
Oct 2011 Tutorial: Verifying Concurrent Programs

Verifying Concurrent Programs
(Tutorial)

Aarti Gupta

Systems Analysis & Verification Group

NEC Labs America, Princeton, USA

www.nec-labs.com

Oct 2011 Tutorial: Verifying Concurrent Programs

Acknowledgements

 Malay Ganai, Vineet Kahlon, Nishant Sinha*, Chao Wang* (NEC Labs)

 Akash Lal (MSR, India)

 Madanlal Musuvathi (MSR)

 Antoine Miné (CNRS)

 Kedar Namjoshi (Alcatel-Lucent)

 Andrey Rybalchenko, Ashutosh Gupta, Corneliu Poppea (TU Munich),

Alexander Malkis (Imdea)

 Arnab Sinha (Princeton University)

 Tayssir Touili (LIAFA)

 Thomas Wahl (Northeastern University)

2

Oct 2011 Tutorial: Verifying Concurrent Programs

Motivation

 Key Computing Trends

– Single core solutions don’t work

– Multi-core platforms

– Need parallel, multi-threaded
programming

– Distributed, networked systems

 Parallel/Multi-threaded Programming

– Difficult to get right

• Dependencies due to shared data

• Subtle effects of synchronizations

• Often manually parallelized

– Difficult to debug

• too many interleavings of threads

• hard to reproduce bugs

Mobile Server Gaming

High Performance, Low Power

Data centers, Cloud platforms

Thread 1 Thread 2 Thread 3 Thread 1 Thread 2

Thread 2 Thread 1 Thread 3 Thread 1 Thread 2

Thread 2 Thread 3 Thread 2 Thread 1 Thread 1

3

Oct 2011 Tutorial: Verifying Concurrent Programs

What will I (try to) cover?

4

 Basic elements

– Model of concurrency

• Asynchronous interleaving model (unlike synchronous hardware)

• Explosion in interleavings

– Synchronization & Communication (S&C)

• Shared variables: between threads or shared memory for processes

• Locks, semaphores: for critical sections, producer/consumer scenarios

• Atomic blocks: for expressing atomicity (non-interference)

• Pair-wise rendezvous

• Asynchronous rendezvous

• Broadcast: one-to-many communication

– On top of other features of sequential programs

• Recursive procedures, Loops, Heaps, Pointers, Objects, …

• (Orthogonal concerns and techniques)

 Will cover Static and Dynamic verification techniques

Oct 2011 Tutorial: Verifying Concurrent Programs

What I will not be able to cover

 Active topics of research (but out of scope here)

– Parallel programs: Message-passing (e.g. MPI libraries), HPC

applications

– Synthesis/Optimization of locks/synchronizations for performance

– Memory models: Relaxed memory models (e.g.TSO), Transactional

memories

– Object-based verification: Linearizability checking

– Concurrent data structures/libraries: Lock-free structures

– Separation logic: pointers & heaps, local reasoning

– Theorem-proving , type analysis, runtime monitoring …

5

Oct 2011 Tutorial: Verifying Concurrent Programs

Models for Verifying Concurrent Programs

 Finite state systems

– Asynchronous composition, S&C (including buffers/channels for

messages), but no recursion

– Setting: Inline procedures up to some bound to get finite models

– Techniques: Bounded analysis (e.g. dynamic analysis, BMC)

 Sequential programs

– Recursive procedures and other features, but no S&C and no

interleavings

– Setting: Add support for S&C and interleavings (thread interference)

– Techniques: Bounded as well as unbounded analysis

 Pushdown system models

– Stack of a pushdown system (PDS) models recursion, finite control, data

is finite or infinite (with abstractions)

– Setting: Consider interacting PDSs with various S&C

– Techniques: PDS-based model checking

6

Oct 2011 Tutorial: Verifying Concurrent Programs

Outline

 Introduction

 PDS-based Model Checking

– Theoretical results

 Static Verification Methods

– Reduction: Partial order reduction, Symmetry

– Bounding: Context-bounded analysis, Memory Consistency-based analysis

– Program Abstraction: Static analysis, Thread-modular reasoning

 Dynamic Verification Methods

– Preemptive context bounding

– Predictive analysis

– Coverage-guided systematic testing

 Conclusions

7

Oct 2011 Tutorial: Verifying Concurrent Programs

Pushdown System (PDS) Model

 Each thread is modeled as a PDS:

– Finite Control : models control flow in a thread (data is abstracted)

– Stack : models recursion, i.e., function calls and returns

 PDS Example:

 States: {s,t,u,v}

 Stack Symbols: {A,B,C,D}

 Transition Rules: <s,A> < t, e >

 <s,A> < t, B >

 <s,A> < t, C B >

8

If the state is s, and A is the

symbol at the top of the stack,

then transit to state t, pop A,

and push B, C on the stack

PDS1

Oct 2011 Tutorial: Verifying Concurrent Programs

PDS-based Model Checking

 Close relationship between Data Flow Analysis for sequential programs

and the model checking problem for Pushdown Systems (PDS)

– The set of configurations satisfying a given property is regular

– Has been applied to verification of sequential Boolean programs

[Bouajjani et al., Walukeiwicz, Esparza et al.]

 Analogous to the sequential case, dataflow analysis for concurrent

program reduces to the model checking problem for interacting PDSs

 Problems of Interest: To study multi-PDSs interacting via the standard

synchronization primitives

– Locks

– Pairwise and Asynchronous Rendezvous

– Broadcasts

9

Oct 2011 Tutorial: Verifying Concurrent Programs

Interacting PDSs

 Problem: For multi-PDS systems, the set of configurations satisfying a

given property is not regular, in general

 Strategy: exploit the situations where PDSs are loosely coupled

10

(A, B)
Automaton A capturing

locally reachable

configurations of PDS1

Automaton B capturing

locally reachable

configurations of PDS2

PDS1 PDS2

Key Challenge
Capture interaction based on synchronization patterns

Oct 2011 Tutorial: Verifying Concurrent Programs

Capturing Interaction in presence of Synchronizations

 Key primitive: Static Reachability

– A global control state t is statically reachable from state s

 if there exists a computation from s to t that respects the constraints imposed

by synchronization primitives,

 e.g., locks, wait/notifies, …

 However, static reachability is undecidable

– for pairwise rendezvous [Ramalingam 00]

– for arbitrary lock accesses [Kahlon et al. 05]

– Undecidability hinges on a close interaction between synchronization and

recursion

– (Note: Even for finite data abstractions)

 Strategies to get around this undecidability

– Special cases of programming patterns: Nested Locks, Bounded Lock Chains

– Place restrictions on synchronization and communication (S&C)

11

Oct 2011 Tutorial: Verifying Concurrent Programs

Programming Pattern: Nested Locks

Nested Locks:

Along every computation, each thread can only release that lock which it

acquired last, and that has not yet been released

 Example:

 f() { g(){ h(){

 acquire(b) ; acquire(a); acquire(c);

 g (); release(a); release(b);

 // h (); release(b); }

 release(c); acquire(c);

 } }

 Programming guidelines typically recommend that programmers use
locks in a nested fashion

 Multiple locks are enforced to be nested in Java1.4 and C#

12

f calls g: nested locks

f calls h: non-nested locks

Oct 2011 Tutorial: Verifying Concurrent Programs

Programming Pattern: Lock Chains

 Lock Chains

 Nested Locks: Chains of length one

 Most lock usage is nested

 Non-nested usage occurs in niche applications, often bounded chains

– Serialization, e.g. 2-phase commit protocol uses chains of length 2

– Interaction of mutexes with synchronization primitives like wait/notify

– Traversal of shared data structures, e.g. length of a statically-allocated array

13

Oct 2011 Tutorial: Verifying Concurrent Programs

Interacting PDSs with Locks

14

(A, B)

PDS1 PDS2

Key Challenge: Capture interaction based on synchronization patterns

General Problem for arbitrary lock patterns: Undecidable [Kahlon et al. CAV 2005]

For nested locks and bounded lock chains: Decidable [POPL 07,LICS 09,CONCUR 11]

• Tracks lock access patterns thread-locally as regular automata
• Incorporates a consistency check in the acceptance condition

Oct 2011 Tutorial: Verifying Concurrent Programs

 Restrict Synchronization & Communication: Example

15

Reachability is decidable for PDS Networks with: [Atig et al. 08]

 - acyclic communication graph

 - lossy FIFO channels

Oct 2011 Tutorial: Verifying Concurrent Programs

PDS-based Model Checking: Summary

Reachability Problem

 Undecidable for Pairwise Rendezvous [Ramalingam 00]

 Undecidable for PDSs interacting via Locks [Kahlon et al. CAV 05]

 Decidable for PDSs interacting via Nested Locks [Kahlon et al. CAV 05]

 Decidable for PDSs interacting via Bounded Lock Chains

 [Kahlon LICS 09, CONCUR 11]

Reachability/Model Checking is Decidable under Other Restrictions

– Constrained Dynamic Pushdown Networks [Bouajjani et al. TACAS 07]

– Asynchronous Dynamic Pushdown Network [Bouajjani et al. FSTTCS 05]

– Reachability of Acyclic Networks of Pushdown Systems

 [Atig et al. CONCUR 08]

– Context-bounded analysis for concurrent programs with dynamic creation of

threads [Atig et al. TACAS 09]

16

Oct 2011 Tutorial: Verifying Concurrent Programs

 Hard to apply PDS-based methods directly

– Huge gap between model and modern programming languages

 In addition to state space explosion due to data (as in finite state systems

and sequential programs)

 the complexity bottleneck is exhaustive exploration of interleavings

 The next section describes various strategies to tackle this in practice

– Reduce number of interleavings to consider

1. Partial Order Reduction (POR)

2. Exploit symmetry

– Bound the problem

3. Context-bounded analysis

4. Memory Consistency-based analysis

– Use program abstractions and compositional techniques

5. Static analysis

6. Thread-modular reasoning

Practical Verification of Concurrent Programs

17

Oct 2011 Tutorial: Verifying Concurrent Programs

Some Preliminaries

 What is checked in practice?

 Common concurrency bugs

– Dataraces, deadlocks, atomicity violations

 Standard runtime bugs

– Null pointer dereferences

– Memory safety bugs

 Properties

– Safety, e.g. mutual exclusion

– Liveness, e.g. absence of starvation

18

Oct 2011 Tutorial: Verifying Concurrent Programs

Common Concurrency Bugs

/*--- Thread 1 ----*/

 . . .

 Write (globalVar);

 . . .

/*--- Thread 2 ----*/

. . .

Read (globalVar);

. . .

• Race Condition: simultaneous memory access (at least one write)

• Deadlock: hold-and-wait cycles

/*--- Thread 1 ---*/

 lock(A);

 . . .

 lock(B);

/*--- Thread 2 ---*/

 lock(B);

 . . .

 lock(A);

• Atomicity violation: e.g. a common three-access pattern

/*--- Thread 1 ----*/

 if (account_ptr != NULL) {

 ...

 account_ptr -> amount -= debit;

 }

/*--- Thread 2 ---*/

if (account_ptr != NULL) {

 free(account_ptr);

 account_ptr = NULL;

}

Oct 2011 Tutorial: Verifying Concurrent Programs

 Data Race: If two conflicting memory accesses happen concurrently

 Two memory accesses conflict if

– They target the same location

– They are not both read operations

 Data races may reveal synchronization errors

– Typically caused because programmer forgot to take a lock

– Many programmers tolerate “benign” races

– Racy programs risk obscure failures caused by memory model relaxations in

the hardware and the compiler

Data Race Detection

Oct 2011 Tutorial: Verifying Concurrent Programs

Data Race Detection

 Two popular approaches for datarace detection

 Lockset analysis [Savage et al. 97, ERASER]

– Lockset: set of locks held at a program location

– Method:

• Compute locksets for all locations in a program (statically or dynamically)

• Race: When there are conflicting accesses from program locations with

disjoint locksets

– Gives too many false warnings, since program locations may not be concurrent

• Provides opportunity for more precise analysis (discussed later)

 Happens-Before (HB) analysis

– Happens-Before order: a partial order over synchronization events [Lamport 77]

– Method:

• Observe HB order during dynamic execution

• Race: If conflicting accesses are not ordered by HB

– This is precise, but dynamic executions have limited coverage

• Provides opportunity for improving coverage over alternate schedules

(discussed later)

 21

Oct 2011 Tutorial: Verifying Concurrent Programs

Happens-Before Order

 Use logical clocks and timestamps to define a partial order called happens-before
on events in a concurrent system

 States precisely when two events are logically concurrent (abstracts away real time)

 Distributed Systems: Cross-edges from send to receive events

 Shared Memory Systems: Cross-edges represent ordering effects of synchronization

– Edges from lock release to subsequent lock acquire

– Long list of primitives that may create edges: Semaphores, Waithandles,
Rendezvous, System calls (asynchronous IO)

1

2

3

1

2

3

1

2

3

(0,0,1)
 Cross-edges from send events to

receive events

 (a1, a2, a3) happens before (b1, b2, b3)

 iff a1 ≤ b1 and a2 ≤ b2 and a3 ≤ b3

(2,1,0) (1,0,0)

(0,0,2) (2,2,2) (2,0,0)

(0,0,3) (2,3,2) (3,3,2)

[Lamport]

23

1. Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

The full-blown state-space can be large.

Good news: the order of independent
events does not affect the state that is
reached.

24

Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

The full-blown state-space can be large.

Good news: the order of independent
events does not affect the state that is
reached.

It suffices to explore only one representative
from each equivalence class.

Different orders of independent events
constitute an equivalence class
(Mazurkiewicz trace equivalence).

25

Partial Order Reduction (POR)

Thread 1 Thread 2

0,0,0

1,0,0 0,1,0

1,1,0 1,0,2

1,1,2

1,1,4 1,1,2

1,1,0

0,1,0

x=1

g=g+2

y=1

g=g*2

x=1

y=1

y=1

x=1

g=g+2 y=1

g=g+2

g=g*2 g=g+2

x=1 g=g*2

g=g*2

State label: (x,y,g)
Consider the following thread executions.

Good news: the order of independent
events does not affect the state that is
reached.

It suffices to explore only one representative
from each equivalence class.

Different orders of independent events
constitute an equivalence class
(Mazurkiewicz trace equivalence).

The full-blown state-space can be large.

26

POR in Model Checking

 POR in explicit-state model checking / stateless search
– Persistent sets, stubborn sets, sleep sets

 [Godefroid 1996], [Peled 1993], [Valmari 1990], …
– Dynamic POR (uses HB to derive precise conflict sets), Cartesian POR

 [Flanagan & Godefroid, POPL 2005], [Gueta et al, SPIN 2007]

 POR in Software Model Checkers
 SPIN [Holzmann], VeriSoft [Godefroid], JPF [Visser et al., Stoller et al.]

• Pioneering efforts on model checking concurrent programs

 POR in symbolic model checking / bounded model checking
– In BDD based model checking

 [Alur et al, 2001], [Theobald et al, 2003],…
– In SAT/SMT based BMC

 [Cook, Kroening, Sharygina, 2005],
 [Grumberg, Lerda, Strichman, Theobald, 2005],
 [Kahlon et al. 2006], [Wang et al. 2008], [Kahlon et al. 2009]

2. Exploiting Symmetry in MC

Counter Abstraction: collapse the above into

There is a lot of redundancy in Replicated Systems

<#A000: 3, #A001: 0, #A002: 0, #A003: 0, #A004: 0, #A005: 0, #A006: 0, #A007: 0, #A008: 0, #A009: 0, #A010: 0, #A011: 0,

 #A012: 0, #A013: 0, #A014: 0, #A015: 0, #A016: 0, #A017: 0, #A018: 0, #A019: 0, #A020: 0, #A021: 0, #A022: 0, #A023: 0,

 #A024: 0, #A025: 0, #A026: 0, #A027: 0, #A028: 0, #A029: 0, #A030: 0, #A031: 0, #A032: 0, #A033: 0, #A034: 0, #A035: 0,

 #A036: 0, #A037: 0, #A038: 0, #A039: 0, #A040: 0, #A041: 0, #A042: 0, #A043: 0, #A044: 0, #A045: 0, #A046: 0, #A047: 0,

 #A048: 0, #A049: 0, #A050: 0, #A051: 0, #A052: 0, #A053: 0, #A054: 0, #A055: 0, #A056: 0, #A057: 0, #A058: 0, #A059: 0,

 #A060: 0, #A061: 0, #A062: 0, #A063: 0, #A064: 0, #A065: 0, #A066: 0, #A067: 0, #A068: 0, #A069: 0, #A070: 0, #A071: 0,

 #A072: 0, #A073: 0, #A074: 0, #A075: 0, #A076: 0, #A077: 0, #A078: 0, #A079: 0, #A080: 0, #A081: 0, #A082: 0, #A083: 0,

 #A084: 0, #A085: 0, #A086: 0, #A087: 0, #A088: 0, #A089: 0, #A090: 0, #A091: 0, #A092: 0, #A093: 0, #A094: 0, #A095: 0,

 #A096: 0, #A097: 0, #A098: 0, #A099: 0, #A100: 0, #A101: 0, #A102: 0, #A103: 0, #A104: 0, #A105: 0, #A106: 0, #A107: 0,

 #A108: 0, #A109: 0, #A110: 0, #A111: 0, #A112: 0, #A113: 0, #A114: 0, #A115: 0, #A116: 0, #A117: 0, #A118: 0, #A119: 0,

 #A120: 0, #A121: 0, #A122: 0, #A123: 0, #A124: 0, #A125: 0, #A126: 0, #A127: 0, #A128: 0, #A129: 0, #A130: 0, #A131: 0,

 #A132: 0, #A133: 0, #A134: 0, #A135: 0, #A136: 0, #A137: 0, #A138: 0, #A139: 0, #A140: 0, #A141: 0, #A142: 0, #A143: 0,

 #A144: 0, #A145: 0, #A146: 0, #A147: 0, #A148: 0, #A149: 0, #A150: 0, #A151: 0, #A152: 0, #A153: 0, #A154: 0, #A155: 0,

 #A156: 0, #A157: 0, #A158: 0, #A159: 0, #A160: 0, #A161: 0, #A162: 0, #A163: 0, #A164: 0, #A165: 0, #A166: 0, #A167: 0,

 #A168: 0, #A169: 0, #A170: 0, #A171: 0, #A172: 0, #A173: 0, #A174: 0, #A175: 0, #A176: 0, #A177: 0, #A178: 0, #A179: 0,

 #A180: 0, #A181: 0, #A182: 0, #A183: 0, #A184: 0, #A185: 0, #A186: 0, #A187: 0, #A188: 0, #A189: 0, #A190: 0, #A191: 0,

 #A192: 0, #A193: 0, #A194: 0, #A195: 0, #A196: 0, #A197: 0, #A198: 0, #A199: 0, #A200: 0, #A201: 0, #A202: 0, #A203: 0,

 #A204: 0, #A205: 0, #A206: 0, #A207: 0>

Local States and Counter Abstraction

local state explosion

Combatting Local State Explosion in
Symbolic Exploration

Solution: omit zero-valued counters from global
states!

Symbolic Counter Abstraction: n threads, v local variables
 [Basler et al. CAV 09]

Computing Reachable Program States

Oct 2011 Tutorial: Concurrent Program Verification

3. Context-Bounded Analysis

 Recall

– The general problem of verifying a concurrent program (recursive procedures

with synchronization) is undecidable.

– We have seen various strategies to get around undecidability

• Exploiting patterns of synchronization

• Restricting synchronization & communication

• Ignoring recursion by (bounded) function inlining

 Another key idea: Bound number of context switches

– Context-bounded analysis of PDSs is decidable [Qadeer & Rehof, TACAS 05]

– Note: There can be recursion within each segment between context switches

– In practice, many bugs are found within a small number of context switches

– Implemented in tools: KISS, CHESS (Microsoft), …

31

Oct 2011 Tutorial: Concurrent Program Verification

CBA using Sequentialization

32

 [Lal & Reps, CAV 08]

 Sequentialization: Reduce CBA to sequential program analysis

Concurrent

Pc

Sequentialization

Reduction

Sequential

Ps

Context Bound

K

• Efficient reduction:

– PS has K times more global variables

– No increase in local variables

• Can borrow all the cool stuff from the sequential world

Oct 2011 Tutorial: Concurrent Program Verification

Sequentialization: From Concurrent to Sequential

33

 K = number of chances that each thread gets

 Guess (K-1) global states: s1 = init, s2, …, sK

T1 processes all contexts first, guesses states of T2

T2 goes next, using states of T1
At the end: Check the guesses, i.e. s”

1= s2 and s”
2 = s3, …

s1 s2 s3 …

(s1, l1) (s′
1,l2) (s2,l2) (s′

2,l3) (s3,l3) (s′
3,l4)

T1

(s′
1,m1) (s”

1,m2) (s′
2,m2) (s”

2,m3) (s′
3,m3) (s”

3,m4)
T2

Symbolic inputs

Oct 2011 Tutorial: Concurrent Program Verification

Sequentialization: From Concurrent to Sequential

34

 Pushes “guesses” about interleaved states into inputs

 T1 ⟶ T1
s and T2 ⟶ T2

s

 (T1 || T2) ⟶ (T1
s; T2

s ; Checker; assert(no_error))

Main idea:

Reduce control non-determinism to data non-determinism

4. Memory Consistency-based Analysis

o Interleaving model
 Partially ordered traces
 Context-switching, interleaved traces
 Is control-centric: Control induces data-flow

o Instead, consider a Memory Consistency (MC) model

 e.g. Sequential Consistency (SC), Total Store Order (TSO), ….
 MC model specifies rules under which a read may observe some write

o Data Nondeterminism in MC model

 Reason about read-write interference directly
 No need to have a scheduler!
 Is data-centric : data-flow induces control-flow
 Examples: Nemos, Checkfence, x86-TSO, Memsat, Staged Analysis
 Symbolic exploration using SAT/SMT solvers avoids explicit enumeration

of interleavings

Sequential Consistency (SC) based Verification

o Three steps
 Obtain an Interference Skeleton (IS) from (unrolled) Program

• Global read and write events and their program order

• Encoded as IS

 SC axioms for reads/writes in IS

• Quantified first-order logic formula

 Encode Property as a formula P

• data race, assertion violation, …

 Check IS P for satisfiability (using an SMT solver)

Bounded

[Sinha & Wang POPL 11]

Sequential Consistency Axioms

o Axioms of Sequential Consistency (SC)
 each read must observe (link with) some write
 read must link with most recent write in execution order

o Specified in typed first-order logic

 read r, write w: Access type

o Link Predicate: link (r,w)
 holds if read r observes write w in an execution
 Exclusive : link (r,w) => w’. link (r,w’)

o Must-Happen-before Predicate : hb (w,r)
 w must happen before r in the execution
 strict partial order

o These axioms are added to the Program precisely encoded using
reads/writes and program order

Example

c = true;

if (c) {

 *p = 0;
}
else …

c = false;

.......

p = 0;

Goal: Detect NULL pointer access violation

- so rp must be enabled
- en (rp) = (en (rc) /\ val(rc) = true)
en(rp) => en (rc) (Path conditions)
and, en(rp) => val (rc) = true (*)

Because en(rp), so link(rp,wp) ()

So, hb (wp,rp) ()

link (rc, wc1) link (rc, wc2) ()

Try link (rc, wc1)
 so, val (rc) = val(wc1) = false ()
 Contradicts with (*)

so, link (rc, wc2)
so, hb (wc2, rc) ()
Check () for rc: intruding write wc1

so, Add hb(wc1, wc2)

linearize to obtain a feasible trace

wp rp

rc

wc1 wc2

rc

wc1

wc2

wp

rp
…

Thread 1 Thread 2

wc1

wc2

rc

wp

rp

Oct 2011 Tutorial: Verifying Concurrent Programs

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

5. Motivating Example for Static Analysis

39

Consider all possible pairs of locations

where shared variables are accessed

(e.g. for checking data races)

Oct 2011 Tutorial: Verifying Concurrent Programs

Motivating Example: Lockset Analysis

40

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

Lockset Analysis: Compute the set of locks at location l

Here, lock plk is held in both locations.

Hence, these locations are simultaneously unreachable.

Therefore, there is no datarace.

Oct 2011 Tutorial: Verifying Concurrent Programs

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

Motivating Example: Synchronization Constraints

41

These locations are simultaneously unreachable

due to wait-notify ordering constraint.

Therefore, no datarace.

Oct 2011 Tutorial: Verifying Concurrent Programs

Motivating Example

 void Alloc_Page () {

 a = c;

 pt_lock(&plk);

 if (pg_count >= LIMIT) {

 pt_wait (&pg_lim, &plk);

 incr (pg_count);

 pt_unlock(&plk);

 sh1 = sh;

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 page = alloc_page();

 sh = 5;

 if (page)

 incr (pg_count);

 pt_unlock(&count_lock);

 end-if

 b = a+1;

 }

42

 void Dealloc_Page ()

 pt_lock(&plk);

 if (pg_count == LIMIT) {

 sh = 2;

 decr (pg_count);

 sh1 = sh;

 pt_notify (&pg_lim, &plk);

 pt_unlock(&plk);

 } else {

 pt_lock (&count_lock);

 pt_unlock (&plk);

 decr (pg_count);

 sh = 4;

 pt_unlock(&count_lock);

 end-if

 }

Data race?

NO, due to invariants at these locations

 pg_count is in (-inf, LIMIT) in T1

 pg_count is in [LIMIT, +inf) in T2

Therefore, these locations are not simultaneously reachable

How do we get these invariants?

By using abstract interpretation, model checking, …

Oct 2011 Tutorial: Verifying Concurrent Programs

Static Analysis of Concurrent Programs

 Intuitively, one can reason over a set of product control states

– Not all product (global) control states, but only the statically reachable states

– Transaction Graph:

• Each node is a statically reachable global control state,

• Each edge is a transaction, i.e. an uninterruptible sequence of actions by a

single thread

 Two main (inter-related) problems

– How to find which global control states (nodes) are reachable?

– How to find (large) transactions?

• Larger the transactions, smaller the number of interleavings to consider

 Refinement Approach [Kahlon et al. TACAS 09]

– At any stage, the transaction graph over-approximates the set of thread

interleavings for sound static analysis or model checking

– Iteratively refine the transaction graph by computing invariants

 43

Oct 2011 Tutorial: Verifying Concurrent Programs

Transaction Graph Example

p1

 p0

pos > SLOTS

full?

pos <= SLOTS

pos > 0

pos += 1

emp!

s2

s0

s1
repeat (forever){
 lock(posLock);
 while (pos > SLOTS){
 unlock(posLock);
 wait(full);
 lock(posLock);
 }
 data[pos++] := ...;
 if (pos > 0){
 signal(emp);
 }
 unlock(posLock);
}

p0,q0

p1,q0
p0,q1

p1,q1

t2

t1

t0

s1 s0

s2

Nodes where context

switches to be considered

44

Oct 2011 Tutorial: Verifying Concurrent Programs

Refining Transactions

 Initial Transaction Graph

– Make this as small as possible

– Use static partial order reduction (POR) to consider non-redundant interleavings

• Over control states only, but need to consider CFL-reachability

– Use synchronization constraints to eliminate statically unreachable nodes

• Recall: Static reachability wrt synchronization operations

• Precise analysis for nested locks, bounded lock chains, locks with wait-notify

 [Kahlon et al. 05, Kahlon 08, Kahlon & Wang 10]

 Iterative Refinement of Transaction Graph

 Repeat

– Compute invariants over the transaction graph using abstract interpretation

• Abstract domains: range, octagons, polyhedra [Cousot & Cousot, Miné. …]

– Use invariants to prove nodes unreachable, and simplify graph

– Re-compute transactions (POR, synchronization analysis)

Until transactions cannot be refined further.

 45

[Kahlon, Sankaranarayanan & Gupta, TACAS 09]

Oct 2011 Tutorial: Verifying Concurrent Programs

Application: Detection of Data Races

 Implemented in the CoBe (Concurrency Bench) tool

 Phase 1: Static Warning Generation

– Shared variable detection, Lockset analysis

– Generate warnings at global control states (c1, c2) when

• The same shared variable is accessed, at least one access is a write, and

• Locksets at c1 and c2 are disjoint

 Phase 2: Static Warning Reduction (for improved precision)

– Create a Transaction Graph, and generate sound invariants

• POR reductions, synchronization analysis, abstract interpretation

– If (c1, c2) is proved unreachable, then eliminate the warning

 Phase 3: Model Checking

– Otherwise, create a model for model checking reachability of (c1, c2)

• Slicing, constant propagation, enforcing invariants: lead to smaller models

• Makes bounded model checking viable

• Provides a concrete error trace

46

Oct 2011 Tutorial: Verifying Concurrent Programs

CoBe: Experiments

 Linux device drivers with known data race bugs

47

After Phase 1 (Warning Generation)

After Phase 2 (Warning Reduction)

After Phase 3 (Model Checking)

Linux Driver KLOC #Sh Vars #Warnings Time # After Time #Witness #Unknown

(sec) Invariants (sec) MC

pci_gart 0.6 1 1 1 1 4 0 1

jfs_dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 4 1 1 1 0

ctrace 1.4 19 58 7 3 143 3 0

autofs_expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 2 6 75 6 0

tty_io 17.8 1 3 4 3 11 3 0

ipoib_multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

decoder 2.9 4 256 5min 15 22min

bzip2smp 6.4 25 15 18 12 35

Oct 2011 Tutorial: Verifying Concurrent Programs

Static Analysis: Propagating Interference Effects

48

[Miné ESOP 2011]

Analyze each thread in isolation initially

Propagate “interference effects” until convergence

Interference domain respects synchronization

Oct 2011 Tutorial: Verifying Concurrent Programs

Astrée Analyzer

49

Oct 2011 Tutorial: Verifying Concurrent Programs

6. Thread-Modular Reasoning

 As we just saw, invariants play a key role in static analysis

 Compositional verification

– Proofs rules typically use inductive invariants

– Advantage: Avoids explicit reasoning over interleavings

 Some Basics

50

… …

51

Oct 2011 Tutorial: Verifying Concurrent Programs 52

Oct 2011 Tutorial: Verifying Concurrent Programs 53

Local Proofs [Cohen & Namjoshi CAV 07, CAV 08, CAV 10]

Can handle safety and liveness properties

Works well on many examples (Bakery, Peterson’s, Szymanski, …)

Oct 2011 Tutorial: Verifying Concurrent Programs 54

Uses well-known techniques from software model checking (predicate

abstraction refinement, CEGAR) for automating the proof rules

[Gupta et al. POPL 11, CAV 11]

Oct 2011 Tutorial: Verifying Concurrent Programs 55

Interference

considered

by thread i

Interference

generated by

other threads

Oct 2011 Tutorial: Verifying Concurrent Programs

 Introduction

 PDS-based Model Checking

 Theoretical results

 Static Verification Methods

 Reductions: Partial order reduction , Counter-based abstraction

 Bounding: Context-bounded analysis , Memory Consistency-based analysis

 Abstraction: Unbounded context analysis, Thread-modular reasoning

 Dynamic Analysis Methods

– Preemptive context bounding

– Predictive analysis

– Coverage-guided systematic testing

 Conclusions

Outline

56

PDS-based model checking, Static Verification

may not scale to large programs

Interest in Dynamic Analysis based on executions

Oct 2011 Tutorial: Verifying Concurrent Programs

Main

thread

Multithreaded C/C++ Program

Heap (storing shared objects)

T1 T 2 T3

Test
Input

POSIX Threads Library (Pthreads)

Rest of the Linux OS

User expectation:

If the program fails the given test,

the user wants to see the bug

The reality:

Even if the program may fail (under

a certain schedule),

the user likely won’t see it

Why?

Thread scheduling is controlled by

the OS and the Pthreads library

Testing Multi-threaded Programs

57

Tools: VeriSoft, Chess, Fusion, Inspect

Take control of the scheduler to

execute alternate schedules

Oct 2011 Tutorial: Verifying Concurrent Programs

x = 1;

 …

 …

 …

 …

 …

y = k;

State space explosion in all interleaved executions

x = 1;

 …

 …

 …

 …

 …

y = k;

…

n threads

k steps
 each

 Number of executions

 = O(nnk)

 Exponential in both n and k

– Typically: n < 10 k > 100

 Limits scalability to large

programs

Goal: Scale CHESS to large programs (large k)

Oct 2011 Tutorial: Verifying Concurrent Programs

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

x = 1;

 …

 …

 …

 …

 …

y = k;

CHESS: Preemptive Context Bounding (PCB)

 Terminating program with fixed inputs and deterministic threads

– n threads, k steps each, c preemptions

– Preemptions are context switches forced by the scheduler

 Number of executions <= nkCc . (n+c)!

 = O((n2k)c. n!)

 Exponential in n and c, but not in k

• Choose c preemption points

• Permute n+c atomic blocks

Many bugs found in a small

number of preemptions

[Musuvathi et al. PLDI 07, OSDI 08]

60

Formal

Verification

Motivation: Trace Based Verification

Concurrent program

Large
state-space

Alternate approaches

Collect shared

access footprint

Concurrent program Trace

Monitoring problem

Full formal verification is often intractable

Tractable and no false alarms.

Predictive Analysis problem

Larger set of interleavings is
explored.

Online/offline
monitoring of trace

Predict errors in
alternate interleavings

e.g. model checking

Will not talk about this

Next

Atomicity Violations

 Atomicity is a desired correctness criterion for concurrent programs.

– Non-interference on shared accesses from code residing outside and
inside an atomic region.

– Serializability is a notion that checks atomicity.

 A recent study shows 69% of concurrency bugs due to atomicity violations
[Lu et al. ASPLOS’08]

61

read x

read y

write x

write y read x

read y

write x

write y

read x

read y

write x

write y

Oct 2011 Tutorial: Verifying Concurrent Programs

Predictive Analysis (based on traces)

 Predictive analysis [Rosu et al. CAV 07, Farzan et al. TACAS 09, …]

– Run a test execution and log information about events of interest

– Generate a predictive model over the events, by relaxing some

ordering constraints

– Analyze the predictive model to check alternate interleavings of

these events

– Note: Does not cover events not observed in the trace

 Symbolic Predictive Analysis [Wang et al. FM 09, TACAS 10]

– Generate a precise predictive model by considering constraints due

to synchronization and dataflow

• No false bugs

– Symbolically explore all possible thread interleavings of events in

that trace, using an SMT solver

• Performs better than explicit enumeration

62

Oct 2011 Tutorial: Verifying Concurrent Programs

C program:

 multi-threaded,

 using Pthreads

Execution trace

Symbolic Predictive

Model

“assume(c)” means the

(c)-branch is taken

Predictive Model

63

Oct 2011 Tutorial: Verifying Concurrent Programs

 Build a SAT formula (in some quantifier-free first-order logic)

– F_program : a feasible thread interleaving of CTP

– F_property : e.g. an assertion is violated

 Solve using an SMT solver

 (F_program && F_property)

 Sat found a real error

 Unsat no error in any interleaving

 Improves precision over other predictive

 techniques, while providing coverage

 over all possible interleavings

 over the observed events.

Symbolic Predictive Analysis for Detection of Violations

64

Oct 2011 Tutorial: Verifying Concurrent Programs

Take a Step Back …

What is the root cause of a “concurrency bug”?
– Programmers often make, but fail to enforce, some implicit assumptions

regarding the concurrency control of the program

• Certain blocks should be mutually exclusive data race

• Certain blocks should be executed atomically atomicity violation

• Certain operations should be executed in a fixed order

 order violation

 To chase “concurrency bugs”, we would like to go

after the “broken assumptions”…
– Exhaustively test all concurrency control scenarios

– But not all possible thread interleavings

65

Oct 2011 Tutorial: Verifying Concurrent Programs

Coverage-Guided Systematic Testing

 Coverage Metric:

 HaPSet (History-aware Predecessor Set)

 How do we use this metric?

– Use a framework for systematically generating interleavings

• e.g. stateless model checking

– Keep track of HaPSets covered so far

– Instead of DPOR/PCB, use HaPSet to prune away interleavings

– Idea: Don’t generate an interleaving to test if the “concurrency control

scenario” (HaPSet) has already been covered

 Based on PSet (Predecessor Set)
– Psets were used for enforcing safe executions

 Jie Yu, Satish Narayanasamy

 A case for an interleaving constrained shared-memory multi-processor,

 International Symposium on Computer Architecture, 2009.

[Wang et al. ICSE 2011]

66

Oct 2011 Tutorial: Verifying Concurrent Programs

PSet (Predecessor Set) [Yu & Narayanasamy ISCA 09]

Thread 1 Thread 2 Thread 3

R2

W1

R1

R3

W2

R4

W3

{ W1 }

{ }

{ }

{ W1 }

{ W2 }

{ }

{ R3, R4 }

Psets are tracked

for statements in

code, not for events

PSet (statement):
the set of

immediately dependent

“remote” statements

PSet(W1) = {}

PSet(R1) = {}

PSet(R2) = {W1}

PSet(R3) = {W1}

PSet(R4) = {}

PSet(W2) = {R3,R4}

PSet(W3) = {W2}

67

Oct 2011 Tutorial: Verifying Concurrent Programs

HaPSet (extension)

1. Synchronization statements

– PSet ignored synchronizations, e.g. lock/unlock, wait/notify

– HaPSet considers synchronizations – essential for concurrency

2. Context & thread sensitivity

– PSet (effectively) treats a statement as a (file,line) pair

– HaPSet treats a “statement” as a tuple (file,line,thr,ctx), where

• thr = {local_thread, remote_thread} (exploits symmetry)

• ctx = the truncated calling context

68

[Wang et al. ICSE 2011]

Oct 2011 Tutorial: Verifying Concurrent Programs

Intuition: Why are HaPSets Useful?

Thread T1

 …

{

 if (p != 0)

 *(p) = 10;

}

Thread T2

 …

{

 p = &a;

}

…

{

 p = 0;

}

e2

e3

e1

e4

Observations:

#1. In all good runs, HaPSet[e3] = { }

#2. In all good runs, e2 is not in HaPSet[e4]

HaPSet(e1) = {}

HaPSet(e2) = {e1}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From the given run

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From all good runs

Need only 2 test runs to

capture all “good” runs

69

Oct 2011 Tutorial: Verifying Concurrent Programs

Why are HaPSets Useful?

Thread T1

 …

{

 if (p != 0)

 *(p) = 10;

}

Thread T2

 …

{

 p = &a;

}

…

{

 p = 0;

}

e2

e3

e1

e4

Observations:

#1. In all good runs, HaPSet[e3] = { }

#2. In all good runs, e2 is not in

HaPSet[e4]

HaPSet(e1) = {}

HaPSet(e2) = {e1}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From the given run

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {}

HaPSet(e4) = {e3}

From all good runs

HaPSet(e1) = {e2}

HaPSet(e2) = {e1,e4}

HaPSet(e3) = {e4}

HaPSet(e4) = {e3,e2}

From all (good and bad) runs

Steer search directly to a “bad” run

70

Oct 2011 Tutorial: Verifying Concurrent Programs

Does HaPSet Guided Search Work?

HaPSet

guided search

DPOR PCB

Thrift is a software framework by Facebook, for scalable cross-language

services development.

The C++ library has 18.5K lines of C++ code. It has a known deadlock.

71

Much faster than DPOR or PCB

Did not miss bugs in practice

(many other examples in paper)

Oct 2011 Tutorial: Verifying Concurrent Programs 72

Summary and Challenges

 Verifying Concurrent Programs

– Concurrency is pervasive, and very difficult to verify

– Active area of research

• Model checking, Static analysis, Testing/dynamic verification, …

• Precise analysis requires reasoning about synchronization

– Exploit programming patterns that are amenable for precise analysis

• Efficient analysis requires controlling complexity of interleavings

– Reductions, Implicit search, Abstractions, Compositional proofs

– Precision AND efficiency of analysis are needed for practical impact

• Applications guided by practical concerns

– Context-bounding, Coverage-directed testing

• Advancements in Decision Procedures (SAT/SMT) offer hope

 Hierarchy of Practical Challenges

– Multi-core systems, Many-core systems

– Distributed systems

– Great opportunity due to continuing growth of networked multi-core systems

