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Abstract—This paper presents the formal verification of start-
up for a differential ring-oscillator circuit used in industrial
designs. Dynamical systems theory shows that any oscillator must
have a non-empty failure; however, it is possible to show that
these failures only occur with zero probability. To do so, this
paper generalizes the “cone argument” initially presented in [1]
and proves the soundness of this generalization. This paper also
shows how concepts from analog design such as differential
operation can be soundly incorporated into the verification
to produce simpler models and reduce the complexity of the
verification task.

I. I NTRODUCTION

System-on-Chip (SoC) and analog-mixed-signal (AMS) de-
signs have created new challenges for analog circuit designers.
Typical analog design relies heavily upon simulation tools
such as HSPICE and Spectre. Long simulation times along
with the continuous nature of device parameters, operating
conditions and input waveforms mean that simulation tools can
only provide partial verification of analog designs. In practice,
designers typically focus their simulation efforts on parametric
and small-signal sensitivity analysis when the circuit is in
or near its intended operating mode. Such analysis can be
used to determine the gain and bandwidth of an amplifier,
the jitter transfer function of a phase-locked loop, along with
finding transistor sizes to optimize a given circuit topology
for an objective function formulated in terms of steady-state
properties of the circuit. However, simulations cannot show
that the circuit will eventually reach its intended operating
condition from all possible starting conditions.

This paper presents a rigorous, formal verification that a
commonly used differential ring-oscillator circuit correctly
starts oscillation with probability 1. As shown in Figure 1,
the oscillator consists of two stages, where each stage has a
pair of “forward” inverters (labeledfwd in the figure) and a
pair of “cross-coupling” inverters (labeledcc). If the forward
inverters are much larger than the cross-coupling inverters,
then the circuit acts like a ring of four inverters settles to one
of two states:

State 1:X1 and X3, are low; andX2 and X4 are high.

State 2:X1 and X3, are high; andX2 and X4 are low.
(1)

Conversely, if the cross-coupling inverters are much larger than
the forward ones, then the circuit acts like two separate static
latches and has four stable states. If the forward and cross-
coupling inverters have comparable strength, then the circuit
should oscillate in a stable fashion.

In 2008, researcher from Rambus posed the problem of
showing that the oscillator circuit shown in Figure 1 starts
from all initial conditions for a particular choice of transistor
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Fig. 1. Ring-Oscillator Example from Rambus

sizes [2]. They described this as a “real-world” problem noting
that oscillators of this type had been observed to fail in the test-
lab. They posed a further problem of determining the range of
transistor sizes for which proper start-up is guaranteed. This
paper presents solutions to these problems.

A. Prior Work

Oscillator circuits have been a popular example for applying
formal methods to analog circuit verification [3]–[6]. These
early papers focused on simple oscillators, such as a tunnel-
diode based design, that are not representative of the oscillator
circuits used in real VLSI designs. More recently, several
groups have reported results for the Rambus oscillator problem
described above.

The earliest attempted verification of the oscillator that we
have seen [7] predates the formulation by [2] and considers
the behaviours of a 128 stage oscillator for a pulse-width
modulated voltage regulator. Their “proof” of correct oper-
ation assumes differential and periodic operation, and does
not consider weak coupling between stages (e.g. due to power
supply noise), that could stabilize undesired, higher harmonic
modes of oscillation.

A more rigorous approach was taken in [8] which used
monotonicity properties of theids functions of MOSFETs to
reduce the search for DC-equilibria in a Rambus ring oscillator
with an arbitrary, even number of stages to a one-dimensional
search, regardless of the number of stages in the oscillator.
They then used standard, small-signal analysis techniques to
determine if any of these equilibria are stable. If an oscillator
circuit had no stable DC equilibria, it was deemed free from
DC lock-up. The authors noted that their proof did not rule
out other behaviours such as higher harmonic oscillations or
chaotic behaviours.

Several subsequent papers have also treated the verification
problem as one of ruling out the existence of DC equilibria.
For example, Tiwariet al. [9], [10] used a SAT solver to
identify DC equilibria. To findstable equilibria, they added
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constraints that at least one node of the circuit must be within
0.2 volts of power or ground. They did not state how they
had arrived at these extra constraints or whether or not they
can be shown to be sound. Steinhorstet al. [11] presented
a particle filtering approach and compared it with a model-
checking method. The correctness condition for the model-
checking was lack of stable DC-equilibria. While higher-
harmonic oscillations or chaotic behaviours were not consid-
ered, they presumably would show up in the visualizations if
suitable particles were included in the state-space sampling.
Zaki et al. [12] presented an approach where the “pencil-and-
paper” analysis from [8] was automated using HySAT [13] and
Matlab toolboxes for interval arithmetic and matrix pseudo-
spectrum calculations.

Little et al. [14] showed that trajectories in a neighbourhood
of the nominal periodic trajectory for the oscillator remain
close to that nominal trajectory. This replaces the small-signal
analysis of traditional analog design with linear hybrid Petri
net (LHPN) model checking and confirms the stability of the
desired oscillating behaviour. As the analysis only considers a
portion on the state space near the desired trajectory, it does
not verify proper start-up for all initial conditions.

B. Contributions

This paper combines analytical techniques based on dy-
namical systems theory with reachability tools to present
the first verification of the Rambus oscillator problem that
actually addresses the question posed by Joneset al: “Will the
oscillator start up from all initial conditions?” In Section II
we consider the dynamics ofany oscillator that is modeled
by non-linear differential equations and show that it must
have some set of initial conditions for which the circuit fails
to oscillate. However, this failure set can benegligible, i.e.
have zero probability. We present a generalization of the cone
argument from [1] to verify that the failure set has zero
probability, and thus that the oscillator starts with a probability
of one. We also introduce a symmetry reduction method that
allows us to exploit the differential operation of the oscillator
in a formal verification context. Section IV describes our
implementation of the verification method using Matlab and
Coho [15]. Section V presents the results of verifying the
oscillator circuit with these methods.

II. N O PERFECTOSCILLATOR

This section shows that no physically plausible oscillator
starts from all initial conditions.

A. Dynamical Systems and Oscillators

We assume that a circuit, such as an oscillator, is modeled
by a system of ordinary differential equations. If the model
hasd variables, states of the circuit correspond to points in
R

d. The model includes a function,f : Rd → R
d that is the

time derivativeof the system: for statex ∈R
d, ẋ = f (x) is the

time-derivative of the system in statex. Forx0 ∈R
d, theinitial

value problemis to find a functionx : R+ →R
d such that for

all t ≥ 0, d
dt x(t) = f (x(t)) and x(0) = x0. Let Q ⊆ R

d be a

closed set.Q is invariant with respect tof if all trajectories
that start inQ remain inQ forever. To show thatQ is invariant
with respect tof , it is sufficient to show that for everyx ∈ Q
there is anε > 0 such thatx+ ε f (x) ∈ Q. We impose two
restrictions onf :
R1: There is aQ ⊆ R

d and someK ∈ R such thatQ is
invariant with respect tof and for everyx∈ Q, ‖ f (x)‖<
K.

R2: f is C 1 in Q. This means thatf (x) is differentiable with
respect to the components ofx, and these derivatives are
continuous.

These two conditions guarantee the existence and uniqueness
of solutions to the initial value problem forf and anyx0 ∈ Q
(see [16, chap. 8.3]). We can define a functionΦ f (x0, t) such
that if x is the solution to the initial value problem forf with
x(0) = x0, then x(t) = Φ f (x0, t). Given restrictions R1 and
R2, Φ f (x0, t) is a C 1 function with respect tox0 and t for
any x0 ∈ Q and t ≥ 0 (see [16, chap. 8.4]). We extendΦ f to
sets in the natural way: ifX ⊆R

d, thenΦ f (X, t) = {x2|∃x1 ∈

X. x2 = Φ f (x1, t)|}.
We assume that any physically plausible oscillator can be

modeled by an ODE withf and Q satisfying restrictions R1
and R2. The requirement thatf is C 1 follows from the smooth-
ness of the underlying physical models for electric fields,
charge distributions, etc. The requirement of the existence of
the setQ is satisfied because VLSI circuits generally have
node voltages that are bounded by the voltages of ground and
the power supply or that have limited excursions beyond these
power supply voltages.

We now define “oscillation.” If there is ax0 ∈Q and aP> 0
such thatΦ f (x0,P) = x0, and for all 0< t < P, x(t) 6= x0,
then f has a solution with periodP. In this case, we write
Γ f ,x0 = {x|∃t ∈ [0,P]. x = Φ f (x0, t)} to denote the set of
points in this periodic orbit. It is straightforward to show
∀t > 0.Φ f (Γ, t) = Γ. Let J= JacΦ f (x0,P), i.e.,J is the matrix
of partial derivatives ofΦ f (x0,P) with respect tox0. If J has
d−1 eigenvalues with magnitude less than 1, then the periodic
solution forx0 is aperiodic attractor[16, Theorem 13.2]. We
say that a system is an oscillator with periodP if it has a
periodic attractor with periodP.

B. Oscillator Start-Up

First consider the set of possible initial states. Labeling one
terminal of the power supply as “ground” and the other as
“Vdd” is simply a designer convention. Depending on circuit
details, the node voltages on power-up may be arbitrary values.
Rather than trying to analyse the circuit in detail, we simply
assume that each node has an arbitrary initial voltage in
[Vlo,Vhi]; typically Vlo is ground or close to ground, andVhi

is close toVdd. Let X0 = [Vlo,Vhi]
d denote the set of initial

node voltages. BecauseX0 contains all reachable states of the
circuit, we assumeγ ⊆X0 ⊂Q, whereγ is the desired periodic
attractor of the oscillator.

We can now describe an ideal oscillator.
A d-dimensional dynamical system with time-derivative

function f is an ideal oscillator iff
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The system is physically plausible:There is a setQ⊆ R
d

such thatf andQ satisfy conditions R1 and R2.
Periodic behavior: The system has a periodic attractor. Let

Γ be the orbit associated with this attractor.
Start up: There is a convex setX0 ⊆ R

d of initial states
such thatΓ ⊆ X0 ⊆ Q and for every pointx0 ∈ X0 and
everyε > 0, there is at > 0 and a pointx1 ∈ Γ such that
‖x1−Φ(x0, t)‖< ε.

The first two conditions were described in the previous section.
The last condition states that the set of initial states must
contain the periodic orbit as described above, and that for
any initial state, the trajectories emanating from that state
must eventually be arbitrarily close to the periodic orbit.
The requirement that this initial set be convex reflects the
topological properties of sets such as[Vlo,Vhi]

d described
above. We believe that this definition of an ideal oscillator
captures the notion of the oscillator starting from all initial
conditions requested in [2].

Theorem 1. There is no ideal oscillator.

Proof: This follows directly from the property that solu-
tions of ODEs that satisfy properties R1 and R2 are continuous
in their initial conditions. Thus, the topology of the initial set,
X0, is preserved byΦ f (X0, t). However, any small neighbor-
hood of a periodic attractor must have genus 1 (be “torus-like”)
whereas the set of initial states has genus 0 (i.e. it is “sphere-
like”). Thus, it is not that case that all initial conditions lead
to trajectories that are arbitrarily close to the desired attractor.
This establishes the claim.

III. V ERIFICATION OUTLINE

Our verification proceeds in three main phases:

Differential Operation The oscillator shown in Figure 1 is a
differential design: nodesX1 andX3 form a “differential
pair” and likewise for nodesX2 andX4. The first phase
of the verification shows that each of these differential
pairs can be treated as a single signal.

Escape from the Failure Set As shown in Section II,
for any oscillator, there must be initial conditions from
which it does not properly start. The second phase of the
verification shows that this occurs with probability zero.

Proper Oscillation The first two phases show that most
initial conditions lead to a fairly small subset of the full
state space. In the final phase, we use existing reachability
methods to show that the oscillator starts up properly
from the region.

This section describes the dynamical systems issues associated
with each of these phases. Section IV describes our verification
method based on these observations.

We model the oscillator circuit from Figure 1 using non-
linear ordinary differential equations (ODEs) of the form:

ẋ = f (x) (2)

where x is a vector of node voltages,̇x is the vector of
time derivatives for these voltages, andf is the function

modeling the non-linear dynamics of this circuit. Letd be the
dimensionality ofx. We assume thatf is C1 which guarantees
that Equation 2 has a unique solution for any initial state,x(0).
For simplicity, we model the system as being autonomous (no
inputs or outputs). Inputs (e.g. to model VCO control inputs,
power supply noise), can be modeled by givingf additional
parameters, i.e.f (x, in).

A. Differential Behaviour

NodesX1 and X3 in the oscillator from Figure 1 form a
“differential pair” and likewise for nodesX2 and X4. Let xi

denote the voltage on nodeXi. The differential component
of the differential pair isx1− x3, andx1+ x3 is the common
modecomponent. When the oscillator is operating properly,
the common mode components are roughly constant and the
oscillation is manifested in the differential components. Let
V+

0 be the nominal value for the common mode components.
We show that for a relatively smallVerr if |x1+x3−V+

0 |>Verr,
then d

dt (x1+x3) and(x1+x3−V+
0 ) have opposite signs. This

shows that that the common mode component for nodesX1
andX3 converges to withinVerr of the nominal value. Likewise
for nodesX2 andX4.

B. Escape from the Failure Set

Theorem 1 shows that there is no perfect oscillator. For the
Rambus ring-oscillator, there is an equilibrium point,xfail , i.e.
a point whereẋ = 0, and there is a manifold,Xfail such that

∀x ∈ Xfail . lim
t→∞

‖Φ f (x, t)−xfail‖= 0 .

Thus, direct application of continuous state-space model
checkers (e.g. [3], [17]) to the oscillator start-up problem will
identify regions where trajectories might stay forever. Because
we cannot show that the set of failure states is empty, we
must settle for showing that it isnegligible (i.e. occurs with
probability zero). This is sufficient in practice, as designers
are not worried about a design that fails with probability zero.

For intuition, consider an oscillator where all inverters are
identical. We defineVeq as the voltage that can be applied to
the input of the inverter such that the output settles to the same
voltage. When all of the inverters are identical,xfail is the point
at which all node voltages areVeq. Furthermore, any trajectory
starting at a point wherex1 = x3 andx2 = x4 converges toxfail ;
thus, such points are inXfail .

Using existing reachability methods, we can find a small
region,Ufail , that contains the pointxfail . Furthermore, we can
show that if an oscillator starts any point where each node has
a voltage in the interval[0,Vdd], then within bounded time, the
oscillator state will either be inUfail , or it will be in a region
where we can show convergence to the desired periodic orbit.

We will show that the set of failing trajectories is sufficiently
small as to ensure that the oscillator fails to start with a
probability of zero. As in the previous section, we writeRd

to denote the phase space. We will avoid a detailed treatment
of measure theory (see [18]) by noting that when we say that
B ⊆ R

d is measurable, we mean that it has a well-defined
d-dimensional “volume” (i.e. it is Lesbesgue measurable),
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and we write|B| to denote this volume (i.e. measure). We
write µ(B) to denote the probability that the initial state of
the oscillator is inB. Our assumption thatµ is smooth (i.e.
absolutely continuous) means that if|B| is zero, thenµ(B) is
zero as well. For example, let

B = {(x1,x2,x3,x4) | (x1 = x3)∧ (x2 = x4)}

i.e. the plane described above. Because this plane has zero
volume,|B|= 0, and by our smoothness assumption,µ(B) = 0
as well.

Let U be a bounded, measurable subset ofR
d. We define

escape f (x,U) = ∃t ∈ R
+. Φ f (x, t) 6∈U

trapped f (U) = {x ∈U | ¬escape f (x,U)}

For anyU ⊆ R
+, and anyt ∈ R, |U |= 0 ⇔ |Φ f (U, t)| = 0.

Thus, it suffices to show that|trapped f (Ufail)| = 0. The next
theorem presents conditions that ensureµ(trapped f (U)) = 0.

Theorem 2. Let µ be a smooth probability measure overR
d.

Let U be a bounded, measurable subset ofR
d, and f : Rd →

R
d be bounded and C1 in U. If there is a matrix H∈ R

d×d

such that at least one eigenvalue of H has a positive real part,
and k> 0 such that for allx1,x2 ∈U:

(x2−x1)
TH(x2−x1) > 0

⇒ (x2−x1)
TH( f (x2)− f (x1)) > k(x2−x1)

TH(x2−x1) ,

then µ(trapped f (U)) = 0.

Proof: Assume thattrapped f (U) 6= /0 as the other case is
trivial. Let ρmax be the maximum real part of any eigenvector
of H. Let u be a unit vector such thatuTHu= ρmax. Let x0

be any point intrapped f (U), andα ∈R such thatα > 0 and
x0+αu ∈U . We’ll definex1 = x0+αu.

We now showx1 6∈ trapped f (U). Consider two trajectories,

η0(t) = Φ f (x0, t), the trajectory that starts atx0

η1(t) = φ f (x1, t), the trajectory that starts atx1

Note that both trajectories start inU . We’ll show that these
two trajectories diverge, and thus at most one of them can
remain inU . Let

w(t) = (η1(t)−η0(t))TH(η1(t)−η0(t))

We claim that fort ≥ 0, w(t)≥ α2ρmaxekt > 0. First note that
w(0) = α2ρmax which satisfies the claim (att = 0). Bothw(t)
andα2ρmaxekt are continuous functions oft. Thus, if the claim
were ever to be violated, there would have to be a value of
t for which w(t) = α2ρmaxekt and d

dt w(t) <
d
dt α

2ρmaxekt. For
the sake of contradiction, lett be such a time. Then

d
dt w(t) = (η1(t)−η0(t))TH( f (η1(t))− f (η0(t)))

> k(η1(t)−η0(t))TH(η1(t)−η0(t))
= kw = kα2ρmaxekt = d

dt α
2ρmaxekt

But this shows thatd
dt w(t) >

d
dt α

2ρmaxekt, a contradiction.
Thus,w(t)≥ α2ρmaxekt as claimed.

Because,w(t)≥ α2ρmaxekt, ‖η1(t)−η0(t)‖ must diverge as
t → ∞. By assumption,η0(t) stays inU , andU is bounded.
Therefore,η1(t) must exitU .

We have shown that for any pointx0 ∈ trapped f (U), all
points in the cone defined byH whose apex is atx0 must
escape fromU . This shows thattrapped f (U) must have lower
dimension than the full space. Thus,|trapped f (U)| = 0, and
thereforeµ(trapped f (U)) = 0 as claimed.

Note: Theorem 2 was based on the cone argument from
[1]. The present theorem generalizes the result from [1] to
systems of arbitrary dimensions and whose Jacobian matrices
have complex eigenvalues. The conditions for Theorem 2 are
slightly stronger than those from [1] (for the systems where
the latter applies) – this is mainly for simplicity.

C. Proper Oscillation

For the trajectories under consideration after the first two
steps, the common mode components of both differential
signal pairs are withinVerr of V+

0 . This allows the differential
equation model from Equation 2 to be rewritten as adifferen-
tial inclusion [19]:

u̇ ∈ F(u) (3)

where u is the vector(
√

2/2)[x1− x3,x2 − x4]. By using an
inclusion, F accounts forall values of the common mode
components in[V+

0 − Verr,V+
0 + Verr]. Reducing the four-

dimensional state space of the original problem to a two-
dimensional space makes the exploration of trajectories from
all remaining start conditions straightforward.

By showing that all such trajectories lead to an oscillation in
the fundamental mode, we solve the first part of the challenge
problem from [2]: we show that for a particular choice of
transistor sizes, the circuit will start oscillation from all initial
conditions except for a set of zero measure. Section V provides
a brief description of how these methods can be extended to
establish a range of transistor sizes for which the oscillator
will start with probability one.

IV. I MPLEMENTATION

This section describes our implementation of the verification
techniques described in the previous section. We construct
an ODE model for the ring oscillator circuit using standard,
modified nodal analysis. We obtain drain-to-source current
data by tabulating HSPICE outputs and fitting piece-wise
quadratic functions to this tabulated data. The resulting errors
are less than 1%; thus, our transistor models closely match
those used by practicing circuit designers in industry.

A. Differential Operation

This verification phase starts by changing the coordinate
system to one based on the differential and common mode
representation of signals.

Let u be the circuit state in “differential” coordinates:

u = M−1x

M =

√
2

2





1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1




(4)
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We assume each of nodesX1, X2, X3 andX4 can independently
have initial voltages anywhere in[0,1.8]V. Thus, the differen-
tial components,u1 andu2, are initially in [−0.9

√
2,+0.9

√
2],

and the common mode components,u3 andu4, are initially in
[0,1.8

√
2].

To establish differential operation, we divide the range of
each componentui of u into m intervals, creatingm4 cubes.
We construct a graph,G= (V,E) to represent the reachability
relationship between these cubes. Letvi, j ,k,ℓ be a vertex
corresponding to theith interval for u1, the jth interval for
u2 and so on. There is an edge fromv to w if f allows a flow
out of the cube forv directly into the cube forw, and there is
a self-loop forv if each component off is zero somewhere in
v. If a vertex ofG has no incoming edges, then any trajectory
that starts in the corresponding cube will eventually leave that
cube, and no trajectories will ever enter the cube. Such a cube
can be eliminated from further consideration. Thus, we only
need to consider cubes whose vertices are members of cycles.
These vertices can be identified inO(V +E) = O(m4) time.
With a direct implementation of this computation, constructing
G dominates the entire time for verifying the oscillator.

To obtain a more efficient computation, we first note that
the goal is to establish differential operation. It is sufficient to
project the vertices ofV onto the common-mode components
of the differential signals and show that most of this projection
can be eliminated from further consideration. LetG′ = (V ′,E′)
where v′k,ℓ corresponds to thekth interval of u3 and theℓth

interval of u4. There is an edge inE′ from v′k1,ℓ1
to v′k2,ℓ2

iff
there existi and j such that(vi, j ,k1,ℓ1,vi, j ,k2,ℓ2) ∈E. Clearly,G′

over approximates reachability. Thus, if a vertex ofG′ has no
incoming edges, then all of the corresponding vertices inG
must have no incoming edges as well. Computing the edges
in E′ requires examining all of the edges ofE, but subsequent
operations on the graphG′ are much faster than those onG.

To reduce the time required to find edges ofE, we start
with a small value ofm and thus a coarse grid. Many large
blocks can be eliminated fromG′ even with a coarse grid.
We then doublem (i.e. divide each vertex ofG′ into four) and
recompute reachability using the finer grid for finding edges in
E as well. In practice this adaptive griding approach eliminates
blocks quickly while achieving enough precision to allow the
rest of the verification to proceed without difficulties.

B. Escape from the Failure Set

At the end of establishing differential operation, there are a
few cubes with self-loops – there is more than one such cube
because of the over approximations described above. These
cubes contain the pointxfail . We now construct a larger cube
that contains all of these and make a change of variables so
that this cube is centered at the origin. We’ll writex for vectors
in the original coordinate system andu for vectors in the
coordinates where the center of a cube with a self-loop is
at the origin. Letr be the maximumℓ2 distance of any point
in this cube from the origin.

As described at the beginning of this section, we use
piecewise quadratic models for transistor currents and model

node capacitances as constants. Thus, the derivative function,
f , is piecewise quadratic. Our repeated subdivision of cubes
when establishing differential operation ensures that the cube
containingxfail is modeled by a simple quadratic (i.e. a single
“piece”). We can write this model as:

u̇ = A0 + A1u + ∑d
j=1(u

TA2, ju)b j (5)

whereb j is a unit vector corresponding to thej th component
of u. We will assume wlog that theA2, j matrices are symmetric
throughout paper.

To establish the hypotheses of Theorem 2, we again exploit
the differential operation of the oscillator and chooseH =
diag([+1,+1,−1,−1]). The two+1 elements ofH anticipate
a growing, differential component of the state, and the two
−1 elements are for a diminishing common-mode component.
Consider(u2−u1)

TH( f (u2)− f (u1)):

(u2−u1)
TH( f (u2)− f (u1))

= (u2−u1)
THA1(u2−u1)

+ (u2−u1)
TH ∑d

j=1((u2−u1)
TA2, j(u2+u1))b j

(6)

We now derive a lower bound for

(u2−u1)
THA1(u2−u1)

(u2−u1)TH(u2−u1)
(7)

and an upper bound for
∣∣∣∣∣
(u2−u1)

TH ∑d
j=1((u2−u1)

TA2, j(u2+u1))b j

(u2−u1)TH(u2−u1)

∣∣∣∣∣ (8)

when (u2−u1)
TH(u2−u1)> 0.

Equation 7 is a convex conic program and can be solved
by standard techniques (see [20, chap. 4.4]); letlinmin be the
minimum value for Equation 7. To bound the magnitude of
the quadratic term, letσmax denote the largest singular value
of any of theA2, j matrices. Then, for allj ∈ 1. . .d,

(u2−u1)
TA2, j(u2+u1) ≤ σmax(u2−u1)

T(u2+u1)

Therefore,
∥∥∥∑d

j=1((u2−u1)
TA2, j(u2+u1))b j

∥∥∥
≤

√
dσmax(u2−u1)

T(u2+u1)

Noting that the largest singular value ofH is 1, and‖u2+
u1‖ ≤ 2r, we get:

(u2−u1)
TH ∑d

j=1((u2−u1)
TA2, j(u2+u1))b j

≤ 2r
√

dσmax‖u2−u1‖
2 (9)

By our choice ofH,

(u2−u1)
TH(u2−u1) ≤ ‖u2−u1‖

2 (10)

Now, let k = linmin−2r
√

dσmax. Combining the results from
Equations 6 through 10, we get

(u2−u1)
TH( f (u2)− f (u1)) ≥ k(u2−u1)

TH(u2−u1)

If k > 0, then we can satisfy the conditions of Theorem 2.
In practice, the conditions of Theorem 2 can be satisfied by
choosingr to be sufficiently small.
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C. Proper Oscillation

As described in Section III-C, we reduce the state space
from four dimensions to two by replacing the differential
equation model for the circuit with a differential inclusion.
The space to be considered forms a ring: the outer boundary
is determined by the assumption that all signals have voltages
between ground andVdd, and the inner boundary is estab-
lished by eliminating trajectories in a neighborhood nearxfail .
Figure 3 shows the remaining region. We use a collection of
“spokes” as shown in Figure 4, and show that all trajectories
in these wedges converge to a unique, periodic attractor. The
computation has three parts:

1) Starting from each “spoke”, show that all trajectories
starting at that spoke eventually cross the next spoke.

2) Show that all trajectories starting from the inner or outer
boundary eventually cross the next spoke.

3) Starting from one spoke, compute the reachable set until
it converges to a limit set.

V. RESULTS

We generated transistor models using HSPICE to determine
drain-to-source currents for 0.18µ long and 1µ wide nMOS
and pMOS devices with the gate and drain voltages swept
from 0 to 1.8V in 0.01V steps. For the nMOS transistors,
we assume that the source and body are at 0V, and for the
pMOS devices, we assume that they are at 1.8V. We assume
that all transistors have a length of 0.18µ , and obtain current
for other widths by linear scaling from the 1µ data. For all
inverters, we use pMOS devices that are twice as wide as
the nMOS devices. All forward inverters have transistors of
the same size, and likewise for the cross-coupled inverters.
In the following,s denotes ratio of the cross-coupled inverter
size to the forward inverter size. This section first presents the
verification of an oscillator withs= 1. Then, the oscillator is
verified for 0.673≤ s≤ 2.0.

The verification routines were implemented using Matlab
with Coho used for the final reachability computation. All
times were obtained running on a dual Xeon E5520 (quad
core) 2.27GHz machine with 32GB of memory. The compu-
tations described here are all performed using a single core.

A. Verification with equal-size inverters

The first phase of the verification establishes differential
operation. Initially, the computation partitions the space for
each of theui variables into 8 regions, creating a total of
84 = 4096 cubes to explore. After eliminating cubes that have
no incoming or self-circulating flows, the remaining cubes are
subdivided and rechecked until there are 64 intervals for each
variable. Figure 2 shows the remaining cubes projected onto
the common-mode variables,u3 andu4 at the end of this phase.

With 8 intervals per region, there are 752 cubes under
consideration (18% of the total space). With each subdivision,
the number of cubes remaining increases by a factor of roughly
4.6, and thus the volume of the space under consideration
drops by about a factor of roughly 0.29. With 64 intervals
per region, 74676 cubes remain (0.45% of the total space).

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

u
3

u 4

Fig. 2. Common-mode convergence toVdd
√

2/2

The decrease in the volume is steady, suggesting that further
reductions would be possible with more iterations. However,
the time per iteration increases with the number of cubes under
consideration, and the time for this phase dominates the total
verification time. Thus, for verifying this circuit, there is no
incentive to further refine the region bounding the common-
mode signal.

The second phase of the verification eliminates the unstable
equilibrium. The equilibrium is near the point where all node
voltages are 0.867V. We choseU to be the hyper-rectangle
with sides of length 0.1V whose center is at this point. The
regionU contains all cubes that correspond to graph-vertices
with self-loops from phase 1. There is more than one such
cube due to the use of interval arithmetic in computing the
adjacency graph to ensure soundness. Using the least-squares
best-fit quadratic model for points inU yields:

linmin > 5×1010sec−1,

σmax < 2×109sec−1V−1, and
r = 0.1V

from which we get that the conditions of Theorem 2 are
satisfied for anyk with 0 < k < 4.92× 1010sec−1. Thus, we
can safely remove the cubes inU .

We can now repeat the procedure from phase 1 to remove
all cubes that transitively have no incoming flows. This phase
eliminates roughly half of the remaining cubes, leaving 38384
cubes for analysis by the final phase.

The final phase starts with the 38384 cubes from the
second phase. As described in Section IV-C, we divide these
cubes into 16 wedges divided by “spokes” in theu1 × u2

projection. As described in Section IV-C, it is sufficient to
show trajectories starting on the boundary of the wedge lead to
points inside the next wedge in the clockwise direction. With
16 wedges, we perform 48 reachability computation runs. At
this point, the oscillator is verified.

We also ran a longer reachability computation starting from
a spoke and completing two complete cycles of the oscillation.
The second cycle starts from a smaller region that the first
and establishes tighter bounds on the limit cycle. The blue
polygons in Figure 4 indicate this limit cycle. The remaining
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Fig. 4. Computing the invariant set

width of the limit cycle is mainly due to approximating
the four-dimensional differential equation with a differential
inclusion.

The computation is very efficient. The run-time of the first
phase is about 720 seconds, and the run-time of reacha-
bility computation is less than 470 seconds. Reducing state
space helps to improve performance significantly. It takes
several hours to completes the reachability computation in
full-dimensional space from a single cube. In contrast, the run-
time in reduced-space is less than 10 minutes as shown above.
Reducing the space also introduces over-approximations to the
reachable regions. However, this did not lead to false-negative
results, as the circuit converges to the oscillation orbit rapidly.

B. Verification for a range of sizes

Phases 1 and 3 of our verification method use conservative
over-approximations to guarantee soundness of the results.
These approximations make it straightforward to models as
being in an interval rather than having a precise value. We have
verified escape from the failure set for values ofs from 0.673
to 2.0 by testing values ofs in steps of 0.01 for 0.6≤ s≤ 2 and
in steps of 0.001 for 0.67≤ s≤ 0.7. The lower-bound fors is
slightly higher than the one reported in [8]. We conjecture
that our transistor current tables are slightly different than
those used in [8] perhaps due to an updating of the SPICE

models provided by the foundry. Fors> 2, the third phase
of the verification fails to show that trajectories leave the
“corners” of theu1×u2 space. These correspond to lock-up
of the cross-coupled inverters. The DC analysis method shows
that these lock-up states become stable fors> 2.25. The gap
between the reachability computation and the DC analysis is
presumably due to conservative over-approximations used in
the reachability method.

VI. CONCLUSIONS

This paper has presented the first, formal verification that
the differential oscillator circuit presented in [2] properly starts
from almost all initial conditions. In particular:

• no “physically plausible” oscillator starts from all initial
conditions (Theorem 1, Section II);

• we presented a generalization of the “cone-argument”
from [1] to show that the failures occur with probability
zero and thus the oscillator starts with probability one
(Theorem 2, Section III);

• our approach shows how reachability analysis can be
combined effectively with dynamical systems analysis;

• we showed how differential-operation, a common feature
of analog designs, can be exploited for model reduction.

We elaborate on some of these below.
First, metastable behaviors is unavoidable for most mode-

switching circuits. While metastability is most often associated
with synchronizer circuits [21], [22], it arises anytime the
state of a continuous system can evolve to two or more
distinct states. For example, when a phase-locked loop (PLL)
locks, the VCO phase may advance to match the phase of
the reference, or the VCO may drop back depending on
the initial conditions. Thus, there are conditions where any
physically realizable PLL takes an arbitrarily long time to
lock. On the other hand, there are are published verifications
of bounded lock time for phase-locked loops (e.g. [23]). The
discrepancy is resolved by noting that [23] uses an abstract
model for the phase-comparator that makes a discontinuous
step as the phase-difference passes through 180◦. For many
designs, this is a reasonable abstraction; yet, we note that a
PLL can fail to lock if there is a dead-spot in the response
of the phase-comparator at the wrap-around point. We see our
work as complementary to that of [23] – they provide powerful
abstractions that enable the verification of larger designs, and
we provide methods of ensuring that those abstractions are
sound.

Second, our verification combined analytical methods from
dynamical systems theory with reachability methods that are
more typical of the formal methods community. Neither alone
is sufficient to verify the oscillator. Reachability techniques are
inadequate because they cannot show escape from a failure set
of zero measure. Such “failures” are not of concern to practical
designers as they are unobservable in the physical system. On
the other hand, the dynamical systems methods that allow us
to establish probability-one results are arguments about local
dynamics. The reachability computations are needed to go
from these local results to proving global properties.
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The notion of probability that we used, a smooth distribution
over initial states, was simplistic. A more physical model
would use stochastic integration techniques to determine the
evolution of this distribution under the circuit dynamics as
perturbed by noise processes such as thermal noise. While this
might be more satisfying, it would mainly serve to make the
mathematics more complicated, and quantitative results would
be hard to obtain due to the highly non-linear dynamics of the
circuits. However, the basic topological observations on which
we base our results would be preserved. Thus, we believe that
our probability one results would continue to hold in a more
detailed, stochastic model.

Proving that something happens “eventually” can be un-
satisfying, as such proofs often don’t give an indication of
how long one needs to wait. Our proof for Theorem 2 shows
that the divergence is at least as fast as an exponential with
time-constantk. For the oscillator considered,k ≈ 1/(20ps).
Thus, we can make a quantitative conclusion that in a few
nanoseconds, the probability that the oscillator has not started
is extremely small. This should satisfy practicing designers.

Of course, there are many areas of future work. Most
immediately, we claimed escape from the failure set for a
wide-range of inverter sizes by verifying the property for a
large number of closely spaced choices of the sizes. We would
like to use interval-arithmetic methods to show that these
intervals are completely covered. To do so, we are making
a few extensions to theintlab package [24]. Likewise, we
plan to show that the method can be applied to a design in
a more state-of-the-art process (e.g. using PTM models [25]).
We expect to include results for interval arithmetic and other
processes in the final version of this paper.

We would like to verify larger circuits. For example, a
ring oscillator with six or more stages can have stable higher
harmonic modes if small inter-stage couplings are included in
the model. We would like to verify (and refute) such designs.
We expect that the first two phases of our verification could
readily be generalized to a oscillators with an arbitrary number
of stages with straightforward inductive formulations. We
don’t see induction working directly to extend the reachability
analysis to larger designs. Instead, we are looking further into
dynamical systems approaches to rule out entire classes of
failure modes. Then we use reachability analysis techniques
like those presented in the paper to complete the verification.
The Rambus oscillator circuit is a good example for detailed
analysis of how reachability computation complexity scales
with circuit size.
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