

Abstract— Formal Verification (FV) is widely acknowledged

for improving validation effectiveness. Usually formal

verification has been used to supplement more traditional

coverage oriented testing activities. Arithmetic Data-path FV has

matured over the time to completely replace traditional dynamic

validation methodologies. Moreover, it gives an additional

promise of 100% data-space coverage. Symbolic Trajectory

Evaluation (STE) is the best proven method of FV on Intel®

data-path designs. The Floating Point Units (FPUs) are generally

very data-path intensive. In the next generation Intel Processor

Graphics design, the FPU was completely re-architected and this

necessitated a methodology which could guarantee complete

verification in a tight verification schedule. STE was brought in

to meet this formidable target. This paper discusses the efficient

application of this methodology to achieve convincing results.

More than 201 bugs were caught in a very short verification cycle

using STE.

I. INTRODUCTION

VER since Intel graphics moved from chipset to CPU,

there is an ever-increasing demand on the graphics design

to make the combination of CPU and graphics more

compelling for the end user. The current generation graphics

processor unit (GPU) is not just solely used for image

rendering but also to share the workload with core-CPU

processor [1, 2]. Graphics processor designs have very short

design cycles to cope with the market requirements. In this

paper, we address the problem of verifying large arithmetic

data-path circuits using formal verification techniques in such

short design cycles.

Intel microprocessor design cycles follow a uniform

methodology over successive generations, known as “tick-tock

cadence” [3]. In a typical “tock” part of this cadence, major

innovative architectural changes are introduced in the

microprocessor design. In a typical “tick” part of this cadence,

relatively less architectural changes are introduced while

design is moved to the next generation semi-conductor

manufacturing process technology. This cadence effectively

allows consistently improving next generation microprocessor

capabilities and performance.

The latest “tick” CPU processor of Intel encases a graphics

engine that can be called “tock” taking into account the

number of architectural changes that went into the design.

Such aggressive architectural changes were introduced to

provide significantly increased graphics performance. This

presented a huge challenge to the verification team to verify

these architectural changes in a relatively shorter time. STE-

based formal verification methodology was used to tackle this

challenge providing a high degree of confidence in the

correctness of this design.

Execution units performing arithmetic computation inside

graphics microprocessors are becoming more available to end

users for high-performance computing using general purpose

graphics processor unit (GPGPU) programming methodology.

This makes it much more critical to ensure that the next

generation Intel Processor Graphics design implements the

arithmetic standards faithfully and the stakes are much higher

than previous generation graphics designs if a really tricky bug

were to be missed in the graphics execution unit [4, 5, 6].

This paper talks about how this challenging task of validating

“tock” features in “tick” timeline, was simplified and

successfully accomplished by making use of STE. We

describe how STE was used to establish correctness of

floating-point data-path circuits which resulted in discovery of

201 bugs. Many of these bugs were truly “FV-quality” bugs

which would have never been found by other forms of

validation or discovered much later in the project cycle.

Similar bugs were discovered very late in the post-silicon

phase in previous generation graphics design where STE-

based formal verification was not applied. Discovery of these

bugs in the latest graphics design has greatly contributed to

achieving higher RTL quality way ahead of tape-out
1
 and

significantly reducing the risk of encountering them in the

post-silicon verification.

A. Related Work

STE based formal verification approach has been widely

used at Intel in the past for various microprocessor designs to

formally verify data-path designs [7, 8, 9, 10, 11, 12]. It has

been proven very effective at handling large arithmetic circuits

and establishing their correctness against a formal

specification and discovering very difficult to find bugs in the

1 Sending design for semi-conductor manufacturing production is referred

to as tape-out.

Symbolic Trajectory Evaluation:

The Primary Validation Vehicle for Next

Generation Intel® Processor Graphics FPU
M Achutha KiranKumar V, Aarti Gupta, and Rajnish Ghughal

Intel Corporation

{achutha.kirankumar.v.m, aarti.gupta, rajnish.ghughal}@intel.com

E

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

149149978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 149978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

process which would have been undetected by any other form

of validation. For example, STE-based formal verification was

used in an execution cluster of Intel microarchitecture code

named Nehalem to replace traditional simulation [7].

At Intel, FV techniques have also been applied to formally

verify designs other than arithmetic data-path in

microprocessor using other forms of formal verification, e.g.,

pipeline scheduler verification, cache coherence protocol

verification etc. [19, 20, 21]. These formal techniques

typically involve using explicit state model-checking,

symbolic model checking or bounded model checking using

SAT. In our experience, these techniques are not as suitable as

STE for verifying industrial scale floating point arithmetic

data-path designs.

Formal verification of floating-point arithmetic designs is a

well-studied problem both at Intel and elsewhere in the

industry [7, 8, 9, 10, 23, 24, 25, 26, 27] due to the critical need

of correctness of floating-point arithmetic. Majority of these

work [7, 8, 9, 10, 24, 25, 26] concentrate on verifying floating-

point addition, multiplier or divider operation but do not

address floating-point fused multiply addition operation which

presents a lot of unique challenges of its own.

In [23], formal verification of FMA operation is done by

excluding multiplier from the cone of influence and hence the

proof of the correctness of multiplication is missing. In our

experience, proof of the correctness of multiplication,

especially for double precision floating-point arithmetic is a

very challenging task and is critical to verify. In [23], a key

assumption was to disallow other operations in the pipeline

before or after the FMA operation. Our work allows arbitrary

operations to come before and after the FMA operation in

pipeline. In fact, some of the most interesting bugs that we

found involved interaction between FMA and other operations

in the pipeline. Such bugs are near impossible to discover by

any other forms of validation and hence it is critical that such

limiting assumptions should not be employed in formal

verification of floating-point arithmetic designs. One of the

many such bugs discovered by our work is described in a later

sub-section of this paper (see Complex Interaction Bugs).

In [27], Slobodova describes a FMA formal verification

proof developed at Intel previously using STE. This approach

mirrors closely with the approach used by us with some key

differences. FMA design implementation described in [27]

was significantly simpler than the FMA design in the next

generation Intel graphics, which uses an approach known as

“sea of multipliers” to implement very power-efficient and

latency-optimized multiplication. Such a FMA design

challenged us to approach the problem of verifying booth-

encoded partial products generation completely differently

than similar efforts in the past. Also in [27], FMA operation

on denormal floating-point numbers was not formally verified

due to limited hardware support of denormal floating-point

numbers in the design under consideration. In the next

generation of Intel graphics design, FMA operation fully

supports denormal floating-point numbers in the hardware.

This significantly expanded the data-space of the problem and

required us to completely rethink the traditional case-split

strategy employed in floating-point addition operation from

ground-up. In addition, a lot more floating-point precisions are

supported in the next generation Intel graphics design than the

design under consideration in [27].

Despite STE’s success in formally verifying arithmetic

designs in microprocessors previously, its application to

graphics design projects has been limited. This paper presents

first such application to large-scale industrial graphics design

where formal verification was used as a primary method of

validation resulting in a very large number of high quality

bugs found in the process.

II. WHAT IS STE?

Symbolic Trajectory Evaluation (STE) is a formal

verification method originally developed by Seger & Bryant in

1995 [13]. It is a high-performance model checking technique

using a symbolic simulation-based approach [14, 15, 16]. It

works over binary decision diagrams (BDDs), which are

symbolic Boolean expressions. STE is particularly well suited

to handle data-path properties, and it is used to verify gate-

level models against more abstract reference models.

A. Technical Framework

Formal Verification of data-paths in the design under test

(DUT) is done using the Forte framework, originally built on

top of the Voss system [14]. The framework and methods built

around it are depicted in Figure 1.

Figure 1 Building Blocks of STE Infrastructure

The interface language to the Forte is reFLect (FL for

short), a lazy, strongly-typed functional language in the ML

family [18]. The Forte framework directly supports symbolic

simulation on circuit models through STE as a built-in

function.

Relational STE (rSTE) is a package built around STE to

support relational specifications. Effectively, rSTE is a tool to

check whether a set of constraints (“the input constraints”),

Forte

rSTE

STE

CVE

LEGEND:

Forte framework

STE: built-in symbolic engine of Forte

rSTE: wrapper package around

STE

CVE: Common Verification

environment using rSTE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

150150150

implies another set of constraints (“the output constraints”)

over all traces of the circuit. It provides sophisticated debug

support, breakpoints etc. It also provides a number of

capabilities to manage the complexity of the formal

verification tasks.

The Common Verification Environment (CVE) was

developed to create a standard, uniform methodology for

writing specifications and carrying out verification tasks using

STE. The CVE is built upon a generic abstract model of the

DUT (design under test). The CVE combines proof

engineering and software engineering to create a standard,

uniform methodology for writing specifications and carrying

out verification tasks. The aim of the effort is to support reuse

and code maintenance over a constantly changing design, and

separate common and project-specific parts to allow shared

code to be written only once. The CVE collects all verification

code to a single common directory structure and provides a

platform to share code across projects.

B. Verification flow using STE

The basic flow-diagram of verification using STE is shown

in Figure 2. STE checks that given a set of constraints, the

symbolic simulation output of the DUT matches the given

specifications or not. Constraints define the behavior of input

nodes (src_nodes) at arbitrary input time (src_time). For a

particular data-path to be tested, nodes that may take variable

values are driven symbolic values, nodes those are required to

be fixed are driven constants(0/1), and all other nodes that

don’t fall in cone of influence are made don’t care (X).

Specifications express requirements that should hold on output

nodes (wb_nodes) at writeback time (wb_time = src_time +

latency of data-path). The set of constraints are applied to the

specification which are spec constraints. Constraints and

specifications are written by the user in FL. STE computes a

symbolic representation for each node (n,t), extracts node-time

information at writeback (wb_ckt) and checks against the

writeback specification (wb_spec) provided by the user. The

result could be either a full proof or a counter example or X as

depicted in the Fig.2. The X signifies one of the three options:

(1) Circuit output results in X which is undesirable or (2) the

antecedent needs refinement or (3) the BDD size just blew out

of proportions of the defined weakening limit and hence

complexity reduction techniques had to be employed to get it

under control.

It is quite often that the verification engineer needs to prove

properties of the intermediate states of the data-path design in

order to be able to prove correctness of the final result. These

properties are written as invariants and proven using either

inductive methods using STE or as a data-path property.

Discovery and proofs of these invariants play a key role in

enabling formal verification of data-path designs.

STE has been extremely successful in verifying properties

of circuits containing large data-paths. FPU validation using

STE in the next generation Intel Processor Graphics design

produced exceptional and unprecedented results. Section IV

describes the story of this success and path taken to achieve it.

III. NEXT GENERATION GRAPHICS PROCESSOR FPU

The bulk of processing in a graphics processor is done by an

array of programmable cores or Execution Units (EUs). The

main processing engine of an EU is its Floating Point Unit

(FPU). FPU performs the desired operation by means of

executing the micro-instructions (uops) launched by the EU.

The goal of FPU validation is to verify the results of these

uops.

A. Graphics Processor FPU Validation Challenges

The FPUs of the graphics processor are data-path intensive

and getting complete vector coverage on all the operations is

almost impossible, even with multibillion-cycle dynamic

simulation runs. In addition to this, with the introduction of

Compute Shaders

(CS), more stringent

precision requirements

are now imposed on

FPUs to comply with

various standards like

IEEE standard for

binary floating-point

arithmetic, Open

Computing Language

(OpenCL®), Open

Graphics Library

(OpenGL®), DX11,

etc. [4, 5, 6]. Before

the introduction of

Compute Shaders, the

FPU operations were

limited to executing

instructions for the 3D.

But now, the FPUs are

Figure 2 Basic flow diagram of verification methodology using STE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

151151151

exposed to general purpose applications similar to the CPU

cores and the accuracy/precision requirements have become

more exacting. The challenge in validating the FPU data-path

is to get 100% coverage while meeting the precision/accuracy

requirements.

Though the CVE provides a common base and

methodology for implementing uops, the implementations

vary from project to project and design-specific intricacies had

to be taken care of. The graphics instruction set
2
 is compact

but has a complex format. The instruction format had a

number of qualifiers which were not present in a CPU

instruction. Challenges faced due to these additional qualifiers

for the implementation of the GT STE are explained in the

Table1 below.

Table 1: GT Specific challenges for STE deployment

GT intricacy Brief description

Support for

Various Dsizes

Unequal Dsizes for

sources/destinations

Flag Generation/

interpretation

In addition to IEEE flags, GT also

supports flag output based on outputs

Source modifiers
Negation, absolute, negation of

absolute

Saturation
Floating point saturation allowed for

GT

Accumulator

Source

Allows implicit/explicit accumulator

source

Accumulator

Destination

Allows implicit/explicit accumulator

destination

Denorm Handling Non uniform for different precisions

ALT mode Support for non-IEEE compliant mode

NaN Handling Fixed NaN output for some operations

Rounding modes Instruction specific rounding

Channel enables Selective enabling of FPU pipelines

Apart from the above common validation challenges of any

graphics processor validation, the next generation Intel

graphics processor faced a new set of validation changes due

to huge architectural changes done for better graphics

performance. Performance improvement of graphics directly

translates to enhancing the raw execution power source of the

graphics engine i.e. EU. FPU which is the main data-cruncher

of EU was completely re-designed for the next generation

Intel Processor Graphics design to get the desired performance

improvement and area-reduction per EU. This overhaul of

design and architecture imposed a lot of validation challenges.

Some of the major design change categories in FPU are

described in Table 2.

Due to the complete redesigning of FPU in latest GPU

2 Graphics instruction set is for internal consumption and not exposed for

external reference.

design, validation was considered as a high risk to be

completed with high confidence level. Data-path formal

verification using STE was brought in to the rescue.

Table 2: FPU Specific changes in next generation Intel

Processor Graphics design

FPU Changes Validation Risk

FPU Pipeline Restructure High

Increased Conformance to Arithmetic

Standards
High

Improved Programming capability Medium

Improved Clock Gating Low

Area, Power & Throughput

optimizations
Low

IV. OPERATION FV BUG-HUNT

The following section explains how STE enabled an early

validation of the design and how it helped in unearthing a

wide variety of bugs. The methodology was applied on the

design where it passed the basic check-in gates and ready for

mass regression. STE proof regressions were run on every

released model and the failures were debugged.

A. Proof readiness before the design and validation

reference models

Like any other design methodology, the new graphics

design followed a phased implementation of new design

features (DCNs). Thus register transfer level (RTL) hardware

design was under constant churn and so was the C++ based

golden reference model for dynamic validation
3
 (DV).

Because of the following remarkable qualities of STE, we

were ready to develop proofs before RTL or DV Reference

Model was ready:

1. One proof – many projects:

The beauty of CVE is the specification code reusability

across projects. The specification of processor micro-

operations doesn’t change much over the generations of

design. As most of the proofs are agnostic to the

implementation details, they are easily portable to any

project with/without minor changes. Many graphics-

specific integer and floating-point (FP) STE proofs

were developed during the previous generation Intel

Processor Graphics verification timeframe. Most of

these proofs could be seamlessly integrated into the

new graphics design verification with minor

modifications. Though we were not ready with full set

of proofs, we were equipped enough to do the basic

checking and getting RTL to a stable state.

2. One proof-wider coverage:

Just like any other Formal methodology, STE doesn’t

depend on any scalar vectors for simulation. It takes

3 Dynamic validation refers to the traditional method of doing verification

using simulation over concrete (as opposed to symbolic) input values.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

152152152

into account all the control signals and results in a

comprehensive coverage. Just one proof can provide

the control space coverage for all signals in the cone of

influence of the operation being checked, in addition to

the comprehensive data space checking. During the

first month of verification cycle, we focused on

developing and regressing formal proofs to check

correctness for simple operations (For example, logical

operations like OR, AND, integer add, etc.), to get the

RTL healthy. This simple operation checking itself

unearthed much more number of bugs in different areas

of the design as compared to the dynamic validation

which was being run in parallel on the full instruction

set of FPU. Once the basic proofs started passing, we

embarked on proving the formal proofs for more

complex operations (like floating point conversions to

integer/floats, floating point add, mul, mad, etc.).

Regressions were run on every new model and the

failures were debugged and reported out. A passing

proof guarantees 100% coverage of the input data space

within the defined constraints of control logic.

3. Capability to mask unimplemented features:

During Front End Development all the new design

features are implemented in a phase-wise manner.

Validation needs to be in close tandem with the design

implementation to verify only the implemented

features. STE provides the user with the capability of

selectively masking the unimplemented features

through addition of simple constraints. This enabled us

to make uninterrupted forward progress in validation.

Once the proofs are passing, the constraints are phased

out as the RTL matured with the planned

implementation.

4. Ease of debugging:

The counter examples provided by the tool were very

intuitive and could easily help in reproducing the

failure in dynamic simulation. The in-house developed

AGM viewer utility aids in debugging through

waveforms and schematics and was of great help in

debugging.

B. STE as monster bug-hunter

 STE could help in stabilizing the RTL quality by regressing

over every design iteration and point out the failures in

different areas. A wide range of bugs varying in both quantity

and quality were unearthed in the process. The bugs ranged

from bugs on controls related to data-path, instruction

interaction bugs, clock gating bugs to deep corner case

scenarios. Some of these bugs are mentioned below to

highlight the uniqueness of the bugs found:

1. Clock-gating Bugs:

The new graphics design implements very aggressive

clock gating and bugs were found on logic with flops

gated with incorrect pipeline signals, unintended gating

and non-uniform gating across the data.

Figure 3: Clock Gating Bug Example

As an example, in the scenario depicted in Figure 3, the

buggy RTL missed the flop shown in the highlighted

circle. While the data input of stage 3 flop received a

stage 2 signal, the signal that drives the enable input

was of stage 1. Dynamic simulation couldn’t catch this

miss, as all the flops were initialized to zero during

reset phase. As STE simulation would work with

symbols driven at the inputs, the resultant of the above

logic would result in X
4
s at the flop output.

Reproduction of the similar scenario in dynamic

simulation wasn’t a straight forward task.

2. Data space Corner Cases:

Majority of the bugs found using STE are deep corner

case scenarios. Finding deep-rooted data space issues is

one of the most sought after features of STE.

To mention one example, a particular evasive bug in a

three source floating point operation “OP (A, B, C)”

manifested itself only when the following data

requirements were met:

The probability of hitting this specific data requirement

is 1 in 2
192

 (2
64

*2
64

*2
64

) possibilities. The chance of

reaching this kind of scenario with any other validation

methodology is very remote.

3. Complex Interaction Bugs:

This category of bugs manifest when two operations

occur one after another with specific data requirements

on the sources for each of these operations. Due to the

nature of the source supplied to each of these

operations, a certain incorrect behavior in the design is

exposed that would only manifest when these two

operations are in close temporal proximity to each

other.

One such specific interaction bug was found when a

particular two source operation “OP1 (A, B)” produced

incorrect results, when it was immediately preceded by

4 X is introduced by STE to automatically abstract symbolic computation

that may not be relevant for the verification task.

A = 0x1cc9_9398_0003_3273
B = 0x1ff4_04b2_5a15_c2bb
C = 0x8000_0000_0000_0001

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

153153153

a particular three source operation “OP2 (C,D,E)” and

the input data of both these uops followed the data

requirements given below:

This was a rare combination of “Instruction

Interaction” and “Data space Corner-case” issue. Such

scenario with specific data requirements on current and

previous operations is almost impossible to be caught

by any other validation methodology.

4. Initialization Bugs:

This set of bugs relates to erroneous initialization of

state elements in the design. One example of these

kinds of bugs is explained in Figure 4. The figure

illustrates priority selection logic where a raw move (a

move operation without any modifiers or qualifiers) has

a higher precedence to create a data valid (dv) signal.

The integer to float conversion signal was missing in

this cone of logic of the buggy RTL. Usually, the

dynamic tests start with initializing the configuration

registers which are usually raw move instructions and

hence the flop in this logic would get initialized and the

int2float conversion in these tests would run as

expected. On the contrary, the STE simulation signal

would see Xs on the dv signal, oblivious to the

preceding instructions.

Figure 4: Initialization Bug Example

5. Control Logic Bugs:

This set of bugs is the result of faulty control logic in

the circuit. The usual sources of these bugs are typos in

the RTL or incorrect bug fixes.

These bugs are not hard to detect by other validation

methodologies as they don’t have very stringent data

requirements and can be reproduced by just appropriate

setting of control parameters. But still some of these

bugs evade capture by other methodologies because of

their random nature.

STE, however, guarantees complete coverage of data

and control variables and makes sure that these bugs

are weeded out. These kinds of bugs are usually found

in the first formal verification attempt for the concerned

operation.

Source

Modification

function

Data

Computation

A

B

C

A’

B’

C’

Figure 5: Control Logic Bug Example

 One simple example of such bug is presented in Figure

5. In this case, due to a typo mistake in the RTL, one of

the sources was taken for data computation without

applying a source modification function which was the

design requirement.

V. RESULTS

The results achieved by applying STE early in the design

cycle are explained in the sections below:

A. Comparison against contemporary methodologies

In addition to STE, FPU validation in graphics projects is

carried out by a set of other standard validation

methodologies. Table 3 gives a short summary of these

techniques.

Table 3: List of Contemporary Validation techniques for

graphics FPU validation

Validation

Technique

Methodology Reference

Model

DV1 Dynamic stress

validation using

targeted vectors

generated by Intel

Internal Tool

DV C++ based

Reference

Model +

Intel

Internal

Floating Point

Library

DV2 Dynamic coverage-

based validation using

controlled random

vector generation by

Intel Internal Tool

DV C++ based

Reference

Model

A, B, C, D, E are floating-point numbers

below.

Conditions on Preceding Operation:

 Operation must be OP2 (C, D, E)

 C is negative

 C is not Infinity/Not a Number

(NAN)/Zero

Conditions on Current Operation:

 Operation must be OP1 (A, B)

 A or B is a negative NAN

OP2 must come in the cycle

immediately before OP1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

154154154

DV3 Dynamic validation

using standard random

test bench features of

System Verilog

DV C++ based

Reference

Model

FV1 Another Formal

Verification Approach

with C++ specification

against the RTL

C++ based

specification

Figure 6: RTL bugs found by validation methodologies

Figure 6 gives the distribution of RTL bugs exposed and

filed by different methodologies for pre-silicon verification in

the new graphics processor.

Of the total number of discrepancies found, STE takes the

lion share with 72% of the bugs being exposed by this

methodology. The bugs which were found by the other

methodologies were from:

1. Operations which were not verified by STE.

2. A very small set of RTL bugs in the areas covered by

STE, were found because either the STE proof was

under development or they were debugged ahead of

STE failures.

As we approached the end of the project cycle, we reviewed

all the constraints with the designers and refined them. These

could also catch a good deal of issues in the design. We are

yet to implement an automated way of converting the

constraints to SVA based monitors.

As evident from the Figure 6, STE formed the backbone of

major feature validation for FPU. Almost 3 out of the 4 RTL

bugs filed in the new-GPU FPU were found by STE. The

confidence on STE verifying uops were so high that the rest of

the methodologies were realigned to target only those areas

which were not covered through STE.

STE was the tool of choice from the RTL side for any

optimizations in the micro-architecture. Any optimizations for

timing fixes, and power optimizations were run first through

STE and based on our feedback, the fixes were either selected

or rejected for functionality. STE helped in maintaining the

health of the RTL and could avoid the downtrends which are

typically seen in any of the design projects.

B. Bug Distribution

Figure 7 depicts the division of 201 bugs found by STE in

the next generation Intel Processor Graphics FPU. Though

majority of them were RTL bugs, we also found ample issues

with the Spec (the architectural specification) and the golden

DV Reference Model.

Figure 7: Distribution of 201 STE bugs

There are a decent number of bugs filed on DV Reference

Model. These bugs were found through STE when bugs

caught by STE were tried to be reproduced on dynamic

simulation. Dynamic simulation runs tests on both RTL and

Reference Model and any difference in the results between

these two models are reported as error. If the DV Reference

Model implementation also bears the bug, then Reference

Model would be in unison with RTL and the bug would be

masked. The bugs that are filed from STE on DV Reference

Model fall in a category which exposed the issues where the

Reference Model also has the bug like the RTL and the

masked issue would never get exposed in any of the other

methodology. Hence, we could cleanse not only the RTL but

also the golden model which is used by other methodologies

too.

Architectural Specification bugs were found by STE when

the defined pseudo code of an operation in Spec didn’t match

with the standard CVE proofs. Since, CVE proofs conform to

most of the arithmetic standards and have been verified in

variety of projects, some of the failures turned out to be Spec

issues. The whole execution was carried out by a two member

team during a span of 9months and the man-year effort is

comparable and even lesser than what has been observed in

STE validation on EU in CPU projects. Thanks to the

reusability of the CVE.

C. Forward and Backward Compatibility of Proofs

Once the proofs were completely developed, we could

execute them on some of the earlier projects which were

currently under post silicon debug and found some issues. The

proofs developed are broadly compatible with generations of

graphics designs, both forward and backward.

VI. SUMMARY

The next generation Intel processor graphics FPU was

completely redesigned to comply with arithmetic standards,

DV Reference
Model , 12%

Architectural
Spec, 4%

RTL, 84%

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

155155155

increase programmability and to optimize on latency, power

and area. This paper detailed the architectural complexities

introduced due to the design improvements. A comprehensive

mechanism was needed to validate this new design in a short

time span. This paper discussed how STE was used as a

primary validation vehicle on FPU to thwart out issues in the

RTL and specifications by early deployment in the project

cycle. More than 200 bugs were unearthed by STE in this

project. To date, we haven’t found any bug escape in the uops

verified by STE nor any spec bugs found through DV, which

boosts our confidence in the tool and its capabilities to achieve

zero post silicon bugs.

Our experiences through the project execution confirm the

fact that if STE is implemented early in the project design

cycle, it could stabilize the RTL earlier. A reusable proof that

is ready before the RTL and validation environment helps in

early bug hunting and improving the quality early in the

project, which means significant improvement in the

effectiveness of validation. We strongly believe that the

effectiveness of STE for improved quality of validation would

prove valuable in the validation of a wide range of designs.

We proved that it is possible to reach a better level of quality

with a lower investment of resources, thereby reducing the

overall cost of validation.

ACKNOWLEDGMENT

Sincere thanks to Tom Schubert and Roope Kaivola for

training us on STE and providing constant support. We would

like to acknowledge Naveen Matam, Ashutosh Garg, Jin Xu

and Shubh Shah for helping us with micro-architecture and

design front. We would like to thank Durairaghavan

Kasturirangan and Archana Vijaykumar for giving us the

opportunity to perform this work.

REFERENCES

[1] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips, “GPU Computing: Graphics Processing

Unit--powerful, programmable, and highly parallel—are increasingly

targeting general-purpose computing applications”, Proceedings of the
IEEE, Vol. 96, No. 5, May 2008.

[2] Martin Rumpf and Robert Strzodka, “Graphics Processor Units: New

Prospects for Parallel Computing”, Numerical Solution of Partial
Differential Equations on Parallel Computers, volume 51 of Lecture

Notes in Computational Science and Engineering, Springer-Verlag,

2005.
[3] Intel Tick Tock Model, [Online]. Available:

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-

tock-model-general.html .
[4] IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std

754-1985, 1985.

[5] OpenCL - The open standard for parallel programming of heterogeneous
systems, [Online]. Available: http://www.khronos.org/opencl/

[6] OpenGL, [Online]. Available: http://www.opengl.org/

[7] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,
Jesse Whittemore, Sudhindra Pandav, Anna Slobodov´a, Christopher

Taylor, Vladimir Frolov, Erik Reeber and Armaghan Naik, “Replacing

Testing with Formal Verification in Intel CoreTM i7 Processor
Execution Engine Validation”, CAV '09 Proceedings of the 21st

International Conference on Computer Aided Verification, Sept 2009.

[8] R. Kaivola, “Formal verification of Pentium® 4 components with

symbolic simulation and inductive invariants” In CAV, Computer Aided
Verification, volume 3576 of LNCS, pages 170–184. Springer, 2005.

[9] R. Kaivola and M. D. Aagaard. “Divider circuit verification with model

checking and theorem proving” In TPHOLs, volume 1869 of LNCS,
pages 338–355. Springer, 2000.

[10] R. Kaivola and K. Kohatsu, “Proof engineering in the large: formal

verification of Pentium® 4 floating-point divider”, Int’l J. on Software
Tools for Technology Transfer, 4:323–334, 2003.

[11] R. Kaivola and A. Naik, “Formal verification of high-level conformance

with symbolic simulation”, In HLDVT, IEEE International Workshop on
High-Level Design Validation and Test, pages 153–159, 2005.

[12] R. Kaivola and N. Narasimhan, “Formal verification of the Pentium® 4

floating-point multiplier”, In DATE, Design, Automation and Test in
Europe, pages 20–27, 2002.

[13] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic

evaluation of partially-ordered trajectories”, Formal Methods in System
Design, 6(2), 1995.

[14] S. Hazelhurst and C.-J. H. Seger, “Symbolic trajectory evaluation,” in

Formal Hardware Verification, T. Kropf, Ed. New York: Springer
Verlag, 1997, ch. 1, pp. 3–78.

[15] J. O Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. (1999, First quarter).

“Formally verifying IEEE Compliance of floating-point hardware”,
Santa Clara, CA: Intel Corp. [Online]. Available:

http://developer.intel.com/technology/itj/

[16] R. B. Jones, “Symbolic Simulation Methods for Industrial Formal
Verification”, Kluwer Academic Publishers, 2002.

[17] Carl- Johan H. Seger, Robert B. Jones, John W. O'Leary, Tom Melham,
Mark D. Aagaard, Clark Barrett, and Don Syme, “An Industrially

Effective Environment for Formal Hardware Verification”, IEEE

Transactions on Computer-Aided Design of Integrated Circuits &
Systems, Sep2005, Vol. 24 Issue 9, p1381-1405, 15p.

[18] L. Paulson, ML for the Working Programmer, Cambridge

University Press, 1996.
[19] Robert Beers, Rajnish Ghughal and Mark Aagaard. Applications of

Hierarchical Verification in Model Checking, Formal Methods in

Computer-Aided Design 2000. Lecture Notes in Computer Science,

2000, Volume 1954/2000, 1-19, DOI: 10.1007/3-540-40922-X_1
[20] Robert Beers, "Pre-RTL formal verification: An Intel experience,"

Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE ,

vol., no., pp.806-811, 8-13 June 2008
[21] B. Bingham, J. Bingham, F. de Paula, J. Erickson, M. Reitblatt, and G.

Singh, ``Industrial Strength Distributed Explicit State Model Checking'',

International Workshop on Parallel and Distributed Methods in
Verification (PDMC) 2010.

[22] Slobodova, A.; Davis, J.; Swords, S.; Hunt, W.; , "A flexible formal

verification framework for industrial scale validation," Formal Methods
and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM

International Conference on , vol., no., pp.89-97, 11-13 July 2011

[23] Jacobi, C.; Weber, K.; Paruthi, V.; Baumgartner, J.; , "Automatic formal
verification of fused-multiply-add FPUs," Design, Automation and Test

in Europe, 2005. Proceedings , vol., no., pp. 1298- 1303 Vol. 2, 7-11
March 2005

[24] Warren A. Hunt, Sol Swords, Jared Davis and Anna Slobodova: “Use of

Formal Verification at Centaur Technology”. Design and Verification of
Microprocessor Systems for High-Assurance Applications. 2010, 65-88,

DOI: 10.1007/978-1-4419-1539-9_3

[25] Russinoff, D. M., Hunt, W. A., & Johnson, S. D. A case study in formal

verification of register-transfer logic with ACL2: the floating point

adder of the AMD AthlonTM processor. Formal Methods in Computer-

Aided Design. Third International Conference, FMCAD 2000.
Proceedings.

[26] D. Russinoff, M. Kaufmann, E. Smith, and R. Sumners. Formal

verification of floating-point RTL at AMD using the ACL2 theorem
prover. In Nikolai Simonov, editor, Proceedings of the 17th IMACS

World Congress on Scientific Computation, Applied Mathematics and

Simulation, July 2005.
[27] Anna Slobodova. Challenges for Formal Verification in Industrial

Setting. Formal Methods: Applications and Technology Lecture Notes in

Computer Science, 2007, Volume 4346/2007, 1-22, DOI: 10.1007/978-
3-540-70952-7_1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

156156156

http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html
http://www.khronos.org/opencl/
http://www.opengl.org/
http://developer.intel.com/technology/itj/

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

