
 

 

Abstract— Formal Verification (FV) is widely acknowledged 

for improving validation effectiveness. Usually formal 

verification has been used to supplement more traditional 

coverage oriented testing activities. Arithmetic Data-path FV has 

matured over the time to completely replace traditional dynamic 

validation methodologies.  Moreover, it gives an additional 

promise of 100% data-space coverage.  Symbolic Trajectory 

Evaluation (STE) is the best proven method of FV on Intel® 

data-path designs. The Floating Point Units (FPUs) are generally 

very data-path intensive. In the next generation Intel Processor 

Graphics design, the FPU was completely re-architected and this 

necessitated a methodology which could guarantee complete 

verification in a tight verification schedule. STE was brought in 

to meet this formidable target. This paper discusses the efficient 

application of this methodology to achieve convincing results. 

More than 201 bugs were caught in a very short verification cycle 

using STE.  

 

I. INTRODUCTION 

VER since Intel graphics moved from chipset to CPU, 

there is an ever-increasing demand on the graphics design 

to make the combination of CPU and graphics more 

compelling for the end user. The current generation graphics 

processor unit (GPU) is not just solely used for image 

rendering but also to share the workload with core-CPU 

processor [1, 2]. Graphics processor designs have very short 

design cycles to cope with the market requirements. In this 

paper, we address the problem of verifying large arithmetic 

data-path circuits using formal verification techniques in such 

short design cycles. 

 

Intel microprocessor design cycles follow a uniform 

methodology over successive generations, known as “tick-tock 

cadence” [3]. In a typical “tock” part of this cadence, major 

innovative architectural changes are introduced in the 

microprocessor design. In a typical “tick” part of this cadence, 

relatively less architectural changes are introduced while 

design is moved to the next generation semi-conductor 

manufacturing process technology. This cadence effectively 

allows consistently improving next generation microprocessor 

capabilities and performance. 

 

The latest “tick” CPU processor of Intel encases a graphics 

engine that can be called “tock” taking into account the 

number of architectural changes that went into the design. 

Such aggressive architectural changes were introduced to 

provide significantly increased graphics performance. This 

presented a huge challenge to the verification team to verify 

these architectural changes in a relatively shorter time. STE-

based formal verification methodology was used to tackle this 

challenge providing a high degree of confidence in the 

correctness of this design. 

 

Execution units performing arithmetic computation inside 

graphics microprocessors are becoming more available to end 

users for high-performance computing using general purpose 

graphics processor unit (GPGPU) programming methodology. 

This makes it much more critical to ensure that the next 

generation Intel Processor Graphics design implements the 

arithmetic standards faithfully and the stakes are much higher 

than previous generation graphics designs if a really tricky bug 

were to be missed in the graphics execution unit [4, 5, 6]. 

 

This paper talks about how this challenging task of validating 

“tock” features in “tick” timeline, was simplified and 

successfully accomplished by making use of STE. We 

describe how STE was used to establish correctness of   

floating-point data-path circuits which resulted in discovery of 

201 bugs. Many of these bugs were truly “FV-quality” bugs 

which would have never been found by other forms of 

validation or discovered much later in the project cycle. 

Similar bugs were discovered very late in the post-silicon 

phase in previous generation graphics design where STE-

based formal verification was not applied. Discovery of these 

bugs in the latest graphics design has greatly contributed to 

achieving higher RTL quality way ahead of tape-out
1
 and 

significantly reducing the risk of encountering them in the 

post-silicon verification. 

 

A. Related Work 

STE based formal verification approach has been widely 

used at Intel in the past for various microprocessor designs to 

formally verify data-path designs [7, 8, 9, 10, 11, 12]. It has 

been proven very effective at handling large arithmetic circuits 

and establishing their correctness against a formal 

specification and discovering very difficult to find bugs in the 

                                                           
1 Sending design for semi-conductor manufacturing production is referred 

to as tape-out. 
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process which would have been undetected by any other form 

of validation. For example, STE-based formal verification was 

used in an execution cluster of Intel microarchitecture code 

named Nehalem to replace traditional simulation [7]. 

 

At Intel, FV techniques have also been applied to formally 

verify designs other than arithmetic data-path in 

microprocessor using other forms of formal verification, e.g., 

pipeline scheduler verification, cache coherence protocol 

verification etc. [19, 20, 21]. These formal techniques 

typically involve using explicit state model-checking, 

symbolic model checking or bounded model checking using 

SAT. In our experience, these techniques are not as suitable as 

STE for verifying industrial scale floating point arithmetic 

data-path designs. 

 

Formal verification of floating-point arithmetic designs is a 

well-studied problem both at Intel and elsewhere in the 

industry [7, 8, 9, 10, 23, 24, 25, 26, 27] due to the critical need 

of correctness of floating-point arithmetic. Majority of these 

work [7, 8, 9, 10, 24, 25, 26] concentrate on verifying floating-

point addition, multiplier or divider operation but do not 

address floating-point fused multiply addition operation which 

presents a lot of unique challenges of its own. 

 

In [23], formal verification of FMA operation is done by 

excluding multiplier from the cone of influence and hence the 

proof of the correctness of multiplication is missing. In our 

experience, proof of the correctness of multiplication, 

especially for double precision floating-point arithmetic is a 

very challenging task and is critical to verify. In [23], a key 

assumption was to disallow other operations in the pipeline 

before or after the FMA operation. Our work allows arbitrary 

operations to come before and after the FMA operation in 

pipeline. In fact, some of the most interesting bugs that we 

found involved interaction between FMA and other operations 

in the pipeline. Such bugs are near impossible to discover by 

any other forms of validation and hence it is critical that such 

limiting assumptions should not be employed in formal 

verification of floating-point arithmetic designs. One of the 

many such bugs discovered by our work is described in a later 

sub-section of this paper (see Complex Interaction Bugs). 

 

In [27], Slobodova describes a FMA formal verification 

proof developed at Intel previously using STE. This approach 

mirrors closely with the approach used by us with some key 

differences. FMA design implementation described in [27] 

was significantly simpler than the FMA design in the next 

generation Intel graphics, which uses an approach known as 

“sea of multipliers” to implement very power-efficient and 

latency-optimized multiplication. Such a FMA design 

challenged us to approach the problem of verifying booth-

encoded partial products generation completely differently 

than similar efforts in the past. Also in [27], FMA operation 

on denormal floating-point numbers was not formally verified 

due to limited hardware support of denormal floating-point 

numbers in the design under consideration. In the next 

generation of Intel graphics design, FMA operation fully 

supports denormal floating-point numbers in the hardware. 

This significantly expanded the data-space of the problem and 

required us to completely rethink the traditional case-split 

strategy employed in floating-point addition operation from 

ground-up. In addition, a lot more floating-point precisions are 

supported in the next generation Intel graphics design than the 

design under consideration in [27]. 

 

Despite STE’s success in formally verifying arithmetic 

designs in microprocessors previously, its application to 

graphics design projects has been limited. This paper presents 

first such application to large-scale industrial graphics design 

where formal verification was used as a primary method of 

validation resulting in a very large number of high quality 

bugs found in the process. 

II. WHAT IS STE? 

Symbolic Trajectory Evaluation (STE) is a formal 

verification method originally developed by Seger & Bryant in 

1995 [13]. It is a high-performance model checking technique 

using a symbolic simulation-based approach [14, 15, 16]. It 

works over binary decision diagrams (BDDs), which are 

symbolic Boolean expressions. STE is particularly well suited 

to handle data-path properties, and it is used to verify gate-

level models against more abstract reference models. 

 

 

A. Technical Framework 

Formal Verification of data-paths in the design under test 

(DUT) is done using the Forte framework, originally built on 

top of the Voss system [14]. The framework and methods built 

around it are depicted in Figure 1. 

 

 

 
Figure 1 Building Blocks of STE Infrastructure 

The interface language to the Forte is reFLect (FL for 

short), a lazy, strongly-typed functional language in the ML 

family [18]. The Forte framework directly supports symbolic 

simulation on circuit models through STE as a built-in 

function. 

 

Relational STE (rSTE) is a package built around STE to 

support relational specifications. Effectively, rSTE is a tool to 

check whether a set of constraints (“the input constraints”), 

Forte
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CVE
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STE: built-in symbolic engine of Forte
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CVE: Common Verification 

environment using rSTE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

150150150



 

implies another set of constraints (“the output constraints”) 

over all traces of the circuit. It provides sophisticated debug 

support, breakpoints etc. It also provides a number of 

capabilities to manage the complexity of the formal 

verification tasks. 

 

The Common Verification Environment (CVE) was 

developed to create a standard, uniform methodology for 

writing specifications and carrying out verification tasks using 

STE. The CVE is built upon a generic abstract model of the 

DUT (design under test). The CVE combines proof 

engineering and software engineering to create a standard, 

uniform methodology for writing specifications and carrying 

out verification tasks. The aim of the effort is to support reuse 

and code maintenance over a constantly changing design, and 

separate common and project-specific parts to allow shared 

code to be written only once. The CVE collects all verification 

code to a single common directory structure and provides a 

platform to share code across projects. 

 

B. Verification flow using STE 

The basic flow-diagram of verification using STE is shown 

in Figure 2. STE checks that given a set of constraints, the 

symbolic simulation output of the DUT matches the given 

specifications or not. Constraints define the behavior of input 

nodes (src_nodes) at arbitrary input time (src_time). For a 

particular data-path to be tested, nodes that may take variable 

values are driven symbolic values, nodes those are required to 

be fixed are driven constants(0/1), and all other nodes that 

don’t fall in cone of influence are made don’t care (X). 

Specifications express requirements that should hold on output 

nodes (wb_nodes) at writeback time (wb_time = src_time + 

latency of data-path). The set of constraints are applied to the 

specification which are spec constraints. Constraints and 

specifications are written by the user in FL. STE computes a 

symbolic representation for each node (n,t), extracts node-time 

information at writeback (wb_ckt) and checks against the 

writeback specification (wb_spec) provided by the user. The 

result could be either a full proof or a counter example or X as 

depicted in the Fig.2. The X signifies one of the three options: 

(1) Circuit output results in X which is undesirable or (2) the 

antecedent needs refinement or (3) the BDD size just blew out 

of proportions of the defined weakening limit and hence 

complexity reduction techniques had to be employed to get it 

under control. 

It is quite often that the verification engineer needs to prove 

properties of the intermediate states of the data-path design in 

order to be able to prove correctness of the final result. These 

properties are written as invariants and proven using either 

inductive methods using STE or as a data-path property. 

Discovery and proofs of these invariants play a key role in 

enabling formal verification of data-path designs. 

STE has been extremely successful in verifying properties 

of circuits containing large data-paths. FPU validation using 

STE in the next generation Intel Processor Graphics design 

produced exceptional and unprecedented results. Section IV 

describes the story of this success and path taken to achieve it. 

III. NEXT GENERATION GRAPHICS PROCESSOR FPU  

 

The bulk of processing in a graphics processor is done by an 

array of programmable cores or Execution Units (EUs). The 

main processing engine of an EU is its Floating Point Unit 

(FPU). FPU performs the desired operation by means of 

executing the micro-instructions (uops) launched by the EU. 

The goal of FPU validation is to verify the results of these 

uops.  

A. Graphics Processor FPU Validation Challenges 

The FPUs of the graphics processor are data-path intensive 

and getting complete vector coverage on all the operations is 

almost impossible, even with multibillion-cycle dynamic 

simulation runs. In addition to this, with the introduction of 

Compute Shaders 

(CS), more stringent 

precision requirements 

are now imposed on 

FPUs to comply with 

various standards like 

IEEE standard for 

binary floating-point 

arithmetic,   Open 

Computing Language 

(OpenCL®),  Open 

Graphics Library 

(OpenGL®), DX11, 

etc. [4, 5, 6].  Before 

the introduction of 

Compute Shaders, the 

FPU operations were 

limited to executing 

instructions for the 3D. 

But now, the FPUs are 

Figure 2 Basic flow diagram of verification methodology using STE 
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exposed to general purpose applications similar to the CPU 

cores and the accuracy/precision requirements have become 

more exacting. The challenge in validating the FPU data-path 

is to get 100% coverage while meeting the precision/accuracy 

requirements. 

 

Though the CVE provides a common base and 

methodology for implementing uops, the implementations 

vary from project to project and design-specific intricacies had 

to be taken care of. The graphics instruction set
2
 is compact 

but has a complex format. The instruction format had a 

number of qualifiers which were not present in a CPU 

instruction. Challenges faced due to these additional qualifiers 

for the implementation of the GT STE are explained in the 

Table1 below. 

Table 1: GT Specific challenges for STE deployment 

GT intricacy  Brief description  

Support for 

Various Dsizes  

Unequal Dsizes for 

sources/destinations  

Flag Generation/ 

interpretation  

In addition to IEEE flags, GT also 

supports flag output based on outputs 

Source modifiers  
Negation, absolute, negation of 

absolute  

Saturation  
Floating point saturation allowed for 

GT  

Accumulator 

Source  

Allows implicit/explicit accumulator 

source  

Accumulator 

Destination  

Allows implicit/explicit accumulator 

destination  

Denorm Handling  Non uniform for different precisions  

ALT mode  Support for non-IEEE compliant mode  

NaN Handling  Fixed NaN output for some operations  

Rounding modes  Instruction specific rounding  

Channel enables  Selective enabling of FPU pipelines  

 

Apart from the above common validation challenges of any 

graphics processor validation, the next generation Intel 

graphics processor faced a new set of validation changes due 

to huge architectural changes done for better graphics 

performance. Performance improvement of graphics directly 

translates to enhancing the raw execution power source of the 

graphics engine i.e. EU. FPU which is the main data-cruncher 

of EU was completely re-designed for the next generation 

Intel Processor Graphics design to get the desired performance 

improvement and area-reduction per EU. This overhaul of 

design and architecture imposed a lot of validation challenges.  

Some of the major design change categories in FPU are 

described in Table 2.   

Due to the complete redesigning of FPU in latest GPU 

                                                           
2 Graphics instruction set is for internal consumption and not exposed for 

external reference. 

design, validation was considered as a high risk to be 

completed with high confidence level. Data-path formal 

verification using STE was brought in to the rescue.  

 

Table 2: FPU Specific changes in next generation Intel 

Processor Graphics design 

FPU Changes Validation Risk 

FPU Pipeline Restructure High 

Increased Conformance to Arithmetic 

Standards 
High 

Improved Programming capability Medium 

Improved Clock Gating Low 

Area, Power & Throughput 

optimizations 
Low 

IV. OPERATION FV BUG-HUNT  

The following section explains how STE enabled an early 

validation of the design and how it helped in unearthing a 

wide variety of bugs. The methodology was applied on the 

design where it passed the basic check-in gates and ready for 

mass regression. STE proof regressions were run on every 

released model and the failures were debugged. 

 

A. Proof readiness before the design and validation 

reference models 

Like any other design methodology, the new graphics 

design followed a phased implementation of new design 

features (DCNs). Thus register transfer level (RTL) hardware 

design was under constant churn and so was the C++ based 

golden reference model for dynamic validation
3
 (DV). 

Because of the following remarkable qualities of STE, we 

were ready to develop proofs before RTL or DV Reference 

Model was ready: 

 

1. One proof – many projects: 

The beauty of CVE is the specification code reusability 

across projects. The specification of processor micro-

operations doesn’t change much over the generations of 

design. As most of the proofs are agnostic to the 

implementation details, they are easily portable to any 

project with/without minor changes. Many graphics-

specific integer and floating-point (FP) STE proofs 

were developed during the previous generation Intel 

Processor Graphics verification timeframe. Most of 

these proofs could be seamlessly integrated into the 

new graphics design verification with minor 

modifications. Though we were not ready with full set 

of proofs, we were equipped enough to do the basic 

checking and getting RTL to a stable state. 

 

2. One proof-wider coverage: 

Just like any other Formal methodology, STE doesn’t 

depend on any scalar vectors for simulation. It takes 

                                                           
3 Dynamic validation refers to the traditional method of doing verification 

using simulation over concrete (as opposed to symbolic) input values. 
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into account all the control signals and results in a 

comprehensive coverage. Just one proof can provide 

the control space coverage for all signals in the cone of 

influence of the operation being checked, in addition to 

the comprehensive data space checking.  During the 

first month of verification cycle, we focused on 

developing and regressing formal proofs to check 

correctness for simple operations (For example, logical 

operations like OR, AND, integer add, etc.), to get the 

RTL healthy. This simple operation checking itself 

unearthed much more number of bugs in different areas 

of the design as compared to the dynamic validation 

which was being run in parallel on the full instruction 

set of FPU. Once the basic proofs started passing, we 

embarked on proving the formal proofs for more 

complex operations (like floating point conversions to 

integer/floats, floating point add, mul, mad, etc.). 

Regressions were run on every new model and the 

failures were debugged and reported out. A passing 

proof guarantees 100% coverage of the input data space 

within the defined constraints of control logic. 

 

3. Capability to mask unimplemented features: 

During Front End Development all the new design 

features are implemented in a phase-wise manner. 

Validation needs to be in close tandem with the design 

implementation to verify only the implemented 

features. STE provides the user with the capability of 

selectively masking the unimplemented features 

through addition of simple constraints. This enabled us 

to make uninterrupted forward progress in validation.  

Once the proofs are passing, the constraints are phased 

out as the RTL matured with the planned 

implementation. 

 

4. Ease of debugging: 

The counter examples provided by the tool were very 

intuitive and could easily help in reproducing the 

failure in dynamic simulation. The in-house developed 

AGM viewer utility aids in debugging through 

waveforms and schematics and was of great help in 

debugging. 

B. STE as monster bug-hunter 

 STE could help in stabilizing the RTL quality by regressing 

over every design iteration and point out the failures in 

different areas. A wide range of bugs varying in both quantity 

and quality were unearthed in the process. The bugs ranged 

from bugs on controls related to data-path, instruction 

interaction bugs, clock gating bugs to deep corner case 

scenarios. Some of these bugs are mentioned below to 

highlight the uniqueness of the bugs found: 

 

1. Clock-gating Bugs: 

The new graphics design implements very aggressive 

clock gating and bugs were found on logic with flops 

gated with incorrect pipeline signals, unintended gating 

and non-uniform gating across the data. 

 
Figure 3: Clock Gating Bug Example 

As an example, in the scenario depicted in Figure 3, the 

buggy RTL missed the flop shown in the highlighted 

circle. While the data input of stage 3 flop received a 

stage 2 signal, the signal that drives the enable input 

was of stage 1.  Dynamic simulation couldn’t catch this 

miss, as all the flops were initialized to zero during 

reset phase. As STE simulation would work with 

symbols driven at the inputs, the resultant of the above 

logic would result in X
4
s at the flop output. 

Reproduction of the similar scenario in dynamic 

simulation wasn’t a straight forward task.  

 

2. Data space Corner Cases: 

Majority of the bugs found using STE are deep corner 

case scenarios. Finding deep-rooted data space issues is 

one of the most sought after features of STE. 

To mention one example, a particular evasive bug in a 

three source floating point operation “OP (A, B, C)” 

manifested itself only when the following data 

requirements were met:  

 

 

 

 

The probability of hitting this specific data requirement 

is 1 in 2
192

 (2
64

*2
64

*2
64

) possibilities. The chance of 

reaching this kind of scenario with any other validation 

methodology is very remote. 

 

3. Complex Interaction Bugs: 

This category of bugs manifest when two operations 

occur one after another with specific data requirements 

on the sources for each of these operations. Due to the 

nature of the source supplied to each of these 

operations, a certain incorrect behavior in the design is 

exposed that would only manifest when these two 

operations are in close temporal proximity to each 

other. 

One such specific interaction bug was found when a 

particular two source operation “OP1 (A, B)” produced 

incorrect results, when it was immediately preceded by 

                                                           
4 X is introduced by STE to automatically abstract symbolic computation 

that may not be relevant for the verification task. 

A = 0x1cc9_9398_0003_3273 
B = 0x1ff4_04b2_5a15_c2bb 
C = 0x8000_0000_0000_0001 
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a particular three source operation “OP2 (C,D,E)” and 

the input data of both these uops followed the data 

requirements given below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This was a rare combination of “Instruction 

Interaction” and “Data space Corner-case” issue. Such 

scenario with specific data requirements on current and 

previous operations is almost impossible to be caught 

by any other validation methodology.   

 

4. Initialization Bugs: 

This set of bugs relates to erroneous initialization of 

state elements in the design. One example of these 

kinds of bugs is explained in Figure 4. The figure 

illustrates priority selection logic where a raw move (a 

move operation without any modifiers or qualifiers) has 

a higher precedence to create a data valid (dv) signal. 

The integer to float conversion signal was missing in 

this cone of logic of the buggy RTL.  Usually, the 

dynamic tests start with initializing the configuration 

registers which are usually raw move instructions and 

hence the flop in this logic would get initialized and the 

int2float conversion in these tests would run as 

expected. On the contrary, the STE simulation signal 

would see Xs on the dv signal, oblivious to the 

preceding instructions.  

 
Figure 4: Initialization Bug Example 

5. Control Logic Bugs: 

This set of bugs is the result of faulty control logic in 

the circuit. The usual sources of these bugs are typos in 

the RTL or incorrect bug fixes.  

 

These bugs are not hard to detect by other validation 

methodologies as they don’t have very stringent data 

requirements and can be reproduced by just appropriate 

setting of control parameters. But still some of these 

bugs evade capture by other methodologies because of 

their random nature. 

 

STE, however, guarantees complete coverage of data 

and control variables and makes sure that these bugs 

are weeded out. These kinds of bugs are usually found 

in the first formal verification attempt for the concerned 

operation. 

 

Source 

Modification 

function

Data

Computation

A

B

C

A’

B’

C’

 
Figure 5: Control Logic Bug Example 

 One simple example of such bug is presented in Figure 

5. In this case, due to a typo mistake in the RTL, one of 

the sources was taken for data computation without 

applying a source modification function which was the 

design requirement. 

V. RESULTS 

The results achieved by applying STE early in the design 

cycle are explained in the sections below: 

A. Comparison against contemporary methodologies 

In addition to STE, FPU validation in graphics projects is 

carried out by a set of other standard validation 

methodologies. Table 3 gives a short summary of these 

techniques. 

 

Table 3: List of Contemporary Validation techniques for 

graphics FPU validation 

Validation 

Technique 

Methodology Reference 

Model 

DV1  Dynamic stress 

validation using 

targeted vectors 

generated by Intel 

Internal Tool 

DV C++ based 

Reference 

Model + 

Intel
 
Internal 

Floating Point 

Library 

DV2 Dynamic coverage-

based validation using  

controlled random 

vector generation by 

Intel Internal Tool 

DV C++ based 

Reference 

Model 

A, B, C, D, E are floating-point numbers 

below. 

 

Conditions on Preceding Operation: 

 Operation must be OP2 (C, D, E) 

 C is negative 

 C is not Infinity/Not a Number 

(NAN)/Zero 

Conditions on Current Operation: 

 Operation must be OP1 (A, B) 

 A or B is a negative NAN 

 

OP2 must come in the cycle 

immediately before OP1 
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DV3 Dynamic validation 

using standard random 

test bench features of 

System Verilog 

DV C++ based 

Reference 

Model 

FV1 Another Formal 

Verification Approach 

with C++ specification 

against the RTL 

C++ based 

specification 

 

 
Figure 6: RTL bugs found by validation methodologies 

Figure 6 gives the distribution of RTL bugs exposed and 

filed by different methodologies for pre-silicon verification in 

the new graphics processor. 

 

Of the total number of discrepancies found, STE takes the 

lion share with 72% of the bugs being exposed by this 

methodology. The bugs which were found by the other 

methodologies were from: 

1. Operations which were not verified by STE.  

2. A very small set of RTL bugs in the areas covered by 

STE, were found because either the STE proof was 

under development or they were debugged ahead of 

STE failures. 

As we approached the end of the project cycle, we reviewed 

all the constraints with the designers and refined them. These 

could also catch a good deal of issues in the design. We are 

yet to implement an automated way of converting the 

constraints to SVA based monitors. 

As evident from the Figure 6, STE formed the backbone of 

major feature validation for FPU. Almost 3 out of the 4 RTL 

bugs filed in the new-GPU FPU were found by STE. The 

confidence on STE verifying uops were so high that the rest of 

the methodologies were realigned to target only those areas 

which were not covered through STE.  

 

STE was the tool of choice from the RTL side for any 

optimizations in the micro-architecture. Any optimizations for 

timing fixes, and power optimizations were run first through 

STE and based on our feedback, the fixes were either selected 

or rejected for functionality. STE helped in maintaining the 

health of the RTL and could avoid the downtrends which are 

typically seen in any of the design projects.  

 

B. Bug Distribution 

Figure 7 depicts the division of 201 bugs found by STE in 

the next generation Intel Processor Graphics FPU. Though 

majority of them were RTL bugs, we also found ample issues 

with the Spec (the architectural specification) and the golden 

DV Reference Model.  

 

 
 

Figure 7: Distribution of 201 STE bugs 

There are a decent number of bugs filed on DV Reference 

Model. These bugs were found through STE when bugs 

caught by STE were tried to be reproduced on dynamic 

simulation. Dynamic simulation runs tests on both RTL and 

Reference Model and any difference in the results between 

these two models are reported as error. If the DV Reference 

Model implementation also bears the bug, then Reference 

Model would be in unison with RTL and the bug would be 

masked. The bugs that are filed from STE on DV Reference 

Model fall in a category which exposed the issues where the 

Reference Model also has the bug like the RTL and the 

masked issue would never get exposed in any of the other 

methodology. Hence, we could cleanse not only the RTL but 

also the golden model which is used by other methodologies 

too. 

 

Architectural Specification bugs were found by STE when 

the defined pseudo code of an operation in Spec didn’t match 

with the standard CVE proofs. Since, CVE proofs conform to 

most of the arithmetic standards and have been verified in 

variety of projects, some of the failures turned out to be Spec 

issues. The whole execution was carried out by a two member 

team during a span of 9months and the man-year effort is 

comparable and even lesser than what has been observed in 

STE validation on EU in CPU projects. Thanks to the 

reusability of the CVE. 

C. Forward and Backward Compatibility of Proofs 

Once the proofs were completely developed, we could 

execute them on some of the earlier projects which were 

currently under post silicon debug and found some issues. The 

proofs developed are broadly compatible with generations of 

graphics designs, both forward and backward.  

VI. SUMMARY 

The next generation Intel processor graphics FPU was 

completely redesigned to comply with arithmetic standards, 

DV Reference 
Model , 12%

Architectural 
Spec, 4%

RTL, 84%
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increase programmability and to optimize on latency, power 

and area. This paper detailed the architectural complexities 

introduced due to the design improvements. A comprehensive 

mechanism was needed to validate this new design in a short 

time span. This paper discussed how STE was used as a 

primary validation vehicle on FPU to thwart out issues in the 

RTL and specifications by early deployment in the project 

cycle. More than 200 bugs were unearthed by STE in this 

project. To date, we haven’t found any bug escape in the uops 

verified by STE nor any spec bugs found through DV, which 

boosts our confidence in the tool and its capabilities to achieve 

zero post silicon bugs.  

 

Our experiences through the project execution confirm the 

fact that if STE is implemented early in the project design 

cycle, it could stabilize the RTL earlier. A reusable proof that 

is ready before the RTL and validation environment helps in 

early bug hunting and improving the quality early in the 

project, which means significant improvement in the 

effectiveness of validation.  We strongly believe that the 

effectiveness of STE for improved quality of validation would 

prove valuable in the validation of a wide range of designs. 

We proved that it is possible to reach a better level of quality 

with a lower investment of resources, thereby reducing the 

overall cost of validation.  
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