follows rules that can ease the problem. First, in many
systems, there is a strict priority assignment between various
tasks in the system, and the task scheduler follows priority
pre-emptive scheduling — a task runs to completion unless
a higher-priority task preempts it. Second, there is usually a
finite lower bound on inter-arrival time between interrupts,
dictated, for example, by the rate at which a sensor generates
samples. This inter-arrival time bound imposes a restriction
on how frequently a task can be interrupted. Finally, careful
coding practices involve the use of “atomic sections” by
disabling interrupts in selected parts of the program.

In this paper, we present a novel approach to the problem
of timing analysis of interrupt-driven software that takes
advantage of the above design rules. In particular, we make
the following contributions:

• We show how a lower bound on inter-arrival time of
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interrupts in turn imposes an upper bound on the number
of “context switches” between the interrupted task and the
ISR. This enables the use of context-bounded analysis,
similar to the work pioneered by Qadeer et al. [4],
[5]. The use of atomic sections and priority pre-emptive
scheduling further reduces the number of interleavings
that need to be considered.

• Even with these reductions, the number of interleaved
paths can still be exponential in the context bound, and
very large in practice. Obtaining measurements for a large
number of paths can be very tedious and expensive. We
show that we can leverage work for sequential program
timing analysis to mitigate this problem. In particular, we
adopt the idea of using the execution time of basis paths
to predict the times of other program paths [2], [6]. The
number of basis paths is guaranteed to be polynomial in
the size of the program.

• We demonstrate our approach with experiments on a
real embedded platform, the Luminary Micro LM3S8962
board with an ARM Cortex M-3 processor [7], interfaced
to sensors on the iRobot Create mobile robot [8]. We
show that we can accurately predict not only the WCET
of various programs, but also the execution times of
arbitrary program paths. When a particular deadline is
violated, our approach can generate a test case exhibiting
how this occurs.

To our knowledge, our approach is the first timing analysis
technique for interrupt-driven software that can not only gener-
ate worst-case execution time estimates, but also can generate
accurate predictions for the actual timing (not just bounds)
along arbitrary program paths. Importantly, our approach is
extremely portable: in contrast with traditional WCET tech-
niques that rely on tedious manual modeling of the platform,
our approach only requires automated systematic generation
of measurements on the target platform, from which we make
accurate predictions of program timing on paths that have not
been tested.

The rest of the paper is organized as follows. We introduce the
problem, along with basic terminology, definitions, and related
work in Section II. The core of our approach is presented in
Section III. Section IV presents an experimental evaluation.
We conclude in Section V with directions for future work.

II. BACKGROUND AND RELATED WORK

We define terminology and the problems considered in this
paper in Section II-A, and compare with related work in
Section II-B.

A. Problem Definition

Real-time embedded programs are reactive programs that
execute repeatedly within a top-level “while(1) loop”. We
are concerned with the tasks invoked within this loop, which
are required to be terminating programs. For this paper, we
are concerned with programs structured as a single “main”

task along with one or more interrupt-service routines (ISRs)
which are written typically as other tasks (think of C func-
tions). Typically, the boot-up sequence of the system involves
registering the ISRs as handlers for the various interrupts that
the system must respond to.

We present a simple imperative language to model these
interrupt-driven programs. Figure 1 shows the program syntax.
An interrupt-driven program P is composed of N tasks,
each of which is a sequential program. Each task T has an
associated priority level p, which is a positive integer. We will
assume that each task has a unique priority level, and a larger
priority level indicates higher priority. A task of priority pi
can interrupt a task with priority pj if pi > pj . Once a higher-
priority task has interrupted a lower-priority task, it runs to
completion unless it is interrupted by a task with still higher
priority. This scheduling scheme is known as priority pre-
emptive scheduling, and is widely implemented in embedded
platforms.

S ::= v := e | skip | if e thenS1 elseS2

| S1;S2 | while edo 〈B〉S
| atomic {S } | timed while τ doS

T ::= 〈S, p〉
P ::= T1 ‖T2 ‖ . . . ‖TN

Fig. 1: Syntax for Interrupt-Driven Programs. v and e

denote an l-value and an expression in any standard imperative programming
language such as C. The skip statement is a no-op. Every while loop has
an associated loop bound B. T denotes a sequential task with an associated
priority p, and P denotes a program composed of n tasks.

The code for a task T follows standard syntax of an imperative
language such as C, with a few small exceptions. Assignments
have the form v := e where v is an l-value and e is any
expression in C including procedure calls. For simplicity, we
disallow recursive procedure calls; in any case, it is highly
desirable in real-time embedded software to impose finite
bounds on recursion depth. The syntax of Fig. 1 includes if
statements as a way of modeling all conditional constructs,
including switch statements. We will use switch statements
where required for brevity. The main exceptions to standard
program notation are with regard to while loops and the
presence of a special atomic program construct, as described
below:

1) Each while loop must have a statically-known upper
bound B on the number of loop iterations. We assume
each loop is annotated with such a bound. We will
use the standard for-loop notation where it is more
convenient to do so.

2) There is a special timed-while loop construct
timed while which has an associated deadline
τ . This loop runs for exactly τ cycles and terminates
thereafter. This construct models timed loops common
in embedded code that waits for an event for a specific
amount of time, with termination guaranteed by the
expiration of a hardware timer.
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3) We include a special atomic construct which models
a piece of code S that runs uninterrupted. This con-
struct is typically implemented by disabling interrupts
before running S and re-enabling interrupts after S
completes execution. Using such atomic code sections
within sequential code is considered good programming
practice to ensure that certain operations are completed
atomically irrespective of the presence of interrupts.

We assume that interrupts cannot occur infinitely often during
the execution of P and that there is a finite lower bound
on the inter-arrival times of interrupts. We believe this is
a reasonable assumption that holds in practice for real-time
embedded systems.

Given the above model, we are concerned with answering
the following three types of timing analysis questions. For
each question, the inputs include an interrupt-driven program
P and the platform it executes on. The platform is the
complete hardware and software environment of P , including
the compiler, processor, and memory architecture.

• P1: Threshold Property Checking.
Does P always complete within τ cycles? If not, provide
a test case (counterexample).

• P2: Worst-Case Execution Time Prediction.
Predict the worst-case execution time of P and generate
corresponding test case.

• P3: Predicting Timing along All Paths.
Predict the execution time (not a bound) of program P
along all paths, where a path involves following a specific
interleaving of tasks and particular paths within tasks.

One can observe that problem P3 is more general than P1
and P2 in that if one can solve P3, one can answer questions
P1 and P2 as well. Therefore, in Section III, we focus on
addressing problem P3. We demonstrate our results for all
three problems in Section IV.

Our technique relies on the notion of context-bounded analy-
sis [4], [5]. Following the definition introduced by Qadeer and
Rehof [5], a context is an uninterrupted sequence of actions
by a single task. A bound of K on the number of contexts
implies a bound of K − 1 on the total number of context
switches between tasks.

B. Related Work

As noted above, Qadeer et al. introduced the idea of verifying
multithreaded software by using context bounds [4], [5]. How-
ever, their work focuses on traditional propositional temporal
properties. Our paper is the first to apply the idea of context-
bounded analysis to the problem of timing analysis.

Brylow and Palsberg [9] consider the topic of deadline analy-
sis in interrupt-driven programs — checking whether every
interrupt is serviced before its deadline. They assume that
worst-case execution times are already determined for certain
program fragments and use this in their analysis. In contrast,
we are concerned with predicting execution time properties

of the entire interrupt-driven program, and can generate the
WCET estimates required in their analysis.

The WCET analysis community has mainly focused on analyz-
ing sequential programs without interrupts. A recent industrial
experience report [10] states the difficulty of estimating the
WCET of an interrupt service routine in welding control
software, writing: “It was difficult to detect if other inter-
rupts had disturbed the measurement of the current interrupt.”
While there has been work on testing non-timing “functional”
properties of interrupt-driven software (e.g., [11]), there is
no systematic work for verifying timing properties of such
programs. The work on schedulability analysis — in which
one analyzes if a task can meet its deadline in spite of pre-
emption by other tasks — is related; however, that work
treats tasks as atomic objects (see, e.g., [12]), whereas we
perform a detailed program analysis of tasks, considering
interleaved program paths and interaction of tasks through
shared variables. To the best of our knowledge, our technique
is the first systematic approach for performing WCET analysis
(and other timing analysis) on interrupt-driven programs.

Kidd et al. [13] present an approach to transform a concur-
rent real-time program with priority pre-emptive scheduling
to a sequential program so that any state reachable in the
original concurrent program can be reached by performing
reachability analysis of the sequential program. This is close
to our work in that we could conceivably use their reduction;
however, additional assumptions will be needed on inter-
arrival time of interrupts, as in our paper. Other methods
for more compactly transforming context-bounded concurrent
programs to sequential programs are also available [14], [15];
however, with priority pre-emptive scheduling the benefit of
these transformations is somewhat limited. Our contribution is
to show how the ideas of context-bounding and basis paths can
be combined to perform accurate timing analysis of interrupt-
driven software.

III. APPROACH

Consider an interrupt-driven program P = T0‖T1‖ . . . ‖TN ,
where i denotes the priority level of Ti. We will consider T0 to
be the main function, and all other tasks to be ISRs. Thus, there
are n interrupts, which we denote by ι1, ι2, . . . , ιn. As part of
the problem description, we are also supplied a lower bound
α on the time between interrupts – the “inter-arrival” time of
interrupts. Finally, the platform of interest is also specified.

The high-level idea of our approach is to reduce the problem of
timing analysis of interrupt-driven programs to timing analysis
of sequential programs, by deriving a context bound that is
adequate to explore all interleaved paths of P . The approach
operates in the following five steps.

1) Use the finite inter-arrival times of interrupts to derive
a context bound CB for P that is adequate to explore
all interleaved paths of P .

2) Use CB to generate a single sequential program Pseq
that is path-equivalent to P for the context bound CB .
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3) Invoke GAMETIME [2], a timing analysis technique for
sequential programs, on Pseq. The key idea in GAME-
TIME is to extract a subset of program paths that forms
a basis (in the standard linear algebra sense) for the set
of all program paths. We term these paths as basis paths.
GAMETIME also uses an SMT solver [16] to generate
test cases that drive program execution down these basis
paths. The key difference with previous applications of
GAMETIME is that the generated basis paths are inter-
leaved paths in P , involving context switches between
the main function and ISRs.

4) Execute test cases for basis paths on the platform with
an interrupt-generation test harness, and measure the
execution time of basis paths.

5) Use measured times to infer a platform model, using
the GAMETIME learning algorithm. The inferred model
is used to predict execution times of other paths, and
answer Problems P1, P2, and P3.

For ease of presentation, we will describe the process some-
what out of order. We will start first with the third item, our
technique for timing analysis of sequential programs, then
describe the remaining steps.

A. Timing Analysis of Sequential Programs using Basis Paths

While there are several tools for estimating worst-case ex-
ecution time of sequential programs [1], the only tool we
are aware of which can address Problems P1 and P3 is
GAMETIME [2], [6]. Our approach therefore builds upon
GAMETIME.

In this section, we give a brief overview of the relevant aspects
of GAMETIME. Most important is the notion of basis paths
which helps us deal with the large number of interleaved
program paths.

Fig. 2: GAMETIME overview [17]

Figure 2 depicts the operation of GAMETIME. The process
begins (see top-left corner) with the generation of the control-
flow graph (CFG) of the program, in which all loops have
been unrolled to the maximum loop bound, and all function

calls have been inlined into the top-level function. The CFG is
assumed to have a single source node (entry point) and a single
sink node (exit point); if not, dummy source and sink nodes
are added without loss of generality. The next step is a critical
one, where a subset of program paths, called basis paths are
extracted. These basis paths are those that form a basis for
the set of all paths, in the standard linear algebra sense of a
basis. Symbolic execution is used to generate an satisfiability
modulo theories (SMT) formula for each candidate basis path.
An SMT solver is invoked to ensure that the basis paths are
feasible; it generates test cases to drive execution down those
paths.

The original program (not the unrolled, inlined version) is
compiled for the target platform, and executed on these test
cases. In the basic GAMETIME algorithm (described in [2],
[6]), the sequence of tests is randomized, with basis paths
being chosen uniformly at random to be executed. The overall
execution time of the program is recorded for each test
case. From these end-to-end execution time measurements,
GAMETIME’s learning algorithm generates a weighted graph
model that is used to make predictions about timing properties
of interest. The predictions hold with high probability; details
of theoretical results can be found in the previous papers
on GAMETIME [2], [6]. We provide here a less formal and
more intuitive description of the theoretical guarantees for the
problems of interest P1 - P3:

P3: Given any δ, GAMETIME can predict the execution time
of any program path to within a tolerance of ε with
probability 1 − δ by running a number of tests that is
polynomial in the program size, in ln( 1δ ), and a parameter
µmax (described below).
The tolerance ε is O(bµmax), where b is the number of
basis paths, and µmax is an upper bound on the mean
perturbation to program path timing due to path-specific
variations to basic block time. Essentially, ε depends on
how much the time of a basic block can vary based on
the path it lies on: the greater the mean variation, the
larger the value of ε.

P2: For WCET estimation, GAMETIME provides a similar
high-probability guarantee on finding the path along
which the WCET is exhibited. Once this path is identified,
one can simply execute this on the target platform and
measure the corresponding execution time. Thus, if GA-
METIME correctly finds the worst-case path, it accurately
computes the WCET.
More specifically, given the mean perturbation bound
µmax, if the worst-case path timing is larger than the
timing of any other path by a margin ρ (which is also
O(bµmax)), then GAMETIME is guaranteed to find the
worst-case path with probability 1 − δ by running a
number of tests that is polynomial in the program size,
in ln( 1δ ), and µmax.

It is easy to see how Problem P1 also receives a similar high-
probability theoretical guarantee. However, if the underlying
assumption on the margin ρ does not hold, GAMETIME might
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not correctly predict the WCET. In general, it is possible
for GAMETIME to generate an estimate that under- or over-
approximates the timing of a program path. In practice,
though, we have found the estimates to be accurate (within
a few percent relative error) and the worst-case path has been
always correctly predicted, even on architectures that include
caches, complex pipelines, and branch prediction [6].

We explain the basis path generation process using a simple se-
quential program that performs modular exponentiation, given
in Figure 3(a). Modular exponentiation is a necessary primitive
for implementing public-key encryption and decryption. In this
operation, a base b is raised to an exponent e modulo a large
prime number. In this particular benchmark, we use the square-
and-multiply method to perform the modular exponentiation,
based on the observation that

be =

{
(b2)e/2 = (be/2)2, e is even,
(b2)(e−1)/2 · b = (b(e−1)/2)2 · b, e is odd.

(1)

The unrolled version of the code of Figure 3(a) for a 2-bit
exponent is given in Figure 3(b).

In the CFG extracted from a program, nodes correspond to
program counter locations, and edges correspond to basic
blocks or branches.

(a) CFG for 
modexp 

(unrolled)
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(c) Additional 
path x4

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1)
x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1)
x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1)

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1)

x4 = x2 + x3 - x1

(d) Vector 
representations

Edge labels indicate 
Edge IDs, and 

positions in vector 
representation

Fig. 4: CFG and Basis Paths for Code in Fig. 3(b)

Figure 4(a) denotes the control-flow graph for the code in Fig-
ure 3(b). Each source-sink path in the CFG can be represented
as a 0-1 vector with m elements, where m is the number of
edges. The interpretation is that the ith entry of a path vector
is 1 iff the ith edge is on the path (and 0 otherwise). For
example, in the graph of Fig. 4(a), each edge is labeled with
its index in the vector representation of the path. Edges 2 and
3 respectively correspond to the else (0th bit of exponent
= 0) and then branches of the condition statements at lines 3
and 9 respectively in the code, while edge 5 corresponds to
the basic block comprising lines 6 and 7. We denote by P the
subset of {0, 1}m corresponding to valid program paths. Note
that this set can be exponentially large in m.

A key feature of GAMETIME is the ability to exploit correla-
tions between paths so as to be able to estimate program timing
along any path by testing a relatively small subset of paths.
This subset is a basis of the path-space P , with two valuable
properties: any path in the graph can be written as a linear
combination of the paths in the basis, and the coefficients in
this linear combination are bounded in absolute value. The
first requirement says that the basis is a good representation
for the exponentially-large set of possible paths; the second
says that timings of some of the basis paths will be of the
same order of magnitude as that of the longest path. These
properties enable us to repeatedly sample timings of the basis
paths to reconstruct the timings of all paths. As GAMETIME
constructs each basis path, it ensures that it is feasible by
formulating and checking an SMT formula that encodes the
semantics of that path; a satisfying assignment yields a test
case that drives execution down that path.

Fig. 4(b) shows the basis paths for the graph of Fig. 4(a). Here
x1, x2, and x3 are the paths corresponding to exponent
taking values 00, 10, and 01 respectively. Fig. 4(c) shows the
fourth path x4, expressible as the linear combination x2+x3−
x1 (see Fig. 4(d)).

The number of feasible basis paths b is bounded by m−n+2
(where n is the number of CFG nodes). Note that our example
graph has a “2-diamond” structure, with 4 feasible paths, any 3
of which make up a basis. In general, an “N -diamond” graph
with 2N feasible paths has at most N + 1 basis paths.

B. Using Context Bounds to Generate a Sequential Program

Let us assume for this section that we are given a fixed context
bound CB . We will explain in Section III-C how a finite
inter-arrival time of interrupts can be used to generate a finite
context bound.

Given a context bound CB and an interrupt-driven program
P = T0‖T1‖ . . . ‖TN , we generate a sequential program Pseq
that is path-equivalent to P up to context bound CB . Recall
that Tj has higher priority than Ti if j > i, and that the main
function is T0. The procedure iteratively replaces each Tj ,
starting with j = N , with a replacement sequential program
T ′j , such that every interleaved path starting in Tj and possibly
involving higher-priority tasks is a program path in T ′j . Thus,
T ′0 is the desired sequential program Pseq.

The sequential programs T ′j update a set of dummy shared
variables that track the number of context switches and the
program locations at which context switches occur. We de-
scribe below how we obtain T ′j from Tj .

Without loss of generality, suppose that Tj is a sequence of k
atomic statements:

Tj , S1;S2;S3; . . . Sk

Thus, for each higher-priority task Ti, i > j, there are
k + 1 possible locations where it may be invoked, plus the
possibility that it may not interrupt Tj at all. We encode the
possible switching points as well as the choice of tasks at
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1 modexp(base, exponent) {
2 result = 1;
3 for(i=EXP_BITS; i>0; i--) {
4 // EXP_BITS = 2
5 if ((exponent & 1) == 1) {
6 result = (result * base) % p;
7 }
8 exponent >>= 1;
9 base = (base * base) % p;

10 }
11 return result;
12 }

(a) Original code P

1 modexp_unrolled(base, exponent) {
2 result = 1;
3 if ((exponent & 1) == 1) {
4 result = (result * base) % p;
5 }
6 exponent >>= 1;
7 base = (base * base) % p;
8 // unrolling below
9 if ((exponent & 1) == 1) {

10 result = (result * base) % p;
11 }
12 exponent >>= 1;
13 base = (base * base) % p;
14 return result;
15 }

(b) Unrolled code Q

Fig. 3: Modular exponentation. Both programs compute the value of baseexponent modulo p.

those switching points using a nondeterministic choice symbol
“∗”, which is replaced by a fresh Boolean variable when
generating an SMT formula by symbolic path execution. Also,
each invocation of a higher-priority task increments a global
variable C that tracks the number of context switches. C is
initialized to 0 when P begins execution, and a higher-priority
task can interrupt a lower-priority task only if C < CB .

The sequential program T ′j has the format

R1;S1;R2;S2;R2; . . . Rk;Sk;Rk+1

where each Rl, l = 1, 2, . . . , k + 1, is the following piece of
code:

for i = 1..CB do
if C < CB then

switch(∗) {
case j + 1 : C := C + 1;T ′j+1;break
case j + 2 : C := C + 1;T ′j+2;break
. . .

case N : C := C + 1;T ′N ;break
default : skip
}

In the above code snippet, the outer for loop encodes the fact
that there can be at most CB invocations of a higher-priority
task between atomic statements. The nondeterministic choice
“∗” encodes the choice of an arbitrary higher-priority task or
no ISR invocation (in the event the “default” case is chosen).

It is easy to see that each intermediate statement Rl in T ′N
reduces to skip and hence T ′N is path-equivalent to TN .
Building on this base case, we can easily obtain the following
theorem by induction on N .

Theorem 1: For all j = 0, 1, 2, . . . , N , the set of pro-
gram paths of T ′j equals the set of all interleaved paths of
Tj‖Tj+1‖Tj+2‖ . . . ‖TN with at most CB−1 context switches.

In particular, the set of program paths of T ′0 = Pseq is equal
to the set of all interleaved paths of P with at most CB − 1
context switches (i.e., a context bound of CB ).

C. From Inter-Arrival Times to Context Bounds

Let α be the lower bound on the inter-arrival time of interrupts
on the platform of interest. We argue how α can be used to
generate a context bound CB that is sufficient to include all
executions of the interrupt-driven program P .

We start by hypothesizing that CB = 1. With this context
bound, we generate a sequential program as described in
Sec. III-B and compute the WCET TW . If TW is less than
α, we know that P will complete execution before a second
interrupt is raised. Thus, we can terminate with CB = 1.

However, if TW ≥ α, it is possible that the main function of
P is interrupted twice before terminating. Thus, we set CB =
2, regenerate the corresponding sequential program, and re-
compute the WCET TW . This time, we compare TW with 2α.
If TW < 2α, we can terminate with CB = 2. Otherwise, we
increase CB by one and repeat the procedure. In general, when
CB = k, we compare TW with kα, terminating when TW <
kα, and otherwise incrementing CB to k + 1 and iterating.

If the time taken by an ISR (in the presence of higher-
priority interrupts) is less than the minimum inter-arrival time
of interrupts, this procedure is guaranteed to terminate with a
finite context bound. To see this, note that on each iteration,
TW will grow by a smaller factor than α. This is typically
the case for real-time embedded software: the rule of thumb
is that ISRs must terminate very quickly in order to guarantee
that every interrupt is serviced. The execution time of ISRs are
typically a small fraction of the minimum inter-arrival time α.

D. Generating Measurements for Basis Paths and Predictions

The sequential program Pseq is fed as input to GAMETIME,
which generates basis paths for this program along with the
corresponding test cases. Each test case includes an assignment
to program variables as well as to the nondeterministic choice
variables that indicate where tasks are interrupted and by
which higher-priority tasks.

We then execute the test cases within a harness that triggers
interrupts at the right locations as indicated by the test case.
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This harness is specific to each platform, involving the use of a
few inline assembly instructions at each interrupt point (loca-
tion). While this involves a slight modification to the original
code, given the small number of inline assembly instructions,
we believe any skew to program timing is miniscule.

Measurements can be obtained using one of a range of execu-
tion time measurement techniques – again these are platform-
specific. Perhaps the most non-intrusive (but rather expensive)
method is the use of a logic analyzer. Somewhat simpler is the
use of on-chip cycle counters or on-board timers. These are
applicable provided the code fragment is small enough that the
timer register does not overflow. We use the latter approach as
it is applicable for our benchmarks. Any alternative accurate
measurement technique can be used instead. It is important
to note that getting accurate measurements on the embedded
platform can be a time-consuming process, involving repeated
re-compilation and logging of measurements — therefore, it
is desirable to limit the number of measurements taken. (We
will see in the next section how the notion of basis paths helps
us to limit the number of measurements taken, while retaining
prediction accuracy.) Further platform-specific details about
measurement are given in Section IV-B.

Once the measurements are obtained for the basis paths,
we invoke GAMETIME’s learning algorithm (as described in
Section III-A) to provide answers to the problem of interest
(P1, P2, or P3).

E. Efficiency Analysis

In this section, we calculate the number of basis paths that
GAMETIME requires to perform its timing analysis and com-
pare it to the total number of paths that are possible through
a sequential program, to demonstrate the efficiency of the
GAMETIME approach.

We assume that the control-flow graph of a task Ti
(1 ≤ i ≤ j) has mi edges, ni nodes, and pi possible
interrupt points, with a context bound of CB . Let m =
maximi and p = maxi pi. Since, in the worst case, the
number of interrupt points can exceed the number of basic
blocks, mi = O(pi) and m = O(p). For ease of analysis, we
first consider a specific task Ti that can only be interrupted
by exactly one higher priority task Tj , j > i. To generate the
sequential task T ′i corresponding to task Ti, we make copies
of the control-flow graph of Tj and attach a copy to each
interrupt point in task Ti. The control-flow graph of T ′i thus has
O(mi+pi ·CB ·mj) edges, which is O(p2 ·CB). As described
earlier and in [2], the number of basis paths is linear in the
number of edges, and so GAMETIME will infer O(p2 · CB)
basis paths. In contrast, since there are pi possible interrupt
points, and each interrupt point can be taken at least once and
at most CB times, we have at least one unique program path
through Ti for every choice of CB out of pi · CB interrupt
points. Thus, there are O((pCB)CB ) total paths through the
control-flow graph of Ti. This simple case of two tasks is
representative of the difference between the total number of

paths through the control-flow graph of a sequentialized task
and the number of basis paths that GAMETIME requires.

We can generalize this to the case of multiple tasks: consider a
specific task Ti that can be interrupted by any higher priority
task Tr, (i < r ≤ j). We can generate the sequential task
T ′i corresponding to task Ti as follows: We do not need to
sequentialize Tj since it is the highest priority thread and thus
cannot be pre-empted by any other thread. Thus, the sequential
task T ′j is the same as Tj . We sequentialize the task Tj−1 as
described in the case of two tasks to create a control-flow
graph with O(mj−1 + pj−1 · CB · mj) edges. We can then
sequentialize the task Tj−2 by noticing that either T ′j−1 or
T ′j can interrupt at each interrupt point of Tj−2. The task
T ′j−2 thus has O(pj−2 · CB · (mj−1 + pj−1 · CB · mj)) =

O(pj−2 ·CB ·mj−1+pj−2 ·pj−1 ·CB2 ·mj) edges. Proceeding
inductively, we see that the size of the control-flow graph of
the sequential task T ′i is O(

∑j−1
r=i (

∏r
`=i p`CB)mr+1)) edges.

However, not all the paths through this CFG are feasible, due
to the context bound. In fact, to determine the number of basis
paths, notice that with a context bound of CB , the effective
product

∏r
`=i p`CB , after eliminating paths with more than

CB context switches, has at most CB terms. Thus, the number
of basis paths grows as O((pCB)CBm). Note that this is
polynomial in the size of the tasks and is independent of the
number of tasks. Using more compact transformations to a
sequential program (e.g., [14], [15]) it might be possible to
further reduce this bound.

To determine the total number of paths through the sequential
task T ′i , we recognize that any of the pi ·CB interrupt points
can be the location of one of the (at most) CB context
switches. An interleaving through k tasks is a combination
of CB out of (p · CB)k choices of combinations of interrupt
points. Thus, the total number of paths grows as O((p ·
CB)(k·CB)). Note that this grows exponentially in the number
of tasks.

IV. EXPERIMENTAL RESULTS

The goal of the experiments reported here is to demonstrate
that our approach can, by measuring only a small linear
subset of interleaved paths, accurately predict (i) the worst-
case execution time for interrupt-driven programs (which we
check by exhaustively enumerating all program paths), and (ii)
the execution time along any arbitrary program path.

A. Physical Apparatus and Benchmarks

We used the Luminary Micro LM3S8962 board [7], interfaced
to the iRobot Create autonomous robot platform [8] for our
experiments. This microcontroller is shown in Figure 5(a) and
the iRobot Create in Figure 5(b). The Luminary Micro board
contains a 32-bit ARM Cortex M3 microcontroller, running
at 50 MHhz. This microcontroller is interfaced to a range
of peripherals: of special interest for our experiments is the
UART interface to built-in iRobot sensors and the analog-to-
digital interface to an ADXL-322 accelerometer. The built-in
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(a) Board (b) iRobot Create

Fig. 5: Luminary Micro LM3S8962 and iRobot Create

sensors include buttons that a human can press, cliff sensors,
and a bump sensor. Since the robot moves slowly, and humans
cannot press buttons very quickly twice in a row, the minimum
inter-arrival time of interrupts α was estimated at about 1ms
for our experiments.

Our benchmarks included a toy example based on the modular
exponentiation program introduced earlier, plus several real
iRobot control programs. A summary of the benchmarks used
is presented in Table I. The benchmarks are described in more
detail below, and are also available online at http://uclid.
eecs.berkeley.edu/gametime/fmcad11/.

Name LOC Size of CFG Total Num. b Context
n m of paths bound

modexp 60 60 70 500 12 1
iRobot-1 210 55 60 33 5 1
iRobot-2 230 141 160 3362 17 1
iRobot-3 230 97 108 1281 10 2
iRobot-4 280 213 244 33728 30 1
iRobot-5 250 179 206 65088 27 1

TABLE I: Characteristics of Benchmarks. “LOC” indicates
number of lines of C code for the task. The Control-Flow Graph (CFG) size
refers to that of the sequential program Pseq fed as input to GAMETIME: n
is the number of nodes, m is the number of edges. The column b refers to
the number of basis paths in the graph, as deduced by GAMETIME. The total
number of paths indicates the total number of interleaved execution paths, not
accounting for path feasibility.

B. Generating Interrupts and Measurements

To measure the timing of each basis path, we need to force
an interrupt at one or more program points, depending on
the context bound. There are two types of interrupts that
can be forced: software and hardware interrupts. For this
platform, the overhead of invoking an ISR through hardware
interrupts is similar to that using software interrupts; therefore,
for convenience, we decided to force software interrupts.

Software interrupts can be modeled by embedding the ARM
assembly instruction SVC into the C code under analysis. This
instruction is a supervisor call that forces a software interrupt.
To use this instruction, we modify the interrupt vector table to

include a custom interrupt handler. In the code under analysis,
we then insert an SVC assembly instruction whose argument
is the position of the interrupt handler in the vector table, so
that on execution, the instruction goes directly to the vector
table and invokes the interrupt handler for the interrupt we
wish to trigger.

Obtaining Timing Measurements: The execution time of
the program was measured using an on-board timer called
SysTickTimer. This timer can be set to periodically gen-
erate an interrupt by counting down from a large starting
value. The period of the timer is user-specified and is large
enough that it will not finish until long after the program under
analysis finishes. To get the execution time for the program
under analysis, we start the timer off before the program runs
and read off its value when the program finishes. We assume
that the program would finish within 16,777,261 cycles (the
highest possible value for the SysTickTimer period), which
is a realistic assumption for our set of benchmarks.

C. Modular Exponentiation

Our first example is a version of the modular exponentiation
example introduced in Sec. III-A. An arbitrary prime number
was used for our benchmarks. For our experiments, we used
a base of two, with four-bit exponents. Two of the four
conditionals were moved into a mock ‘interrupt handler’; the
program comprising the remaining two conditions formed the
“main” task. Thus, the program comprises two tasks: each
with two of the conditionals. Each code fragment of the form
below is considered an atomic statement.

if ((exponent & 1) == 1)
result = (result * base) % p;

exponent >>= 1;

base = (base * base) % p;

We used GAMETIME to determine the values that would
sensitize the basis paths in the control flow graph of the “main”
task, and it provided 12 test cases. With a context bound of 1,
there are three program points where the ISR can be invoked.
Since there are 16 values of exponent, and three possible
interrupt points, the total number of test cases is 16 ∗ 3 = 48.

With the measurements for the 12 test cases corresponding to
the basis paths, GAMETIME was employed to infer a timing
model using which it predicted the runtimes of each of the 48
different test cases.

In figure 6, we plot the predicted values and the measured
values for each of the 48 test cases. The predicted values
match the measured values with an error of less than 5%.
In particular, our approach accurately predicts the worst-case
execution time and produces the corresponding test case. We
observe that the WCET estimate, about 290 cycles or 5.8µs,
is much less than the 1ms inter-arrival time of interrupts,
implying that the context bound of 1 is sufficient.
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Fig. 6: Time taken by the Modular Exponentiation bench-
mark

D. iRobot Driving Code

The iRobot Create control programs we consider here involve
a sample operation where the robot attempts to keep moving
forward until it senses an obstacle, in which case it will try to
back up, turn, and move around the obstacle. The robot can be
stopped by pushing a button on its console. The accelerometer
detects changes in the speed of the robot, such as when it
accelerates on level ground or when it climbs a hill.

All iRobot sensors (with the exception of the accelerometer)
trigger the same UART interrupt that is serviced with a single
ISR. This ISR reads the values of the sensors or the status of
the buttons from a UART queue, and updates local variables
accordingly. The accelerometer triggers a different interrupt
that is serviced by a different routine that also updates local
variables with the accelerometer readings.

The code that produces the iRobot behavior described above
is an infinite loop encoding a state machine. The body of this
loop involves the next-state update operation based on sensor
data, and this is what we used the five iRobot benchmarks
shown in Table I. The “main task” in all benchmarks has a
similar structure: it updates the state of the robot based on
sensor readings, button presses, or accelerometer readings, if
any, and the new state, if changed, modifies the velocity of the
iRobot. All benchmarks also have at least two interrupt points:
each conditional in the state update is considered atomic, and
the velocity modification is also considered atomic. The first
four benchmarks used only the sensor interrupt handler; the
last used only the accelerometer interrupt handler.

The first iRobot benchmark, iRobot-1, is a highly simplified
version of the behavior described above. A context bound of
1 was sufficient. The simplified state machine allows us to
manually enumerate and time all of the feasible paths, and
also to use the basis paths to predict the time for all paths. The
measured and predicted timings for the ten feasible paths are
shown in figure 7: the timings agree within one percent, and
the path that was predicted to take the longest time is also the

path that was measured to take the longest time. The WCET is
less than 2500 cycles, which is less than 50µs, much smaller
than the 1ms inter-arrival time, ensuring that the context bound
of 1 is sufficient.

Fig. 7: Time taken by iRobot-1 benchmark

The second benchmark adds one more state to the state
machine. For this and the remaining benchmarks, the number
of interleaved program paths (as seen from Table I) is over
1000 — thus, it is not possible to time all the possible paths.
Therefore, for these benchmarks, we arbitrarily selected 16
paths to be measured. The true (measured) execution times
of these paths are compared with the runtimes predicted from
measuring just the basis paths and running GAMETIME. The
resulting plot for the iRobot-2 is shown in Figure 8. Again, a
context bound of 1 suffices.

To experiment with a larger context bound, we assumed the
minimum inter-arrival time to be α = 50µs, and analyzed
the third benchmark iRobot-3. With a context bound of 1, the
WCET exceeded this value. However, with a context bound of
2, the WCET is 4357 cycles, or about 87µs, which is less than
2α = 100µs. As shown in Figure 9, the error margin between
predicted and true (measured) values is almost zero.

Fig. 8: Time taken by iRobot-2 benchmark

The fourth benchmark iRobot-4 adds more states to the state
machine, while the fifth benchmark iRobot-5 keeps only those
states that use the accelerometer. Nonetheless, the error margin
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Fig. 9: Time taken by iRobot-3 benchmark. Note that there are
only two execution times exhibited by these paths: 4357 and 4356 cycles.

in both benchmarks, for the 16 chosen paths, is less than 2
percent. In both cases, a context bound of 1 sufficed.

Fig. 10: Time taken by iRobot-4 benchmark

Fig. 11: Time taken by iRobot-5 benchmark

V. CONCLUSION AND FUTURE WORK

In this paper, we present a new approach for timing analysis
of interrupt-driven programs. The key ideas in our approach
are to bound the exploration of the path space using the
twin notions of context bounds and basis paths. We have
demonstrated for a real embedded platform and control

software that our approach can accurately predict not only
the worst-case execution time, but also the execution time
of arbitrary interleaved program paths without needing to
exhaustively enumerate and test them. For future work, we
plan to expand our experimental evaluation to include larger
benchmarks with several interrupt service routines (tasks).
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Abstract—In this paper, we present a novel debugging method
for imperative software, featuring both automatic error local-
ization and correction. The input of our method is an incorrect
program and a corresponding specification, which can be given
in form of assertions or as a reference implementation. We
use symbolic execution for program analysis. This allows for a
wide range of different trade-offs between resource requirements
and accuracy of results. Our error localization method rests
upon model-based diagnosis and SMT-solving. Error correction
is done using a template-based approach which ensures that the
computed repairs are readable. Our method can handle all sorts
of incorrect expressions, not only under a single-fault assumption
but also for multiple faults. Finally, we present experimental
results, where an implementation for C programs is used to
debug mutants of the TCAS case study of the Siemens suite.

I. INTRODUCTION

A lot of research has been done in the past decades to
automate detection of errors in programs, be it software
or hardware. But once an error is detected, the hard work
only begins: the error has to be located and corrected. This
is usually done manually, which is time-consuming, costly,
frustrating, and increases time-to-market. More and better
automation in these steps is definitely needed.

Many existing approaches, especially for automatic error
correction, are based on fully formal methods with limited
scalability when it comes to larger state spaces. On the
other hand, simulation-based methods suffer from limited
accuracy. Trade-offs are usually not possible. Another often
insufficiently addressed issue is that synthesized corrections
have to be readable. A method which produces repairs as
Boolean functions that cannot be understood is of limited
use, because the repaired program cannot be maintained.
Furthermore, repairs should affect only small parts of the
program. This lowers the chances that unspecified properties
of the program get lost.

We propose a novel method for automatic error localization
and correction, explicitly addressing all these challenges. It is
outlined in Fig. 1. An incorrect program and its specification
are the inputs. The specification may be given via assertions
in the code or as a reference implementation. First, we pre-
process the program to express that components may be faulty.
Our fault model can handle all kinds of incorrect expressions

This work was supported in part by the European Commission through
project DIAMOND (FP7-2009-IST-4-248613).

Fig. 1. The flow of our debugging method.

and is not restricted to single-faults. Next, symbolic execu-
tion is applied to transform the debugging problem into the
domain of logic. Error localization rests upon model-based
diagnosis [27], [24]. It computes sets of components of the
program which can be replaced in such a way that the program
becomes correct. In the correction step, such replacements
are finally computed. This is done using a template-based
approach, where repairs are iteratively refined. This refinement
is guided by counterexamples. All reasoning is done with a
Satisfiability Modulo Theories (SMT) solver.

Symbolic execution is a semi-formal technique to analyze
program behavior path-by-path. This makes our method de-
grade nicely: considering more paths means better accuracy
but also higher resource requirements. Error localization and
correction provide additional parameters for trade-offs. Fine-
grained error localization leads to repairs that affect only small
program parts. Readable repairs are obtained by restricting the
search to templates for expressions. Multiple templates can be
used successively: starting with a simple template, one can
switch to a more expressive one if no repair is found. Within a
certain template, we use heuristics to find simple instantiations
first. Our debugging method is especially suited for debugging
simple pieces of software, e.g., C programs modeling hardware
designs at a high abstraction-level.

Model-based diagnosis [27], [24] has already been ap-
plied to locate errors in logic programs [7], functional pro-
grams [32], VHDL designs [14], Java programs [26], knowl-
edge bases [11], ontologies [13], and temporal logic specifi-
cations [25]. We apply the technique to an abstraction of a
program found by symbolic execution and combine it with
error correction. In [18], errors are located using a model-
checker. Our diagnosis approach is similar, but we require only
one symbolic execution pass rather than several model-checker
calls, and we compute diagnoses differently. Another related
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diagnosis method is presented in [21]. It computes a maximal
set of statements that can remain unchanged for the program to
become correct for a given input. The complement forms the
diagnosis. This is encoded as a Maximum Satisfiability (MAX-
SAT) problem. In contrast, our method allows to use several
failure-inducing inputs simultaneously; a diagnosis must allow
to fix the program for all these inputs.

One approach to program repair is to transform a finite-state
program into a finite-state game and to compute a repair as a
strategy in this game [19], [20]. This has also been extended
to programs with virtually infinite state space (i.e., software)
using predicate abstraction [17]. In contrast, we use symbolic
execution, a technique especially suitable for software.

Our repair method is very related to program sketching [30],
[29], a paradigm where the user provides a program with
unknown parts (“holes”) and a specification. A tool synthesizes
the holes automatically. For complex unknowns, the user has to
provide so-called “generators”, which are functions containing
only unknown integer values. These generators serve the same
purpose as our repair templates: reducing the synthesis of
components to the search for integer constants. The main
difference is that our method works in a push-button manner,
i.e., templates do not have to be (but can be) provided by the
user. Moreover, in the repair setting, holes have to be computed
first, they should be small, and their implementation readable.
Templates for expressions are also used to synthesize loop
invariants for program verification [6]. The differences to our
approach for computing repairs lie in the constraints that have
to be fulfilled (program correctness rather than inductiveness)
and how instances are computed (iterative refinement rather
than quantifier elimination). The idea of synthesizing parts of
a program by iterative, counterexample-guided refinements has
already been used in [3] and [30]. We extend the basic idea
with a heuristic to speed up convergence. Program Synthesis
is also addressed in [31], where imperative programs are
synthesized from a given specification and flowgraph structure.
This work uses program a verification tool performing a fixed-
point computation to synthesize a solution.

A quite different repair approach is to repeatedly mutate an
incorrect program and check if it becomes correct [8]. The
problem is the huge search space for mutants. Our repair
method is much more systematic. Finally, there are genetic
programming methods, combining mutation with crossing and
selection according to some notion of fitness [1], [12].
In summary, the contributions of this paper are as following.
• We present a new debugging approach which produces

readable repairs at the source level and degrades nicely.
• We combine many existing techniques in a novel way:

symbolic execution, model-based diagnosis, templates for
unknown expressions, and iterative repair refinement.

• We show how model-based diagnosis can be applied to
a program abstraction found by symbolic execution.

• We present a heuristic to speed up repair refinement.
• Finally, we present experimental results using an imple-

mentation of our debugging approach for C programs.
This paper is organized as follows. Section II explains tech-

Fig. 2. Example: Symbolic execution.

niques underlying our approach and establishes notation. Sec-
tion III presents our debugging method as outlined in Fig. 1.
Section IV discusses alternatives and trade-offs. Section V
presents first experimental results, and Section VI concludes.

II. PRELIMINARIES

A. Symbolic Execution

Symbolic execution [5], [23] is a program analysis tech-
nique. It executes a program with symbols as inputs. Sym-
bols are placeholders that can take on any value in some
domain. Symbolic execution keeps track of the symbolic
values (expressions involving symbols and constants) of all
program variables. Whenever a branching point is reached, the
execution forks. For every branch, a condition expressing when
it is taken is computed. Along an execution path, the branch
conditions are accumulated to a path condition. Thus, a path
condition states when a certain execution path is activated. In
practice, the maximum path length and the number of paths
to analyze are limited to ensure termination.

Example 1. Fig. 2 illustrates symbolic execution on an exam-
ple. Two symbols X and Y are used for the unknown values
of x and y. Boxes contain execution states, dashed lines link
them to the program, and arrows indicate the execution flow.
In Line 3, the execution forks since both branches are feasible.
The condition which has to be fulfilled for the program to reach
a certain state is denoted as PC. The path conditions can be
read from the PC-fields in the leaves of the tree. This program
has two paths with conditions X + 1 > Y and X + 1 ≤ Y .

Concolic execution [15], [28] is a variant of symbolic
execution where the program is executed using concrete and
symbolic inputs simultaneously. The execution path is de-
termined by the concrete values. Along this path, symbolic
variable values are tracked and a path condition is computed.
After one execution, the conjuncts of the path condition are
used to compute concrete input values that trigger a different
path. For our purposes, concolic execution produces the same
outcomes as symbolic execution, namely path conditions.

B. Model-Based Diagnosis

Model-based diagnosis [24], [27] (MBD) is a method to
locate errors in a system by explaining conflicts between a
model of the system and an observation of some incorrect
behavior. We follow the notation of [27] in this work.

Let SD be a model of a system, and let OBS be an obser-
vation of an erroneous behavior, both given as sets of logical
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sentences. The system consists of a set of components CMP.
A component c ∈ CMP can behave abnormally (denoted
AB(c)) or normally (written ¬AB(c)). Every component c is
described with a logical sentence of the form ¬AB(c)⇒ Nc,
with Nc defining the normal behavior of c. That is, abnormal
components can behave arbitrarily. The system description SD
is composed of component descriptions and a set of logical
sentences defining the interplay of components. The observa-
tion OBS contradicts SD in the sense that, if all components
behaved normally, it would be impossible to observe OBS.
That is, the set SD∪OBS∪{¬AB(c) | c ∈ CMP} of logical
sentences is inconsistent, i.e., contains a logical contradiction.

MBD computes diagnoses, which are sets of components
that may be responsible for observation OBS. Formally, a
set ∆ ⊆ CMP is a diagnosis iff SD∪OBS∪{¬AB(c) |
c ∈ CMP \∆} is consistent. The components in ∆ may be
responsible for OBS because assuming that these components
behave abnormally renders OBS possible. A diagnosis ∆ is
minimal if no subset ∆′ ⊂ ∆ is a diagnosis. If ∆ is a
diagnosis, then clearly every ∆′ ⊇ ∆ is a diagnosis as well.
Hence, we are only interested in minimal diagnoses.

Diagnoses can be computed via conflicts. A conflict is a set
C ⊆ CMP of components such that SD∪OBS∪{¬AB(c) |
c ∈ C} is inconsistent. I.e., a conflict is a set of components
that cannot all have behaved normally. A conflict C is minimal
if no subset C ′ ⊂ C is a conflict. A hitting set for a collection
K of sets is a set H such that ∀K ∈ K . H ∩ K 6= ∅ holds.
A hitting set H is minimal if no subset H ′ ⊂ H is a hitting
set. A set ∆ ⊆ CMP is now a minimal diagnosis iff ∆ is a
minimal hitting set for all conflicts. The intuitive reason is that
a diagnosis must explain all conflicts, so it must share at least
one element with every conflict. Reiter [27] presents a hitting
set computation algorithm which computes conflicts on-the-fly
and produces diagnoses in order of increasing cardinality.

C. Notation of Vectors and Domains

We write S for the set of finite strings. Overlines are used
to indicate vectors. For two vectors a = (a1, . . . , am) and b =
(b1, . . . , bn), we write a||b for the concatenation (a1, . . . , bn).
For symbolic execution, we assume that all symbols are taken
from a sufficiently large set S. To simplify notation, we also
assume that all symbols range over some domain D of values.
For instance, D may be Z or Bm. An extension to different
domains for different symbols is straightforward.

We denote with Dex a domain of symbolic expressions and
with Dco a domain of symbolic conditions. Let e1, e2 ∈ Dex

and c1, c2 ∈ Dco. We assume that e1 = e2, e1 ≤ e2, e1 ≥ e2,
c1∨ c2, c1∧ c2, and ¬c1 are in Dco as well, with the expected
semantics (“=” means equality here, not an assignment). For
c ∈ Dco we write c[a] with a = (a1, . . . , am) ∈ Sm to
indicate that c may only depend on the symbols a1, . . . , am.
Let b = (b1, . . . , bm) ∈ (S ∪D)m be a vector of symbols and
constants. Then c[b] denotes condition c[a] where all symbols
ai, with 1 ≤ i ≤ m, have been replaced by bi. Analogously
for expressions. Finally, we assume that a sound and complete

decision procedure (e.g., an SMT-solver) for the satisfiability
of conditions c ∈ Dco is available.

III. DEBUGGING METHOD

This section introduces our debugging approach, as outlined
in Fig. 1, in more detail. A discussion of practical aspects and
some alternatives will be given in Section IV. The input of
our debugging method is a program P and a specification S.
The program may contain calls to a special function input,
returning an unknown input value v ∈ D. As a specification,
assertions in the code are supported natively. This also allows
using reference implementations: the reference implementation
is executed with the same inputs and results are compared
with assertions. The user can define the desired notion of
equivalence with suitable assertions. The program is assumed
to violate the specification for some input.

A. Pre-Processing

Our method needs to report components of the program P
as possibly faulty, and to suggest replacements. This requires
a notion of a component and a corresponding fault model.

The ideal fault model can explain all errors, is fine-grained,
and enables efficient algorithms. Clearly, these properties
cannot all be maximized at the same time. As a trade-off,
we assume that only the right-hand side (RHS) of assignments
may be erroneous. Alternatives will be discussed in Section IV.
The reasons for our decision are as follows. Assignments
are the fundamental operation in any imperative program.
The fault model allows for efficient program analysis, since
an unknown RHS can be handled symbolically, just like an
input. (See Section III-B.) Moreover, it is fine-grained and can
easily be extended to incorrect expressions by assigning every
expression to a temporary variable. Consequently, we consider
the RHS of every assignment as a replaceable component of
the program. The rest of the program is deemed unmodifiable.

Example 2. Consider the following program (in C syntax).

1 int max (int x , int y ) {
2 int r = x ;
3 if (y > x )
4 r = x ;
5 assert (r >= x && r >= y ) ;
6 return r ;
7 }

It will serve as a running example. It should compute the
maximum of two numbers but contains an error in Line 4,
which should read “r = y”. With CMP = {c1, c2} we
identify two components, c1 being the x in Line 2 and c2 being
the x in Line 4. By re-writing Line 3 to “int tmp = y >
x; if(tmp)”, the condition y > x can be handled as a
third component c3. However, for simplicity of explanations,
c3 is not considered as a component in the running example.

Next, we express that components may be faulty. We create
a modified program P̃ , which is identical to P except that
each assignment LHS = RHS; is textually replaced by

LHS = cmp(c, RHS, v1, v2, ..., vn);
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Here, cmp is a special function indicating components, c is (a
unique identifier of) the component c ∈ CMP, and v1, . . . ,vn
are the variables which are in scope when component c is
executed. We can think of cmp as a shorthand for
assumeCorrect(c) ? RHS : rep_c(v1,...,vn).

If component c is assumed to be correct, there is no need to
modify it. Otherwise it can be replaced by a new expression,
which is embodied by the (yet unknown) function rep_c.
The error localization step will find out which components
are assumed to be incorrect. The error correction step will
compute implementations of the functions rep_c for all
incorrect components.

We define a function Vars : CMP→ S∗ mapping each com-
ponent c ∈ CMP to a vector of variable names v1, . . . ,vn.
These are the variables in scope when c is executed. The
mapping can be computed easily during pre-processing and
will be required for applying and outputting repairs.

Example 3. The program P from Example 2 gives P̃ =

1 int max (int x , int y ) {
2 int r = cmp ( 1 ,x ,x ,y ) ;
3 if (y > x )
4 r = cmp ( 2 ,x ,x ,y ,r ) ;
5 assert (r >= x && r >= y ) ;
6 return r ;
7 }

where the calls to cmp intuitively mean
assumeCorrect(c1) ? x : rep_c1(x,y) and
assumeCorrect(c2) ? x : rep_c2(x,y,r).

B. Program Analysis

We execute P̃ symbolically or concolically to get diagnostic
information. Unlike standard symbolic execution, we maintain
two sets of symbols: input symbols and repair symbols.

Input symbols represent unknown input values. Whenever
the function input is called, a fresh input symbol is created.
We denote the vector of created input symbols (in arbitrary
order) as i = (i1, . . . , iA) ∈ SA. Similarly, repair symbols
represent the unknown values returned by the function cmp.
These symbols will be denoted as r = (r1, . . . , rB) ∈ SB .

With the following functions, every repair symbol rb is asso-
ciated with additional information. CmpOf : {r1, . . . , rB} →
CMP maps rb to the component which produced it. Org :
{r1, . . . , rB} → Dex maps rb to the value that would be
produced by the unmodified component CmpOf(rb). Vals :
{r1, . . . , rB} → D∗ex maps rb to the values of all variables in
scope when CmpOf(rb) produced rb. These functions are built
up from the symbolic values of the first parameter, the second
parameter, and the subsequent parameters of cmp, respectively.

We say that an execution path is a sequence of statements
which starts with the initial statement and ends with the
termination of the program. For every execution path p in P̃ , a
path condition PCp[i||r] ∈ Dco is created during the symbolic
execution. The paths are divided into the two sets PASS and
FAIL. A path p is in FAIL if it violates the specification, i.e.,
ends in an abnormal program termination after an assertion

violation. It is in PASS otherwise. We define a condition
π[i||r] ∈ Dco as

π[i||r] =
∨

p∈PASS

PCp[i||r]. (1)

Lemma 1. Let vi ∈ DA and vr ∈ DB be two vectors of
concrete values. Assuming that all paths of P̃ have been
analyzed, the condition π[vi||vr] is true iff P̃ fulfills the
specification S, given that vi is used as input vector and vr
is the vector of values returned in calls to the function cmp.

Proof: Let pe be the path activated by vi and vr in P̃ .
Clearly, PCp[vi||vr] is true iff p=pe. Lemma 1 holds since
PCpe [vi||vr] is a disjunct of π[vi||vr] iff pe satisfies S.

Proposition 1. Let P be an incorrect program and let vi ∈ DA

be an input vector. Assuming that all paths of P̃ have been
analyzed, the condition

∃r . π[vi||r] ∧
∧

rb in r

rb = Org(rb)[vi||r]

is true iff P fulfills the specification S when executed with
input vi.

Proof: Let vr ∈ DB be the concrete values returned by
calls to cmp in P̃ . According to Lemma 1, π[vi||vr] evaluates
to true iff P̃ fulfills S for input vi. The additional conjuncts in
the formula require that all components in P̃ return the same
value as the respective components in P . Hence, the formula
valuates to true iff P fulfills S for input vi.

Lemma 1 states how the condition π[i||r] can be used to
make statements about the correctness of the instrumented
program P̃ , depending on the inputs and the components.
Proposition 1 establishes the link to the correctness of the
original program P , using the information in Org.

Definition 1. The tuple Γ = (CMP,Vars, i, r,CmpOf,Org,
Vals, π[i||r]) is called diagnostic data.

Example 4. For P from Example 2 we have CMP={c1, c2},
Vars(c1)=(x,y), Vars(c2)=(x,y,r), i=(X,Y ), r=(R1, R2),
CmpOf(R1)=c1, CmpOf(R2)=c2, Org(R1)=X , Org(R2)=
X , Vals(R1)=(X,Y ), Vals(R2)=(X,Y,R1), and π[i||r] =
(Y > X∧R2 ≥ X∧R2 ≥ Y )∨(Y ≤ X∧R1 ≥ X∧R1 ≥ Y ).

The diagnostic data Γ is the output of the program analysis
step and will serve as input for error localization and error
correction (recall again Fig. 1).

C. Error Localization

Our method for error localization rests upon MBD as
introduced in Section II-B. This section explains how MBD
can be applied in our setting. The next section will then discuss
how diagnoses can actually be computed.

Standard MBD takes as input a model of a system together
with a contradicting observation. The contradiction manifests
itself in conflicts, which need to be explained. In our setting, a
program conflicts with its specification, so we need a different
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notion of a conflict. Deriving diagnoses from conflicts works
in the standard way.

We define a function repairable : 2CMP → {true, false}.
Intuitively, repairable(Q) maps a set Q ⊆ CMP to true iff
program P̃ can be repaired for all inputs, assuming that all
components c ∈ Q are correct and need not be modified.
Formally, we define

repairable(Q)⇔ ∀i .∃r . π[i||r] ∧
∧

r∈R
r = Org(r)[i||r], (2)

where R stands for {r | CmpOf(r) ∈ Q} and ∀i is a shorthand
for ∀i1 . . . ∀iA. Likewise for ∃r. The definition says that a
program is repairable iff for all inputs, there exist values that
can be returned by the components (the function cmp in P̃ )
such that the specification is fulfilled. Components which are
assumed to be correct can only return the value that would be
returned by the original version of that component.

Lemma 2. The function repairable is monotonic in that, for
all Q′ ⊆ Q ⊆ CMP, repairable(Q) implies repairable(Q′).

Monotonicity is obvious since removing elements from Q
only removes conjuncts in the definition of repairable.

Definition 2. A set ∆ ⊆ CMP is a diagnosis for program P
iff repairable(CMP \∆) = true. A set C ⊆ CMP is a conflict
iff repairable(C) = false.

A diagnosis is a set of components that can be modified
such that P becomes correct. The reason is that, for every
input, it is possible to find some value that can be returned by
the components c ∈ ∆ such that the specification is fulfilled.
Hence, diagnoses represent fault candidates. A conflict is a set
of components from which at least one component has to be
modified in order to obtain a correct program.

Example 5. For the program P in Example 2 we have:

Case Set Q repairable(Q) Diagnosis Conflict
1 ∅ true {c1, c2}
2 {c1} true {c2}
3 {c2} false {c2}
4 {c1, c2} false {c1, c2}

We have that repairable({c1})=true because c2 can be mod-
ified to render P correct. For every input X,Y , there is a
value (namely Y ) to return by c2 such that the assertion holds.
Hence, c2 may be responsible for the incorrectness of P —
it is a diagnosis. On the other hand, repairable({c2})=false
because for X=0, Y =1 the specification is violated no matter
what is returned by c1, simply because the value is overwritten
by c2. Hence, c1 cannot be responsible for the incorrectness,
i.e., {c1} is not a diagnosis. The other two cases are trivial.

D. Computation of Diagnoses

The following theorem, which is a slight adaptation of
Theorem 4.4 from [27], states that minimal diagnoses can be
computed as minimal hitting sets for the collection of conflicts.

Theorem 1. A set ∆ ⊆ CMP of components is a minimal
diagnosis for program P iff it is a minimal hitting set for the
collection K of conflicts for P .

Proof: Using Lemma 2, the proof in [27] applies.

We use the hitting set tree algorithm of Reiter [27] (with the
fix of [16]) to compute diagnoses. It requires a procedure to
compute a conflict not containing a certain set N of elements,
if such a conflict exists. Such a procedure can be implemented
by returning CMP \N if repairable(CMP \N) = false and
None otherwise. Deciding repairability according to Eq. 2 is
computationally hard or, depending on D, Dex and Dco, even
undecidable. The reason is the quantifier alternation. There-
fore, we check repairability only for a given set J ⊆ 2(D

A) of
input vectors. That is, instead of repairable(Q) we compute

repairable′(Q)⇔
∧

vi∈J
∃r . π[vi||r] ∧

∧

r∈R
r = Org(r)[vi||r]

with R = {r | CmpOf(r) ∈ Q}. We use only inputs that
make P violate S because for all other inputs P is trivially
repairable. When applying concolic execution for program
analysis, such concrete input values are computed anyway.
Using symbolic execution, path conditions can be solved to
obtain values for J .

The quantifier-free part of repairable′ is in Dco. Therefore,
a query repairable′(Q) can be solved using one satisfiability
check per input vector. An alternative is to swap the conjunc-
tion over the inputs with the quantification, rename all repair
symbols to fresh ones for every conjunct, and use only one
satisfiability check. In more detail, this works as follows. Let
ri be the vector of fresh symbols corresponding to r for input
vi, and let ri be the fresh symbol corresponding to symbol r
in r. We now have that repairable′(Q) is true iff

∧

vi∈J
π[vi||ri] ∧

∧

r∈R
ri = Org(r)[vi||ri] (3)

is satisfiable.
The performance of Reiter’s algorithm increases if the com-

puted conflicts are minimal. A minimal conflict not containing
a certain set N of elements can be computed in different ways.
One way is to use a failure-preserving minimization algorithm
like Delta Debugging [33] or QuickExplain [22] to repeatedly
invoke repairable′ with different subsets of CMP \N until
a minimal subset for which repairable′ evaluates to false is
found. Another option is based on the observation that every
minimal conflict corresponds to an unsatisfiable core in Eq. 3.
By rearranging the conjuncts, Eq. 3 can be rewritten to
( ∧

vi∈J
π[vi||ri]

)
∧
∧

c∈Q

∧

{r|CmpOf(r)=c}

∧

vi∈J
ri= Org(r)[vi||ri].

This illustrates that every component c ∈ Q corresponds to
a certain conjunct in the definition of repairable′. A minimal
conflict not containing a certain set N of components can
therefore be computed as a minimal unsatisfiable core of a
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constraint system with
∧

vi∈J
π[vi||ri] as a fixed part and

⋃

c∈(CMP \N)


 ∧

{r|CmpOf(r)=c}

∧

vi∈J
ri = Org(r)[vi||ri]




as a set of retractable constraints. Hence, if the solver is able
to compute unsatisfiable cores, this feature can be exploited
to compute minimal conflicts more efficiently.

Theorem 2. Every diagnosis ∆ with respect to the definition
of repairable is also a diagnosis with respect to repairable′.

Proof: Clearly, we have that repairable(Q) implies
repairable′(Q) for all Q ⊆ CMP.

Theorem 2 states that using repairable′ instead of repairable
can only lead to false positives but not to missing diagnoses.

E. Error Correction

Our method for error correction takes as input an incor-
rect program P , the diagnostic data Γ = (CMP,Vars, i, r,
CmpOf,Org,Vals, π[i||r]), and a diagnosis ∆ ⊆ CMP. If
successful, it produces a repaired program P ′ which differs
from P only in the components ∆. Assuming that program
analysis was perfectly accurate, P ′ cannot violate its specifica-
tion for any input. The focus of our algorithm is on efficiency
and readability of repairs rather than completeness.

New expressions have to be synthesized for all components
c ∈ ∆. We reduce the search for expressions to the search
for constants by creating templates for unknown expressions.
Templates consists of program variables and template param-
eters. Concrete parameter values define a concrete expression.

Example 6. The template k0+k1·v1+k2·v2, where k0, k1, k2
are parameters and v1, v2 are program variables, can express
any linear expression over the variables. The values k0=−2,
k1=1, and k2=0 represent expression v1-2.

Templates also provide control over the expressions sub-
jected to search. To get simple repairs, it makes sense to start
with simple templates and switch to more expressive templates
if no repair is found with the simple ones.

Formally, for every component c ∈ ∆, we create a template
Tc[kc||pvc] ∈ Dex as an expression over two vectors of fresh
symbols kc ∈ S∗ and pvc ∈ S|Vars(c)|. The symbols pvc

represent the values of the program variables in scope when
component c is executed. Symbols in kc represent unknown
parameter values. We write k for the concatenation of all kc
with c ∈ ∆. Moreover, we define Kc = |kc| and K = |k|.

For all components c ∈ ∆, let vk,c ∈ DKc be concrete
values for the template parameters kc, and let vk be the con-
catenation of all vk,c. We write P ′ = apply(vk, P ) to denote
that program P is transformed to program P ′ by replacing all
components c ∈ ∆ with expression Tc[vk,c||Vars(c)]. That is,
in all templates, parameters are replaced by the values defined
in vk, program variable symbols are replaced by the respective
variable names, and components c ∈ ∆ of P are replaced by
the so instantiated templates.

In order to check if a certain template instantiation yields
a correctly repaired program, we define a function correct :
DA × DK → {true, false} such that correct(i, k) is true iff

∃r . π[i||r] ∧
∧

r 6∈R
r = Org(r)[i||r]∧

∧

r∈R
∃pvc . r = Tc[kc||pvc] ∧ pvc = Vals(r), (4)

where c is short for CmpOf(r) and R = {r | CmpOf(r) ∈
∆}. The intuition behind Eq. 4 is as follows. π[i||r] expresses
when P̃ behaves correctly, depending on the unknown inputs i
and the unknown values r returned by the components. Every
symbol r that has been produced by an incorrect component
c ∈ ∆ is bound to the value that would be produced by
the corresponding template Tc. This value is obtained by
binding the symbols pvc to the values Vals(r) the program
variables had when c was executed to produce r (the equality
is meant element-wise). Every symbol r produced by a correct
component c 6∈ ∆ is bound to the value Org(r) that would
have been produced by the unmodified component c.

Lemma 3. Let P be an incorrect program, vi ∈ DA be an in-
put vector, and vk ∈ DK be template parameter values. Then,
correct(vi, vk) maps to true iff the program P ′ = apply(vk, P )
fulfills the specification S when executed with input vi.

Proof: Let vr ∈ DB be the concrete values returned by
calls to cmp in P̃ . According to Lemma 1, π[vi||vr] evaluates
to true iff P̃ fulfills S for input vi. The additional conjuncts
in Eq. 4 make correct map to true iff a special version P̃ ′ of
P̃ satisfies S for input vi. In P̃ ′, all components c 6∈ ∆ return
the same value as the original implementation of c in P . All
components c ∈ ∆ return the values that would have been
returned by template Tc, instantiated with parameters defined
in vk. This program P̃ ′ is exactly P ′ = apply(vk, P ).

Theorem 3. Let vk be a vector of concrete templates values
such that correct(vi, vk) holds for all input vectors vi. Then,
P ′ = apply(vk, P ) is a correct program.

Proof: Lemma 3 implies that P ′ cannot violate its spec-
ification S for any input. Hence, P ′ is correct.

F. Computation of Repairs

This section explains how repairs can be computed fol-
lowing Theorem 3. Observe that all quantified variables are
bound to a value in Eq. 4. Therefore, an equivalent condition
correct′[i||k] ∈ Dco can be defined by replacing all quantified
variables by their value. What remains is the implicit quan-
tifier alternation

(
∃k . ∀i . correct′[i||k]

)
in Theorem 3, which

renders the problem intractable or even undecidable. For error
localization, we handled this issue by requiring correctness for
some inputs only. Here, we avoid false positives. We follow
the idea of [30] and [3] to compute repairs through iterative
refinements that are guided by counterexamples.

The process is illustrated in Fig. 3. There is a database I
of input vectors vi ∈ DA, which is initially empty. In every
iteration, a repair candidate is computed in form of template
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Fig. 3. Counterexample-guided repair refinement.

parameter values vk ∈ DK such that P ′ = apply(vk, P ) is
correct for all inputs vi in I . This is done by computing a
satisfying assignment vk for the symbols k in condition

∧

vi∈I
correct′[vi||k]. (5)

If Eq. 5 is unsatisfiable, the program cannot be repaired with
the given templates and the procedure aborts. Otherwise, it is
checked if vk repairs the program for all inputs, i.e., if

¬ correct′[i||vk] (6)

is unsatisfiable. If so, then P ′ = apply(vk, P ) is a correct
program and we are done. Otherwise, a satisfying assignment
vi for i in Eq. 6 is extracted. This vi is a counterexample for
the correctness of P ′. It is added to I and another iteration is
started, which produces a better candidate. This is repeated.
We limit the number of iterations to ensure termination. If
further repairs should be computed, we add conjuncts to Eq. 5
requiring that k is different to all previously computed repairs.

Example 7. Let ∆ = {c2} be the diagnosis for the program P
from Example 2, and let k0+k1·x+k2·y+k3·r be the template
for c2. We have that correct((X,Y ), (k0, k1, k2, k3)) =

∃R1, R2 .((Y > X ∧R2 ≥ X ∧R2 ≥ Y ) ∨ (Y ≤ X∧
R1 ≥ X ∧R1 ≥ Y )) ∧R1 = X∧
R2 = k0 + k1 ·X + k2 · Y + k3 ·X,

which can be simplified to correct′[(X,Y, k0, k1, k2, k3)] =

(Y ≤ X) ∨ (k0 + k1 ·X + k2 · Y + k3 ·X ≥ Y ).

The computation of a repair could proceed as following. First,
a satisfying assignment for k = (k0, k1, k2, k3) in Eq. 5 is
computed with I = ∅. A possible solution is k = (0, 0, 0, 0),
which corresponds to the expression “0”. Next, it is checked if
replacing c2 by 0 renders P correct. This is done by checking
Eq. 6 for satisfiability, i.e., by searching for a counterexample.
Eq. 6 is equal to ¬(Y ≤ X ∨ 0 ≥ Y ), a satisfying assignment
is X = 2, Y = 4. Hence, replacing c2 by 0 does not repair
P for all inputs. The database of inputs is extended to I =
{(2, 4)}, and an improved candidate expression is computed
by solving Eq. 5, which is now equal to (4 ≤ 2) ∨ (k0 +
k1 · 2 + k2 · 4 + k3 · 2 ≥ 2). A solution is k = (1, 0, 1, 0),
which corresponds to the expression “y+1”. Again, we verify
if replacing c2 by y+1 renders P correct. Now, Eq. 6 is equal
to ¬(Y ≤ X ∨ 1 + Y ≥ Y ) and hence unsatisfiable. This
means that no more counterexample exists. Replacing c2 by
y+1 is a valid repair, the algorithm terminates.

G. Heuristics to Speed Up Convergence

Repair refinement can be seen as a game with two players.
Player 1 comes up with candidates, Player 2 attempts to dis-
prove them. In our experiments, we discovered two problems
of this procedure. First, even if simple repairs exist, the play
may end up computing and excluding more and more complex
candidates. E.g., for one program, the sequence of candidates

Iteration Candidate for a certain component
1 0

2 -v0

3 250*v1 + 248*v2 - 2*v3 - v4

4 and so on, becoming more and more complex

was observed, although the constant 500 was a repair for that
component. Second, if both players do the least to fulfill their
duty, progress may be insufficient. E.g., for the program in
Example 2 with ∆ = {c2}, the following may happen:

Repair candidate for c2 Counterexample
0 x=0, y=1
1 x=1, y=2
2 and so on

We solve these two issues heuristically by improving the two
players. Intuitively, we want “simple” candidates and “nasty”
counterexamples. We say that a candidate is “simple” if many
template parameters ki are small or, even better, equal to some
special value si, which makes terms in the template disappear
(e.g., zero in case of a template for linear expressions). To
implement this, we define a set ρ1 ⊆ 2Dco of constraints as

ρ1 =
⋃

ki∈k

(
ki = si

)
∪
⋃

ki∈k

(
ki ≤M ∧ ki ≥ −M

)
,

where M is a constant defining what “small” means. We com-
pute template parameters by solving a Maximum Satisfiability
(MAX-SAT) problem with Eq. 5 as fixed part and ρ1 as the
set of retractable constraints from which as many as possible
should be fulfilled. Likewise, we say that a counterexample
is “nasty” if it contains large, uncorrelated values. Again, we
formulate a MAX-SAT problem with Eq. 6 as fixed part and

ρ2 =
⋃

ia∈i

(
ia ≥ N ∨ ia ≤ −N

)

as the set of retractable constraints, where N is a constant
which is much larger than M . In order to break correlations
between values in the counterexample we additionally ran-
domize it: values are changed to large random values as long
as the modified input vector is still a counterexample.

IV. DISCUSSION AND ALTERNATIVES

Our debugging method offers a lot of configuration param-
eters. This includes the number of execution paths to analyze,
the number |J | of inputs for diagnosis, the maximum number
of repair refinements, and the templates to use. Moreover,
the domains Dex and Dco (i.e., the SMT-theories) determine
which language constructs can be handled exactly, and which
ones have to be approximated. As an advantage, our method
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can by tailored to a broad range of programs. On the other
hand, it may take some attempts to find a good configuration.

Our debugging method acts conservatively in that it targets
a known good program termination for every input. The reason
is the way π[i||r] is defined in Eq. 1. An alternative is to use

π[i||r] = ¬
∨

p∈FAIL

PCp[i||r], (7)

to avoid known specification violations. Using Eq. 1, diagnoses
and repairs may be missed. Using Eq. 7, we may find false
positives and allow endless loops. Both have their merits.

The more calls to cmp are introduced during pre-processing,
the more execution paths become feasible. This observation
can be exploited to refine the diagnostic data for error correc-
tion: A separate symbolic execution pass can be triggered for
every diagnosis ∆ before doing correction. In this pass, only
the components in ∆ are instrumented with calls to cmp. This
gives higher path coverage for repair at the costs of having an
additional program analysis step per diagnosis.

In principle, the fault model can be extended to include
also faults in the LHS of assignments and even to missing or
additional statements. A naive way is to apply case-splitting,
but this is computationally expensive. More clever methods
are subject to future work.

In first experiments, we observed that the quality of the
produced repairs heavily depends on the quality of the given
specification. This is neither surprising, nor is this problem
specific to our method. It can happen that the computed
correction simply prevents executions from ever reaching
specific assertions. We plan to address this issue in the future
by incorporating additional requirements such as the avoidance
of unreachable code.

V. EXPERIMENTAL RESULTS

In this section, we present first experimental results to
demonstrate the feasibility of our approach. We implemented
our debugging method for C programs. For program analysis
we extended CREST [2], a concolic testing tool. Yices
version 1.0.28 [10] is utilized with linear integer arithmetic as
SMT-solver. Supporting other solvers and theories, especially
bit-vectors and arrays, is planned. Thus, arrays and pointers
are only handled approximatively at the moment. Currently,
we use only templates for linear expressions. For expressions
which occur as a condition in the program, we use templates
of the form k0+k1 ·v1+k2 ·v2+. . . OP 0, where v1,v2, . . .
are program variables, k0, k1, . . . are template parameters, and
OP ∈ {=, <,>,≤,≥}. The unknown comparison operator is
encoded symbolically so that it can be handled like any other
template parameter. Our implementation is part of a larger
tool named FoREnSiC, which is under development and will
feature also other formal, semi-formal, and dynamic debugging
methods.

In our experiments, we set |J | = 2 for error localization,
we limited the number of repair refinements to 10, the number
of repairs to compute per diagnosis to 5, and set a time-out
to all SMT-solver calls to 60 seconds. The experiments were

TABLE I
PERFORMANCE RESULTS.

Column 1 2 3 4 5 6 7 8 9

Diagnosis Repair No Heuristic Sketch (8 bit)
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[sec] [-] [sec] [-] [sec] [-] [-] [s] [MB]

tcas2 70 2 271 2 355 1 1 29 297
tcas7 123 2 42 5 444 0 4 20 1459
tcas8 122 2 37 5 465 0 1 6.3 42
tcas16 123 2 43 5 1027 0 2 22 764
tcas17 125 2 41 5 234 0 2 11 666
tcas18 124 2 38 5 35 0 2 9.3 744
tcas19 123 2 40 5 691 0 1 6.3 42
tcas36 3.0 0 - - - - 4 7.0 796

total 813 14 512 32 3250 1 111 4810

performed on an Intel P7350 processor with 2× 2.0 GHz and
3 GB RAM, running a 32-bit Linux. The implementation and
scripts to reproduce the results are available for download1.

Performance results

Table I summarizes performance results for some mutants of
the TCAS program from the Siemens suite [9]. The program
implements a traffic collision avoidance system for aircrafts in
about 180 lines of code. We use the reference implementation
as specification, which effectively doubles the size. For the
TCAS examples, we do not consider conditions as components
because they appear to challenge the solver, resulting in time-
outs for many cases. We will try to overcome this issue by
improving the encoding of the symbolic search for comparison
operators, and by switching to a more recent solver. Conse-
quently, Table I contains only mutants where the error is on
the RHS of an assignment. We limited the number of paths to
analyze with concolic execution to 400.

In every mutant of Table I, 44 components were identi-
fied. Program analysis took about 5 seconds. The time for
diagnosis is listed in Column 1. Column 2 gives the number
of diagnoses found. The Columns 3 and 4 show the error
correction time and the number of found repairs with the
heuristic of Section III-G enabled. The Columns 5 and 6
contain the same information for the heuristic being disabled.
The Columns 7 to 9 summarize a comparison of our repair
method with the program sketching tool Sketch [30]2. We
re-implemented the TCAS mutants in the input language of
Sketch. Then, we manually replaced the faulty components
with repair templates, using holes for the unknown template
parameters. In this setting, Sketch ran out of memory for all
cases. In order to have Sketch find a repair, we had to reduce
the bit-width of an integer to 8 (for which we had to lower

1See http://www.iaik.tugraz.at/content/research/design verification/others/.
An official release of FoREnSiC will follow.

2We used Sketch version 1.3.0 with the solver ABC. When using MiniSat
as a solver, the tool run out of memory.
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constants in the program). Moreover, we had to reduce the
number of program variables in the templates. Column 7 gives
the maximum number of template variables so that Sketch
can still find a repair. The last two columns list the time and
memory requirements of Sketch, respectively.

In our experiments, we observed that a low number of
inputs J (we use only two) is sufficient for our method to
yield precise diagnoses. (See Column 2). Only for tcas36,
no diagnosis could be found. The reason is that (by far) not
all execution paths through the pre-processed program were
analyzed. However, with other parameter configurations (e.g.,
using Eq. 7 instead of Eq. 1 and an extra program analysis pass
per diagnosis; cf. Section IV) our method finds 5 repairs also
for this mutant. The time for error localization is rather high
compared to error correction (Column 1 vs. Column 3). This
may be due to an inefficient implementation: we do not yet
utilize unsatisfiable core functionality of the solver to compute
minimal conflicts, as described in Section III-D. The program
has many global variables, so each repair may depend on
many variables. Nevertheless, error correction is surprisingly
fast in our experiments. Furthermore, our heuristic to improve
convergence in repair computation works well. It leads to more
repairs being found in less time. Our tool is able to check
a repaired program for correctness using the model checker
CBMC [4]. This was successful in all cases.

At least for the analyzed TCAS examples, our repair method
seems to perform better than Sketch. The repair templates
used by our tool contain all variables which are in scope
at the respective location in the program. This means at
least 10 program variables and 11 template parameters for
each template. For Sketch, we had to drastically reduce the
number of program variables in repair templates in order
to obtain a repair. (See Column 7.) Moreover, the memory
requirements of our implementation are insignificant (below
80 MB in all cases). A plausible explanation is that Sketch
breaks the synthesis problem down to Boolean satisfiability
problems, while we use an SMT-solver. Furthermore, our tool
did not analyze all execution paths of the TCAS mutants. Note,
however, that the comparison with Sketch is not totally fair
due to different input languages, solvers, and tool objectives.

Analysis of some Repairs

In this section, we take a closer look on the repair pro-
cess for some programs. We start with our running example
(cf. Example 2). For CMP={c1, c2}, our tool identifies {c2}
as the only diagnosis. The expressions y, y+1, y+2, etc., are
computed as possible replacements of c2. If the condition is
considered as a third component c3 (cf. Example 2) our tool
finds the diagnoses {c2} and {c1, c3}. The former is repaired
as before. For the latter, our tool computes the replacements

c1 c3
y x - y >= 0,

y+1 2*x - 2*y > 0,
y+2 3*x - 3*y > 0,
y+3 -x + y < 0, and
y+4 4*x - 4*y >= 0.

In the mutant tcas2 from Table I, the function

1 InhibitBiasedClimb ( ) {
2 return (ClimbInhibit ? UpSep +

NOZCROSS : UpSep ) ;
3 }

has been modified: The constant NOZCROSS = 100 has been
replaced by the constant MINSEP = 300. The front-end of
CREST simplifies the body of this function to:

1 if (ClimbInhibit ) {
2 tmp = UpSep + 300 ;
3 } else {
4 tmp = UpSep ;
5 }
6 return (tmp ) ;

Our tool identifies the RHS of Line 2 as a diagnosis. For this
diagnosis, the following repair candidates are computed.

Iteration Candidate expression Correct
1 0 no
2 UpSep no
3 UpSep + 100 yes
4 2*UpSep + 101 no
5 UpSep + 99 no
6 OtherTrAlt + UpSep + 99 no
7 -DwnSep + 2*UpSep + 199 yes

Finally, the repair process aborts due to a time-out. The
repair of Iteration 3 corresponds to the original program
and is thus correct. The one found in Iteration 7 is correct
because InhibitBiasedClimb() is only used in compar-
isons of the form InhibitBiasedClimb() > DwnSep.
Since UpSep and DwnSep are integer variables, -DwnSep
+ 2*UpSep + 199 > DwnSep is true iff UpSep + 100
> DwnSep is true.
In the mutant tcas18 from Table I, the statement

1 PosRAAltThresh [ 2 ] = 640 ;

has been modified by replacing the constant 640 with
640+50. The RHS of this assignment is among the computed
diagnoses. Our tool computes the following sequence of repair
candidates for this diagnosis.

Iteration Candidate Correct
0 0 no
1 400 no
2 500 no
3 640 yes
4 -OwnTrackedAltRate + 639 no
5 UpSep - 1 no
6 UpSep - 1000 no
7 -OwnTrackedAlt - 1 no
8 AltLayerValue + 638 yes
9 -AltLayerValue + 642 yes

10 2*AltLayerValue + 636 yes
11 -2*AltLayerValue + 644 yes

The repair computed in Iteration 3 corresponds to the original
program. The repairs found in the iterations 8 to 11 render the
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program correct because the array PosRAAltThresh is only
read at index AltLayerValue. Hence, the modification in
tcas18 affects the behavior only for AltLayerValue = 2.
For this case, the expressions computed in the iterations 8 to
11 are equal to 640. Thus they render the program correct.

These examples demonstrate that our method is able to find
nontrivial corrections also for nontrivial programs.

VI. CONCLUSION

In this paper, we presented a novel method for automatic
error localization and correction in imperative programs. It
offers a wide range of different trade-offs between accuracy
and resource requirements. Our method is based on symbolic
execution, abstracting the debugging problem into the domain
of logic. We showed how model-based diagnosis can be
applied to locate errors using this abstraction. Our correction
method is based on templates, a technique borrowed from the
field of synthesizing loop invariants. This ensures that repairs
are readable. We compute repairs with iterative refinements
and presented a heuristic to speed this process up. This
heuristic additionally prefers simple repairs. We implemented
our debugging method for C programs. Although the imple-
mentation is still in a proof-of-concept state, experimental
results demonstrate that the method works and can be used
not just for toy examples.

In the future, we plan to investigate extensions of the
fault model, develop methods to obtain more useful repairs
for sketchy specifications, combine our method with other
debugging approaches, and extend our tool to support more
theories and solvers.
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Abstract— Industrial verification and synthesis tools routinely
identify and eliminate redundancies from logic designs. In the
former case, redundancy removal yields critical speedups to
the overall verification process. In the latter case, redundancy
removal constitutes a primary mechanism to optimize the final
fabricated circuit. Redundancy identification frameworks often
utilize a greatest-fixedpoint iteration, initially postulating a set of
candidate redundancies to be conjunctively proved then refining
candidates based upon failed proof attempts. Such procedures
generally do not yield any soundly-proved redundancies until a
fixedpoint is achieved. In this paper, we overcome this drawback
by augmenting the fixedpoint procedure with a set of efficient
techniques to track dependencies between candidate redundan-
cies. This approach enables the identification of an optimal
subset of valid redundancies before the fixedpoint is reached,
and may also be used to reduce the number of computations
within the fixedpoint procedure. We apply our techniques to
enhance k-induction as well as a more general transformation-
based verification flow. For induction, we demonstrate up to
75% reduction in runtime and 97% reduction in the number
of inductive proofs. For the more general flow, we demonstrate
up to 90% reduction in runtime and 80% reduction in the total
number of proof obligations.

I. INTRODUCTION

Industrial gate-level designs are often rife with redundancy.
Logic synthesis tools attempt to eliminate redundant structure
as a way of improving the area, delay, or power of the
final fabricated circuit. Verification tools eliminate redundancy
to reduce the size of the design under verification, often
yielding dramatic speedups to the overall verification process,
e.g. [1], [2]. In equivalence checking frameworks, internal
equivalences between two designs can be viewed as a set of
redundancies, which once identified and eliminated, effectively
decompose an otherwise intractable monolithic problem for
greater scalability.

Redundancy identification frameworks often operate
through a greatest-fixedpoint iteration to yield a maximal
set of equivalent gates which can be proved to assume
identical values in every reachable state1. Such frameworks
often postulate a superset of candidate equivalences, e.g.
identified using simulation signatures or structural heuristics,
then iteratively attempt to prove the conjunction of this
postulated set. Any inaccurate or unprovable equivalences
are discarded, and the process repeats until a fixedpoint is
achieved. The benefit of the fixedpoint procedure is that
it enables cross-leveraging postulated equivalences, i.e.,
assuming one set of postulated equivalences when proving

1Constant gates and antivalent gates may be identified using a straight-
forward extension of such frameworks.

another. This often yields dramatic speedups, e.g., through
enabling inductive proofs of redundancy which otherwise
may require reachability analysis [3], [4], [1]. Speculative
reduction may leverage assumptions to further reduce proof
complexity by merging fanout references of postulated-
equivalent gates, trivializing many proof obligations and
simplifying the remainder [2], [5]. The drawback of cross-
leveraging equivalences in this manner is that until a
fixedpoint is achieved, no redundancy may be inferred
because any successfully-completed equivalence proofs may
be jeopardized by inaccurate candidate equivalences.

k-Induction is commonly used to scalably prove candidate
equivalences [3], [1]. k-Induction first validates the base case
by checking that the postulated equivalences hold on every
state reachable in k or less steps from the initial states.
Next, the inductive step validates that for all sequences of k
consecutive states on which the postulated equivalences hold,
they also hold in all successor states. If either check fails, the
inaccurate or unprovable equivalences are discarded, and the
fixedpoint process is repeated on the remaining equivalences.

More generally, redundancies may hold in a design which
cannot be readily proved using induction. To identify such
redundancies, one may need to leverage an arbitrary sequence
of reduction, abstraction, and proof techniques to adequately
simplify and ultimately prove postulated gate equivalences –
often represented as verification properties termed miters. The
use of verification-oriented transformations such as min-area
retiming [6] and temporal decomposition [7] are particu-
larly valuable in a redundancy removal framework, as they
may eliminate structural differences between the logic being
checked for equivalence. Speculative reduction is furthermore
often critical to simplify the resulting set of proof obligations,
both in enhancing the utility of other transformations and
abstractions, as well as in simplifying the final proof obligation
for a technique such as interpolation [8]. We refer to such
a verification paradigm as Transformation-Based Verification
(TBV) [6]. As with induction, if any miter is falsified or un-
proved by a given TBV algorithm sequence, the corresponding
equivalences must be discarded, and the fixedpoint process is
repeated on the remaining equivalences.

In this work we address the optimal identification of
redundancies in an assume-then-prove framework without
requiring fixedpoint computations. In particular, we present
efficient techniques to track proof dependencies within in-
ductive and TBV-based redundancy identification frameworks.
Our techniques enable the identification of a subset of true
redundancies before the fixedpoint is reached, despite any
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Alg. 1 . Redundancy Removal Fixedpoint Algorithm
1: function identifyRedundancyFixedpoint()
2: Postulate redundancy candidates, represented as equivalence classes
3: loop
4: Attempt to prove each redundancy candidate as accurate
5: if (all redundancy candidates are proved) then
6: return equivalence classes as redundancies that may be merged
7: else
8: refine the equivalence classes
9: end if

10: end loop
11: end function

cross-leveraged assumptions. This has several benefits: (1) we
can soundly identify redundancies even when resource limits
prevent every candidate equivalence from being proved or
disproved; (2) we reduce effort within a fixedpoint procedure
by not requiring candidate equivalences to be repetitively
proved across iterations; and (3) within each iteration of
the fixedpoint computation, we allow the proofs of unsolved
equivalences to be deferred or discarded when we detect that
it is not possible to mark this redundancy as soundly proved.

Section II describes the preliminaries. Section III describes
the Proof Graph, our datastructure which tracks dependen-
cies among equivalences. Sections IV and V describe the
integration of Proof Graph techniques in inductive and TBV
frameworks, respectively. In Section VI we provide proofs
that our techniques are sound and optimal. Lastly, we provide
experimental results in Section VII.

II. PRELIMINARIES

We assume that the design under analysis is represented as a
gate-level netlist, consisting of combinational gates of various
types as well as sequential elements with associated initial
values and next-state functions. Our implementation uses an
And/Inverter Graph [9], [10] format, though our techniques
are applicable to other netlist formats as well. In a verifica-
tion setting, the netlist may also comprise logic expressing
environmental assumptions and correctness properties. In an
equivalence checking setting, the netlist may represent the
composition of two designs being compared, with safety
properties checking pairwise equivalence of primary outputs.

Algorithm 1 illustrates a traditional redundancy removal
fixedpoint algorithm [3], [1], [5]. Such algorithms first pos-
tulate a superset of redundancy candidates, represented as
equivalence classes wherein all gates within the same class
are postulated to behave identically in all reachable states. A
set of safety properties termed miters is constructed which
represent the underlying equivalences candidates, and a set
of proof techniques is then used to establish the validity of
the miters and the candidates they represent. If any candi-
dates are demonstrated to be inaccurate, or if the chosen
proof techniques cannot yield a conclusive result for some
candidates, the equivalence classes are refined by discarding
the unprovable equivalences. This process repeats until finally
all equivalence classes are demonstrated correct. When this
fixedpoint is reached, the netlist may be simplified by merging
gates which are proved equivalent. In particular, within each

A
1

B
1

A
2

B
2=

?

҂

Fig. 1. Speculative reduction simplifies the unrolled netlist.

equivalence class, a representative gate is chosen, and each
other gate in that equivalence class will be replaced with its
representative in the netlist.

There are two fundamental techniques to enable the scala-
bility of sequential redundancy removal. The first is the use
of induction to establish the correctness of the conjunction of
the postulated equivalences, which individually would often be
non-inductive and require substantially more expensive proof
techniques [3], [1]. Even if heavier-weight proof techniques
are ultimately needed for maximal redundancy removal, con-
junctive induction is often able to efficiently solve most of
the proof obligations. The second is the use of speculative
reduction, which reduces the size of the miter-annotated netlist
by reconnecting the fanout of a given candidate equivalence
gate (refer to gate B1 in Figure 1) to its representative (gate
A1). This reduces the complexity of the logic in the fanout of
the speculatively-merged gate and often trivializes downstream
miters. Speculative reduction is capable of yielding orders
of magnitude speedups in both inductive- and TBV-based
approaches for redundancy removal [2], [5]. However, as a
result of these two techniques, Algorithm 1 cannot generally
be used to identify redundancies before a fixedpoint is reached,
as one incorrect candidate may invalidate the soundness of the
proof of the other candidates.

III. THE PROOF GRAPH

To deduce sound redundancies prior to achieving a fixed-
point, we record dependencies between candidate equiva-
lences. Two sources of dependencies may arise in a sequential
redundancy removal framework. (1) Speculative reduction may
simplify the netlist under the assumption that A ≡ B, e.g. by
merging the fanout B onto A as in Figure 1. If the merged gate
B is in the cone-of-influence (COI) of some other postulated
equivalence C ≡ D, then C ≡ D depends on A ≡ B.
(2) If using induction, the inductive hypothesis constrains the
SAT solver to only explore state sequences where A ≡ B
and C ≡ D on the first k time steps. If the solver utilizes
these inductive hypotheses, then A ≡ B depends on C ≡ D
and vice-versa. If C ≡ D depends on A ≡ B and we can
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Fig. 2. An example Proof Graph

Alg. 2 . Proof callback function
1: function informProved(proofGraph, class)
2: ensure that the proofGraph is condensed
3: node = the Proof Graph node containing class
4: node.proved[class] = 1
5: if ((∀ classes C ∈ node, node.proved[C] == 1) and

(∀ children D of node, D.soundlyProved == 1)) then
6: node.soundlyProved = 1
7: inform the calling application that node’s classes are soundly proved
8: for all parents P of node, P .proved[*] == 1 do informProved(P )
9: end if

10: end function

demonstrate that A 6≡ B then a proof of C ≡ D does not
soundly indicate that C and D are equivalent.

Dependencies are recorded in a directed graph called the
Proof Graph. Each node in the Proof Graph represents a set of
one or more equivalences. An edge node1 → node2 represents
the dependency node1 “depends on” node2. An example Proof
Graph is shown in Figure 2.

We initially construct the Proof Graph to represent a single
equivalence class per node. The resulting Proof Graph is
cyclic in general, though we may render it acyclic without
jeopardizing the optimality of identified redundancies in two
ways. First, all strongly connected components (SCCs) [11]
are identified, and the graph is condensed by collapsing the
nodes in each SCC into a single Proof Graph node. Second,
self-edges are suppressed. In this way, each Proof Graph node
thus represents a set of equivalence classes.

We use the Proof Graph within a redundancy identification
framework to identify when a proof represents a soundly-
proved redundancy. In our algorithms we use three types
of flags within the Proof Graph: (1) proved means that
a given equivalence class has been proved relative to the
other (possibly incorrect) redundancy candidates; (2) sound-
lyProved means that the proof of the corresponding equiva-
lence class(es) is sound; and (3) falsified means that either
this node contains a falsified equivalence, or it has a falsified
dependency. A Proof Graph node has a single soundlyProved
and falsified flag, and a proved flag for each equivalence class
within that node. Because the topology of the Proof Graph
depends upon the nature of the equivalence classes, the Proof
Graph and its flags generally must be recomputed at each
iteration of the fixedpoint Algorithm 1.

Algorithm 2 is called when all miters corresponding to a
postulated equivalence class are proved. We set the proved
flag on this class and conclude that this proof is sound iff all

Alg. 3 . Falsification callback function
1: function informFalsified(proofGraph, class)
2: node = the Proof Graph node containing class
3: if (node.falsified == 1) then return
4: node.falsified = 1
5: for all parents P of node do informFalsified(proofGraph, P )
6: end function

classes in the same SCC are proved and all dependencies are
soundly proved. Whenever Algorithm 2 deduces that a proof
is sound, it recurses to the parents in the Proof Graph as the
proofs of these parent classes may now be sound as well. As
an example of Algorithm 2, if we call informProved on
Class 2 of Figure 2 then we deduce that this proof is sound
because all classes in Class 2’s SCC are proved and the only
dependency, Node 3, is soundly proved.

Algorithm 3 is called whenever an equivalence class is
falsified. This sets the falsified flag on the corresponding Proof
Graph node and propagates this flag to all ancestors in the
Proof Graph. This flag is used to inform the higher-level
algorithms that an equivalence class cannot be soundly proved
and therefore need not be checked. As an example, calling
informFalsified on Class 2 of Figure 2 will result in the
falsified flag being set on Proof Graph Nodes 2 and 1. Node
1 can thereafter never be soundly proved, and the higher-level
algorithms can use this information to forgo any attempts to
prove the equivalences from Node 1.

Using the Proof Graph within a redundancy removal frame-
work will not alter the set redundancies that are proved, as
will be established in Theorem 2. Instead, the Proof Graph is
used to improve the performance of the associated redundancy
removal framework.

The Proof Graph is a general way to track dependencies.
In this work, we apply this datastructure in the context of
induction (Section IV) and TBV (Section V).

IV. INDUCTION AND THE PROOF GRAPH

In this section we enhance inductive redundancy identifi-
cation frameworks using the Proof Graph. In induction, there
are two types of dependencies that must be recorded in the
Proof Graph: combinational structural dependencies, and proof
dependencies.

An inductive proof unrolls the transition relation, perform-
ing speculative reduction to simplify the unrolled logic [2]. For
example, in Figure 3A, the lower time frame will be simplified
by assuming A1 ≡ B1 and C1 ≡ D1. If these assumptions
are invalid, the behavior of the downstream logic may be
altered, implying that downstream miters are dependent on
these speculatively-reduced equivalences.

Algorithm 4 describes the process to infer such dependen-
cies, called combinational structural dependencies. Given an
equivalence class, the unfolding depth k used for induction,
and a set of gates whose fanout was merged due to speculative
reduction, we first mark the COI of all miters within the class.
Then within this COI, we find gates that have been merged
by speculative reduction. The given equivalence class will be
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Fig. 3. (A) A combinational structural dependency, affecting induction.
(B) A sequential structural dependency, affecting TBV.

Alg. 4 . Discovery of combinational structure dependencies
1: function getCombStructureDeps(class, k, specReduction)
2: coi = ∅
3: for all gate in class do
4: u = unrolled instance gate in frame k
5: coi = coi ∪ combinational cone of influence of u
6: end for
7: for all simplifiedGate in specReduction ∩ coi do
8: C = equivalence class that spec-reduces simplifiedGate
9: record the dependency “class → C”

10: end for
11: end function

marked as dependent upon all classes responsible for these
simplifications.

A second type of dependency arises from the inductive
hypothesis. In k-induction we hypothesize that all equivalences
hold at times 0, . . . , k − 1. These hypotheses are typically im-
plemented by passing additional constraints to the SAT solver,
causing it to only explore paths for which the equivalences
hold in the first k steps. If the proof of a miter depends
on the inductive hypothesis, then the miter and its associated
equivalence class have an additional dependency.

Algorithm 5 shows how to prove the miters from an equiv-
alence class and extract the resultant dependencies, termed
proof dependencies. A SAT solver is used to test the con-
junction of all miters along with all inductive hypotheses.
If the result is unsatisfiable, meaning the miters are proved,
we extract an unsatisfiable core from the solver and inspect
it to determine which hypotheses were utilized in the proof.

Alg. 5 . Discovery of proof dependencies
1: function proveAndGetDeps(class, hypotheses)
2: result = SAT solve(

V

miter∈class miter ∧ hypotheses)
3: if (result is “unsatisfiable”) then
4: core = extract an unsatisfiable core from the SAT solver
5: for all hyp in hypotheses ∩ core do
6: C = equivalence class responsible for hyp
7: record the dependency “class → C”
8: end for
9: end if

10: return result
11: end function

Alg. 6 . Determining the order in which to prove equivalences
1: function getProofObligations(proofGraph)
2: ensure that the proofGraph is condensed
3: classesToProve = ∅
4: for all condensed node ∈ proofGraph, node.falsified == 0 do
5: if ∀ children C of node, C.soundlyProved == 1 then
6: classesToProve = classesToProve ∪ {node’s classes}
7: end if
8: end for
9: return classesToProve

10: end function

Each hypothesis has an associated equivalence class C, and
we record the dependence on each such C. Techniques to
minimize the unsatisfiable core [12] may be employed to
minimize these dependencies if desired.

Note that proof dependencies render the Proof Graph a
dynamic datastructure when it is used for induction. Edges
may be added after any single SAT call, and the topology of
the Proof Graph can thus change. This is why Algorithm 2
may need to re-condense the Proof Graph.

With combinational structural dependencies and proof de-
pendencies identified, we may use the Proof Graph tech-
niques from Section III to reason about the equivalences that
have been soundly proved in a single iteration of induc-
tion. Soundly-identified redundancies can be obtained despite
inaccurate or unproved candidate equivalences, before the
inductive fixedpoint is reached. This gives us partial results
in the case that computational resources are exhausted before
induction converges. In addition, if an equivalence is soundly
proved during one induction iteration, the equivalence doesn’t
need to be re-tested during later induction iterations. As our
experiments demonstrate, this dramatically reduces the number
of SAT calls without jeopardizing the optimality of the final
derived set of redundancies.

The Proof Graph can also be used to detect equivalence
classes that cannot be soundly proved because they have
a falsified dependency. We can skip these proof attempts
during induction, further reducing the overall number of SAT
calls without sacrificing the optimality of soundly proved
equivalences as per Theorem 2.

Algorithm 6 may be used to derive an optimal ordering of
equivalence classes to be proved by an induction framework.
The induction framework repeatedly calls this function until
no more equivalence classes need to be tested in the current
induction iteration. The algorithm traverses the Proof Graph
to look for nodes that are not falsified and have no unproved
children. These represent the equivalence classes that if proved
are most likely to yield sound equivalences, hence induction
is directed to test these classes first. Because the Proof Graph
is maintained to be acyclic, this algorithm is guaranteed to
return a nonempty set of equivalence classes if any unsolved
classes may yield a soundly-proved equivalence. Note that if
Algorithm 3 sets the falsified flag, then induction will entirely
skip any proof attempts for the corresponding candidate equiv-
alences.
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Alg. 7 . Discovery of sequential structure dependencies
1: function getSeqStructureDeps(class, specReduction)
2: coi = sequential cone of influence of all gate in class
3: for all simplifiedGate in specReduction ∩ coi do
4: C = equivalence class that spec-reduces simplifiedGate
5: record the dependency “class → C”
6: end for
7: end function

V. TBV AND THE PROOF GRAPH

Like induction, TBV can be used to prove that equivalences
hold on every reachable state. Here the set of algorithms used
to carry out a proof may be arbitrary. The netlist is transformed
by adding miters for the suspected equivalences, speculatively
reducing the (sequential) netlist, and passing this sub-problem
to another user-specified algorithm or sequence of algorithms.

When the Proof Graph is used in a TBV context, there is
only one type of dependency: those arising from speculative
reduction. An example of this speculative reduction is shown
in Figure 3B, where (1) the netlist is simplified assuming A ≡
B and C ≡ D by moving fanouts of A to B and fanouts of
D to C, and (2) miters are added to test A ≡ B and C ≡ D.

Algorithm 7 is used to extract speculative reduction depen-
dencies, termed sequential structure dependencies, for TBV.
This function is called once on each equivalence class, and it is
passed the class and the set of gates merged using speculative
reduction. The sequential COI of all miters in the class is
marked, and simplifications within this COI are explored. For
each simplification, a dependence on the associated class C is
recorded.

As with Algorithm 6, it is advantageous to prove miters
associated with leaves of the Proof Graph before attempting
to prove other miters. In our implementation, we influence
the proof order by associating assigning a priority to each
miter. Additionally, we instruct downstream algorithms to skip
proofs of miters associated with Proof Graph nodes that have
the falsified flag set.

VI. SOUNDNESS AND OPTIMALITY

Our first theorem establishes the validity of any redundancy
identified using our techniques.

Theorem 1 (Soundness): Any redundancy identified as
“soundly proved” using the Proof Graph is valid.

Proof: If no speculative reduction or conjunctive induc-
tion is used within the underlying proof framework, the Proof
Graph is unconnected hence this theorem trivially holds.

Speculative reduction may jeopardize the validity of a proof,
since the corresponding fanout merge may alter netlist behav-
ior if the corresponding postulated equivalence is incorrect.
Note however that a speculative merge only may alter the
behavior of gates in the fanout of the merged gate: not the rep-
resentative onto which it was merged. Any miter in the fanout
of this merged gate will have an associated edge in the Proof
Graph, hence such fanout miters will be marked as falsified if
the speculatively-merged gate is demonstrated inaccurate. Fur-
thermore, no proved miter in the fanout of this speculatively-
merged gate will be identified as “soundly proved” until the

corresponding candidate equivalence is soundly proved and
it is thereby guaranteed that the speculative merge does not
alter netlist behavior. This theorem thus follows for speculative
reduction given the results of [2], particularly that speculative
reduction preserves the ability to identify invalid equivalences.

If using conjunctive induction, recall that a Proof Graph
edge is added to any postulated equivalence upon which
another equivalence proof is determined to rely. This will
ensure that no proved equivalence will be identified as sound
until the corresponding source of the necessary inductive
hypothesis has been proved as accurate, thereby validating the
soundness of using that hypothesis.

The following theorem establishes the optimality of the
identified redundancies when using fine-grained equivalence
classes, wherein each equivalence class contains a pair of
gates: one to be merged onto the other representative. Coarser-
grained equivalence classes are possible, though may trade
reduction optimality for performance.

Theorem 2 (Optimality): Given fine-grained equivalence
classes, the set of redundancies derived when using the Proof
Graph is optimal. In particular, any proof discarded via use
of the Proof Graph could not correlate to a soundly-identified
redundancy under the chosen proof framework.

Proof: First consider the use of speculative reduction.
Every miter in the fanout of a speculatively-merged gate will
have an associated dependency identified in the Proof Graph,
and thus will not be demonstrated as soundly proved until the
speculatively-merged gate itself is demonstrated accurate. We
note that this set of dependencies is minimal in that depen-
dencies are limited to precisely those gates whose behavior
would be altered if the corresponding postulated equivalence
is invalid. Note that collapsing SCCs within the Proof Graph
does not affect the minimality of this transitive dependency.

Next consider the use of conjunctive induction as the chosen
proof framework, where the Proof Graph might additionally
contain proof dependencies. If a candidate equivalence e1
cannot be proved, and another candidate proof e2 is proved
using the inductive hypothesis of e1, the proof of e2 will be
discarded along with all other candidates which transitively
depend on e1. Such invalidation is necessary for soundness,
since otherwise a potentially-invalid hypothesis would be
used as the basis of a proof. Use of an unsatisfiable core
furthermore ensures a minimal set of such dependencies and
hence invalidations, whereas a traditional framework would
require invalidating all proofs due to risk of such unsoundness.
In general, transitive dependencies may include edges of both
types. Optimality of identified redundancy follows noting that
both types of dependencies are minimally identified.

VII. EXPERIMENTAL RESULTS

All techniques described in this paper have been imple-
mented in the IBM internal verification tool SixthSense [9].
We utilize two disjoint benchmark suites:

• 1300 industrial property checking and sequential equiv-
alence checking benchmarks. These designs are derived
primarily from IBM high-performance microprocessors
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Fig. 4. Finding redundancies with k = 1 induction on 1300 IBM designs. Left: runtime, Right: number of unsatisfiable miters

and range in size up to 5.3M AIG AND gates and 330k
registers.

• The publicly available HWMCC’10 benchmarks [10].
All experiments were run on a cluster of 16 GB, 2 GHz
POWER 5 workstations.

A. Induction Results

We first examine the impact of the Proof Graph on in-
duction. We preprocessed each netlist with combinational
simplifications [13], light-weight sequential simplifications,
phase abstraction [14], transient elimination [7], and input
reparameterization [15]. Next, we use 640 passes of 32-cycle
random simulation to derive candidate gate equivalences, and
we use k = 1 induction to prove these equivalences. This
flow was repeated twice: with the techniques presented in this
paper, and without our techniques in a more traditional flow
referred to as “van Eijk” below.

Figure 4 shows the difference in induction runtime of the
van Eijk flow vs. our proposed algorithms on the IBM designs.
Our techniques improve the runtime on almost all designs, and
the maximum reduction in runtime is 75%. The occasional
slowdowns are cases where the order of SAT calls imposed
by the Proof Graph (Algorithm 6) is disadvantageous2. With
our proposed methods, the order in which the miters are tested
is influenced by the structure of the Proof Graph, while in the
van Eijk flow we test the miters in topological order. In our
implementation, we utilize incremental SAT which makes the
ordering significant.

The runtime improvement is primarily due to the reduction
in the number of SAT calls made by the induction package.
Methods exist to reduce the number of SAT calls that are
satisfiable – re-simulation of inductive counterexamples to
quickly detect satisfiable miters [5]. Using the techniques
described in this paper we are able to furthermore reduce
the number of unsatisfiable calls. We do this by (1) avoiding

2Note that there is overhead associated with maintaining the Proof Graph. In
our implementation, this overhead is minimal, and the change in the ordering
of SAT calls is responsible for any slowdowns in the cases have studied.

re-testing soundly proved equivalences in the later induction
iterations, and (2) skipping SAT calls for equivalences that
cannot be soundly proved. Figure 4 shows a comparison of
the number of unsatisfiable SAT calls on the IBM designs.
Our techniques reduce the number of unsatisfiable calls by
25% on average and 97% in cases3.

Figure 5 analyzes the performance of our induction imple-
mentation on a subset of the most challenging HWMCC’10
benchmarks. In most cases, our techniques improves runtime
significantly, by 11% on average and 70% in cases. As with
the IBM benchmarks, the runtime improvement is primarily
due to a reduction in the number of unsatisfiable SAT calls,
37% on average and 92% in cases.

When we enable our Proof Graph algorithms the number of
iterations increases slightly, 17% on average. The reason is that
because SAT calls are skipped, inductive counterexamples may
not be seen in the earlier iterations. This causes the equivalence
classes to not be refined as aggressively as in a traditional flow.
However, the net decrease in the number of SAT calls makes
up for the slight increase in induction iterations.

Figure 5 also shows the number of merges. When our induc-
tion package deduces that an equivalence is soundly proved, it
merges the equivalence and simplifies the design. Early merges
are merges that are performed before the fixedpoint is reached.
We can perform a significant percentage of the merges early,
37% on average. In one case, bjrb07amba10andenv, we
hit an induction timeout of 1200 seconds and thus all merges
were early merges – there was no fixedpoint.

B. TBV Results

Next we examine the impact of our algorithms on TBV. As
in Section VII-A we aggressively pre-process the design and
use random simulation to postulate register equivalences. We
prove these suspected equivalences with 1-induction and apply
TBV on those equivalences which are suspected to hold but

3Because other aspects of the redundancy removal framework consume
significant runtime, e.g. formulation of the SAT problem and resimulation of
counterexamples, the reduction in the number of unsatisfiable SAT calls is
not directly proportional to the reduction in the total runtime.
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Preprocessed Size van Eijk Our Techniques
Total Unsat. Total Total Unsat. Early

Benchmark Ands Reg. Time Iter. Sat Calls Sat Calls Merges Time Iter. Sat Calls Sat Calls Merges
bj08amba5g62 12411 39 91.6 4 27639 27490 4532 59.0 5 20237 20095 0
bjrb07amba10andenv 63127 58 1204.5 2 38230 38066 138 1200.3 3 29634 29454 138
bjrb07amba3andenv 5473 30 8.1 3 7727 7697 1912 8.4 3 4691 4662 12
bjrb07amba4andenv 13478 33 30.5 3 7955 7926 2473 14.5 4 4207 4175 2463
bjrb07amba5andenv 15063 38 134.0 4 22827 22738 4234 78.0 4 12786 12718 23
bjrb07amba6andenv 23622 41 295.9 3 26527 26437 5759 299.1 4 22323 22228 32
bjrb07amba7andenv 22198 45 173.0 3 16493 16383 4113 188.3 4 12285 12174 40
bjrb07amba9andenv 45539 52 1200.5 5 81087 80956 11065 657.7 5 43015 42894 106
bob1u05cu 12201 2146 6.7 34 25027 24305 746 5.2 87 15177 14753 63
bobmitersynbm 31015 5984 43.3 31 79981 78684 3225 43.7 58 15152 13905 3223
bobsmcodic 18447 1850 15.6 5 6212 6056 954 6.0 8 596 507 954
bobsmmem 55105 3584 18.0 8 13021 12740 1873 15.6 10 4350 4063 1852
bobsmrisc 9422 1323 2.7 5 8666 8587 7329 8.4 5 6813 6732 0
bobsynthetic2 2387 24 161.5 45 85792 85706 1345 111.6 44 60293 60208 0
bobuns2p10d20l 2229 20 351.7 2 226 223 283 414.5 2 231 228 0
mentorbm1and 17628 3138 9.4 44 41483 40990 3536 8.8 44 21372 21105 3536
mentorbm1p02 12255 2111 10.3 42 38285 37746 1231 6.2 43 22532 21954 252
mentorbm1p03 12254 2111 7.1 43 39087 38578 1229 8.9 42 22750 22186 252
mentorbm1p04 12282 2117 8.6 43 39012 38495 1260 5.6 42 22742 22177 252
mentorbm1p05 12290 2119 7.3 43 39415 38891 1270 5.8 43 22823 22258 252
mentorbm1p07 17465 3109 11.3 40 37433 36960 3413 9.0 41 23033 22490 280
mentorbm1p08 12273 2115 7.4 44 39863 39342 1251 6.2 42 22711 22147 252
mentorbm1p09 12253 2111 7.8 43 39104 38576 1230 5.9 43 23114 22533 252
mentorbm1p10 12253 2111 6.8 42 38176 37646 1225 4.9 45 22079 21790 1225
mentorbm1p12 12288 2114 7.5 43 39069 38575 1231 5.8 43 21421 21149 1231
neclaftp1001 35903 5360 204.2 7 78296 77352 24234 207.1 8 71842 70920 96
neclaftp1002 35734 5360 280.8 8 86909 85985 24167 251.7 8 79691 78766 287
neclaftp2001 21240 3478 12.2 4 29614 29596 23381 11.0 4 28528 28510 0
neclaftp2002 21891 3478 4.0 4 29112 29095 23682 4.7 4 27802 27785 0
pdtpmsviper 15066 574 10.1 2 10364 10277 5960 17.9 3 9396 9304 0
pj2002 16769 686 4.6 3 9766 9756 3250 1.4 3 3882 3872 2935
pj2003 16769 686 4.4 3 9766 9756 3250 1.7 3 3882 3872 2935
pj2006 16855 702 4.5 3 9773 9756 3248 1.8 3 3589 3572 2935

1.00 1.00 1.00 1.00 1.00 0.89 1.17 0.63 0.62 0.37

Fig. 5. Finding redundancies with k = 1 induction on a subset of the HWMCC’10 designs

were unproved with induction. This TBV flow speculatively
reduces the sequential netlist, annotates it with miters, and
passes it downstream to first a combinational simplification
engine and then an interpolation engine. We repeat this flow
twice: once using our new techniques, and again with the Proof
Graph disabled.

Figure 6 shows the TBV runtime on 93 of the most difficult
IBM designs4. Nearly all runtimes are greatly improved by
our Proof Graph techniques. We improve the runtime by
90% in cases and 18% cumulatively. The primary causes for
these improvements are: (1) early merging prevents later TBV
iterations from needing to re-prove what was soundly proved
in earlier iterations, and (2) we use the proof graph to guide
the downstream algorithms, only attempting proofs where a
proved equivalence can lead directly to a merge, similar to
Algorithm 6.

Figure 6 also shows the number of times interpolation was
used to solve a miter. Our techniques are able to reduce the
number of properties that interpolation attempts to prove by
80% in cases, 13% on average. Because each interpolation
call has a 30-second time limit, by reducing the number of
interpolation calls we improve the runtime substantially.

4Our aggressive pre-processing proves all properties in many of our
benchmark designs.

VIII. RELATED WORK

There has been much work in the field of sequential
redundancy identification. Due to space limitations, we limit
our focus to more recent work which transitively subsumes
prior foundational work.

[16] proposes an incremental version of a redundant latch
fixedpoint similar to Algorithm 1, using 1-step induction
to correlate latches for combinational equivalence checking
(CEC) frameworks. The induction itself is performed using an
off-the-shelf CEC tool. The authors propose that the effort
of the CEC tool in finding internal equivalence points at
each iteration may be simplified by avoiding re-verification
of internal equivalence points driven solely by latches which
did not change in correlation since they were last proved.
This result relates to our ability to infer soundly-proved
equivalences before all proofs are completed. However, there
are several differences from our work: (1) We may soundly
identify and leverage redundancy even before a fixedpoint is
reached, whereas their technique requires a fixedpoint in being
leveraged solely for CEC. (2) Our approach is designed to
handle general k-induction as well as arbitrary TBV flows to
identify redundancies over arbitrary gates in the netlist, while
their approach is focused upon 1-induction to identify latch
equivalence using a CEC tool. (3) Our approach is robust
enough to handle inductive hypothesis constraints while their
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Fig. 6. Finding non-inductive redundancies with TBV on the 93 most difficult IBM designs. Left: runtime, Right: number of calls to interpolation [8]

approach need not consider them, as such hypotheses in their
more limited settings are effectively “latch mappings.”

[2] discusses how one may leverage postulated equivalences
through speculative reduction, enabling greater simplification
of the resulting netlist for enhanced bounded or unbounded
proof analysis. However, this work does not provide a method
to soundly simplify the netlist until all equivalence proof
obligations are proved – hence does not offer early merging
capability. In addition [2] is typically implemented by using a
SAT solver test each suspected equivalence at every iteration
of the fixedpoint procedure, a complexity we strive to avoid.

[5] describes a method to minimize the number of satisfiable
SAT calls through re-simulation of induction counterexamples,
which combined with speculative reduction yields up to 5
orders of magnitude speedup on a cumulative benchmark suite.
However, aside from eliminating “implied” proofs via specula-
tive reduction, this work does not address how to minimize the
number of unsatisfiable calls, which is a primary contribution
of this paper. This work is nonetheless complementary to ours,
as we have also found it useful to aggressively resimulate
induction counterexamples to rule out satisfiable induction
queries.

IX. CONCLUSION

We have presented a method to improve the efficiency of
redundancy identification frameworks by tracking dependen-
cies between redundancy candidates. The dependencies are
tracked using a datastructure called the Proof Graph, which
is applied to enhance both inductive and transformation-based
redundancy identification frameworks. Our techniques provide
numerous benefits to redundancy identification frameworks.

• Many redundancies may be determined to be soundly
proved before reaching a fixedpoint, allowing for useful
reduction in the design size in the event that computa-
tional resources are exhausted, or an incomplete proof
method is used.

• The total proof burden is reduced because soundly proved
redundancies need not be re-proved in later fixedpoint
iterations.

• The proof burden is additionally reduced because the
Proof Graph allows us to identify redundancies which can
never be soundly proved under a given set of candidates.
The proofs of such redundancies can be skipped.

Experiments confirm that our techniques reduce the number
of attempted proofs by up to 97%, and improve runtime by up
to 75%, for redundancy identification frameworks on industrial
as well as public benchmark sets.
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Approximate Reachability With Combined
Symbolic And Ternary Simulation

Michael Case Jason Baumgartner Hari Mony Robert Kanzelman
IBM Systems and Technology Group

Abstract— Logic synthesis and formal verification both rely on
scalable reachable state characterization for numerous purposes.
One popular technique is over-approximate reachability analysis
using an iterative ternary simulation. This method trades preci-
sion of reachability characterization for a high degree of compu-
tational efficiency. Although effective on many industrial designs,
it breaks down when the design has registers that have complex
initial states or has extremely deep deterministic subcircuits. In
this paper, we improve upon the precision of ternary simulation-
based approximate reachability while retaining its scalability by
representing certain variables as symbols vs. unknowns, and by
selectively saturating subcircuits which would otherwise preclude
convergence. These techniques are particularly beneficial for
enhancing the scalability of industrial sequential equivalence
checking problems, occasionally solving such problems outright
with no need for more costly and precise analysis.

I. INTRODUCTION

Reachability analysis has many applications in contempo-
rary verification and synthesis tools. For example, a design
may be optimized using information about gates which are
redundant in the reachable states; behavioral characteristics
such as oscillators and transients may be identified and
exploited for specific abstraction strategies; and properties may
be solved using reachability information.

Unfortunately, exact reachability analysis is often compu-
tationally impractical, even for moderately sized designs. Ap-
proximate reachability analysis is thus often necessary, trading
the precision of reachable state characterization for computa-
tional efficiency. Even when precise reachability analysis is
ultimately necessary, it is often computationally beneficial to
first apply faster approximate techniques to reduce the design
before exact reachability analysis is performed.

One may perform approximate reachability analysis with
ternary simulation [1] by letting signals take values in
{0, 1, X} as follows. Primary inputs are assigned X , and
registers are assigned their initial values. Ternary simulation
is then used to derive the next state. Computation proceeds in
this way until a repetition of state values has been witnessed,
indicating that an over-approximate reachability analysis has
converged.

Reachability analysis with ternary simulation requires little
runtime, often executing in seconds even on the largest in-
dustrial designs. Its reachability approximation is coarse but
is precise enough to identify common artifacts in industrial
verification and synthesis frameworks: inputs and registers that
are constant due to testbench assumptions, simple internal
equivalences, oscillating clocks, and transient signals. For
this reason, ternary simulation-based reachability analysis is
implemented in many logic synthesis and verification systems.

One key weakness of reachability analysis with ternary
simulation is its inability to precisely characterize designs with
complex initial values. Any registers with non-deterministic
initial values are assigned X in the first iteration of reachability
analysis, and because of the conservative nature of ternary
simulation this X propagates to all fanout logic. For designs
with non-deterministic initialization, this often precludes any
useful reachable state characterization with this analysis.

A secondary weakness of reachability analysis with ternary
simulation is that it may require an infeasible number of sim-
ulation steps to converge; designs containing large counters or
“linear feedback shift register” type logic are often particularly
problematic. This lack of convergence precludes any reachable
state approximation.

In this paper we improve the precision and conclusiveness
of reachability analysis with ternary simulation in two ways:

1) We utilize a symbolic representation and use this to
represent initial states. We define reachability analysis
over both ternary simulation and symbolic simulation.
In practice, this adds little to the total runtime of
approximate reachability and it improves the resolu-
tion substantially, particularly for industrial Sequential
Equivalence Checking (SEC) problems.

2) We introduce a saturation technique to enable conver-
gence without loss of useful reachable state characteri-
zation.

3) We additionally introduce extensions to ternary
simulation-based application domains of redundancy
removal, phase abstraction, and transient elimination
to generalize them accordingly given our symbolic
techniques.

Section II describes the related work in this field. In
Section III we provide preliminaries, including an overview
of reachability approximation using ternary simulation. Sec-
tion IV describes symbolic simulation, and Sections V and VI
incorporate symbolic simulation into approximate reachability.
Section VII introduces our saturation technique which helps
convergence in cases. Finally, experimental results are given
in Section VIII.

II. RELATED WORK

A significant amount of work exists in the field of approx-
imate reachability characterization. Due to space limitations,
we focus only upon those which rely upon ternary simulation
vs. more expensive and precise techniques.

The use of reachable state characterization via ternary
simulation and its applications within general model checking
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was proposed in [1]. They note that this technique can identify
a useful subset of redundant gates, whose simplification greatly
enhances the scalability of subsequent verification. They also
use this analysis for identifying oscillating subcircuits which
may be leveraged for phase abstraction.

The work of [2] proposed another use of this analysis: to
identify transient signals which settle to a reducible (e.g., con-
stant) behavior after several timesteps. The verification process
may then be decomposed, leveraging bounded techniques to
analyze the first several timesteps before the transients settle,
then time-shifting the design and simplifying the transients for
unbounded verification thereafter. This work is similar in spirit
to the primary application domain considered in this paper: to
enable the reduction of designs with intricate initial values.
However, these are complementary techniques and we have
found them both useful in conjunction.

Symbolic Trajectory Evaluation (STE) [3] is a related
simulation technique. In STE, ternary simulation is combined
with symbolic simulation, by encoding ternary value functions
using a pair of BDDs or other dual-rail based expressions.
Users specify assertions of the form A ⇒ C, where A is
the antecedent that specifies the values with which to drive
the simulation, and C is the consequent that specifies the
expected results of the simulation. The advantage of STE
over scalar simulation is that it can cover large input spaces
efficiently and precisely. The complexity of STE is dependent
on the number of symbolic variables in the the antecedent,
not necessarily the size of the design, so it can scale to large
designs such as complex datapaths and memory arrays. While
using related analysis methods, our approaches are distinct in
numerous ways. First, our application domain is approximate
reachability analysis to facilitate model checking, wherein we
do not have an antecedent to dictate where symbols should be
introduced nor a consequent against which we may attempt to
refine lossy X values. Our analysis is intended to efficiently
facilitate subsequent verification algorithms, and without the
heuristics described in this paper there may be blowups in
runtime or memory if too many symbols are introduced, vs.
too coarse of reachability approximation if inadequate symbols
are introduced.

Our form of symbolic simulation uses the same value
domain as quasi-symbolic simulation [4]. In quasi-symbolic
simulation, value functions are restricted to the set
{0, 1, X, XA, ¬XA, XB , ¬XB , . . .}, where {XA, XB , . . .} are
symbolic variables corresponding to netlist inputs. Instead of
supporting arbitrary symbolic functions, quasi-symbolic sim-
ulation employs case-splitting to eliminate symbolic variables
and remove conservatism (i.e., propagation of X to a checked
output). In contrast, our technique does not seek a complete
symbolic simulation of the netlist, and does not employ any
case-splitting. Rather, we introduce symbolic variables selec-
tively to enhance approximate reachability analysis. Also, our
technique may introduce symbolic variables at gates internal to
the netlist in addition to the netlist inputs, which often tightens
the approximation.

Alg. 1 . Approximate reachability with ternary simulation
1: function approxReachability(design)
2: for all (primary inputs I in design) do I = X
3: for all (registers R in design) do R = X
4: ternarySimulate(design)
5: state = vector of register initial state valuations
6: seen = { state }
7: for time = 0; ; ++time do
8: Assign registers their corresponding values in state
9: ternarySimulate(design)

10: state = vector of register next state valuations
11: if (state ⊆ seen) then seen over-approximates the reachable states
12: seen = seen

⋃ { state }
13: end for
14: end function

III. PRELIMINARIES

We consider gate-level sequential logic designs, and for
convenience we assume the netlist is expressed as an And-
Inverter Graph (AIG). That is, every gate in the design is either
a constant, an AND gate, inverter, or primary input. We also
consider registers which hold the state of the design. Registers
have an associated next state function that defines their value
in the next time step.

In our model, registers also have an explicit initial value
function. For registers with a constant initial value, this
function maps to the corresponding constant gate. For more
complex initial values, this function maps to a a combinational
subcircuit which is used to encode a set of initial states. Such
complex initial values arise in many contexts. For example,
they may be necessary in SEC applications to represent an
arbitrary power-on state. Even for designs with simpler initial
values, a more complex initial state may arise through a
verification-enhancing transformation such as retiming [5] or
temporal decomposition [2]. While the commonly used netlist
format AIGER assumes that every initial value is constant-
0 [6], more complex initial values are supported through
synthesizing a multiplexor at the output of every latch which
may drive the desired initial value at time 0.

Ternary simulation is a way to approximate netlist behavior.
Inputs are assigned values in {0, 1, X}, and simple rules
govern how these values propagate through the logic. We use
ternary simulation on AIGs, and in this context and(A,B) is
0 if either A or B are 0. and(A,B) is X if either A or B are
X . Otherwise, when A and B are both 1, and(A,B) is 1. We
define inversion in the normal way, though not(X) = X .

Ternary simulation can be employed to perform approximate
reachability analysis, as shown in Algorithm 1. Primary inputs
and registers are initially assigned X values, and ternary
simulation is used to derive the initial state values. A set of
seen states is maintained, initially equal to just this ternary
initial state. The algorithm then iterates, (1) assigning the
current state values to registers while retaining the X values
on primary inputs, (2) using ternary simulation to derive the
next state values, and (3) using the set of seen states to detect
convergence.

Convergence is detected through checking if the next state
cube is contained in the set of seen states. There are several
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Fig. 1. Ternary simulation example for a design with six registers

ways this could be implemented. For example, BDDs [7] can
be used to represent the set of seen state cubes, and the
containment check can be implemented using BDD operations.
In practice, the performance of such approach is prohibitive.
Instead, we simply let the seen states be a list of ternary
states, and instead of state ⊆ seen we test if there exists
an s in the seen list such that state = s. Such a check
can be implemented efficiently using a hash table, and this
approximation to containment usually does not affect the
convergence of Algorithm 1.

An example of reachability analysis with ternary simulation
is shown in Figure 1. Five iterations are performed before it
is determined that the time 4 state is equal to the time 2 state.
This results in the approximate reachable state graph shown
in the bottom half of the figure.

Ternary simulation-based reachability analysis has many
applications. We implement this in a library which is used
to characterize the netlist in various ways:

Oscillators: In Figure 1, register (1) is an oscillator, meaning
that it periodically oscillates between 0 and 1 valuations.
Designs that have oscillators may be simplified using
phase abstraction [1], enabling significant verification
benefits such as yielding a smaller netlist, enabling greater
reduction potential through other transformations, and
reducing diameter.

Transients: In Figure 1, register (2) is transient, meaning that
after the initial time steps its value settles and remains
constant forever after. Verification of designs that have
transients can be simplified [2] through time-shifting their
behavior, enabling reduction of the transient signals.

Redundancies: Gates that act as constants, or pairs of gates
that are equivalent/antivalent in every reachable state,
may be directly merged. In Figure 1, register (3) is con-
stant, and in our implementation we replace this register
with a constant-zero gate. Note that such a reduction
may generally enable other reductions, such as constant
propagation and cone-of-influence reduction.

IV. SYMBOLIC SIMULATION

In this paper we strengthen reachability approximation by
considering symbolic simulation as well as ternary simulation,
similar to quasi-symbolic simulation [4]. In this section we
define our notion of symbols and how they can be handled in
simulation.

Symbols, written in the form XA for some subscript A,
represent concrete values that are not being precisely modeled.
In contrast, the ternary X represents a completely unknown
symbol. If two signals evaluate to X we conservatively con-
clude that the signals may not be equal, but if the signals both
evaluate to XA they are treated as equivalent.

We can expand ternary simulation to include a set of
symbols {XA, XB , . . .} by letting signals take values in
{0, 1, X, XA, ¬XA, XB , ¬XB , . . .}. We retain the traditional
ternary simulation evaluation from Section III for conjunction,
with rules listed in order of precedence:
0 Identity: If a ≡ 0 then a · b = 0. Likewise for b ≡ 0.
1 Identity: If a ≡ 1 then a · b = b. Likewise for b ≡ 1.
X Identity: If a ≡ X then a · b = X . Likewise for b ≡ X .

If none of the above rules apply then both signals are
symbolic: a = XA, b = XB . We apply the following symbolic
rules:
Idempotence: If XA ≡ XB then XA · XB = XA.

If XA ≡ ¬XB then XA · XB = 0.
Peephole Optimization: If XB ≡ XA · XZ then

XA · XB = XB .
Hashing: If XA · XB is in the hash table, return the

previously-stored result.
New Symbol: Create a symbol XC to represent XA · XB =

XC . Store XC in the hash table.
First idempotence is used to handle cases where a symbolic

value is conjoined with itself. Next, peephole optimization
is used to find cases of nested conjunctions with shared
arguments. A hash table is used to determine if the result
of XA · XB was previously computed. If all other checks fail
then we create a new symbol XC to represent the result of a
conjunction.

V. INCORPORATING SYMBOLS INTO REACHABILITY

In this section we discuss how to incorporate symbols into
approximate reachability analysis. Symbolic simulation offers
greater resolution than ternary simulation, but symbols must be
applied judiciously. If every signal was handled symbolically
then Algorithm 1 would perform exact reachability analysis –
though likely with an explosion in the number of symbols
represented, leading to unacceptable runtime or memory con-
sumption.

We are motivated by designs that have complex initial
values, and we would like to use symbolic simulation to
represent these initial values. In our model, the initial values
are derived from combinational functions over the primary
inputs. For this reason, we assign the inputs symbolic values
and trust that these symbols will propagate to the initial values,
allowing us to represent these initial values more precisely.

One risk is that the number of symbols can explode.
Specifically, new symbols are introduced for each primary
input and with each application of the New Symbol rule of
Section IV. If the current state of the design contains one
new symbol for each step of approximate reachability, then
Algorithm 1 can never converge. We limit the number of
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Alg. 2 . Approximate reachability with ternary and symbolic simulation
1: function approxReachability symbols(design)
2: for all (primary inputs I in design) do I = new symbol
3: for all (registers R in design) do R = X
4: symbolicTernarySimulate(design)
5: state = vector of register initial state valuations
6: seen = { state }
7: for time = 0; ; ++time do
8: Assign registers their corresponding values in state
9: if (time = 0) then

10: symbolicTernarySimulate(design)
11: else
12: for all (primary inputs I in design) do I = X
13: symbolicTernarySimulate noNewSymbols(design)
14: end if
15: state = vector of register next state valuations
16: if (state ⊆ seen) then seen over-approximates the reachable states
17: seen = seen

⋃ { state }
18: end for
19: end function

symbols by only handling primary inputs symbolically at time
0. In addition, we only allow the New Symbol rule to apply in
time 0. At all other times, we consider XA · XB = X .

Algorithm 2 illustrates our framework for approximate
reachability using ternary and symbolic reachability. We create
new symbols to represent primary inputs at time-0, and at all
other times we assign primary inputs the value X . Algorithm 2
utilizes two simulation routines, symbolicTernarySimulate and
symbolicTernarySimulate noNewSymbols. The function sym-
bolicTernarySimulate is used only at time-0 and simulates the
design as described in Section IV. We have found it effective in
our desired application domain to not introduce any additional
symbols after time 0, and this is accomplished by using
the function symbolicTernarySimulate noNewSymbols which
implements the methods of Section IV but treats XA · XB =
X when the value of this conjunction cannot be otherwise
determined through idempotence, peephole optimization, or
hash lookup.

Algorithm 2 introduces new symbols only at time-0. For all
time > 0 no additional symbols are created, but the symbols
created at time-0 can continue to propagate through the logic
at later times.

By restricting the application of symbolic simulation, we de-
rive an approximate reachability algorithm that retains most of
the performance of Algorithm 1 but is significantly more pre-
cise for numerous classes of important verification problems.
This increased precision allows the efficient characterization
of reachability information – constant or equivalence signals,
oscillators, and transients – that otherwise are undetectable.

VI. GENERALIZED SIMPLIFICATION USING SYMBOLS

Algorithm 2 returns an over-approximation to the set of
reachable states. Our implementation uses this information
in several application domains, some of which become more
complex when the reachability information contains symbols.
In particular, the simplification of symbolic constant gates,
oscillating registers, and transients is affected.

Symbolic constant gates are those that always evaluate to
the same symbolic value in every reachable state. Such gates

NSInit

latched(X )

Inputs

Time-0 logic 

represented by X

A

A

Fig. 2. A subcircuit that represents the symbol XA

may be simplified by replacing them with a subcircuit that
represents the given symbol.

When oscillating registers are identified, we use phase
abstraction to simplify the netlist. Phase abstraction will unfold
the transition relation modulo a detected periodicity, and
simplify the netlist by injecting constant values in place of
the corresponding oscillator. However, when the reachability
information contains symbols, the detected oscillators may
assume symbolic periodic behavior. For example, we have ob-
served period-two oscillators with signature 0, XA, 0, XA, . . ..
To simplify such symbolic oscillators, we must replace a
register in the unfolded transition relation with a reference
to a subcircuit that represents the given symbol.

When transients are identified, temporal decomposition is
able to simplify the design by time shifting and replacing each
transient gate with the corresponding redundant value to which
it settled. When using symbols, in cases we find transients
that settle to a symbolic values. Temporal decomposition can
simplify these by replacing each transient with a reference to
a subcircuit that represents the given symbol.

Recall that in Section V we use symbols to represent the
value of inputs, or combinational functions thereof, at time
0. We may obtain a subcircuit that represents such a symbol
by simply latching the time-0 value; we fabricate a register
whose initial value is that corresponding signal, and whose
next-state function holds its current value. This corresponding
logic may be used in the above three application domains to
simplify the netlist, extending our ability to simplify a netlist
using the enhanced reachable-state characterization enabled
through using symbols. This logic depicted in Figure 2 shows
a subcircuit that represents the symbol XA.

Simplifying logic using this procedure is often beneficial
to reduce overall netlist size and verification complexity.
However, this procedure does entail synthesizing registers,
which may be undesirable in cases. Our implementation
uses several heuristics to minimize this impact: (1) when
multiple two subcircuits latched(XA) and latched(XB) are
synthesized, we try to share registers across these two symbol
representations, and (2) we disallow simplifications in cases
where the total number of registers would increase.

VII. ACCELERATING CONVERGENCE WITH SATURATION

Approximate reachability, shown in Algorithm 1, is an
iterative procedure which successively explores sets of states
until it detects a fixedpoint. For deep and complex industrial
designs, the number of iterations required for convergence
may be prohibitive. Although we improve on the precision
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Fig. 3. Approximate reachability runtime on the IBM designs. Left: runtime, Right: gate reductions

Alg. 3 . Approximate reachability with X-saturation
1: function approxReachability symbols saturation(design, cycleLimit)
2: setup approximate reachability as in Algorithm 2, lines 2-6
3: for time = 0; ; ++time do
4: Assign registers their corresponding values in state
5: if (time ≥ cycleLimit) then
6: for all r ∈ {registers not oscillating or constant} do r = X
7: end if
8: do one iteration as in Algorithm 2, lines 9-17
9: end for

10: end function

of approximate reachability by using symbols in Algorithm 2,
this convergence problem remains and in cases worsens due
to the extra precision. In this section we detail our solution
to accelerate convergence when a pre-determined resource
threshold is exceeded.

The approximate reachability loop does not converge if new
register valuations are encountered, and we can accelerate
convergence by limiting the register valuations. Specifically,
it is always conservative to further over-approximate the com-
putation by overwriting register valuations with X . We refer
to this process as X-saturation. If all registers are assigned X
then the reachability approximation process will immediately
converge; however, it would contain no useful information.
The difficulty with effective X-saturation is thus in deter-
mining which subset of registers to X-saturate, and when to
perform this saturation, balancing precision vs. runtime.

As in Section VI, approximate reachability may be used to
detect oscillating registers and constants which may be used
for phase abstraction and redundancy removal. Furthermore,
we have found that such gates are high-fanout registers that
influence much of the netlist behavior. We are motivated to
always preserve constants and oscillating registers by not
X-saturating them because (1) such saturation would limit
results that are useful for phase abstraction and redundancy
removal, and (2) X values injected on such gates would
quickly propagate through the netlist and dramatically weaken
the resulting reachability approximation.

Algorithm 3 is an extension of Algorithm 2 which includes

X-saturation. It takes one additional argument cycleLimit
which is the number of iterations that are allowed before
registers are X-saturated. After cycleLimit is exceeded, non-
oscillating and non-constant registers are forced to have the
value X . This further approximation causes the algorithm to
converge quickly, with the total number of cycles usually being
only slightly larger than cycleLimit in practice.

Algorithm 3 requires constant and oscillating registers to
be detected. In our implementation, we efficiently identify
oscillators using a sliding window technique which is able
to identify oscillators with period ≤ 128. In addition, we also
detect delayed oscillators which may assume variable behavior
during the design’s initialization phase but thereafter act as
oscillators. Both true- and delayed-oscillators influence large
sub-circuits in the netlist, and to preserve a useful reachability
approximation it is vital to not X-saturate these registers.

VIII. EXPERIMENTAL RESULTS

All techniques described in this paper have been imple-
mented in the IBM internal verification tool SixthSense [8].
In these experiments we utilize two benchmark sets:
IBM SEC: We use a suite of 1122 challenging industrial

SEC problems. These designs come primarily from high
performance microprocessors, and the largest such design
has 5.3M AIG AND gates and 330k registers. In our
framework, pairs of registers are often initialized with the
same non-deterministic random value in order to check
equivalence modulo any initialization sequence.

HWMCC’10 SEC: To enable evaluation against publicly
available benchmarks, we evaluated our techniques
against a subset of benchmarks from the Hardware Model
Checking Competition (HWMCC) [9]. However, none of
these benchmarks directly exhibits the complexities often
faced in industrial SEC benchmarks. We thus emulated
the industrial challenges in these problems as follows:
(1) We simulated each design for 1000 cycles starting
from the initial state, and inferred register equivalences
from the simulation data.
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Ternary Simulation Symbolic Ternary Simulation
Benchmark Reg. Equivalences Gates Time Iterations Gates Reduced Time Iterations Gates Reduced
139464p22 sec 1 20768 0.0 6 2 0.0 6 2
139464p23 sec 1 20800 0.0 6 2 0.0 6 2
139464p24 sec 1 20832 0.0 6 2 0.0 6 2
bob1u05cu sec 17 51650 0.0 37 29627 0.0 37 29813
bobmitersynbm sec 1507 47416 0.0 7 0 0.0 8 4385
bobsmmem sec 1068 42351 0.0 7 0 0.0 12 2884
mentorbm1and sec 28 46286 0.1 37 4279 0.1 37 7190
mentorbm1p02 sec 19 51450 0.0 37 8521 0.0 37 10662
mentorbm1p03 sec 19 51447 0.1 37 8525 0.0 37 10664
mentorbm1p04 sec 21 51444 0.1 37 8442 0.1 37 10599
mentorbm1p05 sec 21 51351 0.1 37 8060 0.1 37 10279
mentorbm1p07 sec 28 46478 0.1 37 4921 0.0 37 7724
mentorbm1p08 sec 19 51435 0.1 37 8511 0.1 37 10658
mentorbm1p09 sec 19 51450 0.1 37 8525 0.1 37 10666
mentorbm1p10 sec 19 51447 0.0 37 8525 0.0 37 10664
mentorbm1p12 sec 19 51429 0.1 37 8462 0.1 37 10601
pj2006 sec 1 37411 0.0 6 1826 0.0 6 1826
pj2013 sec 1 37518 0.0 7 2134 0.1 7 2134
pj2015 sec 1 41424 0.0 7 2076 0.0 7 2076
pj2017 sec 1 41580 0.0 7 1315 0.0 7 1315
Average Performance 1.00 1.18

Fig. 4. Detailed comparison of approximate reachability-based design simplifications on the HWMCC’10 SEC benchmarks

(2) For each register equivalence class, we constructed a
new primary input to model the non-deterministic initial
value for that class. For all registers in this class, we
replaced the initial value with the new primary input.

We have made the modified HWMCC benchmarks publicly
available [10].

In our experiments we simplify each design by applying
approximate reachability in order to find constant and equiv-
alent signals. This emulates the default flow in SixthSense
where approximate reachability is the first algorithm applied
to a design under verification, due to its speed, scalability, and
capability to significantly simplify the design for subsequent
more-precise analysis. We repeat this flow twice: once using
only ternary simulation, and again using techniques presented
in this paper. All experiments were run on a cluster of 4 GB,
2 GHz POWER5 workstations.

A. IBM SEC Results

Figure 3 examines the performance of reachability analy-
sis with symbolic and ternary simulation on the IBM SEC
benchmarks.

The first plot in Figure 3 shows the runtime of approximate
reachability. Introducing symbolic simulation almost always
slows approximate reachability, though this slowdown is negli-
gible with most runs completing in less than 10 seconds. Given
the large sizes of these industrial benchmarks (up to 5.3M
ANDs), we are satisfied with this minimal runtime overhead.

The second plot in Figure 3 shows reductions enabled using
the corresponding approximate reachability information. We
show the number of gates eliminated during design simplifi-
cation as a percentage to the original number of gates. Most
designs see greater reductions with symbolic simulation. In
addition, many designs were not simplified at all with ternary
simulation but now are simplified with ternary and symbolic
simulation. In some cases, symbolic simulation adds sufficient
resolution to prove the properties outright.

B. HWMCC’10 SEC Results

Figure 4 examines the performance of reachability analysis
with ternary and symbolic simulation on the HWMCC’10 SEC
benchmarks. Recall that these benchmarks were created from
the HWMCC’10 benchmarks by finding suspected equivalent
registers and transforming their corresponding initial states.
Column 2 shows the number of equivalent register pairs that
were found during that process.

In Figure 4 we can see that introducing symbolic simulation
did not affect the runtime of approximate reachability in any
measurable way.

Next examine the number of iterations. This is the number
of time steps processed by approximate reachability before
convergence. We expect this number to increase when symbols
are utilized due to the more precise state representation. How-
ever, using our methods of minimally-introducing symbols,
the additional number of iterations imposed is minimal, and
usually enabling symbolic simulation does not increase the
number of iterations at all.

Figure 4 also shows the number of gates that were reduced
through approximate reachability-based design simplification.
Enabling symbolic simulation allows for more gate reductions,
18% on average. In cases, approximate reachability is unable
to simplify the design without the additional resolution pro-
vided by symbolic simulation.

C. Saturation Results

Figure 5 examines X-saturation. On the combined set of
1200 benchmarks, 21 benchmarks (1.75%) failed to converge
within 512 iterations. All of these benchmarks are IBM
designs (the HWMCC designs converged quickly), and are
labeled ibm1 through ibm21 in the table.

As a baseline, we consider Algorithm 2 which is limited to
1200 seconds and 1M iterations. Eight of our designs hit one
of these limits, and approximate reachability stopped abruptly
with no useful reachability information with which to reduce
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Baseline With Saturation Heuristics
Benchmark Gates Time Iterations Gates Reduced Time Iterations Gates Reduced
ibm1 15853 1.1 4120 1052 0.2 519 900
ibm2 2507 5.9 49153 937 0.1 569 348
ibm3 25805 725.0 1000000 - 0.6 631 1563
ibm4 30058 763.1 1000000 - 0.4 521 2102
ibm5 11686 291.6 1000000 - 0.1 521 281
ibm6 13760 68.5 131101 2787 0.2 516 2438
ibm7 35377 180.8 131299 3148 0.7 519 3056
ibm8 30056 0.5 551 2616 0.5 523 2416
ibm9 916576 42.1 1060 66443 21.8 540 63849
ibm10 11802 55.0 196612 10 0.2 522 10
ibm11 2697713 1200 6320 - 105.6 561 1620533
ibm12 626060 154.6 32920 63693 2.5 532 60402
ibm13 11686 295.9 1000000 - 0.2 521 281
ibm14 1698160 35.0 525 1367988 33.7 521 1366566
ibm15 760354 18.8 525 601602 19.0 521 601598
ibm16 30056 0.5 551 2616 0.5 523 2416
ibm17 385244 3.0 523 219 3.4 523 186
ibm18 395964 10.9 523 7375 10.1 523 7372
ibm19 242756 1200 163470 - 4.0 516 0
ibm20 411849 1200 93004 - 6.7 518 17731
ibm21 20229 1200 490270 - 1.2 544 4456
Average Performance 1.00 1.00 0.33 0.94
Cummulative Performance 1.00 1.00 0.03 1.77

Fig. 5. X-Saturation on the IBM benchmarks

the size of the design. The remaining 13 designs converged
and the resulting reachability approximation was effective at
reducing the design size, though the runtimes were very long.

The final columns in Figure 5 show Algorithm 3 with
cycleLimit set to 512. That is, a subset of the registers are X-
saturated starting at iteration 512. In most cases, this allows
the algorithm to converge with just a few extra iterations. On
the 13 designs that previously converged with a high number
of iterations the runtime is reduced by 67%. X-saturation does
compromise the resolution of the reachability approximation
slightly, though on this subset of designs we preserve 94% of
the reductions, on average.

It is most interesting to examine X-saturation on the 8 de-
signs that previously hit either the 1200 second limit or the 1M
iteration limit. With X-saturation, approximate reachability
converges on all of these designs, and the algorithm is very
fast. In all cases, the reachability approximation is suitable
for design reductions, and our best example is ibm11 where
approximate reachability is able to reduce the design size by
60%. Without X-saturation we cannot realize such reductions.

Cummulatively we are able to reduce the runtime by
97% while increasing the reductions by 77%, considering
the designs that previously had no reductions because of
computational resource limits.

IX. CONCLUSION

In this paper we enhance techniques for approximate reach-
ability analysis using ternary simulation in two ways:

• We use ternary simulation enhanced with symbols to
allow greater precision in modeling registers that have
complex initial values. The more precise reachability
approximation enables considerably greater reduction op-
portunity, especially on industrial SEC models.

• We introduce X-saturation as a way to force approximate
reachability into convergence on complex industrial de-
signs. In cases of slow convergence, this helps to dramati-
cally reduce the runtime. In cases of no convergence, this
helps to provide a useful reachable state approximation
where previously we had none.

We additionally introduce extensions to ternary simulation-
based application domains of redundancy removal, phase ab-
straction, and transient elimination to generalize them accord-
ingly given our symbolic techniques. All of these techniques
are implemented in IBM internal verification tool SixthSense,
and we have found them to be indispensable on large and
complex industrial SEC problems.
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Abstract—Abstraction is central to formal verification. In term-level
abstraction, the design is abstracted using a fragment of first-order
logic with background theories, such as the theory of uninterpreted
functions with equality. The main challenge in using term-level
abstraction is determining what components to abstract and under
what conditions. In this paper, we present an automatic technique to
conditionally abstract register transfer level (RTL) hardware designs
to the term level. Our approach is a layered approach that combines
random simulation and machine learning inside a counter-example
guided abstraction refinement (CEGAR) loop. First, random simula-
tion is used to determine modules that are candidates for abstraction.
Next, machine learning is used on the resulting simulation traces
to generate candidate conditions under which those modules can
be abstracted. Finally, a verifier is invoked. If spurious counter-
examples arise, we refine the abstraction by performing a further
iteration of random simulation and machine learning. We present
an experimental evaluation on processor designs.

I. INTRODUCTION

Designs are usually specified at the register-transfer-level (RTL).
For formal verification, however, RTL can be a rather low level of
abstraction where data are represented as bits and bit vectors, and
operations on data are accomplished by bit-level manipulation.
In verification tasks that involve proving strongly data-dependent
properties, such as equivalence or refinement checking, bit-level
RTL quickly leads to state-space explosion, necessitating addi-
tional abstraction.

Term-level modeling can make formal verification of data-
intensive properties tractable by abstracting away details of data
representations and operations, viewing data as symbolic terms
and operations as uninterpreted functions. Term-level abstraction
has been found to be especially useful in microprocessor design
verification [14], [18], [20], [21]. The precise functionality of
units such as instruction decoders and the ALU are abstracted
away using uninterpreted functions, and decidable fragments of
first-order logic are employed in modeling memories, queues,
counters, and other common constructs. Efficient satisfiability
modulo theories (SMT) solvers [5] are then used as the com-
putational engines for term-level verifiers.

A major obstacle for term-level verification is the need to generate
term-level models from bit-vector-level (word-level) RTL. Two
recent efforts have sought to automate the generation of term-
level models. Andraus and Sakallah [4] were the first to address
the problem, proposing a counterexample-guided abstraction re-
finement (CEGAR) approach. While the CEGAR technique works
in some cases, it can require very many iterations of abstraction-
refinement in other situations. Brady et al. [8] proposed ATLAS,
an approach that combines random simulation with static analysis
to compute interpretation conditions — conditions under which

1This work was conducted while the author was affiliated with the University
of California, Berkeley.

a functional block is replaced with an uninterpreted function. AT-
LAS avoids the need for several abstraction-refinement iterations
by computing conservative interpretation conditions using static
analysis. However, in some cases, these conditions are so large as
to negate the advantages of term-level verification over word-level
methods.

In this paper, we present CAL, a new technique for automatically
generating a term-level verification model from a word-level
description. The main focus of this work is function abstraction.
Similar to ATLAS, CAL conditionally abstracts functional blocks
in the original design with uninterpreted functions. In contrast
with previous work, CAL uses a novel layered approach based
on a combination of random simulation, machine learning, and
counterexample-guided abstraction-refinement. In the first stage,
we exploit the module structure specified by the designer using
random simulation to identify functional blocks corresponding
to module instantiations that are suitable for abstraction with
uninterpreted functions. Replacing functional blocks with unin-
terpreted functions is always sound, that is, the correctness of the
resulting abstract design implies the correctness of the original
design. However, this abstraction loses information and can lead
to spurious counterexamples. In the second stage, we use machine
learning inside a CEGAR loop to rule out such spurious coun-
terexamples. First, a verifier is invoked on the unconditionally
abstracted verification model. If spurious counterexamples arise,
machine learning is used to compute conditions under which
abstraction can be performed without loss of precision; i.e., if the
resulting term-level design is in correct, then so is the original
word-level design. This process is repeated until we arrive with
a term-level model that is valid or a legitimate counterexample is
found. Fig. 1 illustrates the CAL approach.

Modules to 

Abstract 

RTL 
Random  

Simulation 

Generate 

Term-Level 

Model 

Invoke 

Verifier 

Simulation 

Traces 

Learn 

Abstraction 

Conditions 

Abstraction 

Conditions 

Valid? 
Yes 

Done 

Counter 

example 

Spurious? 

No 
Done 

Yes Generate 

Similar  

Traces 

No 

Fig. 1. The CAL approach A CEGAR-based approach, CAL identifies
candidate abstractions with random simulation and uses machine learning
to refine the abstraction if necessary.
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We present experimental evidence that our approach is efficient
and that the resulting term-level models are easier to verify.
Moreover, we show that the abstraction conditions that we learn
are as good or better than the previous best-known conditions.

The rest of this paper is organized as follows. We discuss some
background material and related work in Section II. In Section III,
we present the formal model for our work as well as some relevant
ideas borrowed from our previous work on ATLAS [8]. Our new
approach, CAL, is described in Section IV. Case studies are
discussed in detail in Section V. We conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Background material on term-level abstraction is presented in
Sec. II-A, function abstraction in Sec. II-B, and related work in
Sec. II-C.

A. Term-Level Abstraction

Informally, a (word-level) design is said to be abstracted to the
term level if one or more of the following three abstraction
techniques is employed [8]:

1. Function Abstraction: In function abstraction, bit-vector op-
erators and modules computing bit-vector values are treated
as “black-box,” uninterpreted functions constrained only by
functional consistency. That is, they must evaluate to the same
values when applied to the same arguments. It is possible
for the inputs and outputs of uninterpreted functions to be
bit vectors or to be abstract terms (say, interpreted over Z).
Function abstraction (applied selectively) is the focus of this
paper, and we limit ourselves to uninterpreted functions that
map bit vectors to bit vectors.

2. Data Abstraction: Bit-vector expressions are modeled as ab-
stract terms that are interpreted over a suitable domain (typ-
ically a subset of Z). Data abstraction is effective when it
is possible to reason over the domain of abstract terms far
more efficiently than it is to do so over the original bit-vector
domain, through use of small-domain or bit-width reduction
techniques. Data abstraction is not the focus of this paper.

3. Memory Abstraction: In memory abstraction, memories and
data structures are modeled in a suitable theory of arrays
or memories, such as by the use of special read and write
functions [14] or lambda expressions [12]. We do not address
automatic memory abstraction in this paper.

B. Function Abstraction

The concept of function abstraction is illustrated using a toy ALU
design [8]. Consider the simplified ALU shown in Figure 2(a).
Here a 20-bit instruction is split into a 4-bit opcode and a 16-
bit data field. If the opcode indicates that the instruction is a
jump, the data field indicates a target address for the jump and is
simply passed through the ALU unchanged. Otherwise, the ALU
computes the square of its 16-bit input and generates as output
the resulting 16-bit result.

Using very coarse-grained term-level abstraction, one could ab-
stract the entire ALU module with a single uninterpreted function
(UF), as shown in Figure 2(b). However, we lose the precise
mapping from instr to out.
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Fig. 2. Three versions of an ALU design. Boolean signals are shown as
dashed lines and bit-vector signals as solid black lines [8].

Such a coarse abstraction is quite easy to perform automatically.
However, this abstraction loses information about the behavior of
the ALU on jump instructions and can easily result in spurious
counterexamples. In Section III-B, we will describe a larger
equivalence checking problem within which such an abstraction
is too coarse to be useful.

Suppose that reasoning about the correctness of the larger circuit
containing this ALU design only requires one to precisely model
the difference in how the jump and squaring instructions are
handled. In this case, it would be preferable to use a partially-
interpreted ALU model as depicted in Figure 2(c). In this model,
the control logic distinguishing the handling of jump and non-
jump instructions is precisely modeled, but the datapath is ab-
stracted using the uninterpreted function SQ. However, creating
this fine-grained abstraction by hand is difficult in general and
places a large burden on the designer. It is this burden that we
seek to mitigate using the approach presented in this paper.

C. Related Work

The first automatic term-level abstraction tool was Vapor [4],
which aimed at generating term-level models from Verilog. The
underlying logic for term-level modeling in Vapor is CLU, which
originally formed the basis for the UCLID system [12]. Vapor
uses a counterexample-guided abstraction-refinement (CEGAR)
approach [4]. Vapor has since been subsumed by the Reveal
system [2], [3] which differs mainly in the refinement strategies
in the CEGAR loop. Both Vapor and Reveal start by completely
abstracting a Verilog description to the UCLID language by
modeling all bit-vector signals as abstract terms and all operators
as uninterpreted functions, and then iteratively rule out spuri-
ous counterexamples. While the CEGAR approach has shown
much promise [3], in many cases, however, several abstraction-
refinement iterations are needed to infer fairly straightforward
properties of data, thus imposing a significant overhead [8]. While
the approach presented in this paper is also counterexample-
guided, we require very few refinement iterations in practice.

A more recent approach to automatic abstraction is ATLAS [8].
ATLAS exploits the module structure specified by the designer
and uses random simulation to determine module instantiations
that are candidates for function abstraction. ATLAS uses static
analysis to heuristically compute interpretation conditions that
specify when a functional block must be represented precisely.
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While this works in many cases, for some benchmarks the in-
terpretation conditions can grow extremely large, leading to poor
performance [8]. Our approach, CAL, addresses this limitation by
using a dynamic approach based on machine learning. As is the
case with ATLAS, the CAL approach can be combined with bit-
width reduction techniques (e.g. [7], [19]) to perform combined
function and data abstraction.

To our knowledge, Clarke, Gupta et al. [15], [17] were the first to
use machine learning to compute abstractions for model checking.
Our work is similar in spirit to theirs. One difference is that we
generate abstract, term-level models for SMT-based verification,
whereas their work focuses on bit-level model checking and lo-
calization abstraction. Consequently, the learned concept is differ-
ent: CAL learns Boolean interpretation conditions whereas their
technique learns sets of variables to make visible. Additionally,
our use of machine learning is more direct — e.g., while Clarke
et al. [15] also use decision tree learning, they only indirectly
use the learned decision tree (all variables branched upon in the
tree are made visible), whereas we use the Boolean function
corresponding to the entire tree as the learned interpretation
condition.

III. PRELIMINARIES

We adopt the formal model used in [8]. In Sec. III-A, we present
only the elements of this formal model necessary for the rest of
the paper. An illustrative example is given in Sec. III-B.

A. Basic Definitions

We model a design at the word level as a word-level netlist N =
(I, O, S, C, Init , A) where

• I is a finite set of input signals;
• O is a finite set of output signals;
• S is a finite set of intermediate sequential (state-holding)

signals;
• C is a finite set of intermediate combinational (stateless)

signals;
• Init is a set of initial states, i.e., initial valuations to elements

of S, and
• A is a finite set of assignments to outputs and to sequential

and combinational intermediate signals. An assignment is an
expression that defines how a signal is computed and updated.
We elaborate below on the form of assignments.

Input and output signals are assumed combinational, without loss
of generality. A combinational assignment is a rule of the form
v ← e, where v is a signal in the disjoint union C ]O and e is an
expression that is a function of C ] S ] I. Combinational loops
are disallowed. Similarly, a sequential assignment is a rule of the
form v := u, where u is a signal. Signals v, u and expressions
e are of three types: bit-vector, Boolean, or memory. For brevity,
we omit the detailed syntax (see [8] for this), and present only
the notation used in the paper. In word-level netlists, a memory
is modeled as a flat array of bit-vector signals.

A word-level design D is a tuple 〈I,O, {Ni | i = 1, . . . , N}〉,
where I and O denotes the set of input and output signals of
the design, and the design is partitioned into a collection of N

word-level netlists. A well-formed design is one where (i) every
output of a netlist is either an output of the design or an input to
some netlist (including itself) – i.e., there are no dangling outputs;
and (ii) every input of a netlist is either an input to the design or
exactly one output of some netlist. We refer to the netlists Ni as
functional blocks, or fblocks.

A term-level netlist is a generalization of a word-level netlist
where bit-vector and Boolean expressions can include ap-
plications of uninterpreted functions and predicates, written
UF (v1, . . . , vk) and UP (v1, . . . , vk) for k ≥ 0, and memory
operations can be modeled in a suitable theory of arrays/memories
using the usual read and write functions or lambda expres-
sions [12].

A term-level netlist that has at least one expression of the form
UF (v1, . . . , vk) or UP (v1, . . . , vk) is referred to as a strict term-
level netlist. A term-level design T is a tuple (I,O, {Ni | i =
1, . . . , N}), where each fblock Ni is a term-level netlist.

Given a word-level design D = (I,O, {Ni | i = 1, . . . , N}), we
say that T is a term-level abstraction of D if T is obtained from
D by replacing some word-level fblocks Ni by strict term-level
fblocks N ′

i .

The verification problems of interest in this paper are equivalence
checking and refinement checking.

Given two word-level designs D1 and D2, the word-level equiv-
alence (word-level refinement) checking problem is to verify that
D1 is sequentially equivalent to (refines) D2.

The definition is similarly extended to a pair of term-level designs
T1 and T2. We also consider bounded equivalence checking
problems, where the designs are to be proved equivalent for a
bounded number of cycles from the initial state.

The term-level abstraction problem we consider in this paper is
as follows.

Given a pair of word-level designs D1 and D2, abstract
them to term-level designs T1 and T2, such that D1 is
equivalent to (refines) D2 if and only if T1 is equivalent
to (refines) T2.

We follow the approach taken by ATLAS and generate the term-
level abstraction by computing an interpretation condition — a
condition under which we will retain the precise fblock in the
term-level model (i.e, we replace the fblock by an uninterpreted
function under the negation of the interpretation condition). The
idea of conditional function abstraction is illustrated in Figure 3.
The original word-level circuit is shown in Fig. 3(a) and the
conditionally abstracted version with interpretation condition c
is shown in Fig. 3(b).

In Section IV, we present our CAL approach to automatically
generate term-level abstract models. In Section V, we show that
using CAL can scale up verification by orders of magnitude.

B. Illustrative Example

Figure 4 depicts the equivalence checking problem that we will
use as a running example [8]. Two variants of the same circuit,
denoted Design A and Design B, are to be checked for output
equivalence.
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Fig. 3. Conditional abstraction (a) Original word-level fblock f . (b)
Conditionally abstracted version of f with interpretation condition c

Consider Design A. This design models a fragment of a processor
datapath. PC models the program counter register, which is
an index into the instruction memory denoted as IMem. The
instruction is a 20-bit word denoted instr and is an input to the
ALU. The ALU is similar to the ALU design shown in Figure 2(a)
– both ALUs pass the target address through unaltered when the
instruction is a jump. The top four bits of instr are the operation
code. If the instruction is a jump instruction (instr[19 : 16]
equals JMP), then the PC is set equal to the ALU output out;
otherwise, it is incremented by 4.

Design B is virtually identical to Design A, except in how the
PC is updated. For this version, if instr[19 : 16] equals JMP,
the PC is directly set to be the jump address instr[15 : 0].
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Fig. 4. Equivalence checking of two versions of a portion of a processor
design. Boolean signals are shown as dashed lines and bit-vector signals
as solid lines [8].

Note that we model the instruction memory as a read-only
memory using an uninterpreted function IMem. The same un-
interpreted function is used for both Design A and Design B. We
also assume that Designs A and B start out with identical values
in their PC registers.

The two designs are equivalent iff their outputs are equal at every
cycle, meaning that the Boolean assertion out ok ∧ pc ok is
always true.

It is easy to see that this is the case, because from Fig-
ure 2(a) we know that A.out always equals A.instr[15 : 0] when
A.instr[19 : 16] equals JMP. The question is whether we can
infer this without the full word-level representation of the ALU.

Consider what happens if we use the abstraction of Figure 2(b).

In this case, we lose the relationship between A.out and
A.instr[19 : 16]. Thus, the verifier comes back to us with a
spurious counterexample, where in cycle 1 a jump instruction
is read, with the jump target in Design A different from that in
Design B, and hence A.PC differs from B.PC in cycle 2.

However, if we instead used the partial term-level abstraction
of Figure 2(c) then we can see that the proof goes through,
because the ALU is precisely modeled under the condition that
A.instr[19 : 16] equals JMP, which is all that is necessary.

The challenge is to be able to generate this partial term-level
abstraction automatically. We describe our approach to solving
this problem below.

IV. THE CAL APPROACH

The main contribution of this paper is presented in this section.
The goal of this step is to compute conditions under which it is
precise to abstract using a machine-learning-based CEGAR loop.

A. Identifying Candidate fblocks

The first step in CAL is the same as in ATLAS: to use syntactic
matching and random simulation to identify a set of fblocks
that are candidates for replacement with uninterpreted functions.
We review this procedure in this section since it is crucial to
understand the rest of the CAL procedure.

The first step in identifying candidates for abstraction is to
identify replicated fblocks. A replicated fblock is an fblock in
D1 that has an isomorphic counterpart in D2. A formal definition
can be found in [8]. In equivalence and refinement checking
problems, identifying replicated fblocks is typically a matter of
finding instances of the same RTL module present in both designs.

The fblock identification process generates a collection of sets of
fblocks FS = {F1,F2, ...,Fk, }. Each set Fj contains replicated
fblocks that are isomorphic to each other. Fj can be viewed as an
equivalence class of the fblocks it contains. In later steps when
function abstractions are computed, it is important to note that
the same function abstraction is used for each fblock in Fj .
The next step in the abstraction candidate identification process
is to determine which equivalence classes F ∈ FS will be
considered for abstraction. This is accomplished using random
simulation.

Fix an equivalence class F . Let its cardinality be l. Let fi ∈
F be an arbitrary fblock with m bit-vector output signals
〈vi1, . . . , vim〉, and n input signals 〈ui1, . . . , uin〉. Then, we term
the tuple of corresponding output signals χj = (v1j , v2j , . . . , vlj),
for each j = 1, 2, . . . ,m, as a tuple of isomorphic output signals.

Given a tuple of isomorphic output signals χj =
(v1j , v2j , . . . , vlj), we create a random function RFχj unique
to χj that has n inputs (corresponding to input signals
〈ui1, . . . , uin〉, for fblock fi).

For each fblock fi ∈ F , i = 1, 2, . . . , l, we replace the
assignment to the output signal vij with the random assignment
vij ← RFχj (ui1, . . . , uin). This substitution is performed for all
output signals j = 1, 2, . . . ,m. The resulting designs D1 and D2

are then verified through simulation. Note that all other fblocks
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not in F are interpreted precisely. This process is repeated for F
using T different random functions RFχj

.

If the fraction of failing verification runs is greater than a
threshold τ , then we drop the equivalence class F from further
consideration. Otherwise, we retain F for further analysis, as
described in the following section. It is important to note that
we have not yet decided to replace fblocks in F with unin-
terpreted functions – this will be determined later using the
counterexample-guided loop. We denote the set of equivalence
classes that are to be considered for abstraction as FSA.

B. Top-Level CAL Procedure

The top-level CAL procedure, VERIFYABS, is shown in Al-
gorithm 1. VERIFYABS takes two arguments, the design D
being verified (which includes both designs – e.g., it is the miter
for equivalence checking) and the set of equivalence classes
being abstracted FSA. Initially, the interpretation conditions
ci ∈ IC are set to false meaning that we start by unconditionally
abstracting the fblocks in D. The procedure CONDABS creates
the abstracted term-level design T from the word-level design D,
the set of equivalence classes to be abstracted FSA, and the set of
interpretation conditions IC. Next, we invoke a term-level verifier
on T . If VERIFY (T ) returns “Valid”, we report that result and
terminate. If a counterexample arises, we evaluate the counterex-
ample on the word-level design. If the counterexample is non-
spurious, we report the counterexample and terminate, otherwise
we store the counterexample in CE and invoke the abstraction
condition learning procedure, LEARNABSCONDS (D,FSA, CE).
We say that VERIFYABS is sound if it reports “Valid” only if D
is correct. It is complete if it reports a true counterexample when
D is incorrect. We have the following guarantee for the procedure
VERIFYABS:

Theorem 1: If VERIFYABS terminates, it is sound and complete.

Proof: Any term-level abstraction is a sound abstraction of
the original design, since any partially-interpreted function (for
any interpretation condition) is a sound abstraction of the fblock
it replaces. Thus VERIFYABS is sound. Moreover, VERIFYABS
terminates with a counterexample only if it deems the counterex-
ample to be non-spurious, by simulating it on the concrete design
D. Therefore VERIFYABS is complete.

In order to guarantee termination of VERIFYABS, we must impose
certain constraints on the learning algorithm LEARNABSCONDS.
This is formalized in the theorem below.

Theorem 2: Suppose that the learning algorithm LEARNAB-
SCONDS satisfies the following properties:

(i) If ci denotes the interpretation condition for an fblock
learned in iteration i of the VERIFYABS loop, then ci =⇒
ci+1 and ci 6= ci+1;

(ii) The trivial interpretation condition true belongs to the
hypothesis space of LEARNABSCONDS, and

(iii) The hypothesis space of LEARNABSCONDS is finite.

Then, VERIFYABS will terminate and return either Valid or a
non-spurious counterexample.

Proof: Consider an arbitrary fblock that is a candidate for

function abstraction. Let the sequence of interpretation conditions
generated in successive iterations of the VERIFYABS loop be
c0 = false, c1, c2, . . .. By condition (i), c0 =⇒ c1 =⇒
c2 =⇒ . . . where ci 6= ci+1. Since no two elements of the
sequence are equal, and the hypothesis space is finite, no element
of the sequence can repeat. Thus, the sequence (for any fblock)
forms a finite chain of implications. Moreover, since true belongs
to the hypothesis space, in the extreme case, VERIFYABS can
generate in its final iteration the term-level design T identical to
the original design D, which will yield termination with either
Valid or a non-spurious counterexample.

In practice, the conditions (i)-(iii) stated above can be imple-
mented on top of any learning procedure. The most straightfor-
ward way is to set an upper bound on the number of iterations that
LEARNABSCONDS can be invoked, after which the interpretation
condition is set to true. Another option is to set ci+1 to ci∨di+1

where di+1 is the condition learned in the i + 1th iteration. Yet
another option is to keep a log of the interpretation conditions
generated, and if an interpretation condition is generated for a
second time, the abstraction procedure is terminated by setting
the interpretation condition to true. Many other heuristics are
possible; we leave an exploration of these to future work.

Algorithm 1 Procedure VERIFYABS (D,FSA): Top-level CAL
verification procedure.

1: // Input: Combined word-level design (miter)
D := 〈I,O, {Ni | i = 1, . . . , N}〉

2: // Input: Equivalence classes of fblocks
FSA := {Fj | j = 1, . . . , k}

3: // Output: Verification result
Result ∈ {Valid,CounterExample}

4: Set ci = false for all ci ∈ IC.
5: while true do
6: T = CONDABS (D,FSA, IC)
7: Result = VERIFY (T )
8: if Result = Valid then
9: Return Valid.

10: else
11: Store counterexample in CE .
12: if CE is spurious then
13: IC ←LEARNABSCONDS (D,FSA, CE)
14: else
15: Return CounterExample.
16: end if
17: end if
18: end while

Procedure CONDABS (D,FSA, IC) is responsible for creating
a term-level design T from the original word-level design D,
the set of equivalence classes to be abstracted FSA, and the set
of interpretation conditions IC. CONDABS operates by iterating
through the equivalence classes in FSA. A fresh uninterpreted
function symbol UFj is created for each tuple of isomorphic
output signals χj associated with equivalence class Fi ∈ FSA.
Each output signal vij ∈ χj is conditionally abstracted with UFj
as illustrated in Fig. 3. More formally, if cvij ∈ IC denotes the
interpretation condition associated with vij , then we replace the
assignment vij ← e in fblock fi with the assignment vij ←
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ITE(cvij , e,UFj(i1, ..., ik)), where ITE denotes the if-then-else
operator. See [8] for a more detailed description.

C. Learning Conditional Abstractions

Spurious counterexamples arise due to imprecision introduced
during abstraction. More specifically, when a spurious counterex-
ample arises, it means that at least one fblock fi ∈ F (where
F ∈ FSA) is being abstracted when it needs to be modeled
precisely. In the context of our abstraction procedure VERIFYABS,
if VERIFY (T ) returns a spurious counterexample CE , then we
must invoke the procedure LEARNABSCONDS (D,FSA, CE).
The LEARNABSCONDS procedure invokes a decision tree learn-
ing algorithm on traces generated by replacing fblocks fi ∈ F
by a tuple of random functions RFχj . Traces are classified as
being “bad” or “good” depending on whether the replacement
with a random function results in a property violation or not. The
learning algorithm generates a classifier in the form of a decision
tree to separate the good traces from the bad ones. The classifier
is essentially a Boolean function over signals in the original word-
level design. More information about decision tree learning can
be found in Mitchell’s textbook [22].

There are three main steps in the LEARNABSCONDS proce-
dure:

1. Generate good and bad traces for the learning procedure;
2. Determine meaningful features that will help decision tree

learning procedures compute high quality decision trees, and
3. Invoke a decision tree learning algorithm with the above

features and traces.

The data input to the decision tree software is a set of tuples
where one of the tuple elements is the target attribute and the
remaining elements are features. In our context, a target attribute
α is either Good or Bad. Our goal is to select features such that
we can classify the set of all tuples where α = Bad based on the
rules provided by the decision tree learner. Since we use an off-
the-shelf decision tree learning tool, we omit a description of how
this works. However, it is very important to provide the decision
tree learning with quality input data and features, otherwise, the
rules generated will not be of use. The data generation procedure
is described in Sec. IV-D and feature selection is described in
Sec. IV-E.

D. Generating Data

In order to produce a meaningful decision tree, we must provide
the decision tree learner with both good and bad traces. We use
random simulation to generate witnesses and counterexamples and
describe these procedures in detail below.

1) Generating Witnesses: Good traces, or witnesses, are gener-
ated using a modified version of the random simulation procedure
described in Sec. IV-A. Instead of simulating the abstract design
when only a single fblock has been replaced with a random
function, we replace all fblocks with their respective random
functions at the same time and perform verification via simulation.
Replacing all the fblocks to be abstracted with the respective
random function ensures diversity in the set of traces fed to the
decision tree learner.

After replacing each fblock to be abstracted with the correspond-
ing random functions, we perform simulation by verification,
repeating the process for N different random functions for each
fblock. N is chosen heuristically similar to T in Sec. IV-A (we
discuss typical values for N in Sec. V-D). The initial state of
design D is set randomly before each run of simulation. This
usually results in simulation runs that pass, and hence in good
traces — recall that at this stage we only consider fblocks that
produce failing runs in a small fraction of simulation runs. Now,
instead of only logging the result of the simulation, we log the
value of every signal in the design for every cycle of each passing
simulation. It is up to the feature selection step, described in
Sec. IV-E, to decide what signals are important.

2) Generating Similar Counterexamples: Whenever LEARNAB-
SCONDS is called, there is a spurious counterexample stored
in CE . We generate many counterexamples similar to CE using
random simulation in a manner similar to that used while identi-
fying abstraction candidates. If more than one equivalence class
of fblocks has been abstracted, the counterexample CE can be
the result of abstracting any individual equivalence class, or a
combination of them.

Consider the situation where CE is the result of only abstracting a
single equivalence class. In this situation, we replace each fblock
in that class with a random function in the word-level design, just
as we did when identifying abstraction candidates in Sec. IV-A.
Next, verification via simulation is performed, and this process
is iterated for N different random functions, for heuristically-
chosen N . A main point of difference between generating similar
counterexamples and generating witnesses is that in generating
similar counterexamples, we set the initial state of design D to
be consistent with the initial state in CE , whereas we randomly set
the initial state of design D when generating witnesses. We log
the values of every signal in the design for each failing simulation
run. It is possible that none of the simulation runs fail, because
the counterexample could be the result of abstracting a different
equivalence class. We repeat this process for each fblock that is
being abstracted.

If replacing individual equivalence classes with random functions
does not result in any failing simulation run, we must take into
account combinations of equivalence classes. In this case, we
try pairs of equivalence classes, then triples, and so on. Clearly,
there is a potential exponential blowup here; however, this has
not occurred in our experiments. In fact, considering a single
equivalence class at a time sufficed for all examples considered
in this work. We leave the exploration of heuristics that determine
how to choose interpretation conditions for combinations of
fblocks for future work.

As noted above, the witness generation and the counterexample
generation procedures can both generate good and bad traces.
Denote the set of all bad traces by Bad and the good traces as
Good . We label each trace in Bad with the Bad attribute and
each trace in Good with the Good attribute.

E. Choosing Features

The quality of the decision tree generated is highly dependent
on the features used to generate the decision tree. We use two
heuristics to identify features:
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1. Include input signals to the fblock being abstracted.
2. Include signals encoding the “unit-of-work” being processed

by the design, such as the instruction being executed.

Input signals. Suppose we wish to determine when fblock f must
be interpreted. It is very likely that whether or not f must be
interpreted is dependent on the inputs to f . So, if f has input
signals (i1, i2, ..., in) it is almost always the case that we would
include the input arguments as features to the decision tree learner.

Unit-of-work signals. There are cases when the input arguments
alone are not enough to generate a quality decision tree. In these
cases, human insight can be provided by defining the unit-of-work
being performed by the design. For example, in a microprocessor
design, a unit-of-work is an instruction. Similarly, in a network-
on-a-chip (NoC), the unit-of-work is a packet, where the relevant
signals could include the source address, destination address,
or possibly the type of packet being sent across the network.
Once a unit-of-work signal is identified at one part of the design,
automatic dataflow analysis can identify all signals derived from
it and label these also as features for the learning algorithm. For
instance, in the case of a pipelined processor, the registers storing
instructions in each stage of the pipeline are relevant signals to
treat as features.

In rare cases, the above heuristics are not enough to generate qual-
ity decision trees; we discuss these scenarios and give additional
features in Sec. V.

V. CASE STUDIES

We performed two case studies to evaluate CAL. Both of these
case studies have also been verified using ATLAS. Additionally,
each case study requires a non-trivial interpretation condition (i.e.,
an interpretation condition different from false). The first case
study involves verifying the example shown in Fig. 4. In the
second case study, we verify, via correspondence checking, two
versions of the Y86 microprocessor.

All experiments were run on a MacBook Pro with a 2.4 GHz Intel
Core 2 Duo processor with 4GB RAM. The term-level verification
engine used for the experiments was the UCLID verification
system [1], [9] with Minisat2 [16] and Boolector [11] as the
SAT and SMT backends, respectively. Random simulation was
performed using Icarus Verilog [25]. The decision tree learner
we used in the experiments is C5.0 [23]. We compared our term-
level abstraction-based approach with the state-of-the-art bit-level
equivalence checker, ABC [6], [10]. The benchmarks used in
these experiments as well as the results can be found at [24].

A. The Illustrative Example

In this experiment, we perform equivalence checking between
Design A and B shown in Fig. 4. First, we initialize the designs
to the same initial state and inject an arbitrary instruction. Then
we check whether the designs are in the same state. The precise
property that we wish to prove is that the ALU and PC outputs
are the same for design A and B. Let outA and outB denote the
ALU outputs and pcA and pcB denote the PC outputs for designs
A and B, respectively. The property we prove is: outA = outB ∧
pcA = pcB. Aside from the top-level modules, the design consists
of only two modules, the instruction memory (IMEM) and the

ALU. We do not consider the instruction memory for abstraction
because we do not address automatic memory abstraction. The
ALU passes the random simulation stage, so it is an abstraction
candidate.

The features we use in this case are arguments to the ALU; the
instruction and the data arguments. The interpretation condition
learned from the trace data is op = JMP where op is the top 4
bits of the instruction. As shown in Table I, the runtime for CAL
is comparable with that of ABC.

Runtime (sec)
Interpretation UCLID

Condition ABC SAT SMT
true 0.02 28.51 27.01

op = JMP — 0.31 0.01

TABLE I
Performance comparison Runtime comparison between ABC and

UCLID for the processor fragment shown in 4. The runtime associated
with the model abstracted with CAL is shown in bold.

B. The Y86 Processor

In this experiment, we verify two versions of the well-known Y86
processor model introduced by Bryant and O’Hallaron [13]. The
Y86 processor is a pipelined CISC microprocessor styled after the
Intel IA32 instruction set. While the Y86 is relatively small for a
processor, it contains several realistic features, such as a dual read,
dual write register file, separate data and instruction memories,
branch prediction, hazard resolution, and an ALU that supports
bit-vector arithmetic and logical instructions. Note that we have
extended the ALU to include multiplication in order to create a
harder verification problem. Of the several variants of the Y86
processor we focus on two that have different versions of branch
prediction logic: NT and BTFNT. These versions are the only
versions where the ALU cannot be fully abstracted (i.e., partial
abstraction is required). In NT branches are predicted as not taken,
whereas in BTFNT branches backwards in the address space are
predicted as taken, while branches forward in the address space
are predicted as not taken. NT and BTFNT were the designs that
the ATLAS approach had the most difficulty abstracting [8]. The
property we wish to prove on the Y86 variants is Burch-Dill style
correspondence-checking [14].

Both NT and BTFNT versions have the same module hierarchy
and differ only in the logic pertaining to branch prediction. The
following modules are candidates for abstraction: register file
(RF), condition code (CC), branch function (BCH), arithmetic-
logic unit (ALU), instruction memory (IMEM), and data memory
(DMEM). The RF module is ruled out as a candidate for abstrac-
tion during the random simulation stage due to a large number
of failures during verification via simulation. This occurs because
an uninterpreted function is unable to accurately model a mutable
memory. We do not consider IMEM and DMEM for automatic
abstraction because they are memories and we do not address
automatic memory abstraction in this work. Instead, we man-
ually model IMEM and DMEM with completely uninterpreted
functions. The CC and BCH modules are also removed from
consideration due to the relatively simple logic contained within
them. Abstracting these modules is unlikely to yield substantial
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verification gains and may even hurt performance due to the
overhead associated with uninterpreted functions. This leaves us
with the ALU module.

1) Decision tree feature selection: In the case of both BTFNT
and NT using only the arguments of the abstracted ALU is not
sufficient to generate a useful decision tree. The ALU takes three
arguments, the op-code op and two data arguments a and b. Closer
inspection of the data provided to the decision tree learner reveals
a problem. In almost every cycle of both good and bad traces,
the ALU op is equal to ALUADD and the b argument is equal to
0.

In this situation, the arguments to the ALU are not good features
by themselves (i.e., there is not enough diversity within the
traces to learn a useful classifier). Conceptually, the unit-of-
work that we are performing in a pipelined processor is a
sequence of instructions, specifically the instructions that are
currently in the pipeline. The most relevant instruction is the
instruction currently in the execute stage (i.e., the stage containing
the ALU). When InstrE , op, a, and b are used as features,
the resulting decision tree yields the interpretation condition:
cE,b := InstrE = JXX ∧ b = 0.

The main reason we need a partial abstraction is so that the target
address of a jump instruction can pass through the ALU unaltered.
Thus, this is the best interpretation condition we can hope for. In
fact, in previous attempts to manually abstract the ALU in the
BTFNT version, we used: cHand := op = ALUADD ∧ b = 0.

When we compare the runtimes for verification of the Y86-
BTFNT processor, we see that verifying BTFNT with the inter-
pretation condition cE,b outperforms the unabstracted version and
the previously best known abstraction condition (cHand). Table II
compares the UCLID runtimes for the Y86 BTFNT model with
the different versions of the abstracted ALU.

Runtime (sec)
Interpretation UCLID

Condition ABC SAT SMT
true > 1200 > 1200 > 1200
cHand — 133.03 105.34
cE,b — 101.10 65.52

TABLE II
Performance comparison Runtime comparison between ABC and UCLID

for Y86-BTFNT for different interpretation conditions. The runtime
associated with the model abstracted with CAL is shown in bold.

2) Abstraction-refinement: The NT version of the Y86 processor
requires an additional level of abstraction refinement. In general,
requiring multiple iterations of abstraction refinement is not
interesting by itself. However, it is interesting to see how the
interpretation conditions change using this machine learning-
based approach.

Attempting unconditional abstraction of the ALU in the NT
version results in a spurious counterexample. The interpreta-
tion condition learned from the traces generated in this step
is c := a = 0. It is interesting that the same interpretation
condition is generated regardless of whether we consider all of the
instructions as features, or only the instruction in the same stage
as the ALU. Not surprisingly, the second attempt at verification
using the interpretation condition c results in another spurious

counterexample. In this case, the interpretation condition learned
is cE := InstrE = ALUADD, which states that we must interpret
anytime an addition operation is present in the ALU. Similarly
with the first iteration, the interpretation condition learned is the
same regardless of whether we use all of the instructions as
features, or only the instruction in the execute stage. Verification
is successful when cE is used as the interpretation condition.

A performance comparison for the NT variant of the Y86
processor is shown in Table III. Unlike the BTFNT case, the
abstraction condition we learn for the NT model is not quite
as precise as the previously best known interpretation condition,
and the performance isn’t as good. However, the runtimes for
conditional abstraction, including the time spent in abstraction-
refinement, are smaller than that of verifying the original word-
level circuit. That is, the runtime when the interpretation condition
is cE is accounting for two runs of UCLID that produce a
counterexample and an additional run when the property is
proven Valid. Note that the most precise abstraction condition
is the same for both BTFNT and NT. The best performance
on the NT version is obtained when the interpretation condition
cBTFNT := InstrE = JXX ∧ b = 0 is used.

Runtime (sec)
UCLID

Condition ABC SAT SMT
true > 1200 > 1200 > 1200
cHand — 154.95 89.02
cE — 191.34 187.64

cBTFNT — 94.00 52.76

TABLE III
Performance comparison Runtime comparison between ABC and UCLID

for Y86-BTFNT for different interpretation conditions. The runtime
associated with the model abstracted with CAL is shown in bold.

The reason the interpretation condition for BTFNT differs from
that of NT is because the root cause of the counterexamples are
different. The counterexample generated for the BTFNT model
arises because the branch target that would pass through the
ALU unaltered, gets mangled when the ALU is abstracted. The
counterexample generated for the NT model arises because the
abstracted ALU incorrectly squashes a properly predicted branch.

C. Comparison with ATLAS

ATLAS and CAL compute the same interpretation conditions
for the processor fragment described in Sec. V-A. Thus, the only
interesting comparison with regard to the interpretation conditions
is for the Y86 design.

ATLAS is able to verify both BTFNT and NT Y86 versions with
one caveat—the multiplication operator was removed from the
ALU to create a more tractable verification problem. When multi-
plication is present inside the ALU, the ATLAS approach can not
verify BTFNT or NT in under 1200 seconds. In the case where the
multiplication operator is removed, the interpretation conditions
generated by ATLAS simplify to true. In this case, ATLAS
actually takes longer to verify BTFNT, with the abstracted version
taking 1390 seconds and the word-level version taking only
1077 seconds. This behavior highlights the main drawback of
ATLAS. The static analysis procedure blindly takes into account
the structure of the design, giving equal importance to every
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signal. This was the inspiration behind using machine learning
to compute interpretation conditions. Not only is CAL able to
verify the BTFNT and NT Y86 versions when multiplication is
included in the ALU, but it does so with an order of magnitude
speedup over the unabstracted version.

D. Remarks

The runtimes listed in Tables I, II, and III focus only on the
time taken by ABC and UCLID. The remaining runtime taken by
the other components of the CAL procedure is, in comparison,
negligible. First, the runtime of the decision tree learner is less
than 0.1 seconds in every case. Second, the simulation time
is quite small. For instance, simulating 1000 correspondence
checking runs for the Y86 model takes less than 5 seconds.
However, we are unable to verify the original word-level Y86
designs within 1200 seconds, so the CAL runtime is negligible.
Similarly, the runtime of generating an AIG for input to ABC is
less than 1 second.

The number of good and bad traces required to produce a quality
decision tree for the processor fragment example in Sec. V-A is
5 (10 total). For the Y86 examples, the number of good and bad
traces was 50 (100 total). Thus, in every example, it takes only
a fraction of a second to generate enough data for the machine
learning algorithm to be able to produce useful results.

VI. CONCLUSION

In this paper, we present CAL, an automatic abstraction proce-
dure based on a combination of random simulation and machine
learning. We evaluate the effectiveness and efficiency of our
approach on equivalence and refinement checking problems in
the context of pipelined processors. We have shown that we are
able to automatically learn conditional abstractions that lead to
better verification performance. Additionally, we learned abstrac-
tion conditions that were better than the previously best known
abstraction conditions for two variants of the Y86 microprocessor
design.
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Abstract—Last spring, in March 2010, Aaron Bradley published
the first truly new bit-level symbolic model checking algorithm
since Ken McMillan’s interpolation based model checking pro-
cedure introduced in 2003. Our experience with the algorithm
suggests that it is stronger than interpolation on industrial prob-
lems, and that it is an important algorithm to study further. In
this paper, we present a simplified and faster implementation of
Bradley’s procedure, and discuss our successful and unsuccessful
attempts to improve it.

I. INTRODUCTION

Sequential verification is hard, both model checking and equiv-
alence checking. Difficult instances are typically solved using
several simplification steps followed by multiple verification
engines scheduled sequentially or concurrently. Despite all the
available tools, numerous practical instances remain unsolved.
Therefore, research in formal verification is always on the
lookout for methods that can handle difficult cases.

In 2003, a new verification method based on interpolation
[7], was proposed by Ken McMillan to address hard UNSAT
instances. Over time it was perfected and is currently consid-
ered one of the most valuable formal verification methods.

More recently, another novel method was pioneered by
Aaron Bradley [1], [2]. He named his implementation IC3,
but gave no name to the method itself. We choose to call it
property directed reachability (PDR) to connect it to Bradley’s
earlier work on property directed invariant generation.

It came as a surprise that IC3 won the third place in the hard-
ware model checking competition (HWMCC) at CAV 2010.
It was marginally outperformed by two mature integrated
verification systems, both carefully tuned to balance several
different engines. As such, the new method appears to be the
most important contribution to bit-level formal verification in
almost a decade.

Although PDR has been generally known for less than a
year, while interpolation has been around long enough for
numerous improvements and extensions to be proposed, for
example [4], [3], an up-to-date implementation of PDR can
solve more instances from HWMCC than interpolation can.
This is also true for the benchmarks our group has received
from our industrial collaborators. Another remarkable property
of PDR is its capability of finding deep counterexamples.
Although on average BMC does better than PDR, there are
many benchmarks where PDR can find counterexamples that

elude both BMC and BDD reachability. Finally, PDR lends
itself naturally to parallel implementation, as was explained
in Bradley’s original work.

In this paper, we explore PDR and try to understand the
reason for its effectiveness. We propose a number of changes
to the algorithm to improve its performance and to simplify
its implementation. In particular:

– We achieve a significant speedup by using three-valued
simulation to reduce the burden on the SAT-solver.

– We eliminate a tedious and error-prone special-case han-
dling of counterexamples of length 0 or 1.

– We show experimentally that two elements of the original
algorithm give no speedup: (i) variable activity and (ii)
cube generalization beyond non-inductive regions.

– We separate the main algorithm from the handling of
SAT queries through a clean interface. This separation
reduces the overall complexity.

– We refute some potential improvements experimentally.
– We present detailed pseudo-code to fully document our

implementation.

II. PRELIMINARIES

This paper considers the verification of systems modeled
using finite state machines (FSMs). Each state of the FSM is
identified with a boolean assignment to a set of state variables.
The FSM further defines a set of initial states and a set of
property states. The algorithm to be presented verifies that
there exists no sequence of transitions from an initial state to
a non-property state (“bad” state).

In the presentation, a state variable or its negation is referred
to as a literal, a conjunction of literals as a cube, and the
negation of a cube (a disjunction of literals) as a clause. If a
cube contains all the state variables, it is called a minterm. It
is assumed that the FSM is represented symbolically in a way
that can be translated into propositional logic for a SAT-solver.

III. OVERVIEW OF PDR

The PDR algorithm can be understood on several levels. This
section addresses:

(1) How it works.
(2) Why it is complete.
(3) What makes it effective.
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In particular the first two points can be understood in terms
of approximate reachability analysis. For the third point one
must also consider the inductive flavor of the algorithm.

A. Notation
Let I and P be predicates over the FSM’s state variables,
denoting the initial states and the property states respectively.
Also let T denote the transition relation over the current and
next state variables. Given a cube s, a call to the underlying
SAT solver will be expressed as:

SAT?
[
P ∧ ¬s ∧ T ∧ s′]

using primes to denote next states. This query asks “starting
in a state where the property holds, but outside the cube s,
can you get inside the cube s in one transition”. If the answer
is UNSAT, then it has been proved that (P∧ ¬s ∧T) → ¬s′,
and ¬s is said to be inductive relative to P.

In the algorithm, some cubes will be proved unreachable
from the initial states in k steps or less. Such cubes will be
referred to as blocked cubes of frame k.

B. Mechanics
PDR maintains a list of facts which we will call the trace: [R0,
R1, . . . RN ]. The first element R0 is special; it is simply
identified with the initial states. For k > 0, Rk is a set of
clauses that AND-ed together represent an over-approximation
of the states reachable from the initial states in k steps or less.
The trace is maintained in such a way that Ri is contained in
Ri+1. In fact, this relation is syntactic: every clause of Ri+1

is also present in Ri, except for i = 0 (R0 has no clauses).
Together with the trace, the PDR algorithm maintains a set

of proof-obligations. A proof-obligation consists of a frame
number k and a cube s, where s is either a set of bad states
or a set of states that can all reach a bad state in one or more
transitions. The frame number k indicates a position in the
trace where s must be proved unreachable, or else the property
fails.

By manipulating the trace and the set of proof-obligations
according to a scheme detailed below, PDR derives new facts
and adds them to the trace until it either (i) produced an
inductive invariant proving the property, or (ii) added a proof-
obligation at frame 0 with a cube that intersects the initial
states. Such a cube cannot be blocked and entails the existence
of a counterexample.

(1) PROOF-OBLIGATIONS: The core of PDR lies in how
proof-obligations are handled, and how new facts are derived
from them. All reasoning in PDR take place on one transition
relation; there is no unrolling of the FSM as in, e.g., BMC.
Given the proof-obligation (s, k), consider the query:

SAT?
[
Rk−1 ∧ T ∧ s′] (Q1)

If it is UNSAT, then the facts of Rk−1 are strong enough
to block s at frame k, and we can add the clause ¬s to
Rk. However, the syntactic containment relation of the trace
requires us also to add the same clause to all preceding Ri,
i < k. Is it sound to do this? Consider replacing Rk−1 with

Rk−2 in the query. Containment states that Rk−2 is stronger
than Rk−1, so the query remains UNSAT. Likewise for Rk−3

and so on, all the way back to the initial states. The only thing
left to check is whether s intersects the initial states or not. If
s is not blocked by R0, then we cannot strengthen the trace by
¬s. In the algorithm, this query will not be used if s overlaps
with the initial states.

Using this approach, the quality of the learned clause
depends on the size of the cube in the proof-obligation. In
practice, these cubes often have many literals, and the negation
¬s is a weak fact. It turns out to be crucial for the performance
of PDR to try to learn stronger facts, i.e. cubes with fewer
literals. To achieve this, the above learning scheme is improved
in two ways:

Improvement 1 – “Generalize s”. Many modern SAT-solvers
do not simply return UNSAT, but also give a reason for the
unsatisfiability; either through an UNSAT-core or through a
final conflict-clause. Both these mechanisms can be used to
extract precise information about which clauses were actually
used in the proof. Since s is a conjunction inside the query,
it translates into a set of unit clauses. Not all of those clauses
may actually be needed when proving UNSAT. Any literal of
s corresponding to an unused clause can be removed without
affecting the UNSAT status. This provides a virtually free
mechanism of removing literals that just happen not to be
used by the SAT-solver.

A more directed, but also more expensive, approach is to
explicitly try to remove the literals one by one. If the query
remains UNSAT in the absence of a literal, good riddance. If
not, put the literal back. Although the order in which literals
are probed affects the outcome, the procedure is monotone
in the sense that removing a literal cannot make a satisfiable
query UNSAT. Note that we cannot remove a literal if it makes
s intersect with the initial states, even if the query is UNSAT.

Improvement 2 – “Add ¬s to the query”. A key insight of
Bradley was to realize that the query could be extended by
the term ¬s:

SAT?
[
Rk−1 ∧ ¬s ∧ T ∧ s′] (Q2)

Adding an extra conjunct means the query is more likely to
be UNSAT, which improves chances of removing a literal, or
indeed learning a clause at all. This extended query is depicted
in Figure 1. Having s on both sides of the transition breaks
monotonicity: as s gets weaker, ¬s gets stronger. A query that
is SAT may become UNSAT if more literals are removed—
which makes the task of finding a minimal cube much harder
(exponential in the size of s). Heuristics for minimizing s are
discussed in [2].

But why is it sound to add ¬s to the query? It can be viewed
as a bounded inductive reasoning: The base case R0 → ¬s
holds by construction (s does not intersect the initial states).
We have proved that (Rk−1 ∧ ¬s ∧ T) → ¬s′, but because
Ri is stronger than Rk−1 for i < k − 1, we have also proved
that ¬s is preserved by every transition up to frame k.
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Figure 1. Is s inductive relative to Rk−1? In the SAT query, we try
to find a minterm m in the white region of the first frame, that in
one transition can reach a point inside the cube s. The white region
satisfies Rk−1 ∧¬s, illustrated by the four blocked cubes c1 through
c4 and the cube s. If the query is UNSAT, it has been proved that
a point outside s stays outside s for the first k transitions from the
initial states. When generalizing s, we must make sure that the cube
does not grow to intersect the initial states. This property, together
with UNSAT, proves s to be unreachable in the first k frames. Note
that the figure also illustrates how Rk contains a subset of the cubes
of Rk−1.

(2) SATISFIABLE QUERIES: We now turn to the case where
the query (original or extended) is SAT. This means Rk−1 was
not strong enough to block s at frame k, and something new
must be learned at frame k−1. From the satisfying assignment,
we can extract a minterm m in the pre-image of s, which gives
us a new proof-obligation (m, k − 1).

The above learning scheme can now be applied to this proof-
obligation, drawing from Rk−2 to learn clauses in Rk−1. If
Rk−2 is not strong enough, the procedure may recursively go
further back into the trace and learn a whole cascade of facts
over many time-frames. Eventually the procedure returns to
the original proof-obligation (s, k) and may either succeed in
blocking it this time, or generate a new minterm in the pre-
image of s.

As noted in the previous section, learning short clauses is
crucial for PDR to work. Indeed, most of the runtime is spent
on generalizing cubes by removing literals. Because a minterm
is maximally long, it is a particularly undesirable starting point
for this process. To alleviate this situation, we propose to
shrink the proof-obligations by using three-valued (ternary)
simulation.1 It requires the FSM to be in circuit form, but in
practice this is often the case.

Reducing proof-obligations by ternary simulation. For a
satisfiable query, extract the minterm m from the satisfying
assignment, giving values to the flop outputs as well as the
primary inputs. Simulate this assignment through one time-
frame. Now, probe each flop by changing its value to X and
propagate the effect of this using ternary simulation. If an X
does not appear at any flop input among the flops in s, then
the probed flop (state variable) can be safely removed from
the proof-obligation. If the X do reach a flop in s, undo the
propagation and the probing, and move on to the next flop.

The resulting cube has the property that all the states it
represents can reach s in one transition, and hence the entire

1Ternary logic has three values: 0, 1, and X. The binary semantics is
extended by: (X ∧ 0 = 0), (X ∧ 1 = X), (X ∧ X = X), (¬X = X).

cube must be blocked.

C. The Algorithm

For clarity, we state the precise properties of the trace:

(1) R0 = I.
(2) All Ri except R0 are sets of clauses.
(3a) Ri → Ri+1.
(3b) The clauses Ri+1 is a subset of Ri for i > 0.
(4) Ri+1 is an over-approximation of the image of Ri.
(5) Ri → P, except for the last element RN of the trace.

We note that (5) is different from Bradley’s original presen-
tation, which also required the property to hold for RN . The
change eliminates the need for the special BMC check of
length 0 and 1, performed in Bradley’s implementation of
PDR.

At the start of the algorithm the trace has just one element
R0. It then runs the following main loop:

while SAT?
[
RN ∧ ¬P

]
do

(a) extract a bad state m from the SAT model
(b) generalize m to a cube s using ternary simulation
(c) recursively block the proof-obligation (s, k)

When the loop terminates, the property holds for RN , and
an empty frame is added to the trace. The algorithm will be
repeated for this new frame, but first a propagation phase is
executed, where learned clauses are pushed forward in the
trace:

for k ∈ [1, N − 1] and c ∈ Rk do
if c holds in frame k + 1, add it to Rk+1

During the propagation phase it is important to do syntactic
subsumption. If a clause c was moved forward from frame k
to k + 1, and frame k + 1 has a weaker clause d ⊇ c, then
d should be removed. Subsumed clauses accumulate quickly,
but serves no purpose except to slow down the SAT-solver.

(1) QUEUE OF PROOF-OBLIGATIONS: Section III-B1 sug-
gests a recursive clause-learning scheme. However, PDR can
be improved by reusing proof-obligations of one time-frame in
all future time-frames. After all, if a cube is bad, it should be
blocked everywhere. This requires a queue, as the algorithm
now can have many outstanding proof-obligations in each
frame. The elements should be dequeued from the smallest
time-frame first. This change has the added benefit of making
PDR capable of finding counterexamples longer than the trace.

(2) TERMINATATION: PDR can terminate in one of two
ways: either (i) a proof-obligation at frame 0 intersects with
the initial states, which implies that the property fails (in this
case, a counterexample can be extracted with some additional
bookkeeping); or (ii) the clause sets of two adjacent frames
become syntactically identical: Ri ≡ Ri+1. Since Ri → P
by (5); Ri ∧T → R′

i+1 by (4); I → Ri by (1) and (3a); then
Ri is an inductive invariant that proves the property.
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Figure 2. BMC unrolling of length N. The design is reset in the first
frame and Bad is asserted in the last frame. The last frame is drawn
partially because the next-state logic for the flops is not needed.

D. Convergence

Must the main loop terminate for some finite trace length?
When generated, each proof-obligation (s, k) contains at least
one state that is not previously blocked. If the proof-obligation
is immediately handled, or if the generalization procedure
first checks that this still holds when the proof-obligation is
dequeued, then every clause created by the learning algorithm
must block at least one more state of frame k. Because there
is a finite number of frames, and a finite number of states in
the FSM, the main loop is guaranteed to terminate.

Can the length of the trace grow indefinitely? If the syntactic
termination check (Ri ≡ Ri+1) were done semantically
instead (Ri = Ri+1), then clearly this cannot happen. Ri+1

would have to block at least one state less than Ri. Suppose
therefore Ri = Ri+1 but Ri 6≡ Ri+1. During the propagation
phase, all clauses of Ri will be moved into Ri+1, making
them syntactically identical and the algorithm terminates.

We note that the bound (2|S| frames with at most 2|S|

clauses in each) implied by the above argument is very large,
and does in no way explain why the algorithm performs well
in practice.

E. What makes PDR so effective?

The experimental analysis of Section VI shows that PDR rep-
resents a major performance improvement over interpolation
based model checking (IMC) [7], hitherto regarded as the
strongest bit-level engine. Why is this?

Consider the BMC unrolling depicted in Figure 2. Assume
for simplicity that the design can non-deterministically return
to the initial states at any time.2 This guarantees that the set of
reachable states grows monotonically with the frame number.

The first version of IMC, never published,3 considered such
an unrolling, and from an UNSAT proof computed interpolants
Φi between every adjacent time-frames. This sequence of
interpolants has the property:

(1) I = Φ0

(2) Φk ∧ T → Φ′
k+1

(3) ΦN → P
(4) symbols(Φi) ⊆ state-variables

If N is chosen large enough, one of the interpolants Φk must
be an inductive invariant proving the property: if the suffix
after Φk is longer than the backward diameter of the system,
it cannot contain any state that can reach Bad; the prefix

2This behavior can be achieved by rewiring the flops, or, alternatively, be
made part of the verification algorithm.

3Private conversation with Ken McMillan.

before Φk grows monotonically and for a finite system must
eventually repeat itself.

This method is not as effective as the published version of
IMC. So what is wrong with it? One can argue that the impor-
tant feature of interpolation is its generalizing capability.4 For
instance, the interpolant Φ1 can be viewed as an abstraction
of the first time-frame, containing just the facts needed for the
suffix to be unsatisfiable (this interpretation is particularly in
accord with McMillan’s asymmetric interpolant computation).

Even though logically (2) implies that each interpolant can
be derived from its predecessor, this is not how the SAT-solver
constructs them. During its search, the solver is free to roam
all over the unrolling. We argue that this may deteriorate the
generalizing capability of interpolation.

In the published algorithm, McMillan used the insight that
(a) interpolants are smaller and more general toward the ends
of the unrolling, and (b) repeatedly applying interpolation on
its own output will improve the generalizing capability. In his
algorithm, the interpolant Φ1 is therefore repeatedly used to
replace the initial states constraint, resulting in interpolants
that are less and less dependent on the initial states and in
an increasingly more general way imply the unsatisfiability of
the suffix.

In a way, the procedure can be viewed as committing to
the abstraction that was computed. It disallows the SAT-solver
from going back to the real initial states and learning more
facts. For this to work, the suffix must be long enough to
prevent any state that can reach the bad states from entering
into the interpolants. If it fails to prevent this, the algorithm
has to start over from scratch, typically with a longer unrolling
(although randomizing the SAT-solver and restarting with the
same length works sometimes).

We now compare this to how PDR works. First note that
at the end of each major cycle, just before pushing clauses
forward, the Ri are in fact interpolants; all the facts in frame
k and future frames are derived from Rk.

During the computations, PDR completely commits to its
current abstractions Ri. The localized reasoning prevents it
from learning new facts from earlier time-frames unless it
has been proved that new facts must be learned. In a way,
the whole procedure can be viewed as one big SAT-solving
process, where the solver is carefully controlled to make sure
it does not roam all over the unrolling. Further, when new facts
are brought in from previous frames, a lot of effort is spent on
simplifying those facts (the literal removing consumes ∼80%
of the runtime). There is no similar mechanism in IMC, it
must use whatever proof the SAT-solver happened to give it.
Also, PDR constantly removes subsumed clauses, especially
during the forward-propagation phase.

To summarize, PDR sticks to the facts it has learned as long
as possible, similar to the way IMC commits to its interpolants.
If what PDR has learned at a frame is too weak, it can repair
the situation by learning new clauses rather than scrapping all

4Indeed, interpolation based model checking is probably better understood
as a method for “guessing” an inductive invariant rather than, as often done,
an approximate reachability analysis.
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the work done so far and starting over, as IMC does. PDR
has a very targeted approach to producing small facts by its
literal removing scheme, and it constantly weeds out redundant
clauses by subsumption checking and forward propagation.

A possible drawback of PDR, however, is the strong in-
ductive bias of its learning: it can only learn clauses in
terms of state variables. But this bias is also the very reason
it can efficiently do generalization. It might be that future
improvements to the algorithm will allow it to work efficiently
on a different domain.

IV. IMPLEMENTATION

This section details our implementation of PDR. In the pseudo-
code, only cubes are used and not clauses. In particular we
represent the trace as sets of blocked cubes rather than learned
clauses. Furthermore, we only store a cube in the last time-
frame where it holds (to avoid duplication). We call this delta-
encoded trace F, and it relates to R through:

Rk =
∧

i≥k

¬Fi

We also extend F by a special element F∞ which will hold
cubes that have been proved unreachable from the initial states
by any number of transitions. In the code, the following data-
types are used:

– Vec. A dynamic vector with methods:

uint size() – returns size of the vector
T& op[](uint i) – returns the ith element
void push(T elem) – pushes an element at the end
T pop() – pops and returns last element

– Cube. A fixed-size vector of literals (no push/pop).
– TCube. A pair (cube ∈ Cube, frame ∈ uint) referred to

as a timed cube. Two special constants are defined for
the frame component:

FRAME NULL – cube has no time component
FRAME INF – cube belongs in F∞

Function next(TCube s) returns s with the frame number
incremented by one.

An overview of the functions implementing PDR, and the
program state they work on is given in Figure 3. The FSM
is assumed to be given in circuit form, containing one safety
property to be proved. The special frame F∞ is stored as the
last element of the vector F.

An outline of the execution: Function pdrMain() gets a
bad state in the last frame and calls recBlockCube() to block
it, using the helper function isBlocked() (which checks if a
proof-obligation has already been solved) and generalize()
(which shortens a cube). When the property has been proved
for the last frame, propagateBlockedCubes() pushes cubes of
all time-frames forward while doing subsumption, handled by
addBlockedCube().

A. Separation of concerns
Our PDR implementation abstracts the handling of SAT calls
through the interface in Figure 4. The semantics of the

Program State:
Netlist N; – Netlist with property
Vec〈Vec〈Cube〉〉 F; – Blocked cubes of each frame
PdrSat Z; – Supporting SAT solver(s)

Main Function:
bool pdrMain();

Recursive Cube Generation:
bool recBlockCube(TCube s0);
bool isBlocked(TCube s);
TCube generalize(TCube s0);

Cube Forward Propagation:
bool propagateBlockedCubes();

Small Helpers:
uint depth();
void newFrame();
bool condAssign(TCube& s, TCube t);
void addBlockedCube(TCube s);

Figure 3. Overview of PDR algorithm. “pdrMain()” will use
“recBlockCube()” to recursively block bad states of the final time
frame until the property holds, then call “propagateBlockedCubes()”
to push blocked cubes from all frames in the trace forward to the
latest frame where they hold.

interface PdrSat {
Cube getBadCube();
bool isBlocked(TCube s);
bool isInitial(Cube c);
TCube solveRelative(TCube s, uint params = 0);

void blockCubeInSolver(TCube s);
};

Figure 4. Abstract interface for the SAT queries of PDR. These
methods can be implemented using either a monolithic SAT-solver,
or one SAT-solver per time-frame. The roles of “Init” and “Bad” can
be exchanged within this SAT abstraction to obtain the dual PDR
procedure based on backward induction (although ternary simulation
cannot be used backwards). The first four functions corresponds to
actual SAT queries (although for some common restriction on initial
states, “isInitial()” can be implemented by a syntactic analysis).
The fifth function, “blockCubeInSolver()”, merely informs the SAT
implementation that a new cube has been added to the vector “F”.

interface is defined as follows:

Method getBadCube() returns a bad cube not yet blocked
in the last frame. Method isBlocked(s) returns TRUE if the
cube s.cube is blocked at s.frame. Method isInitial(c) returns
TRUE if the cube c intersects with the initial states. Method
blockCubeInSolver(s) reports to PdrSat that a cube has been
added to the vector F.

Finally, method solveRelative(s) tests if s.cube can be
blocked at frame s.frame using the extended query (Q2) of
Section III-B1. If the answer is UNSAT, then the implemen-
tation returns a new cube z where:

z.cube ⊆ s.cube
z.frame ≥ s.frame

The method guarantees that not only is s.cube blocked at frame
s.frame, but that actually the subset z.cube is blocked at a later
frame. The SAT solver may learn these more general facts by

FMCAD 2011, Page 129



bool pdrMain() {
F.push(); – push “F∞”
newFrame(); – create ”F[0]”

Z = createPdrSat(N, F);

forever{
Cube c = Z.getBadCube();
if (c != CUBE NULL){

if (!recBlockCube(TCube(c, depth())))
– failed to block ’c’ ⇒ CEX found
return FALSE;

}else{
newFrame();
if (propagateBlockedCubes())

– invariant found, may store it here
return TRUE;

}
}

}
Figure 5. Main procedure. The last element of F (referred to as
“F∞”) contains all the cubes that have been proved to be unreachable
for all k. Their negation constitutes a proper inductive invariant.
Function “newFrame()” inserts a new frame into F just before F∞.

inspecting the final conflict-clause of the solver (or the UNSAT
core), and taking this “free” information into account.

If instead the query is satisfiable, then the implementation
returns a generalization, using ternary simulation, of a minterm
in the pre-image of s.cube. All states of the returned cube
z.cube can reach s.cube in one transition. The time component
z.frame is set to FRAME NULL.

The behavior of solveRelative() can be altered by the
params argument. Default value “0” means: do not extract
a model if the query satisfiable, just return (CUBE NULL,
FRAME NULL). Parameter “EXTRACTMODEL” means:
work as described above. Parameter “NOIND” means: use the
original query (Q1) instead of (Q2).

V. SAT SOLVING

In this section, we discuss the details of implementing
solveRelative() of the PdrSat interface using MINISAT and a
single SAT instance. The other methods of the PdrSat interface
can be implemented in a similar way.

There are two features that are particularly important: (i)
MINISAT allows incremental SAT through assumption literals;
a set of unit clauses that are temporarily assumed during one
SAT call. After the call, the assumptions are undone and new
regular clauses can be added before the next call. (ii) For
UNSAT calls, MINISAT returns the subset of assumptions that
were used in the proof.

The netlist is transformed to CNF using the standard Tseitin
transformation [9] plus variable elimination [6]. Logic cones
are added to the solver on demand, starting with just the
transitive fanin of Bad. Whenever a new frame is added
to the trace, a new activation literal acti is reserved. All
clauses learned in that frame will be extended by ¬acti in
blockCubeInSolver().

Given a cube s = (s1 ∧ s2 ∧ . . . ∧ sn), procedure solveRel-
ative() does the following:

bool recBlockCube(TCube s0) {
PrioQ〈TCube〉 Q; – orders cubes from low to high frames
Q.add(s0);

while (Q.size() > 0){
TCube s = Q.popMin();

if (s.frame == 0)
– Found counterexample, may extract it here
return FALSE;

if (!isBlocked(s)){
assert(!Z.isInitial(s.cube));
TCube z = Z.solveRelative(s, EXTRACTMODEL);

if (z.frame != FRAME NULL){
– Cube ’s’ was blocked by image of predecessor:
z = generalize(z);
while (z.frame < depth()−1

&& condAssign(z, Z.solveRelative(next(z))));

addBlockedCube(z);
if (s.frame < depth() && z.frame != FRAME INF)

Q.add(next(s));

}else{
– Cube ’s’ was not blocked by image of predecessor:
z.frame = s.frame − 1;
Q.add(z);
Q.add(s);

}
}

}
return TRUE;

}
Figure 6. Recursively block a cube. The priority queue “Q” stores all
pending proof-obligations: a cube and a time frame where it should
be blocked. In a practical implementation, it may also store the proof-
obligation from which the element was generated (this facilitates
extraction of counterexamples). We noticed (or think we noticed)
a small performance gain by giving “PrioQ” a stack-like behavior
for proof-obligations of the same frame. We left one of our program
assertions in the pseudo code because this invariant is important and
non-obvious. Finally, note the line “Q.add(next(s))” line (just above
the “else”). Adding the current proof-obligation in the next frame
is not necessary, but it improves performance for UNSAT problems
and allows PDR to find counterexamples longer than the length of
the trace—sometimes much longer.

(1) Reserve a new activation literal a and add the clause
{¬a, ¬s1, ¬s2, . . . , ¬sn} (unless NOIND is given).
(2) Call the solve method with the following assump-
tions: [a, actk, actk+1, ..., actN+1, s′

1, s′
2, . . ., s′

n], where
s′

i denotes a flop input.
(2u) If UNSAT:
– Remove all literals of s whose corresponding assump-

tion s′
i was not used, unless doing so makes the new

cube overlap with the initial states.
– Find the lowest acti that was used. Return the timed

cube (snew, i + 1).
(2s) If SAT and EXTRACTMODEL is specified:
– Extract a minterm m from the satisfying assignment.
– Shorten m to cube by ternary simulation. Return

(mnew , FRAME NULL).
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bool isBlocked(TCube s) {
– Check syntactic subsumption (faster than SAT):
for (uint d = s.frame; d < F.size(); d++)

for (uint i = 0; i < F[d].size(); i++)
if (subsumes(F[d][i], s.cube))

return TRUE;

– Semantic subsumption thru SAT:
return Z.isBlocked(s);

}

TCube generalize(TCube s) {
for all literals p ∈ s {

TCube t = “s minus literal p”
if (!Z.isInitial(t.cube))

condAssign(s, Z.solveRelative(t));
}
return s;

}
Figure 7. Helper functions for recursive cube blocking. Function
“isBlocked()” semantically checks if s is already blocked, which
could have happened after the proof-obligation was enqueued. For
efficiency reasons, it first does a syntactic check. This check is so
effective that we did not notice any performance loss by disabling the
semantic SAT check at the end (but we kept it to ensure convergence,
as argued in Section III-D). In fact, deriving a new cube from s, even
if s is blocked, may be a good idea, as the new cube can subsume
several old cubes. We note that function “generalize()” iterates over
s while s is being modified, which the implementation must handle.

(2s’) else if SAT, return (CUBE NULL, FRAME NULL).
(3) Add unit clause {¬a} permanently.

The last step (3) forever disables the temporary clause added
in (1). The periodic cleanup of MINISAT will reclaim the
memory. However, the variable index reserved for the acti-
vation literal cannot be reused. For that reason we recycle the
solver when more then 50% of the variables currently in use
are disabled activation literals. This has the added benefit of
cleaning up cones of logic that may no longer be in use. We
note that the previous activation literal can be reused if s is a
subset of the cube of the previous call, which happens quite
frequently.

VI. EXPERIMENTAL ANALYSIS

A number of experiments have been performed to evaluate
our PDR implementation, both on public benchmarks from the
Hardware Model Checking Competition of 2010 (HWMCC10)
and on industrial benchmarks.5 This section summarizes the
most interesting results we have found.

A. Comparison of IC3 and PDR
This experiment was performed using 274 hard problems
from our industrial collaborators. We simplified the designs
by running the ABC command “dprove”(see Figure 4.1 of
[8]). With a timeout of 10 minutes, 42 problems were solved
by either IC3 or PDR; included in Table I. From the table
we see that our implementation solves almost twice as many

5Although we cannot distribute the industrial benchmarks, we will make
our implementation of PDR available at http://bvsrc.org

uint depth() { return F.size() − 2; }

void newFrame() {
– Add frame to ’F’ while moving ’F∞’ forward:
uint n = F.size();
F.push();
F[n−1].moveTo(F[n]);

}

bool condAssign(TCube& s, TCube t) {
if (t.frame != FRAME NULL){

s = t;
return TRUE;

}else
return FALSE;

}

void addBlockedCube(TCube s) {
uint k = min(s.frame, depth() + 1);

– Remove subsumed clauses:
for (uint d = 1; d ≤ k; d++){

for (uint i = 0; i < F[d].size();){
if (subsumes(s.cube, F[d][i])){

F[d][i] = F[d].last();
F[d].pop();

}else
i++;

}
}
– Store clause:
F[k].push(s.cube);
Z.blockCubeInSolver(s);

}
Figure 8. Small helper functions. Function “addBlockedCube()” will
add a cube both to Fa nd the PdrSat object. It will also remove
any subsumed cube in F. Subsumed cubes in the SAT-solver will be
removed through periodical recycling.

instances as the original IC3 (38 vs. 21), but there are also 4
instances where IC3 solves them and our PDR does not. The
last column shows for comparison the results of interpolation
based model checking (IMC).

Figure 10 shows the behavior of the implementations for
increasing timeout limits. For space reasons we included two
more PDR runs discussed in the next section.

Figure 11 shows the performance of PDR, IC3 and IMC
on the HWMCC10 benchmarks. Looking closer at PDR vs.
IMC reveals that the difference is mostly on UNSAT problems,
where PDR solves 420 vs. 362 for IMC (14% difference). On
satisfiable instance, numbers are 303 vs. 294 (3% difference).

B. Ternary simulation and Generalization

The third column of Table I, and the corresponding curve
in Figure 10, show the performance of PDR without ternary
simulation. It is clear that ternary simulation has a big impact.
Without it, our implementation drops way below IC3. One
reason for this may be that IC3 never had ternary simulation,
and Bradley implemented some other tricks that compensates
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bool propagateBlockedCubes() {
for (uint k = 1; k < depth(); k++){

for all cubes c ∈ F[k] {
TCube s = Z.solveRelative(TCube(c, k+1), NOIND);
if (s.frame != FRAME NULL)

addBlockedCube(s);
}
if (F[k].size() == 0) return TRUE; – Invariant found

}
return FALSE;

}
Figure 9. Propagating blocked cubes forward. All cubes in F are
revisited to see if they now hold at a later time-frame. If so, they are
inserted into that frame. The subsumption of “addBlockedCube()”
will remove the cube from its current frame (and possible other
cubes in the later frame). Note that in a practical implementation, the
iteration over cubes in Fk must be aware of these updates. Because
c is already present in frame k, we can use (Q1) instead of (Q2) in
the call to solveRelative().
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Figure 10. Comparison of IC3 and PDR on industrial problems. Two
modifications to PDR are also evaluated.

for this loss, notably removing multiple literals per SAT call
in the cube generalization.

The fourth column shows the effect of stronger cube gen-
eralization, as proposed in the paper on IC3. The modified
procedure will try to remove a literal even if the SAT query is
satisfiable by exploiting the non-monotonicity. As in IC3, this
is done for three random literals. Our conclusion from looking
at the results is that this technique was not helpful. Although
we do not have room to present the data here, the result holds
for the HWMCC10 benchmarks as well.

C. Effect of changing the semantics of RN

As pointed out in Section III-C, we diverge from IC3 by not
requiring the last frame of the trace to fulfill the property. The
approach of IC3 has two effects compared to ours:

(1) When a new frame is opened, the property is known
to hold, so P can be added to the relative induction SAT
query. This means that the final invariant will be of the
form Ri ∧P rather than just Ri, and that the clauses in
R∞ may depend on P.

Benchmark IC3 PDR NoSim StGen IMC

design01 prop1 – – – – 249.5
design01 prop2 4.1 0.3 102.5 0.4 0.2
design01 prop3 – 81.2 – 126.9 –
design01 prop4 – 70.0 – 191.0 –
design01 prop5 – 91.6 – 166.5 –
design01 prop6 – 100.7 – 176.7 –
design01 prop7 – – – – 168.8
design01 prop8 160.1 6.1 – 11.1 21.9
design01 prop9 130.1 5.9 – 10.7 42.8
design01 prop10 71.9 7.1 – 12.3 44.2
design02 prop1 594.0 30.2 – 144.0 –
design02 prop2 – 489.2 – – –
design02 prop3 – 68.0 – – –
design03 prop1 – 466.4 – 129.8 –
design03 prop2 – 483.3 – 130.8 –
design04 84.5 – – – –
design05 prop1 – 172.5 – 152.5 –
design05 prop2 – 182.1 – 172.0 –
design06 prop1 2.7 0.8 1.8 1.0 –
design06 prop2 3.1 3.1 5.6 0.8 –
design07 94.4 6.0 88.6 13.8 –
design08 298.3 83.6 – 133.1 –
design09 – 77.8 – 151.2 –
design10 prop1 2.0 1.0 2.3 1.4 –
design10 prop2 2.6 1.0 2.7 2.7 –
design11 prop1 324.4 28.1 474.0 27.4 –
design11 prop2 7.7 2.1 8.9 3.3 –
design12 – – – – 62.6
design13 prop1 – 126.1 – 85.0 –
design13 prop2 – 47.2 – 57.2 –
design13 prop3 – 26.0 – 22.2 –
design13 prop4 – 17.6 – 22.1 –
design13 prop5 – 18.1 – 26.4 –
design14 prop1 41.7 – – – –
design14 prop2 61.5 – – – –
design15 prop1 – 5.3 – 20.7 4.7
design15 prop2 – 32.8 – 10.9 595.8
design16 2.2 0.9 2.6 2.2 286.6
design17 – – – 185.8
design18 10.8 0.7 4.9 1.4 409.7
design19 501.7 13.4 – 23.3 –
design20 17.1 10.0 138.0 20.4 –
design21 169.9 – – 225.4 –
design22 – 154.1 – 185.0 –
design23 prop1 – 438.7 – – –
design23 prop2 – 320.5 – 133.0 –

Total solved 21 38 11 37 11

Table I. Comparison of IC3 and PDR on industrial problems. Two
modifications to PDR are also evaluated (disabling ternary simulation
“NoSim”, and stronger cube generalization “StGen”). Interpolation
(IMC) is also included for comparison. All benchmarks are UNSAT
except for design02 (3 properties) and design14 (2 properties).
Boldfaced figures indicates winner between IC3 and PDR only.

(2) Seeding the recursive cube-blocking with minterms
of the pre-image of P rather than with minterms of P
corresponds to a one-step target-enlargement.

The second difference, target-enlargement, can be imple-
mented by preprocessing the design (unroll the property cone
for one frame and combine the new and the old property
outputs). Figure 12 shows the effect it has on the HWMCC10
benchmarks. Note that it improves the performance for simple
satisfiable problems solved in less than 100 seconds. The
difference is substantial enough to motivate the use of target-
enlargement.
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We also investigated if the first difference above had any
effect by running our previous PDR implementation which
had the same behavior as IC3 in this respect (but includes
ternary simulation and other improvements). For space reason
we do not include the graph here, but the curves of the new
implementation (with target enlargement) and the previous
implementation match exactly on both SAT and UNSAT
problems. We also tried target enlargement of 2 steps, but
there was no additional benefit.

We conclude that there is no performance loss due to our
modification of the original algorithm. It makes the implemen-
tation simpler, and it has the extra benefit that R∞ is a proper
invariant, which can be used to strengthen other proof-engines
running in parallel, or be useful for synthesis.

D. Runtime breakdown

In order to identify directions for future improvements, we ran
an instrumented version of our PDR on a handful of examples.
Our findings suggests that about 20% of the runtime is spent
in propagateBlockedCubes() and 80% in recBlockCube()—
most of which is in generalize(), but a substantial portion also
in the first call to solveRelative(). Satisfiable calls to the SAT-
solver are about twice as common as unsatisfiable ones, and
5x more expensive.

E. Other things we tried

— We evaluated the effect of the extended query (Q2) vs.
the original (Q1) (Section III-B1). Although the (Q2) gave a
clear performance boost, PDR works remarkably well even
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without it (it solved 704 instead of 723 problems; more than
interpolation, which solved 656 problems).

— We evaluated the proposed activity scheme of IC3, which
controls the order in which literals are tried for removal. We
ran it against itself with the activity reversed (“worst” order)
and could see no difference (Figure 13), and no difference to
a static order either (not in the graph).

— We implemented a technique we call semantic cone-of-
influence. At the end of each major round, all cubes in the
trace that is not needed to prove the property of the final frame
are removed. This analysis can be done through a series of
SAT calls of roughly the same cost as forward-propagation.
The method removes many cubes. However, running PDR
with this turned on did not give any noticeable speedup, but
it also did not degrade performance (thus the cost of doing
semantic COI was amortized by the improvement). But a really
interesting result is that running semantic COI, while turning
off forward-propagation, works almost as well as the standard
version of PDR (Figure 13). In contrast, turning off forward-
propagation without semantic COI is a disaster! This shows
that an important feature of the forward-propagation is the
cleansing effect it has through the subsumption mechanism.

— Because most of the time is spent in satisfiable SAT
calls, and this partly is a result of MINISAT always returning
complete models, we made a modified version of MINISAT
that only does BCP in the cone-of-influence of the flops in
the query. With this version, a few more benchmarks (728
instead of 723) were solved. However, we think a justification
based variable order should do even better. We are currently
working on a circuit based SAT-solver with this feature.

We have also implemented a non-monolithic version of PDR
(one solver instance per time-frame) that helps to localizing
the SAT solving better, especially together with frequent solver
recycling. For large benchmarks, where the relevant logic is
small compared to the size of the design, this version does
very well. It is worth noting that most of the work in PDR
takes place in the last couple of time-frames where the COI
is the smallest. In a monolithic PDR, early time-frames may
pollute these calls.

— We made a version that finds an inductive subset of
RN after propagating the cubes forward. This will find true
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inductive invariants that can be put into F∞. Although the
cost of this procedure did not quite amortize over the gains,
having more clauses in F∞ can be useful if those facts are
exported to other engines.

— We made an extension that allows PDR to develop and use
an abstraction, where some flops are considered as primary
inputs. This is relatively straight-forward to implement. The
only tricky part in using localization abstraction is when it is
combined with proof-based abstraction [5], which can shrink
the current abstraction in the middle of PDR’s operations. The
reason is that the assertion in Figure 6 will not hold if we
apply a smaller abstraction to the initial states. The way to
address this is to introduce a reset signal that gives the correct
value at the flop outputs of frame 0, and then let all flops be
uninitialized.
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Abstract—Formal verification is a reliable and fully
automatic technique for proving correctness of hardware
designs. Its main drawback is the high complexity of veri-
fication, and this problem is especially acute in regression
verification, where a new version of the design, differing
from the previous version very slightly, is verified with
respect to the same or a very similar property. In this
paper, we present an efficient algorithm for incremental
verification, based on the ic3 algorithm, that uses stored
information from the previous verification runs in order
to improve the complexity of re-verifying similar designs
on similar properties. Our algorithm applies both to the
positive and to the negative results of verification (that is,
both when there is a proof of correctness and when there
is a counterexample). The algorithm is implemented and
experimental results show improvement of up to two orders
of magnitude in running time, compared to full verification.

I. INTRODUCTION

Today’s rapid development of complex hardware de-
signs requires reliable verification methods. In formal
verification, we verify the correctness of a design with
respect to a desired behavior by checking whether a
labeled state-transition graph that models the design
satisfies a specification of this behavior, expressed in
terms of a temporal logic formula or a finite automaton
[CGP99]. The main advantages of formal verification
tools are their reliability (if a design passes verification,
then it is 100% correct with respect the specification),
full automation of the verification process, and the ability
of the tools to accompany a negative answer to the
correctness query by a counterexample to the satisfaction
of the specification in the design [CGMZ95].

The main drawback of the formal verification tech-
nology, and the one that prevents it from being even
more widely used in the hardware industry, is that it
requires significant computational effort, even for mod-
erately sized designs. Moreover, when small changes
are introduced into the design or the specification, for
example due to a bug fix or an upgrade, the whole design
needs to be re-verified, generally requiring the same
amount of resources as for the initial verification. The

This work is partially supported by the European Community under
the call FP7-ICT-2009-5 – project PINCETTE 257647.

problem is especially acute in regression verification,
where a new version of a hardware design is re-verified
with respect to the same (or very similar) specification.
Since regression verification is a only a preliminary
(albeit necessary) stage in functional verification of a
new version, the time and effort allocated to it are usually
much lower than for the initial verification; in reality,
since the amount of effort is the same as for the initial
verification, our experience is that regression verification
is often not performed thoroughly enough, thus possibly
leading to lower quality designs.1 A better option would
be to verify the changes incrementally, that is, to reuse
the results from the previous execution and only verify
the change.

Another area in which incremental verification tech-
niques are in dire need is coverage computation in formal
verification. Most of the existing work on coverage in
formal verification is based on the notion of mutation
coverage, where small mutations are introduced to the
design and the mutant designs are checked with re-
spect to the original specification [HKHZ99], [CKV06b],
[CKV06a], [KLS08], [CKP10], with the goal of check-
ing thoroughness of formal specifications. Efficient in-
cremental verification techniques can reduce the cost of
computing mutation coverage, where a large number of
slightly modified designs need to be checked with respect
to the same property.

Several papers view the problem of incremental ver-
ification as an instance of dynamic graph algorithms.
In this setting, a design is represented as a graph and
incremental verification checks the influence of small
changes in the graph (edge insertion and removal) on the
properties that were previously satisfied in this graph,
thus reducing the problem of incremental verification
to a dynamic graph problem. However, dynamic graph
connectivity, one of the main problems in dynamic graph
algorithms, and the one that is most relevant to verifi-
cation, is an open problem, hence this reduction is of
limited value in practice [SBS95], [CK03]. A somewhat
related direction is using the reduction to dynamic graph

1Our experience is based on participating in the formal verification
of IBM hardware designs, as well as on discussions with formal
verification engineers in other companies.
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problems in order to prove complexity results for LTL
model checking of evolving designs with non-changing
properties [KW03].

The idea of saving the result of model checking in
order to use it for subsequent model-checking queries is
extensively used in counter-example-guided abstraction
refinement (CEGAR) approach [CGJ+03], where the
state-explosion problem is addressed by iterative veri-
fication and refinement of an abstract design. Abstract
counterexamples are analyzed and, if spurious, are used
in order to guide the refinement process of the abstrac-
tion for the next iteration of the verification process (see
also [LBBO01]).

In this paper, we present an approach for re-using the
result of model-checking a design (either a proof or a
counterexample) for verification of the same or a slightly
different property on the same or a slightly modified
design. Our method applies both for the case where
the result of the model-checking query is negative, in
which case we re-use a counterexample, and where it is
positive, and we re-use the correctness proof. In fact, the
later scenario is very common in regression verification
(since the previous version of the design is assumed to
pass the verification successfully).

The basis of our work is the novel ic3 (“Incremental
Construction of Inductive Clauses for Indubitable Cor-
rectness”) model checking algorithm, recently proposed
by Aaron Bradley [Bra11]. In addition to being one of
the the fastest bit-level verification methods [BEM11],
[BBC+11], the ic3 algorithm lends itself very naturally
to incremental verification.

We describe an algorithm for saving the relevant
parts of the proof obtained by ic3, and using them
to reproduce the proof (or counterexample) on a new,
possibly modified version of the model. This requires
very little computational effort in case the same proof
works for the new version as well; in case the same
proof does not apply, our method attempts to “patch” it
by extracting the maximum valid part of the previously
saved information and using it as a basis for proving
the new version. The latter case, where the original
proof does not apply “as is” is the main strength of
our method. Roughly speaking, the main idea of our
algorithm is as follows. First we observe that producing
(and saving) re-usable information does not incur any
significant overhead on top of the standard execution of
ic3; in addition, the saved part is usually very small. We
also describe a query-efficient SAT-based algorithm that
we call an invariant finder for extracting the maximum
valid part of the previously saved information. Then we
describe how the valid parts extracted by the invariant

finder can be used as a starting point of subsequent ic3’s
execution, with minor modifications to the algorithm.

Similarly, our algorithm allows to save a small part of
a counterexample produced by ic3 that is, nevertheless,
sufficient in order to easily reproduce a concrete coun-
terexample and then use this part in order to compute
counterexamples for a modified design (or a modified
property), by re-using the saved part “as is” or “patch-
ing” it to produce a valid counterexample for a modified
version. To improve the performance of the algorithm for
reusing counterexamples, we propose a simple technique
that reduces the size of the partial assignments produced
by ic3 by ≈ 30%.

The algorithm is implemented in the model-checking
engine IVE (incremental verification engine), which is
a part of the formal verification platform of IBM [Rul],
[Six] and is checked on the Hardware Model Checking
Competition (HWMCC’10) [HWM10] benchmarks as
well as on a real IBM hardware design. Our results show
a significant speed-up (up to three orders of magnitude)
compared to the re-run of the same model-checking
procedure. We note that the performance of IVE is
on par with the state-of-the art model checking tools,
which makes the speed-up achieved by our incremental
verification algorithm even more significant.

The rest of this paper is organized as follows. The
necessary definitions and an overview of the ic3 algo-
rithm are provided in Section II. We describe the main
contribution of this paper – the invariant finder and
the incremental verification algorithms – in Section III,
and present the experimental results of executing our
implementation on known benchmarks and on an IBM
design in Section IV. In Section V we summarize our
contributions and discuss possible directions for future
work. The complete table of running times and speed-
ups achieved by our algorithm on all benchmarks from
the HWMCC’10 competition appears in the full version
of this paper [Rul].

II. PRELIMINARIES

In this section, we give the necessary definitions for
our algorithm and provide overviews of a SAT solver
with incremental capabilities and of the ic3 algorithm.

A. Definitions

Throughout this paper we consider verification of
safety properties on finite state machines (FSMs). An
FSM M is a tuple 〈X, I, T 〉, where X is a set of Boolean
state variables, such that each assignment s ∈ {0, 1}X
corresponds to a state of M , and the predicates I ⊆
{0, 1}X and T ⊆ {0, 1}X × {0, 1}X define the initial
states and the transition relation of M , respectively. A
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predicate P ⊆ {0, 1}X defines a property to be verified
on M .

State variables and their negations are called literals,
and disjunctions of literals are called clauses. A CNF
formula is a conjunction of clauses. (We sometimes refer
to CNF formulas as sets of clauses as well.)

We follow the standard notation of X ′ = {x′ : x ∈
X} representing the state variables in the next step, and
we assume that the FSMs are given in a representation
that allows encoding pairs of states 〈s, s′〉 into a CNF
formula ψ on variables X∪X ′, so that 〈s, s′〉 ∈ T if and
only if ψ is satisfiable (containment in I and P should
be similarly expressible with a CNF formula on variables
in X).

A sequence π of states t0, . . . , tn is a path in M if
for each 0 ≤ i < n, 〈ti, ti+1〉 ∈ T , that is, there is a
transition between each subsequent pair of states in π. A
path that starts from an initial state is called an initialized
path. A state t ∈ {0, 1}X is reachable if there is an
initialized path that ends in t. Let R denote the set of
all reachable states, and for k ≥ 0, let Rk denote the set
of states reachable by initialized paths of length at most
k. In particular, R0 = I and R2|X| = R. The goal of a
(formal) verification algorithm is to prove R ⊆ P , that
is, to prove that the property P holds in all reachable
states of M .

In all that follows we make definitions and claims with
respect to some FSM M on state variables X , with its
initial and transition relations I, T , and some property
P , without explicitly mentioning them.

Definition 2.1 (invariants and inductive invariants):
• A CNF formula ϕ is an invariant if s ∈ R =⇒
s |= ϕ. Furthermore, ϕ is a k-step invariant if s ∈
Rk =⇒ s |= ϕ.

• A CNF formula ϕ is an inductive invariant if I =⇒
ϕ and (s |= ϕ ∧ 〈s, s′〉 ∈ T ) =⇒ s′ |= ϕ. Simi-
larly, ϕ is a k-step inductive invariant if I =⇒ ϕ
and (s ∈ Rk−1∧s |= ϕ∧〈s, s′〉 ∈ T ) =⇒ s′ |= ϕ.

Note that inductive invariance implies invariance (but not
vice versa).

Observation 2.1: If ϕ is an inductive invariant and
ϕ =⇒ P , then P holds in all reachable states.

B. SAT solver with incremental capabilities

Our algorithm invokes SAT-based procedures for ver-
ifying P on M . In order to allow efficient incremen-
tal verification, we use an extended version of mage,
an IBM SAT solver with incremental capabilities (see
the homepage of the formal verification platform of
IBM [Rul], [Six], for the description of mage). Incre-
mental capabilities of the extended version of mage

are similar to those of MiniSAT [ES03], [EMA10],
specifically, the following query is supported (ϕ is a
CNF formula and A is a set of clauses (assumptions)):
Sat(ϕ,A)?
• if ϕ ∧ A is unsatisfiable return UNSAT and a

minimal subset B ⊆ A so that ϕ ∧ B is still
unsatisfiable2;

• if ϕ ∧ A is satisfiable return SAT and a satisfying
assignment α ∈ {0, 1}X ;

For example, the following queries (referring to the
given FSM) can be translated to a single query to the
SAT solver:
• s ∈ I? (is s an initial state?)
• ϕ∧ T ∧¬ϕ′? (Is there a pair of states, 〈s, s′〉 ∈ T ,

so that s satisfies ϕ but s′ does not? If the answer
is yes we can also extract a witness pair of states
〈s, s′〉 from the assignment returned by the solver.)

C. Overview of ic3

In this section we provide a brief overview of the
ic3 algorithm and highlight the features of ic3 that are
relevant to incremental verification. For a more in-depth
description of ic3 the reader is refered to the original
paper by Bradley [Bra11] and to the paper of Brayton
et al. [BEM11], who provide an overview of ic3 and
present pdr – an improved version of ic3.

The main advantage of ic3 is its ability to perform
unbounded SAT-based model checking without unfold-
ing the transition relation. Given a model checking
instance consisting of an FSM M and a property P
as defined in Section II-A, the ic3 algorithm decides
whether P is an invariant in M , producing an inductive
strengthening if so, and a counterexample trace if not.
The algorithm proceeds by incrementally refining and
extending a sequence F1, . . . ,Fk of sets of clauses, each
Fi forming an i-step inductive invariant CNF formula.
Initially k = 1, and it gradually grows until termination.
Furthermore, if M satisfies P (P holds in all reachable
states) then on termination of ic3, for some i ≤ k, the
set Fi

3 forms an inductive invariant CNF formula that
implies P :
• I =⇒ c for every clause c ∈ Fi;
• Fi ∧ T =⇒ F ′i ;
• Fi =⇒ P ;
If M does not satisfy P then ic3 produces a set of

counter-examples in form of a sequence α0, . . . , αk of
partial assignments to X . In this sequence

2Although obtaining the minimal subset is hard, there are efficient
ways to compute subsets that tend to be quite small in practice.

3Fi is the set that becomes empty during “clause pushing”.
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• all α0 states (states formed by extending α0 to a
full assignment) are in I;

• all αk states are not in P ;
• all αi states lead to some αi+1 state;

A concrete counter-example (CEX) may be extracted
from such a sequence using k+1 calls to a SAT solver.

D. Additions to ic3

a) Shrinking partial assignments: Given a pair
(s, α), where s is a full assignment to X (describing
a state), α is a partial assignment to X ′ (describing a set
of states) and there is an α-state t such that 〈s, t〉 ∈ T ,
“shrinking” is the process of generalizing s into a set of
states (represented by a sub-assignment of s) all leading
to some α-state in one step.

The optimization from [BEM11] shrinks assignments
using ternary simulation, and it is indeed very efficient.
Here we propose a different method to further shrink
the assignments using a SAT solver. This is described in
detail in Section III-C.

b) Injecting invariants: We note that instead of
starting “from scratch”, ic3 can take, as input, a set I
of invariant clauses, and use it as an absolute invariant:
during its entire execution, all clauses from I can be
directly injected into each of the sets Fi.

III. ALGORITHM

In this section we present the main contribution of
this paper – an algorithm for efficient incremental ver-
ification. We start with an overview of the algorithm,
divided into an overview of the invariant finder and
an overview of the incremental verification algorithm,
which combines the invariant finder and ic3. Then we
describe the algorithm in more detail, including some
additional (smaller) contributions that further improve
its performance.

A. Overview

We start with an overview of the invariant finder. Note
that in addition to playing a crucial role in our algorithm
for incremental verification, the invariant finder might be
of independent interest. Invariant finder takes a model M
and an arbitrary set C of (candidate invariant) clauses as
input, and finds the maximum subset I ⊆ C that is an
inductive invariant with respect to M , i.e.:
• I =⇒ c for every clause c ∈ I;
• I ∧ T =⇒ I ′;
The general idea of generating and exploiting induc-

tive invariants in formal verification is not new (see
e.g. [CCG+09], [CNQ09], [CMB07], [BMC+09]). The
novelty of our algorithm is in the way it extracts the
maximum set of inductive invariants (from an arbitrary

set of candidates) using a SAT solver with incremental
capabilities described in Section II-B; in particular, as the
experimental results show, our algorithm is very efficient
in practice (see Section IV).

The incremental verification algorithm combines ic3
and the invariant finder for storing and re-using in-
formation from previous verification runs in order to
speed up subsequent verification on modified models and
properties as follows.

If the result of the verification run of P on M is
positive, the ic3 algorithm produces an invariant set I
of clauses that implies the property P on M . We use
the invariant finder to extract from I the largest invariant
subset that holds on a modified model and provide this
subset as a starting point to ic3 (see Section II-D).

If the verification of P fails on M , the set of coun-
terexamples generated by ic3 is saved in a form of partial
assignments, together with the clauses C ,

⋃k
i=1 Fi.

Then, in subsequent runs we check whether the saved
partial assignments can be extended to full assignments
that produce a counterexample that is valid in a modified
model with a modified property. If so, we have found a
valid counterexample; otherwise, we extract the maximal
inductive invariant from C, and provide this subset as a
starting point to ic3.

B. Detailed description of the algorithm
Invariant finder: Recall that our task is: Given a

candidate set C of clauses, find its maximal subset I
that is inductive invariant with respect to a given model
M . To this end, we first check if the whole set C is
inductive invariant by making the query C ∧ T =⇒ C′.
If so, we are done; otherwise, there are clauses c ∈ C
not implied by C ∧ T . We then update C by removing
(possibly a subset of) such clauses, and repeat.

To make this straightforward process more practical,
we encode the SAT queries using auxiliary variables so
that 1) the learnt information in the solver can be re-used
from iteration to iteration; 2) C gets updated quickly –
by detecting many non-implied clauses c simultaneously.

Specifically, we propose the following algorithm:
1) Remove from C all clauses not in I;
2) For each clause ci ∈ C (whose literals refer to

current cycle)
• introduce two auxiliary variables xi and yi;
• introduce the “shifted” copy c′i of ci (whose

variables refer to the next cycle);
• add the clause (¬xi ∨ ci) to the solver (this is

equivalent to xi =⇒ ci);
• for each literal a′i,j of c′i, add the binary clause

(yi,¬a′i,j) to the solver (these clauses are
equivalent to c′i =⇒ yi)
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3) Initialize it← 0, Iit ← C;
4) while Iit 6= ∅ do:

a) If Sat({(x1), ..., (x|Iit|), (¬y1 ∨ . . . ∨
¬y|Iit|)}) is UNSAT report “I , Iit is
invariant”;

b) Else, let α denote the satisfying as-
signment that respects the assumptions
(x1), ..., (x|Iit|), (¬y1 ∨ . . . ∨ ¬y|Iit|). Form
Iit+1 by removing from Iit all clauses with
indices corresponding to each yi assigned to
0 in α (see Remark 3.1), update xi’s and yi’s
accordingly, and proceed with it← it+ 1;

5) Report “no invariant”;

Remark 3.1:

• Observe that in Step 4b there must be at least one
such yi assigned to 0, thus in the worst case the
number of iterations and SAT calls until termination
is bounded by |C|− |I|. In practice, however, many
yi’s may be assigned to 0 at once, making the loop
terminate faster.

• Note that all SAT queries involve only a single copy
of transition relation.

• Note that the invariant finder can take any set of
clauses as the candidate set C, thus there is no
need to worry about validity of the previously saved
information.

Claim 3.1: Invariant finder always outputs the maxi-
mum inductive invariant subset I ⊆ C (which may be
an empty set).

Proof: First, observe that there is a unique max-
imum inductive invariant subset; indeed, it is easy to
verify that if A and B are inductive invariant subsets of
C, then so is A ∪ B.

Let I be the output of the invariant finder upon
termination. By definition, since in every iteration we
check if Iit ∧ T =⇒ I ′it, the set I with which the
loop terminates is clearly inductive invariant, thus we
only need to argue that it is maximal. Let I∗ denote the
maximal invariant subset of C, and assume towards a
contradiction that I∗ 6⊆ I. Let it denote the first iteration
in which some clause of I∗ was removed from Iit, that
is, I∗ ⊆ Iit but I∗ 6⊆ Iit+1 (such it must exist since I∗
was initially contained in I0). This means that Iit ∧ T
did not imply I∗, contradicting the inductiveness of I∗.

Incremental verification: First, let us consider the
(more challenging) case where the design passes the
verification, namely, P holds in all reachable states
of M . As explained in Section II-C, ic3 produces an
invariant set I of clauses, and we can save it (in form of

a standard CNF file) as the “proof of correctness” (see
Observation 2.1).

Now assume that we want to re-verify P on the same
model; this amounts to verifying the validity of Fi,
which is done in just three SAT calls:

1) I =⇒ I?
2) I ∧ T =⇒ I ′?
3) I =⇒ P ?

To summarize, if the saved proof is re-used for the same
model, the verification is completed almost immediately
(see Table I).

In case a model or a property are modified, our
algorithm invokes the invariant finder to extract from
I the largest invariant subset Î (with respect to the
updated model), and injects it into ic3’s data-structure as
described in Section II-C. In particular, after this step,
ic3 does not need to rediscover all the invariant clauses
that hold both in the original and modified models. We
note here that discovering a single invariant clause in
ic3 requires several (often more than its size) SAT calls;
hence, quite naturally, the amount of work that is saved
by re-using the previous verification results corresponds
to the amount of overlap between the two models.

Now let us consider the case where the verification
fails and a counterexample is produced. We can store
the set of counter-examples generated by ic3, in form
of the aforementioned partial assignments α0, . . . , ak,
and the set of clauses C ,

⋃k
i=1 Fi. To check if a

concrete counter-example can be extracted in a future
run (on a possibly modified model) we make k+1 SAT
calls, essentially asking for a sequence s0, . . . , sk of full
assignments to X with the following properties:

1) si is an extension of αi for all i ≤ k, and in
particular, s0 ∈ I;

2) 〈si, si+1〉 ∈ T for all i < k;
3) sk /∈ P .
If a counterexample cannot be extracted, we proceed

with the usual execution of ic3, but first we attempt,
using the invariant finder, to find an inductive invariant
subset in C to use it as a starting point of ic3.

It is important to make the partial assignments
α0, . . . , αk as small as possible (in the initial run), so that
extracting a concrete counter-example becomes possible
even when the modified model significantly differs from
the original model. In Section III-C we discuss the
improvements we added to the ic3 algorithm that enable
to “shrink” the partial assignments computed by ic3.

C. Shrinking partial assignments with solver
We introduce an additional improvement of the algo-

rithm allowing us to further shrink the partial assign-
ments produced by ic3. The goal of this improvement is
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to enlarge the set of valid counter-examples as discussed
in Section II-D.

For some i < k, all αi states can reach some αi+1

state in one step. Shrinking αi results in an increase of
the number of states that can lead to some αi+1 state,
and is done using a single SAT call (and in fact this SAT
call only involves BCP).

Specifically, given a pair 〈s, s′〉 ∈ T and the cor-
responding input values β (under which the transition
(s = α ∧ inp = β) → s′ holds), we can shrink
α to a partial assignment so that all α states lead to
s′ in one transition. To this end, we query the solver
(knowing in advance that the answer is negative) if
(s = α) ∧ (inp = β) ∧ 〈s, ŝ′〉 ∈ T ∧ (ŝ′ 6= s′) is
satisfiable. The first condition is passed to the solver
in form of |α| assumptions, so that it also returns the
minimal subset of those assumptions required for the
conflict (see Section II-B). Then we can safely remove
from α all those indices that are not required for reaching
the conflict.

We conjecture that the reason why this additional step
is effective is that instead of only looking at the structure
of the model (as in ternary simulation) it takes into
account all learned information (invariants from ic3 and
the learned clauses from solver) to rule out unreachable
states that do not lead to any αi+1 state.

IV. EXPERIMENTAL RESULTS

We implemented our algorithm for incremental verifi-
cation in IVE (incremental verification engine), which
is a part of the formal verification platform of IBM
[Rul], [Six], and measured its performance on known
benchmarks and on a real IBM hardware design.

HWMCC’10 benchmarks

The first set of experiments is based on the bench-
marks used in the Hardware Model Checking Competi-
tion [HWM10] that was a part of the first Hardware Veri-
fication Workshop (HVW’10), affiliated with Computer-
Aided Verification (CAV) Conference in 2010. We note
that, out of the 758 publicly available benchmarks, IVE
successfully verified 713 within 15 minutes, while the
winner of the HWMCC’10, an engine abcsuperprove
[abc] from Berkeley, verified 717 benchmarks within 15
minutes on comparable machines4. In other words, the
performance of IVE is comparable to the state-of-the-art
model-checking tools.

For each benchmark, we measured the running time
of the verification procedure (setting 1 hour time limit),

4HWMCC’10 used Intel Quad Core 2.6 GHz with 8 GB; we used
Intel Quad Core 2.6 GHz with 2 GB.

and the running time of incremental verification of the
same benchmark (in other words, re-verification based
on the results of the previous verification procedure).
This setting emulates the most common scenario in
incremental verification, where the changes introduced
into the design do not, in fact, affect the verification
at all, either because they fall outside of the cone of
influence of the verified properties, or because they are
“filtered out” during the preliminary reductions.

For each benchmark, we also measured the running
time of IVE with incremental verification after small
changes were introduced into the design. We simulated
introduction of a small change by a random mutation
in 1% of the assignments in the original instances
(represented in AIG form) as follows. An assignment
of the form res = `1&`2 was selected with probability
0.01 and mutated into one of the following assignments:
{res = 0, res = 1, res = ¬`1&`2, res = `1&¬`2,
res = ¬`1&¬`2, res = `1, res = ¬`1, res = `2,
res = ¬`2 } with equal probability. In the absence of
a domain-specific knowledge about the structure of the
design, random mutations are the best approximation
of small changes introduced into the design, and they
also ensure that the experimental results are not biased
towards any specific type of changes. We then measured
the running time of IVE with incremental verification for
the original benchmarks after the mutated ones and of
the mutated ones after the original ones. In each case, the
results of the previous verification were saved and used
by the subsequent verification. The detailed results are
presented in the full version of this paper [Rul]; Table I
contains their summary. The row “overall” contains the
results summarized for all benchmarks together, thus
the speed-up represents a speed-up that is achieved
by model-checking all benchmarks one after another.
The overall speed-up is by the factor of 76 for re-
verification of the same instance, and is by the factor
of 3 after a small mutation was introduced. The median
speed-up shows only a very slight improvement of our
technique compared to re-verification without using the
previous results. However, this is mostly due to the fact
that median is dominated by very light instances, that
constitute the vast majority of HWMCC’10 benchmarks.
The most significant improvement in the running time
was achieved for heavy instances: indeed, the median
speedup (rerun vs. original) computed on instances that
take > 60 seconds to solve is larger by two orders of
magnitude (277 vs. 1.2).

IBM hardware design

In the second set of experiments, based on a real
and up-to-date IBM hardware design, we measured the
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original rerun speedup original after mutated speedup mutated mutated after original speedup
Overall: 30597.01 402.89 75.92 10070.84 3.04 50294.46 37348.26 1.35
Average 42.49 0.55 114.06 13.98 1.80 69.85 51.87 2.95
Median 0.175 0.11 1.20 0.13 1.43 0.43 0.15 3.00

TABLE I
SUMMARY OF RUNTIMES ON 721 BENCHMARKS FROM HWMCC’10.

benefit of our algorithm when the changes between
the two verification runs are significant and represent
real changes in the design. Namely, we checked our
algorithm on two versions of a model composed of a
hardware design, augmented with a driver and a set of
properties. The design implements logic that responds
to requests from several threads. The two versions differ
only in the driver: In the first (1T : 19,822 state vari-
ables and 299,185 gates before reductions; 2,187 state
variables and 55,756 gates after reductions) the driver
allows requests from a single thread, disabling all others.
In the second version (8T : 19,831 state variables and
300,316 gates before reductions; 2,249 state variables
and 56,458 gates after reductions), the driver enables
8 requesting threads. Therefore, in the first version
all interleavings and priority-based decisions between
threads are disabled, creating a significant difference in
behaviors between the first and the second version. The
verification suite for the design consists of 17 temporal
logic properties. Table II presents the results of executing
IVE with incremental verification implementation for
both versions on all properties, including the original
running time, the re-verification running time, and the
running time of verifying one model after another.

The most important number in Table II is the accu-
mulated speed-up, presented in the row ‘‘overall”. This
number represents the performance gain of incremental
verification in the scenario where the whole verification
suite is re-checked in the design, which is a typical
scenario after a bug fix and in regression verification.

The accumulated speed-up between the original run of
model 1T and its re-run, presented in the row ‘‘overall”,
is by the factor of ≈ 30, compared with re-run of the
verification “from scratch”; the accumulated speed-up
between the original run of model 8T and its re-run is by
the factor of ≈ 61. These numbers model a performance
gain in a typical scenario of regression verification, when
the changes do not affect the properties at all.

The accumulated speed-up between the original run
of model 1T and the run of model 1T after model 8T
is by the factor of ≈ 3, and the accumulated speed-up
of model 8T after model 1T is by the factor of ≈ 2.
These numbers show that even if a change in the model
is wide and applies to all behaviors of the design, using
the incremental verification techniques has the potential

of reducing the running time quite significantly. The
difference in speed-up between verifying the 8T model
after 1T and the 1T after the 8T is due to the fact that
1T has a small fraction of behaviors of 8T , and hence
the proof of 1T is only a small step in proving 8T ; on the
other hand, the correctness of 1T for most part follows
from the correctness of 8T .

It is clear that in some cases, incremental verifi-
cation techniques will not be beneficial in improving
performance; after all, our algorithm incurs an additional
computational cost in analyzing stored data. It is easy to
see that this situation occurs when the instance is solved
almost immediately, thus making the time required for
analyzing the stored data very significant in the overall
performance estimation – see, for instance, some of the
results for properties ϕ07 and ϕ08 in Table II. We also
note that the speed-up of this set of experiments is in
most cases significantly smaller than the speed-up of
the HWMCC’10 benchmarks; this is, again, due to the
contribution of the time required to analyze the stored
data in this relatively big design.

Overall vs. median and average speed-up: The
median and average speed-ups in Tables I and II are
affected by the (negligible) speed-up achieved on very
light instances, where the analysis of the stored data is
the major component in the overall verification. On the
other hand, the overall speed-up is computed by dividing
the sum of the running times of the original verification
by the sum of the running times of incremental verifi-
cation of all instances. Thus, the speed-up achieved on
heavy instances, which are also the most important target
for the application of incremental verification, is more
accurately represented by the overall speed-up column.

The order of verification: Table I presents the re-
sults of executing incremental verification of the original
designs after the mutant designs and vice versa. It is
easy to see that the speed-up achieved by re-verifying the
original design after the mutant design is larger (by the
factor of 2) than the speed-up achieved by re-verifying
the mutant design after the original. It is hard to say
whether this difference is meaningful; SAT solvers are
based on heuristic techniques, and the correlation of the
size of an instance with the time required to solve it is
not always clear. We conjecture that the difference may
stem from the fact that mutations create SAT instances
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property 1T 1T after 1T speedup 1T after 8T speedup 8T 8T after 8T speedup 8T after 1T speedup
φ01 1 0 ∞ 1 1.00 1 2 0.50 2 0.50
φ02 2330 299 7.79 3336 0.70 5603 129 43.43 1742 3.22
φ03 95 96 0.99 124 0.77 86 48 1.79 58 1.48
φ04 4913 91 53.99 1777 2.76 13458 234 57.51 1231 10.93
φ05 204 12 17.00 238 0.86 786 83 9.47 630 1.25
φ06 77 19 4.05 863 0.09 112 7 16.00 13 8.62
φ07 1 3 0.33 1 1.00 6 2 3.00 2 3.00
φ08 0 2 0.00 1 0.00 0 1 0.00 0 ∞
φ09 13636 332 41.07 3848 3.54 13602 121 112.41 10291 1.32
φ10 8 29 0.28 174 0.05 15 1 15.00 0 ∞
φ11 13823 79 174.97 2 6911.50 17421 55 316.75 9658 1.80
φ12 17 96 0.18 37 0.46 9 5 1.80 3 3.00
φ13 129 1 129.00 139 0.93 106 21 5.05 2 53.00
φ14 177 72 2.46 220 0.80 108 13 8.31 3 36.00
φ15 135 8 16.88 170 0.79 250 1 250.00 5 50.00
φ16 651 6 108.50 30 21.70 1814 36 50.39 32 56.69
φ17 407 93 4.38 749 0.54 779 116 6.72 772 1.01

Overall 36605 1238 29.57 11710 3.13 54160 883 61.34 24447 2.22

TABLE II
TWO VERSIONS OF AN IBM DESIGN – ONE THREAD AND EIGHT THREADS. ORIGINAL AND RERUN TIMES IN SECONDS.

that do not always correspond to real designs. Since SAT
solvers are fine-tuned to efficiently solve real designs,
introducing a small mutation can cause a significant
increase in the number of clauses that SAT solver is
required to learn in order to solve the instance.

V. CONCLUSIONS

We described a novel algorithm for incremental
model-checking of hardware. Our algorithm is partially
based on an improved version of the ic3 algorithm and it
relies on the results of the previous verification procedure
in order to improve the complexity of verification after a
small change was introduced in either the design or the
property. Our algorithm applies both to the case where
the original model-checking procedure failed producing
a counter-example, and to the case where the original
model-checking was successful producing a proof of
correctness. The algorithm requires storing a minimal
amount of information from the proof or a counterex-
ample, hence the overhead for the initial verification is
negligible. We implemented our algorithm in IVE, an
engine which is a part of the formal verification platform
of IBM. We measured the performance improvements
obtained by our implementation on publicly available
benchmarks and on a real IBM design. The performance
of IVE engine is on par with the state-of-the-art model
checkers on known benchmarks, and we demonstrate that
with our implementation we are able to achieve a speed-
up of up to two orders of magnitude on “heavy” instances
for re-verification after a small change.

To conclude, our technique clearly presents significant
performance improvements, even when the difference
between the original model and the changed model

is significant. In fact, when we compare the original
model-checking execution and re-verification of the same
model, the speed-up is usually huge. We consider this
result to be especially significant, because in the standard
re-verification scenario – regression verification – the
changes in the design are usually very small, and are
often outside the cone of influence of the verification
procedure.
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Abstract—An incremental algorithm for model checking
progress properties is proposed. It follows from the following
insight: any SCC-closed region of a system’s state graph can be
represented by a sequence of inductive assertions. Each iteration
of the algorithm selects a set of states, called a skeleton, that
together satisfy all fairness conditions; it then applies safety
model checkers to attempt to connect the states into a reachable
fair cycle. If this attempt fails, the resulting learned lemma
takes one of two forms: an inductive reachability assertion that
shows that at least one state of the skeleton is unreachable,
or an inductive wall that defines two SCC-closed regions of
the state graph. Subsequent skeletons must be chosen entirely
from one side of the wall. Because a lemma often applies more
generally than to the one skeleton from which it was derived,
property-directed abstraction is achieved. The algorithm is highly
parallelizable.

I. INTRODUCTION

An incremental-style analysis, one that generates many

intermediate lemmas on the way to a proof, yields property-

focused abstraction, speed, and the possibility of parallelism.

IC3 demonstrated the power of incrementality for safety model

checking [1]. In this paper, we introduce an incremental

algorithm for model checking progress properties [2] that

harnesses safety model checkers.

While alternatives exist for lifting safety model checkers to

progress properties [3], incrementality in itself is a worthwhile

goal—whether one is using parallel resources to implement

a portfolio of many safety model checkers [4] or applying

the resources to accelerate computation [1]. In addition to us-

ing computational resources well, an incremental-style model

checker generalizes from specific cases of why the property

might not hold to intermediate lemmas about aspects of the

system that are relevant to proving the property. In this way, it

achieves property-focused abstraction of the system, and like

a human verifier, it invests relatively little computation into

discovering each lemma.

An SCC-closed region of the state graph is such that

every SCC (strongly connected component) is either entirely

contained in the region or entirely disjoint from the region. The

fundamental insight for making an incremental progress model

checker is that any SCC-closed region of a system’s state graph

can be represented by a sequence of inductive assertions. In

other words, intermediate lemmas to characterize the SCCs

of the state graph can take the form of inductive assertions.

Each assertion defines a one-way wall that transects the state

SCC graph. Given a selection of states, called a skeleton,

that together satisfy the fairness conditions, one can prove via

safety queries that (1) at least one of the states is unreachable

from the system’s initial condition; that (2) one of the skeleton

states cannot reach another, providing a one-way wall; or that

(3) the skeleton can actually be completed to form a “lasso”-

shaped counterexample. How to use the second outcome is the

crux of the algorithm.

Suppose that P is the one-way wall, an inductive proof that

one skeleton state cannot reach another. Any fair cycle must

occur completely on one side of the wall: all of its states

must either satisfy P , or they must all satisfy ¬P . For once

a path crosses the wall, it cannot return. Hence, when finding

fair cycles, the transition relation can be strengthened by the

constraint P ↔ P ′, which excludes transitions that cross the

wall P . (Technically, because P is inductive, only ¬P → ¬P ′

is necessary.) This constraint is the incremental information

expressed by the lemma P . Subsequent skeletons must be

chosen from one side of the wall or the other, and eventually

every reachable arena defined by the sequence of walls must

become unfair, if the progress property indeed holds. A crucial

characteristic of a proof, when IC3 is used as the safety model

checker, is that it potentially splits many arenas, not just the

arena from which the skeleton was selected. Hence, not every

arena need be examined explicitly.

After introducing the problem domain (Section II), Section

III describes the algorithm in detail. Then Section IV relates

the proposed algorithm to previous work. Finally, Section

V investigates empirical characteristics of the algorithm in

relation to other well-known techniques.

II. BACKGROUND

Following standard practice, we represent a finite-state

system as a tuple S : (i, x, I(x), T (i, x, x′)) consisting of

primary inputs i, state variables x, a propositional formula

I(x) describing the initial configurations of the system, and

a propositional formula T (i, x, x′) describing the transition

relation. Primed state variables x′ represent the next state.

A state of the system is an assignment of Boolean values

to all variables x and is described by a cube over x, which,
generally, is a conjunction of literals, each literal a variable

or its negation. An assignment s to all variables of a formula

F either satisfies the formula, s |= F , or falsifies it, s 6|= F .

If s is interpreted as a state and s |= F , we say that s is
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an F -state. A formula F implies another formula G, written

F ⇒ G, if every satisfying assignment of F satisfies G.

A clause is a disjunction of literals. A subclause d ⊆ c is a

clause d whose literals are a subset of c’s literals.
A run of S, s0, s1, s2, . . ., which may be finite or infinite in

length, is a sequence of states such that s0 |= I and for each

adjacent pair (si, si+1) in the sequence, ∃i.(i, si, s
′
i+1) |= T .

That is, a run is the sequence of assignments in an execution

of the transition system. A state that appears in some run of

the system is reachable.

An invariance property P (x), a propositional formula,

asserts that only P -states are reachable. P is invariant for

the system S (that is, S-invariant) if indeed only P -states

are reachable. If P is not invariant, then there exists a finite

counterexample run s0, s1, . . . , sk such that sk 6|= P . An

invariance property P (x) is inductive if

1) (initiation) every initial state satisfies the property:

I(x) ⇒ P (x); and
2) (consecution) every transition from a P -state leads to a

P -state: P (x) ∧ T (i, x, x′) ⇒ P (x′).

An assertion F is inductive relative to another assertion G,

possibly containing primed variables, if

1) every initial state satisfies F : I(x) ⇒ F (x); and
2) F satisfies consecution under assumption G:

G(x, x′) ∧ F (x) ∧ T (i, x, x′) ⇒ F (x′).

Relative induction is useful for gaining knowledge about a

system in an incremental fashion [2].

Checking a safety property of S is reducible to checking an

invariance property. While the work described in this paper

makes use of safety model checkers, the primary focus is on

analyzing progress properties [2]. For this purpose, we need

to introduce fairness into our system models. A Büchi fairness

condition B(x) of a system S is a propositional formula that

constrains the infinite runs of S: infinite run s0, s1, s2, . . . is a
computation of S if infinitely many si satisfy B, si |= B. We

represent a system with fairness conditions as the augmented

tuple S : (i, x, I(x), T (i, x, x′), B : {B1(x), . . . , Bℓ(x)}).
The fundamental question that this paper addresses is that of

language emptiness: Does S lack computations?

Model checking LTL properties of systems motivates this

problem. Deciding whether a system S satisfies LTL property

P is reducible to checking language emptiness of the system

constructed as the parallel composition of S and the Büchi

automaton A for ¬P . The resulting system inherits the fairness

conditions of S as well as one additional fairness condition,

the Büchi acceptance condition of A.

A fairness condition B of S is weak [5] if for every

computation of S there exists k such that i ≥ k ⇒ si |= B.

Weak fairness conditions correspond to persistence properties

[2]. Multiple weak conditions can be reduced to just one weak

condition so that the search for fair cycles can be restricted

to the reachable states that lie on some cycle where the weak

condition holds globally. When a fairness condition of S is

inherited from a Büchi automaton, its strength is at most the

strength of the fairness condition of the automaton [6].

Because S is finite-state, a nonempty language described by

system S with fairness conditions must have a computation

that takes the form of a reachable fair cycle: a “lasso”

consisting of a “stem” (a finite run) from an initial state s0,

s0 |= I , to an intermediate state si, and a “loop” (also a finite

run) from si back to itself that contains at least one state sj

satisfying each fairness condition Bj . Our algorithm searches

for such reachable fair cycles.

III. Fair: AN INCREMENTAL ALGORITHM

A. The Basic Algorithm

The algorithm works in the following manner. It iteratively

executes a skeleton query to obtain a set of states that together

satisfy all fairness conditions. If the query is ever unsatisfiable,

the algorithm concludes that the language of S is empty. It

next attempts to complete the skeleton into a reachable fair

cycle by executing a set of safety model checking queries

to connect the initial states to one state of the skeleton, and

each state of the skeleton to another in such a way as to

create a cycle. If it succeeds, then it has found a reachable

fair cycle and thus concludes that the language of S is not

empty. Otherwise, one of the safety queries fails and returns an

inductive proof. If the stem query, which attempts to connect

an initial state to a skeleton state, fails, then the proof provides

new global unreachability information. If a cycle query, which

attempts to connect one skeleton state to another, fails, then the

proof yields new information about the SCC structure of S. In
particular, the proof says that a fair cycle, if one exists, must

occur completely on one side or the other of the inductive

proof (that is, all states of the cycle must satisfy the proof,

or all states must falsify it). Both situations thus cause the

algorithm to make progress, so that it eventually must find a

reachable fair cycle or conclude that one does not exist.

In detail, consider system S : (i, x, I(x), T (i, x, x′), B :
{B1, . . . , Bℓ}). Let R denote a growing list of global reacha-

bility assertions, each of which is inductive relative to its pre-

decessors and provides information about unreachable states.

Let W denote a growing list of walls that no fair cycle can

cross, each of which satisfies consecution relative to previously

generated walls and R, as discussed in detail later. Walls

represent learned information about the SCC structure of the

state graph of S. A set of walls W defines 2|W| (possibly

empty) arenas; each arena (and, consequently, any union of

arenas) is SCC-closed. Both lists are empty initially.

The skeleton query returns a skeleton or, if unsatisfiable,

indicates that the language of S is empty. A skeleton consists

of a set of states that together satisfy all fairness conditions.

The query requires (in its complete form, but see Section III-B)

one copy of x for each fairness condition B ∈ B:

∧

B∈B




B(xB) ∧
∧

R∈R
R(xB)

∧
∧

W∈W
(cW → W (xB)) ∧ (¬cW → ¬W (xB))




The first line of the query requires that the states of a model

be such that each fairness condition is represented by states
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not known to be unreachable. The second line requires that all

states of a model come from the same arena, that is, are on

the same side of each wall W ∈ W . The choice variables cW

for W ∈ W achieve this requirement: a model can only have

one assignment to each choice variable, and that assignment

determines on which side of each wall the skeleton appears.

If the skeleton query is satisfiable, any model describes

some set of states {s0, . . . , sn−1}, where n ≤ |B|, that satisfy
the fairness conditions, that are not known to be unreachable,

and that are not separated by any previously discovered wall

(n < |B| if some state satisfies multiple fairness conditions

and appears more than once). The task, then, is to attempt

to complete the skeleton into a reachable fair cycle or, if

the attempt fails, to learn new information in the form of an

inductive reach assertion or a wall about why any reachable

cycle of S cannot contain all of the states of the skeleton.

Any safety model checker that produces counterexample

runs or inductive proofs can address this task, although we

discuss later why proofs from certain model checkers, like

IC3, make better walls. Let reach(S, C, F, G) be a function

that accepts a system S, a set of constraints C(x, x′) on the

transition relation, an initial condition F , and a target G; and

that returns either a counterexample run from an F -state to a

G-state, or an inductive proof P (x) separating F from G, that

is, such that

• F (x) ⇒ P (x),
• P (x) ⇒ ¬G(x), and
• C(x, x′) ∧ P (x) ∧ T (i, x, x′) ⇒ P (x′).

Notice that P is inductive relative to the constraints C.

For an n-state skeleton, n + 1 reach-queries are required.

One stem query determines if the skeleton is reachable, given

the learned reachability information R:

reach

(
S,

∧

R∈R
R(x), I, s0

)
. (1)

This query asks whether s0 is reachable from an I-state. While

the previous reachability information is not necessary, it is

provided to restrict the search. One could instead pose the

more general query in which the disjunction of all skeleton

states,
∨n−1

i=0 si, is the target; or pose n queries, one for each

state si, depending on computational resources. If an instance

of a stem query is unsatisfiable, the proof is added to R.

The remaining n queries are cycle queries, which determine

if each state si can reach a successor si⊕n1, where ⊕n is

addition modulo n. One can pose up to n2 queries if the

computational resources are available. These queries are more

complicated than the stem query because more previously-

derived information can be used.

A naive cycle query takes the following form:

reach (S, true, si, si⊕n1) . (2)

If si cannot reach si⊕n1, then the query returns an inductive

proof P : si ⇒ P , P ∧ T ⇒ P ′, and P ⇒ ¬si⊕n1. P is a

wall: no cycle can cross it because no P -state has a ¬P -state

successor. While a ¬P -state can have a P -state successor,

crossing the wall is pointless when searching for a cycle since

it cannot be crossed again. P can thus be added to W , the list

of walls that no fair cycle can cross.

However, this query does not exploit known information.

For a cycle query, each wall W ∈ W constrains the transition

relation as follows:

• If no W -skeleton (a skeleton whose states are W -states)

exists, then ¬W ∧ ¬W ′.
• If no ¬W -skeleton exists, then W ∧ W ′.
• Otherwise (if both sides contain skeletons), W ↔ W ′.

Unfortunately, encoding the full constraints in the cycle

queries requires a quantifier alternation. Instead, each new wall

W is tested to learn a new constraint on T ; such constraints

are collected in the constraint list C:
• If no W -skeleton exists, then add ¬W ∧ ¬W ′. (Techni-

cally, because W is inductive, ¬W ′ is sufficient.)
• If no ¬W -skeleton exists, then add W ∧W ′. (Technically,

W is sufficient.)

• Otherwise, add W ↔ W ′. (W ′ → W is sufficient.)

• Optionally, if W is determined (heuristically) to be un-

interesting for constraining T , do not add a constraint.

It is also possible to exclude regions defined by multiple

walls—even individual arenas—that lack fair skeletons. How-

ever, this more general heuristic, while potentially useful at the

beginning of the analysis, is too expensive for general use. The

list C is used to constrain T during the cycle query:

reach

(
S,

∧

R∈R
R ∧

∧

C∈C
C, si, si⊕n1

)
. (3)

This query is satisfiable precisely when the naive cycle

query (2) is satisfiable. However, a proof discovered during

evaluating this query need only be inductive relative to the

information contained in R and C rather than on its own.

There is one technicality: when there is only one state in

the skeleton, the form of the single cycle query is different. A

single-state skeleton cycle query determines if a state s0 can

reach itself nontrivially, which is stated as a query determining

whether the successors of s0 can reach s0:

reach

(
S,

∧

R∈R
R ∧

∧

C∈C
C, post(S, s0), s0

)
. (4)

(Safety model checkers such as IC3 can be modified in such

a way that the post-image does not have to be computed

explicitly.) Additionally, a proof P does not eliminate the same

skeleton from further consideration. P , as a wall, separates

s0 (which satisfies ¬P ) from its successors (which satisfy

P ). However, s0 can be selected as a skeleton again. There

are several solutions to avoid this nontermination situation:

(1) constrain the skeleton query so that only states with

some successors in the same arena can be selected, (2) for

a cycle proof P , construct a wall defined by W = P and

¬W = ¬P ∧¬s0 instead of the usual wall defined by W = P
and ¬W = ¬P . More powerful refinements of each of these

solutions are discussed in Sections III-B and III-C.
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If all queries (1) and (3/4) return counterexamples, the runs

are assembled into a computation that takes the form of a lasso,

proving that the language of S is nonempty. Otherwise, a proof

P returned by the stem query provides new global reachability

information, so P is added to R; or a proof P returned by one

of the cycle queries provides new information about the SCC

structure of S, so P is added to the set of walls, W , and a

new constraint may be derived from P and added to C. Then
with this new information, the algorithm again executes the

skeleton query. The new information is sufficient to exclude

the same skeleton from being selected again.

Several aspects of this basic algorithm are nondeterministic

and thus invite further detail and heuristics:

• Selection of the skeleton (Section III-B).

• The order in which the stem query and cycle queries are

executed (Section III-F).

• The proofs themselves (Section III-D).

• Whether to derive a new constraint on T from a wall W .

Technically, none are required for completeness; using

some accelerates the search; and using all can slow the

search. Our implementation derives a new constraint from

W if one side of W lacks skeletons or if W consists of

a single clause.

Section III-E discusses an incomplete but effective method

of discovering information about the SCC structure indepen-

dently of skeletons.

B. Choosing Skeletons

We discuss two enhancements to the basic algorithm. The

first minimizes the number of states in skeletons by formu-

lating the skeleton query to force states to satisfy multiple

fairness conditions when possible. The intuition is that the

discovered walls might explain more if the separated states

satisfy multiple fairness conditions. The second enhancement

adds constraints to the skeleton query to force a selected state

to have at least K-step successor and predecessor sequences

of different states within the arena, unless some state in these

sequences is the state itself. This enhancement effectively

reduces the number of skeletons to consider. For K > 0,
single-state skeletons with no successors cannot be chosen, so

that this enhancement addresses the termination issue raised

in the previous section.

To (heuristically) minimize the number of states selected,

let j : B → {1, . . . , |B|} be a map from the Büchi fairness

conditions of S to indices, where j can map different fairness

conditions to the same index. The skeleton query then has the

following form:

∧

B∈B




B(xj(B)) ∧
∧

R∈R
R(xj(B))

∧
∧

W∈W
(cW → W (xj(B))) ∧ (¬cW → ¬W (xj(B)))




Potentially fewer copies of the assertions are required.

Of course, the query is only complete, in the sense that its

unsatisfiability implies the emptiness of the language of S,
when each condition is mapped to a unique index. Hence, the

modified algorithm finds a map j that (heuristically) minimizes

the number of unique indices while still producing a satisfiable

query. If because of new information the query becomes

unsatisfiable, a new map, which may have the same number of

unique indices but must at least combine conditions differently,

is generated. Only when the query corresponding to a bijective

mapping is unsatisfiable does the algorithm conclude that the

language of S is empty.

The second enhancement reduces the number of poten-

tial skeletons by requiring selected states to have nontrivial

sequences of successors and predecessors. For each unique

index, 2K unrollings of the transition system are asserted with

time-steps ranging from −K to K . An additional constraint

asserts that either the predecessor sequence or the successor

sequence includes x0
j(B) itself, or otherwise that the predeces-

sor sequence and the successor sequence are each loop-free,

yielding the following skeleton query:

∧

B∈B




B(x0
j(B)) ∧

∧

R∈R
R(x−K

j(B))

∧
∧

k∈{−K,...,K−1}
T (i

k
j(B), x

k
j(B), x

k+1
j(B))

∧




∨

k∈{−K,...,−1,1,...,K}
xk

j(b) = x0
j(b)

∨ (loopFree<0 ∧ loopFree>0)




∧
∧

W∈W
(cW → W (x−K

j(B))) ∧ (¬cW → ¬W (xK
j(B)))




where

loopFree<0 =
∧

k∈{−K,...,−2}

∧

ℓ∈{k+1,...,−1}
xk

j(B) 6= xℓ
j(B) ,

and loopFree>0 is similarly defined.

C. Single-State Skeletons

Recall that single-state skeletons must be handled via a

single-state cycle query (4) that determines whether the suc-

cessors of s0 can reach s0. If the query returns a proof P ,

then the successors of s0 must satisfy P since they define the

initial condition, while s0 itself must falsify P since it defines

the target. In other words, the proof P cuts the state space

directly through the transitions between s0 and its successors,

so that s0 is on the edge of an arena.

Consequently, the following propositional query, which asks

if s0 has any ¬P -successor, must be unsatisfiable:

s0 ∧ ¬P ∧ T ∧
∧

C∈C
C ∧

∧

R∈R
R ∧ ¬P ′ .

From the unsatisfiable core one can extract a cube d ⊆ s0

whose ¬P -states lack ¬P -state successors. Its negation can

be conjoined to ¬P to form one side of the wall: ¬P ∧ ¬d,
which eliminates at least s0 from consideration.

If a successor state t of s0 is known, for example, when

K > 0 (Section III-B), a similar query can test whether t has
P -predecessors. If not, one can extract a cube d ⊆ t from the

core and strengthen P with ¬d.
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D. Refining IC3 Proofs

IC3 discovers inductive proofs P in CNF [1]. While ade-

quate as certificates of unreachability, which is what matters

in the context of safety model checking, the proofs can be

unnecessarily large and specific to the query. For example,

a proof from a cycle query contains the clause ¬si⊕n1. We

describe several methods of manipulating an IC3 proof to

make it more general and to reduce its size.

The property can be generalized. Let P = F ∧¬si⊕n1. The

MIC algorithm [7] is applied to ¬si⊕n1 in the context of P
to derive a subclause c ⊆ ¬si⊕n1, yielding proof P = F ∧ c.
The proof P can be strengthened by applying MIC itera-

tively to the clauses of P until no further changes are possible.

We apply this manipulation to global reachability proofs.

The proof P can be weakened. Again, let P = F ∧c, where
c ⊆ ¬si⊕n1. A MIC-like algorithm is applied to drop clauses

of F . First, observe that one can use the unsatisfiable core

of F ∧ c ∧ T ∧ ¬P ′, corresponding to consecution, to reduce

P : any clause of F that is not in the core is unnecessary.

Second, observe that dropping an arbitrary clause d can result

in a non-inductive assertion because d might be required to

support other clauses. In this case, consecution fails with

some counterexample states (t, t′). The set of clauses that

t′ falsifies in the next state must then be dropped, as they

are no longer supported. Dropping these clauses may in turn

require dropping other clauses, and so on. If ever c becomes

unsupported (that is t′ falsifies c′), the process must backtrack

to the last inductive assertion; there, the same steps can be

applied to a different clause unless all options have been

explored. Alternately, if the process converges on an assertion

for which consecution holds, the first observation can be used

to further reduce the clause set. Then the clause-dropping

process can be attempted again.

These manipulations can be combined to heuristically de-

rive a minimally-sized proof: iteratively apply strengthening

followed by weakening until no further changes can be made.

Strengthening may reduce the number of literals, while weak-

ening may reduce the number of clauses.

E. Skeleton-Independent Proofs

Skeletons serve to direct the exploration of the SCC struc-

ture of S; however, some important facts are not easily derived

by this property-directed method.

Consider, for example, a system consisting of a single n-
bit counter whose bits are named b0, . . . , bn−1, where bn−1

is most significant; an output bit o that switches to 1 the first

time that the counter reaches all 1s and then stays at 1; a

fairness condition that asserts that infinitely often ¬o; and an

initial condition in which all bits are 0. The system is unfair

because o = 0 only for the first iteration through the counter’s

values. An ideal proof is constructed as follows:

• Inductive assertion o, since once o becomes 1, it stays

1. No skeleton exists among the o-states, so ¬o ∧ ¬o′

constrains future cycle queries.

• Inductive (relative to ¬o) assertion bn−1, since once bn−1

becomes 1, it stays 1 in the ¬o arena. Both sides of the

proof have skeletons, so bn−1 ↔ b′
n−1 constrains future

cycle queries.

• Inductive (relative to previous walls) assertion bn−2, since

once bn−2 becomes 1, it stays 1 in every arena defined

by the previous two proofs.

• Similarly, inductive assertions bn−3, . . . , b0 are derived in

that order, each holding relative to prior information.

When K > 0 (see Section III-B), the skeleton query becomes

unsatisfiable after these walls are generated: because of the

learned constraint b0 ↔ b′
0, each arena has only one state, and

that state lacks a successor in its arena. The size of the proof

is thus linear in the size of the counter. This proof sequence

discovers the obvious ranking function.

Unfortunately, discovering the first fact with skeletons re-

quires stumbling fortuitously upon the skeleton in which all

bi = 1 and o = 0. This state’s only successor is the state

in which all bi = 0 and o = 1, so an inductive separating

wall is indeed o. However, no other fair state has a successor

in which o = 1, so the resulting walls cannot simply be

o (since the successor must satisfy it) or ¬o (since both

the fair state and its successor satisfy it and thus are not

separated). In other words, their walls must involve bi literals

and be less informative as a result. Discovering subsequent

facts via skeletons requires similarly, although decreasingly,

fortuitous selections; for example, to discover bn−1 requires

examining precisely the one state for which bn−1 = 0 and

whose successor has bn−1 = 1.
In contrast, iteratively testing whether any literal of the state

variables of the system is itself a proof (that is, satisfies conse-

cution relative to known information) produces the linear-sized

proof quickly. Let ℓ be such a literal. Then if the formula
∧

R∈R
R ∧

∧

C∈C
C ∧ T ∧ ℓ ∧ ¬ℓ′ (5)

is unsatisfiable, ℓ obeys consecution: once ℓ is true, it is true

henceforth. In this case, ℓ is a wall.

While this heuristic is incomplete, its effectiveness on

counters suggests that such simple queries should be exe-

cuted frequently, for example, after each addition to R or

C. Experiments show that on more complicated systems,

several iterations of skeleton-based wall construction create

opportunities to learn new non-skeleton-directed proofs.

In addition to counters, this technique quickly derives

information about property automata for favorable encodings

of the automata’s transition relations. A one-hot encoding,

for example, reveals structural information readily. Predicates

derived from the system description may also be effective

candidates for this heuristic.

F. Executing Queries

The ideal computational environment in which to run this

algorithm is a highly parallel one:

• n + 1 queries must be analyzed until either all yield

counterexample runs or one yields a proof.

• Each query can be analyzed by a portfolio of safety model

checkers, even incomplete methods: based on BDDs [8],
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BMC [9], interpolation [10], IC3 [1], and simulation.

While any counterexample run is informative, only proofs

that are inductive are useful. However, proofs produced

by non-approximating safety checkers (e.g., BDD-based)

will cause fair to derive walls that are only useful in the

arena from which the skeleton was drawn, thus hindering

the algorithm’s ability to generalize from skeletons, a key

characteristic. Hence, we rely on IC3 for proofs.

• IC3 is itself parallelizable.

• As the overall methodology is incremental, multiple

skeletons can be analyzed simultaneously in the same

way that multiple counterexamples to induction can be

analyzed simultaneously in IC3.

However, if parallel resources are unavailable, one observa-

tion has become clear from experimentation: queries must be

analyzed in a time sharing fashion. Since only one query need

be unsatisfiable to rule out a skeleton, a poor time allocation

can cause excessive time to be wasted on finding irrelevant

counterexample runs. Varying the order in which queries are

executed also seems important, so that one fairness condition

is not favored over others or over the stem query.

G. A Summary of the Algorithm

Figure 1 lists pseudocode for the fair algorithm.

Two forms of the skeleton query (skelQ) are used: the

full query at lines 6, 44, and 46, based on the bijection ι
between B and {1, . . . , |B|} defined at line 4; and the skeleton-

minimization version (Section III-B) at line 10, based on the

map j defined at line 8. Notice that the latter version is only

used to enforce a preference on skeletons and not, for example,

to construct C at lines 44-49. In this pseudocode, all queries

use the same K; however, it would be reasonable for the

queries at lines 44 and 46 to use a different unrolling than

K . In particular, since the full version has as many copies of

T as 2K|B|, it may only be practical to use an unrolling of

0 or 1 for these queries, which are executed more frequently

than the one at line 6.

Lines 13-16 correspond to finding a skeleton-independent

proof (Section III-E); if none exist, then this choice is disabled.

Lines 18-25 correspond to choosing a skeleton (Sections III-A

and III-B) and executing the one stem (stemQ) and m cycle

(cycleQ) queries (Section III-F).

Lines 27-50 act on the result of the search for a new proof.

If all (safety) queries returned counterexample runs, then they

can be formed into a “lasso” representing a computation of S
(lines 27-28). Otherwise, if stemQ returned proof P , then P
describes new reachability information (lines 30-32).

Otherwise, if either a skeleton-independent proof P is

discovered (Section III-E) or a cycle query returned proof P ,

then P is a wall, and P and ¬P are SCC-closed regions (lines

34-50). If the skeleton has just one state (m = 0) and K = 0,
then it is necessary to augment ¬P with additional information

(Section III-C), and it might be useful to do so if K > 0 as

well (lines 38-40). Line 40 takes liberties with logic: it says

that ¬P will henceforth be ¬P ∧¬d, so that ¬P is no longer

simply the negation of P . In other words, the list W of walls

1bool f a i r (S : system , K : u i n t ) :

2R := ∅ , W := ∅ , C := ∅
3{ f o r f u l l s k e l e t o n query }
4ι := b i j e c t i o n between B and {1, . . . , |B|}
5

6whi le skelQ (R , W , ι , K ) i s s a t :

7{ f o r s k e l e t o n−m i n im i z a t i o n ( §B) }
8j := map (R , W , K )

9

10whi le skelQ (R , W , j , K ) i s s a t :

11r e s u l t :=

12h e u r i s t i c a l l y choose :

13{ s k e l e t o n−i n d e p e n d e n t p r o o f (§E) }
14l e t ℓ be a l i t e r a l or o t h e r p r e d i c a t e

15such t h a t que ry ( 5 ) i s unsat

16P := ℓ
17a l t e r n a t e l y :

18{ s k e l e t o n−based a n a l y s i s ( §A) }
19s0, . . . , sm−1 := skelQ (R , W , j , K )

20in p a r a l l e l do u n t i l

21a l l y i e l d c o u n t e r e x amp l e s

22or one r e t u r n s a p r o o f :

23stemQ (R , s0 )

24f o r i ∈ {0, . . . , m − 1} :
25cycleQ (R , C , si , si⊕m1)
26

27i f r e s u l t i s a l l c o u n t e r e x amp l e s :

28re turn true {non−empty language}
29

30e l i f r e s u l t i s a p r o o f P f rom stemQ :

31{new r e a c h a b i l i t y i n f o rma t i o n }
32R := R ∪ {P}
33

34e l i f r e s u l t i s a p r o o f P f rom

35a s k e l e t o n −i n d e p e n d e n t s e a r c h

36or a cycleQ :

37{P i s a wa l l : P , ¬P are SCC−c l o s e d }
38i f m = 1 : {§C}
39d := singleCube (R , C , s0 , P )

40¬P := ¬P ∧ ¬d
41W := W ∪ {P}
42i f h e u r i s t i c (P ) :

43{cP i s t h e c h o i c e v a r i a b l e f o r P }
44i f skelQ (R , W , ι , K) ∧ cP i s unsat :

45C := ¬P ′

46e l i f skelQ (R , W , ι , K) ∧ ¬cP i s unsat :

47C := P
48e l s e

49C := P ′ → P
50C := C ∪ {C}
51

52re turn f a l s e { empty language}

Fig. 1. The fair algorithm: Does S have a computation?
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must actually be implemented as two lists, one to hold positive

proofs and the other to hold possibly modified negative proofs.

If P is determined heuristically to be interesting (line 42), then

a C constraint is constructed and added to C (lines 42-50,

Section III-A). Lines 44-45 correspond to the case in which

no skeleton exists on the P side of the wall; lines 46-47

correspond to the case in which no skeleton exists on the ¬P
side of the wall; and lines 48-49 correspond to the typical

case in which both sides have skeletons but the wall cannot

be crossed.

If the skeleton-minimization version of the skeleton query

at line 10 is unsatisfiable, then the full version is tested at line

6; if it is satisfiable, then a new map is constructed at line 8. If,

however, the full skeleton query at line 6 is also unsatisfiable,

then S does not have a computation (line 52).

H. Correctness

We prove the correctness of the fair algorithm. The first

three lemmas formalize the assumption that the safety model

checker is correct.

Lemma 1: A proof is returned for query (1) iff s0 is

unreachable from I , and such a proof excludes s0 and is S-
inductive relative to R.

Hence, no subsequent skeleton contains s0.

Lemma 2: A proof is returned for query (3) iff si⊕n1 is

unreachable from si, and such a proof separates si from si⊕n1

and is S-inductive relative to R and C, with the exception that

it satisfies initiation with respect to si rather than I .
Hence, no subsequent skeleton contains both si and si⊕n1.

Lemma 3: A proof is returned for query (4) iff s0 is

unreachable from its successors, and such a proof separates

the successors of s0 from s0 and is S-inductive relative to R
and C, with the exception that it satisfies initiation with respect

to the successors of s0 rather than I .
Combined with either K > 0 for the technique of Section

III-B or the technique of Section III-C to exclude s0 from the

¬P side of the wall, no subsequent skeleton contains s0.

Besides progress criteria, these lemmas together imply that

a skeleton can be completed into a reachable fair cycle if and

only if all queries return counterexample runs.

Lemma 4: No transition excluded by a constraint C ∈ C is

on a reachable fair cycle.

This lemma is straightforward once one realizes that each

C is derived from (relatively) inductive information. A proof

W from a cycle query observes that no path allowed by the

current C that passes from a ¬W -state to a W -state can be

part of a cycle, as it can never return to a ¬W -state. This

observation is encoded as W ↔ W ′. Additionally, if W -states

(¬W -states) cannot satisfy every fairness condition, then no

path that has a W -state (¬W -state) can be part of a fair cycle.

This observation is encoded as W ∧W ′ (¬W ∧¬W ′). Hence,
induction on the list C proves the lemma.

Another perspective on this lemma is that a cycle query

proof W , by its inductiveness, describes regions W and ¬W
that are SCC-closed with respect to S constrained by C. The
resulting constraint C excludes only transitions leaving an

SCC-closed region or all transitions of an SCC-closed region

that does not intersect some fair condition; hence, no transition

of a fair cycle is excluded.

By similar reasoning, one concludes that, in general, any

fair cycle must be entirely contained in an arena defined by

W-constraints: for each W ∈ W , the entire cycle must satisfy

either W or ¬W . Hence we have the following lemma.

Lemma 5: If the skeleton query is unsatisfiable, then S does

not have a reachable fair cycle.

Together these lemmas imply correctness of the algorithm.

Theorem 1: The algorithm fair always terminates, and it

returns a reachable fair cycle iff the language of S is nonempty.

As suggested in Section III-A, the constraints C that are

used during cycle queries are unnecessary for completeness,

although crucial for the algorithm to be effective in prac-

tice. Lemma 4 states that these constraints do not destroy

soundness. In contrast, all constraints in the skeleton query

corresponding to the members of the sets R and W are

necessary for completeness, as suggested by Lemmas 1-3,

which state how the algorithm makes progress. Each new

reachability assertion R ∈ R eliminates at least one state from

being returned henceforth from a skeleton query; and each new

wall W ∈ W eliminates at least one pair of states (Lemma 2)

or one state (Lemma 3) from further consideration.

IV. RELATED WORK

Several fair cycle detection algorithms have been developed

for symbolic model checking. In this section we compare the

main ones to fair, focusing on two features: the identification

of SCC-closed sets and the ability to generalize from facts

learned about the model.

SCC decomposition algorithms [11]–[13] recursively divide

the states into SCC-closed sets. In that respect, they are the

closest to fair. However, the walls that they derive are local to

the arenas from which SCCs are extracted. Therefore, if the

language of a model is empty, SCC decomposition must break

up all reachable arenas until they become trivial or unfair.

In contrast, fair produces wall that transect the entire state

space; hence, it can prove language emptiness by considering

a number of skeletons that is much smaller than the number

of nontrivial SCCs.

SCC hull algorithms [14], [15] compute an SCC-closed set

that contains all fair SCCs and that is empty if no fair SCC

exists. In its simplest form, an SCC hull is defined by one wall.

(See [15] for hulls defined by two walls.) One side of the wall

is known to contain no fair SCC, and the algorithms move the

wall until the SCCs abutting the wall on the other side are all

fair. While the wall may be moved across very large numbers

of SCCs in one step of the procedure, the restriction to a

small, fixed set of walls prevents SCC hull algorithms from

learning important facts about the structure of the SCC graph.

In addition, SCC hull algorithms converge to a hull before

declaring a language nonempty. In contrast, fair is often able

to home in on a reachable fair SCC well before the entire state

space has been examined. Every skeleton that is examined
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focuses the successive skeleton queries on where the fair SCCs

may lie.

Among the first algorithms for BDD-based cycle detection

is the one of [16] based on the computation of the transitive

closure of the state graph by iterative squaring. The approach

works well for counters, but unlike fair, it is often impractical

because it computes too much information about the model.

In Bounded Model Checking (BMC) [9] cycle detection can

be formulated as a SAT query such that a model of an appropri-

ate formula describes a lasso-shaped path of prescribed length

in the given finite-state system. Deciding that no lasso-shaped

path exists regardless of length requires the computation of

appropriate bounds (e.g., [17]). While this approach does not

fix a skeleton in advance, failure to find a path of a given

length does not directly translate into information about the

SCC-closed sets of the model. By separating the choice of

the skeleton from the attempt to flesh it out to a cycle, fair

incrementally learns inductive lemmas.

The liveness-to-safety conversion of [3] is the most common

approach to prove progress with interpolation-based model

checking [4], [10]. While safety checking is more developed

and arguably better understood than checking for progress

properties, the transformation to safety has several drawbacks:

first, the model’s doubled number of state variables nega-

tively affects some model checkers; second, the nature of

the problem—cycle detection—is not obvious to the model

checker from the encoding; third, the approach is inherently

non-incremental, because it asks the safety model checker for

a single, monolithic proof that there is no fair cycle.

In the D’n’C approach [18], SCC decomposition is applied

to a sequence of increasingly refined abstractions of a system.

If an effective way to choose the abstract models is given, this

approach may be profitably combined with fair to initially

provide it with simple lemmas about the abstractions. Both

methods can leverage the weakness of fairness conditions;

fair, however, can sometimes discover weakness even on large

structures—even, that is, when weakness is not inherited from

the acceptance condition of a small Büchi automaton.

V. EXPERIMENTAL EVALUATION

An implementation of fair was evaluated against other cycle

detection methods on a set of models. Even though fair is

highly parallelizable, the implementation uses only one thread

of execution but employs a time sharing scheme, as described

in Section III-F.

The implementation of skeleton queries differs from the

description of Section III-B: for K = 0, one forward and

no backward unrolling is used; for K = 1, two forward and

one backward unrollings are used; and so on. Therefore, it

only adds a clause as in Section III-C if it provides additional

information.

The skeleton-minimization heuristic of Section III-B is

implemented as a search: map construction is guided by

intermediate partial skeleton queries based on partial maps.

If a partial map corresponds to an unsatisfiable query, the last

assignment of an index to a fairness condition is incremented,

potentially extending the range of the partial map by one. Of

course, if the assignment is already onto {1, . . . , |B|}, then
the standard skeleton query is also unsatisfiable, and the proof

is complete. Once a map is constructed, it is used until the

corresponding skeleton query becomes unsatisfiable, at which

point a new map is constructed. A separate full skeleton query

is used throughout execution, as described in Section III-G.

The implementation also checks if each proof returned by

a cycle query is actually inductive with respect to the system,

and if so, the proof is upgraded to a reachability proof. While

the benchmarks did not reveal if this check is worthwhile, it is

inexpensive. Finally, only IC3 is used to answer safety queries,

and its proofs are refined as described in Section III-D.

Unlike the case of safety properties, there are no widely

accepted benchmark sets for progress properties. Moreover,

models of practical import are difficult to come by. The

evaluation therefore relies on models that have been identified

in the literature as challenging for certain approaches or

that present features that one may find combined in real-life

problem instances. The abq, cnt, and jc models were written

for this evaluation; the remaining ones were adapted from [19].

Table I reports the results of the experiments, which were

run on machines with one 2.67 GHz Intel Core i5 CPU and 8

GB of memory each. CPU times are in seconds. The timeout

was set at 7200 s. For each model, the table shows whether

the language is empty, the number of latches in the cone of

influence of the fairness conditions, the number of 2-input

AND gates after combinational simplification, and the number

of fairness conditions (with the number of weak conditions in

parentheses). Next, the results for fair are shown: in the latter

three columns, for 0 ≤ K ≤ 2 with the skeleton-minimization

heuristic enabled, the CPU time and the number of skeletons

examined are reported. If fair timed out (indicated by a dash)

the number of skeletons examined up to that point is given.

The first column for fair shows similar results for K = 0 with

the skeleton-minimization heuristic disabled.

The remaining columns show results for other language

emptiness algorithms. GSH, LS, and DnC are the SCC hull

method of [15], the SCC decomposition method of [12],

and the D’n’C algorithm of [18] as implemented in the

lang empty command of VIS 2.3 [20] (run with dynamic

variable ordering enabled and default settings except that

D’n’C is run without preliminary reachability analysis). These

three methods were chosen for inclusion in the table because

they represent well the gamut of BDD-based algorithms and

because GSH and D’n’C without reachability performed better

than the others that were tried.

Finally, the group of columns under LTS refers to the

liveness-to-safety approach of [3], with reachability checked

with interpolation as implemented in ABC [4] (ITP), with

IC3, and with ABC. For ITP, the parameters controlling ABC

were set to disable its IC3 implementation and to reduce

the chance of inconclusive runs. A question mark in the ITP

column signals that ABC nevertheless reported the problem as

“undecided” before its time was up. For ABC, the parameter

controlling its use of its IC3 implementation was set to allow
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TABLE I
EXPERIMENTS

fair BDD-based LTS
model empty latches gates |B| K = 0∗ K = 0 K = 1 K = 2 GSH LS DnC ITP IC3 ABC

abq2mf yes 35 383 4(1) 1/24 1/12 1/8 1/5 1 1 1 – 2 8
abq4mf yes 67 745 6(1) 3/37 3/39 2/8 3/9 3 – 7 – 11 40
abq8mf yes 131 1469 10(1) 23/182 168/67 16/14 21/14 2794 – – – 373 157
abq2f yes 61 747 4(1) 3/30 3/55 2/9 4/3 4 10 1 – 10 20
abq4f yes 119 1471 6(1) 423/221 31/106 13/28 34/46 2890 – 213 – 388 –
abq8f yes 235 2923 10(1) –/75 –/116 5730/84 4384/65 – – – – 6330 –

cnt12 yes 12 68 1(1) 1/0 1/0 1/0 1/0 1 1 0 1 1761 1
cnt32 yes 32 188 1(1) 1/0 1/0 1/0 1/0 – – – ? – –
cnt128 yes 128 764 1(1) 1/0 1/0 1/0 1/0 – – – ? – –

jc12 yes 13 231 1(1) 1/0 1/0 1/0 1/0 1 1 0 9 93 9
jc32 yes 33 631 1(1) 1/0 1/0 1/0 1/0 – – – 16 – –
jc128 yes 129 2551 1(1) 2/0 2/0 2/0 3/0 – – – 805 – –
jc128f no 129 2170 1(1) 2/1 2/1 2/1 2/1 2 2 2 1 1 1

om1 yes 29 810 16(16) –/99 –/202 –/244 –/274 272 – 356 – – –
om2 yes 29 806 16(16) 42/2082 39/2077 42/2083 45/2071 192 – 8 – 236 –
om3 yes 29 803 16(16) 1/0 1/0 2/0 5/0 35 – 25 – 105 –

nim1 yes 27 769 2(2) 1/29 1/32 1/0 1/0 1 174 1 – 20 117
nim2 yes 29 788 2(2) 1309/28 1264/28 1157/18 1457/18 2 120 1 – 1192 177
nim3 no 29 788 2(2) 1/32 1/28 1/3 1/3 1 309 1 1 1 1

gbak yes 37 677 10(1) 25/182 12/172 74/184 26/125 3 7 14 – 97 90

tarb16 yes 79 1109 17(1) 18/166 15/101 17/72 70/79 – – – 60 58 31
tarb32 yes 159 2269 33(1) 146/582 75/204 214/146 956/147 – – – ? – 209

sarb16 yes 50 141 1(1) 1/0 1/0 1/0 1/0 1 1 3 ? 5 7
sarb32 yes 98 269 1(1) 1/0 1/0 1/0 1/0 3 1 – ? 157 79

tf1 yes 30 452 2(1) 1949/5174 393/2222 285/1278 288/1213 8 – 2 – – 281
tf2 no 30 384 2(1) 1/9 1/5 1/2 1/2 2 60 1 1 1 1
tq1 yes 55 756 3(1) 2267/3072 3143/4208 2690/2775 5434/3172 1645 – 3 – – 737
tq2 no 60 771 4(2) 5/27 4/28 4/22 5/26 3056 – 5 2 27 2
fq1 yes 105 1365 5(1) –/2920 –/2596 –/2485 –/1771 – – 336 – – –
fq2 no 120 1546 8(4) 21/41 15/39 25/55 29/44 – – – – 374 30

it to run through the two-hour time limit.

The abq models are interconnected queues with bounded

sources. The cnt models are counters and the jc models are

the “forward jumping counters” of [3]. The om models are

used in [15] to prove lower bounds on SCC hull algorithms.

The nim models are NIM players. The gbak model is a finite-

state version of the bakery protocol. The tarb models are tree

arbiters, while the sarb models are McMillan synchronous

arbiters. The tf, tq, and fq models are versions of the two-

queue example in [21].

The cnt models illustrate fair’s ability to find linear-size

proofs for counters as discussed in Section III-E. This ability

accounts for the good performance of fair on models like

the om and nim (NIM player) sets—in which the original

state graph has many SCCs—or like the jc and tarb (tree

arbiter) sets, in which the composition with a Büchi automaton

breaks the single SCC of the model into a myriad of SCCs.

While computing the transitive closure would be effective for

counters, it would not work on more complex examples.

The om set contains three models that differ only in the

transitions out of unreachable states. For om3, fair quickly

produces an inductive proof that there are no fair SCCs; for

the other two models, however, it has to prove, at a much

higher cost, that such fair SCCs are unreachable. Combining

fair with a global reachability engine, perhaps based on BDDs,

would benefit the analysis for om1 and om2, but was outside

the scope of this evaluation. Yet not relying on full reachability

analysis is partly responsible for fair’s speed in detecting

nonemptiness for tq2 and fq2.

For all four configurations, fair decided either 27 or 28 of

the 30 language emptiness problems and was the only model

checker to solve two of the problems. Behind it, each of GSH,

DnC, and LTS/IC3 solved 21 problems, and LTS/ABC solved

20 problems. Together the BDD methods solved 22 problems,

and the LTS methods solved 26 problems. On 11 models, one

of the fair configurations, typically K = 1, was decidedly

faster than the other methods; on 8 models, one of the other

six methods was decidedly faster. Overall, fair was the clear

winner on this set of models.

It is worth noting that the two models that fair failed to

prove—om1 and fq1—were solved by BDD methods but not

by LTS methods. Furthermore, fair generally dominated the

LTS methods, with the exception of nim2 and tq1, both of

which were, in any case, trivial for at least one BDD method.

In short, fair seems to complement BDD methods and to

dominate LTS methods.

As expected, LS suffered on models with many SCCs, while

LTS/ITP had rather unpredictable performance. For many

models the number of skeletons examined by fair decreased

with increasing K , with the largest jump usually occurring

between K = 0 and K = 1; however, on tarb16 and tarb32,

which have many fairness conditions and thus require large

skeleton queries, fair suffered as K increased.

The skeleton-minimization heuristic of Section III-B is
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effective at finding small skeletons. For K = 0, six of the

models on which the analysis finished required examining

skeletons that have more than one state: nim1 (≤ 2), gbak

(always 3, as there are three disjoint fairness conditions),

tarb32 (≤ 2), tq1 (≤ 2), tq2 (≤ 2), fq2 (≤ 4). Furthermore, it

typically resulted in fewer skeletons, as hypothesized; tarb32

and tf1 are extreme cases.

These illustrative benchmarks indicate the potential of the

fair algorithm. However, only practical experience with a suite

of industrial benchmarks will reveal the best use of skeleton-

minimization, a method for choosing K dynamically, and a

heuristic for choosing when to enrich the C constraint set.

VI. CONCLUSION

We have presented a new incremental algorithm for model

checking progress properties that selects skeletons for fair

cycles and, if it fails to flesh them out, learns inductive

lemmas that divide the states into SCC-closed sets. An initial

implementation shows promise, especially when one considers

that one of the strengths of the proposed approach—that of be-

ing highly parallelizable—was not brought into play. Another

important aspect that awaits exploration is the integration of

the new approach into a multi-engine framework, which has

been shown to be key to robust performance in the case of

safety properties.
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It’s been nearly 30 years since Model Checking was first
proposed as a method to validate hardware designs. Since
then there has been considerable progress in this area and
an active research community has grown around it. While
areas like Software Model Checking and Hybrid Systems
Model Checking are thriving, it seems there hasn’t been much
progress or activity in the area of Hardware Model Checking
(HMC) itself lately. If we examine the proceedings of con-
ferences like CAV, TACAS, or even FMCAD the number of
submissions dealing with hardware model checking has gone
down drastically compared to 10-15 yrs ago. But verification
of hardware designs continues to be a pressing problem – if
anything it is only getting exacerbated with the continuing
push towards larger designs and shorter turn-around times.
This panel will examine the current status of HMC, what
further challenges and opportunities exist going forward and
what can be done to give a fresh impetus to the area. The
panel will broadly have three sections 1) Taking stock of the
area, 2) Challenges to wider industrial adoption, and 3) How
to renew interest in HMC? Each section will have multiple
talking points (as described below) which will serve as guides
for the panelists in taking their positions.

A. Taking stock of the area

Recent advances in HMC seem to have come from “engi-
neering” mostly (ignoring the newly proposed IC3 algorithm
which is an exception to the general trend). In this section the
panelists’s will give their view of the current status of research
in HMC.

1) Talking points:
• The problem is fundamentally hard and the pace of recent

activity indicates we have reached a plateau.
• There has been significant advance in the last five years

that has impacted practitioners.
• The current status of HMC is satisfactory.

B. Challenges to industrial adoption

The ultimate success of an applied field like HMC should
be measured by its impact on the ground, which means
adoption by the hardware industry. While there has been some
adoption and Model Checking gets mentioned as a respectable
validation option, simulation continues to be the main work
horse for validation. This section will examine the various
factors that might be preventing wider adoption of Model
Checking and what can be done to alleviate them.

1) Talking points:
• The capacity of model checkers is still far short of what

is required. Or perhaps capacity is not the bottleneck.
• Writing specifications and input constraints are the major

barriers for adoption of model checking.
• Model Checking will always be a specialist activity.
• All or nothing nature of Model Checking preventing

adoption.
• Model checking will replace simulation in the near future,

say, for 50 percent of the units in the next 5 years.
• What problem should a starting researcher consider?

C. How to renew interest in HMC?

This section will consider what the causes are for the
reduced research in this area of late. Given that hardware
validation continues to be a pressing problem and will continue
to be so in this era of SoCs and multi-cores, how do we renew
the interest in this area? Are there other problems we should
be looking at?

1) Talking points:
• Industry is not interested in funding research in this area

anymore because of poor ROI.
• Lack of open source RTL infra-structure making entry

barrier too high.
• There are low hanging fruits in the form of related

problems like Clock Domain Crossing.

D. Panelists

The panelists are academic and industrial experts on
Model Checking with several decades of combined experi-
ence. Pranav Ashar led NEC Lab’s Formal Methods team
for fourteen years before embarking on a startup career. He
is currently the CTO of RealIntent. Jason Baumgartner has
fourteen years of experience in the research, development and
application of Model Checkers and Equivalence Checkers for
large-scale industrial designs, culminating in the SixthSense
project at IBM. Robert Brayton and his group at UC Berkeley
have built the ABC verification and synthesis engine that has
consistently placed among the top Hardware Model Checkers.
Erik Seligman is an FV expert at Intel with a wide experi-
ence applying Model Checking and other Formal Methods to
industrial designs.
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Abstract—Syntax and semantics are proposed for realtime
(i.e., continuous-time) regular expressions, which extend and
generalize existing SVA regular expressions. The extensions
are motivated by practical needs for AMS circuit verification
and were developed as part of the authors’ contribution to
analog assertions work in the Accellera committee standardizing
Verilog-AMS. Given a suitable notion of sampling, we prove
that the realtime semantics provided for the existing SVA
clocked digital regular expressions is equivalent to the original
discrete semantics. As a result, the existing digital operators
can intermix freely with the new realtime operators, which is
a major contribution of our framework. We also investigate the
theoretical relationship between our framework and the timed
regular expressions of Asarin, Caspi, and Maler. We provide
a semantically faithful embedding of timed regular expressions
into our realtime regular expressions, as well as a construction of
timed automata recognizers for our realtime regular expressions.
These constructions show that our realtime regular expressions
are no less expressive than the timed regular expressions of
[1] and no more expressive than the generalized timed regular
expressions of [2]. The automata recognizers also provide the
basis for an implementation strategy for our framework.

I. INTRODUCTION

Over a number of years, assertion-based techniques have
been growing in importance as part of functional verifi-
cation methodologies for industrial semiconductor designs.
This growth is evidenced in part by the standardization of
industrially focused assertion languages, like SystemVerilog
Assertions (SVA) [3] and Property Specification Language
(PSL) [4]. SVA and the Foundation Language of PSL are both
discrete-time temporal logics, based upon Linear Temporal
Logic (LTL) [5] augmented with regular expressions. The
reckoning of time in SVA and in clocked formulas of PSL
is in terms of discretely occurring events.1 The use of events
to define units of discrete time works well for the majority
of applications to digital circuit verification, although complex
timing properties can be challenging to write using event-based
assertions [6]. Applications to analog/mixed-signal (AMS)
circuits require specification of relationships between events
and event-based patterns, but also often involve direct timing
requirements. For example, the notion of settling time is
common in AMS circuits. Settling time is defined as the

See http://www.async.ece.utah.edu/˜little/pubs/realtimeAppendix.pdf for
supplementary material and proofs.

1An unclocked formula of PSL is also interpreted over discrete time, but
the granularity of time is not specified in the formula.

amount of time required for a signal to stabilize after a specific
event. A property to check the settling time of a digital-to-
analog converter (DAC) might ensure that the circuit’s output
has settled for an input pattern of all zeros, then change the
input pattern to all ones and verify that the output settles
to its new expected value within a specified time. There
are many other examples of AMS properties involving direct
timing requirements in the literature [7], [8], [9], [10]. For the
expression of many AMS properties, a first class notion of
time is needed in the assertion language.

Previous work [11], [12] provides a clear roadmap for
extending the LTL features of SVA for AMS applications.
In this paper, we define realtime extensions to SVA regular
expressions.2 Our extensions are motivated by practical needs
for AMS circuit verification and were developed as part of the
authors’ contribution to the work of the Analog Assertions
Subgroup of the Accellera Verilog-AMS Committee [13].
Many AMS properties rely either on continuously varying
quantities whose changes are not confined to clock boundaries
or on time constraints whose starting and ending points are not
clock aligned. Current event-based assertion languages do not
facilitate writing these properties carefully and succinctly. The
realtime regular expressions presented in this paper take an
important step toward enabling accurate verification of AMS
properties. Because of its close alignment with SVA, PSL can
be extended using the same approach.

Our semantic framework is based on bounded intervals of
the real line. The semantics of realtime regular expressions is
defined by a matching relation that specifies when a realtime
regular expression matches over a bounded realtime interval
of a realtime trace. The interval can be empty, open, closed,
or half-open. A fundamental characteristic of our definition is
that it is indeed an extension of the current SVA regular ex-
pressions. For simplicity of exposition, we omit local variables
and the first_match operator from SVA. Our definition
includes realtime semantics for the existing clocked digital
regular expressions, and we prove that the new semantics
is equivalent, through a suitable notion of sampling, to the
original discrete semantics. In this way, the existing digital
operators and forms intermix and combine freely with the new
realtime operators and forms. The enablement of harmonious

2We would like to acknowledge Himyanshu Anand for his insightful
comments during the development of the realtime regular expressions and
their semantics.
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interplay between discrete and realtime elements of the regular
expressions is a major contribution of our work; we had to
explore several variations on the semantic framework before
we discovered one that achieved this goal.

Our definition adds only one basic realtime form (immediate
Boolean) and one primitive realtime operator (Boolean smear)
to the existing digital regular expressions.3 We believe that
the preponderance of realtime regular expressions of practical
interest can be written using our extension. As in the discrete
case, the realtime regular expressions are augmented with a
number of useful derived operators. These include flexible
concatenation, concatenation with realtime delay, and the
realtime goto operator.

We provide a semantically faithful mapping from the timed
regular expressions of [1] into our realtime regular expressions,
which shows that our formulation is no less expressive. We
also give a construction of timed automata recognizers for our
realtime regular expressions, which shows that they are no
more expressive than the generalized timed regular expressions
of [2].

The rest of the paper is organized as follows. In Section 2
we introduce some preliminaries and the notation that will
be used throughout the paper. In Section 3 we review digital
sequences and their discrete-time semantics. We also define
realtime semantics for the digital sequences and prove that
the realtime semantics for digital sequences is a faithful
generalization to realtime of the discrete-time semantics. In
Section 4 we define realtime sequences, illustrate their use
in some practical examples, and provide the semantically
faithful mapping from the timed regular expressions of [1]
into our realtime regular expressions. Section 5 describes the
construction of timed automata recognizers for our realtime
regular expressions. Section 6 discusses relationships with
timed regular expressions, and the paper concludes with a brief
discussion of future directions.

II. PRELIMINARIES AND NOTATION

As in SVA, we use the term sequence as a synonym for
regular expression.

R denotes the set of real numbers, R≥0 denotes the set of
non-negative real numbers, B denotes the set {0, 1} of Boolean
values, and N denotes the set of non-negative integers. Let A
and D be finite sets. A will be understood as the set of analog
variables, and D will be understood as the set of discrete
variables. A state (of the variables) is an assignment of an
element of R to each analog variable and an element of B
to each discrete variable. A state may be identified with an
element of the set Σ = RA × BD.

A Boolean expression (over the variables) assigns to each
state of the variables an element in {0, 1}. A Boolean expres-
sion may be identified with an element of the Boolean algebra
BΣ = BRA×BD

. We may think of BΣ as the set of functions
Σ → B in the usual way, so that if b is a Boolean expression

3If an application or implementation restricts Boolean manipulation of
events, then a second realtime operator (sequence without an event) may be
considered primitive rather than derived.

and s is a state, then b(s) ∈ B. We write s |= b iff b(s) = 1.
In this case, b is said to occur at s. An event is a Boolean
expression from a designated class.4 Events are denoted by κ
and ζ in the remainder of this paper. In realtime, we require
events to occur only at isolated points (see below).

A discrete trace, or word, is a function w : {i ∈ N : i ≤ n−
1} → Σ, where 0 ≤ n ≤ ∞. n is said to be the length of the
word, which is also denoted |w|. The empty word has length 0
and is denoted ε. Throughout, u, v, and w are used to denote
words. The concatenation of u and v is denoted by uv. For
i < |w|, we use wi to denote w(i), the (i+1)st letter of w, and
we denote by wi.. the suffix of w starting at index i. We denote
by wi..j the finite sequence of letters starting from index i
and ending in index j. That is, wi..j = (wiwi+1 · · ·wj). A
Boolean expression b is said to occur in w at i iff wi |= b. A
sampling is a strictly increasing function T : N → R≥0 such
that limn→∞ T (n) =∞.

A realtime trace is a function W : R≥0 → Σ. Given a
realtime trace W and a sampling T , W ◦ T is a discrete
trace, where ◦ denotes the composition of functions. Given
a Boolean expression b and a realtime trace W , we say that b
occurs in W at t iff W (t) |= b. The set {t ∈ R≥0 : W (t) |= b}
is the set of times at which b occurs in the trace W . If κ is
an event, then we require that {t ∈ R≥0 : W (t) |= κ} have
no limit point in R. As a result, the points at which a given
event occurs cannot be arbitrarily close together.

Throughout, I ,J denote bounded intervals in the real line
R. They may be open, closed, or half-open.
Definition 1:
(a) I ≤ I ′ iff ∀t ∈ I ∀t′ ∈ I ′ : t ≤ t′.
(b) I < I ′ iff ∀t ∈ I ∀t′ ∈ I ′ : t < t′.

If I is non-empty, then we write |I| = sup I − inf I . We
write |{}| = 0.

III. DIGITAL SEQUENCES

Digital sequences are the discrete regular expressions used
in this paper. They are generated by the following grammar,
where κ denotes an event and b denotes a Boolean expression:

σ ::= @(κ)(b) | σ ##1 σ | σ ##0 σ | σ or σ
| σ intersect σ | σ[*0] | σ[+]

Intuitively, @(κ)(b) specifies that the Boolean expression b
occur at the nearest point where event κ occurs; ##1 and ##0
are the non-overlapping and overlapping concatenation oper-
ators, respectively; or is the union operator; intersect is
the intersection operator; [*0] specifies zero repetitions (i.e.,
the empty word); and [+] specifies one or more repetitions.

Digital sequences mimic SVA syntax and are essentially
the same as SVA sequences and PSL SEREs.5 There are
some differences regarding where events can be written. In
a digital sequence, the event κ can be attached only to a
Boolean expression, as in the form @(κ)(b). This restriction

4Events may be treated differently than other Boolean expressions in certain
tool flows and verification applications, such as digital and analog simulation.

5SERE stands for semi-extended regular expression and is the regular
expression sublanguage of PSL [4].
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simplifies reasoning about and defining the semantics of digital
sequences. SVA and PSL are less restrictive: they allow an
event to be specified in more general positions and provide
rules to determine the scope of an event. Let’s say that a
sequence is basic if it does not employ any of the following
constructs: local variables, first_match (SVA only), or
endpoint query methods (triggered and matched in SVA;
ended in PSL). Any SVA sequence or PSL SERE that
is basic can be rewritten as an equivalent digital sequence
by eliminating derived operators ([3], Annex F.3.4; [4], An-
nex B.4); elaborating instances (cf. [3], Annex F.4.1); and
eliminating reliance on the scoping rules for events (cf. [3],
Annex F.5.1; [4], Annex B.5). For example, the SVA sequence
@(κ) x ##0 y[+] ##1 @(ζ) z is equivalent to the digital
sequence @(κ)(x) ##0 (@(κ)(y))[+] ##1 @(ζ)(z).

In a different sense, digital sequences are less restric-
tive than SVA sequences. SVA allows multiply clocked se-
quences to be joined only with ##1 or ##0, while dig-
ital sequences can be combined freely, without regard to
how events appear within them. For example, the digital
sequence(@(κ)(x) or @(ζ)(y))[+] is not a legal se-
quence in SVA.6 Every digital sequence can be regarded as
a PSL SERE by straightforward syntactic translation.

A. Discrete-Time Semantics

Let w = w0w1 · · ·w|w|−1 be a finite word. The discrete-
time semantics of a digital sequence σ is defined by the
matching relation |≡d, which is given recursively as follows:
• w |≡d @(κ)(b) iff |w| > 0 and b and κ occur at w|w|−1

and κ does not occur at any earlier position of w.
• w |≡d σ ##1 σ′ iff there exist u, u′ such that uu′ = w

and u |≡d σ and u′ |≡d σ′.
• w |≡d σ ##0 σ′ iff there exist u, v, u′ such that uvu′ = w

and |v| = 1 and uv |≡d σ and vu′ |≡d σ′.
• w |≡d σ or σ′ iff either w |≡d σ or w |≡d σ′.
• w |≡d σ intersect σ′ iff both w |≡d σ and w |≡d σ′.
• w |≡d σ[*0] iff w is empty.
• w |≡d σ[+] iff there exist n ≥ 1 and u1, . . . , un such

that w = u1 · · ·un and ui |≡d σ for all 1 ≤ i ≤ n.

B. Realtime Semantics

This section defines our interval-based realtime semantics
for digital sequences and presents a correspondence theorem
between the realtime and the discrete-time semantics. Let W
be a realtime trace and I be a bounded interval. The realtime
semantics of digital sequence σ is defined by the relation |≡r ,
given recursively as follows:
• W, I |≡r @(κ)(b) iff {t ∈ I : W (t) |= κ} = {sup I}

and W (sup I) |= b.
• W, I |≡r σ ##1 σ′ iff there exist J, J ′ such that I =
J ∪ J ′ and J < J ′ and W,J |≡r σ and W,J ′ |≡r σ′.

• W, I |≡r σ ##0 σ′ iff there exist J, t, J ′ such that I =
J ∪ J ′ and {t} = J ∩ J ′ and J ≤ {t} and {t} ≤ J ′ and
W,J |≡r σ and W,J ′ |≡r σ′.

6An equivalent non-basic SVA sequence can be written using method
triggered [14].

• W, I |≡r σ or σ′ iff either W, I |≡r σ or W, I |≡r σ′.
• W, I |≡r σ intersect σ′ iff both W, I |≡r σ and
W, I |≡r σ′.

• W, I |≡r σ[*0] iff I is empty.
• W, I |≡r σ[+] iff there exist n ≥ 1 and J1, . . . , Jn such

that Ji < Jj for all 1 ≤ i < j ≤ n and I = J1 ∪ · · · ∪Jn
and W,Ji |≡r σ for all 1 ≤ i ≤ n.

If σ is a digital sequence and if @(κ)(b) appears as a
subsequence of σ, then we say that κ is an event of σ. The
following theorem establishes the correspondence between the
discrete-time and realtime semantics for digital sequences.

Theorem 1: Let σ be a digital sequence, let W be a realtime
trace, and let T : N → R≥0 be a sampling such that T (N)
contains all points of R at which any event of σ occurs in
W . Let w = W ◦ T . Let I be a bounded interval. If I is
empty, then let v be the empty word. Otherwise, assume that
I is right-closed with sup I ∈ T (N) and let v = wi..j , where
i = minT−1(I) and j = maxT−1(I). Then W, I |≡r σ iff
v |≡d σ.

According to Theorem 1, the realtime semantics for digital se-
quences is a faithful generalization to realtime of the discrete-
time semantics. The proof is by induction and makes use of
the following

Lemma 2: Let σ be a digital sequence. If W, I |≡r σ and I
is non-empty, then I is right-closed and at least one of the
events of σ occurs in W at the right endpoint of I .

IV. REALTIME SEQUENCES

This section generalizes digital sequences by adding one
new basic form and one new primitive operator. The new
constructs are motivated by assertion-based applications to
AMS verification. Realtime sequences are generated by the
following grammar, where κ denotes an event, b denotes a
Boolean expression, α denotes a non-negative rational con-
stant, and β denotes either a non-negative rational constant or
the special symbol $, representing ∞:

R ::= @(κ)(b) | R ##1 R | R ##0 R | R or R
| R intersect R | R[*0] | R[+]
| b | b[*α [+ ]:β [- ]]

The realtime semantics of the digital sequence forms and
operators remains as before, while the semantics of the new
constructs is given as follows:
• W, I |≡r b iff there exists t such that I = {t} and W (t) |=
b.

• W, I |≡r b[*α [+ ]:β [- ]] iff α ≤ [<] |I| ≤ [<] β and
W (t) |= b for all t ∈ I .

A. Derived Realtime Forms

Assertion languages for industrial use typically provide
numerous derived forms, with the goal of improving the time
efficiency of the engineers deploying them. Both SVA and
PSL have many derived sequence forms, all of which can
be thought of as extending the present digital and realtime
sequences, with syntax adapted as necessary. For example,
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R[*] ≡ R[*0] or R[+] is the usual Kleene operator.
There are also several derived realtime sequence forms that
are useful for AMS assertion applications. These are defined
as follows, where ! denotes Boolean negation and the other
notational conventions are as before:
• b[*α] ≡ b[*α:α] [exact-length smear].
• b[∼>1] ≡ !b[*0.0:$] ##1 b [realtime goto].
• R without @(κ) ≡ R intersect !κ[*0.0:$]

[sequence without an event].
• R #0 R′ ≡ (R ##0 R′) or (R ##1 R′) [flexible

concatenation].7

• R #[α [+ ]:β [- ]] R′ ≡ R #0 1[*α [+ ]:β [- ]]
#0 R′ [concatenation with realtime delay].

• R #[α] R′ ≡ R #[α:α] R′ [concatenation with exact-
length delay].

• R[*] ≡ R[*0] or R[+] [repetition]
• R and R′ ≡ ((R #0 1[*0.0:$]) intersect R

′)
or (R intersect (R′ #0 1[*0.0:$])) [flexible
intersection].

In SVA and PSL, the discrete-time goto b[->1] is gov-
erned by an event and only checks the Boolean condition
at occurrences of that event. It can be derived according
to @(κ)(b[->1]) ≡ @(κ)(!b)[*] ##1 @(κ)(b). The
realtime goto checks the Boolean condition continuously and
advances to the nearest point in time at which the condition
is true. Its direct semantics is W, I |≡r b[∼>1] iff {t ∈
I : W (t) |= b} = {sup I}.

The flexible concatenation is an important realtime operator.
Its direct semantics is the following: W, I |≡r R #0 R′ iff
there exist J, J ′ such that I = J ∪ J ′, J ≤ J ′, W,J |≡r R,
and W,J ′ |≡r R′. The intervals J and J ′ being joined must
leave no gap and can overlap at most in a shared point. This
capability is often needed because the intervals over which
realtime sequences match can be open, closed, or half-open.

Consider, for example, @(κ)(b) ##1 R. @(κ)(b)
matches only a right-closed interval, and ##1 requires the
interval over which R matches to abut but not overlap with
this interval. If R = b′, then the overall sequence cannot
match since the realtime Boolean b′ matches only over a single
point. This incompatibility can be avoided with the flexible
concatenation: @(κ)(b) #0 R.

Flexibility in matching is important to our semantics be-
cause it allows the user to be careful about including or
excluding endpoints when needed and not to worry about ac-
counting for endpoints when it is not important. The semantics
for ##0 requires that it join a right-closed with a left-closed
interval, while ##1 joins a right-closed (resp., -open) interval
with a left-open (resp., -closed) interval. Digital sequences
and smear-free realtime sequences match only over empty
and right-closed intervals. The smear operator introduces the
possibility of matching right-open intervals, but whether a
right-open interval is actually matched depends on the trace.
This flexibility is built into the smear operator, similar to the

7We are grateful to Dejan Nickovic for pointing out that flexible concate-
nation can be derived in this way.

flexible concatenation operator.

B. Realtime Sequence Examples

To illustrate the use of realtime sequences we discuss two
representative examples. The first illustrates the utility of
intermingling digital and realtime sequences. The second illus-
trates the inadequacy of discrete approximations for realtime
specifications.

Let’s examine how the settling time specification mentioned
in the introduction can be written using realtime sequences.
We will make the specification more concrete by specializing
it to an 8-bit DAC. The 8-bit DAC input, in, is latched on the
rising edge of its clock, clk. Settling time measurement begins
when in equals 8’h008 on the input for five cycles, followed
by a change to 8’hff in the next clock cycle. The input is
then required to remain 8’hff throughout the remainder of
the measurement. The DAC output, out, should then settle to
5 V ± 25 mV after 50 ns of latching the 8’hff input. We
understand settled to mean that the output remains within the
specified voltage range for 25 ns after the initial 50 ns period
has passed. The following sequence captures this behavior:

@(posedge clk)(in == 8’h00)[*5] ##1
@(posedge clk)(in == 8’hff) #0
( (in == 8’hff)[*0.0:$] intersect

1 #[50.0n](out < 5.25 && out > 4.75)[*25.0n])

The sequence begins by matching the Boolean expression
in == 8’h00 for five cycles followed by in == 8’hff,
sampled at posedges of clk. The sequence then switches to
matching a realtime subsequence where the input remains
constant and the output stays within the specified range for
25 ns after the initial 50 ns period. This is an example of the
usefulness of the intermixing of realtime and clocked operators
within a single sequence.

Many common idioms for AMS circuit verification can be
approximated using digital sequences. These approximations
typically involve user management of the sampling clock and
of auxiliary signals to represent inequalities involving con-
tinuously varying quantities. These approximations result in
both imprecise assertions and usability challenges. Matching a
glitch is an example of one commonly encountered idiom that
illustrates user management of the sampling clock. Assume we
want to write a sequence to match glitches of 25 ns or less on
a signal a. For our purposes a glitch is a short positive pulse
of a Boolean. The Boolean may represent a digital signal or
a threshold crossing of a realtime signal. A digital sequence
to capture these glitches is shown below.

@(posedge a)(1) ##1
@(posedge s)(a)[*0 : 25]##1
@(posedge s)(!a)

s is a clock with a period of 1 ns, which functions as a
sampling clock. This sequence provides a reasonable approx-
imation to the specification, but it may miss glitches, as, for

8The syntax 8’h00 represents the 8-bit number whose hex value is 00.
Similarly, 8’hff is the 8-bit number whose hex value is ff.
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example, in the case that the glitch is less than 1 ns in length
and does not stay high across a posedge of s. In fact, the
choice of sampling clock is a key decision that must be made
by the user when coding the sequence. In this encoding, the
sequence is accurate to a precision of 1 ns. Glitches less than
1 ns may be missed, and glitches nearly 27 ns long may result
in an undesired successful match. Also, the user must provide
the sampling clock, which may add additional complication to
the verification environment.

A realtime sequence to match the same types of glitches is
shown below.

@(posedge a)(1) #0 (!a[∼>1] intersect
1 [*0.0:25.0n])

The most notable difference is the time accounting. In the
realtime sequence, no sampling clock is needed because the
ability to describe time is provided in the language. This
sequence matches all of the expected glitches. In a realistic
simulation sampling will occur, but it is likely that the user
will not directly manage the sampling. Simulator controls
that manage sampling should be adequate for most AMS
verification applications.

C. Mapping from Timed Regular Expressions

In this section, we show how to map from the timed
regular expressions of [1] into our realtime sequences. Further
relationships with timed regular expressions are discussed in
Section VI. The definition of timed regular expressions in
[1] uses the following grammar, where b denotes a Boolean
expression and Z denotes an integer bounded interval:

ϕ ::= b | ϕ · ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ∗ | 〈ϕ〉Z
The semantics from [1] can be rendered in our notation by the
satisfaction relation |≡tre defined as follows:
• W, I |≡tre b iff |I| > 0 and W (t) |= b for every t ∈ I .
• W, I |≡tre ϕ · ϕ′ iff there exist J, J ′ such that J < J ′,
I = J ∪ J ′, W,J |≡tre ϕ, and W,J ′ |≡tre ϕ′.

• W, I |≡tre ϕ∨ϕ′ iff either W, I |≡tre ϕ or W, I |≡tre ϕ′.
• W, I |≡tre ϕ∧ϕ′ iff both W, I |≡tre ϕ and W, I |≡tre ϕ′.
• W, I |≡tre ϕ∗ iff there exist n ≥ 0 and J1, . . . , Jn such

that Ji < Jj for all 1 ≤ i < j ≤ n, I = J1 ∪ · · · ∪ Jn,
and W,Ji |≡tre ϕ for all 1 ≤ i ≤ n.

• W, I |≡tre 〈ϕ〉Z iff W, I |≡tre ϕ and |I| ∈ Z.
This casting of the semantics of timed regular expressions
leads directly to a linear syntactic map M into realtime
sequences:
• M(b) = b[*0.0+:$].
• M(ϕ · ϕ′) = M(ϕ) ##1 M(ϕ′).
• M(ϕ ∨ ϕ′) = M(ϕ) or M(ϕ′).
• M(ϕ ∧ ϕ′) = M(ϕ) intersect M(ϕ′).
• M(ϕ∗) = M(ϕ)[*].
• M(〈ϕ〉Z) = M(ϕ) intersect M(Z), where

– M([α, β]) = 1[*α:β]
– M((α, β]) = 1[*α+:β]
– M([α, β)) = 1[*α:β-]

– M((α, β)) = 1[*α+:β-]

Semantic faithfulness of M is given by the following

Proposition 3: W, I |≡tre ϕ iff W, I |≡r M(ϕ).

Proposition 3 holds for any trace W and bounded interval
I . It should be noted that in [1], timed regular expressions
are interpreted over a restricted class of realtime traces, called
signals, that are piecewise constant and left continuous. The
piecewise constant condition requires the set of discontinuities
of the trace to have no limit point in R, so, in particular, there
can be at most finitely many discontinuities in any bounded
interval of the trace. The condition of left continuity implies
that no event can occur in a signal. Furthermore, [1] restricts
the domain of a signal to be a bounded interval that either is
empty or is left open and right closed.

V. AUTOMATA CONSTRUCTION

This section provides a construction for timed automata rec-
ognizers for our realtime regular expressions. The automaton
A constructed for sequence R recognizes R in the sense that
for all W and I , W, I |≡r R iff A has an accepting run whose
trace is satisfied by W over the interval I . These notions will
be made precise below. The construction provides the basis for
an implementation strategy for our framework. The definition
of timed automaton below is based on that in [1].

A. Definition of Timed Automaton

A timed automaton is a tuple A = (Q,C,∆, Γ, L, S, F )
where Q is a finite set of states, C is a finite set of clocks,
∆ is a transition relation (see below), Γ is an alphabet that
we assume to be a Boolean algebra with multiplicative unit 1,
L : Q→ Γ is the state labeling, S ⊆ Q is a set of initial states,
and F ⊆ Q is a set of final (accepting) states. The transition
relation, ∆, consists of tuples of the form (q, φ, ρ, q′) where
q, q′ ∈ Q, ρ ⊆ C (the set of clocks to be reset), and φ is
a Boolean combination of terms of the form (c ∈ I), where
c ∈ C and I is an interval of R≥0 whose endpoints are rational
numbers or ∞.

A clock valuation is a function v : C → R≥0. We denote
the space of all clock valuations by H. By using clocks as
coordinates, a clock valuation can be identified with a vector
in RC . 0 denotes the vector (0, 0, . . . , 0) and 1 denotes the
vector (1, 1, . . . , 1). A configuration of the automaton is a pair
(q,v) ∈ Q×H. Every ρ creates a reset function Resetρ : H →
H defined by

Resetρ(v)(c) =

{
0 if c ∈ ρ
v(c) if c 6∈ ρ

A finite run of the automaton on [a, b] is a sequence

t0, (q0,v0)
d1−→
t1

(q1,v1)
d2−→
t2
· · · dn−→

tn
(qn,vn),

where qi ∈ Q, vi ∈ H, di ∈ ∆, ti ∈ R≥0 are such that
• 0 ≤ a = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn = b and v0 = 0.
• di = (qi−1, ϕi, ρi, qi), where vi = Resetρi(vi−1 + (ti −
ti−1) · 1) and ϕi is satisfied on vi−1 + (ti − ti−1) · 1.
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The run is accepting if q0 ∈ S and qn ∈ F . The full trace
of the run is the function T : [t0, tn] → Γ defined by the
following rules:
• If ti < ti+1, then for t ∈ (ti, ti+1), T (t) = L(qi).
• If ti−1 < ti = ti+1 = · · · = tj−1 = tj < tj+1, then
T (ti) = L(qi) ∧ · · · ∧ L(qj−1) ∈ Γ .

• If T (t) is not defined by the preceding conditions, then
T (t) = 1 ∈ Γ .

We assume that each initial and final state is classified either
as inclusive or exclusive. The restricted trace of a run is the
function T |I , where T : [t0, tn] → Γ is the full trace and
I ⊆ [t0, tn] is the interval obtained from [t0, tn] by including
or excluding each of the endpoints t0 and tn in accordance
with the kind, inclusive or exclusive, of the initial and final
states of the run, respectively.9 If the initial and final states
are both exclusive and t0 = tn, then I = {}.

Let W be a realtime trace, A be a timed automaton, and I
be a bounded interval. For I non-empty, we define W, I |≡ A
iff there exists a run of A on [inf I, sup I] such that I is the
domain of the restricted trace of the run and W (t) |= T (t) for
all t ∈ I , where T is the trace (full or restricted) of the run.
We define W, {} |≡ A iff there exists t0 ∈ R≥0 and a run of
A on [t0, t0] such that the domain of the restricted trace of
the run is {}. We say that A recognizes the sequence R if for
all W and I , W, I |≡r R iff W, I |≡ A.

B. Automata Convenience Features

To simplify the exposition of our automata construction
we use additional features and notations described below. By
definition, clock constraints φ appear only on transitions of
a timed automaton. It can be convenient to specify a timing
condition on a state, where the timing condition restricts the
amount of time that a run may spend in a single visit to the
state (distinct visits are treated independently). Such conditions
can be implemented by (at worst) adding a single state clock
η that is reset on every transition and such that the timing
condition of a state is added to each outgoing transition.10 The
state timing condition “0” abbreviates “η = 0”, i.e., no time
elapse in the state. Such a state is called a 0-time state. The
state timing condition “+” abbreviates “η > 0”, i.e., positive
time must elapse in each visit to the state. Such a state is
called a +-time state and is annotated by a “+” in the lower
half of the state in figures.

The label of a state conditions the trace of a run for the
times that the run is in the state. It can be useful also to
condition with a label the times at which a transition is taken.
A transition label can be implemented by inserting a 0-time
state and placing the label on the new state.

Ingresses and egresses provide a graphical notation for
simplified initial and final states and their classification as
inclusive or exclusive. An ingress is an initial state with no

9Inclusion is understood to take precedence over exclusion in the case where
t0 = tn and the classifications of the initial and final states do not agree.

10A final state with a timing condition can be implemented by rendering
the state non-final and adding a companion final state to which it transitions.
The companion state matches the original in its label and classification.

incoming and a single outgoing transition, while an egress is a
final state with no outgoing and a single incoming transition.
The ingress and egress states are 0-time and their state label
is understood to be 1 ∈ Γ . If needed, a labeling condition
may be placed on the incident transition. Inclusive states are
denoted by small closed circles, while exclusive states are
denoted by small open circles. For example, the automaton
in Fig. 1 has three ingresses, one exclusive and two inclusive.
The transitions from the inclusive ingresses are labeled “¬κ”
and “κ∧b”, respectively. The automaton has one egress, which
is inclusive and has no label on its incident transition.

C. Automata Construction

The automata are built by induction on the structure of the
sequences.
• The automaton for @(κ)(b) is shown in Fig. 1.

κ ∧ b

¬κ
+

η = 0

¬κ

κ ∧ b
η > 0

η := 0

Fig. 1. Automaton for a clocked Boolean, @(κ)(b).

• The automaton for R ##1 R′ is created by connecting
the automata for R and R′. The rule for connection
requires that an inclusive ingress/egress be connected
to an exclusive egress/ingress. This rule ensures that
there is no overlap and no gap in the interval matched.
When an ingress/egress is connected it is no longer
an ingress/egress and consequently is no longer an ini-
tial/final state, respectively. An example of how the
connection works is shown in Fig. 2. This connection
rule does not apply to a subautomaton for empty, as
empty is an identity for ##1. Instead, the subautomaton
is combined as though it were an identity.

• The automaton for R ##0 R′ is created by connecting
the automata for R and R′. The rule for connection
requires that inclusive egresses of R be connected to
inclusive ingresses of R′. This ensures that there is a
single point overlap between the matches for R and R′,
which is required by ##0. The connection works in a
manner similar to R ##1 R′.

• The automaton for R or R′ is created using a standard
union of the automata for R and R′.

• The automaton for R intersect R′ is created as a
product automaton for R and R′. The rules for the product
construction are as follows:
– (p, q) is an ingress (resp., egress) iff both p and q are

ingresses (resp. egresses) and either both p and q are
inclusive or both p and q are exclusive.

– (p, q) is a +-time state iff both p and q are +-time
states.

– (p, q) is a 0-time state iff either p or q is a 0-time state.
– Parallel transitions are transitions where both of the

factor automata are changing state. If p α−→ p′ is a
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η := 0

¬ζ
+

η = 0¬κ
+

η = 0

¬κ

κ ∧ a
η > 0

η := 0

κ ∧ a

ζ ∧ b
η > 0

η := 0

Fig. 2. An automaton for @(κ)(a) ##1 @(ζ)(b). This demonstrates the connection rules for ##1.

transition of R and q
β−→ q′ is a transition of R′, then

(p, q)
α∧β−→ (p′, q′) is a parallel transition of the product.

– Stutter transitions are transitions where only one of the
factor automata is changing state. The non-changing
state is said to be stuttering. There is a subtlety when
the stuttering state is +-time. The stuttering transition
can lead to gaps in the state label for this factor because
a trace associates a state label with the interior of a
positive length time interval spent in that state. To
avoid gaps, the state label needs to be added to the
stutter transition in certain circumstances. Intuitively,
the case where the state label is added occurs when the
changing state is transitioning from a 0-time state to a
+-time state and the stuttering state has already been
occupied for positive time in this visit. A complete
definition of the rules is found below. Each factor state
is either 0-time, denoted, e.g., 0q, or +-time, denoted,
e.g., +q. A mixed product state is one with one factor
state 0-time and one factor state +-time. It is annotated
with a kind 0 or 1. A kind 0 state indicates that the
+-time factor has not yet been occupied for positive
time in this visit, while a kind 1 state indicates that
the +-time factor has been occupied for positive time
in this visit. A parallel transition is denoted by two
solid arrows, while a stutter transition is denoted by
one solid and one dashed arrow. Rule g shows the
addition of a state label to a stutter transition. Rules
a-h below describe all the transition forms involving
mixed product states of various kinds, up to swapping
the factors of the tuples. Each rule has a dual which
is also valid. In the description, * allows any possible
qualifier and e is a variable used to represent kind 0
or 1.

a.
(∗p
∗q

)

∗

−→
−→

(
0p′
+q′

)

0

b.
(

0p
+q

)

1

−→
−→

(∗p′
∗q′

)

∗

c.
(

0p
+q

)

1

99K
−→

(
0p
∗q′

)

∗
d.
(

0p
∗q

)

∗

99K
−→

(
0p
+q′

)

0

e.
(

0p
+q

)

e

−→
99K

(
0p′
+q

)

e

f.
(

0p
+q

)

0

−→
99K

(
+p′
+q

)

g.
(

0p
+q

)

1

−→
99K
L(q)

(
+p′
+q

)
h.
(

+p
+q

)
−→
99K

(
0p′
+q

)

1.
• The automaton for R[*0] is shown in Fig. 3(a).
• The automaton for R[+] follows the connection rule

for R ##1 R′. A connected ingress/egress no longer

functions as ingress/egress. In a repetition the initial/final
state behavior must be maintained, so ingresses/egresses
for the repetition must be duplicated for use in the
connection. If R has an empty subautomaton, then so
does R[+], but the empty subautomaton does not play
a role in the connections. See Fig. 3(b) for an example.

• The automaton for b is shown in Fig. 3(c).

(a)
η = 0¬κ

+
b

(c)¬κ
κ ∧ b

κ ∧ b
η > 0

η := 0

(b)

Fig. 3. Automata for (a) R[*0], (b) (@(κ)(b))[+], and (c) realtime
Boolean, b.

• The automata for b[*α [+ ]:β [- ]] are shown in Fig. 4.

VI. FURTHER RELATIONSHIPS WITH TIMED REGULAR
EXPRESSIONS

In [1], [2], Asarin, Caspi, and Maler define timed regular
expressions and study their relationship to timed automata. The
main results show that timed regular expressions, generalized
to support renaming, have the same expressive power as timed
automata. This section discusses relationships between our
realtime sequences and timed regular expressions.

The syntax for timed regular expressions is essentially the
same in [1] and [2] and has been given in Section IV-C.
[2] adds syntax for the empty word, analogous to our form
R[*0]. [2] also adds syntax to specify renamings, which have
no analog in our framework.

Several different semantic models are presented in [1] and
[2]. The piecewise constant, left continuous signals of [1]
are, in many regards, the closest to our realtime traces. They
underly the relation |≡tre and provide the basis for the
semantically faithful embedding M presented in Section IV-C.
Signals do not, however, support expression that a condition
hold or an event occur at a specific point in time. These
capabilities are important for applications to AMS verification
and are supported in realtime sequences by the immediate
Boolean (b), clocked Boolean (@(κ)(b)), and concatenations
with overlap (##0, #0, etc.).

Time-event sequences are the primary semantic model in
[2]. A time-event sequence is a sequence of terms, each
of which is either an event or a non-negative real number,
specifying a time elapse. For example, the time-event sequence
r · κ · s · ζ represents that event κ occur after r units of
time and that event ζ occur after another s units of time.
Simultaneity of multiple events is expressible, as in r · κ · ζ,
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(a)

b
+

η = 0 b
+

η = 0

b

b
η := 0

b

η ∈ [0.0+ : β[−]]

(b)b
η := 0

b

η ∈ [α[+] : β[−]]

Fig. 4. Automata for (a) the Boolean smear, b[*α [+ ]:β [- ]] with a positive α and (b) the Boolean smear, b[*0.0:β[-]] with α equal to zero.

r · ζ · κ, r · κ · κ, which are all distinct. In [2], timed regular
expressions can specify unbounded regular patterns of events,
all occurring at the same time but with discrete ordering
amongst themselves. For applications to AMS verification, we
do not believe that such capabilities are needed. For example,
we see no practical use for expressing the condition that
the value of a particular analog variable cross a particular
threshold five times, say, at a single instant of time. Our
realtime traces do not admit this granularity of ordering at
a single time. In a realtime trace, an event either occurs or
does not at any particular time. There is no notion of multi-
plicity, and if two events occur at the same time, there is no
distinction of their order. Our realtime sequences can express
the condition that a fixed set of events occur simultaneously,
as in (@(κ)(1) ##0 @(ζ)(1)) intersect 1. This form
also shows a syntactic order of κ before ζ, but our realtime
trace models do not resolve this order.

In Section V we showed a construction of timed automata
recognizers for our realtime sequences. Assuming that suit-
able translation conventions are fixed to convert between
the differing semantic models, this construction shows that
our realtime regular expressions are no more expressive than
the generalized extended timed regular expressions of [2].
Definitive comparison of the two regular expression languages
seems to depend on precise reconciliation of the semantic
models. In mapping from time-event sequences to realtime
traces, multiplicity and ordering of simultaneous events need
to be encoded using analog and discrete variables. In mapping
the other direction, behaviors of analog and discrete variables
to which the relevant Boolean expressions and events are
sensitive need to be represented by regular patterns of events.
The details of such analysis appear non-trivial and merit
consideration in future work.

VII. CONCLUSION

Verification of AMS systems is becoming increasingly im-
portant as AMS designs become more popular and complex.
To meet the needs of AMS verification, we must develop
verification techniques and languages that support both the
clocked and realtime domains. We have proposed syntax and
semantics for realtime regular expressions. This has been
done before [1], [2], but the key feature of our framework
is that it generalizes the framework of the existing SVA
regular expressions. This feature allows free intermingling of
realtime and digital sequences, which enables our realtime
regular expressions conveniently to represent complex proper-
ties that specify both clocked and realtime requirements. We
have investigated how the new syntax and semantics relate

to existing definitions of realtime regular expressions. We
provide a semantically faithful mapping from the timed regular
expressions of [1], which demonstrates that our formalism is
not less expressive. We also provide a construction of timed
automata recognizers for our realtime regular expressions. This
construction demonstrates that our realtime regular expressions
are no more expressive than the generalized timed regular
expressions of [2] and provides a basis for an implementation
strategy.

In the future, we plan to demonstrate how this semantics can
be extended to local variables and the first_match oper-
ator. We also plan to develop similarly compatible semantics
for the SVA property operators. When completed, these pieces
will constitute a realtime extension to the full SVA language.
This new realtime SVA language will provide engineers the
ability to specify complex AMS properties accurately and in
a single assertion language.
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[13] H. Anand, J. Havlicek, and S. Little. (2010) Some notes on
realtime semantics. [Online]. Available: http://www.vhdl.org/twiki/pub/
VerilogAMS/RequirementsGatheringGroup/semantics.pdf

[14] E. Cerny, S. Dudani, J. Havlicek, and D. Korchemny, The Power of
Assertions in SystemVerilog. Springer, 2010.

FMCAD 2011, Page 162



Formal Analysis of Fractional Order Systems in
HOL

Umair Siddique
Research Center for Modeling and Simulation

National University of Sciences and Technology
(NUST), Islamabad, Pakistan

Email:umair.siddique@rcms.nust.edu.pk

Osman Hasan
School of Electrical Engineering and Computer Science

National University of Sciences and Technology
(NUST), Islamabad, Pakistan

Email:osman.hasan@seecs.nust.edu.pk

Abstract—Fractional order systems, which involve integration
and differentiation of non integer order, are increasingly being
used in the fields of control systems, robotics, signal processing
and circuit theory. Traditionally, the analysis of fractional or-
der systems has been performed using paper-and-pencil based
proofs or computer algebra systems. These analysis techniques
compromise the accuracy of their results and thus are not recom-
mended to be used for safety-critical fractional order systems. To
overcome this limitation, we propose to leverage upon the high
expressiveness of higher-order logic to formalize the theory of
fractional calculus, which is the foremost mathematical concept
in analyzing fractional order systems. This paper provides a
higher-order-logic formalization of fractional calculus based on
the Riemann-Liouville approach using the HOL theorem prover.
To demonstrate the usefulness of the reported formalization,
we utilize it to formally analyze some fractional order systems,
namely, a fractional electrical component Resistoductance, a
fractional integrator and a fractional differentiator circuit.

I. INTRODUCTION

In reality, many situations arise when integer order calculus
is not sufficient to model all kind of dynamics. For example,
an electrical component Resistoductance [10] exhibits an in-
termediate behavior between that of a resistor and inductor
and thus its accurate modeling involves the differentiation of
order between 0 and 1. Such systems that involve integration
and differentiation of non integer order, or fractional calculus
[26], for their modeling are usually referred to as fractional
order systems. The idea of fractional calculus is as old as
integer order calculus itself. The question which gave birth to
fractional calculus was about the interpretation of dny

dxn , if n is
not an integer or more broadly if n is any real, irrational or
even a complex number.

Accurate modeling of engineering and scientific systems
have become imperative these days due to their extensive
usage in safety-critical domains, such as, medicine and trans-
portation. This fact has led to the widespread usage of
fractional calculus in modeling physical systems. For ex-
ample, in control engineering the concept of fractional op-
erations is mostly used in fractional system identification
[17], biomimetic control [6], fractional PIα [22] and PDµ

controllers [8]. In signal processing, fractional operators are
used in the design of fractional order differentiators and
integrators [21] and for modeling the speech signals [20].
Other interesting applications of fractional calculus are in

image processing [29], electromagnetic theory [13], chaotic
communication [1], and circuit theory [10].

Traditionally, the analysis of fractional calculus based mod-
els has been done using paper-and-pencil proof methods. How-
ever, considering the complexity of present age engineering
and scientific systems, such analysis is notoriously difficult
if not impossible, and is quite error prone. Many examples
of erroneous paper-and-pencil based proofs are available in
the open literature, a recent one can be found in [7] and its
identification and correction is reported in [27]. One of the
most commonly used computer based analysis technique for
fractional order systems is numerical computation of fractional
integration and differentiation. Some examples include, chaos
in fractional order volta systems [30], fractional PIα con-
trollers [22] and motion planning of redundant and hyper-
redundant manipulators [23]. Fractional order systems are
continuous in nature and thus the first step in their simulation
based analysis is to construct a discretized system model with
minimal error. Most of the numerical algorithms are based
either on the Grünwald-Letnikov definition [12] or on the
Power Series Expansion (PSE) method [30]. Both of them can-
not provide reliable results due to the involvement of infinite
summations in case of Grünwald-Letnikov definition and huge
memory requirements in case of the PSE method. Similarly,
the computation of the Gamma function Γ(x) for large values
of x is not possible in such numerical computation software
packages. For example, MATLAB [24] returns 7.26e306 as
the approximated value computed for x = 171 and returns
Inf for all values beyond x = 171. Another alternative to
analyze fractional order systems is computer algebra systems
[3], which are very efficient for computing mathematical so-
lutions symbolically, but they are not reliable [15] due to their
limitations of dealing with side conditions. Another limitation
of computer algebra systems related to fractional calculus is
the uncertain simplification of singular expressions particularly
in case of the Gamma function, which are frequently used
in fractional calculus [18] . Another source of inaccuracy in
computer algebra systems is the presence of unverified huge
symbolic manipulation algorithms in their core, which are
quite likely to contain bugs. Thus, these traditional techniques
should not be relied upon for the analysis of fractional order
systems, especially when they are used in safety-critical areas
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(e.g., cardiac tissue electrode interface [9] which is modeled
and analyzed using fractional calculus), where inaccuracies in
the analysis may even result in the loss of human lives.

In the past couple of decades, formal methods have been
successfully used for the precise analysis of a variety of
hardware and software systems. The rigorous exercise of
developing a mathematical model for the given system and
analyzing this model using mathematical reasoning usually
increases the chances for catching subtle but critical design
errors that are often ignored by traditional techniques like
numerical methods. Given the sophistication of the present age
fractional order systems and their extensive usage in safety
critical applications, there is a dire need of using formal
methods in this domain. However, due to the continuous nature
of the analysis and the involvement of transcendental func-
tions, automatic state-based approaches, like model checking
[19], cannot be used in this domain. On the other hand, we
believe that higher-order-logic theorem proving [14] offers a
promising solution for conducting formal analysis of fractional
order systems. The main reason is being the highly expressive
nature of higher-order logic, which can be leveraged upon to
essentially model any system that can be expressed in a closed
mathematical form. In fact, most of the classical mathematical
theories behind elementary calculus, such as limits, differ-
entiation, integration and transcendental functions, have been
formalized in higher-order logic [15]. In this paper, we build
upon the available theories of elementary calculus to formalize
Riemann-liouville’s [26] definitions of fractional integration
and differentiation in higher-order logic. These definitions
are then used to formally verify some classical properties of
fractional calculus using the HOL theorem prover [34], which
has been chosen due to the availability of Harrison’s seminal
work on the formalization of elementary calculus [15]. The
formal verification of these classical properties of fractional
calculus , such as, linearity, identity and the relationship with
elementary calculus, not only ensures the correctness of our
formal definitions of fractional integration and differentiation
but also plays a vital role in the formal analysis of fractional
order systems. To the best of our knowledge, the reported
formalization is the first one of its kind and facilitates the
formal analysis of fractional order systems, which is a novelty
that has not been presented in the open literature so far using
any formal technique.

The rest of the paper is organized as follows: Section
II describes some fundamentals of fractional calculus , its
commonly used definitions and the justification behind the
choice of Riemann-Liouville approach for our formalization.
Section III presents the proposed framework for the formal
analysis of fractional order systems. Section IV presents our
HOL formalization. In order to demonstrate the practical effec-
tiveness and the utilization of proposed framework, we present
the analysis of some real-world fractional order systems, i.e.,
a Resistoductance, a fractional differentiator and a fractional
integrator circuit in Section V. Finally, Section VII concludes
the paper.

II. FRACTIONAL CALCULUS

In 1695, L’Hôpital asked Leibnitz regarding his notation
dny
dxn , “What if n is 1

2”. Leibnitz prophesied in his letter [10]
to L’Hôpital,“. . . Thus it follows that d

1
2x will be equal to

x
√
dx : x. This is an apparent paradox from which, one day,

useful consequences can be drawn . . . ”. Leibnitz’s initial work
on the problem of defining the derivative of arbitrary order
gave birth to a new field of research in mathematics and
attracted attention of many biologists, physicists, engineers
and geometers. Initially more efforts were made for defining
fractional derivatives and fractional integrals but Neils Henrik
Abel [26] was the first one to use this idea in solving the
famous Tautochrone problem. The other great mathematicians
and physicists who touched the field of fractional calculus
are Riemann, Liouville, Laurent, Heaviside, Al-Bassam, Davis
Erdelyi, Riesz and Thomas J. Osler [26].

Fractional integrals and fractional derivatives are also re-
ferred to as Differintegrals [28] and there are more than ten
well known definitions for Differintegrals [9]. We consider two
of them, which are most widely used in analyzing real-world
problems. These are the Riemann-Liouville and Grünwald-
Letnikov definitions, which are also equivalent for a wide class
of functions [31].
• Riemann-Liouville (RL) Definition:

Jvaf(x) =
1

Γ(v)

∫ x

a

(x− t)v−1f(t)dt (1)

Where Jvaf(x) represents fractional integration with order
v and lower integration limit a. a = 0 gives the Riemann
definition and a = −∞ gives the Liouville definition of
fractional integration [32]. Γ in the above definition denotes
the Gamma function which is defined using the well-known
improper integral as follows:

Γ(z) =

∫ ∞

0

tz−1e−tdt (2)

for z > 0.
The fractional differentiation is given as follows:

Dvf(x) = (
d

dx
)mJm−va f(x) (3)

where m represents the ceiling of v, i.e., dve.
• Grünwald-Letnikov (GL) Definition:

cD
v
xf(x) = lim

h→0
h−v

[ x−c
h ]∑

k=0

(−1)k
(
v

k

)
f(x− kh) (4)

Grünwald-Letnikov definition caters for both fractional dif-
ferentiation and integration, as positive values of v give frac-
tional differentiation and negative values of v give fractional
integration. Here,

(
v
k

)
represents the binomial coefficient,

which is described in terms of the Gamma function.
The Riemann-Liouville definition provides a way to find

analytical solutions while Grünwald-Letnikov definition facil-
itates the numerical computation of solutions. There are two
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motivations of using the Riemann-Liouville definition for our
formalization: Firstly, it is widely used in the modeling and
analysis of engineering fractional order systems [10], Sec-
ondly, the analysis carried out in this way is purely analytical
and hence free from any kind of approximations. On the other
hand, Grünwald-Letnikov definition is more suitable for nu-
merical analysis based methods and thus provides approximate
solutions.

III. PROPOSED FRAMEWORK

The proposed framework, given in Figure 1, outlines the
main idea behind the theorem-proving-based fractional order
system analysis. The grey shaded boxes in this figure represent
the key contributions of the paper that serves as the funda-
mental requirements of conducting fractional order system
analysis in a theorem prover. Like all the system analysis
tools, the input to this framework, depicted by two rectangles
with curved bottoms, is the description of the fractional order
system that needs to be analyzed and a set of properties that
are required to be checked for the given system.

Fractional 
order System

Properties of 
System

Higher -order 
Logic Description

(Theorem)

HOL Theorem Prover

Formal Proof of System Properties

Higher-order Logic

Real 
Analysis

&
Integer 
order  

calculus

Gamma 
function

Differintegrals

Formally Verified 
Properties

Formal Model

Theorems
Theorems

Theorems

Fig. 1. Proposed Framework

The first step in conducting fractional order system analysis
using a theorem prover is to construct a formal model of
the given system in higher-order logic. For this purpose, the
foremost requirement is the ability to formalize fractional
derivatives and integrals (Differintegrals) as higher-order logic
functions. The formalization of Differintegrals, given in Equa-
tions 1 and 3, requires the mathematical theories of real
numbers, integer order calculus and the Gamma function.
Harrison’s work on the formalization of real numbers [15]
provides the first two requirements and we built upon Har-
rison’s work to formalize the Gamma function in this paper
to fulfil the third requirement. Using these fundamentals, this
paper also presents the formalization of Differintegrals, given
in Equation 1 and 3, which in turn can be used to represent
the dynamics of fractional order systems in higher-order logic.
The second step in the theorem proving based fractional order

system analysis is to utilize the formal model of fractional
order system, developed in the first step, to express system
properties as higher-order logic theorems.

The third step for conducting fractional order system anal-
ysis in a theorem prover is to formally verify the higher-
order-logic theorems developed in the previous step using a
theorem prover. For this verification, it would be quite handy
to have access to a library of some pre-verified theorems
corresponding to some commonly used properties of Gamma
function and Differintegrals. To fulfil this requirement, this
paper presents formal verification of the classical properties
of Gamma function, such as, Pseudo-Recurrence Relation,
Factorial Generalization and Functional Equation, and Dif-
ferintegrals, such as, Identity and Linearity, using the HOL
theorem prover. Building on such a library of theorems would
minimize the interactive verification efforts and thus speed up
the verification process. Finally, the output of the theorem
proving based fractional order system analysis framework,
depicted by the rectangle with dashed edges, is the formal
proofs of system properties that certify that the given system
properties are valid for the given fractional order system.

IV. HOL FORMALIZATION

This section presents the higher-order logic formalization of
the main requirements of the proposed framework, depicted
by the gray shaded boxes in Figure 1. We have arranged the
information in two subsections. The first subsection presents
the formalization of the Gamma function and the formal
verification of its associated properties using the HOL theorem
prover. While the second subsection presents formalization of
Riemann-Liouville definition of Differintegrals and the formal
verification of its associated properties in HOL.

A. Formalization of Gamma function

The applicability of Gamma function in fractional calculus
is due to its unique characteristic of generalizing factorials
over non-integer numbers. The theory of improper integrals
[2] suggests that it is convenient to write Gamma function
(Equation 2) as follows:

Γ(z) = lim
a→0+,b→∞

∫ b

a

tz−1e−tdt (5)

We formalize Equation (5) as follows:

Definition 1: Gamma Function
` ∀ z.gamma z =

lim(λ n.(lim
(λ b.

∫ b
1
2n

t rpow (z-1)exp(-t) dt))

The function rpow [33] is a power function with real exponent.
It takes two real numbers x and y, and returns xy . We used
limn→∞( 1

2n
) to model 0+ as ( 1

2n
) becomes very close to 0 as

n becomes very large. The integral (
∫ b
a
f) is used to represent

HOL function integral(a,b) f, which represents the
formalization of the Gauge integral in HOL [15]. Mhamdi [25]
presented the higher-order logic formalization of Lebesgue
integration theory, which is fundamental concept in many

FMCAD 2011, Page 165



TABLE I
PROPERTIES OF THE GAMMA FUNCTION

Property HOL Formalization

Pseudo-Recurrence Relation ` ∀ z.(0 < z) =⇒
(gamma (z + 1)= z gamma (z))

Functional Equation ` gamma 1 = 1

Factorial Generalization ` ∀ n ∈ N. gamma(n + 1) = n!

Reconstruction of Gamma
` ∀ x z.(0 < z)∧(0 < x) =⇒
gamma z =
gamma_upper x z + gamma_lower x z)

Recurrence Lower Gamma
` ∀ z x.(0 < z)∧(0 < x) =⇒
gamma_lower x (z + 1)=
(z)gamma_lower x z -

x rpow (z)exp(-x)

Recurrence Upper Gamma
` ∀ z x.(0 < z)∧(0 < s) =⇒
gamma_upper s z =
(z - 1)gamma_upper s (z-1)+

s rpow (z-1)exp(-s)

mathematical theories and allows a wider class of functions
than the Riemann integration theory. In our formalization, we
built upon Harrison’s formalization of Gauge integral because
the proposed framework is intended to be used by engineers
and practitioners, who are normally not familiar with Lebesgue
integration theory.

The lower and upper incomplete Gamma functions play a
vital role in obtaining Differintegrals of periodic functions,
such as, sinusoidal response study of fractional operators [10],
and can be formalized as follows:

Definition 2: Upper Incomplete Gamma Function
` ∀ x s.gamma_upper s z =

(lim (λ b.∫ b

s
t rpow (z-1)exp(-t) dt))

Definition 3: Lower Incomplete Gamma Function
` ∀ x z.gamma_lower x z =

(lim (λ n.∫ x
1
2n

t rpow (z-1)exp(-t) dt))

Next, we defined and verified some of the key properties
of Gamma function in HOL using Definitions 1, 2, and 3.
The formal verification of these properties not only ensures
the correctness of our formal definition but also facilitates
the formal reasoning about fractional order systems in higher-
order logic as mentioned in Section III. The formally verified
properties of Gamma function are given in Table I.

The first property in Table I represents the Pseudo-
Recurrence Relation of the Gamma function and can be clas-
sified as the most important property of the Gamma function
as it plays a vital role in verifying the other properties of
Gamma function and Differintegrals. The verification of this
property was also one of the most challenging part of our
formalization as it involves the core concepts of improper
integrals, limits and sequences. Its reasoning process involve
ten main lemmas, such as, convergence of integral with
respect to upper and lower limits, limits on infinity and zero,
simplification of integrand by integration by parts and the
continuity, differentiability and integrability of the integrand.
The complete formalization details are provided in [33].

The second and third properties of Table I, i.e, Functional
Equation and Factorial Generalization, are very important in
establishing the link between fractional calculus and integer
order calculus. The verification of these properties requires
the Pseudo-Recurrence Relation of Gamma function along
with some limit theory proofs and arithmetic reasoning in
HOL. The fourth property, Reconstruction of Gamma function,
shows that the Gamma function can be divided into two inte-
grals, which are incomplete at one limit, i.e., upper and lower
incomplete Gamma functions. The verification of this property
requires lemmas used in the verification of Pseudo-Recurrence
Relation along with the properties of the Gauge integral. The
last two properties in Table I show the recurrence relation
of the upper and lower incomplete Gamma functions. These
relations are very important in fractional calculus because
factional integration and differentiation of many important
functions, e.g., Exponential function, is represented in terms of
the incomplete Gamma functions and then these properties are
utilized to evaluate such mathematical expressions. The veri-
fication of these properties is similar to that of the verification
of Pseudo-Recurrence Relation.

This completes our formalization of the Gamma function,
which to the best of our knowledge is the first one in higher-
order logic. The main challenge in the reasoning process is
to deal with improper integrals in higher-order logic. The
Gamma function is useful in many domains, such as, prob-
ability theory (Gamma Distribution), and our formalization
can be directly utilized in such applications. Our formalization
of Gamma function can be generalized to formalize other
improper integrals, such as, the Beta function. Next, we build
upon the formalization of the Gamma function to formalize
Differintegrals.

B. Formalization of Differintegrals

The second major requirement of formal reasoning about
fractional order systems, is the formalization of Differintegrals,
as depicted in Figure 1. We utilize Equations (1) and (3)
to formally define fractional integration and differentiation,
respectively.

Definition 4: Fractional Integration
` ∀ f v a x.frac_int f v a x =
if (v = 0) then f else

lim(λn. 1
gamma v

(
∫ x− 1

2n

a
((x - t) rpow (v-1)) f(t) dt)

Definition 5: Fractional Differentiation
` ∀ f v a x. frac_diff f v a x =
n_order_deriv

(clg v) (frac_int f (clg v - v) a x)

Where f is a function of type (real→ real), v is a real

number that indicates the order of integration/differentitiation,
and a and x represent the lower and upper limits of integration,
respectively. The function n order deriv returns the nth

integer order derivative of its argument f as dnf
dxn

. The function
clg is the ceiling function, which returns the least greater
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TABLE II
PROPERTIES OF DIFFERINTEGRALS

Property HOL Formalization

Identity
` ∀ f a x.
(a < x) =⇒ (frac_int f 0 a x = f)∧

(frac_diff f 0 a x = f)

Generalized Integral

` ∀ f a x v ∈ N.
(a < x)∧ (1 < v) =⇒
frac_int f v a x = lim(λn.

1
(v-1)!

∫ x− 1
2n

a (x - t) rpow (v-1)f(t) dt)

frac int Linearity

` ∀ f v x a b.
(frac_exists f x v)∧
(frac_exists g x v) =⇒
frac_int (a f + b g) v 0 x =

a(frac_int f v 0 x)+
b(frac_int g v 0 x)

frac diff Linearity

` ∀ f v x a b.
(frac_exists f x v)∧
(frac_exists g x v)∧
(∀ m. (m <= clg v) ⇒
(n_order_deriv m (frac_int f v 0 x))

differentiable x)∧
(∀ m. (m <= clg v) ⇒
(n_order_deriv m (frac_int g v 0 x))

differentiable x)=⇒
( frac_diff (a f + b g) v 0 x =

a(frac_diff f v 0 x)+
b(frac_diff g v 0 x))

integer of its real number argument. It is important to note
that we have explicitly defined the case for v = 0, which is
justified based on integer order calculus and proves to be very
convenient for further manipulations [11].

As mentioned in Section III, now we will use our formal
definitions of Differintegrals to formally verify some of the
classical properties of fractional calculus, given in Table II,
using the HOL theorem prover. The first property of Dif-
ferintegrals is the Identity property, which shows that the
0th order fractional operators return original functions. The
proof of the first part of this property is obvious from the
definition of fractional integration (Definition 4) and proof of
the second part is done based on the fact that dnf

dxn
with order 0

returns the original function. The second property in Table
II shows that fractional integration generalizes the integer
order integration. The verification of this property utilizes the
third property (Factorial Generalization) of Gamma function,
given in Table I. The next property is about the linearity
of fractional integration and helps in formal reasoning about
fractional order systems with multiple inputs. In the HOL
formalization of frac int linearity property, the assump-
tions frac exists f x v and frac exists g x v ensure the
existence of Differintegrals for function f and g, respectively.
The verification of this property requires the properties of
Gamma function, integer order integration and limits along
with some arithmetic reasoning. The HOL formalization of
last property of Differintegrals in Table II shows the linearity
of fractional differentiation. From Definition 5 it is clear
that fractional differentiation involves fractional integration
followed by the nth order ordinary differentiation. So, the
third and fourth assumptions of this property ensures the
differentiability of (clg(v)−v)th order fractional integral of the
functions f(t) and g(t), respectively. The formal verification

of this property requires the linearity of the nth integer order
derivative along with some arithmetic reasoning.

Due to inherent soundness of higher-order logic theorem
proving, our verification results are exactly the same as pro-
duced by paper-and-pencil proof methods. It is interesting to
note that we have been able to identify a couple of critical
assumptions that are missed by almost all the paper-and-pencil
based proof analysis, that we came across. For example, the
assumption 0 < x in the last two properties of the Gamma
function (Table I) have not been specified in anyone of the
paper-and-pencil proof based analysis (e.g., [10]). Obviously
the results do not hold without this assumption and this
discrepancy in the paper-and-pencil based proofs may lead to
disastrous consequences if these properties are used without
considering 0 < x for designing safety-critical fractional order
systems.

The formalization, presented in this section, had to be done
in an interactive way due to the undecidable nature of higher-
order logic and took around 7000 lines of HOL code and
approximately 550 man hours. However, the main advantage
of this rigorous exercise is that our results can be built upon
to facilitate formal reasoning about fractional order systems.
Our proof script is available for download [33] and thus can
be utilized by other researchers to conduct the formal analysis
of their fractional order systems.

V. APPLICATIONS

In order to illustrate the utilization and effectiveness of the
proposed framework, we apply it to analyze three real-world
fractional order systems, i.e., a fractional electrical component
Resistoductance, a fractional integrator and a differentiator
circuit. Resistoductance is used to extend the current-voltage
relationship to non-integer order and this kind of fractional
order model is usually used for modeling bio-electrodes for
cardiac tissue interfacing [9]. Fractional integrators and dif-
ferentiators are the most basic components in fractional order
PID (proportional integrator differentiator) controllers and can
achieve more robustness than integer order control [5]. These
systems have been chosen as case studies in our work because
of their wide usability in the field of circuit theory and control
systems. To the best of our knowledge, currently, there is no
formal technique available for the formal verification of such
systems.

A. Resistoductance

Electrical components, such as, resistors, inductors and
capacitors are largely used to perform integer order calculus
operations for different engineering and scientific applications.
However, actual electrical components do not posses ideal
behavior and exhibit some fractional order characteristics.
Ignoring these characteristics always results in modeling inac-
curacies. Therefore, fractional calculus is being widely used
to capture real world dynamics of electrical components these
days [4]. Resistoductance is a linear electrical circuit element
that posses the characteristics between an ohmic resistor and
an inductor. Being a fractional order electrical component,
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it exhibits fractional order dynamics, which can be modeled
by Differintegrals. The model of a single Resistoductance is
shown in Figure 2, and its governing voltage and current
relationship is given as follows:

i(t) =
1

K
Jαv(t) (6)

where v(t) is the voltage and i(t) is the current through the
circuit element at time t. The range of the α is between 0 and
1. If α = 0 the circuit will be purely resistive with K = R
ohms and if α = 1 the circuit will be purely inductive with K
= L henrys.

The two important characteristics of Resistoductance are the
output current through the circuit element when constant input
voltage V0 is applied and the behavior of the output current
for the cases when α = 0 and α = 1. These two properties
are widely used in designing Resistoductance based fractional
order systems for signal processing and control engineering
applications [4].

v(t)= K D  i(t) α i(t)=     J    v(t) α1
Κ

+

−

Fig. 2. Resistoductance

Now, we will present the formal verification of the above
mentioned two properties of Resistoductance using our pro-
posed framework given in Figure 1. The first step in conduct-
ing the formal analysis of Resistoductance is to construct its
formal model in higher-order logic. Due to the availability of
Definition 4, the formalization can be simply done as follows:

Definition 6: Current through Resistoductance
` ∀ K v_i alpha x. i_t K v_i alpha x =

(1/K)frac_int v_i(t) alpha 0 x

where v i is input voltage, i t is current through the circuit
element, alpha is the order of integration, and the variable x

represents the upper limit of integration. In the above definition
the lower limit of integration is taken as 0 [10]. The next
step, in the proposed framework, is to utilize the formal model
of Resistoductance (Definition 6) to express the properties of
interest as higher-order logic theorems as follows:

Theorem 1: i t for constant voltage V 0
` ∀ K v_0 alpha x.

(0 < x) ∧ (0 < alpha) =⇒
(i_t K V_0 alpha x =

(1/K (Gamma (alpha + 1))
(V_0(x rpow alpha))))

Theorem 2: Special Cases for i t
` ∀ x. (0 < x) =⇒

(((alpha = 0) ⇒
(i_t K V_0 alpha x = V_0 / K)) ∧

((alpha = 1)⇒
(i_t K V_0 alpha x = (V_0 / K ) x)))

Theorem 1 shows the relationship of output current of
Resistoductance when constant input voltage V 0 is applied
at t = 0. The formal verification of this theorem is based on
the properties of Gamma function (Table I, Pseudo-Recurrence
relation) and the definition of fractional integration. Since,
these required properties have already been verified in HOL
library, the interactive formal reasoning process only consists
of verifying the continuity of fractional integral. Theorem
2 shows an interesting feature of Resistoductance, i.e., for
(alpha = 0) it behaves as a pure resistor and for (alpha = 1)
it exhibits the behavior of a pure inductor. The verification
of Theorem 2 requires Theorem 1, the properties of the real
power (rpow) function and some arithmetic reasoning.

This verification of Theorems 1 and 2 consumed approxi-
mately 350 lines of HOL code and about two man hours and
thus was very short compared to the challenging verification
of the theorems presented in the last section. The verification
process, besides being compact, was also very straightforward
and involved reasoning based on real analysis theories only
and thus can be done with some basic know how of higher-
order-logic theorem proving. The main reason for the above
mentioned benefits is clearly the availability of formalized
Gamma function and the Differintegrals.

B. Fractional Differentiator and Integrator Circuits

Proportional integrator (PI) and proportional integrator dif-
ferentiator (PID) controllers are widely used in the industry.
Numerous reliable and high performance controllers have
been designed and deployed. In recent years, it has been
observed that Fractional order (FO) controllers offer more
flexibility in the adjustment of gain and phase characteristics
than integer order controllers. Due to these flexibilities, there
is a growing interest in using fractional order controllers in
industry and academia [5]. The most fundamental components
of PI and PID controllers are integrator and differentiator
circuits, respectively. In this section, we will present the formal
analysis of a fractional integrator and a differentiator circuit,
[10] shown in Figure 3. The output voltage-current equations
for a fractional integrator and a differentiator circuits are given
as follows:

vo(t) = − 1

RC
Jµvi(t) Integrator (7)

v0(t) = −RCDµvi(t) Differentiator (8)

where R and C denotes resistance and capacitance, respec-
tively, and their values are used to define the reset rate
of PID controllers. The variables, vo(t) and vi(t), in the
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Fig. 3. (a) Integrator (b) Differentiator

above Equations represent output and input voltages at time t,
respectively.

The output response of integrator and differentiator circuit
is usually analyzed for benchmark input signals, such as, the
unit step, which is defined as follows:

u(t) =

{
0 if t ≤ 0;
1 if t > 1;

The first step in the formal analysis of integrator and
differentiator circuits, when unit step signal is applied at the
input, is to construct the formal model of these circuits and unit
step signal in higher-order logic. Since the governing equations
(Equations 7, 8) of integrator and differentiator circuits involve
fractional integration and differentiation, thus we utilize our
formalized definitions (Definition 4, 5 ) of Differintegrals as
follows:

Definition 7: Fractional Order Integrator
` ∀ R C v_i mu x. v_I_0 R C v_i mu x =

-(1/RC)frac_int v_i(t) mu 0 x

Definition 8: Fractional Order Differentiator
` ∀ R C v_i mu x. v_D_0 R C v_i mu x=

-(RC)frac_diff v_i(t) mu 0 x

Definition 9: Unit Step
` ∀ t. unit t = if (0 <= t) then 1 else 0

where v I 0 and v D 0 are output voltages of integrator and
differentiator circuits, respectively. v i is the input voltage, R,
C, mu and x represent resistance, capacitance, order of integra-
tion/differention and upper limit of integration, respectively.

Now, the next step in the formal analysis of fractional inte-
grator and differentiator, as mentioned in Fig 1, is to describe
their properties of interest as higher-order logic theorems:

Theorem 3: Output of Fractional Integrator Circuit
` ∀ R C mu x .

(0 < x) ∧ (0 < mu) ∧ ( mu < 1)=⇒
(v_I_0 R C (unit t) mu x =

(-1/(RC Gamma (mu + 1))
((x rpow ( mu))))

Theorem 4: Output of Fractional Differentiator Circuit
` ∀ R C mu x .

(0 < x) ∧ (0 < mu) ∧ ( mu < 1)=⇒
(v_D_0 R C (unit t) mu x =

((-1/(RC (Gamma ((1 - mu))))
((x rpow (- mu))))

The next step in the theorem proving based fractional
order system analysis is the verification of above mentioned
theorems using the already verified properties and lemmas of
Section IV. Theorem 3 gives the output response of a fractional
integrator circuit for unit step signal, and its formal verification
certifies the output response under the given conditions. The
availability of already verified properties of Gamma function
and Differintegrals (Table I and Table II) led us to the simple
subgoal, i.e., the proof of continuity of the integrand, which
involves multiplication of power function and the unit step
signal. We verified the continuity by differentiability using the
classical definition of derivative formalized in HOL [15].

Theorem 4 describes the output response of the fractional
differentiator circuit with unit step signal as an input. The
second and third assumptions in Theorem 4 ensure that the
order of the fractional differentiation mu is between 0 and
1 which means that clg of mu will always be 1. So the
verification of this theorem requires fractional integration of
the order 1− mu followed by the fractional differentiation of
order 1. This requires Theorem 3 along with some arithmetic
reasoning. Just like the case of the Resistoductance, the verifi-
cation of Theorem 3 and Theorem 4 was very straightforward
and took about 400 lines of HOL code and about 2.5 man
hours.

The above case studies clearly demonstrate the effectiveness
of the proposed theorem proving based fractional order system
analysis technique. Due to the formal nature of the model and
inherent soundness of higher-order logic theorem proving, we
have been able to verify the properties of given fractional order
systems with 100% accuracy; a feature that, to the best of
our knowledge, is not available in any other computer based
analysis technique. This additional benefit comes at the cost
of the time and effort spent, while formalizing the Differinte-
grals and formally reasoning about their properties. But, the
availability of such a formalized infrastructure significantly
reduces the time required to analyze fractional order systems,
as the verification task of the properties of Resistoductance
and a fractional integrator and differentiator circuits took just
a couple of man hours each.

VI. CONCLUSIONS

In this paper, we presented a novel application of formal
methods in the area of analyzing fractional order systems. In
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particular, we developed a framework for accurate and reliable
analysis of fractional order systems within the sound core of
the HOL theorem prover. This approach can thus be of great
benefit for the analysis of fractional order systems used in
safety-critical domains, such as, medicine and transportation.
The paper provides the complete formalization details of Dif-
ferintegrals along with the formal verification of their classical
properties. For illustration purposes, we provided the formal
analysis of Resistoductance, a fractional differentiator and a
fractional integrator circuit. To the best of our knowledge, this
is the first time that a formal method technique has been used
to conduct the analysis of fractional order systems.

The reported formalization opens the doors to many interest-
ing and novel directions of research. Some worth mentioning
ones include enriching the library of the formally verified
properties of Differentagrals with law of exponents and re-
lationship with Beta function to broaden the scope of formal
fractional order system analysis. Similarly, the reported for-
malization can be utilized to formalize the fractional Laplace
transform theory, which in turn can be utilized for the the
formal analysis of industrial fractional order control systems.
Our formalization was done using real numbers and the same
formalization can also be extended to cover the complex
numbers using the higher-order-logic formalization of complex
number theory [16], which would allow us to formalize frac-
tional electromagnetic systems, such as, fractional rectangular
waveguides [13].
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Abstract—Lucy-n is a data-flow programming language similar
to Lustre extended with a buffer operator. It is based on the
n-synchronous model which was initially introduced for pro-
gramming multimedia streaming applications. In this article, we
show that Lucy-n is also applicable to model Latency Insensitive
Designs (LID). In order to model latency introduced by wires,
we add a delay operator. Thanks to this new operator, a LID can
be described by a Lucy-n program. Then, the Lucy-n compiler
automatically provides static schedules for computation nodes
and buffer sizes needed in shell wrappers.

I. INTRODUCTION

The theory of Latency Insensitive Design ([1], [2]) was
introduced to cope with the problem of long wires in Systems
on Chips (SoC). Due to the length of wires, data can take
more than a single clock cycle to go from one computation
node (also known as Intellectual-Property or IP) to another.
It raises the issues of activating IPs only when all inputs
are available and storing the inputs awaiting to be processed.
They are treated by encapsulating each computation node in
a process, called a shell wrapper, that is used as a commu-
nication interface. In order to synchronize all the inputs, the
shell wrappers have a buffer on each input wire. To respect the
desired clock period, long wires are split into shorter segments
by inserting relay nodes, called relay stations.

Different dynamic scheduling protocols for the shell wrap-
pers have been proposed [2], [3]. Those protocols use back
pressure mechanisms to inform the producer node that the
consumer node has no more room to keep the inputs waiting to
be processed. When a producer node is not executed, the shell
wrapper has to inform the consumer node through a control
channel that no valid inputs have been sent.

To avoid the communication overhead introduced by these
dynamic protocols, static scheduling methods have been pro-
posed [4], [5], [6], [7], [8]. Schedules are represented as
ultimately periodic binary words indicating the instants where
nodes have to be executed.

The schedules of [4], [5] and [6] fire the execution of
the nodes As-Soon-As-Possible (ASAP). While in [7] a well-
balanced schedule is sought in order to minimize buffer sizes
for a fixed rate. This method is semi-automatic: prefixes of
schedules must be found by hand. The approach of [8] is to
search for schedules that can be shared between several IPs.
The advantage of this method is that it reduces the complexity

of the algorithm which finds the schedules and simplifies the
circuits needed to generate them.

The approaches for finding schedules are either analytic [4],
[7] or based on simulation [6], [8].

This paper presents a novel analytic way to compute static
schedules for Latency Insensitive Designs by encoding LID
models in the n-synchronous language Lucy-n [9], [10]. The
schedules obtained by the Lucy-n compiler are not yet as
good as the ones obtained by previous techniques. However,
the advantage of our technique is to be able to compose
modularly IPs that have already been statically scheduled. This
can be useful for example when IP blocks are provided as
black boxes. These Statically Scheduled IPs (SSIPs) have the
particularity of not reading all their inputs nor writing all their
outputs at each activation.

The paper is organized as follows. Section II presents the
Lucy-n language. Section III explains how to encode LID
models in this language and presents the new delay operator
that is mandatory for the encoding. Section IV defines the
typing of our new operator and presents a way of solving
the typing constraints. Section V discuss the composition
of SSIPs. Section VI presents experimental results. Finally,
section VII concludes.

The Lucy-n compiler, the complete code of the paper
examples and additional materials are available at http://www.
lri.fr/∼mandel/lucy-n/fmcad11.

II. A BRIEF OVERVIEW OF LUCY-N

Lucy-n [10] is a programming language similar to the
synchronous data-flow language Lustre [11] extended with a
build-in buffer operator. The goal of this language is to relax
synchrony constraints by inserting buffers without abandoning
the guaranties given by synchrony, namely, determinism and
execution in bounded time and memory. To this end, the
compiler must compute both static schedules so that executions
can be performed with finite buffer sizes and the buffer sizes
themselves.

We present the language through the example of a cyclic
encoder that takes as input a stream of bits and returns as
output the same stream where after every 50 bits are added 3
redundancy bits. The program is given Figure 1.

The input flow i goes into a redundancy node that
computes three flows of redundancy bits (line 2): bit0, bit1
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let node cyclic_encoding i = o3 where
rec (bit0, bit1, bit2) = redundancy i
and o1 = merge (1ˆ50 0) i (buffer bit0)
and o2 = merge (1ˆ51 0) o1 (buffer bit1)
and o3 = merge (1ˆ52 0) o2 (buffer bit2)

Fig. 1. Graphical and textual representation of a cyclic encoder in Lucy-n.

and bit2 each producing 1 redundancy bit every 50 bits. The
implementation of this node is based on a classical division
circuit [12].

In parallel, the input flow i is merged with the first flow of
redundancy bits bit0, following the condition (1500) (line 3).
It means that periodically 50 bits of i are read as input and
transmitted as output in o1, then 1 bit of bit0 is read and
transmitted. Following the same principle, periodically, 51 bits
of o1 are merged with 1 bit of bit1 to produce o2 (line 4)
and 52 bits of o2 are merged with 1 bit of bit2 to pro-
duce o3 (line 5). The three flows bit0, bit1 and bit2 are
bufferized such that their values are stored until the instant
they are needed.

In synchronous languages, each flow is associated to a clock
indicating the instants where a value is present. Clocks are
infinite binary words where 1 represent the presence of a value
on a flow and 0 the absence of value. Dedicated types, named
clock types, specify this information. For example, the clock
type of the node redundancy is: 1

∀α. α on (1500)→ α on (0501)×α on (0501)×α on (0501)

Here, all the input and output types are expressed relative
to a type variable α which represents the activation rhythm
of the node redundancy and thus defines its notion of
instant. The input type α on (1500) means that whatever the
base rhythm α, periodically, the input must be present for
50 instants of α, then absent for 1 instant. Each of the three
outputs of the redundancy node emits a value on the last
instant of every cycle of 51 instants.

Communication between two nodes is synchronous, i.e. it
can be done without a buffer, if the flow is produced on the
wire at the same clock that it is consumed. Equality of clocks is
ensured by equality of types. So, such synchrony is guaranteed
at compile time by a type system, called a clock calculus.
For example, let us consider the typing rule for the merge
operator where H is a typing environment which associates
types to variables:

H ` ce : ct H ` e1 : ct on ce H ` e2 : ct on not ce

H ` merge ce e1 e2 : ct

1In the rest of the article, we use the term type instead of clock type since
data types are not considered here.

A0

B

A

B0

(a)

A0

B

A

B0

?

(b)

Fig. 2. First example of synchronous circuit and LID of [4].

This rule indicates that in the typing environment H , the
expression merge ce e1 e2 has type ct if: (1) the merging
condition ce has type ct, (2) the expression e1 has type
ct on ce and (3) the expression e2 has type ct on not ce. It
expresses the synchronous semantics of the merge operator:
with respect to a rhythm ct, the presence instants of the flow e2
(i.e. not ce) are the complement of the presence instants of
the flow e1 (i.e. ce), and the output flow of the merge is
present at each instant of the reference rhythm ct.

In the n-synchronous language Lucy-n, the buffer oper-
ator relaxes the synchronous hypothesis by introducing of a
subtyping rule to the clock calculus.

H ` e : ct ct <:<:<: ct′

H ` buffer e : ct′

This typing rule means that if an expression e has type ct and
if clocks represented by ct are adaptable to clocks represented
by ct′, then we can use the results of e on the type ct′ provided
we store them in a buffer. The adaptability relation ensures that
such buffers are bounded. It is denoted w1 <: w2 where w1 is
the clock of writes into the buffer and w2 is the clock of reads,
and it is defined as the conjunction of two conditions. First, no
reads may occur on an empty buffer, i.e. the jth reading in a
buffer must always occur after the jth writing. Second, there
must be a bounded number of values in the buffer, i.e. the
difference between the number of writes and reads since the
beginning of an execution must be bounded. Theses conditions
can be checked at compile time provided clocks are periodic.

The clock calculus automatically infers the type of
the flows. For example, the type inferred for the entire
cyclic_encoding node is: ∀α.α on (15003)→ α. 2 From
such types, it is possible to build a static schedule for the
program and to compute the buffer sizes needed. Here, the
compiler finds that the node cyclic_encoding can be
executed without buffering bit0 and with buffers of size one
for bit1 and bit2. For more information about Lucy-n and
its type system refer to [13], [10], [14].

III. LID ENCODING IN LUCY-N

To illustrate the encoding of Latency Insensitive Designs in
Lucy-n, we use the first example given in [4]. We first model
the synchronous circuit of Figure 2(a), and then we model
the variation of Figure 2(b) where a relay station is added to
model a communication latency from B to A.

2This type shows that the input must be absent during the insertion of the
redundancy bits into the output.
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A. Encoding of Computation Nodes

In the theory of LID, each computation node or IP reads all
its input and produces all its outputs at each activation. Hence,
IPs are encoded as Lucy-n nodes of clock ∀α. α× · · · ×α→
α × · · · × α. Since we do not have to know the behavior of
the IPs to compute the scheduling of the system, the IPs can
be represented as dummy nodes with the correct clock type.
For example, the IPs of Figure 2 can be modeled as:

let node ip_A x = x
let node ip_B x = x

B. Encoding of Wires

In the synchronous circuits described in [4], data takes one
clock cycle to go from one IP to another. Hence, a wire
cannot be represented as a Lucy-n variable, because variables
in synchronous languages model instantaneous communication
channels. We thus model wires with a new operator, called
delay, that transmits its input to its output with one instant
of delay.3 With this operator, a wire from a source src to a
destination dst is written:

dst = delay src

To put an initial value on a wire as A0 and B0 in the
example of Figure 2(a), we use the merge operator with the
condition 1(0).

dst = merge 1(0) init (delay src)

The condition 1(0) equals 1 at the first instant then 0 forever.
So, at the first instant, the value init is transmitted to the
destination dst. Then, thereafter, the values coming from the
source src are transmitted.

Now, following the encoding of computation nodes and
wires, we can program the example of Figure 2(a):

init_B0

delay
delay

ip_B

in_A

1(0)
m
e
r
g
e

1

0

in_B

1(0)

m
e
r
g
e 0

1

figure_2a

ip_A
out_A

out_B

init_A0

let node figure_2a (init_A0, init_B0) =
(out_A, out_B) where
rec out_A = ip_A in_A
and out_B = ip_B in_B
and in_A = merge 1(0) init_B0 (delay out_B)
and in_B = merge 1(0) init_A0 (delay out_A)

In this node, out_A and out_B are the flows of values
computed by the IPs A and B. The definitions of in_A
and in_B describe the wires between A and B. The node

3Even if the pre operator of Lustre introduces a delay, it does not have
exactly the same semantics as the one of delay. If we consider a flow x of
clock (100), the values of x are output by pre x on the clock 000(100)
whereas they are output by delay x on the clock 0(100). The pre operator
outputs a value only when a new input arrives.

figure_2a takes as inputs init_A0 and init_B0, the
initial values on the wires, and returns as outputs out_A and
out_B, the values computed by the two IPs.

The Lucy-n compiler infers the following type for the
node figure_2a:

∀α. α on 1(0)× α on 1(0)→ α× α
It means that the initial values need only be present at the
first instant and that the two IPs produce some outputs at each
instant. Since the presence instants of IPs outputs correspond
to their activation instants, output types give the activation
instants of the IPs, i.e. their static schedules. Here, we can
verify that in the case of the synchronous circuits, all the IPs
must be executed at the same instants.

C. Encoding of Shell Wrappers
In latency insensitive designs, each computation node is

enclosed inside a shell wrapper that controls the activation
of the node and bufferizes the inputs until this activation. To
model this behavior, we need only put a buffer in front of
each input and the activation condition will be automatically
computed by the clock calculus. Hence, if we want to put the
ip_A of the previous example in a shell wrapper, we only
have to write:
out_A = ip_A (buffer in_A)

D. Encoding of Relay Stations
A relay station is just a dummy node that splits a wire into

two segments and thus introduces a delay.
let node relay x = x

Now that we have presented the encoding of computation
nodes, wires, shell wrappers and relay stations, we can model
the circuit of Figure 2(b): 4

1(0)

m
e
r
g
e

1

0

init_B0

in_B

1(0)
m
e
r
g
e 0

1

figure_2b

init_A0

out_Ain_R in_Aout_R

out_B

delay
delay

ip_Arelay

d
e
l
a
y

ip_B

let node figure_2b (init_A0, init_B0) =
(out_A, out_B) where
rec out_A = ip_A (buffer in_A)
and out_B = ip_B (buffer in_B)
and out_R = relay in_R
and in_A = delay out_R
and in_B = merge 1(0) init_A0 (delay out_A)
and in_R = merge 1(0) init_B0 (delay out_B)

The type of the node computed by the compiler is equal to
∀α. α on 1(0) × α on 1(0) → α on (01) × α on (01). It
means that the initial values are used only at the first instant
and that the nodes A and B have to be executed every two
instants from the second instant.

4Notice that there is no initial value on the wire between the relay station
and the ip_A (line 6).
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IV. TYPING THE DELAY OPERATOR

The typing rule for the delay operator is similar to the
one for buffer. It introduces a constraint between the types
of its input and output:

H ` e : ct ct′ === shiftr ct

H ` delay e : ct′

The constraint ct′ === shiftr ct means that the clocks
represented by ct′ must be the same as the ones represented
by ct delayed by one instant with respect to the activation
rhythm of the node.

During typing, all the subtyping constraints introduced by
the buffers and all the equality constraints introduced by the
delays are collected. For example, the constraints generated
by typing the node figure_2b are:





αinA
on (1) <:<:<: αoutA on (1)

αinB
on (1) <:<:<: αoutB on (1)

αinA
on (1) === shiftr (αR on (1))

αinB
on 0(1) === shiftr (αoutA on (1))

αR on 0(1) === shiftr (αoutB on (1))





The collection and resolution of subtyping constraints is
explained in [14]. Here, we extend this technique to cope with
the constraints introduced by delays.

The resolution algorithm has the following structure:
1) Express all the constraints with respect to the same type

variable. This variable represents the reference rhythm
of the node. In our example, we state that αinA

=
α on cinA

, αoutA = α on coutA , αinB
= α on cinB

,
αoutB = α on coutB and αR = α on cR where cinA

,
coutA , cinB

, coutB and cR are unknown infinite binary
words.

2) Since all constraints are now expressed with respect to
the same type variable, simplify them into constraints
over binary words. Here, we get:




cinA
on (1) <: coutA on (1)

cinB
on (1) <: coutB on (1)

cinA
on (1) = 0(1) on cR on (1)

cinB
on 0(1) = 0(1) on coutA on (1)

cR on 0(1) = 0(1) on coutB on (1)





and the variables cinA
, coutA , cinB

, coutB and cR
become the new unknowns of the system.

3) Translate constraints on words into linear constraints on
integers representing the index of the 1s of the unknown
words of the system.

4) Solve these constraints using standard techniques.
The main difference with the former resolution algorithm

is the presence of the shiftr operator. It does not affect
step 1 of the algorithm. You can notice that at step 2, typing
constraints of the form αx on px === shiftr (αy on px)
have become constraints on words of the form cx on px =
0(1) on cy on py , where the on operator is defined as
follows:

0.w1 on w2
def
= 0.(w1 on w2)

1.w1 on 1.w2
def
= 1.(w1 on w2)

1.w1 on 0.w2
def
= 0.(w1 on w2)

If we consider w1 and w2 as clocks, the intuitive semantics
of this operator is that w1 on w2 is the clock w2 executed on
the rhythm w1. Therefore, 0(1) on w is the clock w executed
from the second instant. It corresponds to the clock w shifted
by one instant.

Thanks to this translation, delays generate constraints that
have the same nature as constraints coming from buffers and
thus, steps 3 and 4 can be done similarly as before.5

V. COMPOSITION OF STATICALLY SCHEDULED IPS

To the best of our knowledge, the only work on the
composition of Statically Scheduled IPs (SSIPs) is [15], where
different composition techniques are proposed depending on
the nature of SSIPs involved.

For SSIPs where the same number of values are con-
sumed and produced on all ports, they propose using dynamic
scheduling protocols like those used in the dynamic scheduling
of LIDs. If it is not the case, they propose encoding the
composition of SSIPs with Synchronous Data-Flow graphs
(SDF) [16]. This encoding is similar to the encoding of Cyclo-
Static SDF graphs [17] into SDF. It raises two problems. First,
the initial phases of the schedules cannot be encoded. Second,
the encoding is an abstraction where some information is lost
and thus correct networks with cycles may be rejected.

In the context of Lucy-n, the composition of SSIPs is clas-
sical node composition. Indeed, in Lucy-n nodes, consumption
and production patterns are arbitrarily complex ultimately
periodic binary words, so SSIPs are Lucy-n nodes. We think
that the main strength of our method is that it treats with IPs
and SSIPs uniformly.

VI. EXPERIMENT

One of the LIDs that we have encoded is shown in Figure 3.
It is the MPEG-2 video encoder from [2] where the relay
stations are at the same places as in [4]. This program is
compiled by the Lucy-n compiler in less than 0.1 seconds
and has the following type:

mpeg :: ∀α.α on (10)→ α on 0(10)

The throughput of the solution computed with our algorithm
is 1/2 whereas the one of the solution computed in [4] is 2/3.
Nevertheless, the programmer can give a hint to the compiler
with an option -nbones 2 asking it to seek a solution with
twice as many 1s in the periodic pattern of the schedule. With
this option, the new solution is: 6

mpeg :: ∀α.α on (110)→ α on 00(101)

with a throughput of 2/3.

5As <: is antisymmetric, equality constraints can be translated into two
inverse adaptability constraints.

6The compilation line is: lucync -nbones 2 -obj r mpeg.ls.
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Fig. 3. MPEG-2 video encoder as found in [2], [4].

For the moment, only a few small-scale experiments have
been performed, but thanks to our experiments on other Lucy-n
programs [14], we think that it is possible to schedule systems
with hundreds of elements.

VII. CONCLUSION

The contribution of this paper is the introduction of a delay
operator to the language Lucy-n and a demonstration of its
utility for modeling Latency Insensitive Designs. The benefit
of modeling LIDs in Lucy-n is that it gives a new algorithm
to automatically compute static schedules for the designs. The
advantage of this method is that it allows designs that have
already been scheduled to be incorporated in compositions.

We are working to improve the quality of the schedules. We
can already influence the resolution algorithm by choosing the
number of 1s in the sought solution and by giving different
objective functions during step 4 of the typing algorithm, for
instance to privilege buffer sizes or throughput. Nevertheless,
we do not yet have optimality results. Thus, we hope to adapt
the results of the works cited in this article. Note, however,
that our problem is more difficult because the consumption and
production patterns are more complex. But, this is precisely
why we can deal with IPs and SSIPs uniformly.
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A Theory of Abstraction for Arrays

Steven M. German

IBM T.J. Watson Research Center

Abstract— We develop a theory for reasoning about temporal
safety properties of systems with arrays. The theory leads to
an automatic algorithm for constructing sound and complete
abstractions. Our approach has advantages over previous ap-
proaches for important classes of digital designs, including
designs with clock gating. We define a function that gives, in a
certain sense, the size of the smallest sound and complete array
abstraction of a system. This function is difficult to compute.
However, we present a static analysis algorithm that efficiently
computes a safe size of a sound and complete abstraction by
overapproximating the minimum size. Our algorithm can often
construct abstractions with small arrays for complex industrial
designs.

I. INTRODUCTION

Because of their large state spaces, arrays create a special

difficulty for formal verification of hardware designs. In this

paper we develop a theory that gives conditions under which a

system with large arrays can be replaced by a system having

smaller arrays, such that safety properies hold in the larger

system iff they hold in the smaller one. The size of the arrays in

the smaller system is determined by an efficient static analysis

algorithm. An advantage of our approach is that it transforms

a sequential system into another sequential system, allowing

any verification method for sequential systems to be used after

running our algorithm.

Previous researchers have developed several methods for

reasoning about hardware systems with arrays, especially in

the context of model checking. One general approach is to

verify systems by considering behavior over a small, bounded

number of time steps. Over a small number of time steps, a

system performs only a small number of array read and write

operations, and accesses only a small number array elements.

Thus, bounded time modeling leads naturally to abstractions

for arrays [1]–[4]. Behavior over a bounded number of time

steps can be used to prove bounded correctness properties [5],

or to prove unbounded properties by induction [6].

Abstracting arrays over bounded time intervals has the

disadvantage that as the length of the time interval increases,

the size of the array abstraction must be increased as well.

For example, when proving properties by induction based on

k-step unwindings, it is necessary to increase the length of the

bounded interval until the property becomes inductive, which

may make it necessary to consider large arrays [7].

A second general approach is to transform a sequential

system with arrays into another sequential system with smaller

arrays. Bjesse [7] developed an approach in which a sequen-

tial model with small arrays is constructed by abstraction

refinement. One difference between our approach and [7] is

that we use a static analysis algorithm instead of abstraction

refinement. In our approach, the static analysis algorithm

produces a single abstract model that is sound and complete

for safety properties. Thus our approach eliminates the need

for iterative abstraction refinement.

Another advantage of our approach is that we can build

sound and complete abstractions for designs where a value

read from an array can take an unbounded length of time

before affecting an output signal. In [7], every abstract model

of an array is characterized by a set of clock-cycle delays.

Specifically, a small model of an array represents the results

of reading the array at a finite set of fixed times prior to the

clock cycle at which the value read from the array propagates

to the system output. However, in many systems, the results of

reading an array are stored for an unbounded amount of time in

hardware registers or other arrays before being used to produce

a system output. Hardware clock-gating [8] is one important

design technique that leads to unbounded delays between the

time an array is read and the time the array’s value affects

a system output. Our approach builds abstract models with

unbounded delays, while the approach in [7] cannot reduce

such models.

The outline of this paper is as follows. In Section II

we define the mathematical framework for our theory. We

define an operational semantics for executing systems that

is appropriate when arrays have been replaced with smaller

abstract arrays. In Section III we prove theorems showing the

existence of sound and complete abstractions of systems with

arrays. In Section IV we present an algorithm for analyzing a

system to determine the size of a sound and complete array

abstraction. In Section V we show how to build an abstracted

version of a system, using the sizes for arrays determined by

our theory. Section VI presents initial results of using our

algorithm on industrial examples. Due to space limitations

most proofs are omitted. A version of the paper with proofs

will be published as a technical report, and will be available

from the author and the IBM Research Division Libraries

before FMCAD 2011.

II. PRELIMINARIES

We begin by defining the syntax and semantics of a term-

level logic with arrays. In our logic, there are two kinds of

variables: signal variables, and array variables. Let Xs be the

set of signal variables and Xa be the set of array variables.

We define signal expressions and array expressions to be the

smallest sets of expressions satisfying the following defini-

tions. A variable (resp., expression) is either a signal variable

(resp., expression) or an array variable (resp., expression).

1) A signal variable is a signal expression.

2) If op is a k-ary operator symbol and e1, . . . , ek are signal

expressions, then op(e1, . . . , ek) is a signal expression.

3) If e1, e2, e3 are signal expressions, then mux (e1, e2, e3)
is a signal expression.
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4) An array variable is an array expression.

5) If a is an array expression and e is a signal expression,

then a[e] is a signal expression.

6) If a is an array expression and e1, e2 are signal expres-

sions, then write(a, e1, e2) is an array expression.

For the semantics, we assume the existence of a set V of at

least two signal values. We assume that V is finite, but much

of the theory is true even if V is infinite. Let 0, 1 be distinct

signal values. We assume that for each domain value i ∈ V ,

there is a constant symbol ci such that ci evaluates to i. For
k ≥ 0, a k-ary operator op is a symbol whose interpretation

is a function OP : V k → V .

An array will be abstracted by replacing it with an array

having a smaller domain. We will need to give meaning to

array access expressions a[i], where the value of i is not in the

domain of a. For this purpose, we introduce a bottom value

⊥ 6∈ V . Let V + = V ∪ {⊥}. We will define a semantics

that propagates the bottom value onward, starting from an

array access that is outside the domain of the array. In the

case of mux expressions, an expression will have a value in

V provided the first argument has a value in {0, 1} and the

selected argument of the mux has a value in V .

In the semantics of our logic, a signal variable is a name

that can be assigned signal values, and an array variable is a

name that can be assigned array values. An array value is a

function in V → V +. We explicitly allow array values to be

partial functions whose domains are not equal to the entire set

of signal values V . We will use array values that are partial

functions on V to reason about systems containing an array

without representing all of the array’s elements. An array value

v is said to be pure if ∀x ∈ dom(v) : v(x) ∈ V .

A state assigns values to variables. A state assigns a signal

value to each signal variable, and assigns a pure array value

to each array variable. Note that states only contain the values

in V , not the bottom value. In sequential systems, which will

be defined shortly, we will use states only to represent the

initial values of state variables and the values of input signals.

The reason that states do not contain values with ⊥ is that

these values do not represent initial states or input values; the

bottom value is only produced during evaluation of certain

expressions.

The domain of an array expression a in a state σ, D(a, σ),
is a set of index values for the array expression. For an

array variable a, D(a, σ) is defined as dom(σ(a)), the do-

main of the function value assigned to a. Array write op-

erations do not change the domain of an array. The do-

main of write(a1, e1, e2) in state σ is inductively defined

by D(write(a1, e1, e2), σ) = D(a1, σ). We will need the

notion of the root of an array expression. For an array

variable a, root(a) = a. The root of a write expression is

root(write(b, e1, e2)) = root(b).

We define the value of an expression exp with respect

to a state σ, written σ[[exp]], as follows. In the following

definition, e, e1, e2, . . . , are signal expressions and a is an

array expression.

1) σ[[v]] = σ(v), where v is a signal variable.

2) σ[[op(e1, . . . , en)]] =




OP(σ[[e1]], . . . , σ[[en]]), if σ[[ei]] 6= ⊥, for i = 1, . . . , n,
where OP is the interpretation of the operator

symbol op
⊥ if for some i, σ[[ei]] = ⊥

3) σ[[mux (e1, e2, e3)]] =





σ[[e2]] if σ[[e1]] = 0
σ[[e3]] if σ[[e1]] = 1
⊥ if σ[[e1]] 6∈ {0, 1}

4) σ[[a[e]]] =

{
(σ[[a]])(σ[[e]]) if σ[[e]] ∈ D(a, σ)
⊥ if σ[[e]] 6∈ D(a, σ)

5) σ[[a]] = σ(a), where a is an array variable.

6) σ[[write(a, e1, e2)]] =




(σ[[a]]) [σ[[e1]]← σ[[e2]]] if σ[[e1]] ∈ D(a, σ)
σ[[a]] if σ[[e1]] ∈ V −D(a, σ)
bottom(a, σ) if σ[[e1]] = ⊥

Expressions of the form op(e1, . . . , en) can be used to

represent blocks of combinational logic containing many gates.

In the semantics, an op expression has value ⊥ whenever

any of the input signals has value ⊥. The advantage of this

semantics is that it allows us to define a circuit that computes

σ[[op(e1, . . . , en)]], without having to add signals to express

whether the output of each gate in a large block has value ⊥.
We will use such circuits in building our abstract models. The

abstract model can have fewer gates because only the inputs

and output of a large block need to consider ⊥.
In the array write expression write(a, e1, e2), e1 is the

address and e2 is the value written. There are three cases in

the semantics of array writes. The first case updates a single

element of an array when e1 has a value in the domain of the

array. In the second case, e1 has a value in V , but the value

is outside the domain of the array. In this case, the value of

the array is not changed by the write operation. Note that the

operation of writing to an array does not extend the domain of

the array. In the third case, the index e1 has the value ⊥. For
an array expression a and a state σ, we define bottom(a, σ)
to be an array value, the function that maps all elements of

D(a, σ) to ⊥. The intuition is that if we write to an address e1

that has value ⊥, then it cannot be determined which element

of the array is changed, so all elements are marked as having

value ⊥.
Electronic designs sometimes have arrays where writing

is conditional. For example, writing can be controlled by an

enable signal, with value 1 to indicate writing a new value.

Conditional writing can be modelled by write expressions such

as write(a, address,mux (enable, a[address],new value)).
This expression produces an unchanged array value when

enable = 0 and address is a value in the domain of the array,

and writes a new value when enable = 1.

A signal expression e is said to be satisfied by a state σ
if σ[[e]] = 1. We write σ |= e to denote that σ satisfies e. A
signal expression e is said to be satisfiable if there exists a

state that satisfies e, and e is said to be valid if it is satisfied

by all states.
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A system M has the form (S, I,N ,O, E). S is a set of

signal and array variables forming the state variables of the

system. I is a set of input signal variables. N defines the next-

state function of the system. N is a function from the variable

names in S to expressions, such that if e is a signal variable,

then N (e) is a signal expression, and if a is an array variable,

then N (a) is an array expression. For an array variable a, we
require that root(N (a)) = a; that is, the next state expression
for an array variable a must be formed by a sequence of writes

to a. O is a set of signal variables that are the outputs of the

system, and E is a function mapping variables in O to signal

expressions. The sets S, I,O must be pairwise disjoint.

We define the executions of a system by giving an op-

erational semantics based on expansions of the next-state

functions for state variables. Given a system M and a state

variable s ∈ S, we define

s0 = s,
sk+1 = N (s)[S/Sk, I/Ik], for k = 0, 1, . . .,

where S/Sk replaces each variable sj in S with the expression

(sj)
k, and I/Ik replaces each input variable u in I with a

fresh signal variable uk. For an output variable v ∈ O, the
output value at step k depends on the state and input variables

at step k,

vk = E(v)[S/Sk, I/Ik], for k = 0, 1, . . .

For an arbitrary expression e over the variables of M, we

define ek = e[S/Sk, I/Ik,O/Ok].
The safety properties of a system are specified by its output

signals. For an output signal v of a system (S, I,N ,O, E), v
is said to be valid with respect to the system iff for all states

σ, σ |= vk, for all k ≥ 0.
Our theory does not prescribe an approach to variable

typing. Instead, we allow the set of initial states of a system

to be a parameter of the theory. It will be useful to make

two considerations about the set of initial states of a system.

First, it is conventional to assume that an array variable has

the same set of indices in any system state. We formalize this

by saying that a type T is a set of states such that for any array

variable a and σ1, σ2 ∈ T , dom(σ1(a)) = dom(σ2(a)). We

will evaluate correctness of systems over sets of initial states

that are types. As mentioned previously, the dimension of an

array does not change dynamically.

Second, because the value ⊥ has a special meaning in

our theory, care is needed when translating a design from a

hardware language into our theory. We need to make sure

that a ⊥ value cannot be generated accidentally because the

original design subscripts an array outside of the declared

domain. One way is to define the design in a language where

array subscripts can be checked statically, and then translate

a checked design into our theory. Another approach is to

translate an array read a[i] in the hardware design into an

expression mux (lower ≤ i ∧ i ≤ upper , a[i ],nondet), in our

theory. Here, the value of a[i] is used if i is in the declared

domain, and otherwise a nondeterminsitic input value nondet
is used.

In our theory, we can express the notion that a design is

well-typed by introducing an assumption that the set of initial

states has the property that all the expressions generated by

the operational semantics of a system produce values in V .

We say that a state σ is safe with respect to an expression e
iff σ[[e]] ∈ V and for every subexpression e′ of e, σ[[e′]] ∈ V .

For a state to be safe is a stronger condition than just saying

the output has a value in V . We say that a type T is safe for

a system M iff for all state or output variables v of M, for

all states σ ∈ T , and for all k ≥ 0, σ is safe with respect to

vk. We define the notion of correctness for safety properties

by evaluating variables of a system in all states of a safe type.

We say that a variable v is valid in a system M and initial

state set T , written M, T |= v, iff for all states σ ∈ T , for
all k ≥ 0, σ[[vk]] = 1.

III. EXISTENCE OF ARRAY ABSTRACTIONS

In this section we show that under certain conditions, there

are small abstract models for systems with arrays. The abstract

models are sound and complete for safety properties.

Because arrays and multiplexors propagate values only from

the selected input, it is possible for an expression to have a

value in V even if some array accesses have value ⊥. To
capture the notion that some, but not all, expressions must

have values in V in order to compute the value of a larger

expression, we define the set of essential expressions of an

expression e in a state σ, written eexp(e, σ). See Figure 1.

There are four cases for write expressions: Case 1 is when

e3 is not a valid index; Case 2 is when e1 is not a valid

index; Case 3 is when e1, e2 are valid indices with different

values, so that write(b, e1, e2)[e3] = b[e3]; Case 4 is when

write(b, e1, e2)[e3] = e2. Under the assumption that all of

the essential expressions in eexp(e, σ), not including e itself,

evaluate to values in V , then σ[[e]] ∈ V . In reading the

definition of eexp(e, σ), it is important to note that e is

always an essential expression of itself. Also, the definition

of eexp applies a case-splitting rule to array read operations

with nested array writes. Because of the case-splitting rule,

eexp(e, σ) can contain expressions that are not subexpressions

of e.
Lemma 1. Let e be a signal expression and σ be a state.

Then σ[[e]] ∈ V , iff for all essential expressions f of e in σ,
σ[[f ]] ∈ V . 2

The set of essential indices of an array variable a with

respect to an expression e and a state σ is the set of values

in V of signal expressions f such that b[f ] is an essential

expression, where b is an array expression with root(b) = a.
Formally, we define

eindx(e, σ, a) =
{σ[[f ]] | σ[[f ]] ∈ D(a, σ) ∧ ∃ b : b[f ] ∈ eexp(e, σ),
where b is an array expression and root(b) = a}.

As an example of essential expressions and indices, con-

sider the expression write(a, e, a[4])[5]. In a state σ where

σ[[e]] = 5, the essential expressions are: write(a, e, a[4])[5],
e, and a[4]; the essential indices of the array a are: 4 and

5. Intuitively, the value of the expression is obtained by

evaluating a[4] when the value of e = 5. In a state σ where

σ[[e]] 6= 5, the essential expressions are: write(a, e, a[4])[5],
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eexp(e, σ) =
if e is a signal variable ⇒ {e}

if e is op(e1, . . . , en) ⇒ {e} ∪ eexp(e1, σ) ∪ . . . ∪ eexp(en, σ)

if e is mux (e1, e2, e3) ⇒



if σ[[e1]] 6∈ {0, 1} ⇒ {e} ∪ eexp(e1, σ)
if σ[[e1]] = 0 ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e2, σ)
if σ[[e1]] = 1 ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ)

if e is b[e1], where b is an array variable ⇒ {e} ∪ eexp(e1, σ)

if e is write(b, e1, e2)[e3] ⇒



if σ[[e3]] 6∈ D(b, σ) ⇒ {e} ∪ eexp(e3, σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] = ⊥ ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] ∈ V ∧ σ[[e1]] 6= σ[[e3]] ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e3, σ) ∪ eexp(b[e3], σ)
if σ[[e3]] ∈ D(b, σ) ∧ σ[[e1]] = σ[[e3]] ⇒ {e} ∪ eexp(e1, σ) ∪ eexp(e2, σ) ∪ eexp(e3, σ)

Fig. 1. Definition of essential expressions eexp

e, and a[5]; the essential indices of a are: 5. In this case, the

value of the expression is obtained by evaluating a[5].
For states σ, σ′, we say that σ′ is a substate of σ, written

σ′ ≤ σ iff

1) For all signal variables v, σ′(v) = σ(v), and
2) For all array variables a, dom(σ′(a)) ⊆ dom(σ(a)) ∧
∀i ∈ dom(σ′(a)) : σ′(a)(i) = σ(a)(i).

The following lemma says that if an expression e evaluates

to a value in V in a state σ, then there is a substate σ′ ≤ σ, that
gives e the same value and such that each array variable is only

defined over the essential indices of the variable in σ. That is,
for all array variables a, dom(σ′(a)) = eindx(e, σ, a). This
lemma will allow us to replace arrays by smaller abstractions.

Lemma 2. Let e be a signal expression and σ be a state such

that σ[[e]] ∈ V . Then there exists a state σ′ such that σ′ ≤ σ,
for all array variables a, dom(σ′(a)) = eindx(e, σ, a), and
σ[[e]] = σ′[[e]]. 2

IV. SIZE OF ARRAY ABSTRACTIONS

We define the size of a state σ, written |σ|, to be the function
mapping each array variable a to the size of the domain of a:
for all array variables a, |σ|(a) = |dom(σ(a))|. Similarly, we

define the size of a type T to be |σ|, for any state σ ∈ T .
From Lemma 2, we see that if σ[[e]] = v, for v ∈ V , then

there is a state σ′ such that for each array variable a, the size

of array a is |eindx(e, σ, a)|, and σ′[[e]] = v. Now, suppose
U is any set of states, and we want to evaluate an expression

e over all states in U . It is sufficient to evaluate e over all

states where the size of each array a is the maximum size

needed for any state. This value is given by the function ΣU :
expressions → (Xa → N), where

ΣU (e)(a) = max
σ∈U

|eindx(e, σ, a)|.

With this definition, ΣU (e) : Xa → N is a function that

encapsulates all of the sizes of arrays needed to evaluate the

expression e. The function ΣU (e)(a) always has a defined

value when V is finite, because the value of eindx is a subset

of V . When U is the set of all states over V , we drop the

subscript and write Σ(e)(a). Σ(e)(a) gives an upper bound on

the size of arrays needed to test if an expression is satisfiable

in any state.

Proposition 1. Let σ′, σ be states such that σ′ ≤ σ. Let e be

a signal expression and let i ∈ V . Then the following three

conditions hold:

1) σ[[e]] = i ⇒ (σ′[[e]] = i ∨ σ′[[e]] = ⊥)
2) σ[[e]] = ⊥ ⇒ σ′[[e]] = ⊥
3) σ′[[e]] = i ⇒ σ[[e]] = i 2

Proposition 2. Let e be an expression, σ be a state, and a be

an array variable. Then |eindx(e, σ, a)| ≤ |dom(σ(a))|. This
is true because in the definition of eindx, each element of

eindx(e, σ, a) must be an element of dom(σ(a)). 2

Theorem 1: Small Model Theorem. If a signal expression

e is satisfiable, there is a state σ that satisfies e such that

|σ| = Σ(e).
Proof. Let σ be a state that satisfies e. By Lemma 2 there is a

state σ′ such that σ′ satisfies e, and for all a, |dom(σ′(a))| ≤
Σ(e)(a). From Propositions 1.3 and 2, it follows that σ′ can
be expanded to a state σ′′ such that σ′ ≤ σ′′, |σ′′| = Σ(e),
and σ′′ satisfies e. 2

We define an upper bound for a system M and a set of

states U by a function Σ∗
M,U : Xs → (Xa → N),

Σ∗
M,U (v)(a) = max

k=0,1,...
ΣU (vk)(a),

where v is a signal variable and a is an array variable. The

value of Σ∗
M,U (v)(a) is an upper bound on the number of

index values of the array a needed to evaluate all of the

expansions of the signal variable v over all states in U . Like
ΣU (e)(a), the function Σ∗

M,U (v)(a) has a defined value when

V is finite. When U is the set of all states, we drop the second

subscript and write Σ∗
M(v)(a).
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The following theorem says that it is sound and complete

to reason about an output variable v as a safety property of

a system, by evaluating v in all states of size Σ∗
M,T (v). In

the statement of the theorem, T is a set of states for the

unabstracted model. We assume that T is safe, so that all

expressions in the executions of the system can be evaluated.

The theorem says that if we evaluate the truth of a safety

property v over all states σ′, such that σ′ is a substate of

some state in T , and the size of σ′ is Σ∗
M,T (v), then we

can determine the result of evaluating v over all states in the

unabstracted model over the set of states T . The theorem

provides a sound and complete method for reasoning about

safety properties while reducing the size of arrays.

Theorem 2.1. LetM be a system with output variable v and

let T be a safe type forM. Let

T ′ = {σ′ | ∃σ ∈ T : σ′ ≤ σ ∧ |σ′| = Σ∗
M,T (v)}

Then M, T |= v iff ∀k ≥ 0, ∀σ′ ∈ T ′ : σ′[[vk]] = 1 ∨
σ′[[vk]] = ⊥.
Proof. (⇒) M, T |= v means ∀k ≥ 0, ∀σ ∈ T , σ[[vk]] = 1.
If k ≥ 0, σ ∈ T , and σ′ ≤ σ, then by Proposition 1.1,

σ′[[vk]] = 1 or σ′[[vk]] = ⊥.
(⇐) What we need to show is that if there is a counterexample

for some state in T in the unabstracted system, then there is

a counterexample in a state in T ′ in the abstracted system.

Suppose there is a counterexample: let k ≥ 0 and σ ∈ T be

such that i ∈ V , i 6= 1 and σ[[vk]] = i. By Lemma 2, we

know there is a state σ1, such that σ1 ≤ σ, for all array

variables a, dom(σ1(a)) = eindx(vk, σ, a), and σ1[[v
k]] =

i. By definition, Σ∗
M,T (v)(a) takes the maximum value of

|eindx(vk, σ, a)| over all k ≥ 0 and σ ∈ T , so that for all

a, |dom(σ1(a))| ≤ Σ∗
M,T (v)(a). By Proposition 2, for all a,

Σ∗
M,T (v)(a) ≤ |dom(σ(a))|, since σ ∈ T . Therefore, there is

a state σ2, such that σ1 ≤ σ2 ≤ σ and |σ2| = Σ∗
M,T (v). Note

that σ2 ∈ T ′. By Proposition 1.3, σ2[[v
k]] = i. Therefore, σ2

is a counterexample in T ′.
We are now ready to complete the proof. If it is the case

that for all k ≥ 0 and σ′ ∈ T ′, σ′[[vk]] = 1 ∨ σ′[[vk]] = ⊥,
then there cannot be a counterexample to the truth of v over

all states in T . Since T is a safe type, it must be the case that

∀k ≥ 0, ∀σ ∈ T , σ[[vk]] = 1. 2
In practice, it is difficult to evaluate Σ∗

M,T (v)(a), since this
involves finding a maximum value over all states in T and over

all computation steps. However, we show later in the paper

that there are ways to compute an upper bound on Σ∗
M(v)(a).

Computing an upper bound is easier than computing the exact

value, and also it is easier to compute an upper bound over all

states instead of over a set T . Since Σ∗
M(v)(a) is a maximum

over all states, Σ∗
M,T (v)(a) ≤ Σ∗

M(v)(a) for all a. Note that

it is possible for Σ∗
M(v)(a) to be larger than the size of a in T .

To prove properties over the set of states T , we would not want
to make the size each array variable a equal to Σ∗

M(v)(a).
Instead we make the size of each array variable a equal to the

minimum of Σ∗
M(v)(a) and the size of a in T . Let v be a

fixed variable name, and define a function µ : Xa → N,

µ(a) = min(|T |(a), Σ∗
M(v)(a))

100

>

0

read

!=

200

write

mem’safe

raddr waddr data

mux

mem

Fig. 2. Example 1

Let T ′′ be the set of states that are smaller than states in T
and of size µ,

T ′′ = {σ′ | ∃σ ∈ T : σ′ ≤ σ ∧ |σ′| = µ}

Since the size of arrays in T ′′ are at least as large as in T ′

defined in Theorem 2.1, it follows from Proposition 1 that

Theorem 2.1 holds if we use T ′′ in place of T ′.

Theorem 2.2. LetM be a system with output variable v, let
T be a safe type forM and let T ′′ be as defined above. Then

M, T |= v iff ∀k ≥ 0, ∀σ′ ∈ T ′′ : σ′[[vk]] = 1 ∨ σ′[[vk]] = ⊥.
2

In an implementation of Theorem 2.2, a model would be

constructed with each array variable a having a domain of size

µ(a). As an example, if the original model has an array a with

domain [1..100], and the size of the domain of a is 2 in the

abstract model, then we need to evaluate the abstract model

over all states where the domain of a is any two elements of

[1..100]. As in [7], a value for the address of each row in the

abstract array is chosen nondeterministically at the start of the

run. The read and write operations in the abstract model use

the address chosen for each of the rows, instead indexing into

the array. The implementation then uses model checking to

evaluate for all σ ∈ T ′′, σ[[v0]], σ[[v1]], and so on. If there is a

state σ ∈ T such that for some k, σ[[vk]] evaluates to a value

x ∈ V other than 1, then there is a state σ′ such that σ′ ≤ σ,
|σ′| = µ, and σ′[[vk]] = x.

Example 1. This example appeared in [7]. On each clock

cycle, the design inputs values for the signals raddr, waddr,
and data. The array mem is an array state variable. A network

with a multiplexor produces an output value that depends on

the value of the input data. If data > 200, the multiplexor

outputs the value of data; otherwise it outputs the value 0. On
each clock cycle, the array mem is written at address waddr

and with the value output from the multiplexor. On each clock

cycle, the array mem is read at address raddr. The correctness

property asserts that the value read from the array is never

equal to 100.
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Here, we render the example in our formalism. The sys-

tem is M = (S, I,N ,O, E), where the set of state vari-

ables is S = {mem}, the set of input variables is I =
{raddr, waddr, data}, and the set of output variables is O =
{safe}. The next state function N and output function E are

N (mem) = write(mem, waddr, mux (data > 200, data, 0))
E(safe) = mem[raddr] 6= 100.

For this system, the first few expansions of mem and safe are

given by

safe0 = mem0[raddr0] 6= 100
mem1 = write(mem0, waddr0,mux (data0 > 200, data0, 0))
safe1 = write(mem0, waddr0,mux (data0 > 200, data0, 0))

[raddr1] 6= 100
mem2 = write(write(mem0, waddr0,

mux (data0 > 200, data0, 0)),
waddr1,
mux (data1 > 200, data1, 0))

safe2 = mem2[raddr2] 6= 100.

One can easily see by inspection that exactly one array index

expression appears in safek, for any value of k. Thus the

maximum number of indexes into the array mem needed to

evaluate safe is Σ∗
M(safe)(mem) = 1. It follows that it is

sound and complete to verify the output signal safe as a safety

property by evalating safek, for all k, in states where mem is

modelled as a single-element array.

If we change the example so that the result of reading mem is

stored in a register for an unbounded number of cycles before

the value is used to produce the output, then the method of [7]

would not be able to reduce the size of the array. Our method

does reduce the array to one element in this modified example.

2

Example 2. This example is similar to Example 1, please see

Figure 3. Here, the result of reading the memory is routed to a

multiplexor. The multiplexor sends a value to the state variable

read1. On each cycle, the variable read1 either holds its

previous value or stores the output of the array read, depending

on the value of the input signal hold. Because the value read

from the array can be held for an unbounded amount of time

in read1 beforefore reaching the output, the method of [7]

cannot reduce the size of the array. In contrast, our method

can reduce the array to one entry. 2

The following definition of a function ub(e, a) computes

a simple upper bound on Σ(e)(a). For b[e], if b is a write

expression with root a, then e is counted as an array index of

a. For write expressions, the definition says that the expression

e1 must always be evaluated, and there are two cases for b and
e2. If the array is read at index e1, then e2 must be evaluated;

otherwise b must be evaluated. To cover both cases, we take

the maximum value.

ub(var , a) = 0, if var is a signal variable or an array variable

ub(c, a) = 0, if c is a constant

ub(op(e1, . . . , en), a) = ub(e1, a) + . . . + ub(en, a)
ub(mux (e1, e2, e3), a) = ub(e1, a) + max(ub(e2, a),ub(e3, a))

ub(b[e], a) =

{
ub(b, a) + ub(e, a) + 1 if root(b) = a
ub(b, a) + ub(e, a) otherwise

ub(write(b, e1, e2), a) = ub(e1, a) + max(ub(e2, a),ub(b, a))

Theorem 3. For any signal expression e, state σ, and array

variable a, |eindx(e, σ, a)| ≤ ub(e, a). 2

Proof. The theorem can be proved by induction on expres-

sions. 2

In the function ub(e, a), multiple instances of the same

expression are added. A more accurate estimate of Σ(e)(a) can
be obtained by a function that computes the sets of possible

index expressions.

A better estimate of Σ(e)(a) can be obtained by a function

that computes the sets of possible index expressions. For

any non-empty set X whose elements are a finite number

of finite sets, let ‖X‖ be the largest size of an element of

X , maxx∈X |x|. The function φ(a, e) defined below computes

a set of sets of index expressions with the property that

Σ(e)(a) ≤ ‖φ(e, a)‖. Each element of φ(a, e) is a set of index
expressions; the elements of φ(a, e) cover all the possible

values of eindx(e, σ, a).
First, we define X ⊎ Y for sets X,Y .

X ⊎ Y = {x ∪ y | x ∈ X, y ∈ Y }

Then we define φ(e, a), where e is an expression and a is an

array variable, as follows.

φ(v , a) = {∅}, if v is a signal variable or an array variable

φ(c, a) = {∅}, if c is a constant

φ(op(e1, . . . , en), a) = φ(e1, a) ⊎ . . . ⊎ φ(en, a)

φ(mux (e1, e2, e3), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(e3, a))

φ(b[e], a) =

{
φ(b, a) ⊎ φ(e, a) ⊎ {{e}} if root(b) = a
φ(b, a) ⊎ φ(e, a) otherwise

φ(write(b, e1, e2), a) = (φ(e1, a) ⊎ φ(e2, a)) ∪ (φ(e1, a) ⊎ φ(b, a))

Theorem 4. For any signal expression e, state σ, and array

variable a, |eindx(e, σ, a)| ≤ ‖φ(e, a)‖. 2

In order to create sound abstractions for model check-

ing, we want to compute an upper bound on the sequence

φ(v0, a), φ(v1, a), . . ., when an upper bound exists. One way

of computing an upper bound uses a generalization of function

φ(e, a) to a function Φ(e, a, θ, θA), where e is an expression,

a is an array variable, and θ is a function mapping variables to

sets of expressions. The idea is that the algorithm will iterate,

at each step setting θ(v) to a set that is at least as general

as each element of φ(vk, a). The θ functions will provide a
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simple way to detect when a fixed point is reached in the

iteration.

For a signal variable s, θ(s) will have the form

{x1, . . . , xn}, for some n, where the xi are fresh distinct signal

variables. Intuitively, we set θ(s) to a set of fresh variables

larger than the set of essential indices needed to evaluate s.
For array variables, we define θA(b, e) to be a function taking

an array variable b and a signal expression e, and returning

a set of signal variables, {xe,1, . . . , xe,n}, for some n. The
subscript on e simply indicates that xe,i is a fresh distinct

signal variable related to e.

The definitions of φ(v, a) and Φ(v, a, θ, θA) differ in the

case when v is a signal or array variable; in these cases Φ
applies the function θ or θA. The functions θ, θA will be

assigned increasingly large sets as the algorithm iterates. We

define Φ(e, a, θ, θA) and ΦA(b, e, a, θ, θA) by mutual recursion

in the full paper .

Given a systemM = (S, I,N ,O, E), we define a sequence
of approximations to φ(sk, a), for each signal state variable s,
and approximations to φ(bk, a), for each array variable b. In
the following equations, s is a signal variable, b is an array

variable, e is a signal expression, and k is a natural number.

The definitions use N (v), the next-state expression for the

state variable v. See Figure 4.

For k ≥ 0, let sizek(v, a) = ‖approxk(v, a)‖, be the size of
the kth approximation. For an output variable v, we will define
sizek(v, a) using the approximations for the state variables:

sizek(v, a) = ‖Φ(E(v), a, θa,k, θa,k
A )‖,

The idea behind the definition of sizek(s, a) is to make

successive overapproximations to the value of Σ(sk)(a). We

begin by setting the first approximation, size0(s, a), to 0. At
each successive step, we make θk(s) be a set of n distinct

signal variables if the value of sizek(s, a) is n. This gives an
overapproximation because, for example, there is no sharing

of common expressions in θa,k(si), θ
a,k(sj), when si, sj are

different state variables. At each step we use the next-state

expression N (s) to compute the maximal sets of indices

needed for the array variable a in the next expansion of s.

approx0(s, a) = {∅}
approxk+1(s, a) = Φ(N (s), a, θa,k, θa,k

A )

approx0
A(b, e, a) = {∅}

approxk+1
A (b, e, a) = ΦA(N (b), e, a, θa,k, θa,k

A )

θa,0(s) = ∅
θa,k+1(s) = {s1, . . . , sn},
where n = ‖approxk+1(s, a)‖
and s1, . . . , sn are distinct fresh signal variables

θa,0
A (b, e) = ∅

θa,k+1
A (b, e) = {be,1, . . . , be,n},
where n = ‖approxk+1

A (b, 0, a)‖
and be,1, . . . , be,n are distinct fresh signal variables

Fig. 4. Definitions of approxk and θ

The following theorem says that sizek(v, a) overapproxi-

mates Σ(vk)(a).

Theorem 6. For any array variable a, signal variable v, and
k ≥ 0, Σ(vk)(a) ≤ sizek(v, a). 2

We can now present an algorithm compute size for com-

puting a size for an array variable a that makes a sound and

complete model for checking a property output variable v of

a system. The inputs of compute size are a system M, a

signal variable v of M, an array variable a, and a natural

number OriginalSize. The value of OriginalSize is the size

of the array a in the original model. The algorithm computes

sizek(v, a) for increasing values of k, until either a fixed point

is reached or sizek(v, a) > OriginalSize.
We need to define a set dep(v) of state variables on which

a variable depends. For a state variable v, let dep(v) be the

smallest set of state variables such that 1) v ∈ dep(v), and
2) for all state variables v′, if v′ ∈ dep(v) and v′′ is a state

variable appearing in N (v′), then v′′ ∈ dep(v). For an output

variable v, we define dep(v) to be the union of dep(v′) over
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all state variables v′ appearing in E(v).

Algorithm 1. The algorithm compute size consists of the

following steps.

1) k ← 0; MaxSize ← 0;
2) Until ((∀v′ ∈ dep(v) : sizek(v′, a) = sizek+1(v′, a)) ∨

sizek(v, a) > OriginalSize) Do

{MaxSize ← max(sizek(v, a), MaxSize); k ← k+1};
3) If sizek(v, a) > OriginalSize then return OriginalSize;
4) If ∀v′ ∈ dep(v) : sizek(v′, a) = sizek+1(v′, a) then

return MaxSize;

The algorithm always terminates, because for k ≥ 0,
sizek+1(v, a) ≥ sizek(v, a). If the algorithm exits with ∀v′ ∈
dep(v) : sizek(v′, a) = sizek+1(v′, a), then it is easy to see

that the size computation has reached a fixed point at step

k: The value of Φ for each state variable v depends on the

previous values of θ(v′) for the variables v′ appearing inN (v).
If sizek(v′, a) = sizek+1(v′, a) for all v′ in the transitive

fan-in of v, then the size computation for v is at a fixed

point. By Theorem 6, we know that ∀k ≥ 0 : Σ(vk)(a) ≤
sizek(v, a). The variable MaxSize is now set to a value

that is at least as large as any of the approximate values:

∀k ≥ 0 : Σ(vk)(a) ≤ MaxSize. By Theorem 2 , we can

construct a sound and complete abstraction for evaluating v
inM by using compute size to assign the size of each array

variable.

In a more extended presentation, we would show how to

improve the accuracy of the size computation by taking shared

expressions into account in θ, θA.

Example 3. We illustrate Algorithm 1 by showing the analysis

of a VSCM (very simple cache memory) unit. The block

diagram of the VSCM is shown below. The state variables

are mem, addrc, datac, the input variable is addr, and the

output variables are cout, safe. The array mem represents a

large main memory. Arrays addrc and datac are small arrays

that form the cache. The array addrc stores the addresses that

are cached, while datac stores the data for these addresses.

The next state function N and output function E are shown

in Figure 6. A unary operator key maps a full address into a

value key(addr) that is an index into the arrays addrc and

datac. On each clock cycle the cache inputs the signal addr

and outputs the value of mem[addr]. If addrc[k] = 0, for
some k, then the data at location k in the cache is considered

invalid. Initially, addrc[k] = 0 for all k in the domain of

addrc. If addrc[key(addr)] = addr ∧ addr 6= 0, then the

required memory data is provided from the cache by accessing

datac[key(addr)]. Otherwise, the data is fetched from main

memory at mem[addr], and addrc, datac are updated. The

output signal cout is the data output of the cache memory,

and the signal safe asserts that cout = mem[addr] holds.
The table summarizes the operation of Algorithm 1 for each

of the three arrays. The numbers in the table show the values

of sizek(v, a), for each of the state variables. For the array

a = mem, the algorithm reaches a fixed point at k = 2, with
the array datac using one index value and the other arrays

using no indices. For the output signals, cout uses one index

value and safe uses two index values, because the expression

for safe has subexpressions cout and mem[addr]. Therefore
the abstract model for the output signal safe will reduce mem

to two entries. For the array a = datac, the algorithm reaches

a fixed point with one array index. For the array addrc, the

algorithm is unable to reduce the size of the array, and the

original size of the array will be used in the abstract model. At

each iteration, sizek(datac, addrc) increases by one, because

in the next-state expression for datac, the mux expression

has a control expression (e1) that uses one array index of

addrc, and a second input (e2) that uses k indices of datac

on iteration k. The approximation computed by Φ therefore

uses k + 1 array indices at step k + 1.
Note that data is read from the array mem and stored

in datac for an unbounded length of time. Our algorithm

abstracts mem, while the method of [7] cannot.

V. CONSTRUCTION OF THE ABSTRACT MODEL

It is straightforward to build a model of a system that uses

the semantics with the bottom value. We replace each signal

of the original design with a composite signal having two

elements: a value, which represents the value of the signal

in the original design, and a v bit, which is true if the signal

represents a value in V , and false if the signal represents ⊥.
Each state register is replaced with a register of the composite

type. The signal operations of the original circuit are replaced

with versions of the operations that recognize the value ⊥.
The size of each array in the abstract model is determined

by running Algorithm 1. An abstract array of size n is

implemented using two arrays: an array of n addresses, and an

array of n (value, v) pairs. The contents of the address array

are set nondeterministically in the initial state of the system,

and do not change over clock cycles. The array read and

write operations are implemented according to the semantics

of expressions.

If p is an output signal for a safety property p = true,

then we construct a property expression of the form

p.v→ p.value = true. Finally, we use model checking to

verify that each of the new output property expressions is

always true.

VI. INDUSTRIAL EXAMPLES

In this section, we present initial results of using our

abstraction algorithm on industrial hardware designs. The

algorithm has been implemented in IBM’s model checker.

Many of the arrays used in hardware designs have the

property that at each time step, the output signal only depends

on a small, bounded number of elements of the array. When

an array has this property, our algorithm is often able construct
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N (mem) = mem

N (addrc) = write(addrc, key(addr), mux (addrc[key(addr)] = addr, addrc[key(addr)], addr)
N (datac) = write(datac, key(addr), mux (addrc[key(addr)] = addr, datac[key(addr)], mem[addr]))

E(cout) = mux (addr 6= 0 ∧ addrc[key(addr)] = addr, datac[key(addr)], mem[addr])
E(safe) = (cout = mem[addr])

Computation of sizek(v, a)
array a = mem array a = datac array a = addrc

v addrc datac mem v addrc datac mem v addrc datac mem

k = 0 0 0 0 k = 0 0 0 0 k = 0 0 0 0

k = 1 0 1 0 k = 1 0 0 0 k = 1 0 1 0

k = 2 0 1 0 k = 2 0 2 0

size2(cout, mem) = 1 size1(cout, datac) = 1 k = 3 0 3 0

size2(safe, mem) = 2 size1(safe, datac) = 1 k = n 0 n 0

Fig. 6. Very Simple Cache Memory Definitions and Analysis

a small abstract model. On the other hand, there are common

uses for arrays that do not have the necessary property. For

instance, when an array is used as a content-addressable

memory (CAM), each read operation accesses all elements

of the array, and the array cannot be abstracted by our current

approach.

The following results should be considered preliminary,

because the implementation is in development. Data was

collected for a set of 401 complex industrial examples. Many

of the arrays in these designs have the property needed for

our abstraction, but many of the arrays are used as CAMs,

and hence are difficult to abstract. Individual designs in the set

contain from one array up to several hundred arrays. Overall,

our algorithm reduced the size of at least one array in 187

designs, or about 47 per cent of designs. The following table

gives the total over all examples of the number of reduced

arrays for each original and reduced size.

Reduced Number of Rows
Original Rows 1 2 3 4 6 8 > 8

2 144
8 1 1
16 14 13 55
32 37 1 25
39 24
48 24
64 46 29 20 18

128 4 158 14 23 1 11
256 3 40 10
1024 3 10 2

The final version of the paper will compare the performance

of other array abstraction algorithms.

One kind of verification problem where our techniques are

valuable is proving sequential equivalence of two designs

where an array has been reconfigured. In designing complex

hardware systems, it is often necessary to reconfigure an

array into two or more smaller arrays, due to physical circuit

constraints. In simple cases, the reconfiguration consists of

dividing an array into two arrays with the same number of

index values (rows) as the original array, but narrower data

values (fewer columns). For this kind of reconfiguration, it

is often possible to prove the designs to be equivalent by

automatically discovering a correspondence between the data

columns of the original and reconfigured arrays [9].

When reconfiguration involves changing the number of rows

in an array, it is harder to prove equivalence, because the two

designs have differences in the addressing, data alignment and

staging logic.

One real example that highlights the advantage of our

techniques over previous approaches is an equivalence check

where the original design has an array of 1024 rows by 16

columns, and the reconfigured design has two arrays, each

with 128 rows by 64 columns. In this case, the logic near

the arrays was substantially redesigned. Because the design

uses clock gating, the method of [7] cannot reduce the size

of the arrays. Our approach generates an abstract model and

verifies equivalence, using four modeled rows from the large

array of the original design and one row from each of the

smaller arrays in the reconfigured design. The abstract model

uses a total of 401 registers, including the three arrays and

surrounding control logic. Without using our algorithm, we

have found no way to verify this example other than to bit-

blast the model into 32912 registers.

VII. RELATED WORK

The work most closely related to our approach is by Bjesse

[7]. Both our approach and [7] transform a register transfer

level design into an abstract register transfer level design

having smaller arrays, and allow any register transfer level

verification method to be used on the abstract design. Both

approaches use nondeterminism to choose which addresses are

modeled in the abstract design. In our approach, the abstract

model uses a semantics with a bottom value. The semantics

limits evaluation of the correctness property to cases in which

the nondeterministically chosen addresses are sufficient to

determine the truth of the property. In [7], the correctness

property at time t is made conditional on a formula saying

that array read operations accessed only modeled addresses
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at a list of previous time steps. Our approach is effective for

reasoning about systems in which a value read from an array

can affect the correctness property after an unbounded time

delay. In [7], it is inherent in the construction of the abstract

models, that reasoning is effective only in cases where there is

a bound on the number of time steps after reading a value from

an array that the value can affect the correctness property.

Several works [1]–[3] develop approaches for reasoning

about systems with arrays by modeling the initial value and

data forwarding properties of arrays operations over a bounded

number of time steps. BAT [4] is another tool that builds

abstractions for arrays over bounded time intervals. BAT uses

several term-level techniques to reduce the size of abstract

models of arrays before constructing a propositional model.

These techniques include term-level uniqueness reductions and

memory rewriting.

Model checkers in industry use a diversity of algorithms

to analyze hardware designs. Baumgartner et al [9] describe

enhancements to a number of algorithms in an industrial model

checker, to provide more efficient processing by abstracting or

simplifying arrays.

McMillan [10] developed a method of compositional model

checking in which arrays can be abstracted to a small number

of elements by temporal case splitting and symmetry reduc-

tion. In [10], the user proves complex designs by manually

specifying a set of lemmas; the lemmas are checked auto-

matically. In contrast, our method is directed towards fully

automatic verification.

VIII. DISCUSSION

We have introduced a logic of expressions for reasoning

about arrays and developed some of its mathematical prop-

erties. The semantics of the logic permits reasoning about

the value of an expression, when evaluated over states having

arrays of different sizes. In Section III, we show that the truth

of an expression can be evaluated over a state that may have

smaller array sizes than the original model. The existence of

adequate model sizes for expressions leads immediately to

the existence of adequate model sizes for safety properties

of systems. However, to compute the adequate model size

directly from the results of Section III could be as difficult

as verifying the original design. For this reason, we propose

a method of safely overapproximating the minimum adequate

size in Section IV. Our algorithm represents approximate sets

of array indices using two-level sets of expressions. When

using iteration on two-level sets, special care is needed to

detect fixed points. Our algorithm constructs a most-general

element from each two-level set at each step in the iteration

as a way of detecting when a fixed point has been reached.

Although our main focus is on sequential systems, our

results could also be useful for checking the satisfiability of

formulas in the theory of arrays. Theorem 4 gives a way to

overapproximate the number of array indices needed to check

satisfiability. Our approximation could lead to improvements

to model-based approaches to checking validity.

There exist many possible ways of overapproximating the

minimum size of arrays defined in our theory. It should

be possible to improve the approximation by using stronger

methods to identify common subexpressions for array indices.

A further improvement would be to identify expressions that

are syntactically distinct but logically equivalent.
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Abstract—An important problem in the verification of hard-
ware protocols is that of proving deadlock freedom. We view
deadlock freedom as the property that for all reachable states,
there exists some path to a quiescent state, i.e. one wherein
all resources of interest are free and thus all prior requests
have been resolved. We establish a framework for showing
this property in a class of symmetric parameterized systems.
Our approach is based on a mixed abstraction system than
includes both an over-approximate and an under-approximate
transition relation. Model checking is employed to compute
all states reachable through overapproximate transitions, and
from each of these states finds a path of underapproximate
transitions to a quiescent state. When this fails because the under-
approximation is too strong, we provide techniques to suggest
additional transitions that can be introduced to soundly weaken
the under-approximation. This approach can be viewed as an
extension of the well-known approach of guard strengthening for
verifying state invariants of parameterized systems. We present
proof of deadlock freedom of the German and FLASH cache-
coherence protocols as case studies using a semi-automated
heuristic tool that mitigates the human effort.

I. INTRODUCTION

Designing distributed protocols is known to be among the
trickiest aspects of modern hardware design. A well-known
problem that can arise in such systems is deadlock, which
occurs when a state is reached that involves an unbreakable
cyclic dependency between resources [1]. Here a resource
might be an entry in a transaction table, a slot in a network, etc.
We assume that one can easily characterize the quiescent states
by a state predicate Q; the quiescent states are those wherein
all resources are free and there are no in-flight transactions.
A deadlock state, then, is simply a state from which there is
no path to a quiescent state. Hence we can express deadlock
freedom in Computation Tree Logic (CTL) by AG EFQ (i.e.
for all reachable states there exists a path to a Q-state).

Model checking [2] is a popular method for verifying
that a system adheres to some specification. Classical model
checking assumes that the system under consideration is finite-
state. However, many researchers have explored techniques
to generalize model checking to verify various classes of
parameterized systems. For the purposes of this paper, a
parameterized system P is a function that yields a finite-
state system P(n) for all naturals n ≥ 1. Here n indicates
the number of values involved in some type P (called the
parametric type) used by the system, for examples client IDs

or addresses. A parameterized model checking problem asks if
P(n) satisfies some given specification for all n1. Unless one
puts severe restrictions on the class of systems, parameterized
model checking is undecidable [3].

A promising approach to parameterized model checking is
based on abstraction and compositional reasoning [4], [5],
[6], [7], [8], [9], [10], [11] and is typically used to verify
universally-quantified (over P) state assertions roughly as
follows. An initial abstraction A0 is created from the syntax
of P . By construction, the transitions of A0 over-approximate
those of P(n) for arbitrary n > k (for some typically small
k). If the state assertion holds of A0, then we can soundly
conclude it holds too for P(n). However, often we are not
so lucky and we must strengthen the transitions of P0 using
a conjectured state invariant ϕ1, yielding a tighter abstraction
A1. This process iterates until we obtain a Aj wherein the
original state assertion along with all of ϕ1, . . . , ϕj hold. At
this point our parametric verification goal has been achieved.

Our work extends this approach to handle deadlock free-
dom, i.e. properties of the form AG EFQ for a state predicate
Q. The key idea is to not only construct abstract transi-
tion relations that over-approximate those of P(n), but also
transition relations that under-approximate P(n). The result-
ing verification framework is formalized in terms of mixed-
abstractions [12] – systems with two transition relations O
and U , which are respectively over-approximative and under-
approximative. As in the traditional approaches, O is used
to explore the reachable abstract states, which represent an
over-approximation of the reachable states of P(n). However,
during this exploration, we explore paths of U to check that
the existential CTL formula EFQ holds for each reachable
abstract state. If so, it is safe to conclude deadlock freedom
of P(n); because the existence of a path in U implies
that of a corresponding path in P(n). Initially, U can be
constructed by checking syntactic properties of transitions of
O. Then, analogous to how O might be too weak, the initial
U might be too strong. A key contribution we present are
a set of heuristic methods that allow the user to soundly
weaken U in these cases. Another contribution is a theorem

1Many approaches, including ours, only verify P(n) for all n ≥ n0, where
n0 is a small constant. This is not a shortcoming since the P(n) where
n < n0 are either “uninteresting” or can be dispatched by finite-state model
checking.
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that supports deadlock freedom verification for Q involving
universal quantification over the parametric type.

Ideally, one would seek to establish Linear Time Logic
(LTL) response properties [13] of the form G (req→F resp),
where req and resp respectively mean a some request is sent
and the corresponding response is received. However, response
properties are difficult to model check for parameterized
systems and require both computationally and conceptually
complex approaches (we review some in Sect. II). We see our
deadlock freedom verification as a lighter-weight alternative
that is also practically relevant. Indeed, experience working
with real hardware protocols in industry indicates that response
failures are almost always caused by deadlocks (i.e. violations
of AG EFQ) rather than more subtle “live-lock” style failures.

II. RELATED WORK

There have been many previous efforts to extend composi-
tional techniques to parameterized safety property verification
[4], [5], [6], [7], [8], [9], [10], [11]. As for liveness-like
properties, there are several notable works.

McMillan’s work on using compositional methods for LTL
liveness properties [14] was applied to parametric liveness
verification of the FLASH coherence protocol [5]. Although
this paper focuses on a proof of safety, the same framework
was used to show that whenever the directory is in the pending
state, it is eventually not pending [15]. This proof relies on
a handful of lemmas and fairness assumptions, designed and
proven within SMV.

Fang et al. proposed an interesting technique called invisible
ranking [16] which attempts to automatically guess ranking
functions to prove response properties. The associated proof
obligations (from [13]) are decided using some small-model
theorems and BDDs. The authors have previously used counter
abstraction for parameterized liveness verification [17].

Baukus et al. employ WS1S (a decidable second-order logic)
to perform liveness verification of parameterized systems [18],
and verify response properties for the German protocol as a
case study [19]. Like our approach, human effort is required, to
select both abstract predicates and ranking predicates needed
to create an appropriate abstraction. The complexity of de-
ciding WS1S is well-known to be super-exponential, hence
scalability of this approach seems unlikely.

The earliest example we could find where both over-
approximative and under-approximative abstractions of a tran-
sition system are employed for verification is the work of
Larsen and Thomsen [20]. They distinguish between necessary
and admissible transitions; for a process to refine another it
must over-approximate the former and under-approximate the
latter. Of course our interests are in abstraction rather than
refinement, which are in a sense inverses of each other. Later
the work of Dams et al. [12] and independently Cleaveland
et al. [21] used mixed transition systems which are defined
with two transition relations to formulate abstractions that
preserve both universal and existential properties of the modal
µ-calculus; our mixed-abstractions are very similar.

III. PRELIMINARIES

This section presents the formal framework that we use
to verify quiescence properties of parameterized systems.
Section III-A introduces mixed abstractions that have two
transition relations: one that under-approximates the behaviors
of the concrete systems and another that provides an over-
approximation. Section III-B presents the idea of insufficiency
– a mixed-abstraction may have an under-approximation that
is too strong to verify the desired quiescence property or an
over-approximation that is too weak. Section III-C describes
parameterized systems.

A. Systems and Mixed Abstractions
A system S is a tuple (S, I, T ) where S is a set of states,

I ⊆ S is the set of the initial states, and T ⊆ S × S is
the transition relation. We write s1 ÃT s2 to denote that
(s1, s2) ∈ T ∗. A state s is said to be S-reachable (or simply
reachable if S is understood) if s0 ÃT s for some s0 ∈ I . A
state predicate p is simply a subset of S; if s ∈ p we call s
a p-state. Following standard CTL syntax, for state predicates
p and q, we write: S ² AGp if all reachable states are p-
states; AG (p → EF q), if for all reachable p-states s there
exists a q-state s′ such that s ÃT s′; and AG EF q to mean
AG (true → EF q).

To show that AG (p→ EF q) can be inferred for a concrete
system, S , by establishing properties of an abstraction, A, we
employ Lynch and Vaandrager’s notion of forward simula-
tion [22]. Let S1 = (S1, I1, T1) and S2 = (S2, I2, T2) be two
systems and θ ∈ S1 × S2 be an abstraction relation. We say
that T2 forward simulates (or “simulates” for short) T1 if for
every (s1, s

′
1) ∈ T1 and for all s2 such that (s1, s2) ∈ θ, there

is a s′2 ∈ S2 such that s2 ÃT2 s′2 and (s′1, s
′
2) ∈ θ. This

allows system S2 to take multiple steps that may be invisible
in S1 including possibly steps that have no “explanation” in
S1. This general sense of simulation is motivated by our goal
of showing the existence of trajectories. Now let s1, . . . , s`
be a T1-path, and suppose T2 simulates T1 with respect to θ.
By induction on `, there exists an T2-path s′1, . . . , s

′
k and a

non-decreasing surjection f : {1, . . . , `} → {1, . . . , k} such
that (si, s

′
f(i)) ∈ θ for all 1 ≤ i ≤ `. In this case we say that

s′1, . . . , s
′
k is a θ-simulation of s1, . . . , s`.

To show AG (p→ EF q) using abstraction, the abstract sys-
tem must, for soundness, over-approximate the set of reachable
p-states, and under-approximate the set of paths from p-states
to q-states. Thus we introduce a mixed abstraction as defined
below.

Definition 1: Let S = (S, I, T ) be a system and let Reach
be the S-reachable states. A mixed abstraction of S (relative
to θ : S → SA) is a quadruple A = (SA, IA, U,O) such that
• SA is a set of abstract states,
• IA ⊆ SA are the initial abstract states and satisfy θ(I) ⊆
IA,

• O ⊆ SA×SA simulates T with respect to θ ∩ (Reach ×
SA), and

• T simulates U ⊆ SA×SA with respect to (θ∩ (Reach×
SA))−1.
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Note that we require θ to be a function. Here U and O are
respectively called the under-approximative (UA) and over-
approximative (OA) transition relations of the mixed abstrac-
tion. When discussing mixed-abstractions, we will often refer
to S = (S, I, T ) as the concrete system, to S as the concrete
states, etc.

The following serves as the basis for our approach to prov-
ing deadlock freedom for a class of parameterized systems.
Let p and q be state predicates over SA, and suppose for all
(SA, IA, O)-reachable p-states s there exists a q-state r such
that sÃU r. We assert this by writing

A ² AG (p→ EF q) (1)

Hence, (1) holds of a mixed abstraction if for all p-states
reachable using the over-approximative transition relation,
there exists a path through the under-approximative transition
relation to a q state.

Lemma 1: Let A be a mixed abstraction of S relative to θ
and let p and q be state predicates on SA. If A ² AG (p →
EF q) then S ² AG (θ−1(p)→ EF θ−1(q)).

Proof: Let Reach be the set of S-reachable states. Let w
be any θ−1(p)-state in Reach . Because O simulates T with
respect to θ ∩ (Reach × SA), θ(w) is (SA, IA, O)-reachable,
and furthermore θ(w) is clearly a p-state. Let a0, . . . , am be a
U -path from θ(w) = a0 to a q-state am. Because T simulates
U with respect to (θ ∩ (Reach × SA))−1, for all 0 ≤ i < m
and all wi ∈ θ−1(ai) there exists wi+1 ∈ θ−1(ai+1) such
that wi ÃT wi+1. Therefore, taking w0 = w, there is a path
w ÃT wm where wm ∈ θ−1(q).
Note that the definition of mixed-abstraction explicitly men-
tions the reachable states of S (in the involved simulation
relations), this is just our means of formalizing the minimal
requirements a mixed-abstraction must satisfy in order to prove
Lemma 1. In other words, any methodology that aims to
construct mixed-abstractions must guarantee at least these
simulations. We emphasize that this is different than asking the
user of such a methodology to precisely characterize Reach
(indeed our methodology does not make such a demand).

When performing reasoning that allows us to add (or
remove) transitions from U and O in a mixed abstraction,
we often will employ the following sufficient conditions. We
conclude this section by stating a connection between S and
the transitions of U and O.

Lemma 2: Suppose S = (S, I, T ), SA, IA, and θ : S → SA
are as in Def. 1. If U,O ⊆ A×A satisfy

1) for all (w,w′) ∈ T such that w is S-reachable we have
(θ(w), θ(w′)) ∈ O, and

2) (s, s′) ∈ U implies for all S-reachable w ∈ θ−1(s) there
exists w′ ∈ θ−1(s′) such that w ÃT w

′.
then (SA, IA, O, U) is a mixed-abstraction for S .
Proof: Follows trivially from Def. 1.

B. Insufficiency

Lemma 1 allows us to infer S ² AG (θ−1(p)→ EF θ−1(q))
if model checking (or any other means) verifies A ² AG (p→
EF q). However, the converse of the lemma does not hold in

general (or even in common cases). Let us call the mixed-
abstraction A insufficient if S ² AG (θ−1(p) → EF θ−1(q))
holds but A 6² AG (p → EF q). If A is insufficient, it follows
that there exists a p-state ap such that a0 ÃO ap for some
a0 ∈ IA but there is no q-state aq such that ap ÃU aq . There
are two common causes for insufficiency:
• OA insufficiency. There is no (S, I, T )-reachable sp ∈ S

such that (sp, ap) ∈ θ. Hence ap does not abstract any
reachable state of S . This is often caused by O being too
weak, i.e. there exists a proper subset O′ ⊂ O such that
(SA, IA, O′, U) is a mixed abstraction of S wherein ap
becomes unreachable.

• UA insufficiency. There is (S, I, T )-reachable s ∈ S
such that (s, a) ∈ θ, however none of the T -paths
s = s0, . . . , s` where s` ∈ θ−1(q) (at least one such
T -path must exist), are simulations of any U -paths. This
is often caused by U being too strong, i.e. there exists
a proper superset U ′ ⊃ U such that (SA, IA, O, U ′) is a
mixed abstraction of S . Here the transitions introduced
in U ′ would be sufficient to ensure the existence of a
U ′-path that s0, . . . , s` is a simulation of.

For the mixed abstractions we use to verify our parameter-
ized systems, we will observe that OA insufficiency is solved
in the previous literature, however UA insufficiency is not. Our
basic approach is to identify UA insufficiency from a counter-
example trace. In practice, the transitions from O that are
needed in U are apparent from this counter-example. The basic
idea is to show that for each such transition of O, there is a
corresponding path in the concrete system. Sections IV and V
present how this can be done by syntactic pattern matching and
model checking of the abstract system for properties with the
form shown by formula (1).

There is also a third flavor of insufficiency,
• Abstract quiescence insufficiency. Note that in

Lemma 1, the quiescent predicate actually verified is of
the form θ−1(q), where q is a predicate on the abstract
states. Suppose, however that there does not exist a q
such that θ−1(q) characterizes the desired set of quiescent
concrete states. We experience this for our case studies;
the desired quiescence predicate involves a universal
quantification over the parametric type that the underlying
simulation relation cannot precisely characterize. That is,
if the concrete quiescent states are characterized by a
predicate of the form ∀i. φ(i), then there is no abstract
predicate q such that θ−1(q) = ∀i. φ(i). We deal with
this form of insufficiency via Theorem 1.

C. Parameterized Systems

For the purposes of this paper, a parameterized system P
is a function mapping natural numbers to systems. We write
P(n) = (S(n), I(n), T (n)) to denote the components of P(n)
for an arbitrary n. The states S(n) are the type-consistent
assignments to a set of state variables. For a state w of a
parameterized system and a state variable v, we write w.v
to denote the value w assigns to v. We allow four types of
variables:
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• finite types that are independent of n, such as booleans
and enumerations; for simplicity, we denote all such types
as B

• a type which has cardinality n, denoted Pn
• arrays indexed by Pn with elements in B, denoted

array [Pn] of B
• arrays indexed by Pn with elements in Pn, denoted

array [Pn] of Pn

In this paper we identify the set Pn with the numbers
{1, . . . , n} called nodes; the only operations supported on
nodes are equality comparison, assignment, and nondeter-
ministic choice.2 This ensures that for all n, P(n) is fully
symmetric [23] in Pn; here we give a brief review of this
notion. Let us write λi.e to denote the array a indexed by
Pn where a[i] = e and e is an expression of the appropriate
type. Let π be a permutation on Pn. We overload π to act on
w ∈ S(n) by defining π(w) ∈ S(n) to be the state such that
for each state variable v, π(w).v is equal to:
• w.v, if v has type B
• π(w.v), if v has type Pn
• λi.(w.v)[π−1(i)], if v has type array [Pn] of B
• λi.π((w.v)[π−1(i)]), if v has type array [Pn] of Pn

Then (S(n), I(n), T (n)) is called fully symmetric if for all
w,w′ ∈ S(n) and all permutations π on Pn we have both
that w ∈ I(n) iff π(w) ∈ I(n), and (w,w′) ∈ T (n) iff
(π(w), π(w′)) ∈ T (n). The following lemma has a simple
inductive proof using the latter.

Lemma 3 (Path Symmetry): For w,w′ ∈ S(n) we have
sÃT (n) w

′ if and only if π(w) ÃT (n) π(w′).
In Section IV-A, we impose restrictions on parameterized

systems in order to be admissible for our method.

IV. SYNTACTICAL ABSTRACTION

We assume that the parameterized system is modeled by
Murϕ [24] or a similar guarded-command notation. Given a
program P to describe the parameterized system, we use well-
established techniques [4], [5], [6], [7], [8], [9], [10], [11]
to obtain an abstraction of P . Our formulation is inspired
by the Krstic’s “syntactic” approach [7]; Section IV-A states
restrictions that we assume on the form of P , and Section IV-B
summarizes the abstraction technique. In Section V, we show
how the abstraction can be generalized to produce an under-
approximate transition relation, U , and how U can be soundly
weakened to prove quiescence properties.

A. Syntax and Restrictions

We assume that the guarded-command program that models
the parameterized system satisfies certain syntactic restrictions
described in this section. These restrictions ease the syntactical
abstraction process and simplify reasoning about the program
because many useful properties are guaranteed by construc-
tion. From the case studies reported in Section VI, we’ve found
that these restrictions are not problematic in practice.

2If i and j are nodes, a parameterized system is not allowed to perform a
comparison like i < j or perform an incrementation i := i+ 1.

We say that such a program is admissible, and we write AP
as a shorthand for an admissible program. An AP has set of
variables of the types indicated in Table I. A state of the AP is a
type-consistent assignment of values to these variables. If e is a
term, we write s(e) to denote the value of e in state s. In Murϕ,
a guarded command is called a rule and has the form: guard
_ action, where the guard is a boolean-valued expression,
and the action is a sequence of one or more assignments. We
write r : ρ_ a to denote rule r with guard ρ and action a.

The denotation JrK of r is the set of tuples (s, s′) ∈ S2 such
that s(ρ), and s′ is the state reached by performing action a
from state s. Murϕ has rulesets of the form:

ruleset i in Pn do r(i) end;
where r(i) is a rule (or a ruleset, as they may be nested).
Here, i ∈ Pn is called the ruleset parameter. If rs is the
ruleset indicated above, then

JrsK = {(s, s′) | ∃i ∈ Pn. (s, s′) ∈ Jr(i)K} (2)

A local boolean predicate L is a propositional formula over
the variables of type array [Pn] of B. For node i, we say L[i]
holds of a state if L evaluates to true when its variables are
assigned according to the ith array entries of the state. An
admissible program (AP) must satisfy the following syntactic
restrictions. Rulesets have guards that are a conjunct of:
• Boolean terms, composed of variables of type B or

array [Pn] of B indexed by a ruleset parameter, and the
logical connectives AND, OR and NOT.

• At most one forall condition, of the form ∀i ∈ Pn. C[i]
where C is a local boolean predicate.

• Any number of P-comparisons, of the form v1 = v2 or
v1 6= v2, where v1 and v2 are variables of type P or
array [P] of P indexed by a ruleset parameter, or a ruleset
parameter. Without loss of generality, we restrict each
ruleset parameter to appear in at most one P-comparison
of equality.

The initial states and ruleset commands given by a sequence
assignments of the following forms:
• Assignments of the form b1 := b2, a1

B[i] := b2, a1
B[i] :=

a2
B[i], where b1 and b2 are variables of type B, a1

B and a2
B

are variables of type array [Pn] of B, and i is a ruleset
parameter. RHS values may also be the constants true
and false.

• Assignments of the form p1 := p2, a1
P[i] := p2, a1

P[i] :=
a2

P[i], where p1 and p2 are variables of type Pn, a1
P and

a2
P are variables of type array [Pn] of Pn, and i is a ruleset

parameter.
• Forall updates of the form ∀i ∈ Pn. aB[i] := `(i), where
` is a boolean function depending on variables of type B,
Pn and on the ith index of array variables.

A BNF grammar for this restriction of Murϕ is given in the
Appendix.

These restrictions ensure that guards in APs do not contain
disjunctions of comparisons between variables of type P and
have no existentially quantified terms; updates in APs do not
contain if-then-else clauses. These constructs can be handled
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concrete type abstract type abstraction ψ
B B ψ(s).v = s.v

Pn bPk ψ(s).v = bψk(s.v)
array [Pn] of B array [Pk] of B ∀i ∈ Pk : ψ(s).v[i] = s.v[i]

array [Pn] of Pn array [Pk] of bPk ∀i ∈ Pk : ψ(s).v[i] = bψk(s.v[i])

TABLE I

The abstract state space SA and the abstraction function ψ :
S(n) → SA. For a system variable v and s ∈ S(n), the leftmost
column gives the type of v in the concrete domain, the second
column gives the type of v in SA, and the third column specifies
the value v is assigned by ψ(s) in terms of s.v.

by a straightforward splitting into multiple rulesets. The Murϕ
systems for German and FLASH are admissible, and from
this experience, we believe that the systems for many other
symmetric protocols will be admissible or easily modified to
produce an admissible equivalent.

B. Abstraction

Let P(n) = (S(n), I(n), T (n)) be a the denotation of
an AP, P . We want to construct a mixed-abstraction, A =
(SA, IA, O, U). In this section, we show how SA, IA, and O
can be readily by syntactic transformations of the source-code
of P . Section V extends this approach to the construction of
U . To create these abstractions, we introduce a new type to
represent type Pn from the concrete system; this type requires
the user to choose a constant k. It is assumed throughout that
k is at least the greatest number of ruleset parameters for
any ruleset in P (typically, k ≤ 3). Let P̂k = Pk ∪ {Other},
and given x ∈ Pn, let ψ̂k(x) = x if x ≤ k; otherwise,
ψ̂k(x) = Other . Table I specifies how each variable of P
is typed in A and how the abstraction function ψ acts on v.
Intuitively, ψ(s) preserves B variable values, replaces values
of type Pn greater than k with Other , and restricts arrays
to the indices Pk (hence all array entries v[i] for i > k
are deleted by ψ). Although ψ is a function, we will treat
it as a relation, ψ ⊆ S(n) × SA, and freely employ its
inverse ψ−1 ⊆ SA × S(n). We call elements of Pk non-
abstracted and elements of Pn\Pk abstracted. For every ruleset
parameter i interpreted as abstracted, all updates with aB[i] or
aP[i] appearing on the LHS are deleted. All instances aB[i]
or comparisons depending on aP[i] appearing positively in
the guard that depend replaced with true; those appearing
negatively are replaced with false. Instances of i appearing
on the RHS of assignments are replaced with Other . Finally,
equality comparisons with i appearing positively in the guard
are replaced with true. The state variables of A have the same
names as those of P , with the types changed as shown in
Table I.

We now overload ψ to map rules of P system to rules that
generate the state transitions of O. Rules of P that are not in
rulesets are copied without change of syntax (therefore, with
the implied change of types), to O. If ruleset r : ρ _ a
depends on m ruleset parameters, consider the set of rule
instantiations, obtained from assigning each ruleset parameter

a value in Pn. This set is partitioned as R1, ..., R2m , where all
rule instantiations of Rj have the same partitioning of ruleset
parameters into F and NF , where i ∈ F ⇔ i ∈ Pk and
i ∈ NF ⇔ i ∈ Pn \ Pk (since there are m ruleset parameters,
there are 2m possible partitions). Each set Rj abstracts to
an abstract ruleset r̂j according to the described syntactic
transformation. We denote the set of corresponding abstract
rulesets to concrete ruleset r by ψ(r) = {r̂1, ..., r̂2m}. Let
r̂v : ρ̂v _ âv denote the unique element of ψ(r) such that
all ruleset parameters are non-abstracted. Note that although
the set of rule instantiations differ depending on the value of
n, the set ψ(r) does not, for any n > k, hence we can fix
n = k + 1 to perform this abstraction.

Example: Consider the concrete rule from German
SendGntE.
ruleset i : NODE do rule "SendGntE"
CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>
Chan2[i].Cmd := GntE; ShrSet[i] := true;
ExGntd := true; CurCmd := Empty;

The abstraction contains two corresponding rulesets, one
where i is non-abstracted and one where i is abstracted, with
the former corresponding to r̂v:
ruleset i : NODE do rule "ABS_SendGntE1"
CurCmd = ReqE ∧ CurPtr = i ∧ Chan2[i].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end ==>
Chan2[i].Cmd := GntE; ShrSet[i] := true;
ExGntd := true; CurCmd := Empty;

rule "ABS_SendGntE2"
CurCmd = ReqE ∧ CurPtr = Other ∧ ¬ExGntd
∧ forall j : NODE do ¬ShrSet[j] end ==>
ExGntd := true; CurCmd := Empty;

V. VERIFYING UNIVERSAL QUIESCENCE

We want to verify properties of the form

P(n) |= AG EFQn , (3)

where P(n) is a parameterized system and

Qn = G ∧∧i∈Pn
L[i] (4)

is the quiescence property to be verified. Here, G is a
boolean predicate, meaning G only depends on variables of
type B, while L is a local boolean predicate (defined in
Sect. IV-A). To verify (3), we construct a mixed abstraction,
A = (SA, IA, O, U), and that for all O-reachable states, there
exists a U -path to a state that satisfies Qn. To do so, we
must address two key issues. First, Qn cannot be established
directly from A, as Qn refers to variables of the concrete
system that do not appear in the abstraction. This is the
“abstract quiescence insufficiency” defined in Section III-B,
and Section V-A shows how it can be addressed. Second,
U may omit transitions that are required to reach states that
satisfy Qn. This is the UA insufficiency from Section III-B,
and we address it in Sections V-B and V-C.

A. Universally Quantified Quiescence

To show (3), we need to show that L[i] holds for all i, not
just non-abstracted i. Intuitively, we show that A can reach
a state where L[i] holds for all non-abstracted i, then use
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Lemma 3 to exchange any abstracted j for which L[j] might
not hold with a non-abstracted i, find a path that establishes
L[i], and we can establish (3) by induction. For this approach
to work, we must show that if G holds, then for each non-
abstracted node i, there is a U -path to a state that satisfies
L[i] whose concretization in P(n) does not falsify L[j] for
any abstracted node j. To do this, we introduce the notion of
L-preserving transitions.

For local boolean predicate L, abstract transition (s, s′) is
L-preserving if

∀w ∈ ψ−1(s). ∃w′ ∈ ψ−1(s′). w ÃT w
′

∧ ∀i ∈ Pn \ Pk. w ∈ L[i]⇒ w′ ∈ L[i] .

Abstract ruleset r̂ is L-preserving if all transitions in Jr̂K are
L-preserving. A mixed abstraction is called L-preserving if its
UA transitions contain only L-preserving rules.

We can now state our main theorem for showing universally
quantified quiescence; for the proof of Theorem 1 see the
appendix.

Theorem 1 (Universally Quantified Quiescence): Let G
denote a boolean predicate, L a local boolean predicate, and
let A and B be mixed abstractions of P(n), and assume that
B is L-preserving. If

1) A |= AG EF (G), and
2) B |= AG (G→ EF (G ∧∧i∈Pk

L[i]))

then P(n) |= AG EF (G ∧∧i∈Pn
L[i]).

B. Abstract Rule Tags

Given a program P , we use the syntactical abstraction
technique to produce an abstract program P̂ . In the remainder
of this paper, we use the term “ruleset” to refer to Murϕ-
style rulesets with any degree of ruleset nesting including no
such quantification – i.e. a “ruleset” could be a simple rule.
We want to identify which rulesets of P̂ have denotations that
are UA, and which are L-preserving, for a given local boolean
predicate L. Throughout the rest of the paper we use r : ρ_ a
and r̂v as defined in Section IV-B, and use r̂j to denote an
arbitrary element of ψ(r).

We will tag abstract rulesets tags from the following set
{AUG,AEG,AUC,AEC}; the first two elements are called
guard tags, and the last two are called command tags. These
indicate reasons (in the guard and command, respectively) why
the abstract ruleset is not trivially UA or L-preserving. An
abstract ruleset can be tagged with any of the 16 subsets of
these tags. AUG and AUC indicate that a universal quantifier
has been abstracted; similarly AEG and AEC indicate that
existential information has been abstracted.3

We call ρ and ρ̂j syntactically equivalent (SE) if they
are expressed with identical syntax, and ρ contains no forall
conditions. In this case, we attach no guard tags to r̂j .
Likewise, if a and âj have identical syntax and contain no
forall updates, then we attach no command tags. If a ruleset
r has no guard or command tags, then it is simple to show

3 Note that AEG and AEC don’t indicate explicit existential quantifiers in
the concrete system syntax; existential refers to the quantifier in the ruleset
denotation, which ranges over the ruleset parameter.

Tag \Property UA L-preserving
AEG Heuristic 1 Heuristic 2
AUG Heuristic 3 Heuristic 4
AEC None Heuristic 2
AUC None Heuristic 4

TABLE II
Obligations associated with each ruleset tag and property pair.
“None” means there is no obligation to show. A ruleset with no
tags is L-preserving, while one with no guard tags is UA.

that r is both UA and L-preserving for any local predicate L.
Typically, the set of all such rulesets is insufficient to establish
the desired quiescence property.

The elements of ψ(r)\ r̂v may not have SE guards because
some ruleset parameter i is abstracted, so the abstraction will
syntactically change the guard (except for degenerate cases).
These rulesets have guards that optimistically abstract away
references to abstracted i; this is safe when constructing the
OA but not the UA. Such rulesets are tagged with AEG
(abstract existential in guard).3 When ρ contains a forall
condition, it is necessarily weakened in every rule of ψ(r).
In this case, every ruleset of ψ(r) including r̂v is tagged with
AUG (abstract universal in guard).

Similarly, existential or universal updates may be missing
from the command of an abstract ruleset, relative to the
concrete version. If local update ab[i] := eb appears in a
for ruleset parameter i, then any ruleset of ψ(r) where i is
abstracted (that is, where the update ab[i] := eb vanishes),
is tagged with AEC (abstract existential command).3 If a
contains a forall update, then every ruleset of ψ(r) is tagged
with AUC (abstract universal command).

Example: Referring to the example in Section IV-B, ab-
stract ruleset ABS_SendGntE1 is tagged with AUG and
no command tags, and abstract ruleset ABS_SendGntE2 is
tagged with AUG, AEG and AEC.

C. Heuristics

Each tag assigned to a ruleset corresponds to a set of proof
obligations for showing it is UA or L-preserving (for some
local boolean predicate L). For either of these properties, each
tag must be separately discharged through the corresponding
heuristic according to Table II. Once a tag is discharged we
may safely ignore it as a potential reason why the desired
property does not hold. Each of the heuristics involves model
checking a mixed abstraction. In this Section, the various
heuristics are stated; see the supplementary material [25] for
proofs.

An abstract ruleset is called local to i (as a special case
of having no tags) when the guard only depends on variables
of type B, P, and the ith index array variables aB, and the
command only updates the local state of non-abstracted i.
Here, given an abstract or concrete state, the local state of
i is simply the values of all array variables at index i. The
transitions that compose such rules are called local transitions.
A mixed abstraction with UA set U composed only of rulesets
local to i is denoted A`(i). Assuming ruleset r̂ is UA, we write

FMCAD 2011, Page 191



A`(i) |=br AG (A → EFB) when every O-reachable A-state
has a path to some B-state consisting of transitions of rules
local to i and necessarily a single transition of ruleset r̂.

When showing rulesets are UA (Heuristics 1 and 3), note
that the tags AEG or AUG indicate guards that are OA because
they have abstracted away information about abstracted nodes.
Our heuristics compute O-reachable states and exploit the
path symmetry of Lemma 3 to find the possible local state
of abstracted nodes under some boolean predicate. Then, if
the local state of node i does not have a required property, we
find “hidden paths” composed entirely of rulesets local to i
that reach a state that does have the property. This assures that
although some states in the concretization of abstract guard ρ̂j
do not satisfy the corresponding concrete guard ρ, there is a
guaranteed path that is not observable in the abstract system
from every ψ−1(ρ̂j) to a ρ-state. For simplicity, we present
our heuristics for rulesets with at most one abstracted ruleset
parameter, however generalizing is straightforward.

When showing rulesets are L-preserving it must be checked
that aspects of the guard and update that have been abstracted
away do not affect L-preservation in the abstracted nodes;
Heuristics 2 and 4 pertain to this check. The obligations
for these heuristics require that a certain transition must fire
on each path that justifies the deadlock freedom property.
Intuitively, when the heuristic obligation holds, the concrete
paths that justify the tagged ruleset in question r̂ to be UA
must have a certain form. For abstracted node i, each path is

• a (possibly empty) path composed of transitions of rules
local to i, followed by

• a transition of concrete rule r (possibly changing non-
local variables), followed by

• a (possibly empty) path composed of transitions of rules
local to i.

Furthermore, we only seek a path when the starting state is
an L[i]-state, and the final state must also be a L[i]-state. For
which i this is shown depends on the heuristic. Heuristic 2
reasons about those abstracted nodes that are abstracted ruleset
parameters in r̂. Heuristic 4 reasons about those abstracted
nodes that are not abstracted ruleset parameters in r̂. Note that
we assume a ruleset has been proven UA before it is proven
L-preserving.

A few definitions are needed for the heuristic statements.
If r̂ is an abstract ruleset with ruleset parameter i, let r̂|i=1 :
ρ̂|i=1 → â|i=1 be the ruleset where all instances of i are
replaced with the constant value 1. Also, let relax (i, r̂) be
the rule r̂ but with the values of variables aB[i] and aP[i]
unconstrained in the guard. If A ⊆ SA, let Γ(A) denote the
strongest boolean predicate implied by A.

Heuristic 1: For ruleset r̂j tagged with AEG and with
abstracted ruleset parameter i, suppose that r̂v is UA. If
A`(1) |= AG (relax (ρ̂v, i)|i=1 → EF (ρ̂v|i=1)) then tag AEG
is discharged for showing r̂j to be UA.

Heuristic 2: For ruleset r̂j tagged with AEG and/or AEC
with abstracted ruleset parameter i, suppose that r̂v is UA.
If A`(1) |=brv AG ((relax (ρ̂v, i)|i=1 ∧ L[1]) → EF (L[1]))

then AEG and AEC are discharged for showing r̂j to be L-
preserving.

Heuristic 3: For ruleset r̂j tagged with AUG, and let ∀i ∈
Pn. C[i] be the forall condition of ρ. If A`(1) |= AG (Γ(ρ̂j)→
EF (C[1])), then tag AUG is discharged for showing r̂j to be
UA.

Heuristic 4: For ruleset r̂j tagged with AUG and/or AUC,
let r̂∗ ∈ ψ(r) be the abstract ruleset where all ruleset
parameters of r are abstracted. If A`(1) |=br∗ AG ((Γ(ρ̂j) ∧
L[1]) → EF (L[1])), then tags AUG and AUC are discharged
for showing r̂j to be L-preserving.

We apply each of these heuristics by performing model
checking using a mixed abstraction that uses only local rules
for U . As local rules are identified entirely by syntax, they
are known a priori; therefore, we could take a brute force
approach that attempts to use our heuristics to prove every
abstract rule is UA and L-preserving. However, we prefer
to take a counter-example driven approach, as there are two
distinct situations in which our heuristics may not suffice
that arose in our case studies. Firstly, additional auxiliary
variables may be needed to capture the system state with a
slightly finer-grained abstraction. Secondly, if the ruleset is
not underapproximate, manual guard strengthening or splitting
into multiple rulesets may help. These are illustrated with
examples in Section VI.

VI. CASE STUDIES

Mixed abstractions are expressed as Murϕ models. The OA
rulesets are borrowed from Chou et al. [6] and the (initial)
UA transitions are derived manually according to tags – those
rules with no guard tags. Thus, the UA rulesets are maintained
as a subset of the OA rulesets. Rulesets with no tags at all are
identified as L-preserving, and the relevant subset of these are
identified as local.

We use a distributed explicit state model checker for Murϕ
called PREACH [26] for the mixed abstraction checks. Initially
designed to check state-invariants, we have added a feature to
check CTL properties of the form AG (p→ EF q). The search
algorithm is simple: for every (p ∧ ¬q)-state s visited during
the forward reachability computation, choose an enabled rule
of U and fire it to reach a new state. Firing rules of U continues
until one of the following occurs. 1) a q-state is found, 2) a
U -dead-end state is found, or 3) a cycle is detected. In the first
case, a path from s to a q-state exists and we proceed with
the forward reachability computation. In the second case, there
may not exist such a path (although we believe that in practice
this is strong evidence that no path exists). If a cycle is found,
this is usually an indication that U contains rules that do not
help us reach q-states, so we might as well exclude them and
try again4. For example, there are several easily identifiable
rules in both German and FLASH that initiate requests by
injecting messages, and are not useful transitions in finding a
quiescent state where all messages are consumed. Notice that
deadlock freedom properties can be verified by a CTL model

4Removing transitions from U trivially preserves mixed-abstractions.
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checker, but for our case studies we chose PREACH because
it was straightforward to implement the notion of UA rulesets
and counterexample generation.

Due to space constraints, this section contains a brief
overview of the case studies. For a more detailed report, the
reader may refer to supplementary material [25] including the
Murϕ sources.

A. Automatic Deadlock Freedom Predicates
As mentioned above, it is common when checking an-

tecedent 1 of Theorem 1 to reach a U -dead-end state š where
no further progress can be made toward the goal. When this
occurs, the model checker reports a failure and prints the rules
of O that are enabled in š, as a guide to the user of which
rules could be useful to prove UA and add to U . These enabled
rulesets necessarily have tags AEG or AUG or both. We have
written a simple tool that, given a particular rule/ruleset name,
will determine the tags and generate the model checking
obligation to prove it is UA through Heuristics 1 and 3.

Example: Suppose we seek to show ruleset r̂2 =
ABS_SendGntE2 is UA, and suppose it is already known
by Heuristic 3 that associated r̂1 = r̂v = ABS_SendGntE1
is UA. Ruleset ABS_SendGntE2 is tagged with AEG because
ruleset parameter i is abstracted. Then, relax (ρ̂v)|i=1 is
CurCmd = ReqE ∧ CurPtr = 1 ∧ ¬ExGntd
∧ forall j : NODE do ¬ShrSet[j] end

and ρ̂v|i=1 is
CurCmd = ReqE ∧ CurPtr = 1 ∧ Chan2[1].Cmd = Empty
∧ ¬ExGntd ∧ forall j : NODE do ¬ShrSet[j] end

As implemented, our tool does not support automatic gen-
eration of the properties to check for Heuristics 2 and 4.
However, this is generally straightforward to do by hand,
and could be automated as well. In cases when the deadlock
freedom property for some Heuristic when applied to ruleset
r̂j fails to verify, the user may use the counterexample trace as
a guide for strengthening ρ̂j manually. Any ruleset of O may
be duplicated and strengthened with some predicate, which
is trivially sound because the O transitions are not changed.
The resulting strengthened ruleset might satisfy the Heuristic
deadlock freedom property and be proven UA or L-preserving.
Such manual strengthening is required in the verification of
both German and FLASH.

B. The German Protocol
The system used for O is the abstract Murϕ model for Ger-

man of Chou et al., instantiated with a single non-abstracted
node (k = 1). The initial set of UA transitions U0 includes all
rulesets with no guard tags and the local subset of these are
also identified.

The property we verify is (4), where G states that
that the directory is not currently processing a transaction
(CurCmd = Empty) and L[i] states that all communication
channels associated with the ith cache are empty:
Chan1[i].Cmd = Empty ∧ Chan2[i].Cmd = Empty
∧ Chan3[i].Cmd = Empty.

Antecedent 1 of Theorem 1 requires A |= AG EF (G) for
a mixed-abstraction A. Checking this property, the model-
checker gets stuck at a U -dead-end state where the rule

ABS_SendGntE1 is enabled (see Section IV-B). Our tool
recognizes this as a AUG-tagged rule and generates the obli-
gations to according to Heuristic 1 so the rule can be soundly
added to U . The model checker discharges the obligation, and
ABS_SendGntE1 is added to U .

Checking Antecedent 1 is repeated with the weak-
ened U and gets stuck three more times: once where
ABS_SendGntE2 is enabled (tagged with AEG and AUG),
and twice where other AEG-tagged rulesets are enabled. The
Heuristic 3 obligation for ABS_SendGntE2 is identical to
the one previously shown for ABS_SendGntE1, so there
is no need to repeat its verification. The tool generates the
Heuristic 1 obligation and it is discharged by model checking.
In the other two, AEG cases, the corresponding rulesets r̂v
are already known to be in U , so we proceed directly with
the tool and obligations for Heuristic 1 are generated. One is
discharged automatically; the other requires human guidance
because the generated deadlock freedom property fails to ver-
ify. An examination of the counterexample reveals that when
exclusive access has been granted to an abstracted node, there
is no pointer indicating which node has been granted (only
a flag to indicate that it has indeed been granted, ExGntd).
Without this pointer, the permutation of Heuristic 1 is not
applied to the proper abstract node actually holding exclusive
access. Although manual, the solution is straightforward: add
a new system variable EPtr of type P that points to the
node holding exclusive access, and strengthening the guard
of the ruleset. This is done in a sound manner where only the
ruleset version we prove is UA is strengthened in this way;
the original ruleset belonging to O is not modified. After this
modification, the relevant property is verified.

Having added these four rules to U of mixed abstraction A,
Antecedent 1 of Theorem 1 is established by model checking.
We now describe the procedure to show of Antecedent 2.
Initially, every ruleset with no tags are known to be L-
preserving are added to U for mixed abstraction B. Model
checking then reveals that two additional rules are needed
to establish the Antecedent: ABS_SendGntE1 (tagged AUG)
and ABS_RecvInvAck2 (tagged AEG and AEC). These tags
are discharged by automatically generating and checking the
obligations of Heuristics 4 and 2, respectively. Adding these
two rules to U for mixed abstraction B allows Antecedent 2
to hold and completes the verification of the German protocol.

C. The FLASH Protocol

The quiescence property verified of FLASH is of the same
form as (4), and states that all channels are clear, and the
directory is not waiting to perform a write-back5. Antecedent 1
of Theorem 1 holds immediately using the initial set of UA
rulesets having no guard tags.

5Although the Murϕ system for the mixed abstraction of FLASH contains
rules where two index variables have been instantiated as Other , none of
these must be shown UA/L-preserving to prove our example property. Some
such rules are needed to be shown UA if the conjunct ¬Pending is added to
the quiescent property. We omit these from this paper for ease of presentation,
but note that similar reasoning to Heuristic 1, which assumes only one such
index variable, is sufficient.
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To show Antecedent 2 of Theorem 1, we start with the
set U of L-preserving states provided by tag examination
and use model checking as with the German protocol. Four
rules, each tagged with AEG and AEC, must be shown L-
preserving. We first show that they are UA, by applying
Heuristic 1. For two of these rulesets, model checking the
obligations for Heuristic 1 succeeds. For the other two, model
checking fails upon reaching a dead-end state š′ where no
local rules to 1 are enabled. The manual strengthening needed
in for these two ruleset is identical; without loss of gener-
ality let the ruleset be r̂j . Inspecting the counter example
reveals that the state s ∈ relax (r̂v, i)|i=1 that led to š′ has
different values for some B-type variables that those in š, the
original dead-end state revealed when checking Antecedent 2,
where r̂j is enabled. This indicates that the guard r̂j is too
weak and must be strengthened with a predicate on these
variables. We duplicated the ruleset for the aforementioned
reasons of soundness, and strengthened the guard with a
predicate requiring these variables to match their value in š.
Then, the automated procedure completed successfully and
the four rules are established as UA. To show they are L-
preserving, Heuristic 2 is applied to each ruleset and the
obligations are discharged automatically; this establishes the
quiescence property by Theorem 1. With regard to the manual
strengthening step, we note that in principle the model checker
could classify the reachable states of relax (r̂v, i)|i=1 for which
a path to r̂v|i=1 is found versus those where no such path is
found. Thus, the strengthening predicate could be generated
automatically.

VII. DISCUSSION AND FUTURE WORK

We presented a practical method for proving deadlock
freedom in parameterized cache coherence protocols. Our ap-
proach uses a mixed abstraction of over (OA) and under (UA)
approximate transitions to parametrically verify properties of
the form P(n) |= AG EFG ∧ ∧i∈Pn

L[i], where n is the
number of cache nodes, G is a predicate depending on boolean
variables, and L is a predicate depending on boolean variables
local to each node i. We infer this parameterized property
by model checking a pair of antecedent deadlock freedom
properties in an automatically generated mixed abstraction.

First, the model checker explores all states s reachable
through OA transitions, and for each s a UA-path to some
G-state s′ constructed via a forward search. When no such s′

is found, the user determines if s is only reachable due to the
overapproximation of OA, or if s′ is unreachable from s due to
UA being too strong. For the former, we use existing methods
to strengthen OA. For the latter, we have presented heuristic
methods to soundly weaken the UA transitions by proving
some transitions of OA are in fact UA. These heuristics involve
checking specific deadlock freedom properties in the mixed
abstraction. Second, it is verified that all G-states reachable
through OA transitions have an L-preserving UA-path to a
state where G holds and L[i] holds for all k nodes maintained
by the abstraction. Abstract transitions that are L-preserving
have the property that the set of corresponding paths in the

concrete system will preserve L[i] for all nodes i that are
abstracted away. Once again, we provide heuristic methods
for showing that OA transitions are in fact L-preserving
UA transitions. With each of these antecedents established,
a simple induction proof is used to show the parameterized
deadlock freedom property holds.

For the German and FLASH protocols, the strengthening
of OA that was required to prove safety [6] was sufficient
to establish liveness as well. Furthermore, most weakenings
needed for UA were identified and verified without need for
human insight. The only places where human reasoning was
needed was to identify one auxiliary variable needed in the
German model, and three guard strengthenings for FLASH.
We believe that these steps are candidates for automation as
well. Such automation may be desirable when these techniques
are applied to more complicated protocols.

We described an enhancement to the PREACH model
checker [26] to support the “EF ” part of our model checking
obligations using a forward search to find the existential paths.
Though the reachable state computation is fully distributed,
the EF searches currently are not; one area of future work
is to distribute this aspect of the model checking. However,
our current implementation running with a single thread was
sufficient to handle all the obligations for our two case studies.
The largest model was an abstraction of FLASH that has about
2.4 M reachable states and, for the properties of our case study,
each was checked on a modern desktop machine in less than
10 minutes.

As another direction of future work, we are in the process
of writing a Murϕ model of the L2 cache controller in the
OpenSPARC multiprocessor design. Here the parameter of
interest is memory addresses, rather than cache IDs. This is
interesting since different addresses share resources in non-
trivial ways that can lead to deadlock in our experience with
real designs. Investigating parameterized deadlock freedom of
this cache controller will test the applicability of our approach
of a vastly different parameterized verification problem.
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APPENDIX

BNF for Admissible Parameterized Systems
AdmissibleSystem : r | ps ‘;’ ar ;
r : rule | ruleset ;
rule : guard ‘==>’ action ;
guard : ‘(’ gTerm ‘)’ | guard ‘AND’ ‘(’ gTerm ‘)’ ;
gTerm : ‘(’ bTerm ‘)’ | ‘(’ eTerm ‘)’ | ‘(’ fTerm ‘)’ ;
bTerm : bConst | bVar | bArray ‘[’ pVar ‘]’ | bTerm ‘AND’ bTerm
| bTerm ‘OR’ bTerm | | ‘NOT’ bTerm | ‘(’ bTerm ‘)’ ;

pComp : pTerm ‘=’ pTerm ;
pTerm : pVar | pArray ‘[’ pVar ‘]’ ;
action : assignment | action ‘;’ assignment ;
assignment : simpleAssignment | forAllAssign ;
simpleAssignment : bVar ‘:=’ bTerm | bArray ‘[’ pVar ‘]’ ‘:=’ bTerm
| pVar ‘:=’ pTerm | pArray ‘[’ pVar ‘]’ ‘:=’ pTerm ;

forAllAssign : ‘forall’ pVar ‘:’ pType ‘do’ assignment ‘end’ ;
ruleset : ‘ruleset’ pVar ‘:’ pType ‘do’ r ‘end’ ;

Where bVar is an identifier for a boolean-scalar variable,
bArray is an identifier for a boolean-array variable, pVar is
an identifier for a scalar variable of the parameter type, and
pArray is an identifier for an array variable of the parameter
type.
Restrictions: Any pVar declared as a ruleset index may
appear in at most one pComp conjunct of any guard.

Proof of Theorem 1

Let us fix a mixed-abstraction A = (SA, IA, U,O) for
P(n), where n > k. We also use L to denote a local
boolean predicate, and B = (SA, IA, UB, O) to denote a mixed
abstraction with only L-preserving transitions for UB. For
i, j ∈ Pn, define Pji ⊆ Pn as {` : i ≤ ` ≤ j}.
Let permutation πj↔h map elements of Pn according to

πj↔h(i) =





j for i = h,
h for i = j,
i otherwise.

Let T be shorthand for T (n) and let Reach denote the
reachable states of S(n).

Theorem 1 (Universally Quantified Quiescence): Let G be
a boolean predicate. If

1) A |= AG EF (G), and
2) B |= AG (G→ EF (G ∧∧i∈Pk

L[i]))

then P(n) |= AG EF (G ∧∧i∈Pn
L[i]).

Proof: For 1 ≤ h ≤ n, let Jh denote the property
∀w ∈ G ∧ Reach. ∃w′ ∈ (G ∧∧i∈Ph

L[i]) where w ÃT w
′,

and ∀i ∈ Pnk+1. w ∈ L[i]→ w′ ∈ L[i].
By definition, Antecedent 2 implies Jk. Assume Jh holds for
k ≤ h < n. Applying permutation π1↔h+1 to Jk gives
∀w ∈ G ∧ Reach. ∃w′ ∈ (G ∧ ∧i∈Ph+1

2
L[i]) where w ÃT

w′, and ∀i ∈ Pnk+1. w ∈ L[i] → w′ ∈ L[i]. This property
with Antecedent 2 implies Jh+1 by transitivity. Thus, property
Jn follows by induction. The paths implied by Antecedent 1
composed with those of Jn complete the proof by transitivity.
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Abstract—Sources of randomness such as physical process
variations and input pattern variations make hardware timing
a statistical measure. It is desirable to verify statistical timing
properties at the higher levels of design such as the Register
Transfer Level (RTL). The RTL design can be modeled as a
Discrete Time Markov Chain (DTMC) and probabilistic model
checking then applied to verify that the DTMC satisfies a desired
timing specification. However, we find that such an approach
does not scale beyond 1010 states. In this paper, we introduce an
abstraction methodology to scale this approach to large designs.
Instead of considering the entire space of data values that can be
assigned to the design input variables, we perform a value-based
interval abstraction by considering only those intervals of input
values that are relevant to a given timing property. We employ
symbolic execution on the RTL source code to automatically derive
such intervals for the design inputs, with respect to a given timing
property. We use these intervals to construct smaller abstract
DTMCs and thereby make the corresponding probabilistic model
checking problems more tractable. We show that our abstraction
is sound since we do not remove any probabilistic behavior
that is relevant to the property of interest. We demonstrate
the effectiveness of our technique using multiple designs used
in communication systems such as FFT, filters and several
modules of a real world H.264 decoder. We use our technique
to successfully verify timing of an H.264 module, for which the
concrete model contains more that 1080 states, by constructing
an abstract model with approximately only 1010 states.

I. INTRODUCTION

Adaptive techniques like voltage and frequency scaling,

process variations that affect physical device parameters [1],

aging effects [2] and physical faults [3] contribute significantly

to the stochastic nature of contemporary hardware. As a

consequence, the timing associated with hardware computa-

tions is also statistical in nature. Recent high performance

designs [4] allow long computations to make timing errors

that can eventually be corrected. Therefore, contemporary

semiconductor environments are increasingly interested in the

question: “What is the probability that the correct hardware

output is available with a delay less than a timing specification

T?” . Such information, if available at the higher levels of

design such as Register Transfer Level (RTL), would facilitate

informed choices early in the hardware design cycle and avoid

oversights that may prove costly in the later stages.

Traditionally, RTL verification checks functional correctness

and adherence to timing specification is considered at the

lower, circuit level in the design cycle. Due to the growing

sources of variations in lower level hardware, it is desirable to

incorporate statistical timing into the definitions of correctness

at the higher, RTL. Viewing RTL designs as probabilistic

entities, with non-deterministic notions of correctness opens

the door to using formal verification for new sources of

uncertainty like process variation and aging.

Probabilistic model checking based techniques [5] [6] [7]

can be used for verifying timing properties of hardware

designs in the presence of statistical variations. However, from

our experience [8], we find that such an approach is limited

by the capacity of the probabilistic model checking engine to

less than 1010 states.

In this work, we present a value-based interval abstrac-

tion technique to mitigate the state space explosion during

probabilistic model checking of RTL designs. We perform our

abstraction with respect to the timing property P [Delay < T ].
We treat RTL source code descriptions as “programs” [9]. As

in the case of non-probabilistic RTL verification [10] [11],

we perform our property-specific abstraction by using static

analysis at the RTL design source code level (Figure 1). Ab-

stractions performed in non-probabilistic verification produce

smaller Kripke structures. As an analogue, our abstraction pro-

duces smaller DTMCs that make probabilistic model checking

feasible for large RTL designs. In the abstract DTMC that we

obtain, all the states of the original DTMC that are not relevant

to the specified timing property are lumped together.

Fig. 1. Our value-based interval abstractions are applied at design source
code level, leading to smaller DTMCs.

We demonstrate the application of our technique on multiple
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practically useful designs that could not otherwise be verified

due to space limitations. Timing cannot be compromised in

microprocessor control logic. It is only in the datapath that

probabilistic timing is acceptable. Datapath verification is

notoriously hard [12] to get guarantees for. Our abstractions

are intended to verify probabilistic timing on the datapath of

RTL designs. We consider filters and FFT blocks that are

widely used in communication/DSP systems, as well as an

H.264 decoder. We show consistent and significant reductions

in state space which make probabilistic model checking of

these RTL designs feasible. For example, we are able to model

check a module in the H.264 decoder for which the concrete

model contains over 1080 states. The abstract DTMC contains

approximately 1010 states.

In previous work [8] [13], we introduced a methodology for

formally verifying the statistical timing properties of an RTL

design. We statically analyzed Verilog [14] RTL source code

to determine statistical correlation among the RTL signals (i.e,

variables in RTL). We combined this statistical information

with gate level delay models and represented RTL designs as

finite DTMCs. We then used the probabilistic model checking

tool, PRISM [15], to verify that an RTL DTMC M satisfies a

statistical timing property φ, denoted by M |= φ.

We use this framework to describe our value-based interval

abstractions. We are interested in properties φ of the form

P [exp(V ) < T ], where exp is a real valued function that

is defined over the set of RTL variables V and T is a user-

specified value. exp(V ) < T is a predicate that evaluates to

TRUE or FALSE in a DTMC state depending on the numeric

values assigned to V in that state (for example, Delay <
T ). When we verify M |= φ, we are actually computing the

probability of being in a DTMC state where the predicate is

TRUE. Therefore, among all possible concrete states of M ,

only those states where the predicate exp(V ) < T evaluates

to TRUE are relevant. Each state of the DTMC M corresponds

to a unique assignment of values to the input variables in the

RTL design [8]. We restrict inputs to intervals of values (value-

based intervals) such that only the relevant states of M are

generated during DTMC construction. All the irrelevant states

are lumped together to a single representative state. Lumping

is a well-known abstraction approach for DTMCs [16] [17].

We show that, using this elegant abstraction, we are able to

handle complex RTL designs. The complexity of our technique

is not as much in the abstractions as in the process of obtaining

them automatically from hardware descriptions.

Value-based intervals for RTL inputs can be used to con-

struct an abstract DTMC MA by lumping the irrelevant

states together even at the model construction stage in the

probabilistic model checker. In order to derive these intervals,

we first consider the predicate exp(V ) < T as a symbolic

constraint on the values of variables in V . We rewrite such

symbolic constraints as constraints that are expressed over

the input variables. We achieve this by performing symbolic

execution [18] on the RTL source code. We use an integer

constraint solver to obtain lower and upper bound values of

the intervals for these inputs by maximizing (or minimizing)

the value of the input for which the predicate exp(V ) < T
is satisfied. We use these intervals while describing the model

in the probabilistic model checker which then constructs the

abstract DTMC MA and checks if MA |= φ. We show that

the abstract DTMC MA is an exact reduction of the concrete

DTMC M , i.e. MA |= φ iff M |= φ.

The value of our work is twofold. Firstly, we scale proba-

bilistic model checking, by adapting symbolic execution tech-

niques to hardware, and integrating them with other techniques

known in software. To the best of our knowledge, we are

the first to use these set of techniques in the context of

probabilistic model checking for RTL designs. Secondly, we

demonstrate that, using our technique, it is feasible to reason

reliably about very low level physical variations.

II. PRELIMINARIES: PROBABILISTIC MODEL CHECKING OF

RTL DESIGNS

We now describe the framework that we use for formally

representing RTL designs in order to employ probabilistic

model checking. We reuse some of the model definitions from

our previous work [13].

We shall use the following example RTL source code

in order to illustrate the steps of our abstraction technique

(Section IV).

always @(posedge clk)

if (sel)

O1 <= I1 + I2;

else

O1 <= 4*I2 + I3;

end

where I1, I2, I3 are the inputs, sel is a Boolean control

variable and O1 is the output. All input and output variables

are of 10 bits and can therefore be assigned 1024 different

numeric values.

The always @(posedge clk) blocks can be thought of as

processes that are executed in parallel at every rising edge of

the hardware clock signal which is considered as a time step.

At any time step t, the <= operator evaluates the right-hand

side (RHS) value and assigns it to the left-hand side (LHS)

variable in the next step t + 1. Typical data intensive RTL

designs that are used in communication/DSP systems mostly

perform arithmetic operations.

A. Variables in RTL designs

In RTL source code, variables are used to represent the data

that is processed in hardware. A variable v can be assigned

integer values in the range [l u] where l and u denote the

lower and upper bound, respectively. For an N -bit variable,

we assume the default range of values to be [0 2N -1]. We

refer to the probability distribution of v as the PMF of v.

We define a set of variables V to be independent if all the

variables in V are mutually independent. The joint PMF of an

independent set V is simply a product of the individual PMFs

of the variables v ∈ V .
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We assume knowledge of the distribution of primary input

variables and that they are independently distributed. However,

our approach is not limited to designs with independent

primary inputs. We also assume stationary∗ probability dis-

tributions for our inputs, and therefore for all variables in

the system. Such an assumption is reasonable since statistical

timing/aging analysis of hardware datapaths is often per-

formed by considering time-invariant statistical distributions

for input data [2] [20]. The PMFs of stationary variables

are independent of time. Therefore, the values assigned to

stationary variables in two different time steps are statistically

independent of each other.

Let V be the set of all variables in a system and I ⊂ V
be the set of input variables. In order to find the PMFs of

a variable v ∈ V from the PMFs of I , we need to find the

function f such that v = f(I). We call f a system function.

For a variable v, f(I) is the symbolic expression that includes

inputs, or the “formula” that corresponds to its evaluation. f(I)
may comprise Boolean or arithmetic operators that are allowed

in the source code. The support of v, denoted by Sup(v), is

the set of all input variables in the expression corresponding

to f(I). Sup(v) is a subset of I , i.e. Sup(v) ⊆ I .

The values assigned to the control variables activates/selects

one among several possible paths in the RTL design. Each path

may result in a different assignment to a variable. Therefore,

for each path i, a system function fi needs to be defined

for each variable v that is of interest. However, Sup(v)
is computed by considering all possible paths. In the RTL

example, there are two possible paths (sel=0 and sel=1) and

Sup(O1) = {I1, I2, I3}.

B. Modeling RTL designs as DTMCs

In an extension of [9], we model both input and process

variations. Since our abstraction technique is not dependent

on the type of variation, we consider only input variations in

this work. Therefore, the probabilistic behavior of a variable

of interest, v, can be completely represented by the inputs

Sup(v), along with their joint PMF. We now describe the

process of representing an RTL design by using a finite-state

probabilistic system, namely a finite DTMC.

A DTMC can be completely specified by using a triple (S,

Trans, µ0) where S is the set of state variables, Trans is the

probabilistic state transition relation and µ0 is the initial state.

Each state µ of the DTMC corresponds to a unique assignment

of values to the variables in S.

We construct the DTMC model M for a variable v, with the

support of v being the state variables (S = Sup(v)). We define

the initial state by setting the value of all state variables to 0.

Each hardware clock cycle corresponds to a time step in which

new values are assigned to the variables. Therefore, each such

time step corresponds to a DTMC transition from one state µ
to another state µ′ that corresponds to the new assignment of

values to Sup(v).
The probability of a transition to a new state µ′ is equal

to the probability with which the corresponding new values

∗A function of stationary variables is also stationary [19].

of the state variables are assigned to Sup(v). Since all the

variables in the Sup(v) are assumed to be independent, we

obtain the state transition probabilities by taking the product

of the individual probabilities of all variables (Section II.A).

If we do not assume independence for the inputs, we would

use the specified joint PMF of Sup(v). All such possible

state transitions labeled with the corresponding probabilities

constitute Trans for the DTMC M .

If a set of variables Π are of interest, we construct the

corresponding DTMC M such that

S = Sup(Π)

= ∪
v∈Π

Sup(v) (1)

In the RTL example, O1 is the variable of interest. Therefore,

we construct the corresponding DTMC with Sup(O1) =
{I1, I2, I3} as state variables.

C. Model checking a statistical timing property in RTL

We now describe the notion of delay in RTL presented in [8]

and how we formally represent a statistical timing property.

1) Modeling delay in RTL: We consider delay in terms of

RTL assignment statements. The delay of an RTL assignment

depends on the operator and the values of the operands in the

RHS. We consider real-valued analytical functions exp, which

we call macromodels [8], that estimate the delay of an operator

based on the value of the operands.

For each RTL operator, we derive the macromodel exp by

performing extensive simulations of a gate-level implementa-

tion of the operator. We repeat this for several possible im-

plementations of each RTL operator and construct a library of

macromodels. We perform this whole macromodeling process

offline for a given technology library.

In the RTL example, the delay of I1+ I2 can be computed

by using the macromodel exp(I1, I2) corresponding to the

specified adder implementation. With a Ripple Carry Adder

implementation, exp is a polynomial function of the number

of carry bits in the addition of I1 and I2. Further details of

the macromodeling process can be found in [8].

Each state in the RTL DTMC is associated with an RTL

delay which can be computed based on the values of the RTL

inputs (i.e., state variables) in that state. We “tag” each state

with the associated RTL delay which we compute by using the

appropriate macromodel. Each DTMC transition represents a

change in value of the RTL inputs and does not contain any

information regarding the RTL delay.

2) Specifying an RTL timing property: We wish to compute

the probability that the RTL delay meets a timing requirement

T . The delay of an RTL block can be expressed as a com-

bination of the macromodels of all the operators in the block

[8]. Let this RTL delay be denoted by exp(Π), which is an

expression defined over a set of variables, Π ⊆ V . We define

probabilistic invariants Γ [21] based on the timing requirement

of the design, given by

Γ , P [exp(Π) < T ] † (2)

†In place of <, we allow for the use of other relational operators as well.
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where T is a real-valued constant and exp(Π) < T is the

predicate that is of interest to us. P [Predicate = TRUE]

denotes the probability that the predicate is satisfied (i.e.

TRUE) by an assignment of concrete numeric values to Π.

Γ is the probability of being in a state (i.e., an input pattern)

where the tagged delay is less than T .

We formally define probabilistic timing properties φ of the

form,

φ , Γ ≤ p (3)

where p ∈[0,1] is a specification of the design. We allow

logical comparison operators other than ≤ to be used for

comparing the probabilistic invariant with p.

We are interested in computing Γ for values of Π at some

time step t. For all the variables in Π, we consider the values

assigned to them in the same time step. Since we assume the

probabilities to be stationary, the value of t does not affect

the correctness of our approach. In this paper, we omit the

index t in order to simplify our notation. In this regard, our

properties can be thought of stationary/steady-state properties

that are not dependent on time.

We employ probabilistic model checking and verify that

a DTMC M satisfies a property φ, denoted by M |= φ.

The model checking procedure for properties described in

Equation 3 involves the computation of the invariant Γ and

comparing it with p. If p is not specified, verifying M |= φ
is equivalent to the computation of Γ. In this paper, we use

PRISM [15] as the probabilistic model checking engine.

Probabilistic model checking explores all possible behaviors

of the DTMC (i.e. all values of RTL inputs) and therefore,

computes the exact probability with which the timing require-

ment is met.

D. Describing DTMC models in PRISM

In PRISM, we describe a DTMC M by defining the assign-

ments to each state variable sv ∈ Sup(Π), independently. Let

sv correspond to an N -bit input variable in RTL. sv can be

assigned a value j ∈ 0, 1, ..2N − 1 with probability pj . We

model this in PRISM by the statement,

pj : (s′
v = j);

Therefore, there are 2N statements corresponding to the de-

scription of sv. If there are K such N -bit variables, 2N ∗K as-

signment statements are required. PRISM supports assignment

statements for multiple state variables. However, this approach

would require 2NK statements, which is inefficient.

III. OUR ABSTRACTION USING VALUE-BASED INTERVALS

In this section, we define and establish criteria for per-

forming value-based interval abstractions on probabilistic sys-

tems of our interest, namely RTL designs. We perform our

abstraction by statically analyzing the RTL source code. In

our approach, we directly generate the abstract DTMC MA

without generating the concrete DTMC M first.

Let Λ be the predicate that is specified in the property φ.

Let Π be the set of RTL variables over which Λ is expressed.

We construct the DTMC M using Sup(Π) as state variables.

Fig. 2. a) Exact constraint for values of inputs x,y b) Conservative value-
based intervals for inputs x,y

We wish to verify whether M satisfies φ, denoted by M |= φ.

In other words, we wish to compute the probability of being

in a DTMC state where Λ is TRUE. This can be achieved by

considering a smaller DTMC MA that contains all the states

of M where Λ = TRUE. MA is the abstract DTMC model

corresponding to the concrete DTMC M . Since each state of

M corresponds to a unique assignment of concrete numeric

values to the input variables Sup(Π), the construction of MA

corresponds to retaining only those values of inputs for which

Λ = TRUE. All other values of the inputs are inconsequential

and can be lumped together by using a single representative

value. This forms the basis of our data abstraction technique.

Λ = TRUE imposes a constraint on the values that can be

assigned to the variables in Π. In order to construct an abstract

DTMC MA, we wish to use this constraint to determine the

concrete values of the input variables Sup(Π) that need to be

considered. We achieve this by using RTL symbolic execution

[18] to rewrite the constraint on variables Π as a constraint

on inputs Sup(Π). Symbolic execution statically explores

all possible paths through the RTL design and determines a

constraint Ci on the values of Sup(Π), for each path i.
Each constraint Ci specifies an exact bound on the values

of Sup(Π) for which Λ =TRUE on path i. However, in

general, Ci is specified jointly over multiple input variables

in Sup(Π). Ci cannot be included in the PRISM model

description since we define assignments to input variables

independently (Section II.D). Therefore, we use a constraint

solver (ILP) with Ci to derive value-based intervals for each

input variable in Sup(Π). Since we wish to compute the

probability of Λ = TRUE for all paths through the design,

we construct an abstract interval ψabs for v that includes all

the values from the intervals computed using each Ci.

Finally, we use the abstract intervals for each v ∈ Sup(Π)
in order to construct the abstract DTMC MA. We then verify

M |= φ by checking MA |= φ
For each v ∈ Sup(Π), we consider all values of v such that

there is a possible assignment of values to the other input

variables ∈ Sup(Π) \ {v} that would satisfy Λ =TRUE.

Therefore, the value-based intervals that we construct are

conservative (Figure 2). MA may contain states from M in
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Fig. 3. Block diagram showing the stages of our predicate-based data abstraction technique. The labels on the arrows show the outputs of each stage.

which Λ=FALSE. However, we do not discard any state from

M in which Λ= TRUE. We show that our abstraction is sound

with respect to the probabilistic property of interest.

Most existing abstractions for probabilistic model checking,

excepting a few recent ones such as [22] [23], operate on the

concrete DTMC. Instead, we perform our abstraction entirely

at the RTL source code level prior to DTMC construction.

Since we specify the abstracted intervals in the PRISM model

description, we directly generate the abstract DTMC and

circumvent the capacity issues of PRISM that are associated

with generating the larger concrete DTMC.

IV. ALGORITHM FOR VALUE-BASED INTERVAL

ABSTRACTION

We wish to construct an abstract DTMC MA in order to

determine P [(exp(Π) < T )], where exp(Π) < T is the

predicate of interest, Λ. Figure 3 shows the different steps

in our abstraction technique. We now describe each of these

steps in detail.

We shall illustrate our technique using the RTL example in

Section II. Let P [O1 < 100] be the invariant that we wish to

compute.

A. Symbolic execution to generate constraints

We use symbolic execution to explore each possible path

i in the RTL design and generate a corresponding constraint

Ci on the input variables. For each path i, let v=fi(Sup(v))
where fi is the system function for variable v. Therefore, a

predicate exp(v) < T can be written as exp(fi(Sup(v))) < T
which is a constraint Ci on the values of the input variables

Sup(v).
Symbolic execution refers to the execution of a single path

with symbolic inputs. Symbolic execution of a path generates

symbolic expressions that are a logical conjunction of the

guards (conditional expression of branches) and assignments

to the variables used in guards along that path. Symbolic

execution is well known in software [24]. In recent work

[18], symbolic execution has been introduced for RTL source

code. The RTL symbolic execution engine works on the

CFG and expression tree structure of each RTL “program”

statement. For each single statement or conditional expression

in the design, the expression tree structure exactly records

the corresponding assignment or expressions and is linked to

corresponding CFG node.

The RTL symbolic execution engine [18] considers exactly

one path i of the CFG at any given time. At each CFG node

in path i, the corresponding expression tree is traversed and

output as symbolic expression. When a variable v ∈ Π is

encountered, the corresponding system function fi(Sup(v))
is output by the engine. Every occurrence of v ∈ Π in

exp(V ) < T is substituted with the corresponding system

function fi(Sup(v)). We thus obtain the constraint Ci on

Sup(v) corresponding to the path i. We repeat this for all

possible paths i in the RTL design and obtain the correspond-

ing constraints on the input variables. Further details of the

RTL symbolic execution engine, along with an optimization

strategy for path exploration, can be found in [18].

In the RTL example (Section II), we obtain the linear

constraints I1+I2 <100 and 4 ∗ I2+I3 <100 corresponding

to the paths sel=1 and sel=0, respectively.

B. Linearizing the constraints

A linear constraint will have terms on the left hand side

that are separated by +/- signs. Each term can be a variable

multiplied by a constant numeric value. Since datapaths of

RTL designs comprise mainly of arithmetic operators, each

constraint Ci is typically a linear constraint that is defined

over the input variables. However, if the constraints are not

linear, we transform them into a set of linear constraints.

In Figure 4, we outline a set of rules for transforming non-

linear operations into linear constraints. All the rules that we

have defined can be extended easily for relational operators

other than <. The terms (X >> m) and (X << m) represent

shifting the variable X by m bits towards the right and left,

respectively. These operations are equivalent to division and

multiplication by 2m, respectively.

If there is a term corresponding to multiplication of non-

constants, we split the term into a set of linear constraints. Let

X1 ∗X2 be the non-linear term in the constraint Ci. We treat

X1 ∗ X2 as an input variable and compute its upper bound

Ti (Section IV.D). We then rewrite this term as two linear

constraints LC1 and LC2, as in Figure 4.
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Fig. 4. a) Rules for linearizing constraints, b) ILP instance for computing upper bound of v.

Concatenation of variables is supported in RTL designs.

Let X1, X2 be n1-bit and n2-bit variables, respectively. The

variables can be treated as strings of bits and concatenated to

get a string of n1+n2 bits, represented by the term {X1, X2}.

This algebraic operation corresponding to this term can be

rewritten as the linear expression X1 ∗ 2n2 +X2.

We apply the above rules recursively to each non-linear con-

straint and derive a set of linear constraints LC1 to LCNumLC ,

where NumLC is the total number of linear constraints. The

rules that we have defined in Figure 4 are not complete, since

RTL designs support several other operators. However, our

rules are sufficient for the large class of datapath RTL designs

that are used in DSP systems.

In general, the predicate can be expressed as a polynomial

function over variables Π. In such cases, we can define

rules to convert non-linear terms such as (Xq < Ti) into

corresponding linear terms (X < 1/q
√
T i) (for q > 1 and

non-negative X). However, in this paper, we only consider

predicates that are linear functions over Π.

C. Deriving value-based intervals for input variables

We consider a linear constraint LCi. For each input variable

v that appears in the expression for LCi, we wish to compute

the interval ψ(i) = [l(i) u(i)] of values that can be assigned

to it. We achieve this by formulating an instance of the ILP

problem.

Figure 4 shows the ILP instance for computing the upper

bound of v. Each ILP instance comprises one linear constraint

LCi, and a set of constraints that force all variables vj

(including v) that appear in LCi to be non-negative integers.

The objective of the the ILP problem is to maximize the integer

value of v such that all the constraints are satisfied.

If the ILP instance has an optimal solution, we set u(i) to be

equal to that solution. If the ILP instance is “unbounded”, it

implies that all non-negative integer values for v will satisfy

the given set of constraints. In this case, we set u(i) to the

default upper bound (i.e. 2N -1, as in Section II.A) and mark

v as a free variable. Similarly, we compute l(i) by changing

the objective function to min v.

We perform this interval computation for all linear con-

straints. If a variable is marked to be free, we do not compute

its intervals for any of the subsequent linear constraints.

Finally, we compute the most conservative interval for each

input variable v, by computing the union of the intervals ψ(i)

that are obtained using the linear constraints LCi. We call this

the abstraction interval ψabs for the variable v.

ψabs =

NumLC⋃

i=1

ψ(i) (4)

In the RTL example (Section II), we compute the intervals

[0 99] for both I1 and I2 based on the sel=1 path. Based on

the constraint in the sel=0 path, we compute the intervals [0

24] and [0 99] for the variables I2 and I3, respectively. After

computing the union of the two intervals for I2, we observe

that ψabs for all I1, I2 and I3 is equal to [0 99].

If there is a “-” sign in the left hand side of the constraint, all

the variables that appear in the constraint will be unbounded.

For example, it is possible for each value of the variable X1
(and X2) to satisfy the constraint X1−X2 < 100. However, it

is possible to compute a lower bound for X1 if the > operator

is used in the constraint instead of <.

In this work, we have considered unsigned arithmetic where

RTL variables are interpreted to have non-negative integer

values. However, the rules in Figure 4 can be easily extended

to the case of signed arithmetic, where negative integer values

are also allowed.

D. Describing the abstract DTMC model

We use the abstraction intervals in order to describe an

abstract DTMC model MA in PRISM. For each variable

{v : v ∈ Sup(Π) and v is not free}, we update the assignment

statements (Section II.D) in the corresponding module in

PRISM. We select a non-negative integer z /∈ ψabs. For each

statement that assigns a numeric value j /∈ ψabs to v, we

replace j with z. Therefore, z is a single value that we use to

represent all numeric values of v that lie outside the abstraction

interval. With the updated description, the DTMC constructed

by PRISM is the abstract model MA.

In the RTL example (Section II), we use the numeric value

100 to represent all values of I2 outside the interval [0 99].

Therefore, all DTMC states corresponding to values of I2
outside [0 99] are lumped to a single state in which I2 =

100.
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V. MAPPING FROM CONCRETE TO ABSTRACT DTMCS

We now describe how our abstraction maps the states and

transitions of the concrete DTMC to those of the abstract

DTMC. We will denote abstractions with respect to Λ by

α(·,Λ).
We first define the abstraction for states. For each state µ

in the concrete DTMC M , α(µ,Λ) = µA, where µA is a state

in the abstract DTMC MA. There are two possible outcomes

under the abstraction:

1) µA=µ
This necessarily happens if Λ = TRUE in state µ of

DTMC M . This can also happen if Λ = FALSE in µ but

there exists at least one state variable whose valuation in

µ lies within its corresponding abstraction interval ψabs.

2) µA=µp
This implies that Λ = FALSE in state µ of DTMC M
and the values assigned to all state variables lie outside

their corresponding abstraction intervals. All such states

in M are mapped to a single representative state µp in

MA

We now define the effect of α on the state transition

probabilities of M . Let p(µA
1 → µA

2 ) denote the probability

of transition from state µA
1 to state µA

2 in MA. We consider

the following cases:

Case 1: µA
1 6= µp and µA

2 6= µp

p(µA
1 → µA

2 ) = p(µ1 → µ2) (5)

where α(µ1,Λ) = µA
1 , α(µ2,Λ) = µA

2

Case 2: µA
1 6= µp and µA

2 = µp

p(µA
1 → µA

2 ) =
∑

µi∈M :α(µi,Λ)=µp
p(µ1 → µi) (6)

where α(µ1,Λ) = µA
1 .

Case 3: µA
1 =µp and µA

2 6= µp

p(µA
1 → µA

2 ) = p(µi → µ2) (7)

where α(µ2,Λ) = µA
2 and µi is any state in M . Since the

probability distributions for all input variables are stationary

(Section II.A), the probability of reaching any state µ2 ∈ M is

independent of the previous state. Therefore, the exact identity

of state µi in Equation 7 is irrelevant and our abstraction

does not remove any relevant probabilistic behavior. The same

applies for Equation 5 as well.

Proof of correctness:

We now present a brief proof intuition for the soundness of

our technique. We wish to prove that M |= φ is equivalent to

MA |= φ. We achieve this by using the Strong Lumping The-

orem [16] [17] to show that MA is a probabilistic bisimulation

[25] of M with respect to φ.

α can be thought of as an equivalence relation between

the states in M and MA. α relates a state µ in M to the

state µA = α(µ,Λ) in MA. By construction, α also preserves

the valuation of Λ. Therefore, µA is locally equivalent to µ
with regard to Λ. In fact, all states µA in MA can be viewed

as equivalence classes of M under the relation α. With the

exception of µp, all equivalence classes µA contain only one

state.

The abstract model MA can be thought of as a quotient

DTMC that comprises of equivalence classes defined by α.

Equations 5, 6 and 7 can then be used to invoke the

Strong Lumping Theorem and prove that MA is a probabilistic

bisimulation of M .

VI. EXPERIMENTAL RESULTS

We implement the RTL symbolic execution algorithm using

C++. We perform all our experiments on an Intel i5 2.67GHz

quad-core machine with 16GB of memory. We use lpsolve

[26], an open source ILP solver, in order to solve the set of

integer linear constraints and derive the value-based intervals

for the inputs.

We demonstrate the effectiveness of our methodology

by applying it on two sets of data-intensive RTL de-

signs. The first set of designs comprise fir, elliptic

and fft8 all of which are high-level synthesis bench-

marks [27] that are commonly used in communication/DSP

systems. Filter coefficients are fixed and stored in a

ROM table. We consider constant values for these coeffi-

cients. Inter_pred_LPE, Inter_pred_pipeline and

Inter_pred_sliding_window are different modules

from a real-world H.264 decoder‡ and constitute our second

set of designs. In this work, we analyze each of the H.264

modules independently.

In Table I, Number of paths represents the total number of

paths that needs to be explored during symbolic execution.

This number is with regard to the variables which appear in

the predicate (described in Table II) of the specified property.

Since our designs do not contain multiplication of variables

with each other, there should be exactly one linear constraint

per path (Section IV.B). However, in some paths, all variables

are assigned a constant value and therefore, the predicate

is vacuously TRUE or FALSE. We discard these paths and

consider only the linear constraints (Number of constraints)

corresponding to the remaining paths while formulating the

ILP instances.

In Table I, Number of inputs represents the total number of

input variables (and their bitwidths) on which the variables in

the predicate depend, i.e. Sup(Π). Therefore, each of these

input variables appear in at least one of the linear constraints.

However, in each linear constraint, at most a small subset of

these input variables are present. Therefore, each ILP instance

is small and the corresponding runtime of lpsolve is also

negligibly small. The total abstraction time, which includes

the time for both the generation of linear constraints and the

ILP solver, is less than 10 seconds in all our experiments.

For each of the designs that we consider, we specify a

property that is defined over some internal data variables.

Table II provides a description of all the predicates that we

define in order to specify the properties of interest. fir

‡www.opencores.org
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TABLE I
SIZES OF THE ILP INSTANCES THAT WE USE TO DERIVE THE INTERVALS FOR INPUT VARIABLES.

Design Predicate Number of Number of Number of Abstraction

name name inputs paths constraints time

fir p8 6 (8-bit) 1 1 <10s

elliptic p9 12 (8-bit) 1 1 <10s

fft8 p10 8 (16-bit) 4 4 <10s

Inter_pred_LPE p1 5 (8-bit) 180 131 <10s

Inter_pred_LPE p2 5 (8-bit) 180 131 <10s

Inter_pred_LPE p3 5 (8-bit) 180 131 <10s

Inter_pred_pipeline p4 32 (8-bit) 1936 1932 <10s

Inter_pred_pipeline p5 3 (8-bit) 8 5 <10s

Inter_pred_sliding_window p6 19 (8-bit) 29 21 <10s

Inter_pred_sliding_window p7 16 (8-bit) 29 21 <10s

TABLE II
DESCRIPTION OF THE PREDICATES THAT WE USE TO SPECIFY PROPERTIES

OF OUR INTEREST. TO VERIFY THESE PROPERTIES, WE COMPUTE

P [PREDICATE = TRUE].

Predicate name Predicate description
p1 bilinear0 A + bilinear0 B < 8
p2 bilinear0 A + bilinear0 B < 6
p3 bilinear0 A + bilinear0 B < 4
p4 8*Inter blk mvx + Inter blk mvy < 2
p5 Inter pred out0 < 200
p6 Inter pix copy0 < 2
p7 Inter H window 0 0 < 3
p8 y<30
p9 outp < 30
p10 s3r < 127

and elliptic are filter designs in which it is common to

check whether the output is less than a user-defined threshold.

Therefore, we define the predicates p8 and p9 over the output

variables y and outp, respectively. Although not exact models,

these predicates can be viewed as being representative of

certain timing properties of the design. For example, y can be

an input to an adder block (Section II.C.1) for which the timing

constraint requires that y < 30, as in p8. For our experiments,

we consider predicates that are linear functions over a set of

RTL variables and we use the “<” relational operator. For

each of the H.264 modules, we consider multiple predicates.

Table III demonstrates the reduction in state-space provided

by our abstraction method. PRISM runs out of memory while

trying to construct any of the concrete DTMC models and

therefore, these designs can not be model checked. We esti-

mate the number of states in the concrete model based on the

total number of combinations of values that can be assigned to

the corresponding input variables. There is no reason to believe

that the RTL inputs, which are data variables, are restricted and

we use their full range of values to estimate the concrete state-

space. In all the designs, with the exception of fft8, we are

able to obtain significant reductions in state space by using our

abstraction technique and PRISM successfully constructs the

corresponding abstract DTMCs. We approximately represent

the number of states in the abstract DTMC model as powers of

2, in order to facilitate comparison with the concrete number

of states. Model checking of the smaller abstract DTMCs by

PRISM requires only a few seconds.

p1, p2 and p3 are all the same predicate that differ only

in the constraint values that are specified in the RHS. We

observe that as the constraint values get smaller, the number

of relevant data values (and hence states) also decrease. Our

technique is extremely effective when the predicate is TRUE

for only a small fraction of the possible data values. Although

our technique would still be sound for larger constraint values,

the reduction that we achieve may be far more modest.

Since model checking could not be completed for the

concrete DTMCs in Table III, we do not present a comparison

of the model checking results for these designs. Instead, as

a proof of concept, we construct smaller versions (smaller

bitwidth for inputs) of fir and elliptic and verify that the

results computed using the concrete DTMC and the abstract

DTMC are exactly the same (Table IV). We choose the

smaller bitwidths such that PRISM model checks the concrete

DTMC. For example, we consider 3-bit data for fir(small)

and the runtime is <10s. We do not consider a smaller fft8

since our abstraction does not provide any reductions for it

(Table III).

In fft8, we are not able to demonstrate any reduction in

state-space using our abstraction. This is due to “-” operator

in the RTL design. As described in Section IV.B, a “-” sign

on the left hand side of a “less than” constraint will result

in unconstrained values for all the input variables. JPEG

encoder is another design for which we cannot obtain

reductions. The module of the encoder design that we consider

is control-intensive and therefore, the number of paths that

need to be explored by the symbolic execution algorithm

is huge (Section IV.A). For this design, we stopped the

symbolic execution engine after 1hr of exploring paths and

generating the corresponding constraints. We could not use

this incomplete set of constraints since all possible paths in the

design need to be considered in order to guarantee correctness

of our abstraction.

In all the designs mentioned above, we find that the control

paths are independent of the values of data. This is fairly

common for a large class of data-intensive designs that are

FMCAD 2011, Page 203



TABLE III
REDUCTIONS IN NUMBER OF STATES THAT WE ACHIEVE BY USING OUR ABSTRACTION

Concrete DTMC Abstract DTMC

Design Predicate Number of Model checking Number of Model checking

name name states time states time

fir p8 256 Out of memory 228 <2s

elliptic p9 296 Out of memory ≈ 229.73 <2s

fft8 p10 216 Out of memory 216 Out of memory

Inter_pred_LPE p1 240 Out of memory ≈ 215.85 <2s

Inter_pred_LPE p2 240 Out of memory ≈ 214.04 <2s

Inter_pred_LPE p3 240 Out of memory ≈ 211.61 <2s

Inter_pred_pipeline p4 2256 Out of memory 232 <2s

Inter_pred_pipeline p5 224 Out of memory ≈ 222.95 <2s

Inter_pred_sliding_window p6 2152 Out of memory ≈ 230.11 <2s

Inter_pred_sliding_window p7 2128 Out of memory 232 <2s

TABLE IV
DEMONSTRATING CORRECTNESS OF OUR ABSTRACTIONS USING SMALLER, CONTRIVED VERSIONS OF BENCHMARKS DESIGNS SINCE THE CONCRETE

DTMCS CANNOT BE CONSTRUCTED FOR THE ACTUAL SIZES.

Concrete DTMC Abstract DTMC

Design Predicate Number of P [Predicate = TRUE] Number of P [Predicate = TRUE]

name states (PRISM result) states (PRISM result)

fir (small) (y < 12) 224 4.6539x10−4 ≈ 215.57 4.6539x10−4

elliptic (small) (outp < 30) 230 9.6485x10−7 ≈ 214.39 9.6485x10−7

commonly used in DSP systems. For example, typical control

variables that we observe are counters that are not data-

dependent. Since control variables control the selection of

paths and since we wish to consider all possible paths, we

cannot constrain the values of such variables. In non-DSP

designs, the control variables may depend on input data

variables and therefore, all such input variables must also be

unconstrained. In these cases, the overall reduction achieved

by our abstraction technique may not be very large.

In RTL designs, it is possible that arithmetic operations can

result in an overflow (or underflow) due to insufficient number

of bits that are assigned to store the results. Ideally, such

incorrect computations should not be allowed. Our technique

cannot detect such overflow errors. Typically, overflows are

prevented in DSP designs by assigning sufficient number of

bits to the different variables in the design. Our abstraction

techniques can be applied on such designs.

VII. RELATED WORK AND CONCLUSION

In the realm of software verification, there exist several tech-

niques [28] [29] for predicate abstraction. Properties regarding

program correctness/safety can be expressed using a set of

predicates, that are either specified or automatically inferred.

These predicates can be used to abstract a program and convert

it into a Boolean program on which the properties can be easily

verified. More generally, abstract interpretation [30] is the

theory of reasoning with the approximate semantics of a large

program rather than the set of all possible concrete behaviors.

However, unlike predicate abstraction, all such abstractions

are not necessarily property-specific. In all these abstractions,

the concrete numeric values of data can either be completely

abstracted out of the program or can be restricted to finite

intervals [31].

Data abstraction techniques have been applied even in the

context of hardware verification [10]. These techniques employ

predicate abstraction in order to focus on the verification of

Boolean control logic for which the exact numeric values of

datapath variables are inconsequential. In [11], RTL designs

are verified by restricting data values to intervals that are

imposed by the execution of the RTL program. Therefore,

these intervals are not property-specific.

Abstraction techniques have been employed in the context

of probabilistic systems as well [32] [33] [22] [23]. In [23], the

abstraction is performed on the source code itself. However,

this technique is intended for probabilistic software and cannot

be extended to RTL designs. In [22], the authors present

a predicate-based abstraction for Markov Decision Processes

(MDPs). They employ an SMT solver in order to implement

this abstraction at the level of the PRISM language itself.

However, this implementation is very inefficient for the bulky

PRISM descriptions that are used for RTL designs (Section

II.D).

In conclusion, we have presented a property-specific value-

based interval abstraction technique that is applied at the

source code level. We intend our abstraction for scaling

probabilistic model checking of hardware designs. Widespread

adoption of formal verification is feasible only if it remains

relevant and practicable in critical, emerging areas of need

like variation-aware timing verification. Our work represents

a strategic step in this direction.
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I. MOTIVATION

Control systems design is a multifaceted field, drawing not
only on control theory, but on results from computer science,
electrical engineering, mechanical engineering, and physics. A
controller often must satisfy regimented size, weight, power,
and timing constraints, integrate with the overall system,
and perform properly in a variety of harsh environments.
Furthermore, control systems are arguably the lynchpin of
safety in critical embedded systems, ranging from nuclear
reactors to avionics to medical devices.

Progress has been made in the formal verification of as-
pects of control system design. Advances in hybrid system
verification show promise in automating the verification of
abstract models of dynamical systems. Advances in software
and hardware formal verification may contribute to ensuring
the correctness of implementations. Nevertheless, industrial
uptake of these advances is still in its infancy, particularly
as compared to disciplines such as digitial hardware design.

This panel will address the impediments to the adoption
of formal verification techniques in industrial control system
design. Furthermore, the panel will address what research
topics would most benefit the adoption of formal verification
in industry.

II. PANEL ORGANIZATION

The panelists will primarily be drawn from industry, having
first-hand knowledge of the state-of-the-art in control system
design practices.

This panel discussion will address the following questions:
• How can formal verification compliment current simula-

tion and testing procedures?
• What will control system design look like in 10 years?

20 years?
• Can formal verification help build safer ”intelligent”

control systems?
• Where can the greatest impact be made in improving

control system quality and reducing design costs? Better
hybrid system verification tools? Better languages? More
compiler assurance? Easier timing analysis? Automated
power analysis?

• Could more aggressive control systems (i.e., that save
energy, reduce operational wear, reduce the need for
redundancy) be pursued if better design assurance could
be provided?

• What social and educational impediments are there to
having control systems engineers use formal verification
tools?
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Abstract—Wide-operand modular math functions pose an
enormous challenge for verification. We present a novel method
to verify a modular reduction engine implemented as a finite state
machine (FSM), leveraging a combination of model checking
and theorem proving. As a first step of the verification, pre-
conditions and post-conditions for each state transition of the
FSM are identified. Next the implications from the pre-conditions
to the post-conditions are verified using a model checker. The
last step entails combining all the implications in a theorem
prover to derive the overall correctness proof. We carried out
this verification using a hybrid formal verification platform
comprising the ACL2 theorem prover and IBM’s model checker
SixthSense, along with numerous techniques to cope with the
complexities of this verification task. To our knowledge, this is the
first published method for the exhaustive verification of an RTL-
implementation of a wide-operand industrial modular reduction
engine.

I. INTRODUCTION

A. Modular Reduction

Cryptography is becoming a central feature of our net-
worked world. Increasing performance demands on modern
microprocessors have mandated native hardware support for
encryption and decryption algorithms in the form of an on-
board cryptographic accelerator co-processor.

Classes of cryptography asymmetric algorithms such as
Rivest-Shamir-Adleman (RSA) and Elliptical Curve Cryptog-
raphy (ECC) are realized using lower-level functions, such
as Modular Reduction or Modular Exponentiation. These are
implemented with finite state machines (FSM) which operate
on wide-operands (e.g., on the order of 4096 bits), and
may require a large number of clock cycles to complete the
computation – even hundreds of thousands of clock cycles for
large operand bit-widths.

Verification of such complex hardware is of critical impor-
tance, though poses formidable challenges. Traditional infor-
mal verification methods offer insufficient coverage given the
wide operand widths, sequential depth of the computation and
the inherently difficult nature of the logic. Even hardware-
accelerated simulation and post-Silicon debug, offering dra-
matically greater explicit-state coverage, are rendered insuf-
ficient given the sheer size of the state-space. Additionally,
the reference result needs to be computed in software which
can prove to be the bottleneck. Traditional bit-level model
checking approaches are unscalable even for small bit-widths
of such arithmetic functions, and traditional higher-level tech-
niques such as theorem proving become extremely tedious due

to the need to reason about the intricate sequentially-deep state
machines at the RTL level.

In this paper we present a method to verify modular
reduction implemented as an FSM by leveraging a combi-
nation of model checking and theorem proving. Our approach
decomposes the verification task into two parts: 1) verification
of invariants associated with the FSM and 2) Combining the
verified invariants to form a proof of correctness. The set of
invariants describing the behavior of the FSM are verified
using the model checker. These invariants are then combined
by the theorem prover to form a proof that the FSM correctly
implements the target algorithm. The presented technique
allows us to overcome the limitations of traditional verification
disciplines as outlined above. We can scale our technique to
verify the correctness of modular reduction for a number of
operand widths, leveraging the strengths of theorem proving
to reason about parametrized computations, and leveraging
the model checker to verify invariants which require precise
characterization of temporally-deep RTL-implemented state
machines.

B. ACL2SIX

There are two predominant formal verification techniques
that have been successfully used to verify the correctness of
bit-accurate sequential machines: model checking and theorem
proving. Model checking is automated, though often fails to
scale for designs containing complex arithmetic datapaths.
On the other hand, interactive theorem proving techniques do
scale, though often only with significant human effort – which
may become formidable if requiring reachable-state character-
ization of complex bit-level state machines, or reasoning about
bit-optimized arithmetic designs.

The combination of these two techniques is sometimes
called hybrid verification, and may provide an ideal formal
verification environment. The main motivation for the com-
bination is to use the model checking for verifying the low-
level details of bit-level hardware, and use theorem proving to
focus the high-level mathematical and algorithmic correctness.
A number of different hybrid tools have been developed [1],
[2] and used for a variety of verification tasks [3], [4] in the
past. However, it is our thesis that such hybrid tools have
not been leveraged fully, due to either the weakness of the
underlying model checker or limiting the theorem proving to
a rather simplistic analysis.
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Relating to verification of hardware encryption, Slobodová
[5] verified microprocessor instructions to implement Ad-
vanced Encryption Standard (AES) algorithms against a ref-
erence model derived from its specification. Erkök et. al.
[6] verified cryptographic hardware by checking equivalence
between different stages of implementation. Smith et. al. [7]
verified a Java block cipher implementations using a hybrid
tool to symbolically simulate Java bytecode and equivalence-
check the resulting expressions. This kind of equivalence
checking relies on the fact that the operation takes a fixed
delay and/or a fixed number of (micro-)instructions. A similar
equivalence checking approach did not work for the FSM we
will discuss in this paper, because the behavior of the machine
significantly changes depending on input data, rendering typi-
cal equivalence algorithms such as BDD-sweeping ineffective.
To our knowledge, encryption procedures implemented as
intricate sequentially-deep state machines have not been fully
verified.

From a perspective of practicality, it is also important to
directly verify designs written in a Hardware Description
Language (HDL) such as Verilog or VHDL. Our goal is to
accept industrial designs written in the HDL without any
modification. Some tools and past work have attempted to
translate HDL into the theorem proving language [8], [9],
[10]; however, full formalization of HDL is very tedious and
difficult, or creates semantic gaps. Another problem in the
translation of HDL to a formal language is that the theorem
prover has to deal with low-level details of hardware. Industrial
HDL often includes bit-level optimizations and peripheral
circuit artifacts such as scan and power-optimization logic,
overall hindering the effectiveness of the approach.

In our hybrid verification tool called ACL2SIX, we use
a small subset of the theorem prover’s language to specify
properties of target hardware. The tool reads the unmodified
hardware design written in an HDL and directly verifies
properties on it. We use a powerful bit-level model checking
tool in order to automatically prove sizable verification sub-
problems, thus reducing the burden on interactive theorem
proving while making the proof script robust and reusable. We
use a fully featured, general-purpose theorem prover to allow
verification of sometimes-difficult higher level mathematical
problems.

The rest of the paper is organized as follows. We start
by outlining a typical modular reduction engine implemented
in hardware as an FSM. We next describe the ACL2SIX
hybrid formal verification platform which combines the ACL2
theorem prover with IBM’s formal toolset SixthSense. We then
describe our verification approach including the pre-conditions
and post-conditions used in the context of modular reduction,
as well as enhancements to the underlying model checker
SixthSense to enable application of the hybrid platform to a
large design. Finally we provide some results and conclusions
from the novel application.

Align Data

Subtract or add
while shifting

S0

Input A0 and N0

S1

S2

S3

S4

A = A0 mod N0

If N > A

Shift amt calculation

Fig. 1. Modular Reduction State Diagram

II. A MODULAR REDUCTION ENGINE

A modular reduction engine computes the remainder of
one integer divided by another. That is, the engine computes
R = A0 mod N0 for positive integers A0 and N0, such
that A0 = N0X + R, and 0 ≤ R < N0 for some integer
X . For cryptographic applications, the size of these integers
varies according to the strength of the cryptographic algorithm,
with current applications requiring several thousand bits of
precision.

The following is the modular reduction algorithm we wish
to verify:

1. Set A := A0 and N := N0. Ensure that A ≥ 0, N > 0.
2. If A < N , set R := A and exit.
3. Left shift N to align its most significant ‘1’ with that of A.
4. Divide Loop:
5. If A ≥ 0, A := A−N , otherwise A := A+N .
6. If N = N0, exit loop.
7. Right shift N by one bit.
8. Go to Divide Loop.
9. If A ≥ 0, set R := A, otherwise R := A+N .

To understand how the algorithm works, note that (A mod
N0) = (A0 mod N0) is an invariant, and 0 ≤ R < N0 at the
end of the algorithm.

Our goal is to verify a hardware which imlements this
algorithm as an FSM. Figure 1 presents a state transition
diagram from the design document of the hardware, and
Table I provides an action table for the FSM.
S0 : The FSM reads two input operands, A0 and N0, and

stores them in the registers A and N .
S1 : The FSM counts leading zero bits of N and A and stores

their difference lz(N)− lz(A) in the registers D and C.
This corresponds to the number of bits to left-shift N in
order to align the most significant bit of one in A and N .
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TABLE I
ACTIONS OF MODULAR REDUCTION FINITE STATE MACHINE

State Actions

S0(S = 0) S := 1;A := A0;N := N0

S1(S = 1) S := 2;C := lz(N)− lz(A);D := C

S2(S = 2) if (D < 0) {S := 4 }
if (D > 0) {N := N � 1;D := D − 1}
if (D = 0) {S := 3}

S3(S = 3) if (C ≥ 0 ∧A ≥ 0)
{A := A−N ;N := N � 1;C := C − 1}

if (C ≥ 0 ∧A < 0)
{A := A+N ;N := N � 1;C := C − 1}

if (C = 0 ∧A ≥ 0) {A := A−N ;C := C − 1}
if (C = 0 ∧A < 0) {A := A+N ;C := C − 1}
if (C < 0 ∧A ≥ 0) {S := 4}
if (C < 0 ∧A < 0) {S := 4;A := A+N}

S2 : If D < 0, N is larger than A and the FSM directly goes
to the final state S4. Otherwise, the FSM left-shifts N by
one bit and remains in the same state. The FSM makes
self-loop transitions D = lz(N)− lz(A) times, and then
it goes to the state S3.

S3 : The FSM remains in this state for C + 1 = lz(N) −
lz(A)+1 iterations. It subtracts or adds N to A depending
on the sign of A. It also shifts N to the right by one bit,
except for the last iteration. Finally, it adds N if A is
negative, and moves to the final state S4.

S4 : The register A stores the final answer of A0 mod N0.

Although this description is considerably simpler than the
optimized hardware implementation, it is sufficient to explain
our verification approach in later sections. The modular re-
duction engine is implemented to accept input operands of
different data widths. All the arithmetic operations on A and
N , such as bit vector addition, subtraction, shifting and leading
zero counting, are performed as per the size of input operands.
The FSM implements the variable-size operations by iterating
fixed-size arithmetic operations. For example, 65-bit adders are
used to implement variable-size bit-vector addition up to 4096-
bits. As a result, what appears to be a simple state transition
is in fact iterative operations on fixed data width over many
clock cycles.

Current guidelines for the use of the RSA algorithm for
public key encryption in commercial applications call for the
use of 1024 bit or 2048 bit keys [11]. The modular reduction
operation used in this algorithm takes a number of clock cycles
proportional to the square of the input data width divided by
the size of the fixed-width processing and storage elements in
the implementation. Even a single 512-bit computation will,
therefore, take several thousand clock cycles to execute, while
the number of possible input operand pairs is 21024. This
makes it very difficult to verify the entire range of interesting
cases using simulation.

III. ACL2SIX HYBRID VERIFICATION SYSTEM

The ACL2SIX verification system is a combination of the
open-source theorem prover ACL2 [12], [13] and the IBM
verification tool SixthSense [14]. An early version of the
system has been reported in [15], and its application in [16].
As this system has been significantly modified since it was
first reported, we outline the salient features of the enhanced
hybrid environment.

The main philosophy of this hybrid tool is a divide-and-
conquer approach for the verification problem. When we want
to verify a property which cannot be verified by an automated
model checker, we decompose it into a number of easier sub-
problems, solve them one-by-one, and combine the results
together. Each sub-problem is thus solved by a model checker,
while the results are combined by a theorem prover. However,
when the verification problem is decomposed into too many
small problems, the burden of recombination via the theorem
proving becomes rather high, and the proof may become
labor intensive. Thus, it is critical to contain the degree of
decomposition using a powerful model checker to scale to as
large of sub-problems as possible.

An overview of the ACL2SIX system is shown in Figure 2.
Suppose a user attempts to verify certain properties on a
design under test (DUT). A DUT is usually a complex RTL
hardware design written in VHDL or Verilog. A verification
driver defines the environment in which the DUT operates, e.g.
clocking conditions and other input constraints. In a typical
setting, the verification driver may assert the reset signal at
the beginning of the test, and then initiate the operation of
the machine with non-deterministic data inputs. A verification
driver is usually written in VHDL or some synthesizable
language. As we discuss later, the verification driver is also
used to help writing invariant conditions succinctly in the
ACL2 language.

When a user attempts to check if a certain property holds
using the ACL2SIX system, he/she writes the property in a
small subset of the ACL2 theorem prover language. When in-
voked, ACL2 first compiles the property to a property checker.
A property checker is a synthesized automata for the desired
property, effectively a small state machine which asserts a
particular gate to a logical ‘1’ when the property holds.
SixthSense then composes the DUT, the verification driver,
and the property checker, and checks whether the property
checker always evaluates to ‘1’ for all input sequences. When
the verification is successful, the property is saved in ACL2
as a theorem and may be used for future proofs. If the check
fails, SixthSense produces an counterexample trace to assist
the user in determining why the property does not hold.

Since ACL2 is a general-purpose theorem prover, its lan-
guage is too expressive to be translated into HDL. Instead, the
ACL2SIX system allows only a subset of the ACL2 language
for specifying properties to be verified. The subset is rich
enough to write various properties to prove the correctness
of the DUT, and the translation of the properties does not
cause any semantic inconsistency between this ACL2 language
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TABLE II
EXAMPLE ACL2SIX PRE-DEFINED FUNCTIONS

Function Name Brief Description

(bv i j) Bit vector of value i and length j

(b1p b) True if b = 1, false if b = 0

(bv+ v1 v2) Sum of two bit vectors
(bv- v1 v2) Difference of two bit vectors
(bv-sll v n) Logical left shift of vector v by n bits
(bv-srl v n) Logical right shift of vector v by n bits
(bv-lz v i) Vector of length i counting leading zeros of v

subset and VHDL.
The language for ACL2SIX has four data types: bits, bit

vectors, Boolean values and natural numbers. All properties
must be written in terms of ACL2SIX pre-defined functions,
under which those types are closed. The user may also
specify user-defined non-recursive functions. However, these
functions must also be defined in terms of those pre-defined
functions. Additionally, the user-defined functions must carry
type information using the ACL2 guard mechanism [17], so
that the translation process can infer types of expressions.
Table II lists some of the ACL2SIX pre-defined functions.

The signal values in the DUT and the driver can be
referenced by the following terms:

(vhdl-sigbit m sig n)
(vhdl-sigvec m sig (i j) n)

(vhdl-sigbit m sig n) is used to reference the value
of bit sig in hardware model m at clock cycle n. Similarly,
(vhdl-sigvec m sig (i j) n) refers to the bit range
i to j of bit vector sig at cycle n. In these terms, sig is
the name of a signal, and i, j and n are natural numbers.
Model m is a list structure, from which we can infer the DUT,
the verification driver, and other parameters needed to set up
verification of the DUT. For example, the model for an adder
may be simply defined as:

(defun adder ()
’("adder"
:driver "adder_dr.vhdl"))

where "adder" is the VHDL entity name of the adder
and "adder_dr.vhdl" is a verification driver name. Other
information such as the path to the VHDL file, or how the

DUT is initialized may be added to the model definition.
The main idea behind the use of vhdl-sigbit and

vhdl-sigvec is that they logically reference the signal
values of the DUT, but they do not actually compute the
values. In a system that fully embeds an HDL, a hardware
model would be a translated HDL and signal values would
be defined by its interpreter. In ACL2SIX, the model is
just a stub to access the DUT written in HDL, and signal
values are only defined using constraint functions. Specifically,
both vhdl-sigbit and vhdl-sigvec are ACL2 macros
defined in terms of ACL2 encapsulated functions sigbit and
sigvec. An ACL2 encapsulated function is a mechanism to
define an uninterpreted function with some constraints. We can
infer types of the value returned by sigbit and sigvec, but
its value is uninterpreted, and can be inferred only by calling
SixthSense through the ACL2SIX system.

A typical ACL2 theorem definition to invoke SixthSense
property checking has the following syntax:

(defthm name
(implies type-info expr)
:hints (("goal" :clause-processor

( :function acl2six
:hints acl2six-args)))).

In this definition, name is the name of the theorem, type-info is
the type information for the free variables in expr, and expr is a
property expression which is defined in terms of the ACL2SIX
pre-defined functions. The ACL2 hint provided after keyword
:hints usually tells the theorem prover how to prove a
theorem, and in this case, it invokes a clause processor function
acl2six. A clause processor is an ACL2 mechanism to
implement an extension of the prover. It allows a user-defined
function to simplify or even prove a logical expression. It may
also work as an interface with other verification tools. When
invoked through the clause processor mechanism, function
acl2six translates expr to a property checker implemented
in VHDL, runs SixthSense, and records successfully verified
properties as theorems. A call to acl2six can be accom-
panied by additional arguments acl2six-args, with which the
user can control SixthSense and specify types of algorithms
to verify the property.

One important limitation of the ACL2SIX property compi-
lation is that the verified property should be defined in terms
of signals with fixed timing delays. For example, in order to
check the output "SUM" of a two-stage 32-bit adder , we can
evaluate the following ACL2 term:

(defthm adder-output
(implies (natp n)
(equal (vhdl-sigvec (addr) "SUM" (0 31) (+ n 2))

(bv+ (vhdl-sigvec (addr) "A" (0 31) n)
(vhdl-sigvec (addr) "B" (0 31) n))))

:hints (("goal" :clause-processor
(:function acl2six
:hint ’((:cycle-var n))))))

This property check compares the value of vector "SUM" at
cycle n+2 with the summation of two vectors "A" and "B"
at cycle n, where n is an arbitrary natural number. The cycle
delay 2 in cycle expression (+ n 2) should be a constant,
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and cannot be replaced with a variable or a complex expres-
sion. In terms of LTL, [18], we can only check a formula of
the form G(expr) where expr is a formula written only with
X operators. While we are generally interested in unbounded
model checking of the underlying design where reasoning
about specific clock cycles may seem to contradict this goal,
we use this style of reasoning in an inductive framework where
state machines are evaluated relative to arbitrary states which
adhere to established invariants, vs. evaluating only relative to
initial states.

IV. VERIFICATION OF A MODULAR REDUCTION ENGINE

A. General Approach to Verifying a Finite State Machine

An FSM (such as that described in Section II) can be
verified by a hybrid system such as ACL2SIX by first ver-
ifying every state transition using a model checker, and then
combining the results using a theorem prover.

For example, let us consider an FSM that makes a state
transition sequence of S0, S1, S2, . . . , Sn. Each state transition
may take a number of clock cycles, and we assume that the
transition from state Si to state Si+1 takes ∆i cycles. Each
state Si has a corresponding property Pi that must hold. For
the state transition from Si to Si+1, Pi is the pre-condition
and Pi+1 is the post-condition. Let us write Pi{Si} to indicate
that property Pi holds for state Si. If we can verify P0{S0}
and Pi{Si} ⇒ Pi+1{Si+1} for all i < n, it is straightforward
to prove Pn{Sn} using a theorem prover. In this way, we
can verify the machine correctness specified by Pn. We may
define Pn to specify, for example, that the final answer of the
machine is correct.

Thus the verification problem is reduced to the verification
of Pi{Si} ⇒ Pi+1{Si+1} for each i. Let us write Pi(n) to
indicate that Pi holds at clock cycle n. Since the transition
from Si to Si+1 takes ∆i cycles, proving

Pi(n)⇒ Pi+1(n+∆i) (1)

for all n will be sufficient. Let us further define Qi(n) =(
Pi(n) ⇒ Pi+1(n + ∆i)

)
. The ACL2SIX system and Sixth-

Sense use the following steps to verify ∀n.Qi(n)

1) Convert Qi(n) to a circuit using logical gates and
latches. Since Pi(n) can be represented as a combi-
national circuit, we can latch the value of Pi(n) for
∆i-cycles, and then check that the latched value of Pi

implies Pi+1.
2) Simplify the circuit representation of Q(n) using a

number of circuit reduction techniques, such as constant
propagation, combinational and sequential simplifica-
tions [19], retiming [20], phase abstraction [21] and
transient logic elimination [22]. This reduction itself
may reduce Qi(n) to a tautology, in which case Qi(n)
is proven and we stop. Otherwise, we go to the next
step.

3) Prove Qi(n) by k-induction. This is done by proving the
base cases Qi(0), Qi(1), . . . , Qi(k−1) and the induction
step Qi(n)∧Qi(n+1)∧· · ·∧Qi(n+k−1)⇒ Qi(n+k).

TABLE III
PRE AND POST-CONDITIONS OF STATE TRANSITIONS OF THE MODULAR

REDUCTION ENGINE

Transition Pre-condition Post-Condition

S0 to S1 S = 0 S′ = 1 ∧A′ = A0 ∧N ′ = N0

S1 to S2 S = 1 S′ = 2 ∧ C′ = lz(N)− lz(A)∧
D′ = C′ ∧A′ = A ∧N ′ = N

S2 to S2 S = 2 ∧D > 0 S′ = 2 ∧N ′ = N � 1∧
D′ = D − 1 ∧ C′ = C∧
A′ = A

S2 to S3 S = 2 ∧D = 0 S′ = 3 ∧N ′ = N ∧A′ = A

S2 to S4 S = 2 ∧D < 0 S′ = 4 ∧A′ = A

S3 to S3 S = 3 ∧ C > 0∧ S′ = 3 ∧A′ = A−N∧
A ≥ 0 N ′ = N � 1 ∧ C = C − 1

S3 to S3 S = 3 ∧ C > 0∧ S′ = 3 ∧A′ = A+N∧
A < 0 N ′ = N � 1 ∧ C = C − 1

S3 to S3 S = 3 ∧ C = 0∧ S′ = 3 ∧A′ = A−N∧
A ≥ 0 N ′ = N ∧ C = C − 1

S3 to S3 S = 3 ∧ C = 0∧ S′ = 3 ∧A′ = A+N

A < 0 N ′ = N ∧ C = C − 1

S3 to S4 S = 3 ∧ C < 0∧ S′ = 4 ∧A′ = A

A ≥ 0

S3 to S4 S = 3 ∧ C < 0∧ S′ = 4 ∧A′ = A+N

A < 0

This is attempted for ever-increasing values of k until
either Qi(n) is proved or computational resources are
exhausted.

The ACL2SIX system and SixthSense are highly configurable,
and so we could use any other model checking algorithms
to verify Qi(n). However, we found that logic reductions
followed by k-induction work well for the verification of many
properties of our modular reduction engine.

B. Verification of a Modular Reduction Engine

Here we discuss the use of ACL2SIX to verify the modular
reduction engine. Table III shows the list of pre-conditions
and post-conditions for each state transition, as per Figure 1.
For any symbol X , let X ′ represent its value after the
state transition. The table therefore shows how symbol values
change when state transitions occur. If we can verify that the
pre-condition implies the post-condition for all possible state
transitions, we can use a theorem prover to show that the value
of register A is A0 mod N0 when state S4 is reached. In other
words, the FSM correctness is the logical consequence of this
set of pre-condition and post-condition pairs.

We can represent the pre-condition and post-condition rela-
tion using the supported language of ACL2SIX. While the
number of clock cycles between FSM state transitions is
generally a function of the data width, for a given data width of
input A0 and N0 each state transition requires a fixed number
of clock cycles. Our approach is to verify the operational
correctness for each input data width separately. Then, the
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relation of the pre and post-conditions can be written using
the ACL2SIX language, which requires that each delay be
a fixed constant. We define the delay of the state transition
parametrically, so that we can rerun the same proof script to
re-verify the modular reduction engine for different input data
widths by just changing parameters.

When actually writing an ACL2 theorem representing the
conditions in Table III, additions +, subtractions −, shifting
�, �, and leading zero counting lz are specified using the
pre-defined functions given in Table II. As briefly discussed in
Section II, the hardware implements the arithmetic operations
of long bit vectors by repeatedly applying 65-bit arithmetic
operations. For example, 512-bit addition is performed by
repeating 65-bit additions 8 times over tens of clock cycles.
However, such hardware implementation details should be
automatically verified and hidden from the ACL2 proof level.
In fact, our proof script simply specifies such an addition as
the sum of two long and continuous bit vectors. In this way
we simplify the to-be-proven theorems as much as possible.
This requires the underlying model checker such as SixthSense
to do the heavy lifting of verifying high-level specifications
against intricate implementation artifacts.

The abstraction of bit-level details allows the pre-conditions
and post-conditions (Table III) to be described concisely
at a high-level. However, simply attempting to verify “pre-
condition implies post-condition” frequently fails because the
hardware often requires additional conditions to operate prop-
erly. For example, the hardware goes through an initialization
phase that sets up the clock buffers, the hardware control logic
and other components for proper operations. The hardware is
designed to operates properly only after such initialization,
relying upon post-initialization reachable state invariants. Let
us define such a global invariant as inv(n). Additionally, there
might be other reachability invariants that holds when the
machine is at state Si but not captured in the the conditions
described in Table III. Let such a state invariant be denoted
as condi(n). Then it is sufficient to verify:

(inv(n) ∧ condi(n) ∧ Pi(n))⇒ Pi+1(n+∆i) (2)

for all the state transitions, instead of Equation 1. Separately,
we need to verify that the global invariant condition is in fact
an invariant by:

inv(n)⇒ inv(n+ 1) (3)

and the state invariant condition is satisfied at each state by:

(inv(n) ∧ condi(n))⇒ condi+1(n+∆i). (4)

In our approach, we define the global and state invari-
ants in the verification driver in Figure 2. For example,
the global invariant inv may be defined as a VHDL sig-
nal "DRIVER.INV" in the verification driver which rep-
resents the conjunction of numerous invariant conditions. In
ACL2SIX, we can refer to this global invariant at any time n as
(vhdl-sigbit (modred) "DRIVER.INV" n). In this
way, we keep the hardware-dependent and sometimes tedious
definition of invariant conditions out of the proof script.

Finding the proper global invariant inv and state invariant
condi is the most critical task for the entire verification
methodology. This is usually done by repeated attempts to
verify formula 2, 3 and 4, analyzing failed verification results
by viewing generated counterexample waveforms, and itera-
tively tightening the invariants until the proof is successfully
completed.

Some simple invariant conditions are automatically deduced
during the 3-step verification algorithm discussed in Subsec-
tion IV-A. For example, circuit reduction algorithms in step 2)
may simplify the design by merging redundant gates, or per-
forming other property-preserving temporal abstractions. Such
transformations are critical to simplify the manual effort of
deriving invariants; in a sense, such transformations automate
the derivation of a subset of design invariants. For example,
if two latches are merged since they always evaluate to the
same value, this rules out a possible induction counterexample
where they exhibit differing values. Similarly, k-induction
with a larger value of k tends to prove more properties
without manually specifying some invariants. Thus, the more
powerful the underlying bit-level model checker is, the less
the verification engineer must manually specify the invariant
conditions.

Once all the post-conditions are verified from pre-
conditions, the theorem-prover is used to deduce the correct-
ness proof of the hardware operation as a logical consequence
of all the verified properties. During theorem proving, it is
critical to analyze state loops. This is usually carried out by
specifying loop invariants, verifying them by induction, and
using them to deduce the termination condition. For example,
in the i’th iteration of S2 of our modular reduction finite state
machine, the following loop invariant should hold.

(A = A0) ∧ (N = N0 � i)

∧
(
C = lz(N0)− lz(A0)

)
∧ (D = C − i)

The state loop at S3 satisfies a slightly more complicated loop
invariant, with inequality −2N ≤ A < 2N being true except
during the last iteration of S3. This condition is critical for
proving the correctness of the final answer.

At this high-level analysis of loop invariants, the theorem
proving task is no different from a pure theorem proving veri-
fication approach. However, a pure theorem proving approach
typically requires significant effort in verifying the low-level
implementation of hardware. We can instead accelerate the
process using the automated model checker to reason about
intricate implementation details, and let the theorem prover
focus on the algorithmic level. This leverages the orthogonal
strengths of theorem proving and model checking: theorem
proving becomes more robust as details of the hardware imple-
mentation are abstracted away, and model checking becomes
more robust as it focuses on a specific small function of a
large sequential machine.

C. Counter-Example Generation

ACL2SIX relies upon SixthSense to unboundedly verify
a set of properties, inasmuch as those properties represent
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temporally-bounded pre-condition to post-condition checks.
SixthSense will produce one of the following three answers:
1) the property fails relative to specified initial states; 2) the
property passes; 3) the property is unsolved given the specified
set of algorithms.

When using induction as the core proof technique, proper-
ties may often be reported as unsolved even if they truly hold
in all reachable states. This is a byproduct of the weakness
of induction: an induction counterexample due to a transition
from a passing to a failing state render the inductive check
inconclusive, yet it is not known whether the inductive starting
state is reachable or not. If relying upon induction as a proof
technique, it is necessary for a verification engineer to analyze
the induction counterexample to derive invariants which rule
out that counterexample.

In the course of this verification effort, SixthSense was
enhanced to produce induction counterexample traces for
analysis by the verification engineer. SixthSense is based on
the concept of transformation-based verification [20], where
synergistic algorithms are applied to simplify large problems
into smaller problems before applying a core proof technique.
These simplifications include logic rewriting techniques [19],
phase abstraction [21], redundancy removal [23], and transient
logic elimination [22]. Such simplifications often considerably
reduce verification resources for the core proof technique,
and often considerably improve the effectiveness of induction
since they rule out possible induction counterexamples where
the reduced behavior does not hold. Without such reductions,
the manual effort to derive such invariants often becomes
infeasible given a significant amount of design artifacts.

When SixthSense generates a counterexample trace after
such simplifications, that trace must be “lifted” to undo the
effects of those transformations before it can be presented
to the user. For traditional counterexamples, this process is
straightforward as only input valuations need to be accounted
for, allowing a top-level simulation to be used relative to this
test case to derive values to all signals. When lifting an in-
duction counterexample, the set of valuations to be accounted
for include those of the state elements in the inductive starting
state. It is further noteworthy that such counterexamples should
be minimally-assigned, to improve the identification of the root
cause of the induction failure.

SixthSense required several customizations to support in-
duction trace generation. For transformation engines which
may merge redundant gates, bookkeeping was added reflecting
such transformations so that it may be back-annotated in
a lifted trace, without which the induction trace may not
truly reflect an induction counterexample. Additionally, some
transformations performed by SixthSense are not themselves
inductively provable, requiring more intricate unreachable-
state invariants. When leveraging such reductions, we found it
necessary to pass the automatically-derived unreachable-state
invariants to the induction process along with the reduced
design, to avoid it from rendering induction counterexamples
which had no counterpart in the pre-reduced design.

TABLE IV
TIME AND MEMORY REQUIRED FOR VERIFYING MODULAR REDUCTION

Data Width 56-bit 256-bit 384-bit 512-bit

Total Time 10442s 20646s 37607s 98199s

Theorem Prover Time 257s 289s 474s 1690s

Property Check Time 10188s 20261s 37139s 97012s

Avg. Time per Prop. 118s 151s 223s 489s

Max Time per Prop. 138s 368s 1232s 3456s

Avg. Mem. per Prop. 1195MB 1459MB 1967MB 2719MB

Max Mem. per Prop. 1393MB 4201MB 5680MB 8571MB

D. Verification Results

With the approach discussed in the previous subsections,
we have verified the mathematical correctness of the modular
reduction engine for input data widths of 56-bits, 192-bits,
256-bit, 384-bits and 512-bits. In addition to verifying simple
modular reduction, we also verified modular addition, modular
subtraction and modular negation. Table IV shows the time and
memory required to verify all four of these operations using a
2.27GHz Intel Xeon X7560 processor running Linux 2.6.18.
The number of properties verified by invoking SixthSense
varied from 86 for the 56-bit operation to 198 for the 512-bit
operation. For the 1024-bit and larger input data widths, some
properties could not be proven by SixthSense in 24 hours, and
we did not complete the verification.

The verification process requires several iterations to at-
tempt to inductively prove the properties. An initial property
check almost always fails, causing SixthSense to produce
induction counterexamples. The examination of the counterex-
ample often reveals that the state invariants are not strong
enough to constrain the hardware to behave correctly. This
leads to manual strengthening of the invariants to help the
verification process converge. The proof scripts are written
parametrically, so that the verification for different bit widths
goes through automatically, or with little human guidance.

The total labor time is difficult to measure scientifically,
as it depends on numerous factors. Roughly speaking, one
engineer finished the verification of 56-bit modular reduction
in a few weeks. Then, two engineers spent several months
to extend the results to various operations including modular
add, subtract and negation operations of various data widths,
while working on this part-time. Roughly equal amount of
time was spent on invariant property checking and theorem
proving. However, this could change significantly depending
on how the verification problem is decomposed.

During the course of this effort, an engineer with a back-
ground in the VHDL and LISP languages was readily able to
learn the ACL2SIX system to specify and debug invariants.
However, the use of theorem proving beyond trivial proofs,
such as case splitting, has a steeper learning curve.

A similar approach has been applied to the modular inverse
operation implemented in the same modular reduction engine.
Given operands A and N , it obtains a number X such that
(A ×X) mod N = 1. The hardware uses a binary extended
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Euclid algorithm [24] to calculate the number. We quickly
identified that the operation may overflow out of fixed-size
registers. Even the original algorithm description in [24] failed
to warn that there is a danger of overflow. The DUT had a
4-bit head-room for 256-bit modular inverse calculation and
6-bits for 384-bit operation. In other words, the intermediate
value can be 16 times or 64 times the maximal input values,
respectively, and designers believed this to be sufficient to
avoid an overflow. Using bounded model checking, we iden-
tified combinations of A and N which overflow the registers.
This event is extremely rare, and neither a random simulation
nor post-silicon testing could have identified such A and N.
Designers added an hardware overflow check and software
support to correct the problem.

V. CONCLUSION

In this paper, we have verified an industrial modular re-
duction engine implemented in the cryptographic function
accelerator. We have successfully verified the mathematical
correctness of the modular reduction engine upto 512-bit input
data width. This is beyond what can be formally verified by
either a stand-alone model checker or a theorem prover. We
also applied this approach to the modular addition, modular
subtraction, and modular negation operations, and verified
their correctness.

We have found the hybrid verification technique using
ACL2SIX an extremely powerful tool to analyze hardware
accelerators implementing finite state machines. Our formal
verification approach should not be viewed as an alternative to
random simulation. Rather we provide an additional capability
to verify systems that typical random simulation approaches
fail to verify due to the sheer size of the input domain and
the length of simulation cycles. We are currently working on
Montgomery multiplication and exponentiation, which are yet
another important subroutine of encryption accelerators.

An important trick to successful hybrid verification is to
decompose the correctness problem into sub-problems of the
right size. If the problem is decomposed into too many sub-
problems, the theorem proving becomes time-consuming. If
the problem is decomposed into larger sub-problems, the
model checking fails to discharge them.

Our hybrid verification tool is already quite powerful, but
it still has room for improvement. The verification of wider
modular calculations, such as with data width of 4092-bits,
have not been completed yet because certain state transition
property checks are beyond the tool’s capability. Also the
theorem proving using ACL2 takes some expertise and time,
even if the underlying automatic property check by SixthSense
has significantly removed the burden. Further improvements
are in progress to alleviate these issues.
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Desynchronization: Design For Verification
Sudarshan K. Srinivasan and Raj S. Katti

Abstract—Desynchronization is used to synthesize asyn-
chronous circuits from synchronous specifications. Controller
networks used for desynchronization are highly nondetermin-
istic and are not easily amenable for verification. We adapt
the desynchronization controllers for verifiability by imposing
additional sequential dependencies among controller events that
reduces nondeterminism. We deduce properties of the adapted
controllers, which we use to develop methods for reachability
analysis and verification of desynchronized circuits. The methods
are demonstrated using seven desynchronized processor models.

I. INTRODUCTION

The impact of persistent technology scaling results in a
previously ignored set of design challenges such as manu-
facturing and process variability, and increased significance of
wire delays. The challenges threaten to invalidate the effec-
tiveness of synchronous design paradigms at the system-level.
Asynchronous circuits provide several alluring properties—
over their synchronous counterparts—that pose solutions to
many of these challenges. Such properties include locally
generated timing signals in the place of global clocks, potential
performance speedups, robustness towards variability in the
manufacturing process and operating conditions, etc. [7], [5],
[6], [27], [28], [29], [32], [30], [36], [39]. However, design of
asynchronous circuits has been a challenge and currently lacks
support of Computer-Aided Design tools. Desynchroniza-
tion [7], [10] is proposed as a design solution, where pipelined
circuits and systems with a high degree of asynchronocity
are synthesized from synchronous parents in a manner that
exploits existing CAD tool support for synchronous designs.
Desynchronization methods have in fact been successfully
used to design and fabricate circuits that implement the DLX
architecture and the DES encryption/decryption algorithm [7].

For desynchronization to be a feasible design solution, one
of the critical challenges however is verification. Verification
becomes a challenge when the desynchronized circuits are
pipelined. For example, the controller of a desynchronized 5-
stage pipeline can have more than 16*1510 states [7]. Thus,
our approach is focused on verifying desynchronized pipelines
against their non-pipelined synchronous specifications.

One of the more effective formal methods to verify
pipelined circuits and systems is refinement-based verification.
Refinement is a formal correctness notion that can be used
to check the equivalence of an implementation system and a
specification system, even if the implementation and specifi-
cation are at very disparate levels of abstraction. In the context
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of pipelines, refinement is used to verify the pipelined system
(such as a pipelined processor model) against a high-level non-
pipelined specification (such as an instruction set architecture
machine). A number of refinement-based verification solu-
tions have been developed for synchronous pipelines [23][25]
[26][16] [13] [12] [11] [15] [33] [34] [35] [19] [41] [18]
[1] [2]. These verification solutions have been developed in
the context of pipelined microprocessor models. While there
have been some efforts toward the verification of asynchronous
pipelines [20], this area has not been explored as much.

The desynchronized pipeline controller network is highly
non-deterministic in nature and also exhibits a large state
space. These two factors make it hard to track the states of the
controller network that are reachable from the initial or reset
states (reachable states). Identifying reachable states is impor-
tant as unreachable states are often inconsistent and can cause
spurious counter examples. More specifically, there are two
approaches to compute reachable states of the desynchronized
controller network.

1) The first approach is based on symbolic simulation. The
idea is to start from the set of reset states and perform
symbolic simulation until no new states are discovered,
i.e., until a fixed point is reached. Or, start from the set of
all states and perform symbolic simulation until a fixed
point is reached where no new states are eliminated [25].
Approaches based on symbolic simulation of the imple-
mentation model cannot be used because the complexity
of the desynchronized controller network requires a
prohibitively large number of symbolic simulations of
the model.

2) The second approach is to compute invariant properties
of the desynchronized controller network that character-
ize the set of reachable states. We explored this approach
and found that because of the large state space and
the high degree of nondeterminism of the controller
networks, we could not find a systematic approach to
generate invariants to characterize the reachable states
of the controller networks. The primary problem is that
the behavior of a desynchronized controller depends on
the state of controllers on its output side, but, does not
have any dependencies on the input side i.e., the source
controllers. This lack of dependency on the source
side results in a high degree of nondeterminism of the
resulting controller networks.

Since verifiability is an important consideration for design,
we propose changes to the desynchronized controllers intro-
duced by Cortadella et al. [7]. These changes add additional
sequential dependencies between controller events so that the
state space of each controller and resulting controller networks
are simplified and reduced. We refer to the modified con-
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trollers as Design For Verification Desynchronization (DFVD)
controllers. We also develop a refinement-based verification
method for desynchronized pipelines. We show that when
the DFVD controllers are used, the resulting desynchronized
pipelines can be verified using our approach. The specific
contributions of our work are:

1) The controller used for desynchronization can hold zero,
one or two tokens. The controller is initialized with one
token and can transition to states with zero tokens or
two tokens. Our contribution is the DFVD controller
that satisfies the following property. If the controller cur-
rently holds one token, then the controller will hold on
to that token until a new token is accepted on its input.
This is not a property satisfied by the original controller
used for desynchronization. Therefore, when the DFVD
controller is initialized with one token, it will always
remain in states where it has one or two tokens. This
property of the DFVD controller makes it possible to
compute reachable states of pipeline controller networks,
which is a requirement for refinement-based verification.
However, the verifiability of the controller is achieved by
trading with performance. We estimate that in the worst
case, pipeline throughput is degraded by the delay of
four transitions of a muller-C element.

2) We analyzed and deduced 15 properties of the DFVD
controller. These properties (an important contribution
of our work) can be used as rules and applied to
systematically generate invariants and characterize the
reachable states of any DFVD controller network.

3) We have also developed a refinement-based verifica-
tion procedure for desynchronized pipelined systems.
Proving refinement requires a refinement map, which
(in this context) is a function that maps states of the
implementation (desynchronized pipelined system) to
states of the specification (non-pipelined synchronous
machine). Defining the refinement map in this context
requires identifying duplicate information in the pipeline
(which is possible in desynchronized pipelines). Our
specific contribution here is to identify conditions of
the controller network state that correspond to duplicate
information in the data path. These duplicate conditions
are generic and can be applied to any DFVD controller
network. The key here is that these conditions are
applicable only for reachable states (which we have been
able to characterize using the DFVD properties).

4) We developed 7 desynchronized processor models of
varying pipeline length (between 5 and 7 stages) and
controller complexity. The models used the DFVD con-
trollers. Our design for verification and verification ap-
proaches are demonstrated by checking the correctness
of these models.

The rest of the paper is organized as follows. Related
work is given in Section II. Desynchronization and DFVD
controllers are described in Section III. The properties of
the DFVD controllers and reachability analysis of desyn-
chronization controller networks are described in Section IV.
The desynchronized processor models used for experiments

are described in Section V. The refinement-based verification
procedure is detailed in Section VI. Experimental results are
given in Section VII and we conclude in Section VIII. The
benchmarks and tools required to reproduce our results are
available in [9].

II. RELATED WORK

Current verification technology for asynchronous circuits
can be classified as property checking approaches [3][43]
or methods based on trace theory [29]. The trace theory
approaches target the verification of gate-level asynchronous
circuits. Our focus is on the verification of desynchronized
pipelined circuits and systems. Verifying pipelines has been
a challenge and warrants specialized techniques. Approaches
based on property checking can be used for desynchronized
pipelined circuits, but, are cumbersome because a large num-
ber of properties are required and also the properties them-
selves can be hard to write leading to erroneous specifica-
tions [29].

Loewenstein [20] verified some properties of a counter-
flow pipeline using the HOL theorem prover. Counter-flow
pipelines are asynchronous in nature with results flowing in
the pipeline in a direction opposite to that of instruction flow.
The desynchronized pipelines we verify do not use the counter-
flow mechanism. Also, our correctness proofs are based on the
use of decision procedures and are highly automated.

Cortadella et al. [7] have used flow equivalence (FE) to
prove the correctness of their desynchronization method and
FE is well suited for this purpose. However, they have not
demonstrated verification based on FE. Why do we use re-
finement instead of FE? Refinement is a more general notion.
For example, one requirement of FE is that the specification
and implementation should have the same set of latches. This
requirement is not satisfied when comparing pipelined systems
with non-pipelined specifications. Also, if after desynchroniza-
tion, optimizations such as retiming or pipelining is applied,
then the design cannot be related back to its synchronous
specification using FE.

In previous work, we have developed a refinement-based
verification method for desynchronized pipelines [38]. The
original desynchronization controllers are used. The approach
for reachability is based on performing symbolic simulation
of the implementation model, starting from reset states, until
no new states are discovered, i.e., until a fixed point is
reached. However, this approach is not viable because the
complexity of the desynchronized controller network requires
a prohibitively large number of symbolic simulations of the
model. As a result, we were only able to verify a small
subset of the reachable states and therefore, the verification
method is only partial. In the current work, our approach is
to generate constraints (also known as inductive invariants)
on the state variables that characterize the reachable states of
the system. This approach is also not viable for the original
desynchronized controllers. Hence we use the design for
verification approach to develop the DFVD controller. For the
DFVD controller network, the latter approach for reachability
is viable as shown in Section IV.
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We proposed the idea of using completion functions to de-
fine the refinement map for desynchronized pipelines in [38].
We adopt this approach in our current work. However, the
key difference is how duplicate data is identified in the
pipeline. In [38], we relied on observing the flow of tokens
in the controller network, as symbolic simulation was used
for reachability analysis. However, as stated earlier, using
symbolic simulation for reachability analysis is not viable. In
this work, we have deduced generic conditions of the state of
controller network that identify duplication in the data path,
which can be used for complete safety verification and is
described in Section VI.

III. DESYNCHRONIZATION AND DFVD CONTROLLERS

Fig. 1. A Pipeline Stage with A Latch Controller Network.

Desynchronization is the process of converting a syn-
chronous circuit into an asynchronous one by replacing the
clock network with a network of handshaking latch controllers.
The edge-triggered D-flipflops of the synchronous circuit are
replaced by two D-latches which are transparent when their
clock input is a 1 and are in the hold mode otherwise. The
clock signals or triggers (Ck) for the latches are obtained by
latch controllers with two inputs (Rin,Ao), and two outputs
(Ro,A = ¬Ck). R′s denote a request signal and A′s denote an
acknowledge signal. Consider a synchronous pipeline stage
with a logic block whose inputs are provided by a flipflop and
whose outputs are input to another flipflop. A desynchronized
version of such a stage is shown in Figure 1. Each flipflop is
converted into two latches shown on either side of the logic
block. In a pair of consecutive latches, the left latch is the back
latch and the right is the front latch, indicated by subscripts
“b” (or “B”) and “f” (or “F”), respectively. Each latch has a
controller associated with it. The latch controller used by us is
the semi-decoupled controller in [10]. If G is a signal then G+

corresponds to a rising edge on G and G− corresponds to a
falling edge on G. We now describe the operation of the latch
controller labeled, LC, in Fig 1 with the help of the two latch
controllers , S (for sender), and R (for receiver). LC receives
R+

in from S indicating the availability of data at the input of the
LC latch (F1). LC sends A+ to S indicating that the data has
been captured by F1. LC then sends R+

o to R to indicate that its
output is valid and will be stable until A+

o is received. S sees
A+ and puts out R−in. LC sees R−in and A+

o and puts out A− and
R−o . R puts out A−o when it receives R−o . The above description
of the latch controller (called the 4-phase controller) can be
converted to the following five logic equations.

1. A+ = Rin∧¬Ro
2. A− = ¬Rin∧Ro∧Ao
3. R+

o = A∧¬Ao
4. R−o = ¬A
5. Ck = ¬A

Note that the clock input to the latch is Ck and the delay
element D in Fig. 1 mimics the delay of the logic block. This
kind of desynchronization is similar to that performed in [7]
and has been proven to work well.

One of the important aspects of desynchronization is that it
leads to duplicated tokens in the data path. When a token is
passed from a source latch to a destination latch, the source
latch holds on to a copy of the token until it receives an
acknowledge signal indicating that the token has reached its
destination. Thus, for a period of time, the source and destina-
tion latches both have copies of the same token. Duplication
leads to some issues with refinement-based verification, which
we discuss in Section VI.

A. DFVD Controller

C

C

RobRib Rof

AofAb
Af

Ri1

Rim

Ao1

Aon

B F

Fig. 2. DFVD Controller

The proposed Design For Verification Desynchronization
(DFVD) controllers for a pipeline latch pair is shown in
Figure 2. The difference between the proposed controller
and the controller in the desynchronized circuit of [7] is the
feedback of Ro f to the muller-C element that generates Rib
and the feed forward of Ab to the muller-C element that
generates Ao f . The connections are not part of the original
controller. The Ab connection enforces the property that if the
controller currently holds only one token in the F latch, then
the controller will hold on to that token until it has received
a new token in the B latch. The F latch will drop its token
when it receives an acknowledge (A+

o f ). Since Ab is connected
to the muller-C element that generates Ao f , unless latch B
acknowledges the receipt of a new token by asserting Ab, the
F latch will not drop its token.

An additional dependency is enforced by the Ro f connection
that allows the B latch to receive a new token only when the
F latch has signaled a request on the output side. The new
controller results in only minor delays but satisfies properties
that allow for reachability analysis (see Section IV).

We now estimate the worst case increase in delay for the
new controller by estimating the maximum delay between
consecutive R+

ib transitions in the controller of latch B. This
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TABLE I
WORST CASE DELAY ANALYSIS OF DFVD CONTROLLER

State State Event Delay
Label 〈AbRibRobA f Ro f Ao f 〉
S1 〈 000100 〉 R−ob N
S2 〈 000110 〉 R+

o f N
S3 〈 010110 〉 R+

ib Y
S4 〈 110110 〉 A+

b N
S5 〈 100110 〉 R−ib Y
S6 〈 100111 〉 A+

o f Y
S7 〈 100011 〉 A−f N
S8 〈 101011 〉 R+

ob N
S9 〈 101001 〉 R−o f N
S10 〈 101101 〉 A+

f N
S11 〈 001101 〉 A−b N
S12 〈 001100 〉 A−o f Y

delay gives us the minimum time between consecutive sets of
data getting stored into a latch. In the new controller circuit Rib
cannot change to 1 (or 0) unless Ri’s (Ri1–Rim) and Ro f are all
1 (or 0). Similarly Ao f cannot change to 1 (or 0) unless Ao’s
(Ao1–Aon) and Ab are all 1 (or 0). The set of transitions that
lead to worst case delay for the proposed controller circuit
is shown in Table I. This has been derived from the state
diagram of an individual semi-decoupled 4-phase controller
of [10] (see Figure 8 in [10]). The controller transitions from
state Si to Si+1, starting at state S1 and until it reaches S12.
From S12, it transitions back to S1. The events that causes the
state transition is also shown in Table I. Delays occur when a
transition of Rib or Ao f has to occur.

From the state diagram it is clear that it takes 12 state tran-
sitions for two consecutive R+

ib transitions to occur. However
without the new connections to Rib and Ao f it takes 8 state
transitions for two consecutive R+

ib transitions to occur. Thus
we obtain a worst case delay of 4 state transitions for the
new controller to have two consecutive R+

ib compared to the
existing semi-decoupled 4-phase controller of [10], which is
usually negligible compared to the delay of pipeline processing
logic in a stage. Also, note that many of the transitions of the
additional muller-C elements can take place simultaneously
with other events in the circuit and on average the performance
degradation could be much lower.

IV. REACHABILITY ANALYSIS OF DFVD CONTROLLER
NETWORK

To perform verification, we need to compute the reachable
states of the desynchronized pipeline controller network. Com-
puting reachable states has two ends. First, unreachable states
can be inconsistent w.r.t. the correctness property and flag
spurious counter examples that hinder the verification process.
Identifying reachable states of the implementation solves this
problem as verification properties can now be checked only on
the reachable states ensuring that spurious counter examples
are eliminated. Second, our procedure for computing refine-
ment maps for desynchronized pipelined machines is based
on reachability analysis. Note that the reachability method
eliminates unreachable states that hinder verification, which
is what is required. The reachable states of the controller

network may in fact only be a subset of the set of states
computed by the reachability method.

We now describe the general invariant generation rules. The
first 8 rules (P1-P8) apply to the DFVD controller shown in
Figure 2. Note that these rules are properties of the DFVD
controller, and should be applied to each of the DFVD
controllers in a DFVD pipeline controller network.

The acknowledge signal for the front and back latches A f
and Ab, respectively, also act as the clock for the front and
back latches. When A f or Ab are asserted, the corresponding
latches are in a hold state, and when A f or Ab are de-asserted,
the corresponding latches are transparent (not holding any data
tokens). Thus Property P1 is a significant property as it implies
that the DFVD controller will always be in a state where
one or both of the latches is in a hold state. In other words,
the DFVD controller will never reach a state where both
latches are empty/transparent. This is not a property satisfied
by the desynchronization controller proposed by [7], which
allows the state where both latches are transparent. Property P1
makes it possible for us to compute reachable states and define
refinement maps in a systematic manner for desynchronized
pipelines.

P1: Ab∨A f

Property P1 is not an invariant by itself, because there are
states of the DFVD controller, which satisfy the property, but
which can transition to states that do not satisfy P1. Therefore,
we need low-level properties P2–P8 that eliminate all such
states.

P2: 〈Ab∧A f ∧Ro f 〉 → (¬Rob)

Properties P3–P5 identify the conditions under which the
muller-C element corresponding to Ao f should hold values of
0 and 1.

P3: 〈Ab∧A f ∧ (¬Ro f )〉 → (¬Ao f )
P4: 〈(¬Ab)∧A f ∧Ro f 〉 → (¬Ao f )
P5: 〈Ab∧ (¬A f )〉 → Ao f

Properties P6–P8 identify the conditions under which the
muller-C element corresponding to Rib should hold values of
0 and 1.

P6: 〈Ab∧ (¬A f )∧ (¬Ro f )〉 → Rib
P7: 〈(¬Ab)∧A f ∧ (¬Ro f )〉 → (¬Rib)
P8: 〈Ab∧A f ∧Ro f 〉 → Rib

The conjunction of properties P1–P8 form an inductive
invariant, which we have verified using the ACL2-SMT ver-
ification system [37] by proving that for every state of the
DFVD controller that satisfies the conjunction of properties
P1–P8, its successor also satisfies the conjunction of P1–P8.

Properties P9–P15 apply to the circuit shown in Figure 3 that
occurs in the desynchronized pipeline controller network when
data is passing from one stage of the pipeline to another. In this
situation, the front latch of the source stage is connected to the
back latch of the destination stage. Hence the front controller
of the source stage (labeled F1 in the figure) is connected to
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Fig. 3. DFVD Controller Circuit for Data Transfer

the back controller of the destination stage (labeled B2 in the
figure).

Properties/rules P9–P15 should be applied to every source to
destination connection in the pipeline including feedback con-
nections as well. The properties P9–P15 are used to eliminate
inconsistent states by identifying the conditions in which the
muller-C elements corresponding to Rib2 and Ao f 1 hold values
of 1 and 0.

P9: 〈(¬A f 1)∧ (¬Ab2)〉 → (¬Rib2)
P10: 〈(¬A f 1)∧Ro f 1〉 → Rib2
P11: 〈A f 1∧ (¬Ab2)∧ (¬Ro f 1)〉 → (¬Rib2)
P12: 〈A f 1∧Ab2∧Ro f 1〉 → Rib2
P13: 〈A f 1∧Ab2∧ (¬Ro f 1)〉 → Ao f 1
P14: 〈A f 1∧ (¬Ab2)∧Ro f 1〉 → (¬Ao f 1)
P15: 〈(¬A f 1)∧Ab2〉 → Ao f 1

The conjunction of properties P9–P15 also form an inductive
invariant, which we have verified using the ACL2-SMT system
by proving that for every state of the circuit shown in Figure 3
that satisfies the conjunction of properties P9–P15, its successor
also satisfies the conjunction of P9–P15.

V. DESYNCHRONIZED PIPELINED MODELS

Five desynchronized pipelined processor models were de-
veloped and used as benchmarks to demonstrate the appli-
cability and efficiency of the proposed verification solution
for desynchronized systems. The models are specified us-
ing the ACL2 programming language [17]. First, a 5-stage
synchronous pipelined processor model based on the DLX
pipeline [31] was constructed. Three desynchronized versions
of the synchronous pipeline were developed, including DPM5-
1, DPM5-2, and DPM5-5. In DPM5-1, one desynchronization
controller is used to control all the stages of the pipeline using
the idea of clustering [8]. Clustering is also used in DPM5-2,
where two desynchronization controllers are employed (one
controller for the fetch and decode stages, and the second
controller for the execute, memory, and write back stages).
DPM5-5 is a fully desynchronized model, where 5 controllers
are used (one for each stage of the pipeline). The fetch stage in
DPM5-5 is further pipelined (resulting in a short instruction
queue) to create DPM6-6 and DMP7-7, both of which are
fully desynchronized models employing one controller for

each pipeline stage. The high-level organization of DPM6-6
is shown in Figure 4.

The models are specified at the term-level [4], [40], an
abstraction level in which the bit-vector data path is ab-
stracted using integers (also called terms in this context). Also,
functions that operate on data are abstracted using Uninter-
preted Functions (black box functions that only satisfy the
property that equal inputs produce equal outputs). Term-level
abstraction is used as it drastically improves the efficiency of
verification.

VI. REFINEMENT-BASED VERIFICATION

The goal of our verification procedure is to show equiva-
lence between a pipelined desynchronized circuit/system and
its non-pipelined synchronous specification. The notion of
equivalence that we use is Well Founded Equivalence Bisim-
ulation (WEB) refinement [22] and is based on stuttering
bisimulation. Proving refinement guarantees that every be-
havior of the implementation is matched by behavior of the
specification and vice versa. A detailed description of the
theory of refinement can be found in [22]. It is enough to check
the following correctness formula [21] to establish refinement
(thereby establish equivalence) between an implementation
and its specification.

Definition 1: (Core WEB Refinement Correctness Formula)

〈∀w ∈ IMPL :: s = r(w) ∧ u = Sstep(s) ∧
v = Istep(w) ∧ u 6= r(v)

→ s = r(v) ∧ rank(v)< rank(w)〉
In the formula above, IMPL denotes the set of implementa-

tion states, Istep is a step of the implementation machine, and
Sstep is a step of the specification machine. The refinement
map r (a mechanism not found in stuttering bisimulation) is a
function that maps implementation states to specification states
thereby making it easy to compare systems at different ab-
straction levels. rank, used for deadlock detection, is a witness
function from implementation states to natural numbers whose
value decreases when there is stutter. The proof obligation
that s = r(v) is the safety component and guarantees that if
the implementation makes progress, then the result of that
progress is correct as given by the specification. The proof
obligation that rank(next-impl) < rank(impl) is the liveness
component and guarantees that the machine will not deadlock,
i.e., will always make forward progress. In this work, we solve
the problem of safety verification for desynchronized pipelines
and reserve liveness verification for future work.

The specific steps involved in a refinement-based verifi-
cation methodology for checking safety are: (a) Compute
the states of the implementation model that are reachable
from reset (known as reachable states). We use the rules
given in Section IV to generate invariant properties that
characterize the reachable states of any desynchronized
pipeline controller network. (b) Construct a refinement map.
(c) The models and the refinement map can now be used to
state the safety component of the refinement-based correctness
formula for the implementation model, which can then be
automatically checked for the set of all reachable states using
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a decision procedure. Verification is performed using ACL2-
SMT [37], a system developed by combining the ACL2 theo-
rem prover [17] with the Yices Satisfiability Modulo Theories
(SMT) solver [42].

Therefore, to perform verification, in addition to the im-
plementation and specification models, and reachability anal-
ysis, we also require a refinement map. Next, we provide a
procedure for computing refinement maps for desynchronized
pipelined systems.

A. Refinement Maps

Our approach for defining refinement maps for desyn-
chronized pipelines is based on the technique of completion
functions proposed by Hosabettu et al. [14]. The idea with the
completion functions approach is as follows. We use the DLX
pipeline as an example, but the approach can be applied to
any pipelined system. For a DLX pipeline, the non-pipelined
specification is its instruction set architecture (ISA) machine.
The state elements of this ISA machine includes its program
counter, register file, data memory, and instruction memory.
In addition to these state elements, a pipelined machine state
also includes pipeline latches that have inflight instructions.
The completion functions approach constructs a refinement
map by completing the partially executed instructions in a
pipelined machine state without fetching any new instructions.
In the resulting, pipelined machine state, the pipeline latches
are empty. Therefore, projecting out the ISA state elements
from such a state would give the corresponding ISA state.

The partially executed instructions are completed by defin-
ing one function for each latch in the pipeline that observes the
contents of that latch and computes how that instruction will
update the ISA state elements. As instructions in the pipeline
can depend on older instructions, the older instructions (in-
structions towards the end of the pipeline) are completed first.
The values of the state elements obtained from completing
older instructions are then used to complete younger instruc-
tions. Therefore, this approach allows younger instructions
access to results of older instructions. Note that refinement
maps based on symbolic simulation of the implementation
model such as commitment [21] [23] or flushing [4] are
not viable because a prohibitively large number of symblolic
simulations are required for desynchronized pipelines.

The completion functions approach is efficient in terms of
computational complexity and works well for synchronous
pipelines. However, for desynchronized pipelines, the problem
is that desynchronization allows for duplication of data in
the data path. This is an issue with the completion functions
approach. Completing the same instruction twice (from two
different latches) will lead to erroneous results. Therefore, the
duplicate instructions/data in the pipeline latches need to be
identified and omitted from being completed.

Since duplication is a result of desynchronization, the
latches that have duplicate data in a desynchronized pipelined
machine state can be determined by observing the controller
state. There are two conditions of the pipeline latch controller
that identify duplicate data in the pipeline, which are given
below.

D1: Ab∧Rob∧A f

The first duplication condition (D1) occurs between the latch
pair used to separate two stages of a pipeline and is depicted
in Figure 2. The condition occurs when the B latch is holding
its data (indicated by Ab), which has also been transmitted to
the F latch (indicated by Rob∧A f ).

D2: A f 1∧Ro f 1∧Rib2∧Ab2

The second duplication condition (D2) occurs between the
F latch of a source latch pair (controller 1) and B latch of a
destination latch pair (controller 2). The corresponding circuit
is shown in Figure 3. The condition occurs when the F latch of
controller 1 is holding its data (indicated by A f 1), which has
also been transmitted to the B latch of controller 2 (indicated
by Ro f 1∧Rib2∧Ab2).

VII. RESULTS

Table II reports the results for safety verification of the
five desynchronized processor models described in Section V.
One indicator of the complexity of the processor models is
the number of lines of term-level ACL2 code required to
specify the models, which is reported in the table. Note that the
models are quite complex. For example, the size of the model
DPM7-7 is 949 lines of term-level ACL2 code (obtained after
abstracting combinational circuits blocks such as the ALU).
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TABLE II
VERIFICATION TIMES AND SMT STATISTICS

Processor No. Of Lines ACL2-SMT SMT Statistics
Model ACL2 Code Verification Times (sec) Decisions Conflicts Bool Vars Memory Used (MB)
DPM5-1 687 1.19 6,292 1,202 2,723 9.41
DPM5-2 708 1.98 5,558 1,548 2,798 11.56
DPM5-5 783 4.37 70,662 16,950 3,456 13.09
DPM6-6 866 53.21 834,187 219,160 4,542 17.97
DPM7-7 949 2417.74 25,231,948 7,304,751 5,940 32.49
DPM-B1-5-2 708 1.91 5,665 1,058 2,940 11.62
DPM-B2-5-2 708 1.74 358 49 1,529 11.01

Table II reports the verification time for checking safety
for the desynchronized processor models. The experiments
were conducted using an Intel(R) Core(TM)2 CPU 6400,
with a cache size of 2048 KB. Verification was performed
using the ACL2-SMT system [37], obtained by combining
ACL2 (version 3.3) and the Yices decision procedure (version
1.0.10).

The table also provides SMT statistics that are indicative of
the complexity of the verification problem. Note that overall,
verification is efficient as safety is verified for all the models
with a maximum running time of 2417.74 seconds required
by the DPM7-7 model. A well-known trend in verification of
pipelined machines is the exponential increase in verification
times with increase in the number of pipeline stages [24]. The
results exhibit this trend as well. Compositional approaches
have been successfully demonstrated to improve the scalability
of refinement-based verification of synchronous pipelines [24].
For future work, we plan to explore compositional approaches
for desynchronized pipelines.

Buggy Models: Two buggy variations of the DPM5-2
model were also checked using the verification procedure and
resulted in the ACL2-SMT tool flagging counter examples that
pointed to the source of the bug. The buggy models are DPM-
B1-5-2 and DPM-B2-5-2. In DPM-B1-5-2, we injected a bug
in the data path. In the forwarding path for source operand 2
from memory stage to execute stage, the destination operand
address is compared with the source address of operand 1
instead of operand 2. In DPM-B2-5-2, we injected a bug in
the desynchronized pipeline controller network. The DPM5-
2 model has 2 DFVD controllers. The Rob signal instead of
the Ro f signal of controller 1 is connected to the Rib muller-
C element of controller 2. The verification statistics are also
reported for the buggy models in Table II.

VIII. CONCLUSIONS

Formal verification methods have become an integral part
of the design cycle to ensure reliable IC designs. Therefore,
verifiability has become an important consideration for any de-
sign paradigm. In this work, we propose improved verifiability
for desynchronization, which is achieved with a worst case
performance penalty of 4 muller-C element delay in pipeline
throughput.

For future work, we plan to address liveness verification of
desynchronized pipelines and explore compositional methods
to improve scalability. We also plan to explore design for
verification solutions for desynchronization with lower per-
formance degradation.
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Abstract—Communication fabrics constitute an important
challenge for the design and verification of multi-core architec-
tures. To enable their formal analysis, microarchitectural models
have been proposed as an efficient abstraction capturing the
high-level structure of designs. We propose a novel algorithm
to deadlock verification of microarchitectural designs. The basic
idea of our algorithm is to capture the structure of the wait-for
relations of a microarchitectural model in a labelled waiting-
graph and to express a deadlock as a feasible closed subgraph
of the waiting-graph. We apply our algorithm to academic and
industrial Networks-on-Chip (NoC) designs. With examples we
show that our tool is fast, scalable, and capable of detecting
intricate message-dependent deadlocks. Deadlocks in networks
with thousands of components are detected within a few seconds.

I. INTRODUCTION

In modern architectures, performance is gained by increas-

ing parallelism [1]. Multi-Processor Systems-on-Chips (MP-

SoCs) integrate on a single die several processing, memory,

and I/O devices. As bus performance degrades when the num-

ber of cores increases, complex Networks-on-Chips (NoCs)

constitute an alternative solution for scalable interconnect

infrastructures [2], [3]. Formal verification of NoCs is a

challenge. In particular, deadlock freedom is a crucial property

that also is difficult to automatically verify. A solution is to

analyze abstract microarchitectural models of communication

fabrics. A well-defined set of primitives – named xMAS

for eXecutable MicroArchitectural Specifications – has been

proposed by Intel to precisely describe these models [4].

Chatterjee and Kishinevsky developed techniques to generate

inductive invariants and use these invariants to improve the

performance of hardware model-checking of Verilog descrip-

tions [5]. Recently, Gotmanov et al. proposed a Boolean

encoding of deadlock equations [6]. Using these equations and

automatically generated invariants, the authors were able to

verify Verilog designs for deadlocks. Their techniques scale up

to networks with hundreds of components and tens of queues.

Actual designs typically consist of hundreds or even thousands

of queues. We report results1 on networks with thousands of

components and hundreds of queues. A direct comparison with

Intel’s algorithms is not possible as their tools and benchmarks

1The source code for the algorithm presented in the paper are available at
http://www.cs.ru.nl/∼freekver/fmcad11/

are not publicly available. We exhibit one example that is out-

of-reach for Intel’s techniques but is verified instantaneously

by our algorithm.

Our novel deadlock detection algorithm is based on the

following two key concepts. The wait-for relations of xMAS

models are captured in a labelled waiting-graph. A deadlock is

defined as a feasible closed subgraph of the waiting-graph. Our

algorithm analyses each queue of a network and either stops

if a blocking queue has been found or returns ”no deadlock”

when all queues have been visited. For each queue, a labelled

waiting-graph is built. A deadlock is found when a feasible

logically closed subgraph is found in the waiting-graph of a

queue. Building the waiting-graph and searching for a feasible

logically closed subgraph happen on-the-fly.

The next section briefly introduces the xMAS language and

illustrates the difficulty of finding deadlocks in xMAS models.

Section 3 presents the theoretical foundations of our algorithm

which is detailed in Section 4. Section 5 demonstrates the

applicability and the efficiency of our algorithm on several

and distinct examples extracted from academic and industrial

NoC designs. Both routing and message dependent deadlocks

are detected within seconds in designs with thousands of

components. Finally, Section 6 relates our work to Intel’s

approach and Section 7 concludes.

II. XMAS MODELS

We briefly introduce the xMAS language. Our presentation

is inspired by the original xMAS paper where more details

can be found [4].

An xMAS model is a network of primitives connected via

typed data channels. A channel is connected to an initiator

and a target. A channel is composed of three signals. Channel

signal x .irdy indicates whether the initiator is ready to write

to channel x. Channel signal x .trdy indicates whether the

target is ready to read channel x. Channel signal x .data
contains data that are transferred from the initiator output to

the target input if and only if both signals x .irdy and x .trdy
are set to true. Figure 1 shows the eight primitives of the

xMAS language. A function primitive manipulates data. Its

parameter is a function that produces an outgoing packet from

an incoming packet. Typically, functions are used to convert

message types and represent message dependencies inside the
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Fig. 1: Eight primitives of the xMAS language. Italicized letters indicate parameters. Gray letters indicate ports.

(a)

(b)

Fig. 2: Microarchitectural models

fabric or in the model of the environment. A fork duplicates an

incoming packet to its two outputs. Such a transfer takes place

if and only if the input is ready to send and the two outputs

are both ready to read. As in previous publications [5], [6],

we assume forks with identity functions. A join is the dual

of a fork. The function parameter determines how the two

incoming packets are merged. A transfer takes place if and

only if the two inputs are ready to send and the output is

ready to read. The function parameter must be total, i.e., a

join is always able to produce a packet if both inputs are

ready. A switch uses its function parameter to determine to

which output an incoming packet must be routed. A merge is

an arbiter. It grants its output to one of its inputs. A merge

is fair, i.e., all inputs are served eventually. A queue stores

data. As we assume fair arbiters, we abstract away from their

internal state and a queue is the only state holding element.

Messages are non-deterministically produced and consumed at

sources and sinks. Sources and sinks are fair, i.e., messages

are eventually created or consumed. A source or sink may

process multiple message types. A configuration σ represents

the current occupation of queues, i.e., the current state. The

semantics of an xMAS network is specified using synchronous

equations for each primitive [4]. Configurations are updated

when messages are produced, consumed, or moved to a next

queue. A legal configuration is a configuration where the

buffer sizes of the queues are not exceeded. A configuration is

reachable if it is possible to reach it starting from the empty

network. A channel c has type p if and only if there exists

a reachable configuration such that a packet p is located in

channel c. The set of all types of channel c is noted τ(c).

Deadlocks are difficult to find in xMAS models as the

traditional association between cycles and deadlocks is neither

sufficient nor necessary. Consider the microarchitectural model

in Figure 2b. One source emits both response and request

packets. The type of packets of the other source is left

uninterpreted for now. The first source feeds into queue q0

which then enters a fork. The lower output of the fork is

merged with the other source into queue q2. From q2, request

packets are routed to a sink while response packets are joined

with packets stored in q1. The configuration in Figure 2b

has a request packet in q1 and a response packet in q0. The

join waits for response packets in q2. Response packets wait

for the fork. This fork waits for space in q1 which in turn

waits for the join. This completes a circular wait, but this

circular wait is not necessarily a deadlock. If x = {rsp}, i.e.,
the second source generates response packets, the network is

deadlock-free. If x = {req}, the configuration is a deadlock.

Consider the microarchitectural model in Figure 2a. The queue

waits for the join. The join waits for a request packet. As the

source never produces a request packet, the configuration is a

deadlock without circular waits.

III. THEORETICAL FOUNDATIONS

Let Q be the set of queues in the network and let q.out de-
note the output channel connected to queue q. A configuration

is stuck if and only if the packets in all queues are blocked,

i.e.:

stuck(σ)
def
= ∀q ∈ Q · q.out.irdy =⇒ ¬q.out.trdy.

Definition 1: A configuration σ is a deadlock configuration,

notation dl(σ), if and only if it is a non-empty configuration

such that:

dl(σ)
def
= legal(σ) ∧ reachable(σ) ∧ stuck(σ)

In a deadlock, the output channel of each queue that contains

packets is blocked. None of the packets can proceed.

We formulate a set of blocking equations, notation

Block(c, p), representing whether a packet p can be perma-

nently blocked in channel c (Figure 4). We also define the idle

equations, notation Idle(c, p), representing whether channel c
can be permanently empty for packet p. We define a blocked

queue, notationBlockQ(q), as a queue q containing a blocked

packet.

BlockQ(q) ≡ ∃p ∈ τ(q.out) · #q.p ≥ 1 ∧ Block(q.out, p)

The equations in Figure 4 capture the reason why compo-

nents are permanently blocking or idle. A queue is blocking

if it is full and the component connected to its output channel

is blocking (full(q) denotes “#q = q.size”). A queue is idle

for packet p either if it is empty and its input is connected to

an idle component or if messages with packet p are blocked
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Fig. 3: Labelled waiting graph for the model in Figure 2b

Definition 2: Let c be a channel, let x (y) be the target (initiator) component of c, and let x.in′ (x.out′) be the other in- (out-)
port of component x (y).

Block(c, p) ≡ full(x) ∧ BlockQ(x) iff x = queue

≡ Block(x.out, f(p)) iff x = function

≡ false iff x = sink

≡ Block(x.out1, p) ∨ Block(x.out2, p) iff x = fork

≡ Block(x.out, p) ∨ ∀p′ ∈ τ(x.in′) · Idle(x.in′, p′) iff x = join

≡ Block(x.out1, p) iff x = switch ∧ b(p)
≡ Block(x.out2, p) iff x = switch ∧ ¬b(p)
≡ Block(x.out, p) iff x = merge

Idle(c, p) ≡
{

y.p = 0 ∧ Idle(y.in, p)∨
∃p′ ∈ τ(y.out) · p 6= p′ ∧ y.p′ ≥ 1 ∧ Block(y.out, p′)

iff y = queue

≡ ∀p′ ∈ τ(y.in) · f(p′) = p =⇒ Idle(y.in, p′) iff y = function

≡ p /∈ τ(y) iff y = source

≡ Idle(y.in, p) ∨ ∃p′ ∈ τ(y.out′) · Block(y.out′, p′) iff y = fork

≡ Idle(y.in1, p) ∨ Idle(y.in2, p) iff y = join

≡ Idle(y.in, p) iff

{
y = switch∧
(b(p) ⇐⇒ c = y.out1)

≡ Idle(y.in1, p) ∧ Idle(y.in2, p) iff y = merge

Fig. 4: Blocking equations

by other packets and cannot leave the queue. Formally, the

latter means that the channel written by the queue never

receives packet p. A function is blocking if its output channel

is blocking after application of the function. A function is idle

for packet p if its input channel is idle for all packets for which

the application results in p. A sink is never blocked. A source

can be idle for a particular message type. A fork is blocked if

one of its outputs is blocked. A fork is idle if its input is idle.

A fork can also be blocked if an output channel is blocking,

since a fork can only produce two packets if all its output

channels are ready to receive. A join is blocked if its output

is blocked or one of its inputs is idle for any packet. A join

is idle if one of its inputs is idle. A switch has one blocking

equation for each possible output. The first (second) output

channel of a switch is idle for p if the condition (i.e., function

s applied to packet p) does not (does) hold for p or its input

is idle. A merge is blocked if its output is blocked. Note that

a merge may also be blocking if the other input channel is

selected. However, since we assume fair merges, this cannot

permanently block the input channel. As our equations capture

the reason why a component is permanently blocking an input

channel, this blocking scenario need not be reflected in the

deadlock equations of the merge. A merge is idle if both its

inputs are idle.

We now prove2 correctness of the deadlock equations, i.e.,

a configuration is stuck if and only if there is a blocked queue.

Lemma 1: There exists a non-empty stuck configuration if

and only if for some queue q the blocking equations are

feasible:

∃q ∈ Q · BlockQ(q) ⇐⇒ ∃σ · stuck(σ)

Configuration σ in Lemma 1 is a configuration in which all

packets are blocked. The configuration is not necessarily legal

or reachable. Legality equations (noted Legal) are added to

bound the number of packets stored in queues. They have

the following form: {”#q ≤ q.size′′ | q is a queue}. To

rule-out unreachable configurations, a reachability invariant

(noted Inv) is automatically generated. We have made a quick

re-implementation of the invariant generation technique used

in [5]. In all examples presented in this paper, the invariants

generated by our quick re-implementation were enough.

The next Lemma shows that if there is a deadlock then

our algorithm will find it. Note that because we may output

a deadlock that is not reachable, the other direction does not

hold.

Lemma 2: For any set of invariants Inv, if there exists a

deadlock configuration, then there exists a blocked queue q.

∃σ · dl(σ) =⇒ ∃q ∈ Q · BlockQ(q) ∧ Legal∧ Inv

2All proofs are available in an appendix at the end of this paper.
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Given a queue q, the labelled waiting graph is a graph with

as vertices the components of the network. Figure 3 shows this

graph for queue q1 in Figure 2b. The next Section details the

efficient construction of this graph. Function Ewait represents

the edge function, i.e., Ewait(x) returns the set of neighbors

of component x. We let
∧

(x) and
∨

(x) return true if and

only if the edges going out of component x are conjunctive

or disjunctive. An edge (x0, x1) between components x0

and x1 is labelled according to the deadlock equations of

channel x0 .out connecting these components. Starting from

queue q the labels directly correspond to the set of equations

BlockQ(q).
Definition 3: A waiting subgraph S is logically closed,

notation closed(S), iff:

closed(S)
def
=

∀x ∈ S ·
{

∀n ∈ Ewait(x) · n ∈ S iff
∧

(x)
∃n ∈ Ewait(x) · n ∈ S iff

∨
(x)

A subgraph S is feasible if and only if the conjunction of the

constraints on all edges in S, the set of legality constraints,

and the set of invariants, is feasible. For instance, subgraph

{q1, join, mrg2, sink} in Figure 3 is logically closed but not

feasible. The next lemma shows that a deadlock is a feasible

logically closed subgraph.

Lemma 3: For queue q, the deadlock equations are feasible

if and only if the waiting graph of q contains a feasible and

closed subgraph.

∀q ∈ Q · (BlockQ(q) ∧ Legal∧ Inv ⇐⇒
∃S · feasible(S) ∧ closed(S))

Our final theorem is a corollary from Lemmas 2 and 3.

Theorem 1: For any set of invariants Inv, if there is a

deadlock, then there exists a waiting subgraph that is feasible

and closed.

IV. ALGORITHM

The algorithm detects closed subgraphs and determines their

feasibility. It starts a search in some queue q0 with some

packet p. The current subgraph S under consideration is {q0}.
The search expands waiting neighbors, adding them to S, as
long as the subgraph is open and feasible. The search starts

with forward expansion. Each forward edge requires the next

component to be permanently blocked. When encountering a

join, the search proceeds both forwards to determine whether

the output channel can be permanently blocked and backwards

to determine whether the input channel can be permanently

idle. The result is that a tree – spanning over the waiting graph

– with as root q0 is created on-the-fly. In case of a conjunctive

component, unexplored edges are marked as ‘open’, since they

must still be explored. The algorithm proceeds its search until

S is closed. The algorithm keeps track of the set of equations

Ecurr of the path leading from the initial queue q0 to the current

component x.
If a cycle, a sink, or a source is encountered, the algorithm

ends its recursion. If there are no open edges and if the current

subgraph S is feasible, a deadlock has been found and the

algorithm terminates. Otherwise, the algorithm backtracks to

the latest disjunctive point. To prevent an exponential graph

exploration, we implement a memoization technique. After

each recursive call, the equations – named closing equations

– of each path leading to a cycle or source are stored. If

a component is encountered that has already been visited, a

deadlock has been found if the conjunction of Ecurr and the

closing equations is feasible. This ensures that each component

of the waiting graph has to be visited at most once.

Consider the network in Figure 2b. We let the algorithm

start in queue q1 with packet req. It will create the graph

in Figure 3 on-the-fly. The algorithm starts with expanding

the join, adding “#q1.req ≥ 1” to Ecurr. There are two

ways to proceed: forwards to mrg2 or backwards to the

switch. The algorithm proceeds forwards. As this leads to

a sink, no deadlock is found. The algorithm associates the

closing equation “false” to the sink. The algorithm then

proceeds backwards to determine whether the switch can be

permanently idle for packet rsp. Queue q2 is expanded, adding

“#q2.rsp = 0′′ to Ecurr. The algorithm expands mrg1. There

are two ways to proceed: backwards to the fork or backwards

to the source. The algorithm first expands the fork, but keeps

track of the open edge to the source. Again, there are two

ways to proceed: one forwards leading to queue q1 and one

backwards leading to queue q0. The algorithm first proceeds

forwards, adding “#q1 = q1.size” to Ecurr. Queue q1 has

already been explored. Since there is one open edge, the

algorithm starts propagating information upwards to the fork

by associating ”#q1 = q1.size” as a closing equation for the

fork. Consequently, it is removed from Ecurr. It proceeds by
exploring queue q0. Since this is connected to a source that

injects rsp messages, queue q0 cannot be idle for rsp. The
algorithm associates closing equation “false” to the source

and to queue q0. This is propagated upwards. The closing

equations of the fork become: “#q1 = q1.size ∨ false”.
The open edge from the merge to the source is explored.

If we assume that src2 injects rsp-messages, the algorithm

associates closing equation “true” to src2. This is propagated

upwards, and the closing equation associated to the merge

becomes (#q1 = q1.size ∨ false) ∧ true. As there are no

more open edges, the algorithm checks the feasibility of the

conjunction of Ecurr and the closing equation of the merge, i.e.,

feasibility of {#q1.req ≥ 1, #q2.rsp = 0, #q1 = q1.size}.
The solution to these equations corresponds to any deadlock

configuration where q1 is full with a request at its head, no

responses are in q2.

Algorithm 1 shows the pseudo code of our algorithm. This is

one half of the algorithm, as function IDLEDETECT is needed

to determine deadlocks for joins. Function IDLEDETECT is

the exact dual of DEADDETECT. The complete algorithm is

a mutual recursion between these two dual functions. The

algorithm takes four parameters: a component x that is to be

explored, the current packet p, the number of open edges open
and the set of equations Ecurr. For each queue q, the closing

equations are stored in Eclosing[q].
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Algorithm 1 DEADDETECT(x, p, open, Ecurr)
1: if x == queue then

2: Ecurr ∧= “#x = x.size′′

3: if Eclosing[x] == ∅ then

4: Eclosing[x] = “false′′

5: for all p′ ∈ τ(x.out) do

6: Ecurr ∧= “#x.p′ ≥ 1′′

7: DEADDETECT(x.out, p′, open, Ecurr)
8: Ecurr ��∧= “#x.p′ ≥ 1′′

9: Eclosing[x] ∨= Eclosing[x.out]
10: end for

11: else if open == 0 then

12: \* Determine feasibility of equations *\
13: \* Report deadlock if feasible *\
14: end if

15: Ecurr ��∧= “#x = x.size′′

16: else if x == function then

17: DEADDETECT(x.out, f(p), open, Ecurr)
18: Eclosing[x] = Eclosing[x.out]
19: else if x == sink then

20: Eclosing[x] = “false′′

21: else if x == fork then

22: DEADDETECT(x.out1, p, open, Ecurr)
23: DEADDETECT(x.out2, p, open, Ecurr)
24: Eclosing[x] = Eclosing[x.out1] ∨ Eclosing[x.out2]
25: else if x == join then

26: DEADDETECT(x.out, p, open, Ecurr)
27: for all p′ ∈ τ(x.in′) do

28: IDLEDETECT(x.in′, p′, open, Ecurr)
29: end for

30: Eclosing[x] = Eclosing[x.out] ∨ Eclosing[x.in′]
31: else if x == switch then

32: if cond(p) then

33: DEADDETECT(x.out1, p, open, Ecurr)
34: Eclosing[x] = Eclosing[x.out1]
35: else

36: DEADDETECT(x.out2, p, open, Ecurr)
37: Eclosing[x] = Eclosing[x.out2]
38: end if

39: else if x == merge then

40: DEADDETECT(x.out, p, open, Ecurr)
41: Eclosing[x] = Eclosing[x.out]
42: end if

We detail the case where x is a queue. Other cases are

processed similarly. In the case of a queue, x must be full in

order to be blocking. Equation ”#x = x.size” is conjunctively
added to the current set of equations (line 2). For each new

packet p′, the algorithm adds equation ”#x.p′ ≥ 1” and

recursively determines whether the next component can be

permanently blocking (lines 5–7). After the recursive call,

equation ”#x.p′ ≥ 1” is retracted (line 8). After all recursive

calls, equation ”#x = x.size” is retracted (line 15).

The number of open edges can increase only in

IDLEDETECT. Open edges occur with functions, switches,

and merges. Only if the number of open edges is equal to

zero and if some cycle has occurred, the sets of equations

are fed to a linear programming solver. We use lp solve,

an off-the-shelve linear programming solver [7]. We have

equations stored in efficient data structures in such a way

that, e.g., (#q1 = q1.size ∨ false) ∧ true is stored simply

as #q1 = q1.size. Adding equations to this data structure is

only possible if the resulting set of equations is still internally

feasible, i.e., feasible without further invariants. This prevents

unnecessary exploration of infeasible paths.

Correctness of the algorithm means that function

DEADDETECT returns true if and only if there is a

feasible closed subgraph.

Lemma 4:

∃x, p · DEADDETECT(x, p, 0, ∅) ⇐⇒
∃S · feasible(S) ∧ closed(S))

Remarks:

Counterexamples: If our algorithm finds a feasible and closed

subgraph, it has given the set of constraints corresponding

to this subgraph to a linear programming solver. This solver

not only returns a boolean value indicating that the set of

constraints is feasible, but also a solution. This solution assign

integers to queues and headers. It is a detailed representation

of a counterexample, i.e., a deadlock configuration.

Running time: Each separate run of the algorithm visits

each component at most once. As per component deadlock

equations are memoized there is no need to re-explore a visited

component. The algorithm is executed once for each queue.

The number of recursive calls is therefore O(Q · C) with Q
the number of queues and C the number of components.

Before running the algorithm, the typing information needs

to be computed, i.e., we need to compute τ(c) for all channels
c. To obtain this information we perform exhaustive simula-

tions. For each source and for each possible packet p injected

at the source, we simulate the injection in an empty network

until it is consumed. During this simulation p is added to τ(c)
for each visited channel c. During this simulation, queues may

need to be visited more than once.

Consider the network in Figure 6. The network is deadlock-

free. To establish this, it must be established that always

eventually a packet “5” arrives at queue q1. During the

simulation of packet “0” in source src0, queue q0 is visited

6 times. This establishes that τ(c) = {0, 1, . . . , 5}. Using this

information, our algorithm needs to visit queue q0 just once

to establish deadlock freedom of the network.

Fig. 6: xMAS model
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Fig. 5: Experimental results

Fig. 7: xMAS model of an HERMES node

V. EXPERIMENTAL RESULTS

We consider two Network-on-Chip (NoCs): The HERMES

NoC [8] from the University of Rio Grande in Brazil and the

Spidergon NoC from STMicroelectronics [9]. All experiments

have been performed on a Ubuntu machine with a 2.93 GHz

Intel Core 2 Duo processor and 2 GB memory. Figure 5

gives an overview of experimental results on the benchmarks

described hereafter.

HERMES is a two-dimensional mesh using XY rout-

ing [10]. Figure 7 shows an xMAS specification of a pro-

cessing node with coordinates (X, Y ). This node is a ”slave”.

It introduces message dependencies as responses are gener-

ated upon reception of requests. A master node would only

inject requests in its local queue and consume responses. We

experimented with different layouts of masters and slaves: no

master and no slave (curve 2D-XY), all nodes are both master

and slave (curve 2D-MS), masters on the left part of the mesh

and slaves on the right part (curve 2D-MS-LR), or masters on

even columns and slaves on odd columns (curve 2D-MS-EO).

Two layouts only are deadlock-free (2D-XY and 2D-MS-LR).

The results show good performance for detecting deadlocks

and proving their absence.

Spidergon is a ring where each processing node can send

messages clockwise, counter clockwise, or across. Shortest

path routing is used. At each node, the routing decision is

based on the relative address relAd = (d − s) mod N . Here

d is the destination, s is the current node, and N is the total

number of nodes. Because of the ring, this architecture has a

deadlock (curve SP). In this case, performance is linear in the

(a) Ring node with shortest path routing

(b) Credit control unit

Fig. 8: Spidergon with flow control

size of the ring.

To resolve this deadlock, virtual channels [11] are inserted

to the right upper quarter of the ring only (curve SP-VC).

The routing function is modified such that virtual channels

are only used for each destination inside the quarter, other

messages still use the regular channels. This case is slightly

more difficult because there is no deadlock. If virtual channels

are wrongly designed, deadlock detection is as in curve SP.

Another approach is to add a credit control unit (CCU,

Figure 8) limiting the number of packets in the ring to N ·k−1,
where N is the size of the ring and k the size of the queues.

When injecting messages in local queues, these messages are

duplicated and sent to the CCU. When messages are sunk, they

are also duplicated and sent to the CCU to free space. This

unit may look unrealistic but its main purpose is to illustrate a

difficult case for our algorithm. Indeed, the merges force our

algorithm to branch on all the inputs of these merges. As it

can be seen in curve SP-CC, this case is much harder. Still,

networks with tens of agents and hundreds of components can

be proven deadlock-free within a few minutes. If the counter
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Fig. 9: Example from Intel

is wrongly sized, e.g., cc queue.size = Nk, a deadlock is

found as in curve SP.

Figure 9 shows a network abstracted from a real design

from Intel [12]. The sources in the network emit red and

blue tokens respectively. These tokens are duplicated into

two queues. Red tokens are sunk, blue tokens are joined and

then sunk. The network is deadlock-free, as queues q0 and

q1 are fed with tokens in the same order. Given invariants

automatically generated by [5], the approach of [6] cannot

handle this example while our algorithm returns ”no deadlock”

instantaneously.

VI. RELATED WORK

We define a deadlock configuration while Gotmanov et

al. [6] define a dead channel, i.e., a channel that is never

idle but always blocked in some execution. Assuming fair

merges and that a dead channel coincides with a blocked

queue, the two definitions are logically equivalent. We can

prove that there exists a dead channel if and only if there

exists a deadlock configuration. Our approach covers a similar

property as [6]. An important difference is that we directly

tackle xMAS models and not their Verilog implementation.

The two techniques are complementary. Our tool can be used

to quickly remove all deadlocks in xMAS models before

proving the Verilog deadlock-free.

VII. CONCLUSION

We have shown that based on the notions of a labelled

waiting graph and a logically closed subgraph it is possible

to efficiently detect deadlocks in microarchitectural models

of communication fabrics. We demonstrated the applicability

and efficiency of our solution on several deadlock avoidance

mechanisms used in academic and industrial NoCs designs.

Deadlocks are found within seconds in networks with thou-

sands of components. We exhibited an example that can be

proven deadlock-free using our technique but could not be

handled by Intel’s recent related solution. Our technique uses

less and simpler invariants showing that using the labelled

waiting graph we capture more information about the structure

of xMAS models.
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APPENDIX

PROOFS OF LEMMAS

Lemmas in Section 3

Lemma 1: There exists a non-empty stuck configuration if

and only if for some queue q the blocking equations are

feasible:

∃q ∈ Q · BlockQ(q) ⇐⇒ ∃σ · stuck(σ)

Proof:

(⇐=) Assume queue q is non-empty and blocked in configura-

tion σ. We prove that σ satisfies the set of blocking equations

by structural induction on the definition of Block. Thus σ is

a solution of these equations, implying they are feasible.

The base case is trivial. For the inductive case, we proceed

by case distinction and only detail the case where x is a queue.

The other cases are similar. Channel x.in is permanently

blocked by assumption. This happens only when x is full.

Thus σ satisfies the equation #x = x.size. Furthermore,

the packet at the head of x must be permanently blocked.

Let p′ denote the header of this packet. Channel x.out must

be permanently blocked for packet p′, since otherwise the

packet at the head of x eventually is removed from the queue

and channel x.in becomes alive, contradicting the assumption

that x.in is permanently blocked. By induction hypothesis,

if channel x.out is permanently blocked for p′, σ satisfies

Block(x.out, p′).
(=⇒) Assume that for some queue q the equations are feasible.

This means there exists a solution, which is an assignment

of integers to queues and packets. This solution is thus

a configuration. We prove that in this configuration, each
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channel c involved in the set of equations is permanently

blocked by its target component x. The proof is again by

induction on Block and then by case distinction. We provide

details on the case of the join. By the induction hypothesis

we know that either the output is permanently blocking join

x, or the other input channel is permanently idle. In both cases,

channel c is permanently blocked by the join. This concludes

the proof that the target of the channel is permanently blocked.

Lemma 2: For any set of invariants Inv, if there exists a

deadlock configuration, then there exists a blocked queue q.

∃σ · dl(σ) =⇒ ∃q ∈ Q · BlockQ(q) ∧ Legal∧ Inv

Proof: From Lemma 1, we know that a configuration

that is stuck implies a blocked queue. By definition, a legal

configuration implies the legality constraints. A reachable

configuration implies the reachability invariant.

Lemma 3: For queue q, the deadlock equations

are feasible if and only if the waiting graph

of q contains a feasible and closed subgraph.
∀q ∈ Q · (BlockQ(q) ∧ Legal∧ Inv ⇐⇒

∃S · feasible(S) ∧ closed(S))

Proof:

(=⇒) By assumption, the set of blocking equations is feasible

for queue q and packet p. Consider the set of equations E
obtained by replacing each disjunction in Block(q.out, p)
by one feasible operand of the disjunction. Let S be the

waiting graph corresponding to E . S is a subgraph from the

waiting graph of q. Since Block(q.out, p) is feasible, S is

feasible as well. Finally, by construction S contains all its

conjunctive neighbors and exactly one disjunctive neighbor for

each disjunctive component. Thus S is a feasible and closed

waiting subgraph.

(⇐=) Assume a feasible and closed subgraph S in the waiting

graph of queue q. Let E be the set of equations corresponding

to S. The set of equations E is a subset of Block(q.out, p) for
some p. We prove that the feasibility of E implies feasibility of

Block(q.out, p). Adding disjunctive operands to a disjunction

somewhere in E can make it infeasible only if the number of

operands is equal to zero. This is not possible since – as S
is closed – E contains at least one disjunctive neighbor for

each component. Adding conjunctive operands can make a

conjunction infeasible, but since S is closed it already contains

all its conjunctive neighbors. The feasibility of E implies the

feasibility of the deadlock equations of q.

Lemmas in Section 4

Lemma 4:

∃x, p · DEADDETECT(x, p, 0, ∅) ⇐⇒
∃S · feasible(S) ∧ closed(S))

Proof: The algorithm reports a deadlock only at line 13.

It keeps at all time track of the number of open edges in

parameter open. As line 13 is only reached when the current

subgraph is closed, i.e., open == 0, and when the linear

program solver has determined feasibility, partial correctness

is trivial to prove. What remains to be proven is termination.

As the algorithm keeps track of visited components, each

component is visited at most twice (once in DEADDETECT

and once in IDLEDETECT). Thus the algorithm terminates.

Relation to Intel’s approach

We have the following assumptions: 1) The network is

livelock free, 2) the network is starvation free, and 3) a blocked

channel implies a blocked packet in some queue.

We first prove a Lemma on draining a configuration. Let σ
be a configuration. Draining σ is defined as:

• Canceling all further injections at the sources;

• Having the sinks consume all packets deterministically;

• Let the network execute until no packet in the network

can be moved, i.e., until ¬c.trdy for all channels c.

Lemma 5: Let σ be a legal and reachable configuration.

Draining σ yields a unique legal and reachable configuration,

denoted with drain(σ).

legal(σ) ∧ reachable(σ) =⇒
legal(drain(σ)) ∧ reachable(drain(σ))

Proof: Any configuration obtained from an execution

starting in a legal and reachable configuration is legal and

reachable. Non-determinism occurs at sources and sinks only.

Since sources do not inject any further packets, and since sinks

are deterministic while draining, no non-determinism occurs.

Draining is a deterministic process and thus it suffices to show

termination to show that it yields a unique configuration. By

Assumption 1 no packet can move around infinitely in the

network. Eventually, all packets will either be permanently

blocked or arrive at a sink. Thus draining terminates.

Lemma 6: There exists a dead channel if and only if there

exists a deadlock configuration:

∃c · dead(c) ⇐⇒ ∃σ · dl(σ)

Proof:

(=⇒) Let c be a dead channel in some execution S. We know

that S |= ♦(c.irdy ∧ �¬c.trdy). From the semantics of ♦,
we can split S in to execution S1 and S2 such that S =
S1S2, S1 is a finite execution, and S2 |= c.irdy ∧ �¬c.trdy.
Let σ′ be the configuration obtained after execution of S1.

Let σ = drain(σ′). In other words, replace execution S2 by

draining. By Lemma 5, σ is legal and reachable. By definition

of draining, σ is stuck: either there are no more packets in

the network in which case the network is stuck trivially, or

all packets are blocked. What remains to be proven is that

σ is non-empty. In execution S2, channel c is permanently

blocked. Execution S2 is replaced by draining. This preserves

the permanent blocking of channel c. Channel c can either be

permanently blocked by a starvation scenario or because of a

local deadlock. By Assumption 2, only the second can occur.

This local deadlock is not resolved by draining, as the packets

participating in this local deadlock are permanently blocked.

Therefore, there is at least one channel that is blocked in σ.
By Assumption 3 there is at least one queue blocked, meaning
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that σ is non-empty. As σ is non-empty, legal, reachable, and

stuck, σ is a deadlock configuration.

(⇐=) As there exists a deadlock configuration, there exists a

non-empty queue q which is permanently blocked. Channel

q.out is dead: as queue q is non-empty, the initiator of q.out
is not idle. As the packet in queue q cannot move, the target

of q.out is permanently blocked.
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