
Automatic Lock Insertion in Concurrent Programs
Vineet Kahlon, NEC Labs, Princeton, USA.

Abstract—Triggering errors in concurrent programs is a no-
toriously difficult task. A key reason for this is the behavioral
complexity resulting from the large number of interleavings of
operations of different threads. An even more challenging task is
fixing errors once they are detected. In general, automatically
synthesizing a correct program from a buggy one is a hard
problem. However for simple correctness properties that depend
on the syntactic structure of the program rather than its
semantics, automatic error correction becomes feasible. In this
paper, we consider the problem of lock insertion to enforce
critical sections required to fix bugs like atomicity violations. A
key challenge in lock insertion is that enforcing critical sections
is not the sole criterion that needs to be satisfied. Often other
correctness constraints like deadlock-freedom also need to be met.
Moreover, apart from ensuring correctness, another key concern
during lock insertion is performance. Indeed, mutual exclusion
constraints generated by locks kill parallelism thereby impacting
performance. Thus it is crucial that the newly introduced critical
sections be kept as small as possible. In other words, our goal
is lock insertion while meeting the dual, and often conflicting,
requirements of (i) correctness and (ii) performance. In this
paper, we present a fully automatic, provable optimal, efficient
and precise technique for lock insertion in concurrent code
that ensures deadlock freedom while attempting to minimize the
resulting critical sections.

I. INTRODUCTION

Detecting errors in concurrent programs is a notoriously dif-
ficult task. A key reason for this is the behavioral complexity
resulting from the large number of interleavings of different
threads. An even more challenging task is fixing errors once
they are detected. In general, automatically synthesizing a
correct program from a buggy one is hard. However for
simple correctness properties that depend on the syntactic
structure of the program rather than its semantics, automatic
error correction becomes feasible. An example is the insertion
of mutexes in order to enforce critical sections to fix data
races or atomicity violations. Inserting mutexes typically does
not require reasoning about program semantics but relies
merely on aliasing information in order to identify sections of
code with shared variable accesses that need to be executed
atomically.

In this paper, we consider the problem of lock insertion to
enforce critical sections required to fix bugs like atomicity
violations. This can be accomplished in a trivial manner
by simply encapsulating the desired regions of code within
lock/unlock statements. However, enforcing critical sections is
often not the sole criterion to be satisfied during lock insertion.
Indeed, adding mutexes may introduce new deadlocks. Thus a
key goal is to guarantee deadlock-free lock insertion, i.e., no
new deadlocks are introduced.
Apart from ensuring correctness, another key concern dur-
ing lock insertion is performance. Mutual exclusion constraints
generated by locks kill parallelism thereby impacting perfor-
mance. Thus it is critical that the newly introduced critical
sections be kept as small as possible.

It is worth mentioning that there exist techniques in the
literature [4], [12], [6], [1], [2] for lock insertion in programs
without prior locks. However, this problem is easier than
the one we consider in this paper, as for programs without
locks deadlocks can be avoided simply by acquiring all locks
in a pre-defined order. One way to handle lock insertion
in programs with prior locks would be to first remove all
pre-existing locks and then leverage existing lock insertion
techniques. This approach, however, presents many practical
obstacles.
First, before removing existing locks we would have to
identify all pairs of mutually atomic segments of the form
(s1, s2), where atomic segments s1 and s2 are guarded by
the same lock. However, lock/unlock APIs typically take
pointers to locks as parameters and so a whole program
points-to analysis would be required in order to determine
the locks guarding segments s1 and s2. Moreover, since lock
pointers often point to different locks in different function
calling contexts, this points-to analysis needs to be context-
sensitive. However, it is well known that scaling a precise
context-sensitive points-to analysis for large realistic programs
comprised of multiple code modules is a non-trivial task.
Moreover, even after aliases have been computed precisely,
it is not enough to enumerate all pairs of the form (s1, s2),
where s1 and s2 are guarded with the same lock. This is
because it is often the case that locks are re-used (to reduce
their number in certain applications) so that segments s1 and
s2 may be guarded with the same lock even though they may
not execute in parallel. Thus in order to isolate all pairs of
segments that are truly mutually atomic, we would need to
(1) understand the reasons for introducing prior locking state-
ments, i.e., be somewhat knowledgeable about the program’s
semantics which is not feasible for large applications, and (2)
need at least a whole program MHP (may-happens-in-parallel)
analysis to determine whether s1 and s2 can execute in parallel
- expensive for large programs. Finally, we may end up having
a large number of mutually atomic pairs of segments impacting
scalability of lock insertion.
On the other hand, it is highly desirable that our lock
insertion technique avoids a whole program analysis and
restricts the analysis (including the context-sensitive points-to
analysis) to only the few modules requiring code modification,
i.e., where bugs have been detected. This is precisely what
our lock insertion technique accomplishes. An important side
benefit is that it ensures scalability of our analysis.
To sum up, our goal is a localized analysis for lock

insertion meeting the dual constraints of (i) correctness and
(ii) performance. These constraints are often conflicting in
nature. Indeed, during lock insertion one of the key properties
that we want to ensure is deadlock-freedom while keeping
the critical sections as small as possible. If either one of
these two requirements is dropped, then the problem is greatly
simplified. For instance, if we give up the requirement of
deadlock freedom then given a pair of code segments s1 and s2

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

1616978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 16978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

to be executed in a mutually atomic fashion, it suffices to insert
lock (unlock) statements for a new lock l, immediately before
(after) the two segments in both threads. Clearly this induces
minimal critical sections but does not guarantee that no new
deadlocks have been introduced. Similarly, if the requirement
of optimality is dropped then it suffices to introduce lock
(unlock) statements for a new lock l at the last lock free states
before (after) the segments in either thread. Such a solution
ensures that no new deadlocks are introduced but may not be
optimal.

Given a pair of mutually atomic code segments s1 and s2 in
two different threads T1 and T2, respectively, of an n-thread
program, we present a lock insertion strategy that involves a
series of local moves that re-locates the newly inserted lock
statements in the individual threads T1 and T2 in a dovetailed
fashion till we achieve deadlock freedom. The interesting, and
somewhat surprising, result is that our objective of minimizing
the newly introduced critical sections which is inherently
global in nature can be achieved via purely local moves of the
locking statements in the individual threads. This is crucial as
it allows our strategy to be compositional in nature, i.e., based
only on thread local reasoning, thereby ensuring scalability.

While our lock insertion strategy is applicable to programs
with arbitrary locking patterns, for implementation purposes
we consider the special case of programs with nested locks.
The main motivation for this is that almost all lock usage in
real life programs is nested. Additionally, nested locks offer a
key advantage in that they allow us to leverage the framework
of acquisition histories [10] to formulate a provable efficient
and compositional (thread local) analysis for lock insertion.
We demonstrate the efficacy of our technique on a broad
range of benchmarks.

II. PROGRAM MODEL

We consider concurrent imperative programs comprised of
threads that communicate using shared variables and synchro-
nize with each other using standard primitives such as locks
and rendezvous. Formally, we define a concurrent program
CP as a tuple (T ,V ,R, s0), where T = {T1, ..., Tn} denotes
a finite set of threads, V = {v1, ..., vm} a finite set of
shared variables and synchronization objects with vi taking
on values from the set Vi, R the transition relation and s0

the initial state of CP. Each thread Ti is represented by the
control flow graph of the sequential program it executes, and
is denoted by the pair (Ci, Ri), where Ci denotes the set
of control locations of Ti and Ri its transition relation. A
global state s of CP is a tuple (s[1], ..., s[n], v[1], ..., v[m]) ∈
S = C1 × ...× Cn × V1 × ... × Vm, where s[i] represents the
current control location of thread Ti and v[j] the current value
of variable vj . The global state transition diagram of CP is
defined to be the standard interleaved parallel composition of
the transition diagrams of the individual threads.

III. LOCK INSERTION PROBLEM

The goal of lock insertion is to remove data races or, more
generally, atomicity violations by enforcing critical sections
that envelope regions of code to be executed atomically. These
critical section may comprise multiple regions of contiguous
code that we refer to as atomic segments. Due to branching,

T1(){
0a: ...
1a: while(sh > 0){
2a: sh++;
3a: ...
4a: }
}

T2(){

0b: ...
1b: sh = sh + 2;
2b: ...
}

Fig. 1. Split Critical Section

loops and recursion, a code segment of thread T is, in general,
defined by a sub-graph of the CFG of T .
As an example, consider the threads T1 and T2 shown in
Fig. 1 accessing shared variable sh . In thread T1, due to
the presence of a loop the critical section is broken up into
two segments, one comprising the statements 1a and 2a and
the other comprising the statement 4a . Note that we need
to include 4a in the critical section because the condition of
the while loop accesses the shared variable sh and we need
to re-acquire the lock guarding access to 1a (in case it was
released within the loop body) if we re-enter the loop body.
The critical section in thread T2, however, consists of only one
atomic segment, i.e., 1b .
We define an atomic segment of thread T as the set of
control locations occurring in a directed acyclic graph (DAG)
whose (i) roots, i.e., nodes of in-degree zero, define the control
locations of T marking the start of the segment, (ii) leaves
define control locations marking the ends of the segment, and
(iii) the successors of each location c in the segment are the
non-backedge (as defined by some dfs ordering) successors of
c in the CFG of T . We use [(r1, ..., rp), (l1, ..., lq)] to denote an
atomic segment with roots r1, ..., rp and leaves l1, ..., lq . For
example, [1a, 2a] (or more precisely [(1a), (2a)]) denotes an
atomic segment of T1 in Fig. 1.
Whether a region of code in a thread is an atomic segment
depends on the values of program counters of other threads.
Indeed regions of code in different threads accessing the same
shared variable need to be executed atomically relative to
each other, while regions of code accessing different shared
variables need not. This leads to the notion of mutually atomic
segments.

Defi nition (Mutually Atomic Segments). We say that code
segments s1 and s2 of threads T1 and T2, respectively, are
mutually atomic if there does not exist a reachable global
state of the given concurrent program with T1 and T2 at
control locations c1 and c2 occurring along segments s1 and
s2, respectively.

The lock insertion problem is then defined as follows.

Lock Insertion Problem. Let P = {(s1
1, s

2
1), ..., (s

1
k, s2

k)} be
a set of pairs (s1

j , s
2
j) of atomic segments s1

j and s2
j . Identify

locations in threads T1, ..., Tn comprising the given concurrent
program to insert locks that guarantees the following
1) for each j, s1

j and s2
j are mutually atomic,

2) no new deadlocks are introduced, and
3) minimality of the newly introduced critical sections, as
determined by the set of program statements in the critical
sections.

Conditions 1, 2 and 3 are collectively referred to as Lock
Insertion Requirements. It is worth pointing out that our notion
of minimality for critical sections is based on set inclusion as

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

171717

opposed to the number of program statements comprising the
critical section. This is the best one can hope for.

Consistency Invariant. In Fig. 1, we observe that the critical
section in T1, was ‘split’ into the segments [1a, 2a] and
[4a, 4a] to maintain the consistency invariant that an un-
acquired lock cannot be released (in case we re-enter the
loop). We therefore assume that the atomic segments in the
specification of the given lock insertion problem instance
satisfy the following natural condition.

Consistency Invariant. Let P = {(s1
1, s

2
1), ..., (s

1
k, s2

k)} be a
lock insertion problem instance, where for each j, s1

j and s2
j

are the desired mutually atomic segments. Then if a loop head
(tail) occurs in an atomic segment sm

j comprising a critical
section cs of thread Ti then its matching loop tail (head)
also occurs in an (possibly the same) atomic segment sm′

j′

comprising cs.

IV. LOCK INSERTION

We start by observing that it suffices to formulate the lock
insertion procedure for the case where we are given a single
pair (CS1, CS2) of mutually atomic segments, where CS1

and CS2 are atomic segments in two different threads. The
case where we are given multiple mutually atomic segment
pairs can be handled by repeatedly applying the lock insertion
procedure.
For ease of exposition, we start with the assumption that the
threads are specified as straight line code with the general case
being considered in sec V. The straight-line case suffices to
show case the key ideas behind our lock insertion technique.
Let the given concurrent program be comprised of the
threads T1, ..., Tk and let atomic segments CS1 and CS2 be-
long to threads T1 and T2. Suppose that threads T1 and T2 are
defined via the sequences of control locations T1 : c0, ..., cn

and T2 : d0, ..., dm, respectively.
For the case where thread T is specified as the straight-line
code T : d0, ..., dp, a segment s defining a critical section of T
can be identified uniquely by its start and end locations di and
dj , respectively, where i < j. We denote such a segment by
s = [di, dj], where [di, dj] denotes the set of control locations
occurring between (and including) di and dj along T .
Let the segments s1 and s2 of threads T1 and T2 be denoted
by s1 = [ci, cj] and s2 = [di′ , dj′], respectively, where i < j
and i′ < j′. Our goal is to introduce locking and unlocking
statements lock(l) and unlock(l) for a new lock l, respectively,
such that the lock insertion requirements are met.

Notation. Before proceeding further, we fix some notation.
The locking statements lock(l) and unlock(l) inserted in threads
T1 and T2 are abbreviated as l1 and l2 whereas the unlocking
statements are abbreviated as u1 and u2, respectively. If l1 (l2)
and u1 (u2) are added immediately before cp (dp′) and imme-
diately after cq (dq′), respectively, then the resulting critical
sections, i.e., the set of statements between (and including) l1
(l2) and u1 (u2) are denoted by �cp, cq�l (�dp′ , dq′�l).
During lock insertion, two sets of decisions need to be
made:

• Lock Statement Insertion: determining locations of
insertion of the lock statements l1 and l2, and

• Unlock Statement Insertion: determining locations of
insertion of the matching unlock statements u1 and u2.

T1(){

...
c0: lock(m);
...
c1: lock(n);
...
c2: unlock(n);

// begin critical section
local1 = account_value;
local1 += increment;
account_value = local1;
//end critical section

c3: unlock(m);
...
}

T2(){

d0: lock(n);
d1: ...

// begin critical section
local2 = account_value;

d2: lock(m);
// access another account
local2 += other_account_value;

d3: unlock(m);
account_value = local2;
// end critical section

d4: unlock(n);
}

Fig. 2. Lock Insertion Example.

A. Insertion of Unlocking Statements
While determining locations where to insert the locking
statements is not straightforward, we observe that since un-
lock statements are non-blocking they cannot participate in
a deadlock. It follows that in order to enforce the mutually
atomicity of the segments [ci, cj] and [di′ , dj′], it suffices to
insert the unlocking statements u1 and u2 immediately after
cj and dj′ , respectively. Formally,

Theorem 1 (Unlock Insertion). Let [ci, cj] and [di′ , dj′] be
segments of threads T1 and T2, respectively, defining mutually
atomic segments to be enforced. Let �ca, cb�l and �da′ , db′�l,
where [ci, cj] ⊆ �ca, cb�l and [di′ , dj′] ⊆ �da′ , db′�l, be critical
sections enforcing mutually atomicity of [ci, cj] and [di′ , dj′]
that also satisfy the lock insertion requirements. Then cb = cj

and db′ = dj′ .

B. Insertion of Locking Statements
We now turn to the more interesting problem of inserting
the locking statements l1 and l2. If guaranteeing deadlock
freedom were not a requirement then inserting the statements
l1 (l2) immediately before locations ci (di′) in thread T1 (T2),
suffices. Clearly, the resulting critical sections �ci, cj�l and
�di′ , dj′�l satisfy lock insertion requirement 1. Moreover, since
by requirement 1, [ci, cj] ([di′ , dj′]) must belong to any critical
section enforced by our newly inserted lock/unlock statements
in thread T1 (T2), we see that �ci, cj�l and �di′ , dj′�l would
indeed be minimal (based on set inclusion) critical sections
potentially satisfying the lock insertion requirements.
However, inserting l1 and l2 immediately before ci and

di′ , respectively, could introduce new deadlocks. Consider,
for example, the concurrent program C comprised of threads
T1 and T2 with the desired critical sections shown in fig 2.
The running of our lock insertion procedure is demonstrated
on the CFGs of T1 and T2 in fig 3. Here the original
lock/unlock statements have been shown as black circles while
the mutually atomic segments (CS1, CS2) to be enforced as
rectangles. Let CS1 = [ci, cj] and CS2 = [di′ , dj′]. Inserting
l1 and l2 (shown as white circles) immediately before ci and di′

results in the threads shown in Fig. 3(a). Note that at location
c3 thread T1 holds lock m which was acquired at c0, whereas
at location d2, thread T2 holds lock l2 acquired at d1. Thus
at global control location (c3, d2) of C, T1 holds lock m and
is waiting at acquire l, whereas T2 holds l and is waiting to
acquire m. This cyclic dependency creates a deadlock.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

181818

Thread T1 move. Recall that our goal is to guarantee deadlock
freedom while ensuring minimality of the newly introduced
critical sections. Towards that end, we started by inserting
the locking statements l1 and l2 immediately before ci and
di′ , respectively, even if the newly synthesized threads have
deadlocks. If no new deadlocks are introduced then we are
done. If there exist newly introduced deadlocks, they must
involve at least one of l1 or l2. In our case, c3 : l1 can
potentially be involved in a deadlock but d1 : l2 cannot. Thus
in order to guarantee deadlock freedom, we need to re-locate
the locking statement l1. We observe that l1 cannot be moved
forward as that would cause it to enter the critical section CS1

which we are supposed to enforce. Thus l1 can only be moved
backwards along T1.
In order to ensure that l1 does not participate in a deadlock
we move l1 backwards along T1 till we encounter a control
location where it can no longer be involved in any deadlock.
In order to identify this location, we recall that two conditions
need to be satisfied in order for ck : l1 to be involved in a
deadlock with a statement dk′ : lock(m) of thread T2.

1) Reachability: (ck, dk′) are pairwise reachable, and
2) Cyclic Dependency: locks m and l are held at ck and

dk′ , respectively

Thus in order to identify the location where to introduce l1

in thread T1, we keep moving it backwards starting from ci

till we encounter a control location ck where at least one of
the above conditions is falsified. By condition 2, we see that
if ck : l1 deadlocks with location dk′ of T2, lock l must be
held at dk′ . Thus it follows that the lock(l) statement in T1 can
deadlock only with a locking statement in the critical section
[l2, u2] in thread T2. Motivated by the above observation, we
define L[l2,u2] to be the set of locks p such that a statement of
the form lock(p) occurs along [l2, u2].
Let ck, where k ≤ i be the last control location occurring

before ci along Ti such that (i) ck violates condition 1 or 2,
and (ii) for each r ∈ [k + 1..i], cr does not violate any of
the conditions 1 or 2. Then we insert l1 immediately before
ck. Note that, by our construction, ck is the first location
encountered by traversing backwards along T1 starting at ci

where a lock(l) statement can be inserted without it being
involved in a deadlock. In our example, in order to remove
all potential deadlocks involving l1 we move it to location c4

(see Fig. 3(b)).

Deadlock Check. Having removed the deadlocks involving l1,
we check whether l2 is involved in a deadlock. If not then the
procedure terminates.

Thread T2 move. If, on the other hand, l2 is involved in a
deadlock we remove deadlocks involving l2 using the same
procedure as above - the only difference being that we now
consider the deadlocks involving l2 and the locks acquired
along [l1, u1]. We keep moving l2 backwards along T2 till we
reach a control location of T2 where l2 cannot be involved in
a deadlock. In our example, we see that even though d1 : l2

couldn’t be involved in a deadlock in the original program
Fig. 3(a), in the new program Fig. 3(b) gotten via enlargement
of the critical section induced by lock l in T1, d1 : l2 can
potentially deadlock with location c1. In order to remove
deadlocks involving l2 we re-locate it back to location d4.

Dovetailing. Note, however, that as we move l2 backwards
along T2, we enlarge the critical section [l2, u2]. A key

consequence is that the enlarged critical section may contain
new locking statements which may now induce new deadlocks
with l1. In order to remove these deadlocks we again repeat
the above procedure by moving l1 further backwards till it
cannot be involved in a deadlock.
The whole process of removing deadlocks involving state-
ments l1 and l2 in a dovetailed fashion, wherein the state-
ments l1 and l2 are re-located backwards, is continued till all
deadlocks involving l1 and l2 are removed. This yields us a
deadlock free insertion of l1 and l2 in T1 and T2, respectively
(see Fig. 3(c)).
A formal description of the lock insertion procedure is
formulated as Alg. 1.

Algorithm 1 Lock Insertion for Straight-line Code

1: Input: Threads T1, ..., Tn specified as straight-line code,
with T1 and T2 defined by the sequences c0, ..., cn and
d0, ..., dm, respectively, and mutually atomic segments
s1 = [ci, cj] and s2 = [di′ , dj′] of T1 and T2, respectively.

2: Insert u1 and u2 in threads T1 and T2 immediately after
cj and dj′ , respectively. (Insertion of Unlock
Statements)

3: Insert l1 and l2 in threads T1 and T2 immediately before
ci and di′ , respectively.

4: repeat
5: if l1 can be involved in a potential deadlock then
6: Move l1 backward along T1 till we reach a control

location c′ of thread T1 such that for each lock
m ∈ L[l2,u2]: either (i) m is not held at c′, or (ii)
for each location d′ in critical section [l2, u2] where
m is acquired, c′ and d′ are not pairwise reachable.

7: end if
8: if l2 can be involved in a potential deadlock then
9: Move l2 backward along T2 till we reach a control

location d′ of thread T2 such that for each lock
m ∈ L[l1,u1]: either (i) m is not held at d′, or (ii)
for each location c′ in critical section [l1, u1] where
m is acquired, c′ and d′ are not pairwise reachable.

10: end if
11: until there do not exist any deadlocks involving l1 or l2

C. Meeting Lock Insertion Requirements
We now show the somewhat surprising result that simply
by making local moves of l1 and l2 in a dove-tailed manner
as encoded in Alg. 1, all three of our (global) lock insertion
requirements are met.

Enforcement of Mutual Atomicity. Since Alg. 1 always
maintains the invariants that [ci, cj] ⊆ [l1, u1] and [di′ , dj′] ⊆
[l2, u2] we see that the mutual atomicity of [ci, cj] and [di′ , dj′]
is enforced.

Deadlock Freedom. The termination condition (step 11) of
Alg. 1 ensures that there do not exist deadlocks involving l1

or l2 and since the newly introduced deadlock must involve at
least one of these lock statements we see that requirement 2
is also met.

Optimality. The most interesting part is to show that require-
ment 3 is met, i.e., the critical sections identified by Alg. 1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

191919

CS1

u1

unlock(m)

unlock(n)

u1

unlock(n)

unlock(m)

u1

CS1 CS1

u1

unlock(m)

u1

unlock(n)

CS2CS2

c0 : lock(m)

c1 : lock(n)

c2 : unlock(n)

d0 : lock(n)

d2 : lock(m)

d3 : unlock(m)

c3 : l1

d1 : l2

u2

c1 : lock(n) c1 : lock(n)d0 : lock(n)

c2 : unlock(n)

c0 : lock(m) c0 : lock(m)

c2 : unlock(n)

d0 : lock(n)

d2 : lock(m) d2 : lock(m)

d3 : unlock(m) d3 : unlock(m)

c4 : l1 c4 : l1

d1 : l2

d4 : l2

CS2

(a) (b) (c)

Fig. 3. Lock Insertion Procedure

are optimal. The proof is provided in the full version of the
paper [?].

Optimality Result. Let [ca, cb] and [da′ , db′] be critical sec-
tions satisfying the lock insertion requirements. Then [l1, u1] ⊆
[ca, cb] and [l2, u2] ⊆ [da′ , db′], where [l1, u1] and [l2, u2]
are the critical sections in threads T1 and T2, respectively,
identified by Alg. 1.

Proof.
We prove the result by contradiction. If possible, suppose
that [ca, cb] is a proper subset of [l1, u1]. As discussed before,
the fact that unlock statements are non-blocking combined
with the optimality requirement imply that u1 = cb and
u2 = db′ . Then from the assumption that [ca, cb] is a proper
subset of [l1, u1] we can deduce that l1 occurs before ca along
T1.

For r ≥ 0, let l
r
1 and l

r
2 be the locations of the lock(l)

statements in threads T1 and T2 after the rth iteration of Alg. 1.
Suppose that k is the largest index for which l

k
1 belongs to the

interval [ca, cb] and l
k
2 belongs to the interval [ca′ , cb′]. At the

(k+1)st iteration, either l1 moves out of the interval [ca, cb] or
l2 moves out of the interval [ca′ , cb′]. For definiteness assume
that it is the former.

To prove our claim we now show that l1 cannot move out
of the interval [ca, cb]. Indeed for it to move out, l1 needs to
be propagated backwards along T1 till it crosses ca. At the
time of crossing ca, T1 must be holding a lock m such that
(i) the last statement to acquire m occurs before ca along T1,
and (ii) there exists a lock acquisition statement for m in the
critical section [lk2 , uk

2]. Let Lca
be the set of locks held at ca

that are also acquired in the critical section [lk2 , u
k
2]. Clearly

Lca
�= ∅. Furthermore, there exists a lock m′ ∈ Lca

such
that (ca, dm′) are pairwise reachable for some statement dm′

acquiring lock m′ in [lk2 , uk
2]. If that is not the case then l

k+1
1

would not cross ca contradicting the maximality of k. However
this creates a deadlock involving locations ca and dm′ of T1

and T2, respectively. This is because at ca, thread T1 holds lock
m′ and is waiting to acquire lock l (recall that, by definition,
ca is a lock(l) statement), whereas at dm′ thread T2 is holding

lock l (as dm′ lies in the critical section [lk2 , uk
2]) and waiting

to acquire m′. Recall that dm′ ∈ [lk2 , u
k
2] ⊆ [da′ , db′]. Thus

[ca, cb] and [da′ , db′] do not meet lock insertion requirement 2
contradicting our hypothesis.
Similarly we may show that [l2, u2] ⊆ [da′ , db′].

Note that our notion of minimality for critical sections is
based on set inclusion as opposed to the number of program
statements comprising the critical section. This is the best one
can hope for.

V. LOCK INSERTION: THE GENERAL CASE

Acyclic CFGs We start by considering the case where the
CFGs of threads are acyclic. Here each atomic segment
is a DAG (directed acyclic graph) with possibly multiple
roots (vertices of in-degree zero) and possibly multiple leaves
(vertices of out-degree zero). Thus we assume that the input
to the procedure is a pair of mutually atomic segments s1 =
[(ci1, ..., cik), (cj1, ..., cjp)] and s2 = [(di′1, ..., di′k′), (dj′1,
..., dj′p′)], wherein the first (second) tuple in each segment
represents the roots (leaves) of the segment. Generalization
of Alg. 1 to DAGs requires little modification as the notion
of backwards traversal required for steps 6 and 9 is well
defined. The core idea of lock insertion remains the same as for
straight-line code. We start by inserting the unlock statement
u1 immediately after the control locations cj1, ..., cjp and the
unlock statement u2 immediately after the control locations
dj′1, ..., dj′p′ (step 3 of Alg. 2). This step is analogous to
the case of straight-line code, the only difference being that
instead of a unique leaf node there are multiple leaves. Again,
as for straight-line code, the locking statements l1 and l2 are
inserted (step 4) immediately before the locations ci1, ..., cik

and the locations di′1, ..., di′k′ , respectively.
As before, in order to remove deadlocks involving l1 and

l2 we propagate these statements upwards along the CFGs of
the respective threads (steps 5-10 of Alg. 2) via Alg. 3.
In propagating the lock statements l1 and l2 upwards along
the DAGs, there are two main differences from the straight-
line case. First due to branching, we may encounter the same

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

202020

control location multiple times. To track the control locations
that have already been visited we maintain a set Visited and
insert a check (step 10 of Alg. 3) to prevent repeat processing.
Secondly, we may encounter control locations with multiple
predecessors in which case we need to propagate the locking
statement backwards along multiple branches (steps 9-17 of
Alg. 3).

Cyclic CFGs. In the general case, due to the presence of cycles
in the CFG (caused by loops) the notion of backwards traversal
is not well-defined. However, we can reduce the problem of
lock insertion for cyclic CFGs to the acyclic case. Towards that
end, we leverage the consistency assumption (Sec. III) wherein
if a loop head (tail) occurs in an atomic segment comprising a
critical section then the matching loop tail (head) also occurs
in some (possibly the same) segment comprising the same
critical section.
In order to convert a cyclic CFG into an acyclic CFG
we traverse the CFG CFGi of thread Ti starting at its
entry location in a depth-first manner and identify a set of
back-edges. These back-edges transit from tails of loops to
their matching heads. Deleting these back-edges results in
an acyclic CFG which we denote by CFG′

i. Next we run
Alg. 2 on CFG′

i, the only difference being that if during the
backward traversal of a newly introduced locking statement we
include a loop tail lt for the first time in the critical section
induced by the newly introduced locking statements, then in
order to preserve the consistency invariant we also need to
include the matching loop head in the critical section (as was
discussed in Sec. 3). Thus if lh is the matching loop head for
lt and if lh does not already exists in the an atomic segment in
the current specification then we generate a new instance of
the lock insertion problem by inserting the atomic segment
comprising the loop head lh in the existing set of atomic
segments (steps 12-15 of Alg. 3).

Algorithm 2 Lock Insertion for General Programs

1: Input: Threads T1 and T2 specified it terms of
their respective CFGs and pairs of segments s1 =
[s1

1, s
2
1],, sk = [s1

k, s2
k], where si

j is an atomic segment
of Ti specified as a DAG that is a subgraph of the CFG
CFGi of Ti.

2: Assign a new lock li to segment pair si.
3: Insert unlock statements u

i
1 and u

i
2 for lock li in threads

T1 and T2 immediately after the leaves of s
1
i and s2

i in T1

and T2, respectively. (Insertion of Unlock Statements)
4: Insert lock statements l

i
1 and l

i
2 for lock li in threads T1

and T2 immediately before the roots of s1
i and s2

i in T1

and T2, respectively.
5: for each lock li, where i ∈ [1..k] do
6: repeat
7: Remove deadlocks involving l

1
i via Alg. 3

8: Remove deadlocks involving l
2
i via Alg. 3

9: until there do not exist any deadlocks involving l
1
i and

l
2
i

10: end for

VI. IMPLEMENTATION

From Alg. 1, we see that the key step in lock insertion
involves deciding, in an efficient manner, the multiple reach-

Algorithm 3 Remove Deadlocks

1: Input: Segments si1 = [s1
i1, s

2
i2], ..., siki

= [s1
iki

, s2
iki

],
associated with the same lock li and thread Tm, where
m ∈ [1..2].

2: Output: Possible re-location of lock(l) statements in
thread Tm in order to guarantee absence of deadlocks
involving l

m
i , i.e., the lock(li) statement in Tm.

3: for each pair sij = [s1
ij , s

2
ij] do

4: Set Worklist to the locations of all the lock(li) state-
ments enforcing sm

ij in Tm that are involved in a
deadlock

5: V isited = ∅
6: while Worklist �= ∅ do
7: Remove a location loc from Worklist
8: if there exists a lock m held at loc that is acquired

at a control location loc’ in the segment sk′

ij , where
k �= k′, and (loc, loc′) are pairwise reachable then

9: for each predecessor pred of loc do
10: if pred �∈ V isited then
11: Add pred to Worklist and to V isited.
12: if pred is a loop tail lt that is not included

in any of the segments sm
ir , with r ∈ [1..ki]

then
13: Construct a new segment seg comprising

only of the loop head lh that matches lt
14: Add the new segment pair sp = [sp1, sp2],

where spk = seg and spk′

= sk′

ij with k �=
k′, and associate lock li with it

15: end if
16: end if
17: end for
18: else
19: Insert lock(li) immediately before loc
20: end if
21: end while
22: end for

ability queries that are generated (via steps 6 and 9) as we
traverse backwards along the CFGs of threads in the given
program. However, in general, reachability of a pair of control
locations in threads is not decidable. The strategy that is
often used to bypass the decidability barrier is to consider
reachability in the presence of synchronization primitives like
locks and wait/notify only and ignore data variables. This is
referred to as static reachability. We observe that relying on
static reachability instead of reachability guarantees soundness
of our procedure.

A. Nested Locks
Alg. 1 formulates an optimal procedure for lock insertion for
concurrent programs with arbitrary locking patterns. However,
in real world applications most lock usage is nested [10],
where we say that a concurrent program accesses locks in
a nested fashion if along each computation of the program a
thread can only release the last lock that it acquired along
that computation and that has not yet been released. This
has two main implications. First, it is known that while static
reachability is undecidable for arbitrary locking patterns it not

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

212121

only becomes decidable for nested locks but efficiently so [10].
Thus a key advantage of nestedness is that it enable us to
leverage efficient procedures for deciding static reachability
thereby yielding a fast and effective lock insertion procedure.
Secondly, if a program has nested locks to start with,
we would like to preserve this nestedness. Our general lock
insertion procedure, however, may violate nestedness. We
therefore formulate a modified procedure that ensures that
nestedness is preserved in the newly synthesized program.
Note that this procedure still guarantees optimality of newly
introduced critical sections if we restrict ourselves to the space
of programs with nested locks only.

B. Review of Acquisition Histories
We start by reviewing the notion of acquisition histories
[10] that have been used for efficiently reasoning about static
reachability for nested locks.

Defi nition (Acquisition History) For a lock l held by thread
T at a control location d, the acquisition history of l along a
local computation x of T leading to c, denoted by ahT (c, l, x),
is the set of locks that have been acquired (and possibly
released) by T since the last acquisition of l by T in traversing
forward along x to c.

Acquisition histories enable us to formulate a necessary and
sufficient condition for static reachability for nested locks.

Theorem 2 (Decomposition Result) [9]. Let xi be a local
computation of Ti leading to ci. Then (c1, c2) is statically
reachable via an interleaving of x1 and x2 if and only if (i)
the locks held at c1 and c2 are disjoint, and (ii) the acquisition
histories at c1 and c2 are consistent, i.e., there do not exist
locks l and l′ that are held at c1 and c2, respectively, such
that l ∈ ahT2

(c2, l
′, x2) and l′ ∈ ahT1

(c1, l, x
1).

The reason we refer to thm. 2 as the decomposition result is
that it enables us to reason about static reachability for nested
locks in a thread local manner. This is because much like
locksets, acquisition histories can be computed thread locally
at each location of interest in thread T via a simple traversal
of the CFG of T . This is key to ensuring efficiency of deciding
static reachability for nested locks.
Let AHTi

(ci) be the set of all possible acquisition histories
encountered along paths of Ti leading to ci. Then from thm. 2,
we have the following criterion for static reachability between
global control states.

Corollary (Generalized Decomposition Result). Global con-
trol states c = (c1, c2) is statically reachable if and only if (1)
disjoint sets of locks are held at c1 and c2, and, (ii) there exist
acquisition histories ah1 ∈ AHT1

(c1) and ah2 ∈ AHT2
(c2)

that are consistent.

Nested Lock Insertion. In applying the decomposition result
during lock insertion we face two main challenges. First,
as we traverse the CFGs of threads backwards, we generate
multiple (static) pairwise reachability queries. Thus we want
to avoid computing acquisition histories between the same pair
of control locations multiple times. Towards that end, we pre-
compute, in one pre-processing step, the acquisition histories
at all relevant control locations of interest in each thread.

Localizing the Analysis. The key issue next is how to localize
these locations of interest. Towards that end, let LFi be
the set of last lock free (where no lock is held) locations
along local paths of Ti leading to an entry location of the
critical section to be enforced. Note that we can simply insert
the lock(l) statement immediately after locations in LF1 and
LF2. This ensures that desired critical sections are enforced
and no new deadlocks are introduced as no lock is held
at any of the locations in LF1 or LF2. However, this may
not lead to optimal critical sections. It follows that, in order
to achieve optimality, our lock insertion strategy can only
introduce lock(l) statements immediately before an existing
locking statement occurring along paths from locations in LFi

to the entry locations of the desired critical section. We call
the set of all such locking statements History Lock Statements
as they are in the acquisition history of the critical section that
we are trying to enforce. Thus it suffices to compute AHTi

(ci)
only for history lock statements ci of Ti.

Once the acquisition histories have been computed, the
procedure for lock insertion for the nested case can then be
formulated as Alg. 4. Note that the main difference between
algs. 1 and 4 is that pairwise reachability is determined using
acquisition histories computed in steps 2-4. Alg. 2 for the
general case can also be modified accordingly.

Algorithm 4 Nested Lock Insertion via Acquisition Histo-
ries

1: Input: Threads T1 and T2 specified as control flow graphs,
CFG1 and CFG2, respectively, and mutually atomic
segments s1 = [ci, cj] and s2 = [di′ , dj′] of T1 and T2,
respectively.

2: for each thread Ti do
3: Compute the lock acquisition histories AHTi

(c) at each
location c where c is a history lock statement of Ci in
Ti

4: end for
5: Insert l1 and l2 in threads T1 and T2 immediately before

ci and di′ , respectively.
6: repeat
7: if l1 can be involved in a potential deadlock then
8: Move l1 backward along T1 via a backward DFS

traversal of CFGi till we reach control locations c
′ of

thread T1 such that for each lock m ∈ L[l2,u2]: either
(i) m is not held at c′, or (ii) for each location d′ in
critical section [l2, u2] wherem is acquired, AHTi

(c′)
and AHTi

(d′) are not consistent.
9: end if
10: if l2 can be involved in a potential deadlock then
11: Move l2 backward along T2 till we reach a control

location d′ of thread T2 such that for each lock
m ∈ L[l1,u1]: either (i) m is not held at d

′, or (ii) for
each location c′ in critical section [l1, u1] where m is
acquired, AHT1

(c′) and AHT2
(d′) are not consistent.

12: end if
13: until there do not exist any potential deadlocks involving

l1 or l2

14: Add unlock statement to match l1 and l2 in a manner that
ensure that locks are nested.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

222222

Example KLOC Segment Acquisition Lock
Pairs History Insertion

Computation (secs)

account.Main 50 LOC 2 0.9 0.1
atom001a 70 LOC 3 1.4 0.2
atom002a 75 LOC 3 1.6 0.3
banking-av 150 LOC 1 1.1 0.3
banking-sav 175 LOC 2 1.2 0.4

D-1 2.9 3 1.2 0.4
D-2 8.3 12 7.4 1.1
D-3 8.3 3 8 1.2
D-4 17.8 9 6.7 4.4
D-5 17.8 2 7 2.5

TABLE I
LOCK INSERTION DATA

C. Guaranteeing Nestedness of Locks
Alg. 4 does not guarantee preservation of nestedness of
locks. To ensure nestedness we make two modifications to
Alg. 4. First, instead of inserting the unlock(l) statement before
the lock(l) statement, we first insert the lock(l) statement
and then add the matching unlock(l) statements to ensure
nestedness of locks. However, we need to make sure that
the lock(l) statements are inserted at locations such that there
exist locations where the matching unlock(l) statements can
be inserted to ensure nestedness. This is accomplished by
augmenting the conditions in steps 8 and 11 with the extra
constraint that the matching unlock statements unlock(l) can
be inserted so as to enforce the desired critical sections while
preserving nestedness.

VII. EXPERIMENTS

We consider a set of public benchmarks with known
atomicity violations used in our previous work [11]. These
are small examples and are used mainly to illustrate the
efficacy of our new lock insertion technique. We also use an
in-house parallel implementation of an MPEG-4 decoder S
with known atomicity violations detected via static and run-
time techniques. Finally we also consider a large in-house
concurrent software system implementing a distributed storage
system, denoted by D. The D system consists of about 400K
lines of C++ code using Boost libraries and is based on a
thread pool model. We evaluated our approach by applying
our technique to different modules of D denoted by D-1, D-2,
D-3, D-4 and D-5.
We present the time taken for the context-sensitive points-to
analysis for the lock pointers and the pre-processing step that
computes the acquisition histories at locations of interest (col.
4) and the time taken for the lock insertion procedure (col. 5).
The key thing worth noting is that the lock insertion procedure
is efficient even for large examples (col. 5). In fact the total
time taken is dominated by the points-to analysis and the
acquisition history computation. This is to be expected as once
the acquisition histories have been computed the lock insertion
procedure involves highly localized dovetailed movements of
the lock statements around critical sections to be enforced.
Usually these movements are restricted to function boundaries.
On the other hand, computing the points-to sets requires us to
reason about code modules that may impact aliases of relevant
lock pointers at locations of interest as opposed to just a few
functions where the atomicity violations need to be fixed.

VIII. RELATED WORK AND CONCLUSION

There has been interesting work on automatically inferring
locks for atomic sections [4], [12], [6], [1], [2]. However
most of this work has focused on allocating/inferring locks for
programs with no prior locks. The absence of locks allows one
greater control over lock placement thereby making it easier
to enforce the desired correctness properties. For instance,
deadlocks can be prevented simply by allocating locks in a
fixed global order. One does not have this freedom if locks are
required to be inserted in a program with existing locks. This
makes the problem of lock insertion more challenging than
lock allocation/inference. There is also limited amount of work
on exploiting program semantics to insert synchronization
statements in order to fix bugs [5], enforce concurrency control
in order to satisfy invariants [3], or ensure correctness [13].
However reasoning about program semantics requires the use
of refined heavy-weight analyses like constraint/SAT solving
or state space exploration via model checking.
In contrast, we have formulated a fully automatic, provably
optimal, efficient and precise technique for lock insertion in
concurrent code with pre-existing locks that ensures deadlock
freedom while attempting to minimize the resulting critical
sections. Importantly, our method localizes the analysis to only
the necessary code modules. Moreover, for the special case of
programs with nested locks our analysis is compositional, i.e.,
thread local, thereby avoiding a global analysis and ensuring
scalability to large real-life programs.

REFERENCES

[1] Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gulwani. Inferring
locks for atomic sections. In PLDI, 2008.

[2] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the
grass: Locking the right path for atomicity. In CC, 2008.

[3] Jyotirmoy V. Deshmukh, G. Ramalingam, Venkatesh Prasad Ranganath,
and Kapil Vaswani. Logical concurrency control from sequential proofs.
In ESOP, 2010.

[4] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation.
In POPL, 2007.

[5] C. Flanagan and S. N. Freund. Automatic synchronization correction.
In SCOOL, 2005.

[6] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic
sections. In First Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing.

[7] Takashi Horikawa. An approach for scalability-bottleneck solution:
identification and elimination of scalability bottlenecks in a dbms. In
ICPE, 2011.

[8] Takashi Horikawa. An approach for scalability-bottleneck solution:
identification and elimination of scalability bottlenecks in a dbms
(abstracts only). SIGMETRICS Performance Evaluation Review, 39(3),
2011.

[9] V. Kahlon and A. Gupta. On the Analysis of Interacting Pushdown
Systems. In POPL, 2007.

[10] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads commu-
nicating via locks. In CAV, 2005.

[11] V. Kahlon and C. Wang. Universal causality graphs: A precise happens-
before model for detecting bugs in concurrent programs. In CAV, 2010.

[12] Bill McCloskey, Feng Zhou, David Gay, and Eric A. Brewer. Au-
tolocker: synchronization inference for atomic sections. In POPL, 2006.

[13] M. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under
limited observability. In TACAS, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

232323

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

