
A quantifier-free SMT encoding
of non-linear hybrid automata

Alessandro Cimatti
Fondazione Bruno Kessler

Email: cimatti@fbk.eu

Sergio Mover
Fondazione Bruno Kessler

Email: mover@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Email: tonettas@fbk.eu

Abstract—Hybrid systems are a clean modeling framework for
embedded systems, which feature integrated discrete and contin-
uous dynamics. A well-known source of complexity comes from
the time invariants, which represent an implicit quantification of
a constraint over all time points of a continuous transition.

Emerging techniques based on Satisfiability Modulo Theory
(SMT) have been found promising for the verification and
validation of hybrid systems because they combine discrete
reasoning with solvers for first-order theories. However, these
techniques are efficient for quantifier-free theories and the
current approaches have so far either ignored time invariants
or have been limited to linear hybrid automata1.

In this paper, we propose a new method that encodes a class
of hybrid systems into transition systems with quantifier-free
formulas. The method does not rely on expensive quantifier
elimination procedures. Rather, it exploits the sequential nature
of the transition system to split the continuous evolution enforcing
the invariants on the discrete time points. This pushes the
application of SMT-based techniques beyond the standard linear
case.

I. INTRODUCTION
Embedded systems (e.g. control systems for railways, avion-

ics, and space) feature the interaction of discrete systems
with the environment by means of controlled and monitored
variables that evolve continuously in time. The validation and
verification of embedded systems designs must often take
into account a model of the continuous evolution of such
variables. Hybrid systems [3] are a clean modeling framework
for embedded systems because they exhibit both continuous
transitions ruled by flow conditions (i.e., constraints on the
derivatives of continuous variables) and discrete changes rep-
resented with logical formulas. A fundamental step in the
design of these systems is the validation and verification of the
models, performed by checking properties such as invariants or
reachability. In spite of the undecidability of these problems,
several verification techniques have been developed and have
proved to be applicable in a wide number of cases. Among
these techniques, common approaches are the computation of
the reachable states, and the use of abstraction or deduction
systems (see [2] for a recent survey).

An emerging approach to the verification of hybrid systems
is the application of verification techniques based on SMT [5].
The hybrid system is encoded into a symbolic transition

1In the context of this paper, the terms “linear”, “non-linear”, and “polyno-
mial” refer to the formulas over the time variable used to describe continuous
and discrete transitions, and not to the type of ODE.

system and reachability problems are represented by means
of first-order formulas. The encoding allows the application
of general-purpose SAT-based verification techniques such
as Bounded Model Checking (BMC) [6], interpolation-based
model checking [27], k-induction [32], and predicate abstrac-
tion [20]. Examples of such SMT-based approaches are [4],
[1], [24], [22], [17], [25], [18], [23]. Specific techniques have
also been proposed for networks of hybrid systems [9], [11],
[13], and for requirements [14]. Also thanks to the strong
progress in the field of SMT, these approaches are increasingly
applied in real settings (e.g. the design of complex space
systems [7], [8], [34]).

A well-known problem of this approach is the encoding
of invariants. In order to preserve the semantics of the hy-
brid system, the formula representing a continuous (timed)
transition between two time points t and t′ must guarantee
that the invariant holds along all points of the implicit con-
tinuous evolution between the state s(t) and the state s(t′).
A straightforward approach would create a quantified formula
which treats the invariant as a formula Inv(t) over the variable
representing real time and quantifies the formula along all
time points of the timed transition, i.e., ∀ε ∈ [t, t′], Inv(ε). In
general, it is an open question how to handle such quantifiers
(see for example [1], [18]): the elimination of quantifiers is in
general not possible, and when the elimination is theoretically
possible (such as in the case of the theory of reals, i.e.,
polynomial constraints) it is in practice not feasible beyond
the quadratic case. Only in particular cases (such as when the
continuous evolution of variables is linear in time, and Inv
is convex), the encoding is equivalent to the quantifier-free
formula Inv(t) ∧ Inv(t′).

In this paper, we propose a new approach to efficiently
encode invariants as quantifier-free formulas. Intuitively, the
encoding can be thought of as generalizing the linear case,
forcing the invariant before and after the timed transition
(Inv(t)∧Inv(t′)), and imposing the derivative of the invariant
to be constant in sign throughout the timed transition. This
reduces the invariant to a quantified formula over the deriva-
tives of the continuous variables. Applying these reduction
recursively, in some cases, one may obtain a quantifier-free
encoding. This is guaranteed, for example, in the case of
polynomial hybrid automata, where the derivatives eventu-
ally reduce to zero. We obtain a quantifier-free encoding
also in interesting cases of non-linear hybrid automata with

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

187187978-1-4673-4831-7/12/$31.00 ©2012 IEEE978-0-9835678-2-0/12/$31.00 ©2012 IEEE 187978-0-9835678-2-0/12/$31.00 ©2012 FMCAD Inc.

transcendental functions. As a result, a key contribution of
the paper is a quantifier-free encoding of polynomial hybrid
automata, which enables the application of SMT-based veri-
fication techniques to a broader class of hybrid systems. The
approach has been implemented and evaluated on a set of
benchmarks. The analysis shows that the proposed technique
allows us to solve problems where an abstraction that simply
ignores the invariants is too coarse to guarantee soundness and
completeness.

The rest of this paper is structured as follows. In Sec. II
we present some background. In Sec. III and IV we present
the encoding, together with the statement of correctness. A
comparison with related work is described in Section V, whilst
the experimental evaluation is presented in Section VI. In
Section VII we draw some conclusions, and outline directions
for future work.

II. BACKGROUND

A. First-order Transition Systems

Given a set V of variables, we denote with
V ′, V̇ , V 0, V 1, . . . copies of such set. Given a first-order
signature Σ, a first-order Σ-Transition System (TS) is a tuple
S = 〈V, Init, Inv, Trans〉 such that:
• V is a set of variables;
• Init is a first-order Σ-formula over V (called initial

condition);
• Inv is a first-order Σ-formula over V (called invariant

condition);
• Trans is a first-order Σ-formula over V ∪ V ′ (called

transition condition).
Let ΣR be the standard signature of real ordered field. In the

following, we will consider signatures Σ that are extensions
of ΣR, the structure R of the real ordered field extended
with transcendental functions such as the exponential and the
trigonometric functions, and formulas will be interpreted in
an appropriate extension of the first-order theory of the real
numbers for such structure R.

A state s is an assignment to the variables V . We denote
with s′, ṡ, s0, s1, . . . the corresponding assignment to the copy
V ′, V̇ , V 0, V 1, . . . of V .

A sequence s0, s1, . . . , sk of states is a model (also called
path) of the transition system S = 〈V, Init, Inv, Trans〉 iff:
• s0 satisfies Init;
• for every 0 ≤ i ≤ k, si satisfies Inv;
• for every 0 ≤ i < k, si, s′i+1 satisfy Trans.
Many verification techniques for transition systems such as

Bounded Model Checking (BMC) [6] are based on satisfiabil-
ity checking interacting with queries to SAT/SMT solvers.

B. Hybrid traces

We denote with ḟ the derivative of a real function f . Let I
be an interval of R or N; we denote with le(I) and ue(I) the
lower and upper endpoints of I , respectively. We denote with
R+ the set of non-negative real numbers.

Hybrid traces [15], [14] describe the evolution of variables
in every point of time. Such evolution is allowed to have a

countable number of discontinuous points corresponding to
changes in the discrete part of the model.

A hybrid trace over discrete variables V and
continuous variables X is a sequence 〈f, I〉 :=
〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 such that, for all i, 0 ≤ i ≤ k,
• the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);
• le(I0) = 0 and Ik is right closed;
• fi : V ∪ X → R → R is a function such that, for all
x ∈ X , fi(x) is differentiable, and for all v ∈ V , fi(v)
is constant;

• if Ii is left open [right open] and le(Ii) = t [ue(Ii) = t]
then, for all v ∈ V ∪ X , fi(v)(t) = fi−1(v)(t),
[fi(v)(t) = fi+1(v)(t)].

We say that a trace is a sampling refinement of another
one if it has been obtained by splitting an open interval into
two parts by adding a sampling point in the middle [15]. A
partitioning function µ is a sequence µ0, µ1, µ2, . . . of non-
empty, adjacent and disjoint intervals of N partitioning N.
Formally,

⋃
i∈N µi = N and ue(µi) = le(µi+1)− 1. A hybrid

trace 〈f ′, I ′〉 is a sampling refinement of 〈f, I〉 (denoted with
〈f ′, I ′〉 � 〈f, I〉) iff, there exists a partitioning µ such that
for all i ∈ N, Ii =

⋃
j∈µi

I ′j and, for all j ∈ µj , f ′j = fi.
We extend the relation to set L1 and L2 of traces as follows:
L1 � L2 iff for every trace σ2 ∈ L2 there exists σ1 ∈ L1 such
that σ1 � σ2.

In the paper, we will assume that the evolution of predicates
along time have the finite variability property: we say that a
predicate P (t) over a real variable t has finite variability [30]
iff for any bounded interval J there exists a finite sequence of
real numbers t0 < . . . < tn such that t0 = le(J), tn = ue(J),
and for all i ∈ [1, n], either for all ε ∈ (ti−1, ti), P (ε) or for
all ε ∈ (ti−1, ti), ¬P (ε). The last condition means that the
predicate is constant in the interval (ti−1, ti). If P is in the
form g(t) ./ 0 with g continuous and ./∈ {≥,≤, <,>}, in the
points in which P changes value, g(t) = 0. Thus, g ./ 0 has
finite variability iff for any bounded interval J there exists
a finite sequence of real numbers t0 < . . . < tn such that
t0 = le(J), tn = ue(J), and for all i ∈ [1, n], either for all
ε ∈ [ti−1, ti], g(ε) ≥ 0 or for all ε ∈ [ti−1, ti], g(ε) ≤ 0. We
denote this condition with Constant(P, ti−1, ti).

Proposition 1: Assuming that a predicate P has finite vari-
ability, for every hybrid trace σ, there exists a sampling
refinement of σ for which which P is constant in the open
part of every interval.

C. Hybrid systems

Hybrid systems [3] extend transition systems with con-
tinuous dynamics. A Hybrid System (HS) is a tuple
〈V,X, Init, T rans, Inv, F low〉 where:
• V is the set of discrete variables,
• X is the set of continuous variables,
• Init is a ΣR-formula over V ∪ X (called the initial

condition);
• Inv is a ΣR-formula over V ∪ X (called the invariant

condition).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

188188188

• Trans is a ΣR-formula over V ∪ X ∪ V ′ ∪ X ′ (called
the transition condition);

• Flow is a ΣR-formula over V ∪X ∪ Ẋ (called the flow
condition).

Given a hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉, we de-
note with sfi(t) the state assigning to every variable v ∈ V ∪X
the value fi(v)(t) and with ṡfi(t) the assignment that maps
every variable v ∈ X with the value ḟi(v)(t).

A hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is
a model (also called path) of the HS S =
〈V,X, Init, Inv, Trans, F low〉 iff:
• sf0(0) satisfies Init;
• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t) satisfies Inv;
• for every 0 ≤ i < k, if Ii is right closed with
ue(Ii) = t and Ii+1 is left closed with le(Ii+1) = t′,
then sfi(t), s

′
fi+1

(t′) satisfies Trans;
• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t), ṡfi(t) satisfy
Flow.

The language L(S) is the set of models of S.
Proposition 2: A sampling refinement of a path of an HS

S is a path of S too.
Intuitively, sampling refinement just splits an interval into

sub-intervals and therefore does not change either the initial
state or the discrete transitions. Thus, the conditions remain
satisfied by the corresponding points.

Sampling refinement preserves reachability properties in the
sense that if L′ � L(S) then there exists a trace in L′ reaching
a condition φ iff there exists a trace in L(S) reaching φ
(similarly for LTL properties without next operators [15] and
HRELTL properties [14]).

Remark 1: In the above definition, the flow conditions are
general predicates over the derivatives of X . In the following,
we are considering HSs with continuous dynamics described
by ODEs in form Ẋ = F (X) (i.e., for all x ∈ X , ẋ = Fx(X)).

D. Encoding of hybrid into transition systems

In this section, we show a standard encoding of HSs into
a transition system with formulas over the reals. In general,
for encoding, we mean a transition system that preserves the
properties of interest. In this paper, we say that the transition
system is an encoding of a HS if it represents its language
or a sampling refinement thereof (thus preserving for example
reachability).

In this encoding, we assume that the system of ODEs admits
a primitive solution f(V, t), which is uniquely determined by
the state at the beginning of the timed transition. Moreover, we
assume that the time intervals of the hybrid traces satisfying
the HSs are all in the form either [t1, t2) (i.e., left closed,
right open) or [t1, t1] (i.e., singular intervals). This simplifies
the encoding but a more general encoding is possible (see for
example [14]). Note also that the restriction does not affect the
validity of Proposition 1, which regards only the open parts
of the intervals.

Theorem 1: Given a HS S, there exists a TS SD such that
there exists a one-to-one mapping between the paths of S and
the paths of SD.

We call SD the encoding of S.
Sketched proof: We encode a HS S in the TS

SD = 〈VD, InitD, InvD, T ransD〉 where:
• VD := V ∪X ∪ {t}

(t is a real variable that stores the current real time of the
system).

• InitD := t = 0 ∧ Init.
• InvD := Inv

(note that this does not guarantee that the invariants of
S hold for the entire duration of a continuous transition.
This is taken into account in TransD).

• TransD := TIMED ∨ UNTIMED where
– TIMED := t′ > t∧V ′ = V ∧X ′ = f(V ∪X, t′)∧∀ε ∈

[t, t′], Inv(V, f(ε))
– UNTIMED := t′ = t ∧ Trans(V,X, V ′, X ′).

Let the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉
be a path of S. Then, the sequence of states
f0(le(I0)), f1(le(I1)), . . . , fk(le(Ik)) is a path of SD.

Let the sequence s0, s1, . . . , sk be a path of SD. Let us
consider, for all i ∈ [1, k], fi(v)(t) = f(si, t)(v). Let us define
Ii := [si(t), si+1(t)) if i < k and si+1(t) > si(t), Ii :=
[si(t), si(t)] if i < k and si+1(t) = si(t) or if i = k. Then,
the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of S.

Remark 2: Notice that the timed transition involves a quan-
tified sub-formula to encode that the invariant holds along each
instant of the continuous evolution. This is an issue for using
standard SMT solvers which typically handle quantifier-free
formulas or are not complete for quantifiers (even if the full
theory with quantifiers is theoretically decidable). When the
primitive solution is known and is expressed in the theory of
reals (a polynomial), the quantifier can be removed to yield
an equivalent quantifier-free encoding. However, in practice,
this solution is not feasible beyond the quadratic case.

Remark 3: It is usually very useful to strictly alternate
timed and discrete transitions to simplify the encoding and
improve the search (see e.g. [1]). The encoding of Theorem 1
does not force such alternation, to enable other forms of
simplification. In the following, we will clarify when we use
alternation.

Hereafter, we assume that every universal quantifier occurs
positively in TransD and that it is in the form ∀ε ∈
[t, t′], g(ε) ./ 0 with ./∈ {<,≤, >,≥,=}. As shown in
Appendix A, we can generalize the approach to generic
formulas.

III. REMOVING QUANTIFIERS FROM THE INVARIANTS

A. Reduction to flow invariants
In this section we present the main theorem of the paper.

The goal of the theorem is to reduce the quantified formula
of an invariant to a quantified formula over its derivatives. In
some cases, this simplifies the quantified formula.

The following theorems assume the finite variability of
predicates of the derivatives. Many functions have this prop-
erty, in particular polynomials and some simple transcendental
functions.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

189189189

Theorem 2: If g : R → R is a differentiable function
and ġ ./ 0 (./∈ {≥, >,≤, <}) has finite variability, then
∀ε ∈ [t, t′], g(ε) ./ 0 iff there exists a finite sequence
of real numbers t = t0 < . . . < tn = t′ such that∧

0≤i≤n g(ti) ./ 0 ∧
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti).
Proof: Let us assume that ./∈ {≥, >}.

(⇒) Since ġ ./ 0 has finite variability, there exists a finite
sequence of real numbers t0 = t < . . . < tn = t′ such
that

∧
0<i≤n Constant(ġ ≥ 0, ti−1, ti) by definition. Moreover,

since ∀ε ∈ [t, t′], g(ε) ./ 0, g ./ 0 holds also in the time points
t0, . . . , tn.

(⇐) Assume by contradiction that there exists tb ∈ [t, t′]
such that g(tb) ./ 0 is false. Since

∧
0≤i≤n g(ti) ./ 0,

there exists i ∈ [1, n] such that tb ∈ (ti−1, ti). Since g is
differentiable, by the mean value theorem, there exists a point
t′b ∈ (ti−1, tb) such that ġ(t′b) = g(tb)−g(ti−1)

(tb−ti−1) and therefore
ġ(t′b) < 0. Similarly, there exists a point t′′b ∈ (tb, ti) such
that ġ(t′′b) = g(ti)−g(tb)

(ti−tb) and therefore ġ(t′′b) > 0. Thus, ġ is
not constant over (ti−1, ti) contradicting the hypothesis. We
conclude that ∀ε ∈ [t, t′], g(ε) ./ 0.

The cases in which ./∈ {≤, <} can be proved similarly.
When the predicate is an equality, the reduction is simpler.
Corollary 1: If g : R → R is a differentiable function and

ġ = 0 has finite variability, then ∀ε ∈ [t, t′], g(ε) = 0 iff
g(t) = 0 ∧ g(t′) = 0 ∧ ∀ε ∈ [t, t′], ġ(ε) = 0.

The definition of Constant() contains quantified sub-
formulas in the form ∀ε ∈ [t, t′], ġ ./ 0. Therefore, the
reduction can be iterated trying to remove the quantifiers.

Theorem 2 can be used to simplify the encoding of the
invariant of an HS. Let the invariant be in the form g(X) ./ 0
(./∈ {≥,≤, >,<,=}). Let f : R → R|X| be the solu-
tion of the flow condition. If f and g are differentiable
functions and d

dt (g ◦ f) ./ 0 has finite variability, then
∀ε ∈ [t, t′], g(f(ε)) ./ 0 iff there exists a finite sequence of real
numbers t0 = t < . . . < tn = t′ such that

∧
0≤i≤n g(f(ti)) ./

0 ∧
∧

0<i≤n Constant(ddt (g ◦ f) ≥ 0, ti−1, ti).
The geometrical interpretation of d

dt (g ◦ f) is the scalar
product of the gradient of the curve g and the derivative vector
ḟ : in fact, d

dtg(f(t)) = 5g · ḟ where 5g = 〈 ∂g∂x1
, . . . , ∂g

∂xn
〉

. Therefore, in the theorem, the condition of ġ ≥ 0 of being
constant in the interval means that the function f is uniformly
getting closer to (or farther from) the curve g in that interval.

As a side note, in the case of ODEs Ẋ = F (X), the new
quantified formula ∀ε ∈ [t, t′], ddt (g ◦ f) ≥ 0 is equivalent to
the invariant 5g · F ≥ 0. Thus, the reduction can be also
applied without need of the primitive solutions.

In the case that the invariants are polynomial and the
continuous variables are polynomial functions of time, the
derivative will eventually reduce to zero.

B. Applications

1) Application to polynomial hybrid automata: We con-
sider the class of HS where the invariants and the primitive so-
lution of the ODEs are polynomial functions of time (see also
[19]). The polynomial may contain some discrete variables as
coefficients to account for uncertainties in the inputs, model

parameters, etc. Note that several classes of HS with linear
ODE can be expressed as a polynomial hybrid automaton.
This is because the primitive solution to the ODEs can be
expressed as a quantifier free formula in the theory of reals
for several classes of linear systems [26]2.

Theorem 3: The invariant of a polynomial hybrid automata
can be encoded with a quantifier-free formula.

Proof: In the case of polynomial hybrid automata, the
invariant g ./ 0 is encoded into a formula in the form
∀ε ∈ [t, t′], g(f(ε)) ./ 0. If g and f are polynomials, g ◦ f is
also a polynomial. The derivative of a polynomial has a lower
degree than the polynomial itself. Thus, at every application of
Theorem 2, the degree of the polynomial inside the quantifier
strictly decreases. Thus, after a finite number of applications
of the theorem, we obtain a quantifier-free formula.

Example 1: Let us consider the classical example of the
bouncing ball. Suppose the ball moves in two dimensions x
and y, where x is the horizontal coordinate, with ẋ = v0, and y
is the vertical coordinate, with ẏ = w and ẇ = −g. Thus, the
primitive solution is x(t) = v0t+x0, y(t) = − g2 t

2 +w0t+y0,
and w(t) = −gt + w0. Suppose the ball is bouncing on a
parabolic hill, a curved surface with equation y+ax2+bx+c =
0. The invariant of the continuous transition is y+ax2 + bx+
c ≥ 0 and its encoding is ∀ε ∈ [t, t′], y(ε) + ax2(ε) + bx(ε) +
c ≥ 0, which is quadratic in ε. After applying the Theorem 2
twice, we obtain the following quantifier-free formula: y(t) +
ax2(t) + bx(t) + c ≥ 0∧
y(t1) + ax2(t1) + bx(t1) + c ≥ 0∧
y(t′) + ax2(t′) + bx(t′) + c ≥ 0∧
((w(t)+2av0x(t)+bv0 ≥ 0∧w(t1)+2av0x(t1)+bv0 ≥ 0)∨
(w(t)+2av0x(t)+bv0 ≤ 0∧w(t1)+2av0x(t1)+bv0 ≤ 0))∧
((w(t1)+2av0x(t1)+bv0 ≥ 0∧w(t′)+2av0x(t′)+bv0 ≥ 0)∨
(w(t1)+2av0x(t1)+ bv0 ≤ 0∧w(t′)+2av0x(t′)+ bv0 ≤ 0))

2) Application to non-linear hybrid automata: In the gen-
eral case of non-linear hybrid automata (here meant as hybrid
systems with non-polynomial functions), the reduction of
Theorem 2 may result in more complex quantified formulas.
Even if we restrict to polynomial invariants, their composition
with transcendental primitive solutions may yield complex
derivatives. However, in many cases, we can convert the
derived quantified formula into a polynomial which is simpler
than the original3.

Example 2: Let us consider a temperature controller. The
system is parameterized by the lower and upper temperature
limits m and M , the outside temperature u, the rate b of tem-
perature exchanged with the outside, the rate c of temperature
increase due to the heater. The constraints on the parameters

2In particular, given a linear system Ẋ = AX + BU , the reachability
problem can be expressed in the theory of reals if the matrix A has a particular
structure: A is nilpotent, A is diagonalizable with all rational eigenvalues, A is
diagonalizable with all imaginary eigenvalues. While in the first case obtaining
a primitive solution in the theory of reals is straightforward also in the
presence of symbolic coefficients of the matrix, the other two cases are more
involved and require to perform several substitutions to remove exponential or
trigonometric functions, which assume to have constant coefficient. We refer
the reader to [26] for the details.

3This conversion is not currently automated.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

190190190

are u < m < M ∧ c > 0 ∧ b > 0. The HS is defined as
follows:
• V = {h} where h is a variable representing the heater.
• X = {x} where x represents the temperature.
• Init := m ≤ x ≤M .
• Inv := (h = 0→ x ≥ m) ∧ (h = c→ x ≤M).
• Trans := (h = 0 → (x = m ∧ h′ = c)) ∧ (h = c →

(x = M ∧ h′ = 0)) ∧ x′ = x.
• Flow := ẋ = b(u− x) + h.
The primitive of the ODE is x(t) := u+ (x(0)−u)

b e(−b∗t) +
c
b . Its derivative is x(t) := −(x(0) − u)e(−b∗t), which never
changes sign. Therefore, applying Theorem 2, ∀ε ∈ [t, t′], x ≥
m is translated into the formula x(t) ≥ m ∧ x(t′) ≥ m and
similarly for ∀ε ∈ [t, t′], x ≤M .

Example 3: Consider the Traffic Collision Avoidance Sys-
tem (TCAS) example (cfr. e.g. [29]). The continuous dynamics
of a safe circular maneuver is described by the following equa-
tions ẋ1 = d1, ẋ2 = d2, ḋ1 = −ωd2, ḋ2 = ωd1, ẏ1 = e1, ẏ2 =
e2, ė1 = −ρe2, ė2 = ρe1, (x1 − y1)2 + (x2 − y2)2 ≥ p2.

The primitive solution of the differential equations are:

x1 =
1

ω
sin(θ), x2 = − 1

ω
cos(θ),

d1 = cos(θ), d2 = sin(θ), θ = ωt+ t0,

y1 =
1

ρ
sin(ξ), y2 = −1

ρ
cos(ξ),

e1 = cos(ξ), e2 = sin(ξ), ξ = ρt+ t0

Substituting the primitive solution into the invariant (x1 −
y1)2 + (x2 − y2)2 ≥ p2 we obtain the formula:

1

ω2
+

1

ρ2
− 2

ωρ
sin(θ)sin(ξ)− 2

ωρ
cos(θ)cos(ξ) ≥ p2.

which can be rewritten into: φ := 1
ω2 + 1

ρ2−
2
ωρcos(θ−ξ) ≥ p

2.
The standard quantified encoding is ∀t ∈ [0, δ], φ(t). Ap-

plying Theorem 2, we obtain the formula:

φ(0) ∧ φ(δ)∧ (∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) ∨
∀t(−sin(θ − ξ)(ω − ρ) ≤ 0)).

The quantified sub-formulas can be rewritten into polynomials
over θ and ξ. For example, ∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) can
be rewritten into ∀t(ω− ξ ≥ 0∧ (π ≤ θ− ρ ≤ 2π)∨ω− ξ ≤
0 ∧ (0 ≤ θ − ρ ≤ π)). Since θ and ρ are linear, this can be
converted into an equivalent quantifier-free one.

IV. ENCODING POLYNOMIAL HS INTO TRANSITION
SYSTEMS

In this section, we show how Theorem 2 can be exploited to
automatically encode a polynomial HS into a transition system
with quantifier-free formulas.

A. Sequential encoding

Theorem 2 states the existence of the points t1, . . . , tn
where the derivative changes sign. However, such points are
unknown. The encoding of a HS into a transition system must
thus implicitly represent when the derivative of the invariant

changes sign. This is achieved by simply forcing that the sign
of the derivative is constant throughout the timed transition.
The encoding implicitly concatenates timed transitions one
after the other, delegating to the search the task of finding
the sequence of time points that split the interval, so that the
sign of the derivative is uniformly constant in the resulting
trace.

Given a formula T including the invariant condition ∀ε ∈
[t, t′], g(ε) ./ 0, the condition can be locally replaced with
g(t) ./ 0 ∧ g(t′) ./ 0 ∧ Constant(ġ, t, t′) obtaining a new
formula τ(T).
τ performs a recursive substitution of the quantified expres-

sions. The recursion terminates when the quantified formula
is a linear polynomial, thus allowing to trivially remove the
quantifiers. τ is defined recursively as follows:

τ(ψ1 ∧ ψ2) := τ(ψ1) ∧ τ(ψ2) (1)
τ(ψ1 ∨ ψ2) := τ(ψ1) ∨ τ(ψ2)

τ(¬ψ) := ¬ψ, (ψ is a predicate)

τ(∀ε ∈ [t, t′], g(ε) ./ 0) :=

g(t) ./ 0 ∧ g(t′) ./ 0 if g linear
g(t) ./ 0 ∧ g(t′) ./ 0∧
τ(Constant(ġ, t, t′)) otherwise

The correctness of the transformation is given by the fol-
lowing theorem.

Theorem 4: If SD is the encoding of the HS S and τ(SD)
is the transition system obtained by replacing Trans with
τ(Trans), then τ(SD) is the encoding of a sampling refine-
ment of S.

Proof: (⇐) If a sequence of states satisfies τ(SD), then
by Theorem 2, the sequence satisfies also SD, and by Theo-
rem 1, it represents a path of S. (⇒) Consider a hybrid trace
〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of S. Assuming
that ġ has finite variability, we can refine the hybrid trace into
a new hybrid trace in which ġ is constant in every interval. The
new hybrid trace also satisfies S by Theorem 2 and thus the
corresponding discrete trace s0, . . . , sk satisfies its encoding
SD. At every i, if si satisfies ∀ε ∈ [t, t′], g(ε) ./ 0, then both
f(si, t) and f(si, t

′) satisfy g ./ 0. Since ġ has constant sign
in Ii, si satisfies also τ(Trans). Therefore the discrete trace
satisfies also τ(SD).

The recursive definition of τ in (1) creates a formula whose
size is exponential in the degree of the polynomial inside the
invariant. We use the following equivalence to keep the size
of the encoding linear in the degree of the polynomial (here
g is not linear):

τ(Constant(g, t, t′)) = (g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧ (2)
τ(Constant(ġ, t, t′))) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0 ∧
τ(Constant(ġ, t, t′)))

= ((g(t) ≥ 0 ∧ g(t′) ≥ 0) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0)) ∧
τ(Constant(ġ, t, t′))

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

191191191

Another optimization that we implemented is the use of
some lemmas that relate the value of polynomials to the value
of their derivatives. More specifically, we optionally add to τ
the following formulas:
(ġ(t) > 0 ∨ ġ(t′) > 0)→
((g(t) ≥ 0→ g(t′) ≥ 0) ∧ (g(t′) ≤ 0→ g(t) ≤ 0))∧
(ġ(t) < 0 ∨ ġ(t′) < 0)→
((g(t) ≤ 0→ g(t′) ≤ 0) ∧ (g(t′) ≥ 0→ g(t) ≥ 0))

The formula means that when the derivative is positive g
can only increase (thus cannot pass from positive to negative)
and vice versa when ġ is negative g can only decrease (thus
cannot pass from negative to positive).

B. Bound on required splitting

The sequential encoding may force the split of a continuous
transition in several transitions, since the predicates introduced
to remove the quantifiers forces the derivatives of the invariant
conditions to be constant. While the encoding enables to re-
move the quantifier, the depth of the bounded model checking
formula may increase due to the splitting. In incremental
bounded model checking, the burden of finding how many
splits are necessary is delegated to the search.

In the case of polynomial hybrid automata we can compute
an upper bound on the number of consecutive continuous
transitions (continuous transitions not separated by a discrete
transition) needed to simulate the longest quantified contin-
uous transition (the continuous transition with the maximum
time elapse).

We can compute the upper bound on the number of intervals
needed to “cover” the quantified continuous transition for the
invariant predicate ∀ε ∈ [t, t′]g(ε) ./ 0. If Ω(g) is the degree
of the polynomial, then the maximum number of intervals that
have to be considered is ub(g) = Ω(g)∗(Ω(g)−1)

2 . In fact, the
i-th derivative of g has degree Ω(g)− i and thus changes sign
Ω(g)− i times.

C. Layering

In the BMC settings we usually perform a search where we
check if the target is violated for an increasing path length.
In principle, the removal of the quantifiers requires more
continuous transitions, thus increasing the size of the formula
passed to solver. It is convenient to use a “layered” approach,
where we first reach the target in an over-approximation of the
HS, where invariants are not guaranteed to hold, and then we
check if there exists a path that reaches the target and where
invariants hold.

V. RELATED WORK

The quantifier-free encoding that we propose is related to
quantifier elimination procedures (see, e.g., [16]). It is not
a quantifier elimination procedure in that it contains new
variables that are implicitly existentially quantified. In fact,
we apply the reduction even in some cases of transcendental
functions. The burden to remove the quantifiers is delegated
to the verification techniques if necessary. We claim that
quantifier elimination is somehow an overkill: the verification

techniques does not often need the precise region of points
where the invariant holds; it is usually sufficient either to pick
some “good” values (in case of reachability) or to find “good”
invariants (in case of safety verification).

Several works focus on the reachability problem for hybrid
systems, but they use less expressive invariants or they restrict
the class of the analyzed hybrid automata. We extend the
bounded model checking encoding of linear hybrid automata
[4], [1], where invariants hold iff they hold at the first and the
last instant of a timed transition, thus the resulting encoding
is quantifier free. Other approaches [10], [18], [23] focus on
non-linear hybrid automata. In [10], the authors solve the
reachability problem for non-linear convex hybrid automata.
The restriction to convex invariant and linear flow conditions,
or to monotonic invariant and convex flow, allows to easily
encode the invariants without quantifiers. Many examples,
including those mentioned in this paper, do not fall in this
class of automata. In [18] the authors propose an SMT solver
modulo ODEs, that can be used to perform bounded model
checking on hybrid automata where the flow conditions are
ODEs. The only allowed invariants are of the form x ∈ [l, u],
where x is a continuous variable and l, u ∈ R. Their main
focus is on the integration of numerical methods to compute
the initial value problem for ODEs, while they cannot manage
more complex invariants (e.g. linear functions). ODEs are
also handled directly in [23]. This is done by computing the
precise intersection of the continuous flow with the guards
of the hybrid automaton. The solver can in principle handle
invariants, but the authors state that the implementation is
not mature enough to evaluate the approach. Approaches
based on motion planning [28] do not encode symbolically
the invariants, since they simulate the ODEs using numerical
methods. In contrast, we encode a set of continuous transitions.

The prominent approaches to the verification of HSs are
based either on the exploration of the reachable states or on
deductive systems. We refer the readers to [2] for a recent
survey. The focus of our work is on the SMT-based paradigm,
which, although less mature, seems promising.

Our settings also differs from the works that build ab-
stractions for HSs. The approaches described in [33], [31]
use techniques based on the sign of derivatives such as ours.
However, the purpose is different in that they generate over-
approximations of the HS.

Finally, we mention the “clock translation” described in
[21], where invariants are translated into constraints on time.
However, the translation is restricted to monotonic flows (plus
other restrictions on the independence of variables).

VI. EXPERIMENTAL EVALUATION

We applied our approach to several benchmarks of non-
linear hybrid automata, obtaining a quantifier-free encod-
ing. For the polynomial subcase we used the ETCS bench-
mark [22], an industrial case study of the braking control
system of trains, the classic bouncing ball, and a simple bal-
listics example. For the bouncing ball, we used four variants:
a ball moving vertically in one dimension and bouncing on a

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

192192192

vars Max degree REDLOG QEPCAD
etcs braking 4 2 0.14 0.05
ball 1d plain 4 2 0.10 0.03
ball 2d plain 4 2 0.10 0.03
ball 2d hill 5 2 0.15 T.O. > 3600.00
ball 2d slope 5 4 N.A. T.O. > 3600.00
simple ballistics 5 4 N.A. T.O. > 3600.00

TABLE I
RESULTS OF APPLYING QUANTIFIER ELIMINATION TO THE POLYNOMIAL

BENCHMARKS (MAX DEGREE IS THE MAXIMUM DEGREE OF THE
QUANTIFIED VARIABLE,T.O.IS A TIME OUT OF 3600 SECONDS, N.A.

MEANS NOT APPLICABLE).

plain floor, a two-dimensional variant with constant horizontal
speed, a third variant still in two-dimensions but bouncing on
a hill (vertical parabola), and a fourth variant bouncing on
a slope (horizontal parabola). As for the ballistics example,
we modeled an object that flies above an obstacle keeping
below a certain ceiling. As for nonlinear benchmarks with
transcendental functions, we used the temperature controller,
the TCAS benchmark and the steering car mentioned in
Sec. III-B2. All the benchmarks are publicly available at
http://es.fbk.eu/people/mover/tests/FMCAD12/.

The techniques discussed in the previous sections have been
implemented in an extension of NUSMV4, which is able to
deal with HSs formalized in the HYDI language [12]. The
NUSMV extension features an SMT-based approach to the
verification of HSs, including bounded model checking and
inductive reasoning. We automatically encode the invariants
for polynomial hybrid automata, while we manually encode
the invariants for the other benchmarks. iSAT5 is used as the
backend to solve the resulting satisfiability queries.

We evaluated the alternative use of quantifier elimination
procedures, within their range of applicability, i.e. polynomial
hybrid automata. We experimented with Cylindrical Algebraic
Decomposition (CAD) (using QEPCAD6) and Virtual Substi-
tution (using REDLOG7). Table I reports, for each polynomial
benchmark, the time needed to obtain a quantifier free formula
of the invariants using QEPCAD and REDLOG. The Virtual
Substitution approach of REDLOG can only handle formulas
quantified over a quadratic variable. QEPCAD is slightly
more general, but de facto less useful: the results highlight
the dramatic computational complexity of the procedure (e.g.
ball 2d hill, with 5 variables, times out in one hour). Thus, the
quantifier elimination approach cannot even handle the poly-
nomial benchmarks ballistic and ball 2d slope (in addition to
the benchmarks with transcendental functions).

We used the bounded model checking functionalities en-
abled by our approach to validate the various models and to
evaluate the performance of the invariant encoding. For each
model we generated different reachability properties which are
falsified by traces with an increasing length. We evaluated the
encoding of the invariant by comparing the time needed to find
these traces with BMC. When quantifier elimination was able

4http://nusmv.fbk.eu/
5http://isat.gforge.avacs.org/
6http://www.usna.edu/cs/ qepcad/B/QEPCAD.html
7http://redlog.dolzmann.de/

quantifier-free
encoding

qelim (qepcad) qelim (redlog)

etcs braking 66.75 / 17 161.52 / 17 168.16 / 17
ball 1d plain.01 0.05 / 2 0.05 / 2 0.03 / 2
ball 1d plain.02 25.50 / 6 0.09 / 4 0.06 / 4
ball 1d plain.03 31.43 / 10 0.28 / 6 0.40 / 6
ball 1d plain.04 36.23 / 14 0.46 / 8 0.65 / 8
ball 1d plain.05 151.41 / 18 1.27 / 10 1.51 / 10
ball 2d plain.01 0.08 / 2 0.18 / 2 0.28 / 2
ball 2d plain.02 4.20 / 6 3.14 / 6 3.64 / 6
ball 2d plain.03 16.04 / 10 15.90 / 10 62.64 / 10
ball 2d hill.01 1.30 / 4 na / na 0.94 / 2
ball 2d hill.02 118.67 / 8 na / na 15.36 / 4
ball 2d slope.01 to / na na / na na / na
simple ballistics 8.31 / 1 na / na na / na

TABLE II
RESULTS (RUNNING TIME / PATH LENGTH) OF BMC WITH THE DIFFERENT

ENCODINGS.

to produce a result, we also compared it with our approach
using the same SMT-based technique, in order to evaluate the
overhead caused by the splitting. The results are shown in
Table II. The encoding time of our approach is instantaneous
in all cases. In the cases where quantifier elimination is
feasible, the resulting encoding may induce traces with a
smaller number of steps, because timed transitions must not be
split. This happens for the ball 1d plain and the ball 2d hill
benchmarks. The reduced number of steps also reduces the
time needed to generate the trace.

Our approach was also able to prove a simple invariant on
the ballistics example, that was beyond the applicability of
SMT-based techniques. We chose as obstacle a circle shape
with center in (c, 0) and radius r. If the ceiling level is less
than r, the object cannot clearly pass. This has been proved
with NUSMV and iSAT. Ignoring the invariant along the
timed transitions (keeping it only on the discrete points) allows
for spurious traces that forbid the inductive proof. Note that
this small example is beyond the applicability of quantifier
elimination (see Table I).

Some remarks are in order. Our approach strongly de-
pends on the availability of SMT solvers for quantifier-
free theories of nonlinear arithmetic, to solve the formulas
resulting from our SMT-based verification engines. To this
end, we tried to use all the available solvers for nonlinear
arithmetic: Z38, SMT-RAT9, CVC310, miniSMT11, RAHD12,
hydlogic13, dReal14. and iSAT15. Z3 and SMT-RAT implement
two complete decision procedures for the non-linear arithmetic
over reals. Both solvers still do not integrate a layering
with the linear arithmetic solver: in this case all the linear
arithmetic constraints are handled using the non-linear solver,

8http://research.microsoft.com/en-us/um/redmond/projects/z3/
9http://smtrat.sourceforge.net/
10http://cs.nyu.edu/acsys/cvc3/
11http://cl-informatik.uibk.ac.at/software/minismt/
12http://homepages.inf.ed.ac.uk/s0793114/rahd/
13http://code.google.com/p/hydlogic/
14http://www.cs.cmu.edu/ sicung/dReal/
15http://isat.gforge.avacs.org/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

193193193

thus resulting in an inefficient approach. This is the case
for our BMC case studies, which have a significant part of
linear constraints. Instead, CVC3 and miniSMT implement an
incomplete decision procedure for non-linear arithmetic (and
miniSMT is tailored only to check satisfiable formulas). As a
result, these solvers turned out to return “unknown” on most
of the queries generated from our benchmarks. The hydlogic
system turned out to be immature, while RAHD exports
functionalities that are closer to a theory solver than a full SMT
solver, requiring an explicit treatment of disjunctions. iSAT
and dReal differ from the other solvers, since they can also
provide non-precise solutions. dReal returns an unsatisfiable
answer or a satisfiable answer if the formula is satisfiable
under a bounded numerical perturbations. iSAT may return
“unknown” exposing the results of interval constraints propa-
gation: it produces the intervals found in the search, if these
are below a user-defined threshold, as a candidate solution.
In many practical cases, this is not spurious, and represents a
satisfying assignment of the formula.

Overall, despite some recent progress, our experience has
shown that the field still requires additional research to deliver
what our approach requires, both in terms of completeness,
and performance. However, we argue that our method is
valuable regardless of the current status of SMT for nonlinear
arithmetic. First, we proposed a solution to a problem that
was a show-stopper for SMT-based verification. In fact, we are
now able to solve some benchmarks that cannot be solved by
overapproximation, just forgetting about the quantified invari-
ants. Second, we are hopeful that the field of SMT can deliver
quick progress in quantifier-free nonlinear arithmetic. In fact,
the development of SMT solving for non-linear arithmetic has
been influenced by benchmarks from other domains (e.g. most
of the SMT-LIB benchmarks in NRA are from the software
domain). To this extent, we generated and submitted to the
SMT-LIB a vast number of benchmarks, that will trigger
additional research in practically relevant directions.

VII. CONCLUSIONS

In this paper, we tackled the problem of dealing with invari-
ant constraints in non-linear hybrid automata in the setting of
SMT-based verification. This is largely an open problem, due
to the presence of the universal quantifiers required to encode
that the invariant must hold throughout all time instants in
delay transitions.

We proposed new methods that allow for the reduction
to quantifier-free theories, at the cost of introducing addi-
tional variables. Our approach is comprehensive (deals with
disjunctive invariants), encompasses a large class of hybrid
systems (nonlinear polynomials), and is open to new patterns
of reduction, when an algorithmic solution is not possible
in general. As a result, we extend the applicability of SMT-
based verification methods, and were able to verify some novel
benchmark problems.

In the future, we plan to proceed along the following direc-
tions. We will experiment with the application of the proposed
methods as a way to concretize the abstract paths. Then, we

will generalize the approach to the analysis of networks of
hybrid automata; in particular, we will exploit the locality
of the splits of the continuous transitions in the local time
semantics framework. We will also apply a layered approach
to the analysis of non-linear constraints, where less expensive
(e.g. linear) solvers are applied whenever possible before
resorting to expensive but more precise nonlinear solvers such
as RAHD. Finally, we will apply the proposed techniques to
the analysis of requirements expressed in HRELTL logic [14].
In fact, HRELTL requires the predicates to be constant in
arbitrary intervals of time.

REFERENCES

[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing
Bounded Model Checking for Linear Hybrid Systems. In VMCAI, pages
396–412, 2005.

[2] R. Alur. Formal verification of hybrid systems. In EMSOFT, pages
273–278, 2011.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT. ENTCS, 119(2):17–32, 2005.

[5] C.W. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli. Satisfiability
Modulo Theories. In Handbook of Satisfiability, pages 825–885. 2009.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In TACAS, pages 193–207, 1999.

[7] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and
M. Roveri. Safety, Dependability and Performance Analysis of Extended
AADL Models. Comput. J., 54(5):754–775, 2011.

[8] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, M. Roveri,
and R. Wimmer. A Model Checker for AADL. In CAV, pages 562–565,
2010.

[9] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model Checking of
Hybrid Systems using Shallow Synchronization. In FORTE, 2010.

[10] L. Bu, J. Zhao, and X. Li. Path-Oriented Reachability Verification of a
Class of Nonlinear Hybrid Automata Using Convex Programming. In
VMCAI, pages 78–94, 2010.

[11] A. Cimatti, S. Mover, and S. Tonetta. Efficient Scenario Verification for
Hybrid Automata. In CAV, pages 317–332, 2011.

[12] A. Cimatti, S. Mover, and S. Tonetta. HyDI: a language for symbolic
hybrid systems with discrete interaction. In EUROMICRO-SEAA, 2011.

[13] A. Cimatti, S. Mover, and S. Tonetta. Proving and Explaining the
Unfeasibility of Message Sequence Charts for Hybrid Systems. In
FMCAD, 2011.

[14] A. Cimatti, M. Roveri, and S. Tonetta. Requirements Validation for
Hybrid Systems. In CAV, pages 188–203, 2009.

[15] L. de Alfaro and Z. Manna. Verification in Continuous Time by Discrete
Reasoning. In AMAST, pages 292–306, 1995.

[16] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimina-
tion in practice. In Alg. Algebra and Number Theory, pages 221–247.
Springer, 1998.

[17] A. Eggers, M. Fränzle, and C. Herde. SAT Modulo ODE: A Direct SAT
Approach to Hybrid Systems. In ATVA, pages 171–185, 2008.

[18] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving SAT
Modulo ODE for Hybrid Systems Analysis by Combining Different
Enclosure Methods. In SEFM, pages 172–187, 2011.

[19] M. Fränzle. What Will Be Eventually True of Polynomial Hybrid
Automata? In TACS, pages 340–359, 2001.

[20] S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83, 1997.

[21] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic Analysis of
Nonlinear Hybrid Systems. 1998.

[22] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of Hybrid
Systems Using HySAT. In ICONS, pages 196–201, 2008.

[23] D. Ishii, K. Ueda, and H. Hosobe. An interval-based SAT modulo ODE
solver for model checking nonlinear hybrid systems. STTT, 13(5):449–
461, 2011.

[24] S. Jha, B. A. Brady, and S. A. Seshia. Symbolic Reachability Analysis
of Lazy Linear Hybrid Automata. In FORMATS, pages 241–256, 2007.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

194194194

[25] T. King and C. Barrett. Exploring and Categorizing Error Spaces using
BMC and SMT. In SMT, 2011.

[26] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic
reachability computation for families of linear vector fields. J. Symb.
Comput., 32(3):231–253, 2001.

[27] K.L. McMillan. Interpolation and SAT-Based Model Checking. In CAV,
pages 1–13, 2003.

[28] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Hybrid systems: from verifica-
tion to falsification by combining motion planning and discrete search.
Formal Methods in System Design, 34(2):157–182, 2009.

[29] A. Platzer and E.M. Clarke. Formal Verification of Curved Flight
Collision Avoidance Maneuvers: A Case Study. In FM, pages 547–562,
2009.

[30] A.M. Rabinovich. On the Decidability of Continuous Time Specification
Formalisms. J. Log. Comput., 8(5):669–678, 1998.

[31] S. Sankaranarayanan and A. Tiwari. Relational abstractions for contin-
uous and hybrid systems. In CAV, pages 686–702, 2011.

[32] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
Using Induction and a SAT-Solver. In FMCAD, pages 108–125, 2000.

[33] A. Tiwari. Abstractions for hybrid systems. Formal Methods in System
Design, 32(1):57–83, 2008.

[34] Y. Yushtein, M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen,
Th. Noll, X. Olive, and M. Roveri. System-software co-engineering:
Dependability and safety perspective. In SMC-IT, pages 18–25. IEEE
CS Press, 2011.

APPENDIX

In this section, we explain how the method can be extended
to handle generic predicates for the invariants (i.e. disjunctive
invariants and open intervals). We describe the extension only
in the appendix because, first, it complicates the presentation,
second, in practice we do not have disjunctive invariants in
the benchmarks.

A. Encoding of hybrid into transition systems

We modify the encoding of a HS into a transition system
with atomic quantified formulas. First, we modify the encod-
ing considering quantification over open intervals instead of
closed intervals. Later, we will prove that we can push the
quantification inside the disjunctions under the assumption of
finite variability.

We redefine SD = 〈VD, InitD, InvD, T ransD〉 as follows:
• VD := V ∪X ∪ {t}

(t is a real variable that stores the current real time of the
system).

• InitD := t = 0 ∧ Init.
• InvD := Inv.
• TransD := TIMED ∨ UNTIMED

where
– TIMED := t′ > t∧V ′ = V ∧X ′ = f(V ∪X, t′)∧∀ε ∈

(t, t′), Inv(V, f(ε))
– UNTIMED := t′ = t ∧ Trans(V,X, V ′, X ′).

Theorem 5: There exists a one-to-one mapping between the
paths of S and the paths of SD.

We call SD the encoding of S.
Sketched proof:

Let the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉
be a path of S. Then, the sequence of states
f0(le(I0)), f1(le(I1), . . . , fk(le(Ik) is a path of SD.

Let the sequence s0, s1, . . . , sk be a path of SD. Let us
consider, for all i ∈ [1, k], fi(v)(t) = f(si, t)(v). Let us define
Ii := [si(t), si+1(t)) if i < k and si+1(t) > si(t), Ii :=

[si(t), si(t)] if i < k and si+1 = si(t) or if i = k. Then, the
hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of S.

Without loss of generality we can assume that the quantified
formula in Trans is atomic. This is not correct in general and
exploit the particular position of the quantified sub-formula in
the transition condition.

Theorem 6: Assuming that the predicates φ and ψ have fi-
nite variability, if we replace a formula ∀ε ∈ (t, t′), φ(ε)∨ψ(ε)
with ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε) inside TransD, we
obtain the encoding of a sampling refinement to the original
HS.

Proof: Clearly, ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε)
implies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε). The opposite does
not hold in general. However, consider a hybrid trace
〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of a HS S.
Assuming that the predicates φ and ψ have finite variability,
we can refine the hybrid trace into a new hybrid trace in which
φ and ψ are constant in every interval. The new hybrid trace
also satisfies S by Proposition 2 and thus the corresponding
discrete trace s0, . . . , sk satisfies its encoding SD. At every i,
if si satisfies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε), then f(si, ε) satisfies
φ ∨ ψ for all ε ∈ (t, t′) = (le(Ii), ue(Ii)), and thus either
φ or ψ (since φ and ψ are constant in the open part of Ii).
Therefore the discrete trace satisfies also the encoding with
∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε).

B. Reduction to flow invariants

Theorem 7: If g : R → R is a differentiable function and
ġ ./ 0 (./∈ {≥, >}) has finite variability, then ∀ε ∈ (t, t′), g ./
0 iff there exists a finite set of real numbers t = t0 < . . . <
tn = t′ such that g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧

∧
0<i<n g(ti) ./ 0 ∧∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) if ./=≥, g(t) ≥ 0∧ g(t′) ≥
0 ∧

∧
0<i<n g(ti) ./ 0 ∧

∧
0<i≤n Constant(ġ ≥ 0, ti−1, ti) ∧

(g(t) = 0→ ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0), if ./=>.
Proof: (⇒) Since ġ ./ 0 has finite variability, there exists

a finite set of real numbers t = t0 < . . . < tn = t′ such
that

∧
0<i≤n Constant(ġ ≥ 0, ti−1, ti) by definition. Moreover,

since ∀ε ∈ (t, t′), g ./ 0, g ./ 0 holds also in the time points
t1, . . . , tn−1. g(t) ≥ 0 and g(t′) ≥ 0 for the continuity of g.
Finally, (g(t) = 0 → ġ(t) > 0) ∧ (g(t′) = 0 → ġ(t) < 0), if
./=>.

(⇐) Assume by contradiction that there exists tb ∈ (t, t′)
such that g(tb) ./ 0 is false. Since

∧
0<i<n g(ti) ./ 0, there

exists i ∈ [1, n] such that tb ∈ (ti−1, ti). Let us consider first
the case in which g(t) ./ 0 and g(t′) ./ 0 or i ∈ [2, n − 1].
Since g is differentiable, for the mean value theorem, there
exists a point t′b ∈ (ti−1, tb) such that ġ(t′b) = g(tb)−g(ti−1)

(tb−ti−1)

and therefore ġ(t′b) ./ 0 is false. Similarly, there exists
a point t′′b ∈ (tb, ti) such that ġ(t′′b) = g(ti)−g(tb)

(ti−tb) and
therefore ġ(t′′b) ./ 0 is true. Thus, ġ is not constant over
(ti−1, ti) contradicting the hypothesis. Let us now consider
the case in which ./=>, i = 1 and g(t) = 0 or i = n
and g(t′) = 0. Similarly as before there exists a point that
contradicts (g(t) = 0→ ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0).

We conclude that ∀ε ∈ (t, t′), g(ε) ./ 0.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

195195195

	03t
	04t
	05t
	06t
	07kn
	08p
	09p
	10p
	11p
	12p
	13p
	14p
	15p
	16p
	17p
	18p
	Introduction
	Previous Approaches and Related Work
	Preliminaries
	Basic Notation
	General strategies
	Binary Decision Diagrams

	Learning Small Circuits
	Decomposition
	Learning circuits with a single output bit
	Learning CNFs
	Learning CDNFs

	Experimental Results
	Implementation and Experimental Setup
	Experiments with Ratsy
	Experiments with Unbeast
	Discussion

	Conclusions and Future Work
	References
	Appendix

	19p
	20p
	21p
	Introduction
	Background and Previous Work
	Upgrade Checking
	Basic Algorithm
	Optimization and Refinement
	Correctness

	Evaluation
	Related Work
	Conclusion
	References

	22p
	23p
	24p
	25p
	26p
	27p
	28p
	Introduction
	Related Work

	Preliminaries
	SAT-based Reachability via IC3
	Abstraction
	Lazy Abstraction

	Lazy Abstraction and IC3
	Abstract Model Checking via A-IC3
	Refinement
	Correctness Arguments
	Detailed Description of Strengthening

	Experimental Results
	Acknowledgments
	References

	29p
	30it
	31p
	32p
	33p
	34ai

