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Abstract—This paper presents the formal verification of start-
up for a differential ring-oscillator circuit used in industrial
designs. Dynamical systems theory shows that any oscillator must
have a non-empty failure; however, it is possible to show that cc
these failures only occur with zero probability. To do so, this
paper generalizes the “cone argument” initially presented in [1]
and proves the soundness of this generalization. This paper also fwd
shows how concepts from analog design such as differential
operation can be soundly incorporated into the verification
to produce simpler models and reduce the complexity of the
verification task.

Fig. 1. Ring-Oscillator Example from Rambus

I. INTRODUCTION . . . .
sizes [2]. They described this as a “real-world” problem noting

_System-on-Chip (SoC) and analog-mixed-signal (AMS) des ¢ gscillators of this type had been observed to fail in the test-
signs have created new challenges for analog circuit designets. They posed a further problem of determining the range of

Typical analog design relies heavily upon simulation t0olgngjstor sizes for which proper start-up is guaranteed. This
such as HSPICE and Spectre. Long simulation times annger presents solutions to these problems.

with the continuous nature of device parameters, operating

conditions and input waveforms mean that simulation tools can prior Work

only provide partial verification of analog designs. In practice, ) . i
designers typically focus their simulation efforts on parametric ©Scillator circuits have been a popular example for applying
and small-signal sensitivity analysis when the circuit is ifP'mal methods to analog circuit verification [3]-[6]. These
or near its intended operating mode. Such analysis can §1Y Papers focused on simple oscillators, such as a tunnel-
used to determine the gain and bandwidth of an amplifiéJPOde based design, that are not representative of the oscillator

the jitter transfer function of a phase-locked loop, along witiifcuits used in real VLSI designs. More recently, several
finding transistor sizes to optimize a given circuit topolog9rOUpS have reported results for the Rambus oscillator problem

for an objective function formulated in terms of steady-stafé£scribed above. o ,
properties of the circuit. However, simulations cannot show The earliest attempted verification of the oscillator that we
that the circuit will eventually reach its intended operatingf“’e seen [7] predates the formulation by [2] and considers
condition from all possible starting conditions. e behaviours of a 128 stage oscillator for a pulse-width
This paper presents a rigorous, formal verification thatodulated voltage regulator. Their “proof” of correct oper-
commonly used differential ring-oscillator circuit correctly2tion assumes differential and periodic operation, and does
starts oscillation with probability 1. As shown in Figure 1Nt consider weak coupling between stages (e.g. due to power
the oscillator consists of two stages, where each stage hai'BP!y noise), that could stabilize undesired, higher harmonic
pair of “forward” inverters (labeledwd in the figure) and a Modes of oscillation. _ _
pair of “cross-coupling” inverters (labelext). If the forward ~ A more rigorous approach was taken in [8] which used
inverters are much larger than the cross-coupling invertef8onotonicity properties of thés functions of MOSFETSs to

then the circuit acts like a ring of four inverters settles to of€duce the search for DC-equilibria in a Rambus ring oscillator
of two states: with an arbitrary, even number of stages to a one-dimensional

search, regardless of the number of stages in the oscillator.
(1) They then used standard, small-signal analysis techniques to

determine if any of these equilibria are stable. If an oscillator
Conversely, if the cross-coupling inverters are much larger thaincuit had no stable DC equilibria, it was deemed free from
the forward ones, then the circuit acts like two separate stal€ lock-up. The authors noted that their proof did not rule
latches and has four stable states. If the forward and croest other behaviours such as higher harmonic oscillations or
coupling inverters have comparable strength, then the circaitaotic behaviours.
should oscillate in a stable fashion. Several subsequent papers have also treated the verification

In 2008, researcher from Rambus posed the problem mbblem as one of ruling out the existence of DC equilibria.

showing that the oscillator circuit shown in Figure 1 startSor example, Tiwariet al. [9], [10] used a SAT solver to
from all initial conditions for a particular choice of transistoidentify DC equilibria. To findstable equilibria, they added

State 1:X1 and X3, are low; andx2 and X4 are high.
State 2:X1 and X3, are high; andx2 and X4 are low.
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constraints that at least one node of the circuit must be withétosed setQ is invariant with respect td if all trajectories
0.2 volts of power or ground. They did not state how thethat start inQ remain inQ forever. To show tha is invariant
had arrived at these extra constraints or whether or not thsith respect tof, it is sufficient to show that for every € Q

can be shown to be sound. Steinhoestal. [11] presented there is ane > 0 such thatx+ £f(x) € Q. We impose two
a particle filtering approach and compared it with a modalestrictions onf:

checking method. The correctness condition for the modeR1: There is aQ C RY and someK € R such thatQ is

checking was lack of stable DC-equilibria. While higher- invariant with respect td and for everyx € Q, Hf(x)” <

harmonic oscillations or chaotic behaviours were not consid- K.

ered, they presumably would show up in the visualizations iR2: f is 1 in Q. This means that(x) is differentiable with

suitable particles were included in the state-space sampling. respect to the components xfand these derivatives are
Zaki et al.[12] presented an approach where the “pencil-and- continuous.

paper” analysis from [8] was automated using HySAT [13] anghese two conditions guarantee the existence and unigueness

Matlab toolboxes for interval arithmetic and matrix pseudast sojutions to the initial value problem fdr and anyxo € Q

spectrum calculations. (see [16, chap. 8.3]). We can define a functibp(xo,t) such
Little et al.[14] showed that trajectories in a neighbourhoOghat f x is the solution to the initial value problem férwith

of the nominal periodic trajectory for the oscillator remailg((o) = Xo, then x(t) = ®;(xo,t). Given restrictions R1 and

close to that nominal trajectory. This replaces the small-signgd ®f(Xo,t) is a € function with respect tog andt for

analysis of traditional analog design with linear hybrid Petgny x, « Q andt > 0 (see [16, chap. 8.4]). We exteidd to

net (LHPN) model checking and confirms the stability of thgets in the natural way: X C RY, then®; (X,t) = {Xo|3x; €

desired oscillating behaviour. As the analysis only considers@y, — g (xy,t)|}.

portion on the state space near the desired trajectory, it doegye assume that any physically plausible oscillator can be

not verify proper start-up for all initial conditions. modeled by an ODE withf and Q satisfying restrictions R1

and R2. The requirement thais ¢ follows from the smooth-

_ _ _ ) ness of the underlying physical models for electric fields,
This paper combines analytical techniques based on q:)h'arge distributions, etc. The requirement of the existence of

namical systems theory with reachability tools to preseffe setQ is satisfied because VLSI circuits generally have
the first verification of the Rambus oscillator proplem tha{ode voltages that are bounded by the voltages of ground and
actually addresses the question posed by Jehak “Will the e power supply or that have limited excursions beyond these
oscillator start up from all initial conditions?” In Section ”power supply voltages.

we consider the dynamics @y oscillator that is modeled ' \yie now define “oscillation.” If there is BcQandaP>0

by non-linear differential equations and show that it musj,ch that® (xo, P) = Xo, and for all 0<t < P, X(t) # Xo,
have some set of initial conditions for which the circuit fail$hen f has a solution with perio®. In this case, we write

to oscillate. However, this failure set can begligible i.e. My, = {X|3t € [0,P]. X = ®¢(Xo,t)} to denote the set of
have zero probability. We present a generalization of the Copgints in this periodic orbit. It is straightforward to show
argument from [1] to verify that the failure set has ZerQt ~. 0. ¢ (I,t) =T. LetJ = Jacd; (xo,P), i.e.,J is the matrix
probability, and thus that the oscillator starts with a probability; partial derivatives ofb (xo, P) with respect txo. If J has

of one. We also introduce a symmetry reduction method th@t 1 ejgenvalues with magnitude less than 1, then the periodic
allows us to exploit the differential operation of the oscillatogg|tion forxe is aperiodic attractor[16, Theorem 13.2]. We

in a formal verification context. Section IV describes OUWay that a system is an oscillator with periBdif it has a
implementation of the verification method using Matlab a”ﬂeriodic attractor with perio®.

Coho [15]. Section V presents the results of verifying the
oscillator circuit with these methods. B. Oscillator Start-Up
First consider the set of possible initial states. Labeling one
terminal of the power supply as “ground” and the other as
This section shows that no physically plausible oscillatéVyq” is simply a designer convention. Depending on circuit
starts from all initial conditions. details, the node voltages on power-up may be arbitrary values.
Rather than trying to analyse the circuit in detail, we simply
assume that each node has an arbitrary initial voltage in
We assume that a circuit, such as an oscillator, is model®f, Vi,i]; typically Vi, is ground or close to ground, andg;
by a system of ordinary differential equations. If the modé$ close toVyy. Let Xg = [\/|0,Vhi}d denote the set of initial
hasd variables, states of the circuit correspond to points imode voltages. Becaus® contains all reachable states of the
RY. The model includes a functiorf,: RY — RY that is the circuit, we assumg C Xo C Q, wherey is the desired periodic
time derivativeof the system: for state € RY, x = f(x) is the attractor of the oscillator.
time-derivative of the system in stateForxg € RY, theinitial We can now describe an ideal oscillator.
value problemis to find a functiorx : Rt — RY such that for A d-dimensional dynamical system with time-derivative

all t >0, %x(t) = f(x(t)) andx(0) = xo. Let Q C RY be a function f is anideal oscillator iff

B. Contributions

Il. No PERFECTOSCILLATOR

A. Dynamical Systems and Oscillators
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The system is physically plausibleThere is a seQ CRY modeling the non-linear dynamics of this circuit. lebe the

such thatf andQ satisfy conditions R1 and R2. dimensionality ofx. We assume thatt is C! which guarantees
Periodic behavior: The system has a periodic attractor. Lethat Equation 2 has a unique solution for any initial sta{e).
I be the orbit associated with this attractor. For simplicity, we model the system as being autonomous (no

Start up: There is a convex seXy C RY of initial states inputs or outputs). Inputs (e.g. to model VCO control inputs,
such thatl C Xy € Q and for every pointxg € Xo and power supply noise), can be modeled by givih@dditional
everye > 0, there is & > 0 and a poin; € I' such that parameters, i.ef(x,in).

X1 — P(Xo, t E. . . .
” ! (o, )|,| _< , i i _A. Differential Behaviour
The first two conditions were described in the previous section. . ) .
NodesX1 and X3 in the oscillator from Figure 1 form a

The last condition states that the set of initial states must, X e
contain the periodic orbit as described above, and that félifferential pair” and likewise for nodex2 and x4. Let x

any initial state, the trajectories emanating from that stafignote the voltage on nods. The differential component

must eventually be arbitrarily close to the periodic orbi! the differential pair is; —xs, andx; +x is the common
The requirement that this initial set be convex reflects tfjBdecomponent. When the oscillator is operating properly,
topological properties of sets such &g, Vi]¢ described the common mode components are roughly constant and the

above. We believe that this definition of an ideal oscillatd?scmation is manifested in the differential components. Let
y+ be the nominal value for the common mode components.

captures the notion of the oscillator starting from all initial'o . _ h
conditions requested in [2]. We sr(]ow that for a relatively smal if X1 +x3 _—V0 _\ > Verr, _
then & (x1+x3) and (x1 +x3— V) have opposite signs. This
Theorem 1. There is no ideal oscillator. shows that that the common mode component for nodes
andx3 converges to withiVe,r of the nominal value. Likewise

Proof: This follows directly from the property that solu-
y property nodesx2 and X4.

tions of ODEs that satisfy properties R1 and R2 are continuoft%
in their initial conditions. ThUS, the tOpOlOgy of the initial SetB_ Escape from the Failure Set
Xo, is preserved byb (Xo,t). However, any small neighbor-

L ) .~ Theorem 1 shows that there is no perfect oscillator. For the
hood of a periodic attractor must have genus 1 (be torus'“kngambus ring-oscillator, there is an equilibrium poig, i.e.

whereas the set of initial states has genus O (i.e. it is “sphere- . : . .
. o o . oint wherex = 0, and there is a manifolds,; such that
like”). Thus, it is not that case that all initial conditions lea P K

to trajectories that are arbitrarily close to the desired attractor. VX € Xsail- tIim [|Ds(X,t) — Xsait || = 0.
—300

This establishes the claim. ] o )
Thus, direct application of continuous state-space model

I1l. V ERIFICATION OUTLINE checkers (e.g. [3], [17]) to the oscillator start-up problem will
identify regions where trajectories might stay forever. Because
we cannot show that the set of failure states is empty, we
must settle for showing that it isegligible (i.e. occurs with
probability zero). This is sufficient in practice, as designers
re not worried about a design that fails with probability zero.
pairs can be treated as a single signal. ' Fo'r intuition, cpnsider an oscillator where all inverte.rs are
Escape f the Fail SetAs sh in section II |dentlcal. We d(_afme/eq as the voltage that can be applied to
pe from the Failure SetAs shown in Section I,
for any oscillator, there must be initial conditions frorﬁ[he input of the inverter S.UCh that the .OUtpl.Jt Set?'es to th? same
oltage. When all of the inverters are identiogl, is the point

Y vV
which it does not properly start. The second phase of trél(?which all node voltages ak&q Furthermore, any trajectory

verification shows that this occurs with probability Z€I04t0 ing at a point Wheme: — Xa andxs — X« CONVEraes tox.-
Proper Oscillation The first two phases show that mos 9 he e =Xs 2=% 9 fail
hus, such points are K.

initial conditions lead to a fairly small subset of the full tUsing existing reachability methods, we can find a small

state space. In the final phase, we use existing reaChab”eéion Ut that contains the poinéia. Furthermore, we can

methods to .show that the oscillator starts up properi;how that if an oscillator starts any point where each node has
from the region.

. ) . . ) ‘a voltage in the intervdD, Vyq], then within bounded time, the
This section describes the dynamical systems issues associgtgdlator state will either be itgai, OF it will be in a region
with each of these phases. Sectior_1 IV describes our verificatigfere we can show convergence to the desired periodic orbit.
method based on these observations. . We will show that the set of failing trajectories is sufficiently
We model the oscillator circuit from Figure 1 using nONgmajl as to ensure that the oscillator fails to start with a
linear ordinary differential equations (ODEs) of the form: opapility of zero. As in the previous section, we wrkd
x = f(x) ) to denote the phase space. We will avoid a detailed treatment
of measure theory (see [18]) by noting that when we say that
where x is a vector of node voltages; is the vector of B C RY is measurable, we mean that it has a well-defined
time derivatives for these voltages, arfdis the function d-dimensional “volume” (i.e. it is Lesbesgue measurable),

Our verification proceeds in three main phases:

Differential Operation The oscillator shown in Figure 1 is a
differential design: nodeX1 and X3 form a “differential
pair” and likewise for nodeX2 andX4. The first phase
of the verification shows that each of these differentigl
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and we write|B| to denote this volume (i.e. measure). We We have shown that for any poing € trapped;(U), all

write 1(B) to denote the probability that the initial state opoints in the cone defined by whose apex is akp must

the oscillator is inB. Our assumption thatt is smooth (i.e. escape fronJ. This shows thatrapped(U) must have lower
absolutely continuous) means thatBf is zero, thenu(B) is dimension than the full space. Thustapped;(U)| =0, and

zero as well. For example, let thereforep (trapped¢(U)) = 0 as claimed. [ |

B = {(xa,%, %) | (X0 = Xa) A (X = Xa)} Note: Theorem 2 was based on the cone argument from

e [1]. The present theorem generalizes the result from [1] to

i.e. the plane described above. Because this plane has zstems of arbitrary dimensions and whose Jacobian matrices
volume,|B| =0, and by our smoothness assumptiptB) =0 have complex eigenvalues. The conditions for Theorem 2 are

as well. slightly stronger than those from [1] (for the systems where
Let U be a bounded, measurable subseR8f We define the latter applies) — this is mainly for simplicity.
escape(x,U) = FHteRT. Or(xt)ZU C. Proper Oscillation
trappeds(U) = {xeU |—escapes(x,U)}

For the trajectories under consideration after the first two
For anyU C R*, and anyt e R, [U| =0 < [®¢(U,t)] =0. steps, the common mode components of both differential
Thus, it suffices to show thatrapped; (Urai)| = 0. The next signal pairs are withiVer 0f V. This allows the differential
theorem presents conditions that ensuferapped¢(U)) =0. equation model from Equation 2 to be rewritten adifferen-

Theorem 2. Let u be a smooth probability measure ovef. tial inclusion [19]:

Let U be a bounded, measurable subseR8f and f: RY — 0 e F(u) 3)
RY be bounded and €in U. If there is a matrix He R9*d
such that at least one eigenvalue of H has a positive real pavhereu is the vector(v/2/2)[x; — X3, X2 — X4]. By using an
and k> 0 such that for allxy,x, € U: inclusion, F accounts forall values of the common mode
(Xa—x1)TH(Xa—x1) > O components in[Vg" — Verr, Vg™ + Ven]. Reducing the four-
S (o= x0)TH(F(x2) — F(x1)) > k(xp—x2)TH(xa—x1), d!mens!onal state space of the or|g|n.al problem to'a two-
dimensional space makes the exploration of trajectories from
then p(trapped; (U)) = 0. all remaining start conditions straightforward.
By showing that all such trajectories lead to an oscillation in

Proof: Assume thatrapped;(U) # 0 as the other case is ,
trivial. Let pmax be the maximum real part of any eigenvectotthe fundamental mode, we solve the first part of the challenge

of H. Let u be a unit vector such thafl Hu = pmax. Let Xo problem from [2]: we show that for a particular choice of

be any point intrapped; (U), anda € R such thata > 0 and trang_lts_tor sizes, tthfe cwcwtt V\fll|| start oscnlatlosn frtt_)m ?/II |n|t|:?1éI
xo+ au eU. We'll definex; = xo-+ au. conditions except for a set of zero measure. Section V provides

We now showx, ¢ trapped; (U ). Consider two trajectories a brief description of how these methods can be extended to
" establish a range of transistor sizes for which the oscillator

No(t) ®;(xp,t), the trajectory that starts ab will start with probability one.

ni(t) = @ (xg,t), the trajectory that starts ag

. . IV. IMPLEMENTATION
Note that both trajectories start Ih. We'll show that these

two trajectories diverge, and thus at most one of them can his section describes our implementation of the verification

remain inU. Let techniques described in the previous section. We construct
. an ODE model for the ring oscillator circuit using standard,
w(t) = (n(t)—no(t)) H(N(t) —no(t)) modified nodal analysis. We obtain drain-to-source current

We claim that fort > 0, w(t) > a2pmae > 0. First note that data by tabulating HSPICE outputs and fitting piece-wise
W(0) = a2Pmax which satisfies the claim (at=0). Bothw(t) quadratic functions to this tabulated data. The resulting errors

anda2pmax are continuous functions of Thus, if the claim &€ less than 1%; thus, our transistor models closely match
were ever to be violated, there would have to be a value {¥0Se used by practicing circuit designers in indusiry.

; _ 2 t d d 42 t
t for which w(t) = apma@" and Gw(t) < §a?pmae®. For A pitterential Operation

the sake of contradiction, létbe such a time. Then ] o ] ]
This verification phase starts by changing the coordinate

SWE) = (M) —no(t)TH(f(n(t) - f(no(t)) system to one based on the differential and common mode

> k(n1(t) = no(t)TH(N1(t) — no(t)) representation of signals.
= kw = ko®pmad’ = §o’pmac Let u be the circuit state in “differential” coordinates:

But this shows thatdw(t) > Sa2pmae, a contradiction. u = MIx

Thus,w(t) > a?pmae® as claimed. 1 010

Becausew(t) > aZpmax€!, ||n1(t) — no(t)|| must diverge as M — V2 0 1 01 4)
t — 0. By assumptionfo(t) stays inU, andU is bounded. - 2] -1 010
Therefore,ns1(t) must exitU. 0 -1 01
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We assume each of nodgs, X2, X3 andX4 can independently node capacitances as constants. Thus, the derivative function,
have initial voltages anywhere {0,1.8]V. Thus, the differen- f, is piecewise quadratic. Our repeated subdivision of cubes
tial componentsy; anduy, are initially in[-0.9v/2, +-0.9+/2], when establishing differential operation ensures that the cube
and the common mode componentsandug, are initially in  containingxs,j is modeled by a simple quadratic (i.e. a single
[0,1.8v/2]. “piece”). We can write this model as:

To establish differential operation, we divide the range of .
each component; of u into m intervals, creatingr* cubes. U = Ao+ A+ 34U A jub; ©)
We construct a graplG = (V, E) to represent the reachabilitywhereb; is a unit vector corresponding to tH& component
relationship between these cubes. Lefi, be a vertex of u. We will assume wlog that tha, ; matrices are symmetric
corresponding to thé" interval for uy, the jt interval for throughout paper. '
Uz and so on. There is an edge frano w if f allows a flow  To establish the hypotheses of Theorem 2, we again exploit
out of the cube fow directly into the cube fow, and there is the differential operation of the oscillator and chodde=
a self-loop forv if each component of is zero somewhere in diag([+1,41,—1,—1]). The two+1 elements oH anticipate
v. If a vertex of G has no incoming edges, then any trajectory growing, differential component of the state, and the two
that starts in the corresponding cube will eventually leave thatl elements are for a diminishing common-mode component.
cube, and no trajectories will ever enter the cube. Such a cubénsider(uy — up)TH(f(uz) — f(u1)):
can be eliminated from further consideration. Thus, we only T
need to consider cubes whose vertices are members of cycles. (U2 —ug) "H(f (uz) — f(u1))

These vertices can be identified @V + E) = O(n?) time. (uz — ul)IHAld(uz — ) . (6)
With a direct implementation of this computation, constructing + (U2 —u1) TH3T (U2 = u1) " Ag j(U2+U1))bj
G dominates the entire time for verifying the oscillator. We now derive a lower bound for
To obtain a more efficient computation, we first note that (U2 — ug) THA (Up — uy)
the goal is to establish differential operation. It is sufficient to (U2 —u)TH (Uz — ua) (7)
project the vertices o¥ onto the common-mode components 2— 2—H
of the differential signals and show that most of this projectio#nd an upper bound for
can be eliminated from further consideration. Gét= (V/,E’) _uTy sd —uNTA, :
where v, corresponds to thé&" interval of uz and the /™" (U2~ 1) M3 (U2~ Un) Aoj(Uz +Un))b (8)

interval of us. There is an edge i’ from v, , to \{_,, iff (uz —u1)TH(uz —u)
there exist and j such that(Vi j i ¢, Vij ko ;) € E. Clearly,G'  when (u, —uy)TH(up —ug) > 0.
over approximates reachability. Thus, if a vertex@fhas no  Equation 7 is a convex conic program and can be solved
incoming edges, then all of the corresponding vertice§&in py standard techniques (see [20, chap. 4.4])itetin be the
must have no incoming edges as well. Computing the edg@fimum value for Equation 7. To bound the magnitude of
in E requires examining all of the edges®f but subsequent the quadratic term, letimax denote the largest singular value
operations on the grap@’ are much faster than those @& of any of theA, ; matrices. Then, for alj € 1...d,

To reduce the time required to find edgesEfwe start '
with a small value ofm and thus a coarse grid. Many large (uz—u1)TAgj(Uz+u1) < Omax(Uz—U1)" (Uz+Us)
blocks can be eliminated fror® even with a coarse grid. Therefore,
We then doublen (i.e. divide each vertex d&' into four) and

recompute reachability using the finer grid for finding edges in sz’zl((uz —uy)TAzj(uz+Uq))b; H

E as well. _In practi_ce this_ ad_aptive griding ap_p_roach eliminates < VdOmax(uz — u1)T (Uz 4 ug)

blocks quickly while achieving enough precision to allow the ) .

rest of the verification to proceed without difficulties. Noting that the largest singular value bf is 1, and||uz +

ui]| < 2r, we get:
oo . . ) (Uz—ul)TH d: (Uz—ul TA2"(U2—|—U1) b;
At the end of establishing differential operation, there are a V/d 2] il 2 ) : Jbi )
: : < 2rVdOmaxl|Uz — Uy |
few cubes with self-loops — there is more than one such cube .
because of the over approximations described above. ThB¥eour choice ofH,
cubes con_tam the poing,j. We now construct a Iarger_ cube (Up — ul)TH(UZ_ u) < fluz— U1H2 (10)
that contains all of these and make a change of variables so
that this cube is centered at the origin. We'll writéor vectors Now, let k = lingin — 2rv/domax. Combining the results from
in the original coordinate system and for vectors in the Equations 6 through 10, we get
coordinates where the center of a cube with a self-loop i T T
o . . . up —ug) H(f(up) — f(u > k(up—uy)'H(upg—u

at the origin. Letr be the maximunt, distance of any point S( 2= 1) TH(F(U2) = f(un)) = k(U = 1) TH(Up — un)
in this cube from the origin. If k> 0, then we can satisfy the conditions of Theorem 2.

As described at the beginning of this section, we uda practice, the conditions of Theorem 2 can be satisfied by
piecewise quadratic models for transistor currents and modabosingr to be sufficiently small.

B. Escape from the Failure Set
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25F

C. Proper Oscillation

As described in Section 1lI-C, we reduce the state space
from four dimensions to two by replacing the differential
equation model for the circuit with a differential inclusion.
The space to be considered forms a ring: the outer boundary <
is determined by the assumption that all signals have voltages
between ground anW®yg, and the inner boundary is estab-
lished by eliminating trajectories in a neighborhood negy.
Figure 3 shows the remaining region. We use a collection of
“spokes” as shown in Figure 4, and show that all trajectories

05+

in these wedges converge to a unique, periodic attractor. The Uy
computation has three parts:
1) Starting from each “spoke”, show that all trajectories Fig. 2. Common-mode convergence\igy/2/2

starting at that spoke eventually cross the next spoke.
2) Show that all trajectories starting from the inner or outer

boun_dary eventually cross the next spoke. The decrease in the volume is steady, suggesting that further
3) Startlng from one .sp-oke, compute the reachable set U?Bljuctions would be possible with more iterations. However,
it converges to a limit set. the time per iteration increases with the number of cubes under
V. RESULTS consideration, and the time for this phase dominates the total
\heerification time. Thus, for verifying this circuit, there is no

We generated transistor models using HSPICE to determi ) ' : ;
drain-to-source currents for. T8y long and 1 wide nMOS incentive to further refine the region bounding the common-

and pMOS devices with the gate and drain voltages swéBPorl‘e S|gnal.d h fh ificati limi h bl
from 0 to 1.8V in 0.01V steps. For the nMOS transistors, The second phase of the verification eliminates the unstable

we assume that the source and body are at OV, and for ilibrium. The equilibrium is near the point where all node
pMOS devices, we assume that they are at 1.8V. We assu%i‘ages are B67V. We chosdJ to be the hyper-rectangle

that all transistors have a length ofi8u, and obtain current W't. sides of Igngth AV whose center is at this point. The
for other widths by linear scaling from theuldata. For all regionU contains all cubes that correspond to graph-vertices

inverters, we use pMOS devices that are twice as wide ‘Qfgh self-loops from phase 1. There is more than one such

the nMOS devices. All forward inverters have transistors pe due to the use of interval ar|thmet|c_ in computing the
the same size, and likewise for the cross-coupled inverte?'gjacency graph to ensure soundness. Using the least-squares

In the following, s denotes ratio of the cross-coupled invertet?eSt'f't quadratic model for points I yields:

size to the forward inverter size. This section first presents the liNnmin > 5x100sec?,
verification of an oscillator witts= 1. Then, the oscillator is Omax < 2x10%eclv-1 and
verified for 0673<s< 2.0. r = 01V

The verification routines were implemented using Matlab _ N
with Coho used for the final reachability computation. Alffom which we get that the conditions of Theorem 2 are
times were obtained running on a dual Xeon E5520 (qu&gtisfied for anyk with 0 < k < 4.92x 10'%ec*. Thus, we
core) 2.27GHz machine with 32GB of memory. The comp(§&n safely remove the cubeslin

tations described here are all performed using a single core, W& can now repeat the procedure from phase 1 to remove
all cubes that transitively have no incoming flows. This phase

A. Verification with equal-size inverters eliminates roughly half of the remaining cubes, leaving 38384
The first phase of the verification establishes differentialibes for analysis by the final phase.
operation. Initially, the computation partitions the space for The final phase starts with the 38384 cubes from the
each of theuy; variables into 8 regions, creating a total osecond phase. As described in Section IV-C, we divide these
8* = 4096 cubes to explore. After eliminating cubes that haweibes into 16 wedges divided by “spokes” in thex U,
no incoming or self-circulating flows, the remaining cubes aggojection. As described in Section IV-C, it is sufficient to
subdivided and rechecked until there are 64 intervals for easthow trajectories starting on the boundary of the wedge lead to
variable. Figure 2 shows the remaining cubes projected onoints inside the next wedge in the clockwise direction. With
the common-mode variablag andu, at the end of this phase. 16 wedges, we perform 48 reachability computation runs. At
With 8 intervals per region, there are 752 cubes und#his point, the oscillator is verified.
consideration (18% of the total space). With each subdivision,We also ran a longer reachability computation starting from
the number of cubes remaining increases by a factor of rougllgpoke and completing two complete cycles of the oscillation.
4.6, and thus the volume of the space under consideratibime second cycle starts from a smaller region that the first
drops by about a factor of roughly 0.29. With 64 intervaland establishes tighter bounds on the limit cycle. The blue
per region, 74676 cubes remain (0.45% of the total spacpplygons in Figure 4 indicate this limit cycle. The remaining
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models provided by the foundry. Fer> 2, the third phase

of the verification fails to show that trajectories leave the
“corners” of theu; x u, space. These correspond to lock-up
of the cross-coupled inverters. The DC analysis method shows
that these lock-up states become stablesfor2.25. The gap
between the reachability computation and the DC analysis is
presumably due to conservative over-approximations used in
the reachability method.

VI. CONCLUSIONS

This paper has presented the first, formal verification that
the differential oscillator circuit presented in [2] properly starts
from almost all initial conditions. In particular:

« no “physically plausible” oscillator starts from all initial

conditions (Theorem 1, Section II);

« we presented a generalization of the “cone-argument”
from [1] to show that the failures occur with probability
zero and thus the oscillator starts with probability one
(Theorem 2, Section III);
our approach shows how reachability analysis can be
combined effectively with dynamical systems analysis;
we showed how differential-operation, a common feature
of analog designs, can be exploited for model reduction.
We elaborate on some of these below.

First, metastable behaviors is unavoidable for most mode-
switching circuits. While metastability is most often associated
with synchronizer circuits [21], [22], it arises anytime the

Fig. 4 Computing the invariant set state of a continuous system can evolve to two or more
distinct states. For example, when a phase-locked loop (PLL)
locks, the VCO phase may advance to match the phase of

) . . ) .. the reference, or the VCO may drop back depending on
width of t_he I|m|t cyc!e IS mamly dge to.appro?(lmatm.gthe initial conditions. Thus, there are conditions where any
Fhe fo_ur-dlmensmnal differential equation with a d'ﬁerem'aﬂ)hysically realizable PLL takes an arbitrarily long time to
inclusion. o N _ _ lock. On the other hand, there are are published verifications

The (;omputatlon is very efficient. The run-t|me of the firsts nounded lock time for phase-locked loops (e.g. [23]). The
phase is about 720 seconds, and the run-time of reacRsrepancy is resolved by noting that [23] uses an abstract
bility computation is less than 470 seconds. Reducing stal@ygel for the phase-comparator that makes a discontinuous
space helps to improve performance significantly. It tak%gep as the phase-difference passes through. Fefr many
several hours to completes the reachability computation fagjgns, this is a reasonable abstraction; yet, we note that a
f_uII—d_imensionaI space from a single cub_e. In contrast, the TUBL | can fail to lock if there is a dead-spot in the response
time in reduced-space is less than 10 minutes as shown abQyee phase-comparator at the wrap-around point. We see our
Reducing the space also mtrodgce; over-approximations to \_W@rk as complementary to that of [23] — they provide powerful
reachable regions. However, this did not lead to false-negatiygiractions that enable the verification of larger designs, and

results, as the circuit converges to the oscillation orbit rapidly, provide methods of ensuring that those abstractions are

sound.

Second, our verification combined analytical methods from

Phases 1 and 3 of our verification method use conservattynamical systems theory with reachability methods that are
over-approximations to guarantee soundness of the resuttare typical of the formal methods community. Neither alone
These approximations make it straightforward to moslaeks is sufficient to verify the oscillator. Reachability techniques are
being in an interval rather than having a precise value. We hawadequate because they cannot show escape from a failure set
verified escape from the failure set for valuesséfom 0.673 of zero measure. Such “failures” are not of concern to practical
to 2.0 by testing values afin steps of 01 for 06 <s< 2 and designers as they are unobservable in the physical system. On
in steps of 001 for 067 <s<0.7. The lower-bound fosis the other hand, the dynamical systems methods that allow us
slightly higher than the one reported in [8]. We conjectur® establish probability-one results are arguments about local
that our transistor current tables are slightly different thadynamics. The reachability computations are needed to go
those used in [8] perhaps due to an updating of the SPI@8&m these local results to proving global properties.

B. Verification for a range of sizes
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The notion of probability that we used, a smooth distributiorj4]
over initial states, was simplistic. A more physical model
would use stochastic integration techniques to determine trrg
evolution of this distribution under the circuit dynamics as
perturbed by noise processes such as thermal noise. While this
might be more satisfying, it would mainly serve to make th
mathematics more complicated, and quantitative results would
be hard to obtain due to the highly non-linear dynamics of the
circuits. However, the basic topological observations on whic
we base our results would be preserved. Thus, we believe that
our probability one results would continue to hold in a more

) ) {8]
detailed, stochastic model.

Proving that something happens “eventually” can be un-
satisfying, as such proofs often don't give an indication of
how long one needs to wait. Our proof for Theorem 2 shows
that the divergence is at least as fast as an exponential with
time-constank. For the oscillator considereét,~ 1/(20pg. 19
Thus, we can make a quantitative conclusion that in a few
nanoseconds, the probability that the oscillator has not starfet
is extremely small. This should satisfy practicing designers.

Of course, there are many areas of future work. Most
immediately, we claimed escape from the failure set for [&]
wide-range of inverter sizes by verifying the property for a
large number of closely spaced choices of the sizes. We would
like to use interval-arithmetic methods to show that thes$&]
intervals are completely covered. To do so, we are making
a few extensions to théntlab package [24]. Likewise, we [14]
plan to show that the method can be applied to a design in
a more state-of-the-art process (e.g. using PTM models [25]).
We expect to include results for interval arithmetic and otheis;
processes in the final version of this paper.

We would like to verify larger circuits. For example, a
ring oscillator with six or more stages can have stable highgs;
harmonic modes if small inter-stage couplings are included in
the model. We would like to verify (and refute) such designgl.
We expect that the first two phases of our verification could
readily be generalized to a oscillators with an arbitrary number
of stages with straightforward inductive formulations. we
don’t see induction working directly to extend the reachabilityg]
analysis to larger designs. Instead, we are looking further into
dynamical systems approaches to rule out entire classes,
failure modes. Then we use reachability analysis techniques
like those presented in the paper to complete the verificatid?tl
The Rambus oscillator circuit is a good example for detailed
analysis of how reachability computation complexity scalgsy]
with circuit size.

(23]
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