
FMCAD 2012

Formal Methods in Computer–Aided Design

Microsoft Research, Cambridge, United Kingdom, 22–25 October 2012

Edited by Gianpiero Cabodi and Satnam Singh

In cooperation with

ACM Special Interest Group on Programming Languages

ACM Special Interest Group on Software Engineering

Technical co-sponshorship of IEEE Council on Electronic

Design Automation

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

Table of Contents

Preface . iv
Gianpiero Cabodi, Satnam Singh

Conference Organization . v

Tutorials

Formal Methods in Cell Biology . 1
Jasmin Fisher

Answer Set Programming . 2
Torsten Schaub

Formal Methods for Aerospace Applications . 3
Eric Feron, Guillaume Brat, Pierre-Loic Garoche, Panagiotis Manolios, Marc Pantel

Application of SMT Solvers to Hybrid System Verification . 4
Alessandro Cimatti

Keynote

Algebra of Concurrent Design . 5
Tony Hoare

Session 1: Concurrent Software Verification

Efficient Predictive Analysis for Detecting Nondeterminism in Multi-Threaded Programs . 6
Arnab Sinha, Sharad Malik, Aarti Gupta

Automatic Lock Insertion in Concurrent Programs . 16
Vineet Kahlon

Multi-Pushdown Systems with Budgets . 24
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Othmane Rezine, Jari Stenman

Session 2: SAT and Model Checking Algorithms

Quantifier Elimination by Dependency Sequents . 34
Eugene Goldberg, Panagiotis Manolios

Preprocessing Techniques for First-Order Clausification . 44
Krystof Hoder, Zurab Khasidashvili, Konstantin Korovin, Andrei Voronkov

A Liveness Checking Algorithm that Counts . 52
Koen Claessen, Niklas Sörensson

i

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

Session 3: Machine Code and Memory Verification

A Formal Model of a Large Memory that Supports Efficient Execution . 60
Warren Hunt, Matt Kaufmann

Verification with Small and Short Worlds . 68
Rohit Sinha, Cynthia Sturton, Petros Maniatis, Sanjit A. Seshia, David Wagner

Decompilation into Logic – Improved . 78
Magnus O. Myreen, Michael J. C. Gordon, Konrad Slind

Session 4: Formal Methods for Synthesis, Test and Debug

Complete and Effective Robustness Checking by Means of Interpolation . 82
Stefan Frehse, Goerschwin Fey, Eli Arbel, Karen Yorav, Rolf Drechsler

Symbolically Synthesizing Small Circuits . 91
Rüdiger Ehlers, Robert Königlofer, Georg Hofferek

Automated Debugging of Missing Input Constraints in a Formal Verification Environment . 101
Brian Keng, Andreas Veneris

Session 5: Software and Behavioural Hardware Verification

Algorithms for Software Model Checking: Predicate Abstraction vs. IMPACT . 106
Dirk Beyer, Philipp Wendler

Incremental Upgrade Checking by Means of Interpolation-based Function Summaries . 114
Ondrej Sery, Grigory Fedyukovich, Natasha Sharygina

Verification of Parametric System Designs . 122
Alessandro Cimatti, Iman Narasamdya, Marco Roveri

Session 6: Formal Verification Techniques for Arithmetic Circuits and GPUs

Deciding Floating-Point Logic with Systematic Abstraction . 131
Leopold Haller, Alberto Griggio, Martin Brain, Daniel Kroening

Formal Verification of Error Correcting Circuits Using Computational Algebraic Geometry . 141
Alexey Lvov, Luis A. Lastras-Montaño, Viresh Paruthi, Robert Shadowen, Ali El-Zein

Symbolic Trajectory Evaluation: The Primary Validation Vehicle for Next Gen Intel R©

Processor Graphics FPU . 149
Achutha Kirankumar V M, Aarti Gupta, Rajnish Ghughal

Session 7: Automated Abstraction/Reduction Techniques

Enhanced Reachability Analysis via Automated Dynamic Netlist-Based Hint Generation . 157
Jiazhao Xu, Mark Williams, Hari Mony, Jason Baumgartner

Oscillator Verification with Probability One . 165
Chao Yan, Mark Greenstreet

Lazy Abstraction and SAT-based Reachability in Hardware Model Checking . 173
Yakir Vizel, Orna Grumberg, Sharon Shoham

IC3-Guided Abstraction . 182
Jason Baumgartner, Alexander Ivrii, Arie Matsliah, Hari Mony

ii

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

Session 8: Panel Session. Model Checking in the Cloud

Invited Talk

Formal for Everyone – Challenges in Achievable Multicore Design and Verification . 186
Daryl Stewart

Session 9: Solver Applications

A quantifier-free SMT encoding of non-linear hybrid automata . 187
Alessandro Cimatti, Sergio Mover, Stefano Tonetta

Piecewise Linear Modeling of Nonlinear devices for Formal Verification of Analog Circuits . 196
Yan Zhang, Sriram Sankaranarayanan, Fabio Somenzi

Forward and Backward: Bounded Model Checking of Linear Hybrid Automata From Two Directions 204
Yang Yang, Lei Bu, Xuandong Li

Author Index . 209

iii

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

Preface

The International Conference on Formal Methods in Computer–Aided Design, FMCAD, is a series of conferences on the
theory and application of formal methods to the computer-aided design and verification of hardware and systems. The twelfth
conference in the series, FMCAD 2012, was held in Cambridge, United Kingdom, 22–25 October, at Microsoft’s Cambridge
research laboratory.

In the past, FMCAD took place in the United States on even years and its sister conference CHARME was held in Europe
on odd years. In 2006, these two conferences merged to form an annual conference with a unified international community.
The merged conference inherited the name FMCAD, and is now held yearly. It provides a leading international forum for
researchers and practitioners in academia and industry to present and discuss novel methods, technologies, theoretical results
and tools for formal reasoning about computing systems.

This year, the conference received in-cooperation status with ACM under the Special Interest Group on Programming
Languages and the Special Interest Group on Software Engineering. It also received technical sponsorship from the IEEE
Council on Electronic Design Automation. The Hardware Model Checking Competition (HWMCC) was co-located with the
conference this year. The FMCAD 2012 conference received 71 submissions (after discounting withdrawn submissions). Each
submission was reviewed by at least four reviewers, and some submissions received five or six reviews. After a long decision
process that involved often vigorous discussions by Program Committee members and subreviewers, 25 submissions were
eventually selected for presentation at the conference, 21 as regular papers and 4 as short papers. The accepted papers covered
topics ranging from model checking and solver technology to design for verification, synthesis, debug and testing. Moreover,
they addressed a broad spectrum of abstraction levels ranging and a wide variety of topics including the verification of multi-
threaded programs and automatic lock insertion, analog and mixed-signal systems, efficient models for large memories, symbolic
synthesis of small circuits, automated debugging of missing input constraints in formal verification systems, software model
checking, floating-point logic with semantic abstraction, symbolic trajectory evaluation, reachability analysis, and bounded
model checking.

Besides reviewed submissions, our program was enriched by four invited tutorial speakers. Jasmin Fischer, a researcher at
Microsoft’s Cambridge research laboratory, talked about “Formal Methods in Cell Biology”, which deals with the application of
formal techniques to systems biology. Torsten Schaub from the University of Potsdam, Germany, gave a talk about “Answer Set
Programming”. Eric Feron, from Georgia Tech, presented “Formal Methods for Aerospace Applications”. Alessandro Cimatti,
from Fondazione Bruno Kessler, gave a presentation called “Application of SMT Solvers to Hybrid System Verification”.
The Keynote speaker for the conference, Tony Hoare, from Microsoft Research Cambridge, gave a talk called “Algebra of
Concurrent Design”. There was also an invited talk from ARM by Daryl Stewart called “Formal for Everyone - Challenges
in Achievable Multicore Design and Verification”. Maher Mneimneh from Atrenta Inc. chaired a panel session called “Model
Checking in the Cloud.”

The 2012 Proceedings of FMCAD are available through the ACM Digital Library, at IEEE Xplore Digital Library, or as a
free download from the FMCAD website.

We would like to sincerely thank our industrial sponsors for their financial support of FMCAD 2012: ARM, Atrenta Inc,
Centaur Technology, IBM Corp., Intel Corp., Jasper Design Automation, Mentor Graphics, Microsoft Research Cambridge, NEC
Laboratories America, OneSpin Solutions. We would also like to acknowledge the continuous support of FMCAD Inc. We owe
a large debt to this year’s organizing committee, composed of Samin Ishtiaq (Local Arrangements), Stefano Quer (Publication),
Slava Bulach and Fahim Rahim (Publicity), Rolf Drechsler (Tutorials), as well as to Maher Mneimneh for organizing the panel
session. We would also like to thank the members of the FMCAD Steering Committee: Jason Baumgartner, Aarti Gupta,
Warren Hunt, Panagiotis Manolios, and Mary Sheeran – for their kind advice during the conference preparation process. A
big thanks goes to all members of the Program Committee who, with the help of many subreviewers, did a stellar job not
only of selecting this year’s exciting program, but also of providing feedback to the authors to help them improve their papers
for publication. We also owe a large debut to Cara Freeman at Microsoft for local arrangements support and to Microsoft
Research Cambridge for kindly hosting the conference at their laboratory. Last, but not least, the conference would not be
possible without all the authors who submitted papers and all the attendees.

Gianpiero Cabodi and Satnam Singh (chairs)

iv

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

Conference Organization

Program Co-Chairs
Gianpiero Cabodi, Politecnico di Torino, Italy
Satnam Singh, Google, USA

Local Arrangement Chair
Samin Ishtiaq, Microsoft Research Cambridge, UK

Publication Chair
Stefano Quer, Politecnico di Torino, Italy

Publicity Chairs
Slava Bulach, Robert Bosh GmbH, Germany
Fahim Rahim, Atrenta Grenoble, France

Tutorial Chair
Rolf Drechsler, University of Bremen, Germany

Steering Committee
Jason Baumgartner, IBM, USA
Aarti Gupta, NEC Labs America, USA
Warren Hunt, University of Texas at Austin, USA
Panagiotis Manolios, Northeastern University, USA
Mary Sheeran, Chalmers University of Technology, Sweden

Program Committee
Jason Baumgartner, IBM
Armin Biere, Johannes Kepler University
Per Bjesse, Synopsys
Roderick Bloem, Graz University of Technology
Gianpiero Cabodi, Politecnico di Torino
Alessandro Cimatti, Fondazione Bruno Kessler
Byron Cook, Microsoft Research
Bruno Dutertre, SRI international
Steven German, IBM
Mark Greenstreet, University of British Columbia
Aarti Gupta, NEC Labs America
Youssef Hamadi, Microsoft Research
Alan Hu, University of British Columbia
Warren Hunt, University of Texas at Austin
Barbara Jobstmann, Verimag/CNRS
Kevin Jones, City University London
Daniel Kroening, Computer Science Department, Oxford University
Thomas Kropf, Robert Bosch GmbH and University of Tuebingen
Panagiotis Manolios, Northeastern University
Joao Marques-Silva, University College Dublin
Arie Matsliah, CWI Amsterdam
Ken McMillan, Microsoft Research
Tom Melham, Oxford University

v

Proceedings of the 12th Conference on Formal Methods in Computer–Aided Design (FMCAD 2012)

John O’Leary, Intel Corporation
Lee Pike, Galois Inc.
Sandip Ray, University of Texas at Austin
Julien Schmaltz, Open University of the Netherlands
Natasha Sharygina, Università della Svizzera Italiana
Mary Sheeran, Chalmers University of Technology
Satnam Singh, Google
Anna Slobodova, Centaur Technology
Fabio Somenzi, University of Colorado at Boulder
Sudarshan Srinivasan, North Dakota State University
Murali Talupur, Intel
Helmut Veith, Vienna University of Technology
Thomas Wahl, Northeastern University
Markus Wedler, University Kaiserslautern

External Reviewers
Francesco Alberti, Binghao Bao, Jason Baumgartner, Sam Bayless, Anton Belov, Nikolaj Bjorner, Marco Bozzano, Bryan Brady,
Martin Brain, David Burke, Sagar Chaki, Huan Chen, Hana Chockler, Arlen Cox, Ashish Darbari, Pedro Diniz, Ashvin Dsouza,
Levent Erkok, Grigory Fedyukovich, Marco Gario, Bernard van Gastel, Shilpi Goel, Alexey Gotsman, Andreas Griesmayer,
Alberto Griggio, Ashutosh Gupta, Asad Hafiz, Zyad Hassan, Joe Hendrix, Marijn Heule, Georg Hofferek, Andreas Holzer, Alex
Horn, Antti Hyvärinen, Himanshu Jain, Reily Jacoby, Mikolas Janota, Sebastiaan Joosten, Matti Järvisalo, Krishnan Kailas,
Joost-Pieter Katoen, Ayrat Khalimov, Heidy Khlaaf, Johannes Kinder, Alfred Koelbl, Bettina Koenighofer, Robert Koenighofer,
Jan Lucas, Oded Margalit, Rubens Martins, Oliver Marx, Andrea Micheli, Alan Mishchenko, Sergio Mover, Iman Narasamdya,
Sergey Nepomnyachiy, Vincent Nimal, Dana Fisman Ofek, David Parker, Carl Pixley, Graziano Pravadelli, David Rager, Jaideep
Ramachandran, Sayak Ray, Heinz Riener, Simone Fulvio Rollini, Marco Roveri, Sitvanit Ruah, Sasha Rubin, Bernard Schmidt,
Martina Seidl, Ondrej Sery, Ohad Shacham, Subodh Sharma, Axel Simon, Moritz Sinn, Saqib Sohail, Baruch Sterin, Michael
Tautschnig, Aditya Thakur, Aaron Tomb, Stefano Tonetta, Abigail Parisaca Vargas, Martin Vechev, Freek Verbeek, Carlos
Villarraga, Christian Von Essen, Ian Wehrman, Georg Weissenbacher, Nathan Wetzler, Vidura Wijayasekara, Christoph M.
Wintersteiger, Karen Yorav, Yan Zhang.

vi

Formal Methods in Cell Biology
Jasmin Fisher

Microsoft Research, Cambridge, United Kingdom

Abstract

Biological systems are extremely complex reactive systems. They operate as highly concurrent programs with millions of
entities running in parallel and communicating with each other under various environmental conditions. Understanding how living
systems operate in such harmony and precision, and how this harmony is being disrupted in diseased states, are key questions
in biological and medical research. Due to their enormous complexity, the comprehension and analysis of living systems is a
major challenge. Over the last decade various efforts to tackle this problem concentrate on a new approach called Executable
Biology focused on the construction and analysis of executable models describing biological phenomena. Over the years, these
efforts have demonstrated successfully how the use of formal methods can be beneficial for gaining new biological insights and
even directing new experimental avenues. In this tutorial, I will survey some of the major efforts in this direction, using formal
verification, synthesis and the design of new tools to reason about information processing during cells decision-making, organisms
development, and molecular mechanisms underlying various human cancers.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

1

Answer Set Programming
Torsten Schaub1

University of Potsdam, Germany
Email: torsten@cs.uni-potsdam.de

Abstract

Answer Set Programming (ASP; [1], [2], [3], [4]) is a declarative problem solving approach, combining a rich yet simple
modeling language with high-performance solving capacities. ASP is particularly suited for modeling problems in the area of
Knowledge Representation and Reasoning involving incomplete, inconsistent, and changing information. From a formal perspective,
ASP allows for solving all search problems in NP (and NP

NP) in a uniform way (being more compact than SAT). Applications
of ASP include automatic synthesis of multiprocessor systems, decision support systems for NASA shuttle controllers, Linux
package configuration, reasoning tools in systems biology, and many more. The versatility of ASP is also reflected by the ASP
solver clasp [5], [6], [7], developed at the University of Potsdam, winning first places at first places at ASP, CASC, MISC, PB,
and SAT competitions. This short tutorial presents a practical introduction to ASP, aiming at using ASP languages and systems
for solving application problems. Starting from the essential formal foundations, it introduces ASP’s solving technology, modeling
language and methodology, while practically illustrating the overall solving process by examples.

REFERENCES

[1] Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. Proceedings of ICLP’88, The MIT Press (1988) 1070–1080
[2] Niemelä, I.: Logic programs with stable model semantics as a constraint programming paradigm. Annals of Mathematics and Artificial Intelligence

25(3-4) (1999) 241–273
[3] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press (2003)
[4] Gelfond, M.: Answer sets. In Lifschitz, V., van Hermelen, F., Porter, B., eds.: Handbook of Knowledge Representation. Elsevier (2008) 285–316
[5] Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. Proceedings of IJCAI’07, AAAI Press/The MIT Press (2007)

386–392
[6] Gebser, M., Kaufmann, B., Schaub, T.: The conflict-driven answer set solver clasp: Progress report. Proceedings of LPNMR’09. Springer (2009) 509–514
[7] Potassco, the Potsdam Answer Set Solving Collection. http://potassco.sourceforge.net/

1Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

2

Formal methods for Aerospace Applications
Eric Feron Guillaume Brat Pierre-Loic Garoche Panagiotis Manolios Marc Pantel

Georgia Tech NASA Onera, Toulouse center Northeastern University IRIT
USA USA France USA France

Abstract

Formal methods are being progressively incorporated in the aircraft and spacecraft software design and verification process
and become commonplace elements of the aerospace industry. Five aerospace software system experts will present their views on
this process and where it is headed.

Focusing first on design issues, Pete Manolios (Northeastern University, USA) will discuss design aspects and costs of
commercial air transport vehicles, including integrated modular avionics, verification costs, and system integration. He will
then discuss how new verification technology is used to algorithmically synthesize an optimal architecture subject to high level
constraints. This work will be illustrated by a case study involving the Boeing 787 Dreamliner.

Marc Pantel (IRIT, France) will then discuss safety requirements as a key aspect of the development of embedded systems in
avionics. He will discuss the current regulations linking safety requirements to software design guidelines. He will then discuss
novel approaches to model driven software development, using formal models and verification activities at the various steps of
the development cycle. Experiments conducted in relation with European avionics companies will be described.

Moving then towards analysis methods, Guillaume Brat (NASA, USA) will discuss sound, complete, precise, and scalable
static analysis of flight control systems. He will introduce the IKOS static analysis framework, whose intellectual foundation is
abstract interpretation. He will insist on compositional verification, a necessary tool for to make formal methods scale up to real,
avionics systems. He will address the component-based development approach of these systems.

Eric Feron (Georgia Tech, USA), and Pierre-Loic Garoche (Onera Toulouse center, France) will discuss the application of
the methods introduced above to control software, a narrow, but essential component of any safety-critical software system. They
will then describe a possible evolution of the current development process of aircraft control systems towards more formalism
(through a combination of formal proof and proof replay). They will discuss the static analysis of the behavior of the controller
(stability and other non linear properties), and the static analysis of the safety architecture of the controller.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

3

Application of SMT Solvers to Hybrid System
Verification

Alessandro Cimatti

Fondazione Bruno Kessler, Trento, Italy

Abstract

Hybrid automata are a widely used framework to model complex critical systems, where continuous physical dynamics are
combined with discrete transitions. Application areas include automotive, railway, aerospace, and industrial production.

The expressive power of Satisfiability Modulo Theories (SMT) solvers can be used to symbolically model networks of hybrid
automata, using formulas in the theory of reals.

In this tutorial, we survey state-of-the-art SMT-based verification for hybrid systems.
We show how SAT-based techniques such as bounded model checking, k-induction, predicate abstraction, and IC3, can be

naturally lifted to the SMT case. The expressive power of the SMT framework allows us to exploit a local time semantics, where
the timescales of the automata in the network are synchronized upon shared events. The approach fully leverages the advanced
features of modern SMT solvers, such as incrementality, unsatisfiable core extraction, and interpolation.

We then concentrate on the problem of scenario-based verification, i.e. checking if a network of hybrid automata accepts
some desired interactions among the components, expressed as Message Sequence Charts (MSCs).

We conclude by investigating the problem of requirements analysis for hybrid systems.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

4

Algebra of Concurrent Design
Tony Hoare

Microsoft Research, Cambridge, United Kingdom

Abstract

I introduce some familiar algebraic laws governing the operators of sequential and concurrent composition of designs. They
can be combined with the familiar operators of propositional calculus. The resulting logic seems to apply equally to hardware
design and to software design; and perhaps also to the planning of other designs and plans for behaviour that evolves in space
and time.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

5

Efficient Predictive Analysis for Detecting Nondeterminism in Multi-Threaded
Programs

Arnab Sinha, Sharad Malik

Princeton University
{sinha,sharad}@princeton.edu

Aarti Gupta

NEC Laboratories America
agupta@nec-labs.com

Abstract—Determinism is often a desired property in multi-
threaded programs. A multi-threaded program is said to be
deterministic if for a given input, different thread interleavings
result in the same system state in the execution of the program.
This, in turn, requires that different interleavings preserve the
values read by each read operation. A related, but less strict
condition is for the program to be race-free. A deterministic
program is race-free but the converse may not be true. There
is much work done in the static analysis of programs to detect
races and nondeterminism. However, this can be expensive and
may not complete for large programs in reasonable time. In
contrast to static analysis, predictive analysis techniques take
a given program trace and explore other possible interleav-
ings that may violate a given property – in this case the
property of interest is determinism. Predictive analysis can
be sound, but is not complete as it is limited to a specific
set of program runs. Nonetheless, it is of interest as it offers
greater scalability than static analysis. This work presents a
predictive analysis method for detecting nondeterminism in
multi-threaded programs. Potential cases of nondeterminism
are checked by constructing a causality graph from the thread
events and confirming that it is acyclic. On average, the number
of graphs analyzed per benchamrk is one per potential case
of nondeterminism, thereby ensuring that it is efficient. We
demonstrate its application on some benchmark Java and
C/C++ programs.

I. INTRODUCTION

Writing correct and efficient multi-threaded programs is

widely accepted as a challenging task. The wide range

of possible concurrency errors makes it inherently harder

than writing sequential programs [15], [26], [28]. Given the

same input, the different runs of a multi-threaded program

may produce different outputs because the threads inter-

leave in different ways. This makes it hard to replicate

and debug errors through traditional testing methods. These

errors are referred to as “Heisenbugs” [2]. The potential

nondeterminism of multi-threaded programs lies at the core

of these Heisenbugs. For this and other reasons, determinism
is often a desired property in multi-threaded programs. A

multi-threaded program is said to be deterministic if for

a given input, different thread interleavings result in the

same system state in the execution of the program. It is

important to consider when the system state is observed. If

it is observed only at the end of the program execution, then

individual read events may not need to read the same value

across different interleavings. However, if the system state is

continuously observed, then each read event must read the

same value in all possible interleavings. We consider this

case. Further, for ease of analysis we consider the stricter

condition that each read event reads the value from the same
write event in all interleavings. This restriction is consistent

with other work in predictive analysis [8], [34], and can

be supplemented with program analysis to consider specific

values rather than specific events, if desired.

A related but less strict condition is a datarace. A pair

of shared memory accesses are said to be conflicting if

they are performed by different threads and at least one of

them is a write. Also, the events are unsynchronized if the

threads do not use an explicit mechanism such as locks to

prevent the accesses from being simultaneous. A datarace is

defined as two conflicting and unsynchronized data accesses.

A deterministic program is race-free but the converse may
not be true. The following example in Fig. 1 illustrates this

further.

Figure 1. A deterministic program is race-free but the converse may not
be true. (‘Causally precedes’ is defined in [35].)

Consider the example in Fig. 1. In this example, there is

a pair of conflicting shared memory accesses, each under

the lock-scope of the same lock variable l. Let events L1

and L2 be ‘acquire lock’ events on l. Similarly, let events

U1 and U2 represent ‘release lock’ events on l. In (a), we

show a standard Happens Before (HB) analysis for lock

operations. The two events U1 and L2 are ordered by HB,

as indicated by the (U1, L2) edge and hence there is no race.

Next, in (b), we consider the causally precedes (CP) analysis

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

6

proposed by Smaragdakis et al. [35]. Due to the presence of

conflicting accesses (w and r) within the lock-scopes, U1

causally precedes L2 introducing the CP edge from U1 to

L2. Hence, there is no CP-race. However, observe that in

another interleaving (c), where the lock-scopes swap order,

the following different order is possible in an interleaving:

U2 happens before L1. Thus, while the program is race free,

it is nondeterministic because the read event (rd x) reads

from a different write event in the interleaving (c) compared

to the interleaving in (a) and (b).

Figure 2. Classification of race and nondeterminism detection techniques
based on cost of analysis: Burnim10 [6], SingleTrack [32], Eraser [33], Fast-
Track [13], GoldiLocks [11], Sliced Causality [7], jPredictor [8], Causally
precedes [35], CoreDet [3], Kendo [29], DThreads [25], Navabi08 [27],
Peregrine [10], Vaziri06 [37], Warlock [36], Kahlon07 [20], Choi02 [9],
Vechev10 [38]

There is much work done in static analysis of programs

to detect races and nondeterminism [36], [20], [9], [3],

[29], [25], [27], [10], [37] as shown in Fig. 2. Among these,

deterministic multi-threading (DMT) has attracted a lot of

interest recently [25], [10]. DMT deterministically schedules

the threads such that the values read by the read operations

are preserved. The static analyses for detection or finding

schedules can be expensive and may not complete for large

programs within reasonable time.

The other end of the spectrum is monitoring-based solu-

tions [33], [13], [11]. Although monitoring-based solutions

are scalable and sound, the analysis is based only on the runs

that are actually executed. In contrast, predictive analysis
techniques take a given program trace and explore other

possible interleavings that may violate a given property [35],

[8], [7]. This helps to enhance coverage of a given test input

to a larger set of thread interleavings. Predictive analysis can

be sound but it is not complete as it may not cover the entire

program.

In this work, we adopt a predictive analysis technique

for detecting nondeterminism. This provides an effective

trade-off between cost and coverage. Our technique is based

on the partial order permitted by a trace combined with

the reasoning for locks. This technique is fast because it

searches a reduced set of sufficient interleavings. Potential

cases of non-determinism are checked by constructing a

causality graph from the thread events and confirming that

this is acyclic. We demonstrate its application on some

benchmark Java and C++ programs. Our results show that

the average number of graphs analyzed per benchmark is

one per potential case of nondeterminism.

This work makes the following contributions:

• It presents a sound and complete1 predictive analysis

technique for checking determinism of multi-threaded

programs. It reports only feasible cases of nondetermin-

ism and thus avoids false positives that would require

additional test execution after the analysis.

• The proposed technique requires search over a reduced

set of sufficient interleavings and hence is fast.

• The technique has been implemented and experimental

results on C/C++ and Java benchmark programs are

very promising.

II. PRELIMINARIES

We consider a multi-threaded program consisting of a

set of threads T1, T2 . . . , Tk and a set of shared variables.

Figure 3. The partial order
graph with vertices represent-
ing events and the dashed and
solid edges are program order
and sync. edges respectively. The
read-couple annotations are indi-
cated by the squiggly arrows.

Let {1, . . . , k} be the set of

thread indices. The remain-

ing aspects of the program,

including the control flow

and the expression syntax,

are intentionally left unspec-

ified for generality.

Program Trace Model:
An execution trace ρ = e1,

e2,. . . en is a sequence of

events, ei, i ∈ {1, . . . , n},
each of which is an in-

stance of a visible operation

during the execution of the

program. The visible opera-

tions are: read/write accesses

to shared variables and syn-

chronization operations such

as wait, notify, notifyall, lock

acquire/release and thread

fork/join. An event is repre-

sented as a 5-tuple (tid, eid, type, var, child), where tid
is the thread index (tid ∈ {1, . . . , k}), eid is the event

index (that starts from 1, and increases sequentially within a

thread), type is the event type, var is either a shared variable

(in read/write operations) or a synchronization object, child
is the child thread index (in thread create/join). The event

type is one of {read, write, fork, join, acquire, release,

wait, notify, notifyall}.
An execution trace ρ is the observed interleaving of

events across the threads and provides a total order on these

events. We derive the required partial order for this trace by

1over all interleavings of events in the given trace, not over the entire
program

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

7

retaining only the set of must-happen-before constraints as

described below.

Partial Order Graph: Let G(V,E) be a partial order

graph such that V (G) is the set of vertices, each of which

represents an event in the trace (we use vertices and events

interchangeably when the context is clear). Fig. 3 is an

example partial order graph with three threads. The number

inside each vertex is the eid within the thread. A directed

edge (a, b) in E(G) (the set of edges) is either a program

order edge, or a synchronization (sync.) edge.2 Program

order edges are indicated by dotted arrows and sync. edges

by solid arrows in Fig. 3. An edge in E(G) is referred to

as a partial order edge.

We note that locks are not added as sync. edges in E(G).

The mutual exclusion due to locks is considered separately

by our analysis. We also give special consideration to write-

read pairings. If event b reads the value written by event

a, then the pair (a, b) is defined as a read-couple. A read-

couple is indicated by a squiggly arrow annotation in the

partial order graph G. Note that this is not included in the

edge set E(G). In a different interleaving τ , if b reads from

a different event c, we say that the read-couple for b, and

the read b in ρ is broken in τ .

Locked Scope: A locked scope, denoted as [ei . . . ej]l,
is defined as the sequence of events ei . . . ej after an

‘acquire lock l’ event and before a ‘release lock
l’ event, where l is a lock-variable. Note that the sequence

of events ei . . . ej and lock acquire/release events belong to

the same thread.

III. PREDICTIVE ANALYSIS OF NONDETERMINISM

We assume that the shared variables are implicitly written

(or initialized) at the beginning of the execution. Similarly,

they are all implicitly read at the end of the program

execution. Given the same inputs, if a read instruction of

a shared variable reads the value from the same write

operation in all interleavings, it is referred to as a view-
preserving read. Otherwise, the read is non-view-preserving.

This is related to the well-known notion of view equivalence

in database transactions [30].

Definition 1: [Program Nondeterminism] We define a

multi-threaded program to be nondeterministic iff there

exists at least one non-view-preserving read.

Writer, Readers and Challengers: In the given trace,

there can be several read operations reading the value written

by a single write operation, w. w is referred to as the writer.

Any read event that reads the value written by w is denoted

as reader of w. Let R(w) be the set of readers of w. Any

write operation c, other than w that writes the same shared

variable is denoted as a challenger of w. It is named so

since it challenges the set of read-couples induced by w (i.e.

2HB edges between fork event in parent thread and first event in child
thread, between wait and notify events, and between last event in child
thread and join event in parent thread are sync. edges.

{(w, r) where, r ∈ R(w)}) as in an alternate interleaving r
may read from c instead of w, thus breaking the read couple

(w, r). Let, C(w) be the set of all challengers of writer w.

Problem Formulation: We aim to detect nondeterminism

over alternate interleavings of events of a given trace ρ.

Thus, we address the following problem: given a trace ρ
and a read-couple (w, r) in ρ, is there a challenger c such
that it breaks (w, r) in another interleaving τ?

For a pair of events e1 and e2 and an interleaving, let

e1 �→ e2 represent “e1 precedes e2 in the interleaving”.

For a given triplet (w, r, c) and a partial order graph G,

where r ∈ R(w) and c ∈ C(w), the read-couple is broken

in an interleaving τ , when any of the following orders is

present in τ : (1) c �→ r �→ w, or (2) w �→ c �→ r, or (3)

c �→ r and w does not occur in τ . In each case, r does not

read from w in τ . We refer to these orders as witnesses of
nondeterminism and the interleaving containing a witness as

a witness interleaving. In cases (1) and (2), w, r and c are

the events of the witness and in case (3), c and r are the

events of the witness. A triplet is said to be nondeterministic

if it can provide a witness of nondeterminism.

Central Idea: There are two phases in our analysis

for each witness. For a certain witness ω to exist in an

interleaving τ , τ must satisfy the orderings between the

members of ω in addition to the HB constraints imposed

by program-order, synchronization and possibly between

locked scopes. Let G′
(ω) be the graph after incorporating

all the mentioned constraints to G in the form of ordering

edges but not including any consideration of locked scopes.

G′
(ω) cannot contain a cycle since τ must be a total order

of events satisfying the ordering constraints imposed by

G′
(ω). Thus, in the first phase of our analysis, we check

for a cycle in G′
(ω). Presence of cycle in G′

(ω) entails the

witness to be infeasible (necessary condition for feasibility

of witness). (This phase is similar to a Universal Causality

Graph (UCG)-based analysis [23]. We provide a detailed

comparison later.) However, absence of a cycle in G′
(ω)

does not guarantee feasibility of witness. This is because

we still need to consider the locked scopes. For each pair of

mutually exclusive locked scopes LS1 and LS2, either LS1

HB LS2 or LS2 HB LS1. Since this holds for each pair

of mutually exclusive locked scopes, we need to consider

all possible combinations of such HB constraints. For d
such pairs, there will be 2

d combinations. These choices

need to be explored by augmenting G′ with each of these

2
d combinations of HB constraints. In the second phase of

our analysis, we construct all such possible graphs obtained

by augmenting G′
(ω). Let G′′

(ω) be one such graph. The

witness is infeasible if and only if all 2
d G′′

(ω) graphs

contain cycles (sufficient condition for feasibility of witness).

We now describe these two phases in detail below.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

8

A. Necessary Condition for Witness: Witness Order Graph

Let ω be a witness in an interleaving τ . We consider

ordering constraints imposed by ω on τ . Note that G already

contains program order and synchronization constraints that

τ must obey. We now augment G to G′
(ω) to include

additional ordering constraints imposed by the witness ω.

G′
(ω) is referred to as the witness order graph. The orders

imposed by ω are reflected by adding additional edges to

G′
(ω) denoted as witness order edges.

We construct G′
(ω) specific to witness ω as follows.

(Henceforth, we refer to G′
(ω) as G′ when ω is clear from

the context.) Without loss of generality consider ω to be of

the type c �→ r �→ w. We add witness order edges (c, r) and

(r, w) to G′.
For each observed read-couple (a, b) in ρ besides (w, r) in

ω, we add a read-couple edge (a, b) to E(G′
). In addition,

the induced edges [23] are added to E(G′
) as described

below. For a pair of locked scopes guarded by same lock-

variable ([u, . . . , v]l and [x, . . . , y]l, say), we add an induced

edge (v, x) if there is path from u to y in G′3. However,

if neither v precedes x and nor y precedes u in G′ i.e. the

locked-scopes are unordered, then the locked-scopes are said

to have a choice between edges (v, x) and (y, u) in terms of

the HB relation between them. This choice will be dealt

with later. Fig. 4(a) shows a multi-threaded program trace

where x and y are shared variables. The variable x is being

written by events c and w in thread T1 and read by event r
in thread T2 respectively. Event e2 in thread T1 assigns the

address of x to variable y. Next, in thread T2, the value of y
is read in a local variable b. The events e5, r and e6 execute

in thread T2, if b is non-null. The partial order graph G in

Fig. 4(b) corresponds to the multi-threaded program trace in

Fig. 4(a). Further, Fig. 4(c) shows the witness order graph for

the same program trace and witness c �→ r �→ w. The edge

(e3, e5) is induced by (e2, e4) and the presence of locked

scopes [e1, . . . , e3]l and [e5, . . . , e6]l. Note that insertion of

one induced edge can trigger insertion of another induced

edge if the locked-scopes are nested or overlapping.

G′ now contains the following four kinds of ordering

constraints due to G (program order edges + sync. edges),

witness order edges (including locked scope analysis), read-

couple edges except (w, r), and the induced edges due to

mutual exclusion of locked scopes. Locked scope analysis

enforces the mutual exclusion constraint. However, when

combined with the ordering enforced by a specific witness,

the mutual exclusion constraint can lead to an ordering

constraint which can be added to the partial order ordering

constraints [23].

In Fig. 4(c), G′ has a cycle (r → w → e1 → e2 → e4 →
e5 → r). Since this cycle represents orderings corresponding

to the edges in G′, at least one of these orders is not possible.

3Presence of a path from u to y in G′ implies that [u, . . . , v]l must be
entirely executed before starting the execution of [x, . . . , y]l.

Figure 4. The partial order graph G and the witness order graph G′(ω),
where ω is (c �→ r �→ w) for the example program source code in (a).

Specifically, in this case, the (e2, e4) read-couple will be

broken in τ . Therefore, the read for e4 in τ may result in

a different value from the read in the original trace ρ. This

may alter the program flow so that the event r may not even

happen in τ . In this case the witness is said to be infeasible

as τ may not contain r.

Let (w′, r′) be a read-couple in ρ that is broken in τ . Let

x be an event in witness ω. The witness ω is infeasible if

there is a path from r′ to x in G. Intuitively, for ω to be

feasible, all the views must be preserved until the events in

ω in the interleaving τ . If (w′, r′) is broken in τ then r′ is

not view preserving. Otherwise ω is deemed infeasible in

G′. The following theorem provides the necessary condition

for feasibility.

Theorem 1: [WITNESS ORDER GRAPH THEOREM] A

witness is infeasible if there is a cycle in G′.
A proof sketch is provided in the appendix. The reverse

direction (infeasibility⇒cycle) is not true. This has to do

with the ordering choice between unordered locked scopes

and is considered next.

Consider a pair of locked scopes [a1, . . . , b1]l and

[a2, . . . , b2]l in different threads guarded by the same lock

variable l, such that there does not exist a path from a1 to

b2 or from a2 to b1 in G′. In this case the locked scopes are

defined to be an unordered pair of locked scopes. Moreover

due to the mutual exclusion between the two locked scopes

one must be ordered before the other. Thus, there exists

a choice between edges (b1, a2) and (b2, a1). The edges

(b1, a2) and (b2, a1) are defined as choice edges and the

pair {(b1, a2), (b2, a1)} is a choice edge pair.

Consider G′ shown in Fig. 5. Let there be a wit-

ness order edge from y to x (not shown in Fig. 5 for

clarity). Let [a1, . . . , b1]l1 and [a2, . . . , b2]l1 be an un-

ordered pair of locked scopes guarded by variable l1.

Similarly, let [a3, . . . , b3]l2 and [a4, . . . , b4]l2 be an un-

ordered pair of locked scopes guarded by variable l2. Let

e1 and e2 be choice edges e1 ∈{(b1, a2),(b2, a1)} and

e2 ∈{(b3, a4),(b4, a3)}. Let the edges shown in Fig. 5

represent paths in G′. For finding a feasible witness, we need

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

9

at least one combination of choice edges e1 and e2 such
that their addition to G′ leads to no cycle. In this example,

every combination of e1 and e2 results in a path from x to

y. This combined with the witness order edge (y, x) leads

to a cycle for each combination. In general, if there are d
choice edge pairs then we need to check 2

d combinations

in conjunction with G′. The number of combinations that

actually need to be considered can be reduced as shown in

the next subsection.

We would like to point out that this example also illus-

trates that UCG analysis [23] is incomplete in general, since

it does not consider choice edges that may result in cycles

with more than two threads.

Figure 5. All combinations of choice edges e1 and e2 give a path from
x to y, where e1 ∈{(b1, a2),(b2, a1)} and e2 ∈{(b3, a4),(b4, a3)}.

B. Sufficient Condition for Witness: Choice Graph

We first define a lock abstraction graph denoted as G′′
a(ω).

(Henceforth, we refer to the lock abstraction graph as G′′
a

when ω is clear from the context.) All vertices within a

locked scope in G′ are replaced by a single meta-vertex

in G′′
a . Any edge originating from or terminating into the

locked scope, originates from or terminates into the meta-

vertex, respectively. Further, for each unordered pair of

locked scopes present in G′, an undirected edge connects

the corresponding meta-vertices in G′′
a and is referred to as

the abstract choice edge. The abstract choice graph for the

example shown in Fig. 5 is shown in Fig. 6(a). The vertices

m1, . . . ,m4 are the meta-vertices and the undirected edges

(m1,m2) and (m3,m4) represent the abstract choice edges

in G′′
a .

Figure 6. (a) Lock abstraction graph
for the example shown in Fig 5. (b) One
of the choice graphs with choice edges
(b1, a2) and (b4, a3).

Figure 7. The undirected edges
shown in G′′

a(ω) are the ab-
stract choice edges that consti-
tute Schoice for witness w �→
c �→ r.

We compute Schoice as the set of choice edge pairs such

that their exploration is sufficient to detect feasibility of ω.

We construct Schoice by collecting all the abstract choice

edges present in all paths from x to y in G′′
a , for all x

and y, where (y, x) is a witness order edge in G′. Fig. 7

illustrates this for a witness w �→ c �→ r. Let |Schoice| = d′.
Usually (d′ << d). This reduction can be viewed as a form

of witness-based slicing of G′′
a .

Next, we define the choice graph G′′
(ω) as follows.

(Henceforth, we refer to the choice graph as G′′ when ω
is clear from the context.) The vertex set V (G′′

) = V (G′
).

The edge set E(G′′
) is E(G′

) augmented with exactly one

choice edge per choice edge pair in Schoice. Formally,

E(G′′
) = E(G′

) ∪

⎛
⎜⎜⎜⎜⎜⎝

⋃
∀{ec1, ec2} ∈ Schoice,

ec ∈ {ec1, ec2}

{ec}

⎞
⎟⎟⎟⎟⎟⎠

For instance, in the example shown in Fig 5, there are two

choice edge pairs that belong to Schoice: {(b1, a2), (b2, a1)}
and {(b3, a4), (b4, a3)}. Each choice graph must choose ex-

actly one edge from each pair. As there are 2
2 combinations

possible, there exist four choice graphs for this example.

Fig. 6(b) shows one of those choice graphs with a choice

edge combination (b1, a2) and (b4, a3).

Theorem 2: [CHOICE GRAPH THEOREM] A witness is

infeasible iff all the choice graphs have cycles.

A proof-sketch is provided in the appendix.

C. The Nondeterminism Checking Algorithm

We now summarize the overall algorithm. We first com-

pute the set of possible witnesses, based on challengers for

each read event in a trace. For each such witness ω, in

the first phase of our analysis, we construct the witness

order graph (G′
(ω)) and check for a cycle. The witness is

infeasible if there is a cycle in G′
(ω). However, if there is

no cycle we proceed to the second phase of our analysis. We

compute the set Schoice. If Schoice is empty, the witness is

feasible. Otherwise, we construct 2d
′

choice graphs, where

|Schoice| = d′, and check for a cycle until we find a choice

graph with no cycle. If an acyclic choice graph exists, the

witness is declared feasible. If all choice graphs contain

cycles, then the witness is declared infeasible. In practice,
we need to explore only a handful (mostly one) of these
choice graphs to find one without a cycle.

The complete algorithm is shown in Fig. 8. It generates

all feasible witnesses of nondeterminism for a given inter-

leaving ρ. Let, xi, i = 1 . . .m be the shared variables in

the observed trace ρ. Further, for each shared variable xi,

let Lxi be the list of read-couples, i.e. Lxi = {(w,R(w)) |
w writes xi}.

Optimization: Note that the partial order edges (V (G))

and all the induced edges due to locks and read-couple edges

except (w, r) are present in all the choice graphs for a given

witness ω. Therefore, we add all the read-couple edges and

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

10

ReportFeasibleWitnesses (interleaving ρ)
1. Construct partial order graph G from ρ
2: Visit each vertex and if it accesses shared variable xi

a. label vertex with locked scopes.
b. populate Lxi .

3: for each Lxi , (i = 1 . . .m)
4: for each write wj in Lxi

5: for each read rk ∈ R(wj)
6: for each write cl in Lxi such that wj �= cl
7: Let (wj , rk, cl) be the triplet
8: for each possible witness ω for (wj , rk, cl)

//Witness Order Graph Check
9: Construct G′(ω) and check for cycle in G′(ω).
10: If cycle found in G′(ω), report ω is infeasible.
11: Else construct G′′

a(ω) and compute Schoice.
12: Report feasible witness if Schoice is empty.
13: Construct choice graphs until acyclic graph is found

and report ω is feasible.
14: If all choice graphs are cyclic, report ω is infeasible.

Figure 8. Algorithm for reporting feasible witnesses

their induced edges to G before line 3 in Fig. 8. Next, for

each witness we do the following: (1) delete the read-couple

(w, r) and the appropriate induced edges corresponding to

the read-couple (w, r), and, (2) insert the witness order edges

and the edges induced by them to produce G′
(ω). Moreover,

we use vector clocks [24] for keeping track of the causality

relationships necessary for incremental addition or removal

of an induced edge.

Complexity Analysis: The symbols introduced for com-

plexity analysis are described in Fig. 9. The complexity

Symbol description Symbol

Number of vertices in G N
Number of edges in G M
Number of lock events in G L
Number of variables m
Max. number of reads per variable p
Max. number of writes per variable q

Figure 9. Symbol table

of step 1 in proce-

dure ReportFeasible-
Witnesses is O(M +

N) = O(M) as N ≤
M . The locked scope

analysis requires two

passes over the trace

to label each read/write event with eid’s of acquire/release

lock events guarding the event. This is O(m(p + q)L).
Populating Lxi

, for i = 1 . . .m requires one pass over the

trace (O(N)). Next we consider the complexity for a single

witness. To construct G′, we add the read-couple edges

(O(mp)) and the witness edges (O(1)). The induced edges

order the locked scopes. Therefore, the number of induced

edges added is O(L2
). The number of read-couples in G

is O(mp). Thus, |E(G′
)| = O(M +mp+ L2

). Then cycle

checking in G′ is O(M + N + mp + L2
) = O(M + L2

)

(since N ≤ M and mp ≤ N). The number of witnesses is

O(mpq2). Note that in our implementation, the construction

of G′ is done between step 2 and step 3 of procedure

ReportFeasibleWitnesses for efficiency, with some simple

book-keeping which is omitted here for brevity. Since, the

number of choice edge pairs (d) is O(L2
), d′ = O(L2

).

Therefore, the number of choice graphs is O(2
L2

). Checking

a cycle in a choice graph is O(M + L2
). Therefore, the

overall complexity: O(M+m(p+q)L+mp+mpq2(M+L2)+

2L
2

(M + L2)) = O(mpL+mqL+ (mpq2 + 2L
2

)(M + L2)).

IV. RESULTS

We have implemented our technique in a prototype tool.

This tool is capable of logging/analyzing execution traces

generated by both Java programs and multi-threaded C/C++

programs using pthreads. The program traces used are all

available online [18]. The C++ benchmark is available

online [16]. All the Java benchmarks are publicly avail-

able [12], [14], [17], [19], [31]. These traces are manually

chosen aiming to have a good mix with respect to graph size

and degree of communication between threads.

The tool logs execution traces at runtime from C++ source

code instrumented using the commercial front end from

Edison Design Group (EDG). For Java programs, we used

execution traces logged at runtime by a modified Java Virtual

Machine (JVM). For each test case, we first executed the

program using the default OS thread scheduling and logged

the execution trace. Next we applied our algorithm to detect

the feasible witnesses. The graphs are stored in explicit-state

form to facilitate cycle checking. The number of vertices

in partial order graphs ranged between 100-26000 and the

number of edges in those graphs ranged between 150-

31000. We would like to highlight here that we originally

implemented exploration of the combination of choice edges

using an SMT solver, but the cost was prohibitive, failing

to finish on several benchmarks. This motivated our current

purely graph-based approach.

All our experiments were conducted on an Intel i7 ma-

chine (2.67 GHz, 3 GB memory) running Ubuntu 2.6.31-

14-generic. Detailed experimental results are reported in the

appendix (Table A1) and a summary is presented in Table I.

We make the following observations.

• In 9 out of 25 traces, Phase I alone was sufficient (row

1 in Table I) for our analysis.

• Around 80% of the witnesses in the majority of the

traces are found to be infeasible due to the presence

of a cycle in the witness order graph G′ (Column 4).

Since this is a quick check, most of the witnesses are

handled quite expeditiously.

• Among the remaining witnesses, a majority of them do

not have choice edges (∼17% of the total witnesses)

(Column 5). For the traces in row 2, ∼3% of the

witnesses have choice edges to be explored (Column

6).

• For the witnesses left with choice edges, even when the

average number of possible choice graphs per witness is

large (Column 7), the number of choice graphs actually

explored per witness is close to 1 (Column 8).4 This

is because the exploration stops as soon as an acyclic

choice graph is detected. Thus, overall the average

number of graphs explored per witness is very close

to 1 also (Column 12).

4However, 89 of those witnesses were found to be infeasible, i.e., all
choice graphs for these witnesses are cyclic.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

11

Table I
SUMMARY OF THE EXPERIMENTAL DATA ON THE WITNESSES OF NONDETERMINISM IN TRACES OF MULTI-THREADED PROGRAMS.

1. 2. 3. Witness Order Graph Analysis Choice Graph Analysis 9. 10. 11. 12.

4. 5. 6. 7. 8. Avg. number

Categories #Benchmarks #Possible Witnesses Witnesses Witnesses Possible Choice Total Total Total of graphs

witnesses with cycles with no choice with choice choice graphs graphs time feasible infeasible analyzed

in G′ edges (feasible) edges (%) per witness explored taken witnesses witnesses per witness

(infeasible) (%) (%) in column 6 per witness (sec) (%) (%) in column 3

in column 6

Phase I 9 104178 85789 18389 0 – – 44.3 18389 85789 1

sufficient (82.35) (17.65) (0) (17.65) (82.35)

Both phases 16 5604552 4477107 943516 183929 7.53 1.03 8597 1127356 4477196 1.001

required (79.88) (16.84) (3.28) (20.11) (79.88)

• The time required for witness order graph analysis is

much lower than that of choice graph analysis.

V. RELATED WORK

We have already discussed the broad categories of efforts

in detecting dataraces and nondeterminism in Section I

(Figure 2). We highlight specific related aspects below.

Datarace detection: Broadly, the approaches can be

classified into three groups – (1) monitoring [33], [11],

[13], [9], (2) predictive analysis [7], [8], [35] and (3) static

analysis [36], [20], [22]. Like many of these techniques, we

too use happens-before analysis and reasoning about locks.

However, our focus is on detecting nondeterminism that is

related to, but distinct from, datarace detection. Specifically,

we do not have to provide witnesses with unsynchronized

memory accesses, which may involve subtle reasoning

about locks, e.g. by using lock acquisition histories [21]

or causally-precedes relationships [35]. Rather, we consider

witnesses with all possible orderings of related events (w,

r, and c), where lock reasoning is used only to ensure

mutual exclusion. We use a simple notion of lock scopes

to enforce mutual exclusion. Chen et al. [8] used a related

notion called lock atomicity sets, but they provide a richer

abstraction (lock atomicity equivalence) for their purpose

of predicting sound interleavings. UCG-based analysis [23]

also used cycle-based infeasibility checks, but their analysis

is incomplete for more than two threads where choice edges

need to be considered. Our lock abstraction graph can be

used to identify choice edge pairs in witness-based slicing

for other checkers that may use UCG analysis.

Nondeterminism detection: Ensuring deterministic pro-

grams has received a lot of attention lately [5]. Vechev

et al. proposed a static analysis for verifying determinism

in structured parallel programs, based on checking non-

overlapping memory accesses in parallel sections [38]. There

is some work on specification and dynamic checking for

determinism also [6], [32]. Burnim et al. proposed an

assertion framework for specifying that programs should

behave deterministically and used it to detect nondetermin-

istic behavior [6]. Sadowski et al. proposed a new non-

interference specification for deterministically-parallel code,

and used a dynamic analysis tool called SideTrack to enforce

it [32]. Many other efforts focus on adding synchronization

or deterministic scheduling to preempt nondeterministic be-

havior or related bugs. Vaziri et al. associate synchronization

constraints with fields of a class in object-oriented programs,

and use static analysis to automatically infer synchronization

points to avoid concurrency-related bugs [37]. Navabi et

al. insert lightweight synchronization primitives at potential

violation points [27]. DThreads replaces the pthreads
library with an efficient deterministic multi-threading sys-

tem [25]. CoreDet is a compiler and runtime system for

general-purpose software deterministic multi-threading [3].

Other such systems are Determinator [1], Kendo [29] and

dOS [4]. In contrast to these efforts, our work does not target

specifying or enforcing determinism, but only to check it

under standard synchronization and scheduling semantics.

Any enforcements (using synchronization or deterministic

thread scheduling) can be easily accounted for by adapting

the partial orders we consider in our analysis. To the best

of our knowledge, our work is the first to use predictive

analysis for detecting nondeterminism.

VI. CONCLUSION

We have proposed a graph-based predictive analysis

method for detecting nondeterminism in multi-threaded pro-

grams. We analyze each read-couple with all other writes to

the same shared variable and determine the conditions for

nondeterminism. When these conditions are satisfied, we

generate a witness of nondeterminism. Further, we ensure

no false positives by ensuring that our witness is feasible,

i.e. there exists an interleaving where this witness will be

observed. A key property of our method is that we provide

a sound and complete5 predictive technique that explores

a reduced set of sufficient interleavings, thereby ensuring

that it is efficient. Our experimental results demonstrate the

effectiveness of our proposed method on several C/C++ and

Java benchmark programs.

ACKNOWLEDGMENT

The authors acknowledge the support of the Gigascale

Systems Research Center, one of six research centers funded

under the Focus Center Research Program (FCRP), a Semi-

conductor Research Corporation program.

5complete for predicting from the given trace, not for the entire program

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

12

REFERENCES

[1] Aviram, A., chun Weng, S., Hu, S., Ford, B.: Efficient System
Enforced Deterministic Parallelism. In: OSDI (2010)

[2] Ball, T., Burckhardt, S., de Halleux, J., Musuvathi, M.,
Qadeer, S.: Deconstructing Concurrency Heisenbugs. In:
ICSE. pp. 403–404. IEEE (2009)

[3] Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.:
CoreDet: A Compiler and Runtime System for Deterministic
Multi-threaded Execution. In: ASPLOS. pp. 53–64 (2010)

[4] Bergan, T., Hunt, N., Ceze, L., Gribble, S.D.: Deterministic
Process Groups in dOS. In: OSDI. pp. 1–16. OSDI’10 (2010)

[5] Bocchino, Jr., R.L., Adve, V.S., Adve, S.V., Snir, M.: Parallel
Programming Must Be Deterministic By Default. In: HotPar.
pp. 4–4. HotPar’09 (2009)

[6] Burnim, J., Sen, K.: Asserting and Checking Determinism For
Multi-threaded Programs. Commun. ACM 53 (Jun 2010)

[7] Chen, F., Rosu, G.: Parametric and Sliced Causality. In: CAV.
pp. 240–253 (2007)

[8] Chen, F., Serbănută, T., Rosu, G.: jPredictor: A Predictive
Runtime Analysis Tool for Java. In: ICSE. pp. 221–230
(2008)

[9] Choi, J.D., Lee, K., Loginov, A., O’Callahan, R., Sarkar, V.,
Sridharan, M.: Efficient and Precise Datarace Detection for
Multithreaded Object-oriented Programs. In: PLDI. pp. 258–
269. PLDI ’02 (2002)

[10] Cui, H., Wu, J., Gallagher, J., Guo, H., Yang, J.: Efficient
Deterministic Multithreading Through Schedule Relaxation.
In: SOSP. pp. 337–351. SOSP ’11 (2011)

[11] Elmas, T., Qadeer, S., Tasiran, S.: Goldilocks: A Race-Aware
Java Runtime. Commun. ACM 53 (Nov 2010)

[12] Farchi, E., Nir, Y., Ur, S.: Concurrent Bug Patterns and How
to Test Them. In: IPDPS. p. 286 (2003)

[13] Flanagan, C., Freund, S.N.: FastTrack: Efficient and Precise
Dynamic Race Detection. In: PLDI. PLDI ’09 (2009)

[14] Havelund, K.: Using Runtime Analysis to Guide Model
Checking of Java Programs. In: SPIN. pp. 245–264 (2000)

[15] Havender, J.W.: Avoiding deadlock in multitasking systems

[16] http://incubator.apache.org/thrift/:

[17] http://research.microsoft.com/qadeer/cav issta.htm: Joint
CAV/ISSTA special event on specification, verification, and
testing of concurrent software

[18] http://www.princeton.edu/∼sinha/FMCAD12 Traces.zip:

[19] http://www2.epcc.ed.ac.uk/computing/research activities/
java grande/index 1.html: Java grande forum benchmark
suite

[20] Kahlon, V., Yang, Y., Sankaranarayanan, S., Gupta, A.: Fast
and accurate static data-race detection for concurrent pro-
grams. In: CAV. pp. 226–239. Springer (2007), LNCS 4590

[21] Kahlon, V., Ivancic, F., Gupta, A.: Reasoning About Threads
Communicating via Locks. In: Computer Aided Verification.
pp. 505–518 (2005), LNCS 3576

[22] Kahlon, V., Sankaranarayanan, S., Gupta, A.: Semantic Re-
duction of Thread Interleavings in Concurrent Programs. In:
TACAS. TACAS ’09 (2009)

[23] Kahlon, V., Wang, C.: Universal Causality Graphs: A Precise
Happens-Before Model for Detecting Bugs in Concurrent
Programs. In: CAV. pp. 434–449. Springer (2010)

[24] Lamport, L.: Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21(7) (1978)

[25] Liu, T., Curtsinger, C., Berger, E.D.: DThreads: Efficient
Deterministic Multithreading. In: SOSP. pp. 327–336. SOSP
’11 (2011)

[26] Mcdowell, C.E., Helmbold, D.P.: Debugging Concurrent Pro-
grams. ACM Computing Surveys 21, 593–622 (1989)

[27] Navabi, A., Zhang, X., Jagannathan, S.: Quasi-Static Schedul-
ing For Safe Futures. In: Chatterjee, S., Scott, M.L. (eds.)
PPoPP. pp. 23–32. ACM (2008)

[28] Netzer, R.H.B., Miller, B.P.: What Are Race Conditions?:
Some Issues and Formalizations. ACM Lett. Program. Lang.
Syst. 1 (March 1992)

[29] Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: Efficient
Deterministic Multithreading in Software. SIGPLAN Not. 44,
97–108 (Mar 2009)

[30] Papadimitriou, C.H.: The Serializability of Concurrent
Database Updates. J. ACM 26(4), 631–653 (1979)

[31] von Praun, C., Gross, T.R.: Static Detection of Atomicity
Violations in Object-Oriented Programs. Object Technology
3(6) (2004)

[32] Sadowski, C., Freund, S.N., Flanagan, C.: SingleTrack: A
Dynamic Determinism Checker for Multithreaded Programs.
In: ESOP. ESOP ’09 (2009)

[33] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Ander-
son, T.: Eraser: A Dynamic Data Race Detector for Multi-
threaded Programs. ACM Trans. Comput. Syst. 15(4), 391–
411 (1997)

[34] Sinha, A., Malik, S., Wang, C., Gupta, A.: Predictive Analysis
for Detecting Serializability Errors through Trace Segmenta-
tion. In: MEMOCODE (2011)

[35] Smaragdakis, Y., Evans, J., Sadowski, C., Flanagan, J.Y.C.:
Sound Predictive Race Detection in Polynomial Time. In:
POPL (2012)

[36] Sterling, N.: WARLOCK - A Static Data Race Analysis Tool.
In: USENIX Winter. pp. 97–106 (1993)

[37] Vaziri, M., Tip, F., Dolby, J.: Associating Synchronization
Constraints With Data In An Object-Oriented Language. In:
POPL (2006)

[38] Vechev, M., Yahav, E., Raman, R., Sarkar, V.: Automatic
Verification of Determinism For Structured Parallel Programs.
In: SAS. SAS’10 (2010)

APPENDIX

A. DETAILED EXPERIMENTAL RESULTS

The detailed experimental results for a sample of traces are

given in Table A1. For each benchmark, column 1 presents various

statistics of the logged program traces: threads (thrds), number of

events (evs), number of lock events (l-evs) and lock variables (l-

vars), number of read/write events (rw-evs) and shared variables

(rw-vars) and number of wait-notify events (wn-evs). Column 2

shows the total number of possible witnesses in the observed

trace. Columns 3-5 and 6-7 show the results of analyses based

on witness order graphs and choice graphs, respectively. For the

witness order graphs, we report the number of infeasible witnesses

(i.e. cycle found) (column 3), number of feasible witnesses (no

choice edges and no cycle) (column 4) and witnesses left with

choice edges (column 5). Similarly, for the choice graphs, we report

the number of possible choice graphs per witness in column 5

that have choice edges (column 6) and number of choice graphs

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

13

explored per witness in column 5 that have choice edges (column

7). Column 8 shows the total time taken for the analysis. Columns

9 and 10 show the total feasible witnesses and the total infeasible

witnesses, respectively. Column 11 reports the average number of

graphs analyzed per witness in column 2.

B. PROOF SKETCH OF THEOREM 1

Proof Sketch of Witness Order Graph Theorem:

Figure B1. Case 2 of the proof of Theorem 1

Let C be the cycle in G′. The partial order edges/induced edges
led by partial order edges and read-couples/induced edges led by
read-couples only cannot constitute C6 (otherwise this contradicts
the total order of ρ). Therefore, C must contain a witness order
edge.
Case 1: C contains witness order edge and partial order
edge/induced edge led by partial order edge only. C does not
contain read-couple/induced edge led by read-couple: Let τ be an
interleaving that contains ω. Due to C, τ is cyclic. Then there does
not exist a valid interleaving τ (since it must be a total order of
events) that contains ω. Hence, ω is infeasible.
Case 2: C contains witness order edge, partial order edge/induced
edge led by partial order edge and at least one read-couple/induced
edge led by read-couple: In interleaving τ , at least one read-couple
in C must be broken for τ to be a total order since the witness
order edges must be observed for τ to be a witness interleaving.
What we now need to show is that such broken read couple can
alter program flow so that some event x, where x is an event of
ω, may not occur. Thus ω will be infeasible.

Let (w′, r′) be the last read-couple that is broken in C before
a witness order edge or an edge induced by a witness order edge
and let (u, v) be such an edge in C after (w′, r′) (Fig. B1). Note
that there cannot be any unbroken read-couple (w′′, r′′) between
(w′, r′) and (u, v) in C because all such reads after a broken read
are not guaranteed to happen.

From the construction of (u, v) we know there are two possible
cases.

1) The edge (u, v) is an witness order edge: In this case, u
is an event in the witness ω. Since the read-couple (w′, r′)
is broken and there are only partial order edges between r′

and u, u is not guaranteed to happen in τ , and thus ω is
infeasible.

2) The edge (u, v) is induced by an witness order edge: In
this case, there is a vertex x, where x ∈ ω and [x . . . u]l,
i.e. x and u are in the same locked scope. Since there is a
path through partial order edges from r′ to u and (w′, r′)
is broken, u may not occur. If u does not occur, then a)
either the entire scope [x . . . u]l is not executed, in which

6either a partial order edge or a read-couple edge leads to an induced
edge

case ω is infeasible as x is an event in ω, or b) x occurs,
but u does not occur and thus the witness ω cannot continue
along (u, v). Thus ω is infeasible.�

C. PROOF SKETCH OF THEOREM 2

Proof Sketch of Choice Graph Theorem: (⇐) All choice
graphs represent traces that are consistent with the witness order
graph G′(ω). We know that G′ does not have a cycle, otherwise
it would have been detected before. In a choice graph, all the un-
ordered pairs of locked scopes represented in Schoice are ordered.
The presence of cycle in a choice graph G′′(ω) implies that the
witness ω is infeasible with respect to the particular ordering of
locked scopes present in G′′(ω). Similarly, the presence of cycles in
all choice graphs implies that the witness is infeasible with respect
to all the orderings of locked scopes represented in Schoice. Hence,
ω is infeasible.

(⇒) It is known that G′ is acyclic (otherwise it would have been
detected earlier). Therefore, ω is infeasible implies that there does
not exist an (acyclic) interleaving τ that is consistent with any of
the 2d combinations of choice edges. Then all those 2d graphs
are cyclic. The cycles in these 2d graphs can be divided into two
categories, (1) cycles that do not contain any choice edge outside
Schoice, and, (2) cycles that contain at least one choice edge outside

Schoice. All cycles of the first category are present in 2d
′

choice
graphs. We are done if we can prove that (1) there is no cycle in
the second category, and, (2) each of the choice graphs contain at
least one cycle from the first category.

Subproof 1: We prove by contradiction. Let the witness be
infeasible and there exists a cycle C in one of 2d possible graphs
that contains at least one choice edge ec1 from a choice edge pair
t = {ec1, ec2} outside Schoice. C must contain at least one witness
order edge (y, x) (otherwise ρ is inconsistent). This choice edge ec1
in C is on the path between x and y. Therefore, by definition the
choice edge pair t must be within Schoice leading to contradiction.

Subproof 2: We prove by contradiction. Let the witness ω be
infeasible and there exists an acyclic choice graph G′′. This implies
that the particular combination of d′ choice edges present in G′′

does not lead to a cycle (since, by subproof 1, we know that
there does not exist a cycle in 2d combinations that contain choice
edges from pairs outside Schoice). Then there exists an (acyclic)
interleaving τ consistent with choice graph G′′ containing ω. Then
ω is feasible. This leads to the contradiction.

Hence, if the witness is infeasible, then all the choice graphs

must have cycles in them.�

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

14

Table A1
EXPERIMENTAL DATA ON THE WITNESSES OF NONDETERMINISM IN TRACES OF MULTI-THREADED PROGRAMS.

1. 2. Witness Order Graph Analysis Choice Graph Analysis 8. 9. 10. 11.

3. 4. 5. 6. 7. Avg. number

Benchmark #Possible Witnesses Witnesses Witnesses Possible Choice Total Total Total of graphs

witnesses with cycles with no choice with choice choice graphs graphs time feasible infeasible analyzed

in G′ edges (feasible) edges (%) per witness explored taken witnesses witnesses per witness

(infeasible) (%) (%) (ε=∼0) in column 5 per witness (%) (%) in column 2

in column 5

conpool - thrds: 4, evs: 97,
l-evs: 16, l-vars: 1, rw-evs: 53,
rw-vars: 5, wn-evs: 3

252 221 (88) 31 (12) 0 (0) – – 0.007s 31 (12.3) 221 (87.7) 1

liveness - thrds: 7, evs: 283,

l-evs: 44, l-vars: 9, rw-evs:

163, rw-vars: 12, wn-evs: 6
855 709 (83) 146 (17) 0 (0) – – 0.064s 146 (17) 709 (83) 1

SynchBench - thrds: 16,

evs: 1510, l-evs: 306, l-vars:

2, rw-evs: 533, rw-vars: 15,

wn-evs: 0

47526 39474 (83) 8052 (17) 0 (0) – – 8.85s 8052 (17) 39474 (83) 1

Barrier - thrds: 10, evs:

653, l-evs: 108, l-vars: 2,

rw-evs: 262, rw-vars: 12,

wn-evs: 7

3975 3231 (81) 744 (19) 0 (0) – – 0.62s 744 (18.7) 3231 (81.3) 1

account - thrds: 11, evs:

902, l-evs: 146, l-vars: 21,

rw-evs: 430, rw-vars: 42,

wn-evs: 10

1416 1042 (73.6) 326 (23) 48 (3.4) 36.33 2.83 1.352s 374 (26.1) 1058 (73.9) 1.06

DaisyTest - thrds: 3, evs:

2998, l-evs: 422, l-vars: 10,

rw-evs: 2003, rw-vars: 45,

wn-evs: 15

383007 305635 (79.8) 61852 (16.1) 15520 (4.1) 6.35 1.12 244s 77372 (20.2) 305650 (79.8) 1.005

Elevator - thrds: 4, evs:

3004, l-evs: 370, l-vars: 11,

rw-evs: 1795, rw-vars: 70,

wn-evs: 0

3249 2671 (82) 578 (18) 0 (0) – – 0.8s 578 (17.8) 2671 (82.2) 1

philo - thrds: 6, evs: 1141,

l-evs: 126, l-vars: 6, rw-evs:

857, rw-vars: 23, wn-evs:

22

4893 4118 (84) 775 (16) 0 (0) – – 0.65s 775 (15.8) 4118 (84.2) 1

ThriftTrace1 - thrds: 4,

evs: 2406, l-evs: 226, l-vars:

12, rw-evs: 869, rw-vars:

62, wn-evs: 53

618 361 (58) 96 (16) 161 (26) 105.6 1 1.6s 257 (41.6) 361 (58.4) 1

ThriftTrace2 - thrds: 4,

evs: 11357, l-evs: 1384,

l-vars: 48, rw-evs: 3184,

rw-vars: 171, wn-evs: 324

35610 29441 (82.7) 5804 (16.3) 365 (1) 296.7 1 28s 6169 (17.3) 29441 (82.7) 1

ThriftTrace3 - thrds: 6,

evs: 20640, l-evs: 1724,

l-vars: 158, rw-evs: 8818,

rw-vars: 519, wn-evs: 349

479142 399814 (83) 79326 (16.5) 2 (ε) 18 1 243s 79328 (16.6) 399814 (83.4) 1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

15

Automatic Lock Insertion in Concurrent Programs
Vineet Kahlon, NEC Labs, Princeton, USA.

Abstract—Triggering errors in concurrent programs is a no-
toriously difficult task. A key reason for this is the behavioral
complexity resulting from the large number of interleavings of
operations of different threads. An even more challenging task is
fixing errors once they are detected. In general, automatically
synthesizing a correct program from a buggy one is a hard
problem. However for simple correctness properties that depend
on the syntactic structure of the program rather than its
semantics, automatic error correction becomes feasible. In this
paper, we consider the problem of lock insertion to enforce
critical sections required to fix bugs like atomicity violations. A
key challenge in lock insertion is that enforcing critical sections
is not the sole criterion that needs to be satisfied. Often other
correctness constraints like deadlock-freedom also need to be met.
Moreover, apart from ensuring correctness, another key concern
during lock insertion is performance. Indeed, mutual exclusion
constraints generated by locks kill parallelism thereby impacting
performance. Thus it is crucial that the newly introduced critical
sections be kept as small as possible. In other words, our goal
is lock insertion while meeting the dual, and often conflicting,
requirements of (i) correctness and (ii) performance. In this
paper, we present a fully automatic, provable optimal, efficient
and precise technique for lock insertion in concurrent code
that ensures deadlock freedom while attempting to minimize the
resulting critical sections.

I. INTRODUCTION

Detecting errors in concurrent programs is a notoriously dif-
ficult task. A key reason for this is the behavioral complexity
resulting from the large number of interleavings of different
threads. An even more challenging task is fixing errors once
they are detected. In general, automatically synthesizing a
correct program from a buggy one is hard. However for
simple correctness properties that depend on the syntactic
structure of the program rather than its semantics, automatic
error correction becomes feasible. An example is the insertion
of mutexes in order to enforce critical sections to fix data
races or atomicity violations. Inserting mutexes typically does
not require reasoning about program semantics but relies
merely on aliasing information in order to identify sections of
code with shared variable accesses that need to be executed
atomically.

In this paper, we consider the problem of lock insertion to
enforce critical sections required to fix bugs like atomicity
violations. This can be accomplished in a trivial manner
by simply encapsulating the desired regions of code within
lock/unlock statements. However, enforcing critical sections is
often not the sole criterion to be satisfied during lock insertion.
Indeed, adding mutexes may introduce new deadlocks. Thus a
key goal is to guarantee deadlock-free lock insertion, i.e., no
new deadlocks are introduced.
Apart from ensuring correctness, another key concern dur-
ing lock insertion is performance. Mutual exclusion constraints
generated by locks kill parallelism thereby impacting perfor-
mance. Thus it is critical that the newly introduced critical
sections be kept as small as possible.

It is worth mentioning that there exist techniques in the
literature [4], [12], [6], [1], [2] for lock insertion in programs
without prior locks. However, this problem is easier than
the one we consider in this paper, as for programs without
locks deadlocks can be avoided simply by acquiring all locks
in a pre-defined order. One way to handle lock insertion
in programs with prior locks would be to first remove all
pre-existing locks and then leverage existing lock insertion
techniques. This approach, however, presents many practical
obstacles.
First, before removing existing locks we would have to

identify all pairs of mutually atomic segments of the form
(s1, s2), where atomic segments s1 and s2 are guarded by
the same lock. However, lock/unlock APIs typically take
pointers to locks as parameters and so a whole program
points-to analysis would be required in order to determine
the locks guarding segments s1 and s2. Moreover, since lock
pointers often point to different locks in different function
calling contexts, this points-to analysis needs to be context-
sensitive. However, it is well known that scaling a precise
context-sensitive points-to analysis for large realistic programs
comprised of multiple code modules is a non-trivial task.
Moreover, even after aliases have been computed precisely,

it is not enough to enumerate all pairs of the form (s1, s2),
where s1 and s2 are guarded with the same lock. This is
because it is often the case that locks are re-used (to reduce
their number in certain applications) so that segments s1 and
s2 may be guarded with the same lock even though they may
not execute in parallel. Thus in order to isolate all pairs of
segments that are truly mutually atomic, we would need to
(1) understand the reasons for introducing prior locking state-
ments, i.e., be somewhat knowledgeable about the program’s
semantics which is not feasible for large applications, and (2)
need at least a whole program MHP (may-happens-in-parallel)
analysis to determine whether s1 and s2 can execute in parallel
- expensive for large programs. Finally, we may end up having
a large number of mutually atomic pairs of segments impacting
scalability of lock insertion.
On the other hand, it is highly desirable that our lock

insertion technique avoids a whole program analysis and
restricts the analysis (including the context-sensitive points-to
analysis) to only the few modules requiring code modification,
i.e., where bugs have been detected. This is precisely what
our lock insertion technique accomplishes. An important side
benefit is that it ensures scalability of our analysis.
To sum up, our goal is a localized analysis for lock

insertion meeting the dual constraints of (i) correctness and
(ii) performance. These constraints are often conflicting in
nature. Indeed, during lock insertion one of the key properties
that we want to ensure is deadlock-freedom while keeping
the critical sections as small as possible. If either one of
these two requirements is dropped, then the problem is greatly
simplified. For instance, if we give up the requirement of
deadlock freedom then given a pair of code segments s1 and s2

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

16

to be executed in a mutually atomic fashion, it suffices to insert
lock (unlock) statements for a new lock l, immediately before
(after) the two segments in both threads. Clearly this induces
minimal critical sections but does not guarantee that no new
deadlocks have been introduced. Similarly, if the requirement
of optimality is dropped then it suffices to introduce lock
(unlock) statements for a new lock l at the last lock free states
before (after) the segments in either thread. Such a solution
ensures that no new deadlocks are introduced but may not be
optimal.

Given a pair of mutually atomic code segments s1 and s2 in
two different threads T1 and T2, respectively, of an n-thread
program, we present a lock insertion strategy that involves a
series of local moves that re-locates the newly inserted lock
statements in the individual threads T1 and T2 in a dovetailed
fashion till we achieve deadlock freedom. The interesting, and
somewhat surprising, result is that our objective of minimizing
the newly introduced critical sections which is inherently
global in nature can be achieved via purely local moves of the
locking statements in the individual threads. This is crucial as
it allows our strategy to be compositional in nature, i.e., based
only on thread local reasoning, thereby ensuring scalability.

While our lock insertion strategy is applicable to programs
with arbitrary locking patterns, for implementation purposes
we consider the special case of programs with nested locks.
The main motivation for this is that almost all lock usage in
real life programs is nested. Additionally, nested locks offer a
key advantage in that they allow us to leverage the framework
of acquisition histories [10] to formulate a provable efficient
and compositional (thread local) analysis for lock insertion.
We demonstrate the efficacy of our technique on a broad
range of benchmarks.

II. PROGRAM MODEL

We consider concurrent imperative programs comprised of
threads that communicate using shared variables and synchro-
nize with each other using standard primitives such as locks
and rendezvous. Formally, we define a concurrent program
CP as a tuple (T ,V ,R, s0), where T = {T1, ..., Tn} denotes
a finite set of threads, V = {v1, ..., vm} a finite set of
shared variables and synchronization objects with vi taking
on values from the set Vi, R the transition relation and s0

the initial state of CP. Each thread Ti is represented by the
control flow graph of the sequential program it executes, and
is denoted by the pair (Ci, Ri), where Ci denotes the set
of control locations of Ti and Ri its transition relation. A
global state s of CP is a tuple (s[1], ..., s[n], v[1], ..., v[m]) ∈
S = C1 × ...× Cn × V1 × ... × Vm, where s[i] represents the
current control location of thread Ti and v[j] the current value
of variable vj . The global state transition diagram of CP is
defined to be the standard interleaved parallel composition of
the transition diagrams of the individual threads.

III. LOCK INSERTION PROBLEM

The goal of lock insertion is to remove data races or, more
generally, atomicity violations by enforcing critical sections
that envelope regions of code to be executed atomically. These
critical section may comprise multiple regions of contiguous
code that we refer to as atomic segments. Due to branching,

T1(){
0a: ...
1a: while(sh > 0){
2a: sh++;
3a: ...
4a: }
}

T2(){

0b: ...
1b: sh = sh + 2;
2b: ...
}

Fig. 1. Split Critical Section

loops and recursion, a code segment of thread T is, in general,
defined by a sub-graph of the CFG of T .
As an example, consider the threads T1 and T2 shown in
Fig. 1 accessing shared variable sh . In thread T1, due to
the presence of a loop the critical section is broken up into
two segments, one comprising the statements 1a and 2a and
the other comprising the statement 4a . Note that we need
to include 4a in the critical section because the condition of
the while loop accesses the shared variable sh and we need
to re-acquire the lock guarding access to 1a (in case it was
released within the loop body) if we re-enter the loop body.
The critical section in thread T2, however, consists of only one
atomic segment, i.e., 1b .
We define an atomic segment of thread T as the set of

control locations occurring in a directed acyclic graph (DAG)
whose (i) roots, i.e., nodes of in-degree zero, define the control
locations of T marking the start of the segment, (ii) leaves
define control locations marking the ends of the segment, and
(iii) the successors of each location c in the segment are the
non-backedge (as defined by some dfs ordering) successors of
c in the CFG of T . We use [(r1, ..., rp), (l1, ..., lq)] to denote an
atomic segment with roots r1, ..., rp and leaves l1, ..., lq . For
example, [1a, 2a] (or more precisely [(1a), (2a)]) denotes an
atomic segment of T1 in Fig. 1.
Whether a region of code in a thread is an atomic segment
depends on the values of program counters of other threads.
Indeed regions of code in different threads accessing the same
shared variable need to be executed atomically relative to
each other, while regions of code accessing different shared
variables need not. This leads to the notion of mutually atomic
segments.

Defi nition (Mutually Atomic Segments). We say that code
segments s1 and s2 of threads T1 and T2, respectively, are
mutually atomic if there does not exist a reachable global
state of the given concurrent program with T1 and T2 at
control locations c1 and c2 occurring along segments s1 and
s2, respectively.

The lock insertion problem is then defined as follows.

Lock Insertion Problem. Let P = {(s1
1, s

2
1), ..., (s

1
k, s2

k)} be
a set of pairs (s1

j , s
2
j) of atomic segments s1

j and s2
j . Identify

locations in threads T1, ..., Tn comprising the given concurrent
program to insert locks that guarantees the following

1) for each j, s1
j and s2

j are mutually atomic,
2) no new deadlocks are introduced, and
3) minimality of the newly introduced critical sections, as

determined by the set of program statements in the critical
sections.

Conditions 1, 2 and 3 are collectively referred to as Lock
Insertion Requirements. It is worth pointing out that our notion
of minimality for critical sections is based on set inclusion as

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

17

opposed to the number of program statements comprising the
critical section. This is the best one can hope for.

Consistency Invariant. In Fig. 1, we observe that the critical
section in T1, was ‘split’ into the segments [1a, 2a] and
[4a, 4a] to maintain the consistency invariant that an un-
acquired lock cannot be released (in case we re-enter the
loop). We therefore assume that the atomic segments in the
specification of the given lock insertion problem instance
satisfy the following natural condition.

Consistency Invariant. Let P = {(s1
1, s

2
1), ..., (s

1
k, s2

k)} be a
lock insertion problem instance, where for each j, s1

j and s2
j

are the desired mutually atomic segments. Then if a loop head
(tail) occurs in an atomic segment sm

j comprising a critical
section cs of thread Ti then its matching loop tail (head)
also occurs in an (possibly the same) atomic segment sm′

j′

comprising cs.

IV. LOCK INSERTION

We start by observing that it suffices to formulate the lock
insertion procedure for the case where we are given a single
pair (CS1, CS2) of mutually atomic segments, where CS1

and CS2 are atomic segments in two different threads. The
case where we are given multiple mutually atomic segment
pairs can be handled by repeatedly applying the lock insertion
procedure.
For ease of exposition, we start with the assumption that the
threads are specified as straight line code with the general case
being considered in sec V. The straight-line case suffices to
show case the key ideas behind our lock insertion technique.
Let the given concurrent program be comprised of the
threads T1, ..., Tk and let atomic segments CS1 and CS2 be-
long to threads T1 and T2. Suppose that threads T1 and T2 are
defined via the sequences of control locations T1 : c0, ..., cn

and T2 : d0, ..., dm, respectively.
For the case where thread T is specified as the straight-line
code T : d0, ..., dp, a segment s defining a critical section of T
can be identified uniquely by its start and end locations di and
dj , respectively, where i < j. We denote such a segment by
s = [di, dj], where [di, dj] denotes the set of control locations
occurring between (and including) di and dj along T .
Let the segments s1 and s2 of threads T1 and T2 be denoted
by s1 = [ci, cj] and s2 = [di′ , dj′], respectively, where i < j
and i′ < j′. Our goal is to introduce locking and unlocking
statements lock(l) and unlock(l) for a new lock l, respectively,
such that the lock insertion requirements are met.

Notation. Before proceeding further, we fix some notation.
The locking statements lock(l) and unlock(l) inserted in threads
T1 and T2 are abbreviated as l1 and l2 whereas the unlocking
statements are abbreviated as u1 and u2, respectively. If l1 (l2)
and u1 (u2) are added immediately before cp (dp′) and imme-
diately after cq (dq′), respectively, then the resulting critical
sections, i.e., the set of statements between (and including) l1
(l2) and u1 (u2) are denoted by �cp, cq�l (�dp′ , dq′�l).
During lock insertion, two sets of decisions need to be
made:

• Lock Statement Insertion: determining locations of
insertion of the lock statements l1 and l2, and

• Unlock Statement Insertion: determining locations of
insertion of the matching unlock statements u1 and u2.

T1(){

...
c0: lock(m);
...
c1: lock(n);
...
c2: unlock(n);

// begin critical section
local1 = account_value;
local1 += increment;
account_value = local1;
//end critical section

c3: unlock(m);
...
}

T2(){

d0: lock(n);
d1: ...

// begin critical section
local2 = account_value;

d2: lock(m);
// access another account
local2 += other_account_value;

d3: unlock(m);
account_value = local2;
// end critical section

d4: unlock(n);
}

Fig. 2. Lock Insertion Example.

A. Insertion of Unlocking Statements
While determining locations where to insert the locking
statements is not straightforward, we observe that since un-
lock statements are non-blocking they cannot participate in
a deadlock. It follows that in order to enforce the mutually
atomicity of the segments [ci, cj] and [di′ , dj′], it suffices to
insert the unlocking statements u1 and u2 immediately after
cj and dj′ , respectively. Formally,

Theorem 1 (Unlock Insertion). Let [ci, cj] and [di′ , dj′] be
segments of threads T1 and T2, respectively, defining mutually
atomic segments to be enforced. Let �ca, cb�l and �da′ , db′�l,
where [ci, cj] ⊆ �ca, cb�l and [di′ , dj′] ⊆ �da′ , db′�l, be critical
sections enforcing mutually atomicity of [ci, cj] and [di′ , dj′]
that also satisfy the lock insertion requirements. Then cb = cj

and db′ = dj′ .

B. Insertion of Locking Statements
We now turn to the more interesting problem of inserting

the locking statements l1 and l2. If guaranteeing deadlock
freedom were not a requirement then inserting the statements
l1 (l2) immediately before locations ci (di′) in thread T1 (T2),
suffices. Clearly, the resulting critical sections �ci, cj�l and
�di′ , dj′�l satisfy lock insertion requirement 1. Moreover, since
by requirement 1, [ci, cj] ([di′ , dj′]) must belong to any critical
section enforced by our newly inserted lock/unlock statements
in thread T1 (T2), we see that �ci, cj�l and �di′ , dj′�l would
indeed be minimal (based on set inclusion) critical sections
potentially satisfying the lock insertion requirements.
However, inserting l1 and l2 immediately before ci and

di′ , respectively, could introduce new deadlocks. Consider,
for example, the concurrent program C comprised of threads
T1 and T2 with the desired critical sections shown in fig 2.
The running of our lock insertion procedure is demonstrated
on the CFGs of T1 and T2 in fig 3. Here the original
lock/unlock statements have been shown as black circles while
the mutually atomic segments (CS1, CS2) to be enforced as
rectangles. Let CS1 = [ci, cj] and CS2 = [di′ , dj′]. Inserting
l1 and l2 (shown as white circles) immediately before ci and di′

results in the threads shown in Fig. 3(a). Note that at location
c3 thread T1 holds lock m which was acquired at c0, whereas
at location d2, thread T2 holds lock l2 acquired at d1. Thus
at global control location (c3, d2) of C, T1 holds lock m and
is waiting at acquire l, whereas T2 holds l and is waiting to
acquire m. This cyclic dependency creates a deadlock.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

18

Thread T1 move. Recall that our goal is to guarantee deadlock
freedom while ensuring minimality of the newly introduced
critical sections. Towards that end, we started by inserting
the locking statements l1 and l2 immediately before ci and
di′ , respectively, even if the newly synthesized threads have
deadlocks. If no new deadlocks are introduced then we are
done. If there exist newly introduced deadlocks, they must
involve at least one of l1 or l2. In our case, c3 : l1 can
potentially be involved in a deadlock but d1 : l2 cannot. Thus
in order to guarantee deadlock freedom, we need to re-locate
the locking statement l1. We observe that l1 cannot be moved
forward as that would cause it to enter the critical section CS1

which we are supposed to enforce. Thus l1 can only be moved
backwards along T1.
In order to ensure that l1 does not participate in a deadlock
we move l1 backwards along T1 till we encounter a control
location where it can no longer be involved in any deadlock.
In order to identify this location, we recall that two conditions
need to be satisfied in order for ck : l1 to be involved in a
deadlock with a statement dk′ : lock(m) of thread T2.

1) Reachability: (ck, dk′) are pairwise reachable, and
2) Cyclic Dependency: locks m and l are held at ck and

dk′ , respectively

Thus in order to identify the location where to introduce l1

in thread T1, we keep moving it backwards starting from ci

till we encounter a control location ck where at least one of
the above conditions is falsified. By condition 2, we see that
if ck : l1 deadlocks with location dk′ of T2, lock l must be
held at dk′ . Thus it follows that the lock(l) statement in T1 can
deadlock only with a locking statement in the critical section
[l2, u2] in thread T2. Motivated by the above observation, we
define L[l2,u2] to be the set of locks p such that a statement of
the form lock(p) occurs along [l2, u2].
Let ck, where k ≤ i be the last control location occurring

before ci along Ti such that (i) ck violates condition 1 or 2,
and (ii) for each r ∈ [k + 1..i], cr does not violate any of
the conditions 1 or 2. Then we insert l1 immediately before
ck. Note that, by our construction, ck is the first location
encountered by traversing backwards along T1 starting at ci

where a lock(l) statement can be inserted without it being
involved in a deadlock. In our example, in order to remove
all potential deadlocks involving l1 we move it to location c4

(see Fig. 3(b)).

Deadlock Check. Having removed the deadlocks involving l1,
we check whether l2 is involved in a deadlock. If not then the
procedure terminates.

Thread T2 move. If, on the other hand, l2 is involved in a
deadlock we remove deadlocks involving l2 using the same
procedure as above - the only difference being that we now
consider the deadlocks involving l2 and the locks acquired
along [l1, u1]. We keep moving l2 backwards along T2 till we
reach a control location of T2 where l2 cannot be involved in
a deadlock. In our example, we see that even though d1 : l2

couldn’t be involved in a deadlock in the original program
Fig. 3(a), in the new program Fig. 3(b) gotten via enlargement
of the critical section induced by lock l in T1, d1 : l2 can
potentially deadlock with location c1. In order to remove
deadlocks involving l2 we re-locate it back to location d4.

Dovetailing. Note, however, that as we move l2 backwards
along T2, we enlarge the critical section [l2, u2]. A key

consequence is that the enlarged critical section may contain
new locking statements which may now induce new deadlocks
with l1. In order to remove these deadlocks we again repeat
the above procedure by moving l1 further backwards till it
cannot be involved in a deadlock.
The whole process of removing deadlocks involving state-

ments l1 and l2 in a dovetailed fashion, wherein the state-
ments l1 and l2 are re-located backwards, is continued till all
deadlocks involving l1 and l2 are removed. This yields us a
deadlock free insertion of l1 and l2 in T1 and T2, respectively
(see Fig. 3(c)).
A formal description of the lock insertion procedure is

formulated as Alg. 1.

Algorithm 1 Lock Insertion for Straight-line Code

1: Input: Threads T1, ..., Tn specified as straight-line code,
with T1 and T2 defined by the sequences c0, ..., cn and
d0, ..., dm, respectively, and mutually atomic segments
s1 = [ci, cj] and s2 = [di′ , dj′] of T1 and T2, respectively.

2: Insert u1 and u2 in threads T1 and T2 immediately after
cj and dj′ , respectively. (Insertion of Unlock
Statements)

3: Insert l1 and l2 in threads T1 and T2 immediately before
ci and di′ , respectively.

4: repeat
5: if l1 can be involved in a potential deadlock then
6: Move l1 backward along T1 till we reach a control

location c′ of thread T1 such that for each lock
m ∈ L[l2,u2]: either (i) m is not held at c′, or (ii)
for each location d′ in critical section [l2, u2] where
m is acquired, c′ and d′ are not pairwise reachable.

7: end if
8: if l2 can be involved in a potential deadlock then
9: Move l2 backward along T2 till we reach a control

location d′ of thread T2 such that for each lock
m ∈ L[l1,u1]: either (i) m is not held at d′, or (ii)
for each location c′ in critical section [l1, u1] where
m is acquired, c′ and d′ are not pairwise reachable.

10: end if
11: until there do not exist any deadlocks involving l1 or l2

C. Meeting Lock Insertion Requirements
We now show the somewhat surprising result that simply
by making local moves of l1 and l2 in a dove-tailed manner
as encoded in Alg. 1, all three of our (global) lock insertion
requirements are met.

Enforcement of Mutual Atomicity. Since Alg. 1 always
maintains the invariants that [ci, cj] ⊆ [l1, u1] and [di′ , dj′] ⊆
[l2, u2] we see that the mutual atomicity of [ci, cj] and [di′ , dj′]
is enforced.

Deadlock Freedom. The termination condition (step 11) of
Alg. 1 ensures that there do not exist deadlocks involving l1

or l2 and since the newly introduced deadlock must involve at
least one of these lock statements we see that requirement 2
is also met.

Optimality. The most interesting part is to show that require-
ment 3 is met, i.e., the critical sections identified by Alg. 1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

19

CS1

u1

unlock(m)

unlock(n)

u1

unlock(n)

unlock(m)

u1

CS1 CS1

u1

unlock(m)

u1

unlock(n)

CS2CS2

c0 : lock(m)

c1 : lock(n)

c2 : unlock(n)

d0 : lock(n)

d2 : lock(m)

d3 : unlock(m)

c3 : l1

d1 : l2

u2

c1 : lock(n) c1 : lock(n)d0 : lock(n)

c2 : unlock(n)

c0 : lock(m) c0 : lock(m)

c2 : unlock(n)

d0 : lock(n)

d2 : lock(m) d2 : lock(m)

d3 : unlock(m) d3 : unlock(m)

c4 : l1 c4 : l1

d1 : l2

d4 : l2

CS2

(a) (b) (c)

Fig. 3. Lock Insertion Procedure

are optimal. The proof is provided in the full version of the
paper [?].

Optimality Result. Let [ca, cb] and [da′ , db′] be critical sec-
tions satisfying the lock insertion requirements. Then [l1, u1] ⊆
[ca, cb] and [l2, u2] ⊆ [da′ , db′], where [l1, u1] and [l2, u2]
are the critical sections in threads T1 and T2, respectively,
identified by Alg. 1.

Proof.
We prove the result by contradiction. If possible, suppose
that [ca, cb] is a proper subset of [l1, u1]. As discussed before,
the fact that unlock statements are non-blocking combined
with the optimality requirement imply that u1 = cb and
u2 = db′ . Then from the assumption that [ca, cb] is a proper
subset of [l1, u1] we can deduce that l1 occurs before ca along
T1.

For r ≥ 0, let l
r
1 and l

r
2 be the locations of the lock(l)

statements in threads T1 and T2 after the rth iteration of Alg. 1.
Suppose that k is the largest index for which l

k
1 belongs to the

interval [ca, cb] and l
k
2 belongs to the interval [ca′ , cb′]. At the

(k+1)st iteration, either l1 moves out of the interval [ca, cb] or
l2 moves out of the interval [ca′ , cb′]. For definiteness assume
that it is the former.

To prove our claim we now show that l1 cannot move out
of the interval [ca, cb]. Indeed for it to move out, l1 needs to
be propagated backwards along T1 till it crosses ca. At the
time of crossing ca, T1 must be holding a lock m such that
(i) the last statement to acquire m occurs before ca along T1,
and (ii) there exists a lock acquisition statement for m in the
critical section [lk2 , uk

2]. Let Lca
be the set of locks held at ca

that are also acquired in the critical section [lk2 , u
k
2]. Clearly

Lca
�= ∅. Furthermore, there exists a lock m′ ∈ Lca

such
that (ca, dm′) are pairwise reachable for some statement dm′

acquiring lock m′ in [lk2 , uk
2]. If that is not the case then l

k+1
1

would not cross ca contradicting the maximality of k. However
this creates a deadlock involving locations ca and dm′ of T1

and T2, respectively. This is because at ca, thread T1 holds lock
m′ and is waiting to acquire lock l (recall that, by definition,
ca is a lock(l) statement), whereas at dm′ thread T2 is holding

lock l (as dm′ lies in the critical section [lk2 , uk
2]) and waiting

to acquire m′. Recall that dm′ ∈ [lk2 , u
k
2] ⊆ [da′ , db′]. Thus

[ca, cb] and [da′ , db′] do not meet lock insertion requirement 2
contradicting our hypothesis.
Similarly we may show that [l2, u2] ⊆ [da′ , db′].

Note that our notion of minimality for critical sections is
based on set inclusion as opposed to the number of program
statements comprising the critical section. This is the best one
can hope for.

V. LOCK INSERTION: THE GENERAL CASE

Acyclic CFGs We start by considering the case where the
CFGs of threads are acyclic. Here each atomic segment
is a DAG (directed acyclic graph) with possibly multiple
roots (vertices of in-degree zero) and possibly multiple leaves
(vertices of out-degree zero). Thus we assume that the input
to the procedure is a pair of mutually atomic segments s1 =
[(ci1, ..., cik), (cj1, ..., cjp)] and s2 = [(di′1, ..., di′k′), (dj′1,
..., dj′p′)], wherein the first (second) tuple in each segment
represents the roots (leaves) of the segment. Generalization
of Alg. 1 to DAGs requires little modification as the notion
of backwards traversal required for steps 6 and 9 is well
defined. The core idea of lock insertion remains the same as for
straight-line code. We start by inserting the unlock statement
u1 immediately after the control locations cj1, ..., cjp and the
unlock statement u2 immediately after the control locations
dj′1, ..., dj′p′ (step 3 of Alg. 2). This step is analogous to
the case of straight-line code, the only difference being that
instead of a unique leaf node there are multiple leaves. Again,
as for straight-line code, the locking statements l1 and l2 are
inserted (step 4) immediately before the locations ci1, ..., cik

and the locations di′1, ..., di′k′ , respectively.
As before, in order to remove deadlocks involving l1 and

l2 we propagate these statements upwards along the CFGs of
the respective threads (steps 5-10 of Alg. 2) via Alg. 3.
In propagating the lock statements l1 and l2 upwards along
the DAGs, there are two main differences from the straight-
line case. First due to branching, we may encounter the same

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

20

control location multiple times. To track the control locations
that have already been visited we maintain a set Visited and
insert a check (step 10 of Alg. 3) to prevent repeat processing.
Secondly, we may encounter control locations with multiple
predecessors in which case we need to propagate the locking
statement backwards along multiple branches (steps 9-17 of
Alg. 3).

Cyclic CFGs. In the general case, due to the presence of cycles
in the CFG (caused by loops) the notion of backwards traversal
is not well-defined. However, we can reduce the problem of
lock insertion for cyclic CFGs to the acyclic case. Towards that
end, we leverage the consistency assumption (Sec. III) wherein
if a loop head (tail) occurs in an atomic segment comprising a
critical section then the matching loop tail (head) also occurs
in some (possibly the same) segment comprising the same
critical section.
In order to convert a cyclic CFG into an acyclic CFG
we traverse the CFG CFGi of thread Ti starting at its
entry location in a depth-first manner and identify a set of
back-edges. These back-edges transit from tails of loops to
their matching heads. Deleting these back-edges results in
an acyclic CFG which we denote by CFG′

i. Next we run
Alg. 2 on CFG′

i, the only difference being that if during the
backward traversal of a newly introduced locking statement we
include a loop tail lt for the first time in the critical section
induced by the newly introduced locking statements, then in
order to preserve the consistency invariant we also need to
include the matching loop head in the critical section (as was
discussed in Sec. 3). Thus if lh is the matching loop head for
lt and if lh does not already exists in the an atomic segment in
the current specification then we generate a new instance of
the lock insertion problem by inserting the atomic segment
comprising the loop head lh in the existing set of atomic
segments (steps 12-15 of Alg. 3).

Algorithm 2 Lock Insertion for General Programs

1: Input: Threads T1 and T2 specified it terms of
their respective CFGs and pairs of segments s1 =
[s1

1, s
2
1],, sk = [s1

k, s2
k], where si

j is an atomic segment
of Ti specified as a DAG that is a subgraph of the CFG
CFGi of Ti.

2: Assign a new lock li to segment pair si.
3: Insert unlock statements u

i
1 and u

i
2 for lock li in threads

T1 and T2 immediately after the leaves of s
1
i and s2

i in T1

and T2, respectively. (Insertion of Unlock Statements)
4: Insert lock statements l

i
1 and l

i
2 for lock li in threads T1

and T2 immediately before the roots of s1
i and s2

i in T1

and T2, respectively.
5: for each lock li, where i ∈ [1..k] do
6: repeat
7: Remove deadlocks involving l

1
i via Alg. 3

8: Remove deadlocks involving l
2
i via Alg. 3

9: until there do not exist any deadlocks involving l
1
i and

l
2
i

10: end for

VI. IMPLEMENTATION

From Alg. 1, we see that the key step in lock insertion
involves deciding, in an efficient manner, the multiple reach-

Algorithm 3 Remove Deadlocks

1: Input: Segments si1 = [s1
i1, s

2
i2], ..., siki

= [s1
iki

, s2
iki

],
associated with the same lock li and thread Tm, where
m ∈ [1..2].

2: Output: Possible re-location of lock(l) statements in
thread Tm in order to guarantee absence of deadlocks
involving l

m
i , i.e., the lock(li) statement in Tm.

3: for each pair sij = [s1
ij , s

2
ij] do

4: Set Worklist to the locations of all the lock(li) state-
ments enforcing sm

ij in Tm that are involved in a
deadlock

5: V isited = ∅
6: while Worklist �= ∅ do
7: Remove a location loc from Worklist
8: if there exists a lock m held at loc that is acquired

at a control location loc’ in the segment sk′

ij , where
k �= k′, and (loc, loc′) are pairwise reachable then

9: for each predecessor pred of loc do
10: if pred �∈ V isited then
11: Add pred to Worklist and to V isited.
12: if pred is a loop tail lt that is not included

in any of the segments sm
ir , with r ∈ [1..ki]

then
13: Construct a new segment seg comprising

only of the loop head lh that matches lt
14: Add the new segment pair sp = [sp1, sp2],

where spk = seg and spk′

= sk′

ij with k �=
k′, and associate lock li with it

15: end if
16: end if
17: end for
18: else
19: Insert lock(li) immediately before loc
20: end if
21: end while
22: end for

ability queries that are generated (via steps 6 and 9) as we
traverse backwards along the CFGs of threads in the given
program. However, in general, reachability of a pair of control
locations in threads is not decidable. The strategy that is
often used to bypass the decidability barrier is to consider
reachability in the presence of synchronization primitives like
locks and wait/notify only and ignore data variables. This is
referred to as static reachability. We observe that relying on
static reachability instead of reachability guarantees soundness
of our procedure.

A. Nested Locks
Alg. 1 formulates an optimal procedure for lock insertion for
concurrent programs with arbitrary locking patterns. However,
in real world applications most lock usage is nested [10],
where we say that a concurrent program accesses locks in
a nested fashion if along each computation of the program a
thread can only release the last lock that it acquired along
that computation and that has not yet been released. This
has two main implications. First, it is known that while static
reachability is undecidable for arbitrary locking patterns it not

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

21

only becomes decidable for nested locks but efficiently so [10].
Thus a key advantage of nestedness is that it enable us to
leverage efficient procedures for deciding static reachability
thereby yielding a fast and effective lock insertion procedure.
Secondly, if a program has nested locks to start with,
we would like to preserve this nestedness. Our general lock
insertion procedure, however, may violate nestedness. We
therefore formulate a modified procedure that ensures that
nestedness is preserved in the newly synthesized program.
Note that this procedure still guarantees optimality of newly
introduced critical sections if we restrict ourselves to the space
of programs with nested locks only.

B. Review of Acquisition Histories
We start by reviewing the notion of acquisition histories
[10] that have been used for efficiently reasoning about static
reachability for nested locks.

Defi nition (Acquisition History) For a lock l held by thread
T at a control location d, the acquisition history of l along a
local computation x of T leading to c, denoted by ahT (c, l, x),
is the set of locks that have been acquired (and possibly
released) by T since the last acquisition of l by T in traversing
forward along x to c.

Acquisition histories enable us to formulate a necessary and
sufficient condition for static reachability for nested locks.

Theorem 2 (Decomposition Result) [9]. Let xi be a local
computation of Ti leading to ci. Then (c1, c2) is statically
reachable via an interleaving of x1 and x2 if and only if (i)
the locks held at c1 and c2 are disjoint, and (ii) the acquisition
histories at c1 and c2 are consistent, i.e., there do not exist
locks l and l′ that are held at c1 and c2, respectively, such
that l ∈ ahT2

(c2, l
′, x2) and l′ ∈ ahT1

(c1, l, x
1).

The reason we refer to thm. 2 as the decomposition result is
that it enables us to reason about static reachability for nested
locks in a thread local manner. This is because much like
locksets, acquisition histories can be computed thread locally
at each location of interest in thread T via a simple traversal
of the CFG of T . This is key to ensuring efficiency of deciding
static reachability for nested locks.
Let AHTi

(ci) be the set of all possible acquisition histories
encountered along paths of Ti leading to ci. Then from thm. 2,
we have the following criterion for static reachability between
global control states.

Corollary (Generalized Decomposition Result). Global con-
trol states c = (c1, c2) is statically reachable if and only if (1)
disjoint sets of locks are held at c1 and c2, and, (ii) there exist
acquisition histories ah1 ∈ AHT1

(c1) and ah2 ∈ AHT2
(c2)

that are consistent.

Nested Lock Insertion. In applying the decomposition result
during lock insertion we face two main challenges. First,
as we traverse the CFGs of threads backwards, we generate
multiple (static) pairwise reachability queries. Thus we want
to avoid computing acquisition histories between the same pair
of control locations multiple times. Towards that end, we pre-
compute, in one pre-processing step, the acquisition histories
at all relevant control locations of interest in each thread.

Localizing the Analysis. The key issue next is how to localize
these locations of interest. Towards that end, let LFi be
the set of last lock free (where no lock is held) locations
along local paths of Ti leading to an entry location of the
critical section to be enforced. Note that we can simply insert
the lock(l) statement immediately after locations in LF1 and
LF2. This ensures that desired critical sections are enforced
and no new deadlocks are introduced as no lock is held
at any of the locations in LF1 or LF2. However, this may
not lead to optimal critical sections. It follows that, in order
to achieve optimality, our lock insertion strategy can only
introduce lock(l) statements immediately before an existing
locking statement occurring along paths from locations in LFi

to the entry locations of the desired critical section. We call
the set of all such locking statements History Lock Statements
as they are in the acquisition history of the critical section that
we are trying to enforce. Thus it suffices to compute AHTi

(ci)
only for history lock statements ci of Ti.

Once the acquisition histories have been computed, the
procedure for lock insertion for the nested case can then be
formulated as Alg. 4. Note that the main difference between
algs. 1 and 4 is that pairwise reachability is determined using
acquisition histories computed in steps 2-4. Alg. 2 for the
general case can also be modified accordingly.

Algorithm 4 Nested Lock Insertion via Acquisition Histo-
ries

1: Input: Threads T1 and T2 specified as control flow graphs,
CFG1 and CFG2, respectively, and mutually atomic
segments s1 = [ci, cj] and s2 = [di′ , dj′] of T1 and T2,
respectively.

2: for each thread Ti do
3: Compute the lock acquisition histories AHTi

(c) at each
location c where c is a history lock statement of Ci in
Ti

4: end for
5: Insert l1 and l2 in threads T1 and T2 immediately before

ci and di′ , respectively.
6: repeat
7: if l1 can be involved in a potential deadlock then
8: Move l1 backward along T1 via a backward DFS

traversal of CFGi till we reach control locations c
′ of

thread T1 such that for each lock m ∈ L[l2,u2]: either
(i) m is not held at c′, or (ii) for each location d′ in
critical section [l2, u2] wherem is acquired, AHTi

(c′)
and AHTi

(d′) are not consistent.
9: end if
10: if l2 can be involved in a potential deadlock then
11: Move l2 backward along T2 till we reach a control

location d′ of thread T2 such that for each lock
m ∈ L[l1,u1]: either (i) m is not held at d

′, or (ii) for
each location c′ in critical section [l1, u1] where m is
acquired, AHT1

(c′) and AHT2
(d′) are not consistent.

12: end if
13: until there do not exist any potential deadlocks involving

l1 or l2

14: Add unlock statement to match l1 and l2 in a manner that
ensure that locks are nested.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

22

Example KLOC Segment Acquisition Lock
Pairs History Insertion

Computation (secs)

account.Main 50 LOC 2 0.9 0.1
atom001a 70 LOC 3 1.4 0.2
atom002a 75 LOC 3 1.6 0.3
banking-av 150 LOC 1 1.1 0.3
banking-sav 175 LOC 2 1.2 0.4

D-1 2.9 3 1.2 0.4
D-2 8.3 12 7.4 1.1
D-3 8.3 3 8 1.2
D-4 17.8 9 6.7 4.4
D-5 17.8 2 7 2.5

TABLE I
LOCK INSERTION DATA

C. Guaranteeing Nestedness of Locks
Alg. 4 does not guarantee preservation of nestedness of
locks. To ensure nestedness we make two modifications to
Alg. 4. First, instead of inserting the unlock(l) statement before
the lock(l) statement, we first insert the lock(l) statement
and then add the matching unlock(l) statements to ensure
nestedness of locks. However, we need to make sure that
the lock(l) statements are inserted at locations such that there
exist locations where the matching unlock(l) statements can
be inserted to ensure nestedness. This is accomplished by
augmenting the conditions in steps 8 and 11 with the extra
constraint that the matching unlock statements unlock(l) can
be inserted so as to enforce the desired critical sections while
preserving nestedness.

VII. EXPERIMENTS

We consider a set of public benchmarks with known
atomicity violations used in our previous work [11]. These
are small examples and are used mainly to illustrate the
efficacy of our new lock insertion technique. We also use an
in-house parallel implementation of an MPEG-4 decoder S
with known atomicity violations detected via static and run-
time techniques. Finally we also consider a large in-house
concurrent software system implementing a distributed storage
system, denoted by D. The D system consists of about 400K
lines of C++ code using Boost libraries and is based on a
thread pool model. We evaluated our approach by applying
our technique to different modules of D denoted by D-1, D-2,
D-3, D-4 and D-5.
We present the time taken for the context-sensitive points-to
analysis for the lock pointers and the pre-processing step that
computes the acquisition histories at locations of interest (col.
4) and the time taken for the lock insertion procedure (col. 5).
The key thing worth noting is that the lock insertion procedure
is efficient even for large examples (col. 5). In fact the total
time taken is dominated by the points-to analysis and the
acquisition history computation. This is to be expected as once
the acquisition histories have been computed the lock insertion
procedure involves highly localized dovetailed movements of
the lock statements around critical sections to be enforced.
Usually these movements are restricted to function boundaries.
On the other hand, computing the points-to sets requires us to
reason about code modules that may impact aliases of relevant
lock pointers at locations of interest as opposed to just a few
functions where the atomicity violations need to be fixed.

VIII. RELATED WORK AND CONCLUSION

There has been interesting work on automatically inferring
locks for atomic sections [4], [12], [6], [1], [2]. However
most of this work has focused on allocating/inferring locks for
programs with no prior locks. The absence of locks allows one
greater control over lock placement thereby making it easier
to enforce the desired correctness properties. For instance,
deadlocks can be prevented simply by allocating locks in a
fixed global order. One does not have this freedom if locks are
required to be inserted in a program with existing locks. This
makes the problem of lock insertion more challenging than
lock allocation/inference. There is also limited amount of work
on exploiting program semantics to insert synchronization
statements in order to fix bugs [5], enforce concurrency control
in order to satisfy invariants [3], or ensure correctness [13].
However reasoning about program semantics requires the use
of refined heavy-weight analyses like constraint/SAT solving
or state space exploration via model checking.
In contrast, we have formulated a fully automatic, provably

optimal, efficient and precise technique for lock insertion in
concurrent code with pre-existing locks that ensures deadlock
freedom while attempting to minimize the resulting critical
sections. Importantly, our method localizes the analysis to only
the necessary code modules. Moreover, for the special case of
programs with nested locks our analysis is compositional, i.e.,
thread local, thereby avoiding a global analysis and ensuring
scalability to large real-life programs.

REFERENCES

[1] Sigmund Cherem, Trishul M. Chilimbi, and Sumit Gulwani. Inferring
locks for atomic sections. In PLDI, 2008.

[2] Dave Cunningham, Khilan Gudka, and Susan Eisenbach. Keep off the
grass: Locking the right path for atomicity. In CC, 2008.

[3] Jyotirmoy V. Deshmukh, G. Ramalingam, Venkatesh Prasad Ranganath,
and Kapil Vaswani. Logical concurrency control from sequential proofs.
In ESOP, 2010.

[4] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation.
In POPL, 2007.

[5] C. Flanagan and S. N. Freund. Automatic synchronization correction.
In SCOOL, 2005.

[6] M. Hicks, J. S. Foster, and P. Pratikakis. Lock inference for atomic
sections. In First Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing.

[7] Takashi Horikawa. An approach for scalability-bottleneck solution:
identification and elimination of scalability bottlenecks in a dbms. In
ICPE, 2011.

[8] Takashi Horikawa. An approach for scalability-bottleneck solution:
identification and elimination of scalability bottlenecks in a dbms
(abstracts only). SIGMETRICS Performance Evaluation Review, 39(3),
2011.

[9] V. Kahlon and A. Gupta. On the Analysis of Interacting Pushdown
Systems. In POPL, 2007.

[10] V. Kahlon, F. Ivančić, and A. Gupta. Reasoning about threads commu-
nicating via locks. In CAV, 2005.

[11] V. Kahlon and C. Wang. Universal causality graphs: A precise happens-
before model for detecting bugs in concurrent programs. In CAV, 2010.

[12] Bill McCloskey, Feng Zhou, David Gay, and Eric A. Brewer. Au-
tolocker: synchronization inference for atomic sections. In POPL, 2006.

[13] M. Vechev, E. Yahav, and G. Yorsh. Inferring synchronization under
limited observability. In TACAS, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

23

Multi-Pushdown Systems with Budgets

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Othmane Rezine and Jari Stenman
Department of Information Technology

Uppsala University

Uppsala, Sweden

Abstract—We address the verification problem for concurrent
programs modeled as multi-pushdown systems (MPDS). In gen-
eral, MPDS are Turing powerful and hence come along with
undecidability of all basic decision problems. Because of this,
several subclasses of MPDS have been proposed and studied
in the literature [1]–[4]. In this paper, we propose the class
of bounded-budget MPDS where we restrict them in the sense
that each stack can perform an unbounded number of context
switches if its size is below a given bound, and is restricted
to a finite number of context switches when its size is above
that bound. We show that the reachability problem for this
subclass is PSPACE-complete. Furthermore, we propose a code-
to-code translation that inputs a concurrent program P and
produces a sequential program P ′ such that running P under
the bounded-budget restriction yields the same set of reachable
states as running P ′. By leveraging standard sequential analysis
tools, we have implemented a prototype tool and applied it on a
set of benchmarks, showing the feasibility of our translation.

I. INTRODUCTION

In the last few years, a lot of effort has been devoted to

the verification problem for models of concurrent programs

(see, e.g., [1]–[3], [5]). On the other hand, pushdown systems

have been proposed as an adequate formalism to describe se-

quential programs with procedure calls. Therefore, it is natural

to model recursive concurrent programs as Multi-PushDown

Systems (MPDS for short). However, MPDS are in general

Turing powerful, and hence all the basic decision problems

are undecidable for them. To overcome this barrier, several

subclasses of multi-pushdown systems have been proposed and

studied in the literature. The main goals of these works are

(1) to explore the largest possible state space of the modeled

concurrent program, and (2) to retain the decidability of some

properties such as the reachability problem.

Context-bounding has been proposed in [1] as a suitable

technique for the analysis of MPDS. The idea is to consider

only runs of the system that can be divided into a given number

of contexts, where in each context pop and push operations are

exclusive to one stack. The state space which may be explored

is still unbounded in the presence of recursive procedure calls,

but the context-bounded reachability problem is NP-complete

even in this case. Empirically, it has been shown that many

concurrency errors, such as data races and atomicity violations,

manifest themselves in executions with only a few contexts [6].

Another way to regain decidability is to consider depth-

bounded verification for MPDS where the maximal possible

This work was supported in part by the Swedish Research Council and
carried out within the Linnaeus centre of excellence UPMARC, Uppsala
Programming for Multicore Architectures Research Center.

depth (or size) of each stack is bounded by a given constant. In

this case, the reachability problem becomes PSPACE-complete.

However, since the explored state space is bounded, this

approach is more suitable for detecting shallow bugs [7]. In

fact, bounding the stack depth provides a completeness result

for the case where the threads are modeled as finite-state

systems (this is not the case for the context-bounded analysis).

In this paper, we generalize both context-bounded analysis

and depth-bounded verification by introducing the class of

MPDS with budgets. Intuitively, for each thread (or stack),

we associate two values k, d ∈ N ∪ {ω} (where ω is the first

limit ordinal) such that each thread can perform at most k
consecutive context switches unless its stack depth goes below

the given bound d. More precisely, each thread is given a

budget b of contexts. The thread then operates in two modes,

I and II. In mode I, the stack depth of the thread is less than or

equal to d, while in mode II it is strictly above d. The budget

of the thread is unbounded in mode I, i.e., b = ∞. In other

words, the thread is allowed to perform any number of context

switches while it is in mode I. As soon as the stack depth of

the thread grows above d, the thread enters mode II and its

budget b is set to k. Each time the thread performs a context

switch in mode II, its budget b is decremented by one. The

thread leaves mode II in one of two ways: either it consumes

all its budget (its budget b becomes negative) in which case

the thread will be blocked; or the stack depth of the thread

becomes d in which case it enters mode I and its budget is

reset to unbounded (b = ω) again.

We identify two subclasses of MPDS with budgets. We call

the first subclass uniformly bounded-budget MPDS. Here, we

associate finite values to the stack depth d ∈ N and context

budget k ∈ N for each thread (or stack). For this case, we

show that the reachability problem is PSPACE-complete. The

lower bound is proved by a straightforward reduction from the

non-emptiness test of the intersection of a finite set of regular

languages (which is PSPACE-complete). To prove the upper-

bound, we show that it is possible to reduce, in polynomial

time, the reachability problem for a uniformly bounded-budget

MPDS to the non-emptiness test for the synchronous product

of a finite set of depth-bounded pushdown automata (which is

PSPACE-complete).

Then, we consider the class of singly unbounded-budget
MPDS where we have at most one thread that can perform

an unbounded number of context switches regardless of its

stack depth, and all the other threads have finite values for

their stack depth and context-budget bounds. We show that

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

24

the reachability problem for this class is EXPTIME-complete.

The lower bound is proved by a reduction from the non-

emptiness test of the intersection of a pushdown automaton

with several regular languages (which is EXPTIME-complete).

For the upper bound, we show that the reachability problem

for a singly unbounded-budget MPDS can be reduced to the

emptiness problem for a pushdown automaton whose size is

exponential.

In the second part of the paper, we investigate the issue

of defining a code-to-code translation that inputs a concurrent

program P and produces a sequential program P ′ such that

running P under the uniformly bounded-budget restriction

yields the same set of reachable states as running P ′. In

other words, we have reduced the problem of verifying (an

under-approximation of) the concurrent P to that of verifying

a sequential program P ′. In fact, the only source of abstraction

in our translation is the fact that we limit the behavior of P
when its stack depth exceeds the given limit. In particular, our

translation preserves the data domains of the original program

in the sense that P and P ′ have the same features (e.g.,

recursive procedure calls, type of data structures). We show

that the translation can be performed using additional copies

of the shared variables and local variables. More importantly,

the fact that P ′ is a sequential program means that our

translation allows us to use existing analysis and verification

tools designed for sequential programs in order to perform the

same kind of analysis and verification for concurrent programs

under uniformly bounded-budget restriction. To show its use in

practice, we have implemented our approach and applied it on

several examples, using the three back end tools MOPED [8],

ESBMC [9], and CBMC [7]. We also compare our results to

the ones obtained using concurrent verification tools, namely

ESBMC [9] and POIROT [10]. In our experiments, bugs (i.e.

violations of state invariants) appear for small bounds.

Related work: Our model is inspired by the work of

Finkel and Sangnier [11], where they propose an extension of

reversal-bounded counter machines, restricting each counter

to a finite number of alternations between the increasing and

decreasing modes when its value goes beyond a given bound.

As mentioned earlier, several decidable classes of multi-

pushdown systems have been proposed [1]–[3], [5]. The

closest model to multi-pushdown systems with budgets is

Scope-bounded Multistack PushDown Systems (SMPDS for

short) [5] where each symbol in a stack can be popped only

if it has been pushed within a bounded number of context

switches. We can show that the reachability problem for

SMPDS can be reduced to the corresponding one for uniformly

bounded-budget MPDS where the value of the stack depth

is 0. This can be done by assuming that a stack symbol

that will never be popped in the context of [5] will not be

pushed into the stack. Thus, each symbol that is pushed into

the stack should be removed within k context-switches. On

the other hand, simulating uniformly bounded-budget MPDS

by SMPDS does not seem to be straightforward without an

exponential explosion (to encode the content of each stack up

to the stack depth bound).

To the best of our knowledge there is no decidable subclass

of multi-stack pushdown system similar to the class of singly

unbounded-budget MPDS (for which we show the reachability

problem to be EXPTIME-COMPLETE).

Our code-to-code translation follows the line of research on

compositional reductions from concurrent to sequential pro-

grams [12]–[15]. Recently, La Torre and Parlato have proposed

in [16] a sequentialization for SMPDS where for each SMPDS,

they construct an equivalent single-stack pushdown system that

faithfully simulates the behavior of each thread. However, the

proposed sequentialization has not been implemented and so

we were not able to compare it with our translation. Moreover,

the two translation schemes were developed independently and

simultaneously [17].

II. PRELIMINARIES

In this section, we fix some basic definitions and notations

that will be used in the rest of the paper. We assume that the

reader is familiar with automata and language theory.

a) Notations: Let N denote the non-negative integers,

and let Nk and N
k
ω denote the set of vectors of dimension k

over N and N∪{ω}, respectively (ω representing the first limit

ordinal). For every i, j ∈ Nω such that i ≤ j, we use [i..j] to

denote the set {k ∈ Nω | i ≤ k ≤ j}.
Let Σ be a finite alphabet. We denote by Σ

∗ (resp. Σ+) the

set of all words (resp. non empty words) over Σ, and by ε the

empty word. A language is a (possibly infinite) set of words.

Let u be a word over Σ. The length of u is denoted by |u|
(we have |ε| = 0).

Let L be a language over Σ and let w ∈ Σ
∗ be a word. We

define w.L = {w.u | u ∈ L}. We define the shuffle operator

�� over two words inductively as ��(ε, w) = ��(w, ε) =

{w} and ��(a.u′
, b.v

′
) = a.(��(u′

, b.v
′
) ∪ b.(��(a.u′

, v
′
).

Given two languages L1 and L2, we define their shuffle as

��(L1, L2) =
⋃

u∈L1,v∈L2
��(u, v). The shuffle operator for

multiple languages can be extended analogously.

b) Pushdown Automata: A pushdown automaton is de-

fined by a tuple P= (Q,Σ,Γ,Δ, I, F) where: (1) Q is a finite

non-empty set of states, (2) Σ is the input alphabet, (3) Γ is

the stack alphabet, (4) Δ is the finite set of transition rules

of the form (q, u) a−→(q′, u′
) where q, q′ ∈ Q, a ∈ Σ ∪ {ε},

u, u′ ∈ Γ
∗ such that |u| + |u′| ≤ 1, (5) I ⊆ Q is the set of

initial states, and (6) F ⊆ Q is the set of final states. The size

of P is defined by |P| = |Q|+ |Σ|+ |Γ|.
A configuration of P is a tuple (q, σ, w) where q ∈ Q is the

current state, σ ∈ Σ
∗ is the remaining input word, and w ∈ Γ

∗

is the stack content. We define the binary relation ⇒P between

configurations as follows: (q, aσ, uw) ⇒P (q′, σ, u′w) iff

(q, u) a−→(q′, u′
). The transition relation ⇒∗

P is the reflexive

transitive closure of ⇒P.

The language L(P) accepted by P is defined by the set of

finite words σ ∈ Σ
∗ such that (qinit, σ, ε) ⇒∗

P (qfinal, ε, ε) for

some qinit ∈ I and qfinal ∈ F .

Let d ∈ N. We define the transition relation →>d between

configurations of P as follows: (q, σ, w) →>d (q′, σ′, w′
) if

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

25

and only if (q, σ, w)⇒P (q′, σ′, w′
) and |w′| > d or |w| > d.

Intuitively, the transition relation →>d can be performed only

if the stack depth of the starting or target configuration is

at least d + 1. The transition relation →∗
>d is the reflexive

transitive closure of →>d.

Similarly, we can define the transition relation →≤d

between configurations of P as follows: (q, σ, w) →≤d

(q′, σ′, w′
) if and only if (q, σ, w) ⇒P (q′, σ′, w′

), |w′| ≤ d
and |w| ≤ d. Intuitively, the transition relation →≤d can only

be performed when the stack depths of both the starting and

target configurations are at most d. The transition relation→∗
≤d

is the reflexive transitive closure of →≤d.

Given d, k ∈ N, we define the relation →(k,d) between con-

figurations of depth d as follows: (q, σ, w)→(k,d) (q
′, σ′, w′

)

if and only if (q, σ, w) →∗
>d (q′, σ′, w′

), |σ| − |σ′| ≤ k,

w′
= w, and |w| = d. This means that the pushdown

automaton can only read k consecutive input symbols without

its stack depth going below the bound d.

Let L(k,d)(P) denote the set of words σ ∈ Σ
∗ such that

there is a sequence of configurations c0, c1, . . . , cn where (1)

c0 is of the form (q0, σ, ε) with q0 ∈ I , (2) cn is of the form

(qn, ε, ε) with qn ∈ F , and (3) for every i ∈ [1..n], we have

ci−1 →(k,d) ci or ci−1 →∗
≤d ci holds. We call L(k,d)(P) the

(k, d)-bounded language of P.

We also define the language L(−1,d)(P) to be the set of

words σ ∈ Σ
∗ such that (qinit, σ, ε) →∗

≤d (qfinal, ε, ε) where

qinit ∈ I and qfinal ∈ F . Intuitively, the set L(−1,d)(P) (or

simply Ld(P) when it is clear from the context) contains all

words accepted by the runs of P where the stack depth is

always bounded by d.

Lemma 1: Let d, k ∈ N and P be a pushdown automaton.

Then, it is possible to construct, in polynomial time, a push-

down automaton P ′ such that Lk+d(P ′
) = L(k,d)(P).

Proof: To prove this, it is sufficient to show the following

lemma:

Lemma 2: Let k ∈ N be a natural number and P be

a pushdown automaton. Then, it is possible to construct,

in polynomial time, a pushdown automaton P′ such that

Lk(P ′
) = L(P) ∩ Σ

≤k.

Proof: Let us first recall some basic results about context-

free languages.

A context-free grammar (CFG) G is a tuple (X ,Σ, R, S)
where X is a finite non-empty set of variables (or nonter-
minals), Σ is an alphabet of terminals, R ⊆

(
X × (X 2 ∪

Σ)
)
∪ (S × {ε}) a finite set of productions (the production

(X,w) may also be denoted by X → w), and S ∈ X is a

start variable. The size of G is defined by |G| = (|X |+ |Σ|).
Observe that the form of the productions is restricted, but it

has been shown in [4] that every CFG can be transformed, in

polynomial time, into an equivalent grammar of this form.

Given strings u, v ∈ (Σ∪X)
∗ we say u⇒G v if there exists

a production (X,w) ∈ R and some words y, z ∈ (Σ ∪ X)
∗

such that u = yXz and v = ywz. We use⇒∗
G for the reflexive

transitive closure of ⇒G. We define the context-free language

generated by L(G) as {w ∈ Σ
∗ | S ⇒∗

G w}.
Let k ∈ N. A derivation α given by α

def
= α0 ⇒G α1 ⇒G

· · · ⇒G αn is k-bounded if |αi| ≤ k for all i ∈ [1..n]. We

denote by L(k)
(G) the subset of L(G) such that for every

w ∈ L(k)
(G) there exists a k-bounded derivation S ⇒∗

G w.

We call L(k)
(G) the k-bounded approximation of L(G).

Lemma 3: Given a context-free grammar G and k ∈ N,

then it is possible to construct, in polynomial time, a pushdown

automaton P such that Lk(P) = L(k)
(G).

Proof: Since the context-free grammar G is in the normal

form, we know that any k-bounded derivation have a derivation

tree T in which the number of leaves is at most k. Moreover,

any path of the derivation tree T has at most k nodes and

each node has at most two outgoing edges. This implies that

the we can construct a stateless pushdown automaton P′ whose

alphabet is exactly the set of variables of G. The derivation tree

of the grammar G is simulated by the pushdown automaton P′

in a leftmost way in the standard manner. Then, we construct

a pushdown automaton P which results from the intersection

of the pushdown automaton P′ and the finite state automaton

that recognizes words of length at most k. Now, it is easy to

see that L(P) = Lk(P) = L(k)
(G) .

To prove lemma 2, we will make use of the fact that for

every pushdown automaton P, it is possible to construct, in

polynomial time in the size of P, a context-free grammar G
such that L(k)

(G) = L(P) ∩ Σ
≤k [18]. Moreover, we can

assume that this context-free grammar is in the normal form

(based on the result in [4] showing that every context-free

grammar can be transformed, in polynomial time, into an

equivalent grammar in the normal form). Then, we can apply

Lemma 3 to construct, in polynomial time, the pushdown

automaton P′ such that Lk(P) = L(k)
(G). Hence, we have

Lk(P) = L(k)
(G) = L(P) ∩ Σ

≤k.

Let P be a pushdown automaton. To prove Lemma 1,

we construct, in polynomial time, a pushdown automaton P′

such that Lk+d(P′
) = L(k,d)(P) as follows: The pushdown

automaton P′ mimics the pushdown automaton P if the current

stack depth of P is less or equal to d. Moreover, P′ keeps

track of the current stack depth in its control state. If the

current depth of the stack of P (and therefore P′) is precisely

d and P performs a push transition t from a state q, then the

pushdown automaton P′ guesses the return state q′ (when the

stack of P is again of depth d). Then, P′ starts to mimic the

pushdown automaton P ′′ (constructed using Lemma 2) from

the pushdown automaton P′′′ built from P by setting the initial

state of P′′′ to q and the final state of P′′′ to q′. Moreover,

we constrain the pushdown automaton P′′′ such that the only

first possible simulated transition of P is precisely the push

transition t and the pushdown automaton P′′′ halts when its

stack is empty (except for the initial configuration). To detect

that the stack of P′′′ is empty, we can use a special symbol⊥ to

mark the bottom of the stack. By construction, the pushdown

automaton P′′ accepts exactly the words of length less than k
(which are the set of words σ generated by the run of P of

the form (q, σ, ε)→(k,d) (q
′, ε, ε) and where |σ| ≤ k). Observe

that (q, σσ′, w)→(k,d) (q
′, σ, w) for some w such that |w| = d

holds if and only if (q, σ, ε) →(k,d) (q
′, ε, ε) holds. Since the

stack depth of P′′ is at most k, the stack depth of P is at most

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

26

d+ k.

Given pushdown automata P0, . . . ,Pn and bounds

d0, . . . , dn ∈ N, we define the non-emptiness test of the
synchronization of depth-bounded pushdown automata as

the problem of checking the emptiness of the language

Ld0
(P) ∩ ��(Ld1

(P1), . . . , Ldn
(Pn)).

Lemma 4: The non-emptiness test of the synchronization

of depth-bounded pushdown automata is PSPACE-complete.

Proof: The upper-bound can be obtained by an easy

reduction to the emptiness problem for a Turing machine

having n+ 1-tapes, where each tape i ∈ [0..n] has di cells.

The lower bound follows by a reduction from the non-

emptiness test of the intersection of several regular languages

(particular case of depth-bounded pushdown automata) which

is known to be PSPACE-hard.

III. MULTI-PUSHDOWN SYSTEMS

In this section, we recall the definition of multi-pushdown
systems. Multi-pushdown systems (or MPDS for short) have

a finite set of states along with a finite number of read-write

memory tapes (stacks) with a last-in-first-out rewriting policy.

The types of transitions that can be performed by a MPDS are:

(i) pushing a symbol into one stack, (ii) popping a symbol

from one stack, or (iii) an internal action that changes the state

of the automaton while keeping the stacks unchanged. Note

that since we are not interested in this model as a language

acceptor, it does not include an input alphabet or final states.

Definition 1: A multi-pushdown system (MPDS) is a tuple

M= (n,Q,Γ,Δ, qinit) where n ≥ 1 is the number of stacks,

Q is a finite set of states, Γ is the stack alphabet, Δ ⊆
(
Q×

[1..n] × Q
)
∪
(
Q × [1..n] × Q × Γ

)
∪
(
Q × Γ × [1..n] × Q

)
is the transition relation, and qinit is the initial state.

Let q, q′ ∈ Q be two states, i ∈ [1..n] a stack index, and

γ ∈ Γ a stack symbol. A transition of the form (q, i, q′)
is an internal operation that moves the state from q to q′

while keeping the contents of the stacks unchanged. The stack

index i is included in this operation for technical reasons.

A transition of the form (q, i, q′, γ) corresponds to a push

operation that changes the state from q to q′, and adds the

symbol γ to the top of the i-th stack. Finally, a transition of

the form (q, γ, i, q′) corresponds to a pop operation that moves

the state from q to q′, and removes the symbol γ from the top

of the i-th stack.

A configuration c of M is an (n+1)-tuple (q, w1, . . . , wn)

where q ∈ Q is a state and for every i ∈ [1..n], wi ∈ Γ
∗ is

the content of the i-th stack. We use State(c) and Stack i(c),
with i ∈ [1..n], to respectively denote q and wi. We denote

by cinitM = (qinit, ε, ε, . . . , ε) the initial configuration of M.

We define the transition relation −→M on the set of configu-

rations as follows. For configurations c = (q, w1, . . . , wn) and

c′ = (q′, w′
1, . . . , w

′
n), an index i ∈ [1..n], and a transition

t ∈ Δ, we write c t−→M c′ to denote that one of the following

cases holds:

• Internal operation: t = (q, i, q′) and w′
j = wj for all

j ∈ [1..n].

• Push operation: t = (q, i, q′, γ) for some γ ∈ Γ, w′
i =

γ · wi, and w′
j = wj for all j ∈ ([1..n] \ {i}).

• Pop operation: t = (q, γ, i, q′) for some γ ∈ Γ, wi =

γ · w′
i, and w′

j = wj for all j ∈ ([1..n] \ {i}).
A computation π of M from a configuration c to a

configuration c′ is a sequence c0t1c1t2 · · · tmcm such that: (1)

c0 = c and cm = c′, and (2) ci−1
ti−−→Mci for all i ∈ [1..m];

each configuration ci is said to be reachable from c. We use

initial(π) and target(π) to denote respectively c0 and cm.

Given two computations π1 = c0t1 · · · tmcm and π2 =

cm+1tm+2 · · · tkck, π1 and π2 are said to be compatible if

cm = cm+1. Then, we write π1 •π2 to denote the computation

π
def
= c0t1c1t2c2 · · · tmcmtm+2cm+2tm+3 · · · · · · tkck.

In the following, we propose the class of bounded-budget
computations of MPDS. Intuitively, with each stack i ∈ [1..n],
we associate two values ki, di ∈ Nω such that the stack i can

perform at most ki contexts without its size going below di.
A context is a run of Mwhere operations are exclusive to one

stack. (Observe that ki and di could be ω.) Next, we describe

bounded-budget computations formally.

Contexts: A context of a stack i ∈ [1..n] is a computation of

the form π = c0t1c1t2 · · · tmcm in which tj ∈ Δi
def
=
(
Q ×

{i} ×Q
)
∪
(
Q× {i} ×Q× Γ

)
∪
(
Q× {i} × Γ×Q

)
for all

j ∈ [1..m]. Observe that every computation can be seen as the

concatenation of a sequence of contexts π1 • π2 • . . . • π�.

For any two contexts π1 and π2 of the stack i, we write π1•i
π2 to denote that Stack i(initial(π2)) = Stack i(target(π1))

(i.e., in this case we say that π1 and π2 are compatible w.r.t.

stack i). This notation is extended in a straightforward manner

to sequence of contexts. Observe that if π = π1 •π2 • . . .•πm

is a computation where each πj is a context, then if i1 < i2 <
. . . < ik are all the indices j such that πj is a context of stack

i, then πi1 •i πi2 •i . . . •i πik .

A context π = c0t1c1t2 · · · tmcm of the stack i ∈ [1..n] is

said to be of depth at most (resp. least) d ∈ N if and only if for

every j ∈ [0..m], |Stack i(cj)| ≤ d (resp. |Stack i(cj)| ≥ d).

The definition is extended in the straightforward manner to

sequences of contexts as follows: The sequence π = π1 •i
π2 •i . . . •i πm of compatible contexts of the stack i is of

depth at most (resp. least) d ∈ N iff for every j ∈ [1..m], πj

is of depth at most (resp. least) d.

Block: A block ρ of a stack i ∈ [1..n] of size m ∈ N and depth

d ∈ N is a sequence of compatible contexts of the form c0t0 ·
π1 •i π2 •i · · · •i πm · tmcm of stack i such that |Stack i(c0)| =
|Stack i(cm)| = d and πj is a context of depth at least d + 1

for all j ∈ [1..m].

Budget-Bounded Computations: Intuitively, in a budget-

bounded computation, we associate with each stack i ∈ [1..n],
a budget of contexts ki ∈ Nω and depth bound di ∈ Nω

such that if we consider a point in the computation where the

stack i is of depth di and a symbol is being pushed into this

stack (i.e., the depth of the stack now becomes di + 1), then

this newly pushed stack symbol should be removed within ki
contexts involving this stack i. This implies that, in a budget-

bounded computation, each computation of the stack i is a

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

27

concatenation of contexts of depth at most di and blocks of

size ki and depth di. The formal definition is as follows:

Let π be a computation of M. Let k̄ = (k1, k2 . . . , kn) ∈
N

n
ω be the context-budget vector and d̄ = (d1, d2, . . . , dn) ∈

N
n
ω the stack depth vector. We say that π is (k̄, d̄)-budget-

bounded if it can be written as a concatenation π1 • π2 • · · · •
πm of contexts (observe that for all j, πj and πj+1 could

be contexts of the same stack) in such a way that if σi =

πi
i1
•i πi

i2
•i · · · •i πi

mi
(with i1 < i2 < · · · < mi) is the

maximal sub-sequence of contexts in π belonging to the stack

i ∈ [1..n], then there is a sequence ρi = ρi1 •i ρi2 •i · · · •i ρi�i of

contexts of depth at most di and blocks of size ki and depth

di such that σi = ρi.

By restricting the allowed bound vectors (k̄, d̄), we can

distinguish two sub-classes of MPDS under budget-bounding.

Definition 2: A (k̄, d̄)-budget-bounded computation π is a

singly unbounded-budget computation if and only if there is at

most one index i ∈ [1..n] such that either ki = ω or di = ω.

In singly unbounded-budget computations, we have at most

one stack i ∈ [1..n] that can perform an unbounded number

of contexts regardless of its depth. Any other stack j (with

i �= j) of M can at most perform a finite number consecutive

contexts without its size going below a given finite bound.

Definition 3: A (k̄, d̄)-budget-bounded computation π is a

uniformly bounded-budget computation if and only if for

every i ∈ [1..n], we have ki ∈ N and di ∈ N.

Observe that in the case of uniformly bounded-budget

computations, each stack i ∈ [1..n] has a finite context-budget

and a finite stack depth bound.

IV. THE BUDGET-BOUNDED REACHABILITY PROBLEM

In this section, we study the decidability and complex-

ity of the reachability problem for MPDS under budget-

bounding. Let M = (n,Q,Γ,Δ, qinit) be a MPDS. Let

k̄ = (k1, k2 . . . , kn) ∈ N
n
ω be the context-budget vector

and d̄ = (d1, d2, . . . , dn) ∈ N
n
ω the stack depth vector. The

(k̄, d̄)-budget-bounded reachability problem is to determine,

for a given state qfinal ∈ Q, whether there is a (k̄, d̄)-budget-

bounded computation from the initial configuration cinitM to the

configuration (qfinal, ε, . . . , ε). The input size of this problem

is n+ |Q|+ |Γ|+ |Δ|+ k + d, where k and d are the largest

natural numbers (or 0 if they do not exist) in the vectors k̄
and d̄, respectively.

A. The Uniformly Budget-Bounded Reachability Problem

In the following, we show that the reachability problem for

MPDS restricted to only uniformly budget-bounded computa-

tions is PSPACE-complete.

Theorem 5: The (k̄, d̄)-budget-bounded reachability prob-

lem for MPDS is PSPACE-complete if for every i ∈ [1..n], we

have ki ∈ N and di ∈ N.

The rest of this section is devoted to the proof of Theorem

5. The lower bound follows by a reduction from the non-

emptiness test of the intersection of several regular languages

(which is known to be PSPACE-hard).

To prove the upper bound, we reduce the reachability prob-

lem for MPDS restricted to only uniformly budget-bounded

computations to the non-emptiness test of the synchroniza-

tion of depth-bounded pushdown automata which is PSPACE-

complete (see Lemma 4). The idea behind the proof is the

following: Let ρ be a (k̄, d̄)-uniformly budget-bounded com-

putation and let i ∈ [1..n] be a stack of M. Then, we know

that the projection of π on the set of transitions performed by

stack i is a compatible sequence ρi of contexts of the form

πi
1 •iπi

2 •i · · · •iπi
mi

. Since the communication between stacks

is done via control states, we can summarize each context πi
j

(with j ∈ [1..mi]) by a pair of states of the form (qij , q
′i
j)

where qij (resp. q′ij) is the state at the beginning (resp. end) of

the context πj . Then, we can summarize the stack computation

ρi by the summary sequence (qi1, q
′i
1)(q

i
2, q

′i
2) · · · (qimi

, q′imi
).

We show that it is possible to compute a pushdown automaton

Pi such that the set of all possible summary sequences that

can be generated by stack i along a (k̄, d̄)-uniformly budget-

bounded computation can be characterized by the (−1, d+k)-
bounded language of Pi. Then, we show that we can put

together all summary traces and hence produce only consistent

interleavings of these summaries (for all stacks) that arises

from (k̄, d̄)-uniformly budget-bounded computation.

Before we present the details, we introduce some notations

and definitions that will be useful. For any context π =

c0t1c1t2 · · · tmcm, we can associate a tuple Summary(π) =

(q, q′) of the pair of states encountered at the beginning and

end of the context π (i.e., q = State(c0) and q′ = State(cm)).

Let ρ = π1 •iπ2 •i · · ·•iπ� be a sequence of contexts for some

i ∈ [1..n]. We can then extend the definition of context sum-

maries to sequence of contexts as follows: Summary(ρ) =

Summary(π1)Summary(π2) · · ·Summary(π�). The function

Summary is also extended in straightforward manner to

blocks and sequences of blocks and contexts.

Let w = (q1, q
′
1)(q2, q

′
2) · · · (qm, q′m) be a word over the

summary alphabet Q×Q. The word (or summary) w is said

to be consistent if q1 = qinit, q
′
m = qfinal and q′j = qj+1 for all

j ∈ [1..m−1]. Observe that the set of all consistent summaries

can be recognized by a finite state automaton (i.e., a pushdown

automaton of depth 0) whose size is polynomial in M. Let P0

be such a pushdown automaton.

Let π be a (k̄, d̄)-budget-bounded computation that reaches

the state qfinal. We can assume that π is of the form π1 •
π2 • π3 • · · · • πm where each πj , with j ∈ [1..m], is a stack

context. Then, let σi = πi
i1
•i πi

i2
•i πi

i3
•i · · · •i πi

mi
(with

i1 < i2 < i3 < · · · < mi) be the maximal sub-sequence of

contexts in π belonging to the stack i ∈ [1..n]. By definition,

we know that for any stack i ∈ [1..n], there is a sequence

ρi = ρi1 •i ρi2 •i · · · •i ρi�i of contexts of depth at most di and

blocks of size ki and depth di such that σi = ρi.

Then, it is easy to see that there is a consistent word

in ��({Summary(σ1)}, . . . , {Summary(σn)}). On the other

hand, we can show that if for every stack i ∈ [1..n], there is

a compatible sequence σi of contexts of depth at most di and

blocks of size ki and depth di such that there is a consistent

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

28

word in ��({Summary(σ1)}, . . . , {Summary(σn)}), then M
has a (k̄, d̄)-budget-bounded computation that reaches qfinal.

Now, we can show that checking the existence of such a

consistent word can be reduced, in polynomial time, to the

non-emptiness test of the synchronization of depth-bounded

pushdown automata (which is PSPACE-complete), and hence

we obtain the completeness of Theorem 5.

Lemma 6: The problem of checking whether for every

i ∈ [1..n] there is a compatible sequence σi of contexts

of depth at most di and blocks of size ki and depth di
for the stack i such that there is a consistent word in

��({Summary(σ1)}, . . . , {Summary(σn)}) can be reduced

to the non-emptiness test of the synchronization of depth-

bounded pushdown automata.

Proof (sketch). For every i ∈ [1..n], let Li(M) be the set

of words Summary(σi) where σi is a compatible sequence

of contexts of depth at most di and blocks of size ki and

depth di for stack i. Then, we can construct if ki > 0

(resp. ki = 0), in polynomial time, a pushdown automaton Pi

whose (ki, di)-bounded (resp. (−1, di)-bounded) language is

precisely Li(M). The pushdown automaton Pi performs the

same operations on its state and stack as the ones specified

by Δi (i.e., the set of operations of stack i). More precisely,

Pi (1) guesses the occurrence of a context πi of stack

i while making visible as a transition label its summary

Summary(πi) = (qi, q
′
i), and (2) checks if from the current

stack content and the state qi, the state q′i is reachable (and

this will mark the end of the simulation of the context πi).

Moreover, Pi guesses for each context if it is a context of

depth at most di or a context belonging to a block of size ki
and depth di (in the latter case Pi guesses also its position

inside the block), then checks that all these assumptions hold

when checking the feasibility of such contexts.

Now, we can apply Lemma 1 to construct, for each push-

down automaton Pi, a bounded-depth pushdown automaton

P′
i such that Lki+di(P′

i) = Li(M). Then, checking whether

for every i ∈ [1..n] there is a compatible sequence σi of

contexts of depth at most di and blocks of size ki and

depth di for stack i such that there is a consistent word

in ��({Summary(σ1)}, . . . , {Summary(σn)}) boils down

to checking the non-emptiness of the language L0(P0) ∩
��(Lk1+d1

(P′
1), . . . , Lkn+dn

(P′
n)).

B. The Singly Unbounded-Budget Reachability Problem

In the following we show that the reachability problem for

MPDS restricted only to singly unbounded-budget computa-

tions is EXPTIME-complete.

Theorem 7: The (k̄, d̄)-budget-bounded reachability prob-

lem for MPDS is EXPTIME-complete if there is at most one

index i ∈ [1..n] such that either ki = ω or di = ω.

The rest of this section is devoted to the proof of Theorem

7.

Lower bound: It is known that the following problem is

EXPTIME-complete [19]: Given a pushdown automaton P
recognizing a language L, and n − 1 finite state automata

Ai recognizing languages Li, check the non-emptiness of

L∩⋂n
i=2 Li. We can show that this problem can be reduced,

in polynomial time, to the reachability problem for MPDS

restricted only to singly unbounded-budget computations. The

idea is the following: The first stack (with unbounded number

of contexts regardless of its depth) is used to simulate P, while

each other stack i ∈ [2..n] is used to simulate the automaton

Ai. Each stack i ∈ [1..n] has a depth bound 1 and a context

budget 0. Moreover, the stack i contains at most one symbol

which is the current state of Ai. (We assume here that the

automaton Ai does not contain ε-transitions.)

The simulation proceeds as follows: An ε-labeled transition

of P is simulated by a transition of the first stack while the

other stacks remain unchanged. A labeled transition of P with

an input symbol a is simulated by a transition of the first stack,

followed by a sequence of transitions in which the other stacks

are checked and then updated, one after the other, to ensure

that each Ai is able to perform a transition labeled by a.

Upper bound: To prove the upper bound, we reduce the

reachability problem for M restricted to singly unbounded-

budget computations to the non-emptiness test of a pushdown

automaton whose size is exponential in M. Recall that the

non-emptiness test for pushdown automata is in PTIME [20].

In the following we use the same notations and definitions

as in the previous subsection. We assume here that only the

first stack can perform an unbounded number of contexts

regardless of its depth. Then, we can show that M has

a (k̄, d̄)-budget-bounded computation that reaches qfinal iff

there is a compatible sequence σ1 of contexts of the first

stack and for every stack i ∈ [2..n], there is a compatible

sequence σi of contexts of depth at most di and blocks of

size ki and depth di such that there is a consistent word in

��({Summary(σ1)}, . . . , {Summary(σn)}). In fact, we can

prove that checking the existence of such a consistent word can

be reduced, in exponential time, to the non-emptiness test of a

pushdown automaton, and hence we obtain the completeness

of Theorem 7.

Lemma 8: The problem of checking whether there is a

compatible sequence σ1 of contexts of the first stack and

for every i ∈ [2..n], there is a compatible sequence σi of

contexts of depth at most di and blocks of size ki and depth

di for the stack i such that there is a consistent word in

��({Summary(σ1)}, . . . , {Summary(σn)}) can be reduced

to the non-emptiness test of a pushdown automaton P whose

size is exponential in M.

Proof (sketch). We can construct, in polynomial time, a push-

down automaton P1 whose language L(P1) is precisely the set

of words Summary(σ1) where σ1 is a compatible sequence of

contexts of the first stack. On the other hand, as in the previous

subsection, we can easily construct, in polynomial time, for ev-

ery i ∈ [2..n], a pushdown automaton Pi whose (−1, di+ki)-
bounded language is precisely Li(M). Then, checking whether

there is a compatible sequence σ1 of contexts of the first stack

and for every i ∈ [2..n], there is a compatible sequence σi

of contexts of depth at most di and blocks of size ki and

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

29

depth di for the stack i such that there is a consistent word

in ��({Summary(σ1)}, . . . , {Summary(σn)}) boils down

to checking the non-emptiness of the language L0(P0) ∩
��(L(P1), Lk2+d2(P2), . . . , Lkn+dn(Pn)). Finally, we can use

standard automata constructions, to show that we can construct

a pushdown automaton P such that L(P) = L0(P0) ∩
��(L(P1), Lk2+d2

(P2), . . . , Lkn+dn
(Pn)). Moreover, the size

of P is exponential in M.

V. OTHER SUBCLASSES OF MPDS WITH

BUDGET-BOUNDED COMPUTATIONS

In this section, we will briefly mention two other interesting

subclasses of MPDS.

Definition 4 (Bounded stack-depth computations): We say

that a (k̄, d̄)-budget-bounded computation π is a d̄-bounded
stack-depth computation if and only if for every i ∈ [1..n], we

have ki = 0 and di ∈ N.

In the case of a bounded stack-depth computation, the size

of the i-th stack in each reachable configuration in π is always

bounded by di.

Definition 5 (Unbounded-budget computations): We say

that a (k̄, d̄)-budget-bounded computation π is an unbounded-
budget computation if and only if there are at least two

different stacks i, j ∈ [1..n] such that i �= j and for every

 ∈ {i, j}, either k� = ω or d� = ω.

Observe that in the case of unbounded-budget computations,

we have at least two different stacks that are allowed to

perform an unbounded number of contexts regardless of their

stack depth.

A. Known Results

In the following we recall some well-known results for

the reachability problem for MPDS under budgets. More

precisely, we consider bounded stack-depth and unbounded-

budget computations.

Recall that, in the case of unbounded-budget computa-

tions, we have at least two different stacks that can perform

unbounded number of context-switches regardless of their

stack sizes. This implies that the reachability problem for

MPDS restricted only to unbounded-budget computations is

undecidable. This result can be shown using a reduction from

the problem of checking non-emptiness of the intersection of

two context-free languages (which is an undecidable problem).

Theorem 9: The (k̄, d̄)-budget-bounded reachability prob-

lem for MPDS is undecidable if there are at least two different

stacks i, j ∈ [1..n] such that i �= j and for every
 ∈ {i, j},
either k� = ω or d� = ω.

One way to overcome this undecidability barrier is to bound

the depth of each stack (which corresponds to case of MPDS

restricted to bounded-stack-depth computations). In this case,

we show:

Theorem 10: The (k̄, d̄)-budget-bounded reachability prob-

lem for MPDS is PSPACE-complete if for every i ∈ [1..n], we

have ki = 0 and di ∈ N.

Proof: (sketch) Since in the case of a bounded stack-

depth computation π, the depth of the i-th stack is bounded

by di for any reachable configuration in π, the upper-bound

of Theorem 10 can be obtained by an easy reduction to the

emptiness problem for a Turing machine having n-tapes, and

where each tape i ∈ [1..n] has di cells.

The lower bound of Theorem 10 follows by a reduction from

the non-emptiness test of the intersection of several regular

languages (which is known to be PSPACE-hard).

VI. FROM CONCURRENT TO SEQUENTIAL

In this section, we will describe an automatic code-to-

code translation from concurrent to sequential programs. The

resulting sequential program simulates the concurrent program

running under the uniformly bounded-budget restriction. First,

we will briefly explain the language for concurrent programs.

The remainder of the section describes the translation.

We consider a C-like programming language where concur-

rent programs consist of processes, procedures and statements.

We assume that variables range over some (potentially infinite)

data domain D and that we have a language of expressions

〈expr〉 interpreted over D. The statements consists of simple

C-like statements, enriched with nop, assume, assert and

atomic. A procedure consists of a sequence of arguments, a

set of local variables, and a sequence of statements. A process
is a tuple P = 〈G,F1 · · · Fm〉, where G is a finite set of global
variables and each Fi is a procedure. For each process, there

should be exactly one distinguished procedure called main,

which constitutes the entry point of that process. A concurrent
program is a tuple C = 〈S,P1 · · · Pn〉, consisting of a finite

set S of shared variables and a sequence of processes.

Next, we describe an automatic transformation from a con-

current program C = 〈S,P1 · · · Pn〉 to a sequential program S
which simulates the behavior of C up to a given bound ki of

context switches for each Pi whenever the stack of Pi grows

above di. If the stack of Pi never grows above di, there is no

limit on the number of times Pi can be switched out.

A. Programs without Procedure Calls

Assume that we have a concurrent program C =

〈S,P1 · · · Pn〉, where no process Pi contains a procedure

call, i.e. each process consists only of a main procedure. To

construct the sequential program S , we take each statement in

the procedure and put it inside a scheduling loop. We introduce

for each process Pi a variable pc i which keeps track of its

programs counter. In the scheduling loop, each statement is

enclosed in a conditional which contains a nondeterministic

check of a Boolean variable ? and a check for the correct

program counter value. If the program counter check succeeds,

but ? happens to be false, the statement will not be executed.

Additionally, all other program counter checks will fail, so the

control flow will fall through the remainder of the statements.

In this way, a context switch is simulated.

As an example, consider the program in Fig. 1 along with

the sequential program which simulates it. It is easy to see

that the sequential program simulates all behaviors of the

concurrent program, including the interleaving x = x + 2,

x = 1, assert(x != 1), x = 2 in which the assertion fails.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

30

B. Programs with Procedure Calls
Assume now that we add procedure calls. There are two

cases whenever a call happens in Pi. Either the stack height

is above di, in which case we must limit the number of

preemptions of Pi to ki as long as Pi stays above di, or

the stack height is not above di, in which case the number of

preemptions is unbounded. Instead of keeping track of these

two possibilities, we will inline the procedure calls in the main

procedure of each process Pi di times.
1) Inlining: For any process P , let I(P) be the result of

inlining all procedure calls in the main procedure of P . Note

that this inlining might create new local variables. Let Im

denote the result of composing I with itself m times. Given

a concurrent program C = 〈S,P1 · · · Pn〉, we construct an

inlined concurrent program C′ = 〈S, Id1(P1) · · · Idn(Pn)〉. In

the execution of C′, any procedure call in Idi(Pi) means that

the corresponding execution in C would take the process Pi

above its stack limit di. This means that we can differentiate

between code based on whether it is inside or outside the

main procedure of the process. Code that is outside the main

procedure will be transformed in a way that takes into account

the preemption bound ki.
2) Context switching: In [13], La Torre, Madhusudan and

Parlato describe a transformation that only keeps track of the

local state of one process, at the expense of recomputing that

state after context switches. More precisely, the transformation

keeps track of k + 1 valuations s0 · · · sk of shared variables.

The initial values of the shared variables are stored in s0.

Assume that process P1 starts running. When the context

switch occurs, the values of the shared variables are stored

in s1. Another process then runs until there is another context

switch, storing the shared varaibles in s2. When P1 is switched

in, it is executed from the beginning until the values of the

shared variables equal s1, i.e. the values when it was switched

out. The shared variables are then assigned the values stored in

s2, and the execution continues. When the next context switch

occurs, the shared variables are stored in s3, and so on.
We use a similar approach to deal with context switches

when a process Pi is above its stack bound di. The state of

each process is thus stored explicitly up to the point where a

process goes above its stack bound. When several processes

are above their bounds, we only keep the local state of the

one currently running. An important difference between our

model and the one of [13] is that even when all processes are

above their stack bound, we allow k preemptions per process.

To facilitate this, we store 2k+1 copies of the shared variables

for each process.
3) Phases: An execution r of a single process in a con-

current program can be divided into a sequence r0, r1, . . . of

executions separated by preemptions. We call each ri a phase.

In other words, a phase is a continuous sequence of statements.

A process begins in r0 and executes statements until there is

a context switch. When the process gets switched back in, it

runs r1, and so on.
In the special case where a process is always above its

stack bound, the execution of that process may consist of at

most k + 1 phases. For this reason, we introduce for each

process a variable phase, which keeps track of which phase

the execution is in. This variable is increased whenever a

context switch happens. Since we reconstruct the local state

of a process by executing from the beginning, we also store

a virtual phase phase’, which is updated both during the

reconstruction and the actual execution. This means that as

long as phase’< phase, we are reconstructing the local state.

In general, a process is not always above its stack bound.

When a process goes below that bound, the budget of allowed

preemptions is reset. In our transformation, this means that we

reset the phase variables, starting again from phase = 0 the

next time a procedure call happens.

4) Transformation: For a concurrent program C =

〈S,P1 · · · Pn〉, we first construct the corresponding inlined

concurrent program C′ = 〈S, Id1(P1) · · · Idn(Pn)〉. We then

transform C′ into a sequential program S that simulates C′. We

can find among the global variables of S , for each process Pt,

the sets S0
t , . . . , S

2k+1
t of copies of the shared variables of C.

The transformation of the statements in the main procedures

of each process is done in the same way as previously, with

the exception of procedure calls. Before each procedure call

in a process Pt, we insert a code block that, if the process is

not recomputing the local state, saves the current values of the

global variables in S0
t . This code block is shown in Fig. 2.

The set of procedures of the sequential program is the

union of the transformed procedures of its processes. When

we transform a procedure, we perform three steps:

• To simulate context switches, we add the code shown in

the right side in Fig. 2 before any statement that contains

shared variables and therefore is visible to the outside.

• Before any statement that contains shared variables, we

also add code to detect whether the local context has been

reconstructed or not. This code is shown in Fig. 3.

• At the end of the procedure, we check if we are about

to return to the scheduling loop without having recon-

structed the local state. In this case, we abort.

VII. EXPERIMENTAL RESULTS

We have evaluated our approach on several examples,

including one in which a big number of context switches is

needed in order to reach a bad state. The experiments presented

in Fig. 4 were run on a 2.2 GHz Intel Core i7 with 4 GB of

memory. Most literature examples are written in pseudo code

or C-like code. In order to run them, we manually translated

them to our syntax. This operation can be automated. It is in

fact possible to extend our tool in order to parse C code.

We have implemented our code-to-code translation scheme

in HASKELL [21]. The scheme inputs a concurrent program

P and produces a sequential program P ′ such that running

P under the uniformly bounded-budget restriction yields the

same set of reachable states as running P ′. The sequential

program is delivered in different languages, namely: REMO-

PLA for MOPED [8], and a C-like language for CBMC [7] and

ESBMC [9]. We use these three tools as back end to verify

the obtained sequential code. Our experimental results are

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

31

1 process example:
2

3 int x = 0;
4

5 process p1:
6 void main(){
7 x = 1;
8 x = 2;
9 }

10

11 process p2:
12 void main(){
13 x = x + 2;
14 assert(x != 1);
15 }

1 process transformed:
2

3 int pc1 = 1;
4 int pc2 = 1;
5 int running;
6 int x = 0;
7

8 void scheduler(){
9 while(progress){

10 progress = false;
11

12 // schedule a process
13 if(? && pc1!=3){
14 running = 1;
15 }
16 if(? && pc2!=3) {

17 running = 2;
18 }
19 // process 1
20 if(running == 1){
21 if(pc1==1 && ?){
22 x = 1;
23 progress = true;
24 pc1 = 2;
25 }
26 if(pc1==2 && ?){
27 x = 2;
28 progress = true;
29 pc1 = 3;
30 }
31 }
32 // process 2

33 if(running == 2){
34 if(pc2==1 && ?){
35 x = x + 2;
36 progress = true;
37 pc2 = 2;
38 }
39 if(pc2==2 && ?){
40 assert(x != 1);
41 progress = true;
42 pc2 = 3;
43 }
44 }
45 }
46 }

Fig. 1. Left: Transformation of Procedure Calls in Process t. Right: Context Switches in Procedures of Process t.

1

2 if(phaset == 0){
3 S0

t = S;
4 S = S0

t ;
5 }

6

.

.

.
7 if(phaset == k){
8 S2k

t = S;
9 S = S0

t ;
10 }

1

2 if(!ret && ?){
3 if(phase′

t == phaset){
4 if(phaset == 0){
5 S1

t = S;
6 }

7

.

.

.
8 if(phaset == k){
9 S2k+1

t = S;
10 }
11

12 phaset =
13 phaset + 1;
14 ret = true;
15 }

Fig. 2. Left: Transformation of Procedure Calls in Process t. Right: Context
Switches in Procedures of Process t.

1 if(!ret && ?){
2 if(phase′

t < phaset){
3 if(phase′

t == 0 && S == S1
t){

4 phase′
t = 1;

5 S = S2
t ;

6 }

7

.

.

.
8 if(phaset == k-1 && S == S2k−1

t){
9 phase′

t = k;
10 S = S2k

t ;
11 }
12 }

Fig. 3. Checking Reconstruction of Local State in Process t

Type of Analysis

Concurrent to Sequential Concurrent

Examples k1 MOPED CBMC ESBMC k2 POIROT k3 ESBMC

Account [22] 0 -.- -.- 1.1 4 3.34 10 -.-

BigNum [21] 0 8.39 -.- -.- 26 -.- 234 -.-

Bluetooth3a [21] 0 744.49 -.- -.- 11 18.38 28 FP
Token Ring [22] 0 0.13 0.2 0.18 1 2.72 4 1.47

Account Bad [22] 0 -.- 0.48 1.41 1 2.13 4 0.11
BigNum Bad [21] 0 5.9 13.4 239.4 26 -.- 26 -.-

Bluetooth1 [23] 1 4.18 0.37 1.28 2 1.92 5 NF
Bluetooth2 [23] 1 0.64 5.68 34.38 3 2.9 5 0.5
Bluetooth3b [23] 1 1.26 0.95 5.0 2 2.5 5 NF
Infinite Loop 1 [24] 1 4.1 0.2 0.25 2 1.45 1 0.08
Infinite Loop 2 [24] 1 17.3 0.84 3.85 1 0.96 1 0.09
Token Ring Bad [22] 0 0.13 0.16 0.26 2 2.74 4 0.27

Fig. 4. We report the running times of our experimentation results in seconds.
We use the symbol -.- to denote a timeout (set to 900 seconds). The column
k1 contains the context-switch budget for our code-to-code translation. The
columns k2 and k3 are the number of context switches given as input for
POIROT and ESBMC respectively. NF: Bug Not Found. FP: False Positive.

then compared to ones obtained using two verification tools

for concurrent programs, namely ESBMC and POIROT [10].

The time required for sequentialization is negligible and not

included in the results.
The table in Fig. 4 summarizes our experimental results. In

the upper part of the table, only safe (correct) programs are

considered. We fixed the context switch bounds k1, k2, and k3
such that all compared tools are able to cover the same set of

control locations. The results show that our approach manages

to perform better in three out of four examples, in particular

for the BIGNUM example where the concurrent tools timeout.

In this example, a large number of context switches (26) is

required to find the assertion violation. Also, we noticed that

ESBMC finds a bug in the correct example BLUETOOTH3A.

It has been confirmed that this is a false positive [25]. In

the lower part of the table, we consider faulty programs. For

half of those programs, the experimental results show that our

approach succeeds in finding all the bugs within a smaller

amount of time compared to the concurrent tools. In particular,

both POIROT and ESBMC timed out on the BIGNUM BAD

example. Also, ESBMC, which did as well as our approach

in terms of time, failed to find bugs in the faulty examples

BLUETOOTH 1 and 3b regardless of the number of context-

switches it was allowed.

VIII. CONCLUSION

We have introduced the class of MPDS with budgets where

each stack can perform an unbounded number of context

switches if its size is below or equal to a given bound, while

it is restricted to a finite number of context switches when

its size is above that bound. We have identified two decidable

subclasses of MPDS with budgets, namely uniformly bounded-

budget MPDS and singly unbounded-budget MPDS. We have

shown that the reachability problem for uniformly bounded-

budget MPDS and singly unbounded-budget MPDS is respec-

tively PSPACE-complete and EXPTIME-complete. Moreover,

we have proposed a code-to-code translation that inputs a

concurrent program P and produces a sequential program P ′

such that, running P under the uniformly bounded-budget re-

striction yields the same set of reachable states as running P ′.
We have implemented a prototype tool, and run it successfully

on a set of benchmarks.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

32

REFERENCES

[1] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent
software,” in TACAS, ser. LNCS, vol. 3440. Springer, 2005, pp. 93–107.

[2] S. La Torre, P. Madhusudan, and G. Parlato, “A robust class of context-
sensitive languages,” in LICS. IEEE, 2007, pp. 161–170.

[3] M. F. Atig, B. Bollig, and P. Habermehl, “Emptiness of multi-pushdown
automata is 2ETIME-complete,” in DLT’08, ser. LNCS, vol. 5257.
Springer, 2008, pp. 121–133.

[4] M. Lange and H. Leiß, “To CNF or not to CNF ? An efficient yet
presentable version of the CYK algorithm,” Informatica Didactica,
vol. 8, 2008-2010.

[5] S. La Torre and M. Napoli, “Reachability of multistack pushdown
systems with scope-bounded matching relations,” in CONCUR, ser.
LNCS, vol. 6901. Springer, 2011, pp. 203–218.

[6] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” in PLDI. ACM, 2007, pp. 446–455.

[7] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, ser. LNCS, vol. 2988, 2004, pp. 168–176.

[8] J. Esparza, S. Kiefer, and S. Schwoon, “Abstraction refinement with
Craig interpolation and symbolic pushdown systems,” in TACAS, ser.
LNCS, vol. 3920, 2006, pp. 489–503.

[9] L. Cordeiro, J. Morse, D. Nicole, and B. F. 0002, “Context-bounded
model checking with esbmc 1.17 - (competition contribution).” in
TACAS, ser. LNCS, vol. 7214, 2012, pp. 534–537.

[10] S. Lahiri, A. Lal, and S. Qadeer, “Poirot,” microsoft Research. [Online].
Available: http://research.microsoft.com/en-us/projects/poirot

[11] A. Finkel and A. Sangnier, “Reversal-bounded counter machines revis-
ited,” in MFCS, ser. LNCS, vol. 5162. Springer, 2008, pp. 323–334.

[12] A. Lal and T. W. Reps, “Reducing concurrent analysis under a context
bound to sequential analysis,” Formal Methods in System Design,
vol. 35, no. 1, pp. 73–97, 2009.

[13] S. La Torre, P. Madhusudan, and G. Parlato, “Reducing context-bounded
concurrent reachability to sequential reachability,” in CAV, ser. LNCS,
vol. 5643. Springer, 2009, pp. 477–492.

[14] ——, “Model-checking parameterized concurrent programs using linear
interfaces,” in CAV, ser. LNCS, vol. 6174. Springer, 2010, pp. 629–644.

[15] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded scheduling,”
in POPL. ACM, 2011, pp. 411–422.

[16] S. La Torre and G. Parlato, “Scope-bounded multistack pushdown
systems: fixed-point, sequentialization, and tree-width,” University of
Southampton, Technical Report, march 2012.

[17] G. Parlato, personal communication.
[18] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.
[19] A. Heußner, J. Leroux, A. Muscholl, and G. Sutre, “Reachability analysis

of communicating pushdown systems,” in FOSSACS, ser. LNCS, vol.
6014. Springer, 2010, pp. 267–281.

[20] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis of
pushdown automata: Application to model-checking,” in CONCUR, ser.
LNCS, vol. 1243. Springer, 1997, pp. 135–150.

[21] May 2012. [Online]. Available: http://user.it.uu.se/%7Ejarst116/
fmcad2012/

[22] “Esbmc concurrency benchmark,” Feb. 2009. [Online]. Available: http://
users.ecs.soton.ac.uk/lcc08r/esbmc/concurrent-software-benchmarks.zip

[23] D. Suwimonteerabuth, “Reachability in pushdown systems: Algorithms
and applications,” Ph.D. dissertation, Technische Universität München,
2009.

[24] S. Qadeer, S. K. Rajamani, and J. Rehof, “Summarizing procedures in
concurrent programs,” 2004.

[25] J. Morse, personal communication.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

33

Quantifier Elimination by Dependency Sequents

Eugene Goldberg and Panagiotis Manolios
Northeastern University, USA, {eigold,pete}@ccs.neu.edu

Abstract—We consider the problem of existential quantifier
elimination for Boolean CNF formulas. We present a new
method for solving this problem called Derivation of Dependency-
Sequents (DDS). A Dependency-sequent (D-sequent) is used to
record that a set of quantified variables is redundant under
a partial assignment. We introduce the join operation that
produces new D-sequents from existing ones. We show that DDS
is compositional, i.e., if our input formula is a conjunction of
independent formulas, DDS automatically recognizes and exploits
this information. We introduce an algorithm based on DDS and
present experimental results demonstrating its potential.

I. INTRODUCTION

In this paper, we consider the problem of eliminating

quantifiers from formulas of the form ∃X[F] where F is a

Boolean CNF formula and some variables of F may be free

of quantifiers. We will refer to such formulas as ∃CNF. The

Quantifier Elimination (QE) problem, is to find a quantifier-

free CNF formula G such that G ≡ ∃X[F].

Our interest in the QE problem is twofold. First, the QE

problem occurs in numerous areas of hardware design and

verification, e.g., in symbolic model checking [9], [10], [22]

when computing reachable states. Second, one can argue that

progress in solving the QE problem should have a deep impact

on SAT-solving [15]. In particular, as McMillan pointed out,

even the basic operation of resolution is related to the QE

problem [23]. The resolvent C of clauses C ′,C ′′ on a variable

v is obtained by eliminating the quantifier from ∃v[C ′ ∧C ′′
].

The success of resolution-based SAT-solvers [21], [24] has

led to the hunt for efficient SAT-based algorithms for the QE

problem [23], [18], [6], [13]. In this paper, we continue in

this direction by introducing a resolution-based QE algorithm

operating on CNF formulas. Such formulas are ubiquitous in

hardware verification because a circuit N can be represented

by a CNF formula whose size is linear in that of N and that

has the same set of variables as N .

Our approach is based on the following observation. The

QE problem is trivial if F does not depend on variables of X .

In this case, dropping the quantifiers from ∃X[F] produces an

equivalent formula. If F depends on X , after adding to F a

set of clauses implied by F , the variables of X may become

redundant in ∃X[F]. That is, the clauses of F depending on X
can be dropped and the resulting CNF formula G is equivalent

to the original formula ∃X[F]. The problem is that one needs

to know when the variables of X become redundant.
Unfortunately, resolution is deficient in expressing redun-

dancy of variables. Let y be an assignment to all non-

quantified variables of ∃X[F]. Let Fy denote F under as-

signment y. If Fy is unsatisfiable, then a clause C falsified

by y can be derived by resolving clauses of F . After adding

C to F , the variables of X are redundant in ∃X[Fy]. In

this case, resolution works. Assume, however, that Fy is

satisfiable. Then, the variables of X are also redundant in

∃X[Fy] because Fy remains satisfiable after removing any

set of clauses. But a resolution derivation cannot express this

fact since no clause falsified by y is implied by F .

To address this problem, we introduce the notion of De-

pendency sequents (D-sequents). A D-sequent has the form

(∃X[F], q) → Z where q is a partial assignment to variables

of F and Z ⊆ X . This D-sequent states that in the subspace

specified by q, the variables of Z are redundant in ∃X[F].

That is, in this subspace, after dropping clauses with variables

of Z from F one gets a formula equivalent to ∃X[F]. In

particular, the D-sequent (∃X[F],y) → X holds, if formula

Fy is satisfiable where y is an assignment to the non-quantified

variables of ∃X[F].

In this paper, we introduce a QE algorithm called

DDS (Derivation of D-Sequents). In DDS , adding resolvent

clauses to F is accompanied by computing D-sequents. The

algorithm terminates when the D-sequent (∃X[G], ∅)→ X is

derived, where G is a CNF formula that includes the initial

clauses, F , and some resolvent clauses. Upon termination, the

variables of X are unconditionally redundant and a solution to

the QE problem is obtained by dropping the clauses containing

variables of X from G.

DDS includes a join operation that generates new D-

sequents from existing ones. Let (∃X[F], q′
) → Z and

(∃X[F], q′′
)→Z be valid D-sequents where q′ and q′′ have

opposite assignments to exactly one variable v. Then a new,

valid D-sequent (∃X[F], q) → Z can be obtained by joining

the D-sequents above, where q contains all assignments of q′

and q′′ except those to v.

In this paper, we compare DDS with its counterparts

both theoretically and experimentally. In particular, we show

that DDS is compositional while algorithms based on enu-

meration of satisfying assignments [23], [19], [13], [6] are

not. Compositionality here means that given an ∃CNF for-

mula ∃X[F1 ∧ · · · ∧ Fk] where formulas Fi depend on non-

overlapping sets of variables, DDS breaks the QE problem

into k independent subproblems. DDS is a branching algo-

rithm and yet it remains compositional no matter how branch-

ing variables are chosen. Compositionality of DDS means

that its performance can be exponentially better than that of

enumeration-based QE algorithms. Since DDS is a branching

algorithm it can process variables of different branches in dif-

ferent orders. This gives DDS a big edge over QE algorithms

that eliminate quantified variables one by one using a global

order [18], [15].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

34

D-sequents are related to boundary points [14]. A boundary

point is a complete assignment to variables of F with certain

properties. To make variables of Z ⊆ X redundant in ∃X[F]

one needs to eliminate a particular set of boundary points. This

elimination is performed by adding to F resolvent clauses that

do not depend on variables of Z. Although, DDS does not

compute boundary points explicitly, we introduce them in this

paper for the following two reasons. First, boundary points

provide the semantics of DDS . In particular, the proofs of

many propositions we use in this paper are based on the notion

of boundary points. Second, DDS avoids an explicit com-

putation of boundary points by using a particular branching

order: non-quantified variables of ∃X[F] are assigned before

quantified. However, there is no guarantee that such an order

is always optimal and so to achieve the best performance one

may need to interleave assignments to quantified and non-

quantified variables. In this case, to reduce the number of new

resolvent clauses to be added to F , one, in general, cannot

avoid an explicit computation of boundary points [17].

The contribution of this paper is as follows. First, we

relate the notion of variable redundancy with the elimination

of boundary points. Second, we introduce the notion of D-

sequents and the operation of joining D-sequents. Third, we

describe DDS , a QE algorithm; we prove its correctness

and evaluate it experimentally. Fourth, we show that DDS is

compositional.

This paper is structured as follows. In Section II, we

relate the notions of variable redundancy and boundary points.

Section III explains the strategy of DDS in terms of boundary

point elimination. D-sequents are introduced in Section IV.

Sections V and VI describe DDS and discuss its composi-

tionality. Section VII gives experimental results. Background

is discussed in Section VIII, and conclusions are presented in

Section IX.

II. REDUNDANT VARIABLES, BOUNDARY POINTS AND

QUANTIFIER ELIMINATION

The main objective of this section is to introduce the notion

of redundant variables and to relate it to the elimination of

removable boundary points.

A. Redundant Variables and Quantifier Elimination

Definition 1: An ∃CNF formula is a quantified CNF for-

mula of the form ∃X[F] where F is a CNF formula, and X
is a set of Boolean variables. If we do not explicitly specify

whether we are referring to CNF or ∃CNF formulas, when we

write “formula” we mean either a CNF or ∃CNF formula. Let

q be an assignment, F be a CNF formula, and C be a clause.

Vars(q) denotes the variables assigned in q; Vars(F) denotes

the set of variables of F ; Vars(C) denotes the variables of

C; and Vars(∃X[F]) = Vars(F) \X .

Definition 2: Let C be a clause, H be a formula, and q be

an assignment. Cq is true if C is satisfied by q; otherwise it

is the clause obtained from C by removing all literals falsified

by q. Let p be q∩Vars(H). Hq denotes the formula obtained

from H by first removing the clauses of H satisfied by p, and

then removing all the literals falsified by p in the remaining

clauses of H . If Vars(H) ⊆ Vars(q), then Hq is semantically

equivalent to a constant, and in the sequel, we will make use

of this without explicit mention.

Definition 3: Let G,H be formulas. We say that G,H are

equivalent, written G ≡ H , if for all assignments, q, such that

Vars(q) ⊇ (Vars(G)∪Vars(H)), we have Gq = Hq . Notice

that Gq and Hq have no free variables, so by Gq = Hq we

mean semantic equivalence.

Definition 4: The Quantifier Elimination (QE) problem for

∃CNF formula ∃X[F] consists of finding a CNF formula G
such that G ≡ ∃X[F].

Definition 5: A clause C of F is called a Z-clause if

Vars(C) ∩ Z �= ∅. Denote by FZ the set of all Z-clauses

of F .

Definition 6: The variables of Z are redundant in CNF

formula F if F ≡ (F \FZ
). The variables of Z are redundant

in ∃CNF formula ∃X[F] if ∃X[F] ≡ ∃X[F \ FZ
]. We note

that since F \FZ does not contain any Z variables, we could

have written ∃(X \Z)[F \FZ
]. To simplify notation, we avoid

explicitly using this optimization in the rest of the paper.

B. Redundant Variables and Boundary Points

Definition 7: Given assignment p and a formula F , we say

that p is an F -point (or a point of F) if Vars(F) ⊆ Vars(p).
In the sequel, by “assignment” we mean a possibly partial

one. To refer to a complete assignment we will use the term

“point”.

Definition 8: A point p of CNF formula F is called a Z-
boundary point of F if a) Z �= ∅ and b) Fp = false and

c) every clause of F falsified by p is a Z-clause and d) the

previous condition breaks for every proper subset of Z.

The term “boundary” is justified as follows. Let F be a

satisfiable CNF formula with at least one clause. Then there

always exists a {x}-boundary point of F , x ∈ Vars(F) that

is different from a satisfying assignment only in value of x.

Definition 9: Given a CNF formula F and a Z-boundary

point, p, of F :

• p is X-removable in F if 1) Z ⊆ X ⊆ Vars(F); and 2)

there is a clause C such that a) F ⇒ C; b) Cp = false;

and c) Vars(C) ∩X = ∅.
• p is removable in ∃X[F] if p is X-removable in F .

In the above definition, notice that p is not a Z-boundary

point of F ∧ C because p falsifies C and Vars(C) ∩ Z = ∅.
Proposition 1: A Z-boundary point p of F is removable in

∃X[F], iff one cannot turn p into an assignment satisfying F
by changing only the values of variables of X .

The proofs are given in [16].

Proposition 2: The variables of Z ⊆ X are not redundant

in ∃X[F] iff there is an X-removable W -boundary point of

F , W ⊆ Z.

Proposition 2 justifies the following strategy of solving the

QE problem. Add to F a set G of clauses that a) are implied

by F ; b) eliminate all X-removable Z-boundary points for

all Z ⊆ X . By dropping all X-clauses of F , one produces a

solution to the QE problem.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

35

III. BOUNDARY POINTS AND DIVIDE-AND-CONQUER

STRATEGY

In this section, we provide the semantics of the QE al-

gorithm DDS described in Section V. DDS is a branching

algorithm. Given an ∃CNF formula ∃X[F], it branches on

variables of F until proving redundancy of variables of X
in the current subspace becomes trivial. Then DDS merges

the results obtained in different branches to prove that the

variables of X are redundant in the entire search space.

Below we give propositions justifying the divide-and-

conquer strategy of DDS. Proposition 3 shows how to perform

elimination of removable boundary points of F in the subspace

specified by assignment q. Proposition 4 justifies proving

redundancy of variables of X in subspace q one by one.

Finally, Subsection III-B describes two cases where proving

variable redundancy is trivial.

A. Decomposing the Problem of Boundary Point Elimination

Definition 10: Let q1 and q2 be assignments. The expres-

sion q1 ≤ q2 denotes the fact that Vars(q1) ⊆ Vars(q2) and

each variable of Vars(q1) has the same value in q1 and q2.

Proposition 3: Let ∃X[F] be an ∃CNF formula and q be

an assignment to Vars(F). Let p be a Z-boundary point of F
where q ≤ p and Z ⊆ X . Then if p is removable in ∃X[F]

it is also removable in ∃X[Fq].

The opposite is not true: a boundary point may be X-

removable in Fq and not X-removable in F . For instance,

if X = Vars(F), a Z-boundary point p of F is removable

in ∃X[F] for any Z ⊆ X only by adding an empty clause to

F . So if F is satisfiable, p is not removable. Yet p may be

removable in ∃X[Fq] if Fq is unsatisfiable.

Definition 11: Let ∃X[F] be an ∃CNF formula, q be an

assignment to Vars(F), and Z ⊆ (X \ Vars(q)). Vari-

ables of Z are called virtually redundant in ∃X[Fq] if

∃X[Fq \ (Fq)
Z
] ≡ (∃X[F])r where r ≤ q and Vars(r) =

Vars(q) \X .

Redundancy of variables of Z in ∃X[Fq] in terms of

Definition 6 is a special case of virtual redundancy. To

prove variables of Z redundant in ∃X[F] in subspace q, it

is sufficient to show virtual redundancy of Z in ∃X[Fq].

The reason is that one can ignore Z-boundary points that

are removable in ∃X[Fq] and not removable in ∃X[F]. We

introduce a new notion of redundancy of variables Z in Fq

because the operation of joining D-sequents (Definition 16)

preserves only virtual redundancy of Z. In the sequel, when

we say that variables of Z are redundant in ∃X[Fq] we mean

that they are at least virtually redundant.
Proposition 4: Let ∃X[F] be a CNF formula and q be

an assignment to variables of F . Let the variables of Z be

redundant in ∃X[Fq] where Z ⊆ (X\Vars(q)). Let a variable

x of X\(Vars(q)∪Z) be redundant in ∃X[Fq \ (Fq)
Z
]. Then

the variables of Z ∪ {x} are redundant in ∃X[Fq].

Proposition 4 shows that one can make variables of X \
Vars(q) redundant incrementally, if every {x}-clause is re-

moved from Fq as soon as variable x is proved redundant.

B. Two Trivial Cases of Variable Redundancy

Definition 12: Let C ′ and C ′′ be clauses having opposite

literals of exactly one variable v ∈ Vars(C ′
) ∩ Vars(C ′′

).

The clause C consisting of all literals of C ′ and C ′′ but those

of v is called the resolvent of C ′,C ′′ on v. Clause C is said

to be obtained by resolution on v. Clauses C ′,C ′′ are called

resolvable on v.

Definition 13: A variable x of a CNF formula F is called

blocked if no two clauses of F are resolvable on x. A variable

x is called monotone if it is a pure literal variable [11] (i.e.

literals of only one polarity of x are present in F). A monotone

variable is a special case of a blocked variable.

The notion of blocked variables is related to that of blocked

clauses introduced in [20] (not to confuse with blocking
clauses [23]). A clause C of F is blocked with respect to

x if no clause C ′ of F is resolvable with C on x. Variable

x is blocked in F if every {x}-clause of F is blocked with

respect to x.

Proposition 5: Let ∃X[F] be an ∃CNF formula and q be

an assignment to Vars(F). Let a variable x of X \ Vars(q)
be blocked in Fq . Then x is redundant in ∃X[Fq].

Proposition 6: Let ∃X[F] be an ∃CNF formula and q be

an assignment to Vars(F). Let Fq have an empty clause. Then

the variables of X \Vars(q) are redundant in ∃X[Fq].

IV. DEPENDENCY SEQUENTS (D-SEQUENTS)

In this section, we define D-sequents and introduce the

operation of joining D-sequents.

A. Definition of D-sequents

Definition 14: Let ∃X[F] be an ∃CNF formula. Let q be

an assignment to Vars(F) and Z be a subset of X\Vars(q). A

dependency sequent (D-sequent) has the form (∃X[F], q)→
Z. It states that the variables of Z are redundant in ∃X[Fq].

Example 1: Consider an ∃CNF formula ∃X[F] where F =

C1 ∧ C2, C1 = x ∨ y1 and C2 = x ∨ y2 and X = {x}. Let

q={(y1 = 1)}. Then Fq = C2 because C1 is satisfied. Notice

that x is monotone and so redundant in Fq (Proposition 5).

Hence, the D-sequent (∃X[F], q)→ {x} holds.

According to Definition 14, a D-sequent holds with respect

to a particular ∃CNF formula ∃X[F]. Proposition 7 shows that

this D-sequent also holds after adding to F resolvent clauses.

Proposition 7: Let ∃X[F] be an ∃CNF formula. Let H =

F ∧ G where F ⇒ G. Let q be an assignment to Vars(F).

Then if (∃X[F], q)→ Z holds, (∃X[H], q)→ Z does too.

B. Join Operation for D-sequents

In this subsection, we introduce the operation of joining D-

sequents. The join operation produces a new D-sequent from

two D-sequents derived earlier. The semantics of this operation

in terms of elimination of boundary points is quite simple. Let

A1 and A2 be subspaces from which all removable boundary

points of F relevant to redundancy of Z ⊆ X in ∃X[F] have

been eliminated. The join operation produces a new subspace

A such that A ⊆ A1∪A2. We start with introducing resolution

of assignments that is similar to that of clauses.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

36

// ξ denotes ∃X[F], q is an assignment to Vars(F)
// Ω denotes a set of active D-sequents

DDS (ξ,q,Ω){
1 (Ω, ans, C) ← atomic D seqs(ξ, q,Ω);
2 if (ans = sat) return(ξ,Ω, sat);
3 if (ans = unsat) return(ξ,Ω, unsat , C);
4 v := pick variable(F, q,Ω);
5 (ξ,Ω, ans0, C0) ←DDS (ξ,q ∪ {(v = 0)},Ω);
6 (Ωsym ,Ωasym) ← split(F,Ω, v);
7 if (Ωasym = ∅) return(ξ,Ω, ans0, C0);
8 Ω := Ω \ Ωasym ;
9 (ξ,Ω, ans1, C1) ←DDS (ξ,q ∪ {(v = 1)},Ω);
10 if ((ans0 = unsat) and (ans1 = unsat)){
11 C := resolve clauses(C0, C1, v);
12 F := F ∧ C;
13 Ω := process unsat clause(ξ, C,Ω);
14 return(ξ,Ω, unsat , C);}
15 Ω := merge(ξ, q, v,Ωasym ,Ω);
16 return(ξ,Ω, sat);}

Fig. 1. DDS procedure

Definition 15: Let q′ and q′′ be assignments in which

exactly one variable v ∈ Vars(q′
) ∩ Vars(q′′

) is assigned

different values. The assignment q consisting of all the as-

signments of q′ and q′′ but those to v is called the resolvent
of q′,q′′ on v. Assignments q′,q′′ are called resolvable on v.

Proposition 8: Let ∃X[F] be an ∃CNF formula. Let D-

sequents (∃X[F], q′
) → Z and (∃X[F], q′′

) → Z hold. Let

q′, q′′ be resolvable on v ∈ Vars(F) and q be the resolvent

of q′ and q′′. Then, the D-sequent (∃X[F], q) → Z holds

too.

Definition 16: We will say that the D-sequent

(∃X[F], q) → Z of Proposition 8 is produced by joining
D-sequents (∃X[F], q′

) → Z and (∃X[F], q′′
) → Z at v.

V. DESCRIPTION OF DDS

In this section, we describe a QE algorithm called

DDS (Derivation of D-Sequents). DDS derives D-sequents

(∃X[F], q) → {x} stating the redundancy of one variable of

X . From now on, we will use a short notation of D-sequents

writing q → {x} instead of (∃X[F], q) → {x}. We will

assume that the parameter ∃X[F] missing in q → {x} is

the current ∃CNF formula (with all resolvent clauses added

to F so far). One can omit ∃X[F] from D-sequents be-

cause from Proposition 7 it follows that once D-sequent

(∃X[F], q) → {x} is derived it holds after adding to F any

set of resolvent clauses. We will call D-sequent r → {x} ac-
tive in the branch specified by assignment q if r ≤ q i.e. if this

D-sequent provides a proof of redundancy of x in subspace q.

A description of DDS is given in Figure 1. DDS accepts

an ∃CNF formula ∃X[F] (denoted as ξ), an assignment q to

Vars(F) and a set Ω of active D-sequents stating redundancy

of some variables of X \ Vars(q) in ∃X[Fq]. DDS returns

a modified formula ∃X[F] (where resolvent clauses have

been added to F) and a set Ω of active D-sequents stating

redundancy of every variable of X \ Vars(q) in ∃X[Fq].

DDS also returns the answer sat if Fq is satisfiable. If Fq

is unsatisfiable, DDS returns the answer unsat and a clause

of F falsified by q. To build a CNF formula equivalent to ξ,

atomic D seqs(ξ, q,Ω){
1 if (∃ clause C ∈ F falsif. by q){
2 Ω:=process unsat clause(ξ, C,Ω);
3 return(Ω, unsat , C);}
4 Ω:=new redund vars(ξ,q,Ω);
5 if (all unassgn vars redund(ξ, q,Ω)) return(Ω, sat);
6 return(Ω, unknown)};

Fig. 2. atomic D seqs procedure

one needs to call DDS with q = ∅, Ω = ∅ and discard the

X-clauses of the CNF formula F returned by DDS .

A. The Big Picture

First, DDS looks for variables whose redundancy is trivial

to prove (lines 1-3). If some variables of X \Vars(q) are not

proved redundant yet, DDS picks a branching variable v (line

4). Then it extends q by assignment (v = 0) and recursively

calls itself (line 5) starting the left branch of v. Once the left

branch is finished, DDS extends q by (v = 1) and explores the

right branch (line 9). The results of the left and right branches

are then merged (lines 10-16).

DDS terminates when for every variable x of X \Vars(q)
it derives a D-sequent g → {x} where g ≤ q. According to

Proposition 4, derivation of such D-sequents means that the D-

sequent q → X \Vars(q) holds. Proposition 4 is applicable

here because once a variable x of X \ Vars(q) is proved

redundant in ∃X[Fq], every {x}-clause of Fq is marked as

redundant. (A redundant clause is ignored by DDS until it is

unmarked as non-redundant.) So, DDS terminates when the

QE problem is solved for ξ in subspace q.

B. Building Atomic D-sequents

Procedure atomic D seqs is called by DDS to compute

D-sequents for trivial cases of variable redundancy listed in

Subsection III-B. We refer to such D-sequents as atomic.

Procedure atomic D seqs returns an updated set of active D-

sequents Ω and answer sat, unsat, or unknown depending on

whether F is satisfiable, unsatisfiable or its satisfiability is not

known yet. If F is unsatisfiable, atomic D seqs also returns

a clause C of F falsified by the current assignment q.

Lines 1-3 of Figure 2 show what is done when F contains

a clause C falsified by q. In this case, every unassigned

variable of F becomes redundant (Proposition 6). So, for every

variable of x ∈ X \ Vars(q) for which Ω does not contain a

D-sequent yet, procedure process unsat clause generates D-

sequent g → {x} and adds it to Ω. Here g is the shortest

assignment falsifying C. Once Ω contains a D-sequent for

every variable of X \ Vars(q), atomic D seqs terminates

returning the answer unsat, set Ω and clause C.

Suppose no clause of F is falsified by q. Then for every

variable x of X \Vars(q) that does not have a D-sequent in

Ω and that is blocked, a D-sequent is built as explained below.

This D-sequent is then added to Ω (line 4). If every variable

of X \ Vars(q) has a D-sequent in Ω, then Fq is satisfiable.

(If Fq is unsatisfiable, the variables of X \ Vars(q) can be

made redundant only by adding a clause falsified by q.) So,

atomic D seqs returns the answer sat and set Ω (line 5).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

37

Given a blocked variable x ∈ X \ Vars(q) of Fq , a D-

sequent g → {x} is built as follows. Recall that an assignment

q is a set of single-variable assignments. The fact that x
is blocked in Fq means that for any pair of clauses C ′,C ′′

resolvable on x, C ′ or C ′′ is either satisfied by q or redundant

(as containing a variable proved redundant in ∃X[Fq] earlier).

Assume that it is clause C ′. The assignment g is a subset of

q guaranteeing that C ′ remains satisfied by g or redundant in

∃X[Fg] and so x remains blocked in Fg . If C ′ is satisfied by

q, then g contains a single-variable assignment of q satisfying

C ′. If C ′ is not satisfied by q but contains a variable x∗

proved redundant earlier, g contains all the single-variable

assignments of g∗ where g∗ → {x∗} is the D-sequent of

Ω stating redundancy of x∗.

Searching for blocked variables of F for every call of

DDS may be too expensive. Some simple techniques can be

used to reduce the complexity of this search but a discussion

of such techniques is beyond the scope of this paper. In the im-

plementation of DDS we used in experiments, no optimization

techniques were applied when searching for blocked variables.

C. Selection of a Branching Variable

Let q be the assignment DDS is called with and Xred be

the set of variables of X whose D-sequents are in the current

set Ω. Let Y = Vars(F)\X . DDS branches only on a subset

of free (i.e., unassigned) variables of X and Y . Namely, a

variable x ∈ X \ Vars(q) is picked for branching only if

x �∈ Xred . A variable y ∈ Y \Vars(q) is picked for branching

only if it is not detached. A variable y of Y \Vars(q) is called

detached in Fq , if every {y}-clause C of Fq that has at least

one variable of X is redundant (because C contains a variable

of Xred).

Although Boolean Constraint Propagation (BCP) is not

shown explicitly in Figure 1, it is included into the

pick variable procedure as follows: a) preference is given to

branching on variables of unit clauses of Fq (if any); b) if v
is a variable of a unit clause of C of Fq and v is picked for

branching, then the value falsifying C is assigned first to cause

immediate termination of this branch. In the description of

DDS of Figure 1, the left branch always explores assignment

v = 0. But, obviously, v can be first assigned value 1.

To simplify making the branching variable v redundant

when merging results of the left and right branches (see

Subsection V-E), DDS first assigns values to variables of Y .

This means that pick variable never selects a variable x ∈ X
for branching, if there is a free non-detached variable of Y .

In particular, BCP does not assign values to variables of X if

a non-detached variable of Y is still unassigned.

D. Switching from Left to Right Branch

DDS prunes big chunks of the search space by not branch-

ing on redundant variables of X or detached variables of Y .

One more powerful pruning technique of DDS discussed in

this subsection is to reduce the size of right branches.

Let g → {x} be a D-sequent of the set Ω computed

by DDS in the left branch v = 0 (line 5 of Figure 1).

merge(ξ, q, v,Ωasym ,Ω){
1 Ω := join D seqs(v,Ωasym ,Ω);
2 if (v ∈ X) Ω := Ω ∪ {atomic D seq for v(F, q, v,Ω)};
3 return(Ω);}

Fig. 3. merge procedure

Notice that if g has no assignment (v=0), variable x remains

redundant in ∃X[Fq1] where q1 = q ∪ {(v = 1)}. This is

because g → {x} is still active in the subspace specified by

q1. DDS splits the set Ω into subsets Ω
sym and Ω

asym of D-

sequents symmetric and asymmetric with respect to variable v
(line 6). We call a D-sequent g → {x} symmetric with respect

to v, if g does not contain an assignment to v and asymmetric
otherwise.

Denote by Xsym and Xasym the variables of Xred\Vars(q)
whose redundancy is stated by D-sequents of Ωsym and Ω

asym

respectively. Before exploring the right branch (line 9), the

variables of Xasym become non-redundant again. Every clause

C of Fq with a variable of Xasym is unmarked as currently

non-redundant unless Vars(C) ∩Xsym �= ∅.
Reducing the set of free variables of the right branch to

Xasym allows to prune big parts of the search space. In

particular, if Xasym is empty there is no need to explore the

right branch. In this case, DDS just returns the results of the

left branch (line 7). Pruning the right branch when Xasym

is empty is similar to non-chronological backtracking well

known in SAT-solving [21].

E. Branch Merging
Let q0 = q∪{(v = 0)} and q1 = q∪{(v = 1)}. The goal of

branch merging is to extend the redundancy of all unassigned

variables of X proved in ∃X[Fq0] and ∃X[Fq1] to formula

∃X[Fq]. If both Fq0 and Fq1 turned out to be unsatisfiable, this

is done as described in lines 11-14 of Figure 1. In this case,

the unsatisfied clauses C0 and C1 of Fq0 and Fq1 returned

in the left and right branches respectively are resolved on v.

The resolvent C is added to F . Since F contains a clause C
that is falsified by q, for every variable x ∈ X \ Vars(q)
whose D-sequent is not in Ω, DDS derives an atomic D-

sequent and adds it to Ω. This is performed by procedure

process unsat clause described in Subsection V-B. If, say,

v �∈Vars(C1), then resolve clauses (line 11) returns C1 itself

since C1 is falsified by q and no new clause is added to F .
If at least one branch returns answer sat, then DDS calls

procedure merge described in Figure 3. First, merge takes care

of the variables of Xasym (see Subsection V-D). Note that

redundancy of variables of Xasym is already proved in both

branches. If a D-sequent of a variable from Xasym returned

in the right branch is asymmetric in v, then join D seqs (line

1) replaces it with a D-sequent symmetric in v as follows.
Let x ∈ Xasym and S0 and S1 be the D-sequents stating

the redundancy of x derived in the left and right branches

respectively. Then join D seqs joins S0 and S1 at v producing

a new D-sequent S. The latter also states the redundancy of x
but does not depend on v. D-sequent S1 is replaced in Ω with

S. If S1 itself does not depend on v, no new D-sequent is

produced. S1 remains in Ω as the active D-sequent for variable

x in Fq .

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

38

Finally, if the branching variable v is in X , DDS derives

a D-sequent stating the redundancy of v. Notice that v is not

currently redundant in ∃X[Fq] because DDS does not branch

on redundant variables. As we mentioned in Subsection V-C,

the variables of Y = Vars(F)\X are assigned in DDS before

those of X . This means that before v was selected for

branching, all free non-detached variables of Y had been

assigned. Besides, every variable of X \ Vars(q) but v has

just been proved redundant in ∃X[Fq]. So, Fq may have

only two types of non-redundant clauses: a) clauses having

only detached variables of Y ; b) unit clauses depending on

v. Moreover, these unit clauses cannot contain literals of both

polarities of v because merge is called only when either branch

v = 0 or v = 1 is satisfied. Therefore, v is monotone. An

atomic D-sequent S stating the redundancy of v is built as

described in Subsection V-B and added to Ω (line 2). Then

merge terminates returning Ω.

F. Correctness of DDS and Example

Fig. 4. Search tree built by
DDS

Let DDS be called on for-

mula ξ = ∃X[F] with q = ∅
and Ω = ∅. Informally, DDS is

correct because a) the atomic

D-sequents built by DDS are

correct; b) joining D-sequents

produces a correct D-sequent; c)

every clause added to formula F
is produced by resolution and so

is implied by F ; d) by the time

DDS backtracks to the root of

the search tree, for every vari-

able x ∈ X , D-sequent ∅ → {x} is derived. Due to

Proposition 4, this implies that the D-sequent ∅ → X holds

for the formula ∃X[F] returned by DDS .

Proposition 9: DDS is sound and complete.

As we mentioned earlier, the proofs of the propositions

given in this paper are provided in [16].

Example 2. Let ∃X[F] be an ∃CNF formula where F =

C1∧C2, C1 = y1∨x, C2 = y2∨x and X = {x}. To identify a

particular DDS call we will use the corresponding assignment

q. For example, DDS (y1=1,y2=0) means that the assignments

y1 = 1 and y2 = 0 were made at recursion depths 0 and 1

respectively. So the current recursion depth is 2. Originally,

assignment q is empty so the initial call is DDS (∅). The work

of DDS is shown in Figures 4 and 5 used below to illustrate

various aspects of DDS .

Branching variables. Figure 4 shows a search tree built by

DDS . Recall that DDS branches on variables of Vars(F) \
X = {y1, y2} before those of X (see Subsection V-C).

Leaves. The search tree of Figure 4 has four leaf nodes

shown in dotted ovals. In each leaf node, variable x is either

assigned or proved redundant. For example, x is proved re-

dundant by DDS (y1=0) and assigned by DDS (y1=1,y2=0,x=1).

Generation of new clauses. DDS (y1=1,y2=0) generates a

new clause after branching on x. DDS (y1=1,y2=0,x=1) returns

C1 as a clause of F that is empty in F(y1=1,y2=0,x=1).

Similarly, DDS (y1=1,y2=0,x=0) returns C2 because it is empty

in F(y1=1,y2=0,x=0). As described in Subsection V-E, in this

case, DDS resolves clauses C1 and C2 on the branching

variable x. The resolvent C3 = y1 ∨ y2 is added to F .

Generation of atomic D-sequents. Figure 5 describes deriva-

tion of D-sequents. The dotted boxes show D-sequents ob-

tained by the join operation. The atomic D-sequents are shown

in dotted ovals. For instance, DDS (y1=0) generates D-sequent

S1 equal to (y1=0)→ {x}. S1 holds because F(y1=0)=y2∨x
and so x is a blocked (monotone) variable of F(y1=0). The

atomic D-sequent S2 is derived by DDS (y1=1,y2=0). As we

mentioned above, DDS (y1=1,y2=0) adds clause C3 = y1 ∨ y2
to F . This clause is empty in F(y1=1,y2=0). So D-sequent

S2 equal to (y1 = 1, y2 = 0) → {x} is generated where

(y1=1, y2=0) is the shortest assignment falsifying C3.

Fig. 5. Derivation of D-sequents

Switching from left to
right branch. Let us consider

switching between branches by

DDS (∅) where y1 is picked

for branching. The set of D-

sequents Ω(∅) returned by the

left branch equals {S1} where

S1 is equal to (y1 = 0) → {x}.
The only clause y2 ∨ x of

F(y1=0) is marked as redundant

because it contains x that is

currently redundant. Before starting the right branch y1 = 1,

DDS (∅) splits Ω(∅) into subsets Ω
sym
(∅) and Ω

asym
(∅) of D-

sequents respectively symmetric and asymmetric in y1. Since

the only D-sequent of Ω(∅) depends on y1, then Ω
asym
(∅) =Ω(∅)

and Ω
sym
(∅) =∅. DDS (∅) removes D-sequent S1 from Ω because

S1 is not active if y1 = 1. So, before DDS (y1=1) is called,

variable x becomes non-redundant and clause C2 = y2 ∨ x is

unmarked as currently non-redundant.

Branch merging. Consider how branch merging is per-

formed by DDS (y1=1). In the left branch y2 = 0, the set

Ω(y1=1)={S2} is computed where S2 is (y1 = 1, y2 = 0) →
{x}. Since S2 depends on y2, then Ω

asym
(y1=1)=Ω(y1=1). In the

right branch y2 = 1, the set Ω(y1=1)={S3} is computed where

S3 is (y2 = 1) → {x}. By joining S2 and S3 at y2, D-

sequent S4 is derived that equals (y1 = 1) → {x}. S4 states

redundancy of x in F(y1=1).

Termination. When DDS (∅) terminates, F = C1 ∧C2 ∧C3

where C3 = y1 ∨ y2 and D-sequent ∅ → {x} is de-

rived. By dropping C1, C2 as X-clauses one obtains C3 ≡
∃X[C1 ∧ C2].

VI. COMPOSITIONALITY OF DDS

We will call a CNF formula F compositional if F =

F1 ∧ . . . ∧ Fk where Vars(Fi) ∩ Vars(Fj) = ∅, i �= j. We

will say that an algorithm solves the QE problem specified by

∃X[F] compositionally if it breaks this problem down into k
independent subproblems of finding Gi equivalent to ∃X[Fi].

A formula G equivalent to ∃X[F] is then built as G1∧. . .∧Gk.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

39

There are at least two reasons to look for compositional QE

algorithms. First, even if the original formula F is not compo-

sitional, a formula Fq obtained from F by making assignment

q may be compositional. Second, a practical formula F
typically can be represented as F1(X1, Y1)∧ . . .∧Fk(Xk, Yk)

where Xi are internal variables of Fi and Yi are communi-

cation variables i.e. ones shared by subformulas Fi. One can

view Fi as describing a “design block” with external variables

Yi. The size of Yi is usually much smaller than that of Xi.

The latter fact is, arguably, what one means by saying that

F has structure. One can view compositional formulas as a

degenerate case where |Yi| = 0, i = 1, . . . , k and so Fi do

not “talk” to each other. Intuitively, an algorithm that does not

scale well even if |Yi| = 0 will not do well when |Yi| > 0.

A QE algorithm based on enumeration of satisfying as-

signments is not compositional. The reason is that the set

of assignments satisfying F is a Cartesian product of those

satisfying Fi,i = 1, . . . , k. So if, for example, all Fi are iden-

tical, the complexity of an enumeration based QE algorithm

is exponential in k. A QE algorithm based on BDDs [7] is

compositional only for variable orderings where variables of

Fi and Fj , i �= j do not interleave.

Now we show the compositionality of DDS . By a decision
branching variable mentioned in the proposition below, we

mean that this variable was not present in a unit clause of the

current formula when it was selected for branching.

Proposition 10 (compositionality of DDS): Let T be the

search tree built by DDS when solving the QE problem

∃X[F1 ∧ . . . ∧ Fk] above. Let Xi = X ∩ Vars(Fi) and

Yi = Vars(Fi) \ X . The size of T in the number of nodes

is bounded by |Vars(F)| · (η(X1 ∪ Y1) + . . . + η(Xk ∪ Yk))

where η(Xi ∪ Yi) = 2 · 3|Xi∪Yi| · (|Xi| + 1), i = 1, . . . , k no

matter how decision branching variables are chosen.

Proposition 10 is proved in [16] for a slightly modified

version of DDS . Notice that the compositionality of DDS is

not ideal. For example, if all subformulas Fi are identical,

DDS is quadratic in k as opposed to being linear. Informally,

DDS is compositional because D-sequents it derives have the

form g → {x} where Vars(g) ∪ {x} ⊆ Vars(Fi). The only

exception are D-sequents derived when the current assignment

falsifies a clause of F . This exception is the reason why

DDS is quadratic in k.

Importantly, the compositionality of DDS is achieved

not by using some ad hoc techniques but is simply a re-

sult of applying the machinery of D-sequents. This provides

some evidence that DDS can be successfully applied to

non-compositional formulas of the form F1(X1, Y1) ∧ . . . ∧
Fk(Xk, Yk) where |Yi| > 0 and |Yi| � |Xi|, i = 1, . . . , k.

Notice that a QE algorithm that resolves out variables one

by one as in the DP procedure [12] is also compositional.

(If Vars(Fi) ∩ Vars(Fj) = ∅, then clauses of Fi and Fj

cannot be resolved with each other). However, although such

an algorithm may perform well on some classes of formulas,

it is not very promising overall. This is due to the necessity

to eliminate a variable in one big step, which may lead to

generation of a very large number of new resolvent clauses.

On the contrary, being a branching algorithm, DDS is very

opportunistic and eliminates the same variable differently

in different subspaces trying to reduce the number of new

resolvents to be added (if any). The lack of flexibility in

variable elimination is exactly the cause of the poor scalability

of the DP procedure in SAT-solving. There is no reason to

believe that DP-like procedures will scale better for the harder

problem of quantifier elimination.

As we mentioned above, QE algorithms based on BDDs

are compositional only for particular variable orders. This

limitation coupled with the necessity for a BDD to maintain

one global variable order may cripple the performance of BDD

based algorithms even on very simple formulas. Suppose, for

instance, that H and G are compositional CNF formulas where

H = H1 ∧ . . . ∧ Hk and G = G1 ∧ . . . ∧ Gm. Suppose

that variables of subformulas of H and G overlap with each

other so that every variable order for which a BDD of G
is small renders a large BDD for H and vice versa. Let F
be a CNF formula equivalent to (w ∨ H) ∧ (w ∨ G) where

w �∈ Vars(H)∪Vars(G). (A CNF formula for, say, w∨H is

trivially obtained by adding literal w to every clause of H .)

Notice that F is compositional in branches w = 0 and w = 1

since Fw=0 = H and Fw=1 = G. However, a BDD based

QE algorithm cannot benefit from this fact because the same

variable order has to be used in either branch and no order is

good for both H and G. Notice, that DDS will not have any

problem in handling formula F because DDS is compositional

for any choice of decision variables in branches w = 0 and

w = 1.

VII. EXPERIMENTAL RESULTS

The objective of experiments was to compare DDS with

other SAT-based QE algorithms. We are planning to make a

comparison of DDS with BDD-based algorithms in the near

future. In our experiments, we used a QE algorithm based

on enumeration of satisfying assignments [6] (courtesy of

Andy King). We will refer to this QE algorithm as EnumSA.

We also compared DDS with the QE algorithm of [15] that

we will call QE-GBL. Here GBL stands for global. Given a

formula ∃X[F], QE-GBL eliminates variables of X globally,

one by one, as in the DP procedure. However, when resolving

out a variable x ∈ X , QE-GBL adds a new resolvent to F
only if it eliminates an {x}-removable {x}-boundary point

of F . Variable x is redundant in ∃x[F] if all {x}-removable

{x}-boundary points of F are eliminated. QE-GBL does not

generate so many redundant clauses as DP, but still has the

flaw of eliminating variables globally.

We used QE-GBL for two reasons. First, DDS can be

viewed as a branching version of QE-GBL. In Section VI,

we argued that branching gives DDS more flexibility in

variable elimination in comparison to procedures eliminating

variables globally. So we wanted to confirm that DDS indeed

benefited from branching. Second, one can consider QE-GBL
as an algorithm similar to that of [18]. The latter solves

∃x[F (x, Y)] by looking for a Boolean function H(Y) such

that F (H(Y), Y) ≡ ∃x[F (x, Y)]. We used QE-GBL to get an

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

40

idea about the performance of the algorithm of [18] since it

was not implemented as a stand-alone tool.Our implementation

of QE-GBL was quite efficient. In particular, we employed

Picosat [4] for finding boundary points.

TABLE I
Experiments with model checking formulas. The time limit is 1min

model che- EnumSA QE-GBL DDS
king mode solved time solved time solved time

(%) (s.) (%) (s.) (%) (s.)

forward 425 (56%) 466 561 (74%) 4,865 664 (87%) 1,530

backward 97 (12%) 143 522 (68%) 2,744 563 (74%) 554

Fig. 6. Forward model checking (1 iteration)

In the first

two experiments

(Table I), we

used the 758

model checking

benchmarks of

HWMCC’10

competition [27]. In

the first experiment

(the first line of

Table I) we used

EnumSA, QE-
GBL and DDS to

compute the set of

states S1
reach reachable in the first transition. In this case,

CNF formula F describes the transition relation and the

initial state. CNF formula G equivalent to ∃X[F] specifies

S1
reach .

In the second experiment, (the second line of Table I) we

used the same benchmarks to compute the set of “bad” states

in backward model checking. In this case, F specifies the

output function and the property in question. If F evaluates to

1 for some assignment p to Vars(F), this property is broken

and the state given by the state bits of p is bad. Formula G
equivalent to ∃X[F] specifies the set of all bad states (that

may or may not be reachable from the initial state).

Fig. 7. Backward model checking (1 iteration)

Table I shows

the comparison of

the three programs

with respect to

the number of

formulas solved,

percentage of this

number to the total

number (758) and

time taken for the

solved problems.

With 1-minute time

limit, DDS solved

more formulas than

EnumSA and QE-GBL in forward and backward model

checking. Figures 6 and 7 give the number of formulas

of Table I solved by the three programs in t seconds,

0 ≤ t ≤ 60. These figures show the superiority of DDS over

QE-GBL and EnumSA on the set of formulas we used. The

poor performance of EnumSA on backward model checking

formulas is due to lack of constraints on next state variables.

In the presence of such constraints, EnumSA performs much

better (see below).

The size of the 1,227 formulas solved by DDS peaked at

98,105 variables, the medium size being 2,247 variables. The

largest number of non-quantified (i.e., state) variables was

7,880 and 541 formulas had more than 100 state variables.

The size of resulting formula G peaked at 32,769 clauses,

361 resulting formulas had more than 100 clauses. We used

Picosat [4] to remove redundant literals and clauses of G.

Namely, for every clause C of G we checked if G was

equivalent to G \ {C}. If so, C was removed from G.

Otherwise, we tested every literal l of C if removal l from

C changed the function of G. If not, l was removed from C.

The total runtime for the optimization of G by Picosat was

limited by 4 seconds. Overall, the resulting formulas built by

DDS were smaller than those of EnumSA and QE-GBL. For

instance, out of 1069 formulas solved by both DDS and QE-
GBL, the size of G built by DDS was smaller (respectively

equal or larger) in 267 (respectively 798 and 4) cases.

TABLE II
Compositionality of QE algorithms. Time

limit=1hour

#co- #vars, |Y | EnumSA DDS DDS
pies #clauses (s.) rand (s.) (s.)

5 20,30 10 0 0.01 0.01

10 40,60 20 10.5 0.01 0.01

15 60,90 30 >1hour 0.01 0.01

500 2000,3000 1000 >1hour 1.95 0.04

In the

experiments

above, we did

not use formula

preprocessing

even though it

could have been

beneficial. For

instance, the

forward model

checking formulas had a lot of unit clauses encoding the

initial state. The backward model checking formulas had

many blocked (i.e., redundant) clauses [5]. The reason is that

when the original set of bad states is computed, the next

state variables are not constrained yet. However, when we

compared the three programs on preprocessed formulas we

obtained similar results: DDS outperformed EnumSA and

QE-GBL. In particular, we generated 189 backward model

checking formulas specifying bad states after a number of

iterations. The idea was to get formulas were preprocessing

simplifications performing initial BCP and elimination of

blocked clauses failed. With 1-minute time limit, DDS ,

QE-GBL and EnumSA solved 185, 163 and 149 formulas out

of 189 respectively. Notice that EnumSA performed much

better here than in the initial iteration.

The third experiment (Table II), clearly shows the com-

positionality of DDS in comparison to EnumSA. In this

experiment, both programs computed the output assignments

produced by a combinational circuit N composed of small

identical circuits N1, . . . , Nk with independent sets of vari-

ables. In this case, one needs to eliminate quantifiers from

∃X[F] where F = F1 ∧ . . . ∧ Fk. CNF formula Fi specifies

Ni and Vars(Fi)\X and Vars(Fi)∩X are the sets of output

and non-output variables of Ni respectively. So a CNF formula

equivalent to ∃X[F] specifies the output assignments of N .

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

41

The first column of Table II shows k (the number of copies

of Ni). The next two columns give the size of CNF formula

F and the number of outputs in circuit N . The last three

columns show the run time of EnumSA and two versions of

DDS . In the first version, the choice of branching variables

was random. In the second version, this choice was guided by

the compositional structure of N . While DDS solved all the

formulas easily, EnumSA could not finish the formulas F with

k ≥ 15 in 1 hour. Notice that DDS was able to quickly solve

all the formulas even with the random choice of branching

variables.

VIII. BACKGROUND

The relation between a resolution proof and the process of

elimination of boundary points was discussed in [14]. In terms

of the present paper, [14] dealt only with a special kind of Z-

boundary points of formula F where |Z| = 1. In the present

paper, we consider the case where Z is an arbitrary subset of

the set of quantified variables X of an ∃CNF formula ∃X[F].

This extension is crucial for describing the semantics of D-

sequents.

The notion of D-sequents was introduced in [17]. There, we

formulated a QE algorithm that branched only on quantified

variables of ∃X[F]. This algorithm is more complex than

DDS because it has to compute boundary points explicitly.

At the same time, as we mentioned in the introduction, the

limitation on variable order used by DDS (see Subsection V-C)

is artificial. In general, to achieve the best results one has

to interleave assignments to quantified and non-quantified

variables. Then to reduce the number of resolvent clauses to

be added one needs to compute boundary points explicitly.

As far as quantifier elimination is concerned, QE algorithms

and QBF solvers can be partitioned into two categories.

(Although, in contrast to a QE algorithm, a QBF-solver is

a decision procedure, they both employ methods of quantifier

elimination. Since this paper is focused on SAT-based solvers,

we omit references to papers on QE algorithms that use

BDDs [7], [8].) The members of the first category employ

various techniques to eliminate quantified variables of the

formula one by one in some order [26], [3], [2], [18], [1].

For example, in [18], quantified variables are eliminated by

interpolation. All these solvers face the problem that we

already discussed in Section VI. The necessity to eliminate

a variable in one big step deprives the algorithm of flexibility

and, in general, leads to generation of prohibitively large sets

of clauses.

The solvers of the second category are based on enumeration

of satisfying or unsatisfying assignments [23], [19], [13], [6],

[25]. Since such assignments are, in general, “global” objects,

it is hard for such solvers to follow the fine structure of the

formula, e.g., such solvers are not compositional. In a sense,

DDS tries to take the best of both worlds. It branches and

so can use different variable orders in different branches as

the solvers of the second category. At the same time, in every

branch, DDS eliminates quantified variables individually as

the solvers of the first category, which makes it easier to follow

the formula structure.

IX. CONCLUSION

We introduced Derivation of Dependency-sequents (DDS),

a new method for eliminating quantifiers from a formula

∃X[F] where F is a CNF formula. The essence of DDS is to

add resolvent clauses to F to make the variables of X redun-

dant. The process of making variables redundant is described

by dependency sequents (D-sequents) specifying conditions

under which variables of X are redundant. In contrast to

methods based on the enumeration of satisfying assignments,

DDS is compositional. Our experiments with a proof-of-the-

concept implementation show the promise of DDS . Our future

work will focus on studying various ways to improve the

performance of DDS , including lifting the constraint that non-

quantified variables are assigned before quantified variables

and reusing D-sequents instead of discarding them after one

join operation (as SAT-solvers reuse conflict clauses).

ACKNOWLEDGMENT

This work was funded in part by NSF grant CCF-1117184,

NASA NASA Cooperative Agreement NNX08AE37A, and

DARPA under Air Force Research Laboratory (AFRL/Rome)

Cooperative Agreement No. FA8750-10-2-0233.

REFERENCES

[1] P. Abdulla, P. Bjesse, and N. Eén, “Symbolic reachability analysis based
on SAT-solvers,” in Proc. of TACAS, 2000, pp. 411–425.

[2] A. Ayari and D. Basin, “Qubos: Deciding quantified boolean logic using
propositional satisfiability solvers,” in FMCAD, 2002, pp. 187–201.

[3] A. Biere, “Resolve and expand,” in Proc. of SAT-04, 2005, pp. 59–70.
[4] ——, “Picosat essentials,” JSAT, vol. 4, no. 2-4, pp. 75–97, 2008.
[5] A. Biere, F. Lonsing, and M. Seidl, “Blocked clause elimination for

qbf,” in Proc. of CADE, 2011, pp. 101–115.
[6] J. Brauer, A. King, and J. Kriener, “Existential quantificationnn as

incremental sat,” in Proc. of CAV-11. Springer-Verlag, July 2011, pp.
191–207.

[7] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691, August
1986.

[8] P. Chauhan, E. Clarke., S. Jha, J. Kukula, H. Veith, and D. Wang, “Using
combinatorial optimization methods for quantification scheduling,” in
Proc. of CHARME, 2001, pp. 293–309.

[9] E. Clarke and A. Emerson, “Design and synthesis of synchronization
skeletons using branching-time temporal logic,” in Logic of Programs,
Workshop, 1982, pp. 52–71.

[10] E. Clarke, O. Grumberg, and D. Peled, Model checking. Cambridge,
MA, USA: MIT Press, 1999.

[11] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, July 1962.

[12] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, July 1960.

[13] M. Ganai, A. Gupta, and P. Ashar, “Efficient sat-based unbounded
symbolic model checking using circuit cofactoring,” in Proc. of ICCAD,
2004, pp. 510–517.

[14] E. Goldberg, “Boundary points and resolution,” in Proc. of SAT.
Springer-Verlag, 2009, pp. 147–160.

[15] E. Goldberg and P. Manolios, “Sat-solving based on boundary point
elimination,” in Proc. of HVC-10. Springer-Verlag, 2011, pp. 93–111.

[16] ——, “Quantifier elimination by dependency sequents,” Northeastern
University, Tech. Rep. arXiv:1201.5653v3 [cs.LO], 2012. [Online].
Available: http://arxiv.org/pdf/1201.5653v3

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

42

[17] ——, “Removal of quantifiers by elimination of boundary points,”
Northeastern University, Tech. Rep. arXiv:1204.1746v2 [cs.LO], 2012.
[Online]. Available: http://arxiv.org/pdf/1204.1746v2

[18] R. Jiang, “Quantifier elimination via functional composition,” in Proc.
of CAV ’09. Springer, 2009, pp. 383–397.

[19] H. Jin and F. Somenzi, “Prime clauses for fast enumeration of satisfying
assignments to boolean circuits,” in Proc. of DAC, 2005, pp. 750–753.

[20] O. Kullmann, “New methods for 3-sat decision and worst-case analysis,”
Theor. Comput. Sci., vol. 223, no. 1-2, pp. 1–72, Jul. 1999.

[21] J. Marques-Silva and K. Sakallah, “Grasp—a new search algorithm for
satisfiability,” in ICCAD-96, Washington, DC, USA, 1996, pp. 220–227.

[22] K. McMillan, Symbolic Model Checking. Norwell, MA, USA: Kluwer
Academic Publishers, 1993.

[23] ——, “Applying sat methods in unbounded symbolic model checking,”
in Proc. of CAV-02. Springer-Verlag, 2002, pp. 250–264.

[24] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
engineering an efficient sat solver,” in DAC-01, New York, NY, USA,
2001, pp. 530–535.

[25] D. Plaisted, A. Biere, and Y. Zhu, “A satisfiability procedure for
quantified boolean formulae,” Discrete Appl. Math., vol. 130, no. 2,
pp. 291–328, Aug. 2003.

[26] P. Williams, A. Biere, E. Clarke, and A. Gupta, “Combining decision
diagrams and sat procedures for efficient symbolic model checking,” in
Proc. of CAV, 2000, pp. 124–138.

[27] HWMCC-2010 benchmarks, http://fmv.jku.at/hwmcc10/benchmarks.html.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

43

Preprocessing Techniques for First-Order
Clausification

Krystof Hoder
Computer Science Department

University of Manchester, UK

hoderk@cs.man.ac.uk

Zurab Khasidashvili
Intel Israel (74) Ltd.

Haifa 31015, Israel

zurabk@iil.intel.com

Konstantin Korovin, Andrei Voronkov
Computer Science Department

University of Manchester, UK

korovin@cs.man.ac.uk, andrei@voronkov.com

Abstract—It is well known that preprocessing is crucial
for efficient reasoning on large industrial problems. Although
preprocessing is well developed for propositional logic, it is
much less investigated for first-order logic. In this paper we
introduce several preprocessing techniques for simplifying first-
order formulas aimed at improving clausification. These include
definition inlining and merging, simplifications based on a new
data structure, quantified AIG, and its combination with BDDs.
We implemented our preprocessing methods and evaluated them
over encodings of industrial hardware verification problems
into the effectively propositional (EPR) fragment of first-order
logic and over standard first-order (TPTP) and SMT (SMT-
LIB) benchmarks. We also investigated preprocessing methods
that help obtain EPR-resulting clausification in cases where
standard clausification would lead outside the EPR fragment.
We demonstrate that our methods enable one to considerably
reduce the number of clauses obtained after clausification and
by that help speedup first-order reasoning.

I. INTRODUCTION

First-order logic solvers are increasingly used in industrial

verification applications. These uses include model checking

of large real-life hardware systems. It is well known that

hardware designs have many redundancies from the logical

point of view. Many powerful techniques have been developed

for propositional logic problems to eliminate these redun-

dancies. These techniques include use of efficient representa-

tions for propositional formulas, such as AIGs (And-Inverter

Graphs) [17], simplification transformations for AIGs, such as

BDD-sweeping, SAT-sweeping, AIG-rewriting [17], [16], [5],

[7], and various pre- and in-processing techniques, e.g., [12],

[10] which aim to simplify propositional problems for SAT and

QBF solving. In this work, motivated by attempts to improve

the performance and capacity of a model-checking algorithm

we have recently developed [9], we seek to develop general

simplification techniques for first-order logic problems.

First-order definitions are frequently used in many formal-

izations. For example, in hardware verification most generated

formulas are definitions. An abundance of definitions can con-

siderably slowdown the reasoning process. Many definitions

in such problems are redundant, defining equivalent formulas,

or can be eliminated without increasing the formula size.

Moreover, direct clausal transformation of definitions can lead

outside target fragments such as the effectively propositional

(EPR) fragment (see definition in the next section). In this pa-

per we introduce and discuss several methods for eliminating

and simplifying definitions that also result in EPR-preserving

clausification.

We further lift some of the propositional redundancy elim-

ination techniques discussed above to first-order logic. In

particular, we introduce quantified AIGs as an efficient data

structure that enables sharing equivalent sub-formulas and

facilitates implementation of simplification transformations for

first-order logic formulas. On QAIGs, we implement BDD-

sweeping, SAT-sweeping, and several rewriting transforma-

tions that help reduce the size of the problem after clausi-

fication and thus making the problem much simpler to solve.

Our improved clausification algorithm (which, as pre-

processing steps, performs the above mentioned simplifica-

tion transformations) is implemented in Vampire, a theorem

prover for first-order logic [11]. We have evaluated the new

clausification algorithm on three different benchmark sets:

industrial hardware designs, quantified SMT problems and

a TPTP problem set [22]. The experiments demonstrate the

usefulness of our simplification transformations.

The paper is organized as follows. In Section II we recall

basic definitions from first-order logic used throughout the pa-

per. Sections III to XI are devoted to a range of simplification

techniques for first-order logic formulas. Quantified AIGs are

introduced and studied in Section XII. Experimental results are

reported in Section XIII. Conclusions appear in Section XIV.

II. PRELIMINARIES

We say that a formula ϕ is rectified if the following holds:

(i) no variable occurs both free and bound in ϕ, and (ii)

a variable can have at most one binding occurrence in ϕ.

For simplicity of exposition, we assume that our formulas

are rectified unless otherwise specified. In particular, this

requirement is dropped in sections concerned with shared

representation of formulas, such as AIGs and OBBDs, in order

to increase sharing between subformulas.

We consider first-order formulas which are built from atoms

using connectives ∧, ∨, →, ↔ and quantifiers ∃ and ∀. We

assume the standard semantics of first-order formulas. Polarity

of a subformula occurrence at a position π will be denoted

by pol(ϕ, π) ∈ {−1, 0, 1}, where 1 stands for positive, −1
for negative, and 0 for neutral polarity, which is defined

inductively as follows. For any formula ϕ, pol(ϕ, ε) = 1.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

44

Consider ϕ |π= ψ and assume pol(ϕ, π) is defined, then if

ψ is of the form

• Qx ψ1, where Q ∈ {∃, ∀} then pol(ϕ, π.1) = pol(ϕ, π);
• ψ1 � ψ2, where � ∈ {∧,∨} then pol(ϕ, π.1) =

pol(ϕ, π.2) = pol(ϕ, π);
• ψ1 → ψ2 then pol(ϕ, π.1) = −pol(ϕ, π) and

pol(ϕ, π.2) = pol(ϕ, π);
• ψ1 ↔ ψ2 then pol(ϕ, π.1) = pol(ϕ, π.2) = 0.

Algorithms in this paper are parameterized by a Skolem-

ization procedure SK and a clausification procedure CL.

In this paper we are not concerned how SK is realized,

assuming only that SK transforms every first-order formula

into an equi-satisfiable universal formula. We refer to [20],

[2] for Skolemization and clausification techniques. As an

example, we take an SK that applies miniscoping (moving all

quantifiers inside the formula as far as possible) and eliminates

existential quantifiers, as in inner Skolemization from left-

to-right (resulting in flat Skolem terms). Similarly, we only

require the clausification CL to transform universal formulas

into equi-satisfiable sets of clauses.

The EPR fragment, also called the Bernays-Schönfinkel-

Ramsey fragment, consists of first-order formulas with no oc-

currences of function symbols other than constants, and which

when written in prenex normal form have the quantifier prefix

∃∗∀∗. Skolemization applied to EPR formulas can introduce

only constant function symbols; this can be used to show de-

cidability of the EPR fragment. Several important verification

problems have been encoded into EPR [19], [13], [8], [9], [1],

benefiting from the succinct representations possible in this

fragment. The transformations considered in this paper can

help to produce equi-satisfiable EPR formulas when the given

formula is not necessarily EPR. Such transformations turned

out to be crucial for the performance of first-order solvers on

encodings of real-life hardware verification problems.

III. DEFINITION SIMPLIFICATIONS

A (non-recursive) predicate definition def (pol , p, ϕ) is a

first-order formula of the form

def (pol , p, ϕ)
def
=

⎧⎨
⎩
∀x̄ (p(x̄)↔ ϕ(x̄)), if pol = 0,
∀x̄ (ϕ(x̄)→ p(x̄)), if pol = 1,
∀x̄ (p(x̄)→ ϕ(x̄)), if pol = −1,

(1)

where p is a predicate symbol, ϕ is a first-order formula

with free variables FV (ϕ) ⊆ {x̄}, pol ∈ {−1, 0, 1} and

p does not occur in ϕ. Let us note that def (0, p, ϕ) ≡
(def (1, p, ϕ) ∧ def (−1, p, ϕ)); we call def (1, p, ϕ) positive
and def (−1, p, ϕ) negative subdefinition of def (0, p, ϕ). The

variable condition FV (ϕ) ⊆ {x̄} can be omitted without loss

of generality but doing so would add a syntactic burden not

essential to this exposition.

First we consider unused definition elimination, presented

in Table I.

Theorem 1: UDE is a satisfiability preserving and termi-

nating transformation.

ϕ ∧ def (pol , p, ψ) ⇒ ϕ, where p does not occur in ϕ.
ϕ ∧ def (0, p, ψ) ⇒ ϕ ∧ def (pol , p, ψ), where pol �= 0 and all

occurrences of p in ϕ are of polarity −pol .

TABLE I
UNUSED DEFINITION ELIMINATION (UDE)

Proof: (Sketch) Termination is trivial since each appli-

cation removes one (sub)definition. Let us show that UDE is

satisfiability preserving. Consider the case ϕ∧def (0, p, ψ)⇒
ϕ ∧ def (−1, p, ψ), where all occurrences of p in ϕ are

of polarity 1. The rest of the cases are similar. The only

non-trivial direction is to show that if ϕ ∧ def (−1, p, ψ)
is satisfiable then ϕ ∧ def (0, p, ψ) is also satisfiable. First

note that if a predicate occurs only positively in a formula

χ(x̄) then the formula is monotone wrt. this predicate in the

following sense. Consider a first-order interpretation I such

that I |= χ(ā). Then I ′ |= χ(ā) for any I ′ which is obtained

from I by changing the interpretation of p such that pI ⊆ pI
′
.

Now assume that ϕ ∧ def (−1, p, ψ) is satisfiable in a model

I and p occurs only positively in ϕ. Let I ′ be obtained from

I by changing the interpretation of p such that I ′ |= p(ā)
iff I |= ψ(ā). It is easy to check that I ′ |= def (0, p, ψ) and

pI ⊆ pI
′

since p does not occur in ψ. Finally we have I ′ |= ϕ
since pI ⊆ pI

′
and ϕ is monotone wrt. p.

Example 1: Consider a definition

def (0, p, ψ)
def
= ∀x (p(x)↔ (∀y (q(x, y)↔ s(x, y))). (2)

Such definitions frequently occur in encodings of hardware

verification into first-order logic where, e.g., p(x) can repre-

sent equivalence between two bit-vectors q(x, y) and s(x, y) at

time x. After Skolemization and clausification of def (0, p, ψ)
we obtain clauses outside of the EPR fragment due to non-

constant Skolem functions, thanks to the negative occurrence

of the ∀ quantifier in the positive subdefinition of def (0, p, ψ).
Now if all other occurrences of p in our formula are positive

we can apply UDE and simplify our definition to

def (−1, p, ψ) def
= ∀x (p(x)→ (∀y (q(x, y)↔ s(x, y))). (3)

It is easy to see that after Skolemization of this simplified

definition we obtain an EPR formula.

IV. DEFINITION RESOLUTION

A resolvent of two definitions def (1, p, ψ) and

def (−1, p, ψ′
) is a universal closure of the formula ψ → ψ′,

denoted as def (1, p, ψ) ⊗ def (−1, p, ψ′
). In Table II we

define definition resolution transformation (DRT) which can

be used to eliminate a definition of a predicate based on

exhaustive application of resolution. DRT is similar to the

variable elimination rule well studied in the propositional case

(we refer to [12] for a comprehensive survey of propositional

preprocessing techniques).

Theorem 2: DRT is a satisfiability preserving and termi-

nating transformation.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

45

ϕ ∧∧
i:1≤i≤n def (1, p, ψi)

∧
j:1≤j≤m def (−1, p, γj) ⇒

ϕ ∧∧
i,j:1≤i≤n;1≤j≤m def (1, p, ψi)⊗ def (−1, p, γj),

where p does not occur in ϕ.

TABLE II
DEFINITION RESOLUTION TRANSFORMATION (DRT)

ϕ[p(t̄)]π ∧ def (pol , p, ψ) ⇒ ϕ[ψσ]π ∧ def (pol , p, ψ),
where x̄σ = t̄, and either
(i) pol = 0, or
(ii) pol �= 0 and all occurrences of p in ϕ[p(t̄)] are of polarity −pol .

TABLE III
DEFINITION INLINING TRANSFORMATION (DIT)

We can slightly generalise DRT to definitions of the form

def (0, p, ψ) by splitting such definitions into positive and

negative subdefinitions, applying DRT to the new definitions,

and removing tautologies of the form ψ ∨ ¬ψ.

Let us note that although DRT transformation is terminating,

it can quickly increase the size of the formula and therefore

is usually applied only in specific cases.

V. DEFINITION INLINING

One way of eliminating a predicate definition is to exhaus-

tively inline it as defined in Table III. For related discussion

we refer to [20] and in the QBF setting to [10].

Theorem 3: DIT is a satisfiability preserving transforma-

tion. Moreover, any sequence of DIT applications wrt. a given

predicate definition is terminating.

After an exhaustive application of DIT wrt. a predicate defi-

nition def (pol , p, ψ) we can eliminate this definition altogether

by applying UDE.

Let us note that DIT can quickly increase the size of the

resulting formula. We define a special case where such an

increase stays linear wrt. size of the formula, called non-
growing definition inlining.

Definition 1: A predicate definition def (pol , p, ψ) is non-
growing wrt. a formula ϕ, if either (i) p occurs only once in ϕ,

or (ii) ψ is an EPR literal. An application of DIT ϕ[p(t̄)]π ∧
def (pol , p, ψ) ⇒ ϕ[ψσ]π ∧ def (pol , p, ψ) is non-growing
(NDIT) if def (pol , p, ψ) is non-growing wrt. ϕ[p(t̄)]π .

Theorem 4: NDIT increases the size of the formula lin-

early wrt. the number of transformation steps.

Let us note that non-growing inlining is not confluent in

general.

VI. EPR RESTORING INLINING

In Section III we saw that UDE can help obtain EPR

resulting clausification. It turns out that for many problems, in

particular those coming from hardware verification, applying

UDE is not sufficient for obtaining EPR resulting clausifi-

cation. Let us show how DIT can be used to restore EPR

resulting clausification.

Example 2: Consider a definition

def (0, p, ψ) = ∀x (p(x) ↔ ∀y q(x, y))

and a formula

ϕ = [p(a) → (∀z (q(z, c) ↔ q(d, z)))]∧
[∀u (p(u) ∨ q(c, d))].

After Skolemization and clausification of def (0, p, ψ), we ob-

tain two clauses p(x)∨¬q(x, sk(x)) and ¬p(x)∨q(x, y), cor-

responding to Skolemization of def (1, p, ψ) and def (−1, p, ψ)
respectively. Let us note that the first clause is non-EPR.

Moreover, p occurs both positively and negatively in ϕ and

therefore we cannot apply UDE as we did in Example 1.

Let us discuss how one can restore EPR using inlining.
If we inline all non-positive occurrences of p in ϕ according

to def (0, p, ψ), we obtain

ϕ′ = [(∀y q(a, y)) → (∀z (q(z, c) ↔ q(d, z)))]∧
[∀u (p(u) ∨ q(c, d))].

Let us note that after inlining, variable x in the defini-

tion of p became instantiated by a constant a. Therefore,

standard clausification of ϕ′ will result in an EPR formula.

Moreover, now all occurrences of p in ϕ′ are positive, and

therefore we can apply UDE to ϕ′ ∧ def (0, p, ψ), obtain-

ing ϕ′ ∧ def (−1, p, ψ). Finally, standard clausification of

def (−1, p, ψ) is also in EPR. This example demonstrates how

definition inlining in combination with unused definition elim-

ination can be used to obtain an EPR resulting clausification.

Definition 2: A predicate definition def (pol , p, ϕ) is pre-
EPR if SK(def (pol , p, ϕ)) is not EPR and ϕ is of the form

Qȳψ(x̄, ȳ), where FV (ϕ) = {x̄}, Q ∈ {∃, ∀} and ψ is

quantifier free.

Let us note that for a pre-EPR predicate definition

def (0, p, ϕ), either its positive subdefinition is EPR and its

negative subdefinition pre-EPR or vice versa.

A substitution σ is constant-grounding for a set of variables

V if σ maps all variables in V to constants.

Lemma 1: Let def (pol , p, ϕ) be a pre-EPR predicate def-

inition. Then SK(ϕσ) is EPR for any substitution that is

constant grounding for FV (ϕ).
The EPR restoring inlining strategy (ERI) consists of ex-

haustive application of inlining to pre-EPR definitions until

pre-EPR (sub)definitions can be eliminated by UDE.

VII. EPR RESULTING CLAUSIFICATION FOR NON-CYCLING

DEFINITIONS

Consider a set of definitions

D = {def (pol1, p1, ψ1), . . . , def (polk, pk, ψk)}.

Define a binary dependency relation between symbols as

follows: (pi, pj) ∈ dep if and only if pj occurs in ψi. D
is called non-cycling if the transitive closure of dep is a strict

ordering. D is called non-branching if each predicate has at

most one definition in D.

Theorem 5: Consider a formula ϕ that can be split into

ϕepr ∧D, where (i) SK(ϕepr) is an EPR formula, (ii) D is a

set of non-cycling pre-EPR definitions, and (iii) all occurrences

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

46

of predicates in SK(ϕepr) are ground-matching in D. Then

the EPR restoring inlining strategy is EPR resulting on ϕ.

In order to obtain an EPR resulting clausification, we need

to resort to DIT, which generally does not satisfy our non-

growing criterium. In the next sections we consider techniques

that simplify definitions and formulas further and are helpful

in restoring the non-growing condition in practical cases.

VIII. ARGUMENT COLLAPSING

Consider a first-order formula ϕ and assume that all oc-
currences of an m-ary predicate p have distinct constants
c1, . . . , cn at the k-th argument (for some k). Moreover assume
that

ϕ |= ci �= cj for 1 ≤ i < j ≤ n. (4)

Then we can introduce new m− 1-ary predicates p1, . . . , pn
and replace each occurrence of p where ci occurs as the k-th

argument with the corresponding m− 1-ary predicate pi.
This transformation can lead to some equivalences becom-

ing predicate definitions, and therefore eligible for all predicate

definition-related transformations. This frequently happens for

example in hardware encodings, where some predicate argu-

ments are bit-blasted. Although in general checking condition

(4) is as difficult as checking the satisfiability of the formula, in

many cases this condition is trivially satisfied. For example, if

c1, . . . , cn represent bit-indexes, then when all bit-indexes are

enforced to be different this condition is automatically satisfied

as in the case of (selective) bit-blasting.

IX. CONDITIONAL REWRITING

In previous sections of this paper we were addressing

unconditional predicate definitions, which were formulas of

the form p(x̄) � ψ(x̄), where � ∈ {↔,→,←}. Some defi-

nitions, however, may hold only under certain assumptions;

we would call these conditional, and they appear as formulas

ϕ(x̄)→ (p(x̄)�ψ(x̄)). It is not sound to inline such definitions

in the entire problem; however, if we have a formula which

is also conditioned by ϕ, or more generally by some ϕ′ such

that ϕ′ → ϕ, we can safely perform the inlining there.

Moreover, this observation does not hold only for predicate

definitions, but also for equalities. If we have ϕ(x̄)→ s = t,
we can use s = t for rewriting terms in formulas conditioned

by ϕ.

As an example, consider a typical formula which occurs

in hardware encodings: next(x, y) → (p(x, y) ↔ ψ(x)),
which informally states that p holds at the consecutive states

provided that ψ holds in the current state. Now we can inline

this conditional definition of p in other formulas which are

also conditioned by the next state predicate. For example

next(x, y)→ (p(x, y)∧ (p(c, d)∨ q(y))) can be rewritten by

conditional inlining to next(x, y)→ (ψ(x) ∧ (ψ(c) ∨ q(y))).

X. DEFINITION MERGING

In our experience many problems from hardware formal-

isations contain predicates which are implicitly equivalent.

Such predicates can be merged, considerably speeding up

reasoning. More generally, we will consider implied non-

growing predicate definitions NDI, shown in Table IV. Let us

ϕ ⇒ ϕ ∧ def (pol , p, ψ), where
(i) ϕ |= def (pol , p, ψ),
(ii) def (pol , p, ψ) is non-growing and
(iii) definition inlining is applicable to def (pol , p, ψ) and ϕ

TABLE IV
NON-GROWING DEFINITION INTRODUCTION (NDI)

note that after application of NDI one can exhaustively apply

DIT and UDE, eliminating the defined predicate from the

problem. NDI covers the special case of implicitly equivalent

predicates, since the equivalence of two predicates p and q can

be represented as a non-growing definition def (0, p, q(x̄)). In

the following we consider the case of non-growing definitions

of the form def (pol , p, ψ), where ψ is an EPR literal.

In general, checking condition (i) of the applicability of

NDI is undecidable, and therefore we need to resort to some

heuristics. First we consider syntactic heuristics. Syntactic

heuristics will be parameterized by a normalising function. A

normalising function is a mapping of formulas into equivalent

formulas. For example, a function that transforms formulas

into negation normal form is a normalising function. There

are many other useful normalising functions, e.g., removing

double negations or eliminating some connectives. Let us fix

a normalising function Δ. Then, two definitions def (0, p1, ψ1)

and def (0, p2, ψ2) are normalising equivalent wrt. Δ if Δ(ψ1)

and Δ(ψ2) are syntactically the same formulas.

Let us introduce syntactic definition merging as follows. Let

ϕ = χ∧ def (0, p1, ψ1)∧ def (0, p2, ψ2), where ψ1 and ψ2 are

normalising equivalent. Wlog assume arity(p1) ≥ arity(p2).
Then ϕ ⇒ ϕ ∧ def (0, p1, p2(x̄)) using NDI and we can

eliminate p1 from ϕ using DIT and UDE.

We implemented the following normalising function Δsyn

which (i) transforms formulas into negation normal form,

(ii) flattens conjunctions and disjunctions, and (iii) bottom-

up renames bound variables, applies sharing of subformulas,

and orders conjuncts/disjuncts in disjunctions/conjunctions ac-

cording to the ordering induced by sharing.

XI. SAT SWEEPING

In this section we discuss discovery of predicate definitions

using propositional reasoning. The problem consists of two

tasks. The first task is to convert the first-order problem into

a propositional problem so that equivalences found between

propositional variables will correspond to equivalences be-

tween first-order formulas. The second task is to efficiently

find equivalences between variables in a given propositional

problem.

Definition 3: Let τ be an injective map of first-order atoms

to propositional variables. We extend τ so that it maps

unquantified first-order formulas to propositional formulas in

a straightforward way (e.g., τ(ϕ ∧ ρ) �→ τ(ϕ) ∧ τ(ρ)). We

further extend τ to universally quantified formulas in prenex

form by dropping quantifiers.

Theorem 6: If τ(ϕ) � τ(ρ), then it holds that ϕ � ρ.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

47

The above theorem is a different formulation of a result

given in [15] on under-approximating first-order reasoning

using a SAT solver. To apply it to our case, we Skolemize

and clausify the problem by using the default SK and CL
procedures, and use the τ map to translate it to a first-order

problem. Any equivalences between propositional variables

implied by this problem can then be lifted back to first-order.

Now, given a satisfiable propositional formula ϕ and a set

of interesting propositional variables V , our goal is to discover

(some of) the equivalences implied by ϕ between literals of

variables V . For convenience of notation, we consider the

propositional constant � to be one of the interesting variables,

which extends the approach also to discovery of true literals.

We base our discovery of the propositional equivalences on

the idea of simultaneous implicative SAT solving presented

in [14], which allows discovery of implied implications (and

equivalences) in one call to the SAT solver.

One problem to address is that the clausification process

can extend the signature of the formula by introducing new

symbols, for example Skolem constants. We use a naive way

of dealing with this issue — when an equivalence contains

a symbol that is not in the original signature, we discard the

equivalence. There may be more advanced ways of eliminating

these symbols; however, in our practical applications the

presence of introduced symbols did not become a significant

problem.

The above approach can be further extended to find equiva-

lences between general sub-formulas, not only between atoms.

To this end, we may do an additional transformation on

the problem, before it is Skolemized and clausified. First

we convert the formula to a QAIG graph (described in

Section XII) and then use the Tseitin transformation on the

graph, introducing a new name predicate for each node. When

we later discover equivalences involving the introduced name

predicates, we translate them back into the signature of the

input formula by unfolding the introduced names.

XII. QAIG

Following the And-Inverter Graph (AIG) representation [17]

of propositional problems widely used in propositional deci-

sion procedures, we introduce its counter-part data structure

QAIG (Quantified And-Inverter Graphs). It is based on the

AIG structure but contains an additional kind of node to

represent quantifiers.

The set of QAIG terms on a set of atoms A can be defined

as the smallest set of terms Q such that:

� ∈ Q
∀a ∈ A : atom(a) ∈ Q
∀q ∈ Q : neg(q) ∈ Q
∀q1, q2 ∈ Q : conj(q1, q2) ∈ Q
∀q ∈ Q, x ∈ free(q) : quant(x, q) ∈ Q

where free(q) is the set of free variables in the QAIG q.

Below we will use q to denote QAIG nodes.

The QAIG data structure is a canonical in-memory represen-

tation of the QAIG terms. Canonicity of the structure means

that if two terms are syntactically equal, they are represented

by the same memory object. On top of this, we also normalize

the order of the arguments in the conj term and eagerly

perform the local AIG simplifications proposed in [7].

Lemma 2: An arbitrary first-order formula can be con-

verted to QAIG structure in a single linear-time traversal,

assuming a constant-time access to a hash table.

Proof: The conversion is performed by bottom-up appli-

cation of following transformation rules:

ftq(a) ⇒ atom(a) for atoms a ∈ A
ftq(φ ∧ ψ) ⇒ conj(ftq(φ), ftq(ψ))
ftq(φ ∨ ψ) ⇒ neg(conj(neg(ftq(φ)), neg(ftq(ψ)))
ftq(∃x : φ) ⇒ neg(quant(x, neg(ftq(φ))))
ftq(φ ↔ ψ) ⇒ conj(neg(conj(neg(ftq(φ)), ftq(ψ)),

neg(conj(ftq(φ), neg(ftq(ψ))))
. . .

Rules for other logical connectives can be written analo-

gously. Each of the rules transforms a formula into QAIG

in constant time, assuming that its subformulas are already

transformed and that construction of an QAIG term having its

arguments is a constant time operation.

One thing to note is that in the rule for equivalence we

see two occurrences of the ftq(φ) (as well as of ftq(ψ)) on

the right-hand side. If we were using a flat representation

to keep the QAIG terms, applying the rewriting rule would

double the size of the term. However, as we use a canonical

representation, we are interested in the number of distinct

QAIG terms. This number grows only by a constant amount,

so the size of the canonical QAIG structure will remain at

most linear with the size of the formula.

A. QAIG Inlining

An important goal with the QAIG structure was to obtain a

good infrastructure for performing definition inlining without

exponential growth in the size of the problem. It can be used

for implementing the inlining rules (N)DIT and ERI. QAIGs

also provide better sharing of subformulas and definition

merging.

At a high level, the QAIG inlining algorithm can be

described as follows:

1) Collect the set of candidate rewrite rules atom(a)⇒ q:

This is done by a scan through the problem, looking for

formulas in the shape of ∀x̄(a(x̄) ↔ φ(x̄)). Here a(x̄)
denotes an arbitrary non-equality atom with variables

x̄, and φ(x̄) stands for a formula with free variables

being a subset of x̄. In order to enable more definitions

eligible for inlining, we also apply argument collapsing

whenever possible, see Section VIII.

2) Instantiate candidate rules:

Whenever there is a rule in the form atom(a(x̄)) ⇒
q(x̄) and there is an atom a(t̄) where t̄ is different from

x̄, we add an instance of the rule atom(t̄) ⇒ q(t̄) as

another candidate rule. Let us note that such instantiated

rules are used only for inlining; we do not add them

to the resulting QAIG since they are subsumed by the

original rules.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

48

3) Remove cyclic dependencies:

If we have a chain of candidate rules atom(a0) ⇒
q0, . . . , atom(an) ⇒ qn such that atom(an) occurs in

q0 and, for each 0 ≤ i < n, atom(ai) occurs in qi+1, we

remove one of the candidate rules to remove the cycle.

4) Apply rules to the QAIG representation of the problem:

We exhaustively apply generated inlining rules to the

QAIG. In this step we must be careful when rewriting

using instantiated rules due to variable sharing. In partic-

ular, to improve sharing we do not assume that QAIGs

are rectified and variable instantiation becomes a non-

trivial problem which we consider in the next subsection.

The second step, which involves instantiation, is the only

step where the size of the QAIG structure may grow1 and

is potentially the most time consuming. Instantiation is also

specific to QAIGs, as the original AIG structure works with

propositional atoms where instantiation does not make sense.

In the next subsection we focus on the algorithm for QAIG

instantiation and discuss some of its properties.

B. QAIG Instantiation

During the instantiation of candidate rules we need to apply

a substitution for free variables in a QAIG formula. This

cannot be done by a straightforward bottom-up traversal of the

QAIG graph, as an atom a may appear at various positions

of the QAIG, having different variables bound by its ancestor

quantifier nodes. For example take a QAIG

conj(atom(p(x)), quant(x, atom(p(x))))

In the first occurrence of the atom p(x) the variable is free;

however, in the second it is bound by a quantifier. Applying

a substitution {a/x} will therefore result in

conj(atom(p(a)), quant(x, atom(p(x))))

We can express the instantiation as a set of rewrite rules

parameterized by a substitution:

Tσ(atom(a)) = atom(aσ)
Tσ(neg(a)) = neg(Tσ(a))
Tσ(and(a, b)) = and(Tσ(a), Tσ(b))
Tσ(quant(x, a)) = quant(x, Tσ′(a)),

where σ′ is σ with x unbound.

Lemma 3: If we denote the size of the QAIG structure

by n, the size of the QAIG term (which can be exponential

with the size of the DAG data structure) by N and the

number of variables in the substitution by m, the application

of the instantiation rules can be implemented with complexity

O(min(N, 2m.n)).
Proof: The bound 2

m.n follows from the fact that with the

last rule we may generate at most 2m possible substitutions,

and then we may cache the pairs of a QAIG term and the

substitutions applied to it. The bound N is valid because apart

from the possible speed up by the earlier mentioned caching,

1In the rewriting step we still create new nodes, but for every added node
there is a node that was rewritten and therefore removed.

we traverse the QAIG as a term of length N , rather than as a

data structure of size n.

It can be noted that if in no QAIG subgraph would any

variable occur as both free and bound, the instantiation could

be performed in O(n), as we would know in advance which

variables would be instantiated and which would be quantified.

Such a representation can be achieved by variable renaming;

however, this would decrease the amount of sharing in the

QAIG structure. For example, if we consider QAIG

conj(atom(p(x)), quant(x, atom(p(x))))

its size is 3: the conj node, quant node and the atom(p(x))
node which is referred to twice, once by the conj node and
once by quant. In order to ensure that no variable occurs
both as bound and free, we would need to rename one of the
occurrences, obtaining

conj(atom(p(x)), quant(y, atom(p(y))))

Now the size is 4, as we have two atom nodes, atom(p(x))
and atom(p(y)).

C. QAIG BDD Sweeping

Following the idea of BDD sweeping for propositional

problems [17], we attempt to simplify QAIGs using BDDs.

We perform the simplification from simpler AIGs to more

complex. When we process an AIG node q, we first check

whether it hasn’t been simplified into q′ by simplifications

on its parent nodes. Then, if the number of distinct atoms

in the AIG is lower than a given threshold (16 in our

implementation), we convert it into a BDD and then back,

obtaining q′′. If the DAG size of q′′ is smaller than the size

of q′ we use q′′ as the simplified node, otherwise we use q′.
We also keep a map where for each BDD we store the most

compact QAIG representation of it we have encountered. If

we encounter several QAIGs with the same BDD, we replace

them in the end by the most compact one.
The conversion of QAIGs into BDDs uses a straightforward

bottom-up algorithm atb:

atb(atom(a)) = bddvar(atom(a))
atb(quant(x, q)) = bddvar(quant(x, q))
atb(neg(q)) = bddneg(q)
atb(conj(q1, q2)) = bddand(atb(q1), atb(q2))

When converting from BDD to an QAIG, we first extract

from the BDD all literals L such that the BDD formula ϕ can

be written as ϕ ↔ L ∧ ϕ[L := �] or ϕ ↔ L → ϕ[L := �].
Then we continue with the conversion on the simplified for-

mula ϕ[L := �]. When there are no more possible extractions,

we perform a naive conversion

bta(ite(x, t, e)) = and(neg(and(atom(x), neg(bta(t)))),
neg(and(neg(atom(x)), neg(bta(e)))))

D. AIG Definition Introduction

We traverse an AIG in a top-down manner, and for each

node we remember how many times it would appear in a tree-

like representation of the AIG (which can be exponentially

large, compared to the DAG representation). If the counter

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

49

rule full name
UDE Unused Definition Elimination
DRT Definition Resolution Transformation
(N)DIT (Non-growing) Definition Inlining Transf.
ERI EPR Restoring Inlining
NDI Non-growing Definition Introduction
ED Equivalence Discovery (or SAT sweeping)
AC Argument Collapsing
ABS AIG BDD Sweeping
ADI AIG Definition Introduction
ACR AIG Conditional Rewriting
VEP Variable Equality Propagation

Fig. 1. Simplification transformations

of a node q reaches a certain threshold value (4 in our

implementation), we introduce for it a definition p(x̄) where

x̄ are all the free variables of the node q. We will use this

definition in place of ϕ later when we convert the AIG

representation back into the non-shared first-order formulas,

which will be converted to p(x̄)↔ ϕq(x̄), where ϕq(x̄) is the

formula corresponding to the node q.

E. QAIG Variable Equality Propagation

If a variable occurs in an equality, under some conditions we

may propagate it into neighbouring subformulas. We perform

this transformation on first-order formulas, but using the above

AIG instantiation terminology it can be expressed as

and(x = s, b) ⇒ and(x = s, Tx→s(b))
quant(x, neg(and(x = s, b))) ⇒ Tx→s(b),

where x does not occur in s.

In the first case we cannot remove the equality x = s, as

x may occur also elsewhere in the problem. However, in the

second case (due to the quantifier) we know x does not appear

elsewhere, so the equality can be removed. The second rule is

also discussed in [23] in the context of simplifying quantified

bit-vector formulas.

XIII. EXPERIMENTAL RESULTS

Figure 1 summarizes the main simplification transforma-

tions discussed in the paper. They are implemented in Vam-

pire’s clausifier. The implementation is flexible in that these

options can be run in a different order, often repeatedly (or

until fix-point) when useful.

We have evaluated the simplification techniques reported in

the paper on three sets of benchmarks:

(A) EPR-based bounded model checking problems [9].

(B) The QA UF problems from the SMT library [3].

(C) The FOF problems from the TPTP library [22].

In all the experiments, the time spent on pre-processing was

negligible compared to the timeout used and is not reported.

A. Evaluation on EPR-based BMC problems

In [9] we studied an encoding of the BMC [4] problem into

first-order logic. The BMC encoding there is called BMC1,

as the transition relation is never enrolled explicitly (thus one

deals with only one copy of the transition relation). In order

Design FOF Bound CNF size Time
block size Bln Dft Bln Dft Bln Dft

BPB2 913 7 9 1977 2921 6994 8023
DCC1 1093 4 4 3209 1615 5999 8981
DCC2 431 7 10 861 370 6542 9465
DCI1 4678 0 1 15899 9852 149 3085
PMS1 574 5 7 1295 1016 8157 6771
ROB2 713 5 7 1717 1157 8239 6157
SCD1 736 8 9 1908 1328 7704 5366
SCD2 267 8 15 755 524 5691 6370
TOTAL 9404 44 62 27621 18783 49475 54218

TABLE V
BMC1 RESULTS ON INDUSTRIAL BENCHMARKS.

to better explain the benchmark results below, let us briefly

recall the encoding used for BMC1.
Let n be a non-negative integer. The n-step unrolling of

the transition system is defined as follows. Take new con-
stants s0, . . . , sn and a new binary predicate next . Denote by
In(S), Fin(S), and Trans(S,S’) the initial and final state
constraints, and the transition relation, respectively. The n-
step unrolling of the transition system is defined as the set of
formulas

In(s0);Fin(sn);
∀S,S’(next(S,S’) → Trans(S,S’));

next(s0, s1);next(s1, s2); . . .next(sn−1, sn).

In BMC1, it is possible to solve the BMC problems incre-

mentally per bound, and increasing the bound to n + 1 is

expressed by adding an extra constant sn+1 and an axiom

next(sn, sn+1). (There are a few more subtleties involved in

unrolling, but they are irrelevant to the discussion here.)

Table V displays bounds reached by the iProver solver [15]

on eight BMC1 benchmarks produced from actual Intel hard-

ware designs. We also report the sizes of the original FOF

problems and the sizes of the resulting CNFs, and the solver

run-times. The timeout used was 1000 seconds. This data

is given for the base-line (or Bln, for short) clausification

algorithm of Vampire, and a reasonable default (or Dft for

short) version to which we arrived as a result of experiments

on BMC1 benchmarks. Unused definition elimination (UDE)

is already part of the Vampire baseline clausifier. In the default

version above, all the options listed in Figure 1 except for

ACR are switched on. (Surprisingly to us, ACR didn’t prove

useful on BMC1, even if it helps simplifying within formulas

φ in next-state axioms of the form ∀S,S’(next(S,S’) →
φ(S,S’)).) As can be observed from the table, with the

advanced clausification options the total CNF size was reduced

from 27621 to 18783, and the number of solved bounds

increased from 44 to 62, with only a slight increase in solving

time. Note also that higher BMC bounds are much more

difficult to solve than lower bounds. Thanks to DIT and ERI,

all the resulting CNFs were EPR.

B. Evaluation on SMT benchmarks

We used our clausification algorithms and then passed the

clauses in a TPTP format to the Z3 [18] solver which was run

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

50

Bln+ACR Dft Dft+ACR Dft+ACR(ERI)
≥ 2x faster 100 10 74 122
> 1x faster 4890 1527 4847 4941
≥ 2x slower 36 33 36 36

TABLE VI
PERFORMANCE RESULTS FOR QA UF SMT PROBLEMS.

with a timeout of 30 seconds. Out of 93 problems that timed

out with either the baseline or the advanced clausification

algorithms, 3 problems were uniquely solved after baseline

clausification, and 12 problems could only be solved using the

advanced clausification options. Since these represent only a

small fraction of the entire problem set, in Table VI we report

runtime results, where ACR refers to full conditional rewriting

and ACR(ERI) to conditional rewriting restricted to the EPR-

restoring strategy. We can conclude that these preprocessing

techniques can considerably speed up SMT solvers on a

number of problems. We can also note that ACR is very useful

both with the baseline and advanced clausification options.

C. Evaluation on TPTP benchmarks

We also evaluated the clausification configurations described

in Table VI on all 14540 FOF problems of the TPTP library.

We collectively refer to these configurations as advanced

clausification configurations. We ran both Vampire and iProver

solvers (using Vampire’s clausifier) with 30 and 60 seconds

timeouts, respectively. A decrease in the number of clauses

after applying advanced clausification occurred in 2922 prob-

lems. All together, with the advanced clausification configura-

tions Vampire solved 276 problems that it cannot solve (with

the same strategies) with the baseline clausification, while it

solved 76 problems with baseline clausification that cannot be

solved with advanced clausification. In total, Vampire solved

11906 problems with advanced clausification configurations

while with baseline clausification it solved 11706. Similarly,

iProver solved 482 problems only when it used the advanced

clausification configurations, and cannot solve 83 problems

that it can solve with baseline clausification. In total, iProver

solved 7178 problems with baseline clausification and 7577

problems with advanced clausification configurations. We note

that 15 (resp. 7) problems uniquely solved with the advanced

clausification configurations by Vampire (resp. iProver) have

the rating 1 in TPTP 5.3.0; they cannot be solved within a

300 second timeout by any of the solvers that participated in

CASC theorem proving competition in 2011.

XIV. CONCLUSIONS

Preprocessing is crucial when dealing with large industrial

problems. In this paper we presented a number of preprocess-

ing techniques for simplification of first-order formulas. One of

the main goals was to investigate methods for simplifying first-

order formulas so that Skolemization and clausification would

result in clause sets that are simpler for first-order reasoners.

We have investigated methods for definition simplification,

EPR-preserving clausification based on definition inlining,

discovery and merging of first-order definitions. We also

introduced new data structures: quantified AIG, called QAIGs,

and a combination of QAIGs and BDDs. We implemented

all our techniques in Vampire2. Vampire can also be used

as an intermediate preprocessing/clausification step for other

solvers, in the same way as we used it with iProver and Z3.

We evaluated our techniques over a broad range of bench-

marks, including industrial hardware verification benchmarks

coming from real-life designs at Intel and largest problem col-

lections for first-order logic (TPTP) and SMT (SMT-LIB). The

results are very encouraging, showing that many problems can

be solved only with the help of our preprocessing techniques.

There are many directions for future work. Let us only men-

tion that we are planning to develop inprocessing techniques

for FOL solvers, that is, we want to combine simplification

and reasoning steps more tightly.

REFERENCES

[1] Alberti F., Armando A., Ranise S. ASASP: Automated Symbolic Anal-
ysis of Security Policies, CADE 2011.

[2] Baaz M. Egly U., Leitsch A. Normal Form Transformations, in [21],
pages 273-333.

[3] Barrett C., Stump A., Tinelli C., The SMT-LIB Standard: Version 2.0
[4] Biere A., Cimatti A., Clarke E., Zhu Y. Symbolic model checking

without BDDs, TACAS 1999.
[5] Bjesse P., Boralv A. DAG-aware circuit compression for formal verifi-

cation, ICCAD 2004.
[6] Brand D. Verification of large synthesized designs, ICCAD 1993.
[7] Brummayer R., Biere A. Local two-level And-Inverter Graph minimiza-

tion without blowup, MEMICS 2006.
[8] Emmer M., Khasidashvili Z., Korovin K., Voronkov A. Encoding

Industrial Hardware Verification Problems into Effectively Propositional
Logic FMCAD 2010.

[9] Emmer M., Khasidashvili Z., Korovin K., Sticksel C., Voronkov A. EPR-
Based Bounded Model Checking at Word Level, IJCAR 2012.

[10] Giunchiglia E., Marin P., Narizzano M. sQueezeBF: An Effective
Preprocessor for QBFs Based on Equivalence Reasoning, SAT 2010.

[11] Hoder K., Kovács L., Voronkov A. Invariant Generation in Vampire,
TACAS 2011.

[12] Järvisalo M., Heule M.,3, and Biere A. Inprocessing Rules, IJCAR 2012
[13] Khasidashvili Z., Kinanah M., Voronkov A. Verifying Equivalence of

Memories Using a First Order Logic Theorem Prover FMCAD 2009.
[14] Khasidashvili Z., Nadel A. Implicative Simultaneous Satisfiability and

Applications, HVC 2011.
[15] Korovin K. iProver–an instantiation-based theorem prover for first-order

logic (system description), IJCAR 2008.
[16] Kuehlmann, A. Dynamic Transition Relation Simplification for Bounded

Property Checking, ICCAD 2004.
[17] Kuehlmann A., F. Krohm. Equivalence checking using cuts and heaps,

DAC 1997.
[18] de Moura L., Bjorner N.: Z3: An Efficient SMT Solver. TACAS 2008.
[19] Navarro-Perez, J.A., Voronkov A. Encodings of Bounded LTL Model

Checking in Effectively Propositional Logic, CADE 2007.
[20] Nonnengart A., Weidenbach C. Computing Small Clause Normal Forms,

in [21], pages 335-367.
[21] Robinson J. A., Voronkov A. Handbook of Automated Reasoning,

Elsevier and MIT Press, 2001.
[22] Sutcliffe G. The 5th IJCAR automated theorem proving system compe-

tition @CASC-J5, AI Communications, Volume 24(1), pp. 75-89, 2011.
[23] Wintersteiger C.M., Hamadi Y., de Moura L.M. Efficiently solving

quantified bit-vector formulas, FMCAD 2010.

2publicly available at http://www.vprover.org/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

51

A Liveness Checking Algorithm that Counts
Koen Claessen

Chalmers University of Technology
koen@chalmers.se

Niklas Sörensson†
Mentor Graphics Corporation
niklas sorensson@mentor.com

Abstract—We present a simple but novel algorithm for check-
ing liveness properties of finite-state systems, called k-LIVENESS,
which is based on counting and bounding the number of times a
fairness constraint can become true. Our implementation of the
algorithm is completely SAT-based, works fairly well in practice,
and is competitive in performance with alternative methods.
In addition, we present a pre-processing technique which can
automatically derive extra fairness constraints for any given
liveness problem. These constraints can be used to potentially
boost the performace of any liveness algorithm. The experimental
results show that the extra constraints are particularly beneficial
in combination with our k-LIVENESS algorithm.

I. INTRODUCTION

LTL properties for model checking are traditionally parti-
tioned into two sets: safety and liveness properties. Roughly,
safety properties are properties for which all possible counter
examples are finite traces. Liveness properties can have infinite
counter examples that are impossible to make finite.

Safety properties are more commonly used in practice,
easier to understand, and theoretically easier to check than
liveness properties. However, liveness properties still play
an important role on many verification projects. The SAT
Revolution in model checking at the end of the 1990s [8] gave
us new ways of battling the “blow-up” problems associated
with typical BDD model checking algorithms, and sparked
off a long sequence of new SAT-based safety checkers [11],
[4], [10], [5]. On the liveness side, no such explosion of new
algorithms took place. (Interesting to mention in this context is
that the original paper on Bounded Model Checking [2] treats
safety properties and liveness properties equally.)

Related Work The first practical complete SAT-based
liveness checking approach was made possible by the liveness
to safety (LTS) translation by Biere et al. [1]. LTS translates
any liveness checking problem into a safety checking problem,
after which any safety checker can be used, including SAT-
based checkers. The second complete method for liveness, by
Bradley et al., called FAIR [6], was only published last year. It
consists of a dedicated liveness algorithm, based on a symbolic
exploration of the state space using a SAT-solver, looking
for strongly connected components. FAIR performed rather
well in the Hardware Model Checking Competition 2011 [3],
proving more liveness properties than any other participant in
the competition.

This paper presents a new model checking algorithm for full
LTL, called k-LIVENESS, that is amenable for a SAT-based

†The bulk of this work was carried out at Chalmers University.

implementation. Like LTS, k-LIVENESS translates liveness
checking into safety checking, but it generates an (infinite)
sequence of safety problems rather than just one safety prob-
lem. If one of the safety problems in the sequence can be
shown to hold, then the original liveness property holds as
well. In principle, any safety checker can be used to solve the
problems in the sequence of problems, but we implemented
and use a SAT-based incremental safety checker especially for
this purpose.

As we shall see, k-LIVENESS is a surprisingly simple algo-
rithm, much simpler than FAIR, and arguably also simpler than
LTS, but it performs nonetheless quite well when compared to
these other algorithms. A drawback of our chosen approach is
that, although it is complete for proving as well as disproving
LTL properties, it is not suitable in practice yet for finding
counter examples. Therefore, there is a need to combine it with
a dedicated counter example finder, for example one based on
Bounded Model Checking [2].

The second contribution of the paper is a preprocessing
step that automatically adds extra fairness constraints to a
given liveness problem. The addition of these constraints is
sound; the validity of properties of the original circuit is not
changed by these extra constraints. The potential benefit is
that, depending on the liveness checking algorithm used, these
extra fairness constraints make many liveness problems much
easier. Our experimental results show that k-LIVENESS in
particular, but also LTS benefits very much from these extra
constraints.

II. PRELIMINARIES

A trace t is a function from time point and signal name to
Boolean value:

t : N× Signal → B

We will use LTL formulas containing operators
�,♦, next ,∨,∧,→,¬,= having their standard meaning. We
write S � φ when the system S satisfies the property φ, and
we write S, ψ � φ when the system S makes φ true under
the assumption ψ.

When performing model checking, we assume that the LTL
property φ at hand has already been translated into a liveness
signal q, such that

S � φ ⇔ S � ♦�q (1)

In other words, in order to deal with full LTL, we only need
to consider proving LTL properties of the form ♦�q. (This is

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

52

Fig. 1. Counter-example showing that the simple algorithm does not work.

standard [12]; here, q is the negation of the acceptance signal
of the Buchi automaton for ¬φ. The above right-hand side is
sometimes expressed using the fairness signal ¬q as follows:

S,�♦¬q � false

but we prefer the expression used in (1) above.)
In some contexts, a property φ may be translated into

several liveness signals, in which case we need to prove their
disjunction:

S � φ ⇔ S �
∨
i

♦�qi (2)

In this case, we first combine all liveness signals qi into
one liveness signal q, and then proceed with the liveness
signal q. This combination can be done in many (standard)
ways; the simplest one is to introduce one auxiliary register
for each liveness signal qi that keeps track of whether that
signal has been 0 yet. If all qi have been 0 at least once,
q also becomes 0 and we reset all auxiliary registers. This
construction introduces n extra registers and O(n) extra gates
for combining n liveness signals.

III. K-LIVENESS

In this section, we present our basic algorithm for checking
liveness, called k-LIVENESS.

A. A simple algorithm for ♦�q (that does not work)
Consider proving the eventuality property

S � ♦q

for a boolean signal q. For finite state systems, we may prove
this by searching for a natural number k such that

S �
∨

i∈0...k

next
i q

Indeed, if ♦q holds, we can always find such a k. The
gain is that, for a given k, the above proof obligation is a
safety property, which can be checked by a safety checker.
A simple checking algorithm thus tries k = 0, 1, 2 . . . until∨

i∈0...k next
i q holds.

One might be tempted to try a similar idea for checking the
more general safety property

S � ♦�q

Alas, there are finite state systems for which the above holds,
but for which there is no k such that

S � next
k �q

An example of such a system and property is shown in Fig.
1. Clearly, ♦�q holds for all traces accepted by the system,
but for every k there is a trace such that q becomes false after
k steps. So, this method is sound but not complete.

B. A simple, correct algorithm for checking ♦�q

Instead of counting (and bounding) the number of clock
cycles until the signal q must become true forever, we can
instead count (and bound) the number of times k the signal
q can be false. If we can find such a bound k, then q has
to eventually become true forever. Moreover, if q is a valid
liveness signal for a finite state system, we can always find
such a k. In the system in Fig. 1, the bound is 1; q can only
become false once in every trace.

What we want is expressed more formally by the following
lemma.

Lemma 1: Given a finite-state system S for which we have
S � ♦�q. Then, there exists a k such that for any trace t

of S, there are at most k different points in time i for which
t(i, q) = 0.
Proof. Assume the opposite: for any k there is a trace t where
q becomes false at least k times. Now, pick any k larger than
the number of states in S; there must be a trace t in which
q becomes false at least k times. Consequently, there must be
two different time points i and j for which t(i) = t(j) and
t(i, q) = t(j, q) = 0, since not all states where q is false can be
unique. We can now construct a looping trace t′ (obtained from
t by repeating the states between i and j) for which q is false
infinitely often, which contradicts our original assumption that
S � ♦�q. �

The experimental observation we make is that, in practice, k
is often very small (see Fig. 9 in Sect. V), which suggests that
finding k might be a practical method for checking liveness
properties.

Our algorithm works as follows. We start by setting k := 0.
Now, we try to show that q can only become false at most k
times (this is a safety property). If we succeed, we are done;
the property holds. If we fail, we increase k by 1 and try again.

Because of the above lemma, this algorithm is complete for
valid properties. However, it does not terminate for properties
that are not valid. Theoretically, if we keep finding counter
examples for growing k, at some point there must be a trace
which contains a repeated state at the appropriate place, thus
forming a valid counter example for the original liveness
signal. However, this is unlikely to work well in practice. In
order to get a complete algorithm also for false properties in
practice, a dedicated counter example finding method is used
in parallel or in lock-step with k-LIVENESS.

C. Implementation
In our implementation, instead of repeatedly calling a safety

checker every time we change k, we use an incremental safety
checker. The incremental safety checker proves or disproves a
given safety property, after which we can add some more logic
and registers to the circuit, and continue with a new safety
property. The incremental checker keeps its internal state

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

53

pin

D pout

Fig. 2. Absorbing one 0 from a liveness signal (initial state for D is 0)

between calls, so it can reuse information about reachabilty
it discovered in earlier runs in later runs too.

Making an existing safety checker incremental is more or
less difficult, depending on the underlying algorithm that the
checker is based on. The safety checker we used was our
own implementation of Bradley’s SAT-based safety checking
algorithm as implemented in IC3 [5]. Bradley’s safety al-
gorithm maintains a finite sequence of sets of clauses, each
set belonging to a concrete point in time. It turns out that
the algorithmic invariants between these sets are completely
independent of the property one is currently proving. So, if the
current property has been proven or disproven, we can keep all
sets of clauses for the next run of the checker, even though we
might add some new logic and change to a new property. The
algorithm also maintains a “current depth” counter which does
not need to be reset when a new property is checked. Thus,
Bradley’s safety algorithm is a very nice fit for the liveness
checker we are building.

The liveness algorithm starts with k = 0, and so the safety
property p we have to consider is actually the liveness signal q.
So, we start by trying to prove that q can never become false.
If this is disproved, we want to increase k and run again.
We implement increasing k by 1 by attaching the absorbing
circuitry shown in Fig. 2 to the safety property p we have
just disproved. If p is fed as its input pin, a new safety signal
pout is created that behaves just like the previous signal pin,
except that it absorbs the first 0 that is produced by its input
and turns it into a 1. So, adding the absorbing circuit in the
figure and checking its output as the new safety property has
the same effect as increasing k by 1. If we disprove the new
safety property pout, we attach yet another copy of the circuit
to it, and so on, until we have attached enough copies of the
absorbing circuit to smother all possible 0’s (or we go on
forever).

Making Bradley’s algorithm incremental amounted to
adding only about 30 lines of C++ code to our original
implementation1. The effect of using an incremental checker
is evaluated in Sect. V.

What is presented in this section leaves us with a basic
liveness checking algorithm that performs reasonably well (see
Sect. V for more details), but there are some bottlenecks,
especially when k needs to be large. The next section presents
a pre-processing step that greatly boosts the performance of
the basic algorithm, and has the potential of improving other

1In this way, we ended up with a model checker that can check multiple
safety and liveness properties simultaneously, something we have not seen
before. We have however not experimentally evaluated the advantages and
disadvantages of actually using the model checker as such.

liveness checking algorithms as well.

IV. AUTOMATIC CONSTRAINT EXTRACTION

Suppose we are checking the following proof obligation:

S � φ (3)

Here, φ can be a safety property as well as a liveness property.
Automatic constraint extraction may construct a new formula
ψ which may be used as a constraint (an assumption), thus:

S, ψ � φ (4)

The constraint extraction is correct if and only if the proof
obligations 3 and 4 are equivalent. The hope is that a model
checker may benefit from making use of the constraints ψ.

For safety checking, this idea has been proposed before, e.g.
in [7]. As far as we know, we are the first to explore this in
the context of liveness checking.

The ideas described here are very much inspired by the
algorithm that finds so-called arenas in [6]. The idea behind
arenas is to divide the state space of the system up into
partitions, such that any trace of the system will eventually end
up and stay in one such partition only. Arenas are an intricate
part of the liveness checking algorithm in [6]; we decoupled
the idea from the algorithm, generalized and improved the idea
somewhat, and repackaged it as a pre-processing technique for
liveness algorithms in general.

A. Stabilizing constraints
The kind of constraints we are going to extract are of the

form
♦�s

such that
S � ♦�q iff. S,♦�s � ♦�q

We call constraints of the form ♦�s a stabilizing constraint.
As observed in [6], it turns out that many liveness problems,

for example liveness problems involving counters, admit such
stabilizing constraints. The first observation we make is di-
rectly inspired by [6]: If we find a signal x that is monotonic,
in other words such that:

S � �(x → next x)

then it is safe to add ♦�(x = next x) as a stabilizing
constraint. The reason is that for any trace t of S, x must
either be 0 all the time, or become 1 at some point and then
stay 1 forever. In both cases, we have that eventually, x will
keep its value.

Next, we generalize this observation for signals x that are
eventually monotonic.

Lemma 2: Given a system S and a signal x. If we have

S � ♦�(x → next x)

then we may use ♦�(x = next x) as a (stabilizing) constraint.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

54

B. Making use of the property
We can also make use of the original liveness signal q

we want to prove. Assume that we are solving the liveness
problem:

S � ♦�q

and that we have found a stabilizing constraint ♦�(x →

next x). However, suppose we also find out that:

S � ♦�(x → q) (5)

then it is safe to assume, not only that x will eventually
stabilize to some value (0 or 1), but also the much stronger,
that x will stabilize to 0! In other words, we can add ♦�¬x

as a stabilizing constraint and check:

S,♦�¬x � ♦�q

instead. Why? Because there are two cases: either x stabilizes
to 0 or to 1. If x stabilizes to 1, we already know (because of
(5)) that q stabilizes to 1 also, and we have shown the original
property. The only interesting case left is when x stabilizes to
0, which is the one we add.

Similarly, if we find out instead of (5) that

S � ♦�(¬x → q)

we can add ♦�x as a stabilizing constraint.

C. Multiple stabilizing constraints
Stabilizing constraints may be used to help find other

stabilizing constraints. So, if we have found the stabilizing
constraint ♦�(x = next x) by showing:

S � ♦�(x → next x)

then we may use it when considering another candidate y:

S,♦�(x = next x) � ♦�(y → next y)

In general, we may have found a set of stabilizing constraints
that we can use to derive new stabilizing constraints, which
in turn can give rise to even more stabilizing constraints.

D. Approximating stability checking
In general, when looking for stabilizing constraints as

described above, we are asking questions of the following
shape:

S,
∧
i

♦�ai � ♦�b

Here, the ai are the stabilizing constraints we have already
found, and b is a proof obligation that may give rise to a
new stabilizing constraint. In order to decide questions like
the above, we would need a liveness checker, which would
defeat the purpose of using this as a pre-processing step to a
liveness checker!

Instead, we approximate the answer to this question by
using a SAT-solver which only talks about two consecutive
states of S. We assume we are at a state in the trace where
all stability constraints ai have already become true, and then
ask if the desired stability constraint b is now also true. Two

states is enough since every ai and also b contains at most one
next operator. We add the assumptions ai to the first state, and
then ask the SAT-solver if b also holds. If the answer from the
SAT solver is yes, we know the constraint holds. It is a crude
approximation, but very fast and quite effective in practice.

E. Algorithm
In the overall constraint extraction algorithm, we work

with a set of circuit points P and a set of found stabilizing
constraints M. Initially, the set of found stabilizing constraints
M is empty, and the set P consists of all internal points in the
circuit (and their negations).

The derivation algorithm works as follows.
For all points x from the set P, we try to prove (using our

overapproximation):

S,M � ♦�(x → next x)

If this succeeds, we add the stabilizing constraint ♦�(x =

next x) to M, and remove x from P. We then also try to prove
(also using the overapproximation):

S,M � ♦�(x → q)

If this succeeds, we add ♦�¬x to M. If not, we try:

S,M � ♦�(¬x → q)

If this succeeds, we add ♦�x to M.
If we discover any new stability constraints, we go through

all points x in P again in a new round. If no new stability
constraints have been found, we terminate with M.

Note that we actually have a choice of what set of points
P we start with. In our experimental results (see Sect. V),
we have compared starting with all internal points (and their
negations) of the circuit, as well as just having the registers
(and their negations), which may be cheaper2.

F. Making use of stabilizing constraints
Once we find the set M, we can add each of these as

constraints, if the model checker can handle such constraints.
However, our model checker only handles a single liveness
signal q, so here we describe how we can deal with this.

The first step is to turn constraints in M of the form ♦�(x =

next x) into a stabilizing constraint with just a Boolean signal
c: ♦�c. This is cheap and easy if x is the output of a register
(or its negation), because then points representing x and next x

already exist, and we just create one extra XOR-gate. But if x
is an internal point, we may have to introduce extra logic or
perhaps even a register to represent c. We might not be willing
to pay this price, in which case we can just throw away the
constraint ♦�(x = next x).

So, here we have another choice of parameter to the algo-
rithm: Do we keep constraints of the form ♦�(x = next x)

even if x is not a register? We have also compared this
choice in our experimental results. Note that it may actually

2Bradley et al. restrict themselves to registers in their arena discovery
method [6].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

55

be beneficial to start with P being all internal points, even
if in the end we keep only the constraints on registers. This
is because finding constraints on internal points may help in
finding more constraints on registers.

Once all constraints in M are of the form ♦�ci for Boolean
signals ci, we can turn these into one big constraint ♦�(

∧
i
ci).

This is because ♦� distributes over ∧. So, we are now
checking:

S,♦�(

∧
i

ci) � ♦�q

which is equivalent to

S,♦�(

∧
i

ci) � ♦�((

∧
i

ci) → q)

for which it is enough to check

S � ♦�((

∧
i

ci) → q)

since ♦�(
∧

i
ci) is a correct extracted constraint.

As we can see,
∧

i
ci → q is a much weaker liveness signal

than q, and therefore it can become false a lot less often,
reducing (in many cases significantly) the value of k needed
for k-LIVENESS.

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evalation of
implementations of the three algorithms discussed in this
paper: k-LIVENESS, LTS, and FAIR. The implementations of
k-LIVENESS and LTS were made by ourselves, and are based
on the same safety checker. The implementation of FAIR we
used was made by the original authors. Our implementation
of LTS seems to be slightly better than the one used in [6],
which explains the differences in evaluations in this paper and
[6].

We have run a number of variants of these algorithms on a
public set of liveness benchmarks, obtained from the Hardware
Model Checking Competition [3]. From that set, we discarded
a few problems that were not solvable by any algorithm; a total
of 52 problems were solvable by at least one of the tested
checkers.

All experiments were run on a cluster of quad-core Intel
Xeon E5620 CPUs clocked at 2.4 GHz. The detailed results
of most experiments reported here are presented later in the
table in Fig. 9. In the table, a dash (—) represents a time-out.
The table also contains the values of the k’s that were needed
for the various versions of k-LIVENESS, including the k’s that
were reached in case of a time-out.

To get a baseline, we start our evaluation by comparing
the basic versions of each of the three algorithms, where no
fairness constraint extraction is performed. To this end, we
made a change to the source code of FAIR, and switched
off the arena finding part of their algorithm, which roughly
corresponds to our fairness constraint extraction. This arguably
crippled (!) version of FAIR is called fair-snd0 in the tables.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.25 1 4 16 64 256 1024 4096

so
lv

ed
 in

st
an

ce
s

time in seconds

klive-fce0
lts-fce0

fair-snd0

Fig. 3. Comparison of core algorithms

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.25 1 4 16 64 256 1024 4096

so
lv

ed
 in

st
an

ce
s

time in seconds

klive-fce0
klive-fce1
klive-fce2
klive-fce3

Fig. 4. Effect of stabilizing constraints on k-LIVENESS

Fig. 3 presents this comparison in the form of a cactus plot3,
where we display time outs vs. number of solved problems.
We can see here that all three algorithms perform comparably
(k-LIVENESS and LTS solve the same amount of problems
for the maximum time out). k-LIVENESS performs slightly
better than the others at time-outs around a minute or so.

The second comparison we make is about the effect of the
various versions of the fairness constraint extraction on the
algorithms k-LIVENESS and LTS. We chose not to include
FAIR in this comparison, because the original uncrippled
version of FAIR already has a similar technique built-in. The
results are displayed as cactus plots in Fig. 4 and Fig. 5. Here,
fce0 means no constraint extraction, fce1 means constraint
extraction only for registers, fce2 means constraint extraction
for all points in the circuit, but only added for registers,
and fce3 means full constraint extraction and addition for all

3Our cactus plots might be considered slightly non-standard; the time
axis is at the bottom (where time axes should be) and is logarithmic (since
when comparing running times it is the factor, not the difference, which is
important).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

56

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.25 1 4 16 64 256 1024 4096

so
lv

ed
 in

st
an

ce
s

time in seconds

lts-fce0
lts-fce1
lts-fce2
lts-fce3

Fig. 5. Effect of stabilizing constraints on LTS

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.25 1 4 16 64 256 1024 4096

so
lv

ed
 in

st
an

ce
s

time in seconds

klive-fce3
lts-fce2

fair-snd2

Fig. 6. Comparison of algorithms with best stabilizing constraints

circuit points. The conclusion we draw from these graphs is
that fce2 and fce3 work best, but it is hard to decide which
of those is best based on the set of benchmarks we have.

From Table 9 we can see that when the analysis has a big
improvement on the total running time, it is mainly due to a
significant reduction in k.

The times reported here is the total time of first running the
analysis and then the model checking algorithm. We have not
reported detailed results on the running times of the analysis
alone. However, in the vast majority of the benchmarks the
running time of the analysis is negligible (less than 1 second).
Only in a couple of benchmarks did the analysis take a
significant amount of time relative to the total time. This
indicates that it is possible to find classes of circuits where
the analysis as implemented today will not scale up.

The third comparison we want to make is between the best
versions of the three algorithms. For k-LIVENESS and LTS,
we (rather arbitrarily) chose fce3 and fce2, respectively. For
FAIR, we run the original unmodified algorithm. The cactus
plots for this comparison are displayed in Fig. 6. We can see

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

kl
iv

e-
bi

n-
fc

e0

klive-fce0

Fig. 7. klive using a binary counter

 0.1

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000 10000

kl
iv

e-
fix

ed
-f

ce
0

klive-fce0

Fig. 8. Non-incremental klive with perfect guessing

that with the fairness constraint extraction on, k-LIVENESS
outperforms the other two, who in turn perform remarkably
similar.

Finally, we would like to experimentally answer two ques-
tions that naturally arise in connection with the k-LIVENESS
algorithm. The first question is: For large k, it seems problem-
atic to use an approach that adds circuitry linear in k. What
happens when we use a binary counter instead? It turned out it
was quite simple to change our algorithm to double k at every
incremental step by using a binary counter. The comparison
with the original, linearly growing algorithm is displayed in
Fig. 7. We can see that some problems indeed are solved a bit
faster, but many more problems are solved quite a bit slower.
That difference is clearest for fce0, which is why we chose
to show that version in the figure. The conclusion is that it
might be beneficial to use a binary counter for problems that
need a large k, but it is a bad idea to pick this as the default
method.

The second question is: Suppose we had a way to (almost)
perfectly guess the right k on beforehand. Could we base

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

57

name klive-fce0 klive-fce2 klive-fce3 lts-fce0 lts-fce2 lts-fce3 fair-snd0 fair-snd2
time k time k time k time time time time time

arbi0s08p03 442 9 1676 7 567 7 — 359 324 — —
cuabq2f 0 3 0 2 0 2 62 355 75 5 3
cuabq2mf 0 3 0 2 0 2 2 5 5 1 0
cuabq4f 2 5 2 5 4 5 6474 5739 — 485 121
cuabq4mf 0 5 1 5 1 5 189 44 223 2 2
cuabq8f 74 9 98 9 158 9 — — — 1285 —
cuabq8mf 13 9 19 9 16 9 — — — 219 66
cucnt10 — 625 0 0 0 0 40 0 0 710 0
cucnt128 — 622 6 0 6 0 — 6 6 — 1
cucnt12 — 614 0 0 0 0 713 0 0 3393 0
cucnt32 — 533 0 0 0 0 — 0 0 — 0
cucnt3 0 0 0 0 0 0 0 0 0 0 0
cufq1 3069 9 2464 8 34 4 — — 2506 — —
cugbak 83 32 87 32 131 32 1207 738 2504 127 50
cugcd 3 16 1 5 2 5 1 1 12 2 2
cujc128 — 1960 21 0 20 0 — 21 21 — 2
cujc12 — 1928 0 0 0 0 61 0 0 52 0
cujc32 — 2061 1 0 1 0 — 1 1 — 0
culock 21 83 4 31 7 31 11 12 40 9 6
cunim1 593 60 0 0 0 0 43 0 0 18 0
cunim2 1088 60 3 0 6 0 418 18 265 — 1011
cuom1 — 386 1 0 1 0 — 1 1 — —
cuom2 — 517 8 0 20 0 1785 50 32 — 64
cuom3 — 866 1 0 1 0 1090 1 1 — 2
cusarb16 0 15 0 0 0 0 0 0 0 2 0
cusarb32 3 31 0 0 0 0 8 0 0 19 0
cutarb16 503 159 131 79 139 76 146 368 209 221 25
cutarb32 — 261 5207 191 4599 188 — — — — 362
cutarb4 1 23 1 11 1 8 1 1 3 1 0
cutarb8 20 63 9 31 9 28 12 14 15 16 2
cutf1 166 8 197 8 14 4 1583 315 777 898 327
cutf3 0 3 1 0 1 0 26 1 2 3 1
cutq1 4176 9 866 7 18 3 2360 — 63 4061 4433
lmcs06abp4p1 2 3 2 3 4 3 3199 20 — 326 34
lmcs06abp4p2 2 4 3 4 3 4 771 1691 626 304 511
lmcs06abp4p4 0 1 1 1 1 1 2 8 30 251 6
lmcs06bc57sp1 14 4 22 3 3 2 80 41 414 — 53
lmcs06bc57sp2 34 2 2 0 5 0 110 232 539 98 50
lmcs06bc57sp3 4 1 5 0 5 0 16 656 137 55 19
lmcs06brp0 0 1 0 0 0 0 0 0 0 — 2
lmcs06brp2 1 2 0 0 0 0 106 1 1 798 —
lmcs06counter0 0 7 0 6 0 5 0 0 0 0 0
lmcs06dme3p2 6193 2 1283 2 3467 2 — — — — —
lmcs06mutex0 0 2 0 0 0 0 0 0 0 0 0
lmcs06prodcell2 90 19 79 18 61 17 49 62 338 358 469
lmcs06prodcell3 82 80 65 25 230 25 69 288 102 4260 1849
lmcs06prodcell4 62 60 264 24 255 24 102 84 62 1300 426
lmcs06prodcell5 328 109 760 106 769 105 129 121 152 4442 —
lmcs06prodcell6 262 109 543 106 571 105 129 141 143 2999 1643
lmcs06ring0 0 4 0 4 0 4 0 0 0 0 0
lmcs06short0 0 1 0 0 0 0 0 0 0 0 0
lmcs06srg5p0 0 6 0 5 0 5 0 0 1 1 1

Fig. 9. Detailed experimental results.

an algorithm on that? We ran an experiment where we first
computed the right k for each benchmark, and then ran the
algorithm again, jumping to that k immediately. The results
are displayed as a scatterplot in Fig. 8. We can see here
that solving the problem for the correct, fixed k directly is
much slower than the incremental approach. This is surprising
because the incremental approach actually proves more; it
also proves that none of the other k are large enough. One
explanation is that the state space exploration we force the
algorithm to go through when considering lesser k actually
helps in finding the proof for the right k. This might also
partially explain why the binary counter approach is worse
than the linear approach, because it jumps over many k at once
as well. However, these explanations are merely speculations
and more investigation is needed to fully understand these
results.

VI. DISCUSSION AND CONCLUSIONS

We have presented a new, simple liveness algorithm, called
k-LIVENESS, based on finding a limit k on the number
of times a fairness signal can become true, that compares
favorably against existing liveness algorithms. Finding the
right limit k is done by using an incremental safety checker.
Our experiments show that the incrementality of the approach
is crucial for its efficiency.

Moreover, we developed a preprocessing technique that
is heavily inspired by the FAIR algorithm, that can boost
the performance of liveness algorithms in general. The main
differences between the pre-processing presented here and
the arena analysis as part of the FAIR algorithm are: (1)
our approach works on all points in the circuit rather than
just the registers, (2) our approach makes use of the liveness
signal in a different (stronger) way, (3) our approach generates

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

58

extra constraints separately from the main model checking
algorithm.

We evaluated the preprocessing technique positively in
particular for k-LIVENESS and LTS. Our experiments show
that it is important for the preprocessor to take all internal
points of the circuit into account, not only the registers. k-
LIVENESS plus fairness constraint extraction performs best
in our experiments. It seems that the Achilles heel of k-
LIVENESS, namely when the needed k is growing too large,
is nicely covered by the fairness constraint extraction, which
works very well for counter-like sub-circuits.

The resulting algorithm is arguably much simpler than
FAIR, even when taking the preprocessing analysis step into
account. Moreover, FAIR is non-deterministic by design (and
by necessity), which our algorithm is not.

A drawback of our approach is that it does not seem practi-
cal to extract counter examples. To make a model checker that
is complete in practice even for false properties, the method
needs to be combined with a dedicated counter example finder,
for example based on Bounded Model Checking [2]. Our tool
Tip, which implemented k-LIVENESS (without preprocessing)
in lock-step with a simple BMC method actually won the
overall liveness track of the Hardware Model Checking Com-
petition in 2011 [3], showing that this is not a problem in
practice. It is future work to investigate how to practically
extract possible counter examples from failed safety checks.

For more future work, we intend to investigate the effect that
alternative choices have on the efficiency of the algorithm. For
example, the circuit in Fig. 2 that is added at each incremental
step can be implemented in many different ways, for example
by using a shift register. We do not know how changing this
circuit affects the performance.

Moreover, we want to find out what effect our preprocessor
has on other liveness algorithms, for example BDD-based
algorithms.

A more open question is wether it is possible to make an
efficient SAT-based model checker for CTL. Ideas from [9]
seem promising in this regard.

ACKNOWLEDGMENTS

We would like to thank Johan Mårtensson and Nir Piter-
man for initial discussions and insights on this work. The
anonymous referees’ comments were also highly appreciated.
Finally, many thanks to the Colorado team (Aaron Bradley,
Fabio Somenzi, and Zyad Hassan) for helping us to run their
code.

REFERENCES

[1] A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety
checking. In Proc. of Workshop on Formal Methods for Industrial
Critical Systems (FMICS), Electronic Notes in Theoretical Computer
Science (ENTCS). Elsevier, 2002.

[2] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. of Conference on Tools and Algorithms for
the Analysis and Construction of Systems (TACAS), Lecture Notes in
Computer Science. Springer Verlag, 1999.

[3] Armin Biere and Keijo Heljanko. Hardware model checking competi-
tion, 2011. Associated with FMCAD’11. http://fmv.jku.at/hwmcc11/.

[4] Per Bjesse and Koen Claessen. SAT-based verification without state
space traversal. In Proc. of Conference on Formal Methods for Computer
Aided Design (FMCAD), Lecture Notes in Computer Science. Springer
Verlag, 2000.

[5] Aaron Bradley. SAT-based model checking without unrolling. In
Proc. of Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), Lecture Notes in Computer Science. Springer
Verlag, 2011.

[6] Aaron Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An
incremental approach to model checking progress properties. In Proc. of
Conference on Formal Methods for Computer Aided Design (FMCAD),
Lecture Notes in Computer Science. Springer Verlag, 2011.

[7] Gianpiero Cabodi, Paolo Camurati, Luz Garcia, Marco Murciano, Sergio
Nocco, and Stefano Quer. Speeding up model checking by exploiting
explicit and hidden verification constraints. In Proc. of Conference on
Design Automation and Test in Europe (DATE), 2009.

[8] Koen Claessen, Niklas Een, Mary Sheeran, and Niklas Sörensson. Sat-
solving in practice. In Proc. of Workshop on Discrete Event Systems
(WODES). IEEE, May 2008.

[9] Byron Cook, Eric Koskinen, and Moshe Vardi. Temporal property
verification as a program analysis task. In Proc. of International
Conference on Computer-Aided Verification (CAV), 2011.

[10] Ken McMillan. Applying SAT methods in unbounded symbolic model
checking. In Proc. of Conference on Computer Aided Verification (CAV),
Lecture Notes in Computer Science. Springer Verlag, 2002.

[11] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety
properties using induction and a SAT-solver. In Proc. of Conference on
Formal Methods for Computer Aided Design (FMCAD), Lecture Notes
in Computer Science. Springer Verlag, 2000.

[12] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite
computation paths. In Proc. of Symposium on Foundations of Computer
Sciece (FOCS), 1983.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

59

A Formal Model of a Large Memory that Supports
Efficient Execution
Warren A. Hunt, Jr. and Matt Kaufmann

Dept. of Computer Science, University of Texas, Austin, TX 78701
Email: {hunt,kaufmann}@cs.utexas.edu

Abstract—The validation and application of formal processor
models benefits fundamentally from both efficient execution and
automated reasoning about the models. We present a memory
model written in the ACL2 logic, with both reasoning support and
a runtime environment, that accomplishes these objectives. Our
memory model provides a space-efficient implementation for an
address space of 2

48 bytes, and is used in our development of an
ISA model for x86 instructions. We define and prove invariants,
and we use them to prove useful lemmas and to formally verify
absence of run-time simulator errors. Our memory model also
supports efficient execution through constant-time read and write
access in an applicative setting.

I. INTRODUCTION

We describe a model of memory suitable for specifying and
simulating a 64-bit microprocessor instruction-set architecture
(ISA). The model is formalized in the logic of the ACL2
theorem prover [1], [2]. Our contribution is the formal spec-
ification and mechanical verification that our implementation
provides a single, large, uniformly-addressed memory with
space-efficient, high-speed (constant-time) performance. We
desire high performance because of our interest in validating
a (uni)processor model by simulating and comparing with
expected results. As far as we know, our verified memory
model is more time and space efficient than other models of
a large memory formalized using the language of a theorem
prover.

Microprocessor specifications require a model of its mem-
ory and its memory operations. Our model provides a memory
of 248 bytes; this is the address space defined by contemporary
x86 implementations. Actually, some x86 implementations
define a 52-bit address space, but such implementations require
the use of the x86 memory management unit to access physical
memory locations larger than 248 bytes. If the need arises, we
expect to be able to parameterize our model to offer larger (or
smaller) memory address spaces.

Likely, every microprocessor design in the last 40 years has
been modeled, and necessarily every such model includes a
memory model, often written in C or Verilog. Our effort is
focused on memory models that are (1) defined formally, (2)
scale up to very large memories, (3) provide high-speed sim-
ulation, and (4) support mechanized reasoning. The memory
model we present here defines four read (rmXY) operations
and four write (wmXY) operations with the following interface
signatures:

rm08: addr * mem → byte wm08: addr * byte * mem → mem
rm16: addr * mem → word wm16: addr * word * mem → mem
rm32: addr * mem → dword wm32: addr * dword * mem → mem
rm64: addr * mem → qword wm64: addr * qword * mem → mem

In this paper, we specify and verify a memory model satis-
fying the four (numbered) properties above and then we use
this memory model to implement the eight memory functions
just identified. In particular, Section V discusses classic read-
over-write properties. Various microprocessor memory models
can be layered on top of our memory model. Microprocessors
providing virtual memory or other memory access mechanisms
require a model of the physical memory; our focus here is the
formalization of the physical memory interface. The complete
source code and theorems for our memory model and its use
in a partial x86 ISA specification may be found elsewhere [3].

Our efforts in this area started with the FM8501 and
FM8502 microprocessors [4], [5], which included complete
memory models whose performance was linear in the address
size; thus, these models were not practical for simulating large
memories. Our FM9001 microprocessor model [6] included a
tree-based memory model that provided constant-time, tree-
based accesses. Anthony Fox has developed a tree-based
memory using HOL for his ARM microprocessor model, with
a focus on program verification performance measured in tens
of accesses per second [7]; by comparison, our performance
is measured in hundreds of thousands of accesses per second
(see Section VI).

Jared Davis used ACL2 to implement a tree-based 64-
bit memory [8], which could make several hundred thou-
sand accesses per second running on an Intel Pentium 4 in
2006. David Hardin (personal communication) reports 350,000
bytes/second on a 2.4 GHz Intel Core 2 Duo, using a version
of Davis’s model incorporated into an AAMP7 model [9]. The
memory models of Davis and Hardin provide less than 1% of
the memory performance we present here.

We begin by providing background on ACL2, the system
that we are using for memory modeling. In Section III we
present our two-level memory model. Section IV discusses
invariants on our model and their role in efficient execu-
tion and fundamental properties. In Section V we present
our higher-level read and write operations for bytes, words,
doublewords, and quadwords, together with formally verified
read-over-write properties of our memory model. Because we
are using this memory model to support the modeling of
microprocessor specifications, Section VI provides some mem-

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

60

ory access/update benchmark data. We conclude by observing
that our memory implementation has been verified to operate
correctly while providing sufficient performance to be used as
the foundation of an ISA simulator.

II. ACL2 PRELIMINARIES

ACL2 [1] is a freely available system that provides a the-
orem prover and a programming language, both of which are
based on a first-order logic of recursive functions [10], [11].
The logic is compatible with Common Lisp — indeed, “ACL2”
is an acronym that might be written as “ACL2” and stands for
“A Computational Logic for Applicative Common Lisp” —
and thus an executable image can be built on any of seven
Common Lisp implementations. As a result, ACL2 provides
efficient execution by way of Common Lisp compilers.

The initial theory for ACL2 contains axioms for primitive
functions such as car (the head of a list or first component
of a pair) and cdr (the tail of a list or second component of
a pair). It also contains axioms for Common Lisp functions,
such as ash (arithmetic shift), and it introduces axioms for
user-supplied definitions.

ACL2 provides a top-level read-eval-print loop. Arbitrary
ACL2 expressions may be submitted for evaluation. Of spe-
cial interest are events, including definitions and theorems;
these modify the logical database for subsequent proof and
evaluation. For example, our memory model defines n45p to
return true on 45-bit natural number inputs.

Links to numerous papers that apply ACL2, as well as
detailed hypertext documentation and installation instructions,
may be found on the ACL2 home page [2]. In the remainder
of this section we briefly introduce aspects of ACL2 that are
referenced in the remainder of this paper.

A. ACL2 basics
As is the case for Lisp, the syntax of ACL2 is generally

case-insensitive and is based on prefix notation: (function
argument1 . . . argumentk). For example, the term de-
noting the sum of x and y is (+ x y). A semicolon (‘;’)
begins a comment to the end of the line, generally shown in
italics in this paper. Other ACL2 syntax used in this paper will
probably make sense from the context, but we say a bit here
about local variables, which may be introduced using let for
parallel binding or let* for sequential binding. The term

(let ((x1 t1)
(x2 t2)
...)

(f ... x1 ... x2 ...))

binds variable x1 to the value of term t1, variable x2 to the
value of term t2, and so on, before evaluating the indicated
call of f. Let* is similar but has a sequential semantics:
each binding applies to subsequent bindings. The following
log illustrates the difference between the parallel bindings of
let and the sequential bindings of let*.
ACL2 !>(let ((x 3))

(let ((x (1+ x)) ; x is bound to 4

(y x)) ; y is bound to old x: 3
(list x y))) ; return list of x and y

(4 3)
ACL2 !>(let ((x 3))

(let* ((x (1+ x)) ; x is bound to 4
(y x)) ; y is bound to new x: 4

(list x y))) ; return list of x and y
(4 4)
ACL2 !>

Functions in ACL2 may return multiple values. Logically,
a multiple-value return is just a return value that is a list;
but the implementation can avoid building list objects. Syn-
tactic restrictions enforce proper use of multiple values. The
primitives mv and mv-let create and bind multiple values,
respectively, as we now illustrate (see [12] for details). The
following function takes two numbers and uses the if-then-else
primitive to return two values: the smaller and larger of those
numbers, respectively. Note that here and throughout the paper,
we avoid using the Lisp defun command, showing instead
just the logical axiom added by the definition. For complete
definitions, including declare forms that can improve effi-
ciency and specify guards (cf. Section II-B), see the associated
technical report [3].
Definition.
(min-max x y)
= (if (< x y) (mv x y) (mv y x))

The next function exponentiates the smaller of two numbers
to the power of the larger.
Definition.
(expt-min-max x y)
= (mv-let (smaller bigger)

(min-max x y)
(expt smaller bigger))

Then for example:
ACL2 !>(expt-min-max 2 5)
32
ACL2 !>(expt-min-max 5 2)
32
ACL2 !>

B. Definitions and guards
The logic of ACL2 is untyped. However, ACL2 definitions

may specify preconditions, known as guards. Consider for
example the following definition of a function that returns the
reciprocal of the difference of its inputs.
Definition.
(f x y)
= (/ (- x y))
Guard:
(and (rationalp x)

(rationalp y)
(not (equal x y)))

When this form is submitted, ACL2 performs guard verifica-
tion, a static check (using the theorem prover) that for every
function call that takes place during evaluation, the arguments
satisfy the guard of that function. The example above generates
the following two proof obligations, each under the hypothesis
of the above guard: x and y are distinct rational numbers.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

61

• The indicated subtraction requires that its arguments, x
and y, are rationals.

• The indicated reciprocal operation requires that its argu-
ment, (- x y), is a non-zero rational.

ACL2 easily discharges these proof obligations. Subsequently,
any call of f will be evaluated in Common Lisp using the
above code. Indeed, guards provide a link between the ACL2
logic and the host Lisp implementation, by allowing the use of
Common Lisp evaluation in a way that avoids runtime errors.

Note that while guards are important for supporting evalua-
tion by the host Lisp, they are irrelevant logically. For example,
the ACL2 logic includes the following axiom, which implies
that the reciprocal of a non-number or zero is zero.
Axiom. completion-of-unary-/
(equal (/ x)

(if (and (acl2-numberp x)
(not (equal x 0)))

(/ x)
0))

Thus, for example, one can prove (equal (/ 0) 0) with
the ACL2 theorem prover. An attempt to evaluate (/ 0) (the
reciprocal of zero) in the ACL2 read-eval-print loop will, by
default, result in an error that reports a guard violation.

C. Single-threaded objects (stobjs)
Our memory model uses ACL2 single-threaded objects, or

stobjs [13]. The first-order logic of ACL2 represents stobjs us-
ing linear lists, without side-effects. But for execution, ACL2
enforces syntactic single-threadedness restrictions on function
definitions involving stobjs. so that they provide constant-time
access and update using arrays, which can be made resizable.
ACL2 provides detailed stobj documentation [12]; here we use
an example to convey key ideas.

The following ACL2 event specifies a single-threaded ob-
ject, st, which has a single field, store, which in turn is an
array of 31-bit non-negative integers, initially all 0. Although
store initially has length 8, it can be resized to arbitrary
lengths.
(defstobj st

(store :type (array (unsigned-byte 31) (8))
:initially 0
:resizable t))

Logically, st is just a one-element list whose unique element,
store, is itself just a list. The following theorem makes
this claim formally, where store-length is a function
introduced by the above defstobj event, returning the
number of entries in store. Throughout this paper and also in
our ACL2 development, we give theorems descriptive names.
Theorem. store-length-computes-len
(implies
(stp st) ; st satisfies its recognizer
(and (consp st) ; st is a list

(null (cdr st)) ; st has only one member
(equal (len (car st)) ; list-length of store

(store-length st))))

However, the implementation guarantees that no list construc-
tion is performed when updating store, and unlike linear list

operations, every access to store is done in constant time
with an array indexing operation.

D. About proofs
Our presentation below focuses on formalization and proof

highlights, avoiding proof details. Full ACL2 input scripts may
be found elsewhere [3].

Our proofs of the read-over-write lemmas in Section V-B
take advantage of the GL symbolic simulation package [14].
That package requires the experimental “hons” extension,
ACL2(h), of the ACL2 theorem prover [15], [12], which we
therefore used for this effort.

III. MEMORY STRUCTURE, ACCESS, AND UPDATE

Our memory model is based on an array of 64-bit quad-
words, providing the illusion of a memory containing 248

bytes. The model includes read and write operations, memi
and !memi, for quadwords (64 bits). Later, in Section V,
we build on these primitives to define byte-addressed reads
and writes for various sizes: byte (8 bits), word (16 bits),
doubleword (32 bits), and quadword (64 bits).

The correctness of our model is captured by the following
standard property of arrays. We briefly discuss its proof in
Subsection IV-C.
Theorem. memi-!memi
(implies
(and (x86-64p x86-64) ; Memory OK

(n45p i) ; Read address OK
(n45p j)) ; Write address OK

(equal (memi i ; Read address
(!memi j ; Write address

v ; Value to write
x86-64)) ; Initial memory

(if (equal i j) ; For equal addresses
v ; the read value is v

(memi i x86-64))))) ; else, unchanged

Our memory model is implemented using a data structure
with three fields; see Fig. 1. Although the memory is concep-
tually an array of 248 bytes, we choose our data structure for
space efficiency. Our choice of 27 bits is somewhat arbitrary,
but intended to balance the size of mem-table — 227

(134M) entries — with the size of the mem-array, which
initially consists of (somewhat arbitrarily) 100 pages, each
containing 221 bytes (2MB).

• The memory address table, mem-table, is indexed by
the top (most significant) 27 bits of a 45-bit quadword
address. Its valid entries are 45-bit addresses.

• The memory array, mem-array, is indexed by 45-bit
quadword addresses from mem-table. Its entries are
the memory quadword values.

• A 45-bit quadword address, mem-array-next-addr,
points to the next free two-megabyte section (“page”) of
mem-array.

We use the ACL2 stobj mechanism (see Section II) to imple-
ment these fields.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

62

������������	
�����

��
��������
����
����
����������

����
��������

"

�

�������

�������

����
��#$���
&�'*��<����

=�
�� ����
����
"
�

�

>

���

\�	
��^�������_�{��_��
��

��������� |*��<��������

����
��������

����
��������

�
}}}}}}}}}}}}}}}}}}}}}

Fig. 1. Memory System

(defstobj x86-64
; some fields elided
(mem-table
:type
(array (unsigned-byte 45)

(*mem-table-size*)) ; 227

;; either 1 or a memory page address
:initially 1
:resizable nil)

(mem-array ; resizable array of quadwords
:type (array (unsigned-byte 64)

(*initial-mem-array-length*))
:initially 0
:resizable t)

(mem-array-next-addr
:type ; natural number < 245

(integer 0 35184372088832)
:initially 0)

)

The first field defines mem-table as an array of 227 en-
tries where each entry is constrained to be a 45-bit natural
number, initially 1. The second field defines a memory array
of 245, unsigned 64-bit integers (quadwords), with its initial
entries all being 0. This array has (an initial length of)
initial-mem-array-length entries (arbitrarily set
to 100 ∗ 218); but since it is declared resizable, it will be
extended automatically as necessary. The third field, a 45-bit
integer named mem-array-next-addr, tracks the space
allocated in mem-array.

We initialize mem-table values to 1 so we can distinguish
which memory table entries are valid. The valid entries in
mem-table are unique 45-bit addresses that are aligned to
two-megabyte boundaries; that is, the bottom (least significant)
18 bits of these addresses are all zero. This choice results
in each mem-table entry pointing to the start of a two
megabyte “page” in mem-array. In our implementation,
mem-array is initially allocated an amount of memory
corresponding to a positive integral number of two-megabyte
pages. When the demand for memory exceeds the available
memory pages, mem-array is dynamically extended (until

the underlying operating system fails to be able to allocate
memory).

Our memory implementation writes to mem-table when-
ever a write is presented for which the corresponding two-
megabyte page has no entry in mem-table, following a
process that can be thought of as a one-level paging scheme.
Suppose for example that we start with an empty memory and
perform three writes, as shown below.

• First write to memory: at quadword address 7 ∗
218 + 345. (See Fig. 1.) The corresponding page index
into mem-table is 7, selected by right shifting the
quadword address by 18 bits. Since this is the first write,
our memory write function will see that mem-table
has value 1 at index 7, indicating that the corresponding
two-megabyte page has no index in mem-table. Index 7
will then obtain the value of mem-array-next-addr,
0 ∗ 218, which corresponds to the first available “page”
in mem-table. Also, mem-array-next-addr is
bumped up to the next page address, 1 ∗ 218. An address
into mem-array is then constructed by combining the
page address of 0 ∗ 218 with the original low 18 address
bits, in this case 345, to obtain 0 ∗ 218 + 345. We write
the given quadword data to that address of mem-array.

• Second write to memory: at quadword address
23 ∗ 218 + 12. Following the steps above, we find an
invalid entry at index 23, which we replace by the
current value of mem-array-next-addr, 1 ∗ 218.
(And, mem-array-next-addr is then bumped up by
218, to 2 ∗ 218.) We then write the quadword data into
mem-array at index 1 ∗ 218 + 12.

• Third write to memory: at quadword address 7∗218+

5. This time we find a valid entry in mem-table, namely
at index 7 as placed by the first write. So we write the
quadword data into mem-array at index 0 ∗ 218 + 5.

In summary, a mem-table entry for the top 27 bits of
an address serves as the base index for the address where
we will write a quadword to mem-array. The full index
for writing into mem-array is the sum (performed by the
logical inclusive ‘or’ function logior) of the base index and
the bottom 18 bits of the original address. We expect that it
would be easy to remove 17 of those 18 bits, leaving just one
“valid” bit, and we may do that in the future; but we liked the
simplicity of using logior.

The same addressing scheme is used when reading, but
mem-array is never extended on reads. If there is an
appropriate mem-table entry, then the value returned will
be found in mem-array using the scheme described above.
Otherwise, the default value 0 is returned.

Our primitive memory read and write functions, memi and
!memi, are defined as described above. In particular, note that
!memi calls a function add-page when necessary to extend
the available memory and obtain a mem-array address from
mem-array-next-addr.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

63

Definition.
(memi i x86-64)
= (let* ((i-top27 ; right shift 18 bits

(ash i -18))
(addr (mem-tablei i-top27 x86-64)))

(if (eql addr 1) ; page is not present
default-mem-value

(let ((index (logior addr
(logand #x3ffff i))))

(mem-arrayi index x86-64))))

Definition.
(!memi i v x86-64)
= (let* ((i-top27 (ash i -18))

(addr (mem-tablei i-top27 x86-64)))
(mv-let
(addr x86-64)
(if (eql addr 1) ; if page is not present

(add-page i-top27 x86-64) ; add a page
(mv addr x86-64))

(!mem-arrayi (logior addr (logand #x3ffff i))
v
x86-64)))

Definition.
(add-page i x86-64)
= (let* ((addr (mem-array-next-addr x86-64))

(len (mem-array-length x86-64))
(x86-64
(if (eql addr len) ; must resize!
(resize-mem-array
(min (* *mem-array-resize-factor* len)

2ˆ45)
x86-64)

x86-64))
(x86-64 ; Add next new page.

(!mem-array-next-addr
(+ addr *2ˆ18*)
x86-64))

(x86-64 (!mem-tablei i addr x86-64)))
(mv addr x86-64))

The question remains of whether this scheme always works.
The next section addresses this question.

IV. MEMORY INVARIANT AND ITS CONSEQUENCES

In this section we introduce our invariant on the memory.
We then sketch how it supports proofs of properties that
support efficient execution. Finally, we show how our invariant
supports the proof of the key property of our memory model.

A. The memory invariant
Recall our two-level memory, where mem-table is

an array that contains 218-aligned addresses indexing into
mem-array, a resizable array containing 64-bit data, where
those addresses are below the (218-aligned) address limit,
mem-array-next-addr. Our invariant, stated informally
below, incorporates these and other properties. We write
table-max-index to denote the maximum index into
mem-table, i.e., one less than the length of mem-table,
and we write mem-array-length to denote the current
length of mem-array.

1) mem-array-next-addr ≤ mem-array-length.
2) *initial-mem-array-length* ≤

mem-array-length.

3) #x3ffff & mem-array-length = 0, i.e.,
mem-array-length is 218-aligned.

4) mem-array-next-addr = 218 ∗ k, where k is the
number of valid entries in mem-table (entries not
equal to 1).

5) Every valid entry in mem-table is 218-aligned and is
less than mem-array-next-addr.

6) There are no duplicate valid entries in mem-table.
7) The value is 0 in mem-array at every index at or

exceeding mem-array-next-addr.
The function good-memp formalizes our memory invari-

ant, as described informally by these seven clauses. The invari-
ant on our stobj is the conjunction of basic structural proper-
ties, represented by the stobj recognizer x86-64p-pre, and
our memory invariant.
Definition.
(x86-64p x86-64)
= (and (x86-64p-pre x86-64)

(good-memp x86-64))

The following theorem formalizes invariance for our basic
memory write operation. We have also proved such theorems
for the higher-level memory write operations presented in
Section V.
Theorem. x86-64p-!memi
(implies (and (x86-64p x86-64) (n45p i) (n64p v))

(x86-64p (!memi i v x86-64))))

B. Guard verification using the invariant
Section II discussed the role of guards in supporting effi-

cient execution. In this section we illustrate the important role
played by our invariant for verifying guards, using as a key
example our basic memory read function, memi.

Recall that memi reads the quadword at address i from the
memory of our x86-64 stobj. Its guard is given as follows.
(and (n45p i) ; 45-bit quadword address

(x86-64p x86-64))

The interesting case for reading a 45-bit quadword address is
that its top 27 bits index into a valid entry of mem-table,
which is an index into mem-array. A corresponding proof
obligation arises from guard verification for function memi;
it states that the corresponding index into mem-array is in
bounds.
(implies
(and (x86-64p x86-64)

(< i 2
45)

(<= 0 i)
(integerp i)

; The next conjunct says that we have a valid
; mem-table entry.

(not (equal (nth (ash i -18)
(nth *mem-tablei* x86-64))

1)))
; We conclude that the index into mem-array,
; as represented by the logior call below, is
; less than the length of mem-array.
(< (logior (logand #x3ffff i) ; low 18 bits of i

(nth (ash i -18) ; top 27 bits of i
(nth *mem-tablei* x86-64)))

(len (nth *mem-arrayi* x86-64))))

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

64

In order for this formula to be a theorem, the hypothesis
(x86-64p x86-64) must be sufficiently strong. We have
checked mechanically with ACL2 that this is indeed the case.

C. A fundamental read-over-write lemma
Recall the key property memi-!memi from the start of

Section III, which characterizes the effect of a quadword write
on the memory. It is crucial for proving analogous properties
of higher-level read and write functions, as discussed in
Section V. That property naturally breaks into two lemmas.
One of those is the following, for the case that the address for
reading is the same as the address that is written.
Theorem. memi-!memi-same
(implies (x86-64p x86-64)

(equal (memi i (!memi i v x86-64))
v))

With suitable hints and lemmas, ACL2 proves this theorem.
But among the lemmas applied in its proof, as reported by
the prover, the following is one that is critical, as the proof
fails without it. Note that it corresponds to Clause 4 of our
invariant.
Theorem. logand-mem-array-next-addr
(implies (good-memp x86-64)

(equal (logand #x3ffff
(nth *mem-array-next-addr*

x86-64))
0))

We now consider the other case, that is, where the addresses
are distinct.
Theorem. memi-!memi-different
(implies (and (not (equal i j))

(n45p i)
(n45p j)
(x86-64p x86-64))

(equal (memi i (!memi j v x86-64))
(memi i x86-64)))

Consider what happens if two mem-table indices contain the
same value. For example, suppose that quadword addresses
i and j are 0 and 218, respectively, yet the corresponding
mem-table entries at indices 0 and 1 both have value 0. Also
suppose that all values stored in mem-array are 0, and that
the value v is 1. Then, even though i and j are distinct, the
equality displayed above is false, as (memi i (!memi j
v x86-64)) is 1 yet (memi i x86-64) is 0.

It is here that the memory invariant saves us. Specifically,
Clause 6 prohibits duplicate entries in mem-table. We prove
that every operation on the memory preserves the memory
invariant.

V. USING THE MEMORY MODEL: READS AND WRITES

We have seen functions memi and !memi for reading
and writing quadwords (8-byte natural numbers) at quadword-
aligned memory addresses. But for our intended application
of modeling the x86 ISA [3], we also require functions that
read and write bytes, words, doublewords, and quadwords at

��������	
������ ���	
������

���	�	�

�	�	�

�

�

�

�

�

���

������	�����	��	����	������	�����

������$�

������$�

��

������

Fig. 2. Misaligned memory access

arbitrary addresses. We tour those below and then discuss
theorems relating reads and writes.

For byte reads the memory is read once. But for non-aligned
accesses of more than one byte, it may be necessary to read
the memory twice because the access may be split across two
(64-bit) quadwords. This possibility is illustrated in Fig. 2 for a
doubleword (four bytes: b0, b1, b2, b3) stored at address n+7.
Here, n is the address of a byte on a quadword boundary (n is
a multiple of 8). We use little-endian format, which requires
that the least significant byte appear at address n+7, the next
byte at n+8, the next byte at n+9, and the most significant
byte at n+10.

A. Read and write functions
We implement byte, word, doubleword, and quadword read

and write operations using the primitive quadword memory-
read and memory-write functions, memi and !memi. The
following function reads a single byte from memory.
Definition.
(rm08 addr x86-64)
= (let* ((byte-num (n03 addr))

(qword-addr (ash addr -3))
(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(shifted-qword (ash qword

(- shift-amount))))
(n08 shifted-qword))

Guard:1

(and (n48p addr)
(x86-64p x86-64))

The following lemma is critical in order to verify guards
for the above function. Specifically, it is used in the proof of
the guard obligation from the definition of rm08 for the call
(ash qword (- shift-amount)), which states that
qword is an integer, where qword is (memi qword-addr
x86-64).

1We show a formula that is logically equivalent to the guard.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

65

Theorem. memi-is-unsigned-byte-64
(implies (and (x86-64p x86-64)

(n45p addr))
(n64p (memi addr x86-64)))

But why does this lemma hold? Clause 5 of our invariant
(Section IV-A) is crucial, and is a consequence of hypothesis
(x86-64p x86-64):

Every valid entry in mem-table is 218-aligned and
is less than mem-array-next-addr (Fig.??).

Indeed, if we tell ACL2 to ignore (“disable”) two rewrite rules
corresponding to this property, the proof fails.

We turn now from reading to writing a byte.

Definition.
(wm08 addr byte x86-64)
= (let* ((byte-num (n03 addr))

(qword-addr (ash addr -3))
(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(byte-mask (ash #xff shift-amount))
(qword-masked (logand (lognot byte-mask)

qword))
(byte-to-write (ash byte shift-amount))
(qword-to-write (logior qword-masked

byte-to-write)))
(!memi qword-addr qword-to-write x86-64))

It will be important to maintain our invariant after doing
a write, so that the guards (which include our invariant) are
met for subsequent memory operations. We therefore prove
the following lemma.

Theorem. x86-64p-wm08
(implies (and (x86-64p x86-64)

(n48p addr)
(n08p byte))

(x86-64p (wm08 addr byte x86-64)))

Reads and writes of more than one byte are built up in
layers. For example, here is the function for reading four bytes,
which invokes the two-byte read function when the addresses
cross a quadword boundary. Notice that the call of n48p in
the guard leaves room to read four bytes.

Definition.
(rm32 addr x86-64)
= (let ((byte-num (n03 addr)))

(cond
((<= byte-num 4)
(let* ((qword-addr (ash addr -3))

(qword (memi qword-addr x86-64))
(shift-amount (ash byte-num 3))
(shifted-qword (ash qword

(- shift-amount))))
(n32 shifted-qword)))

(t ; byte-num is 5, 6, or 7
(let* ((word0 (rm16 addr x86-64))

(word1 (rm16 (n48+! 2 addr) x86-64)))
(logior (ash word1 16) word0)))))

B. Read-over-write theorems
The following theorem characterizes the effect of reading a

byte from address i after writing a byte, v, at address j. The
result, of course, is v if i equals j; otherwise the write does
not affect the value returned by the read. The proof relies
on the lemma memi-!memi, which takes advantage of the
invariant, (x86-64p x86-64); see Section IV-C.
Theorem. rm08-wm08
(implies (and (x86-64p x86-64)

(n48p i) (n48p j) (n08p v))
(equal (rm08 i (wm08 j v x86-64))

(if (equal i j)
v

(rm08 i x86-64))))

The corresponding lemma for two bytes is a bit more
complex, as the cases for the resulting read depend on how
the two address regions overlap.
Theorem. rm16-wm16
(implies
(and (x86-64p x86-64)

(natp i) (n48p (1+ i))
(natp j) (n48p (1+ j))
(n16p v))

(equal (rm16 i (wm16 j v x86-64))
(cond ((equal i j)

v)
((equal j (1+ i))
(logior (* *2ˆ8* (logand #xff v))

(rm08 i x86-64)))
((equal i (1+ j))
(logior (ash (logand #xff00 v) -8)

(* *2ˆ8*
(rm08 (+ 1 i) x86-64))))

(t
(rm16 i x86-64)))))

Our approach to proving this theorem is to reduce it to the
preceding theorem for single-byte reads and writes. Thus, we
characterize two-byte reads in terms of single-byte reads, and
similarly for writes. Here is the relevant lemma for writes.
Theorem. wm16-as-wm08
(implies
(and (x86-64p x86-64)

(natp addr)
(n48p (1+ addr))
(n16p word))

(equal (wm16 addr word x86-64)
(let* ((x86-64

(wm08 addr
(logand word #xff)
x86-64))

(x86-64
(wm08 (+ 1 addr)

(ash (logand word #xff00) -8)
x86-64)))

x86-64)))

Recall that wm08 is defined in terms of the primitive
quadword write operation, !memi. Since the proof of the
lemma above involves reasoning about successive writes, it
is not surprising that the following is critical for its proof.
Theorem. !memi-!memi-same
(implies (x86-64p x86-64)

(equal (!memi addr v1
(!memi addr v2 x86-64))

(!memi addr v1 x86-64)))

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

66

VI. EFFICIENT EXECUTION

We have fabricated some memory-copy tests to get an idea
of the performance of our memory implementation. The Lisp
runs reported below used a 3.5 GHz Intel Xeon processor.
(defun copy (from to count x86-64)

(declare (type (unsigned-byte 29) count)
(type (unsigned-byte 45) from to)
(xargs :guard

(and (< (+ from count) *2ˆ45*)
(< (+ to count) *2ˆ45*)
(x86-64p x86-64))

:stobjs (x86-64)))
(if (zpf count)

x86-64
(let* ((value (memi from x86-64))

(x86-64 (!memi to value x86-64)))
(copy (1+ from) (1+ to) (1- count) x86-64))))

Function copy-test, called below, writes a 1 at each
address below its first argument, addr, and then calls (copy
0 addr addr x86-64). Note that the first two runs copy
1 GB (either 128 quadwords copied 1M times or 128K quad-
words copied 1K times), while the third copies 1 GB (128M
quadwords) ten times, to amortize the memory initialization
with ones.
(time$; 2.9 seconds
(copy-test 128 (* 1024 1024) x86-64))

(time$; 2.8 seconds
(copy-test (* 128 1024) 1024 x86-64))

(time$; 29.9 seconds (for 10x memory ops)
(copy-test (* 128 1024 1024) 10 x86-64))

The copying of approximately 350M bytes/second corresponds
to 700M memory byte accesses per second, which we find
encouraging. However, this is slower by about a factor of 9
than the analogous three runs of a corresponding C program
compiled with gcc -O3, with times of 0.330 seconds, 0.320
seconds, and 3.260 seconds, respectively.

VII. CONCLUSION

Our formal memory model has been proven to provide
the illusion of a complete 248-byte memory. Our imple-
mentation provides time- and space-efficient, constant-time
memory read/write operations, thus supporting validation of
ISA simulators. We represent our large memory by using
an expandable collection of pages indexed by a table of
page pointers, so that we can provide the illusion of having
a memory containing 248 bytes. We have assured that our
memory model is correct throughout the entire address range
by proving requisite properties of our model. This kind of
modeling is important for large-scale memory systems as
they cannot be practically built nor tested for all manner of
configurations.

Our memory model permits 350M bytes per second to be
copied from one part of memory to another part, which we
believe exceeds the performance of all other theorem-prover-
based memory models for such large address spaces. When
used within our evolving x86 microprocessor ISA specifi-
cation, our model provides sufficient performance to allow

binary code to be executed at more than 500,000 instructions
per second [3]. We expect to use this or a similar memory
model as we move forward with our microprocessor modeling
efforts [16].

ACKNOWLEDGMENTS

This material is based upon work supported by DARPA
under contract number N66001-10-2-4087 and by ForrestHunt,
Inc. We thank Jared Davis, Shilpi Goel, Sandip Ray, Anna
Slobodova, and Sol Swords for useful feedback on drafts
of this paper. We also thank Shilpi Goel for drawing the
figures and David Hardin for providing performance data on
an AAMP7 memory model. Finally, we thank the referees for
providing useful feedback on our submission.

REFERENCES

[1] M. Kaufmann, P. Manolios, and J. S. Moore, Computer-Aided Reason-
ing: An Approach. Boston, MA: Kluwer Academic Publishers, Jun.
2000.

[2] M. Kaufmann and J. S. Moore, “ACL2 home page,” see URL
http://www.cs.utexas.edu/users/moore/acl2.

[3] M. Kaufmann and W. A. Hunt, Jr., “Towards a formal model of the x86
ISA,” Department of Computer Sciences, University of Texas at Austin,
Tech. Rep. TR-12-07, May 2012.

[4] W. A. Hunt, Jr., FM8501: A Verified Microprocessor, ser. LNAI.
Springer-Verlag, 1994, vol. 795.

[5] ——, “Microprocessor design verification,” Journal of Automated Rea-
soning, vol. 5, pp. 429–460, 1989.

[6] W. A. Hunt, Jr. and B. Brock, “A Formal HDL and Its Use in the
FM9001 Verification,” in Mechanized Reasoning and Hardware Design,
ser. Prentice-Hall International Series in Computer Science, C. A. R.
Hoare and M. J. C. Gordon, Eds. Englewood Cliffs, NJ: Prentice-Hall,
1992, pp. 35–48.

[7] A. C. J. Fox and M. O. Myreen, “A trustworthy monadic formalization
of the ARMv7 instruction set architecture,” in ITP 2010, ser. LNCS, no.
6172. Springer, 2010.

[8] J. C. Davis, “Memories: Array-like records for ACL2,” in Proceeding
of the 6th International Workshop on the ACL2 Theorem Prover and its
Applications, no. ISBN: 0-9788493-0-2. ACM, 2006.

[9] D. Hardin, E. W. Smith, and W. D. Young, “A Robust Machine Code
Proof Framework for Highly Secure Applications,” in Proceedings of
the 6th International Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2 2006), P. Manolios and M. Wilding, Eds. ACM,
Jul. 2006, pp. 11–20.

[10] M. Kaufmann and J. S. Moore, “Structured Theory Development for a
Mechanized Logic,” Journal of Automated Reasoning, vol. 26, no. 2,
pp. 161–203, 2001.

[11] ——, “A Precise Description of the ACL2 Logic,” 1997, see URL
http://www.cs.utexas.edu/users/moore/publications/km97.ps.gz.

[12] ——, “ACL2 documentation,” see URL
http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.

[13] R. S. Boyer and J. S. Moore, “Single-threaded Objects in ACL2,”
in Practical Aspects of Declarative Languages (PADL), ser. LNCS,
S. Krishnamurthy and C. R. Ramakrishnan, Eds., vol. 2257. Springer-
Verlag, 2002, pp. 9–27.

[14] S. Swords and J. Davis, “Bit-blasting ACL2 theorems,” in Proceeding
10th International Workshop on the ACL2 Theorem Prover and its
Applications, ser. EPTCS, D. Hardin and J. Schmaltz, Eds., vol. 70,
2011, pp. 84–102.

[15] R. S. Boyer and W. A. Hunt, Jr., “Function Memoization and Unique
Object Representation for ACL2 Functions,” in Proceedings of the
6th International Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2 2006). ACM, Aug. 2006, pp. 81–89.

[16] S. Goel, W. A. Hunt, Jr., and M. Kaufmann, “Towards an ACL2 model
of the x86 ISA,” in preparation.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

67

Verification with Small and Short Worlds

Rohit Sinha
UC Berkeley

Cynthia Sturton
UC Berkeley

Petros Maniatis
Intel Labs

Sanjit A. Seshia
UC Berkeley

David Wagner
UC Berkeley

Abstract—We consider the verification of safety properties in
systems with large arrays and data structures. Such systems
are common at the low levels of software stacks; examples are
hypervisors and CPU emulators. The very large data structures
in such systems (e.g., address-translation tables and other caches)
make automated verification based on straightforward state-
space exploration infeasible. We present S2W, a new abstraction-
based model-checking methodology to facilitate automated ver-
ification of such systems. As a first step, inductive invariant
checking is performed. If that fails, we compute an abstraction
of the original system by precisely modeling only a subset of state
variables while allowing the rest of the state to evolve arbitrarily
at each step. This subset of the state constitutes a “small world”
hypothesis, and is extracted from the property. Finally, we verify
the safety property on the abstract model using bounded model
checking. We ensure the verification is sound by first computing
a bound on the reachability diameter of the abstract model. For
this computation, we developed a set of heuristics that we term
the “short world” approach. We present several case studies,
including verification of the address translation logic in the Bochs
x86 emulator, and verification of security properties of several
hypervisor models.

I. INTRODUCTION

CPU emulators lie in the foundational layer of much of
today’s computing infrastructure: CPU emulation is used
by virtualization software (hypervisors and virtual machine
monitors) in both testing and production to secure, analyze,
and multiplex critical systems [7], [15], [28]. Unfortunately,
although critical, CPU emulators are not often verified, and are
frequently found incorrect [19], [20] or – worse – vulnerable
to attacks [4].

A particular challenge for the verification of CPU emulators
and hypervisors is their use of large data structures. For
example, logical-to-physical address translation requires data
structures to store the CPU’s Translation Look-aside Buffer
(TLB) and page tables. While these structures are finite-length
for any given processor, they are usually too large to represent
precisely for verification; often, they are abstracted to be of
unbounded length. The data structures in the resulting model
of the system are thus parametrized: the indices into those
structures are parameters, taking values in a very large or
even infinite domain (typically finite-precision bit-vectors or
the integers). The techniques proposed for verifying such
parametrized systems fall into two classes: those based on
a small-model or cut-off theorem (e.g., [11], [12], [24]), or
those based on abstraction (e.g., [8], [14], [18]). While exist-
ing approaches are elegant and effective for their respective
problem domains, they fall short for the problems we consider:
the small-model approaches usually restrict expressiveness,
while abstraction-based approaches either focus on control
properties (as opposed to equivalence/refinement) or handle
only certain kinds of data structures. In both cases, some of
the realistic case studies we consider cannot be handled. (We
make a fuller comparison in Sec. VI.)

In this paper, we present a new semi-automatic methodology
for verifying safety properties in systems with large data
structures. Our approach comprises three steps. First, we
employ standard (mathematical) induction to verify the safety
property, and if that succeeds, the process is complete. Second,
if induction fails, we create an over-approximate abstraction
of the system, the “small world,” in which unbounded data
structures are parametrized and, in general, only a subset
of the state is updated as per the original transition relation
(e.g., only a few entries of the unbounded data structures);
the rest of the state is updated with arbitrary values at each
step. With this abstraction, the model is more amenable to
state-space exploration. Third, we attempt to find a bound k
on the reachability diameter of the small world so that, if
bounded model checking for k steps succeeds in the small
world, then the safety property must hold in the small world,
and since that is an over-approximation of the original system
model, then the safety property holds there as well. Heuristics
are presented for finding k that are effective for the class of
systems we consider. We term this BMC-based approach the
“short world” method, since it relies on computing a “short”
bound for BMC. Our overall approach, termed Small-Short-
World (S2W), is implemented on top of the UCLID system [9],
which verifies abstract term-level models using satisfiability
modulo theories (SMT) solving. Note that the temporal safety
verification problem for our class of systems is undecidable.
As a result, S2W is a semi-decision procedure.

In summary, the novel contributions of this paper include:

• A semi-automatic procedure, S2W, for verifying systems
with large or unbounded data structures, using a combi-
nation of induction and abstraction-based model checking.
The key new ideas are a set of heuristics for creating an
abstract model and computing a bound on the reachability
diameter of its state space.

• An extensive evaluation of S2W on a wide range of CPU
emulator and hypervisor models, proving safety properties
critical to the security and correctness of those systems. Our
examples include the TLB implementation in the Bochs
x86 emulator [23] and a shadow page table system.

II. RUNNING EXAMPLE

We introduce here a running example: a simple read-only
memory system with a single-entry cache. We prove an
invariant about the value returned by a read command. We
build a model in our modeling language and demonstrate the
verification of the safety property using S2W. Our example
is meant to be small, understandable, and illustrative, rather
than “real-world.”

Our example system (Fig. 1) takes only one command, read,
with a single parameter, the 32-bit address to be read; it returns
a single-bit data value. At each read command, the cache is

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

68

Fig. 1: An illustration of our running example: A read-only memory and a
single-entry cache. The cache is updated on each read command.

first checked. If the cache contains the data for the address
requested, that value is returned. Otherwise, the value is read
from memory. In either case, the cache is updated with the
requested address and the returned data value. The update
to cache is shown in the above figure (we use “◦” to mean
concatenation). We prove an invariant about the cache: if the
cache holds a valid address, then the cached data value is
equal to the value stored in memory at that address. In other
words, we show that the cache is correct.

III. FORMAL DESCRIPTION OF PROBLEM

A. Notation and Terminology

A system is modeled as a tuple S = (I, O, V , Init , A) where

• I is a finite set of input variables;

• O is a finite set of output variables;

• V is a finite set of state variables;

• Init is a set of initial states, and

• A is a finite set of assignments to variables in V . As-
signments define how state variables are updated, and thus
define the transition relation of the system.

Input and output variables are assumed combinational (state-
less), without loss of generality. V is the only set of state-
holding variables. Variables can be of two types: primitives,
such as Boolean or bit-vector; and memories, which includes
arrays, content-addressable memories (CAMs), and tables. An
output variable is a function of V � I. When representing a
system without outputs, we will omit O from the representa-
tion. The set of initial states, Init , can either be viewed as a
symbolic vector of terms representing any initial state, or as
a Boolean-valued function of V , written Init(V).
Fig. 2 denotes the grammar for expressions in our modeling
language. The language has three expression types: Boolean,
bit-vector, and memory.

bE ::= true | false | b | ¬bE | bE1 ∨ bE2

| bE1 ∧ bE2 | bvE1 = bvE2 | bvrel(bvE1, . . . , bvEk) (k ≥ 1)
| UP (bvE1, . . . , bvEk) (k ≥ 0)

bvE ::= c | v | ITE(bE, bvE1, bvE2)
| bvop(bvE1, . . . , bvEk) (k ≥ 1)
| mE(bvE1, . . . , bvEl) | UF (bvE1, . . . , bvEk) (l ≥ 1, k ≥ 0)

mE ::= A | M | λ(x1, . . . , xk).bvE (k ≥ 0)

Fig. 2: Expression Syntax. c and v denote a bit-vector constant and
variable, respectively, and b is a Boolean variable. bvop denotes
any arithmetic/bitwise operator mapping bit vectors to bit vectors,
while bvrel is a relational operator other than equality mapping bit
vectors to a Boolean value. UF and UP denote an uninterpreted
function and predicate symbol respectively. A and M denote constant
and variable memories. x1, . . . , xk denote parameters (typically
indices into memories) that appear in bvE.

The simplest Boolean expressions (bE) are the constants true
and false or Boolean variables; more complicated expressions
can be constructed using standard Boolean operators or using
relational operators amongst bit-vector expressions. We also
allow a Boolean expression to be an application of an unin-
terpreted predicate to bit-vector expressions.

Bit-vector expressions (bvE) include bit-vector constants, vari-
ables, if-then-else expressions (ITE), and expressions con-
structed using standard bit-vector arithmetic and bitwise oper-
ations. Additionally, bit-vector expressions can be constructed
as applications of uninterpreted functions returning bit-vector
values and applications of memories to bit-vector arguments.
Each bit-vector expression has an associated bitwidth.

Finally, the primitive memory expressions (mE) can be (sym-
bolic) constants or variables. More complex memory expres-
sions can be modeled using the Lambda notation introduced
by Bryant et al. [9] for term-level modeling; this includes the
standard write (store) primitive for modeling arrays, as well
as more general operations such as parallel updates to arrays,
operations on CAMs, queues, and other data structures.

In addition to the above expressions, we will use the wildcard
“∗” to denote an arbitrary value of the appropriate type; it is
used primarily to express non-determinism in the state update.

A next-state assignment α denotes assignment to a state
variable and is a rule of the form next(x) := e or next(x) :=
{e1, e2, . . . , en}, where x is a signal in V , and e, e1, e2, . . . , en
are expressions that are a function of V �I. The curly braces
and “∗” express non-deterministic choice. The set of all next-
state assignments defines the transition relation R of the
system. Formally, R =

∧
α∈A r(α), where r(next(x) :=

e)
.
= (x′ = e) and r(next(x) := {e1, e2, . . . , en}) .

=∨n
i=1(x

′ = ei), where x′ denotes the next-state version of
variable x. The wildcard “∗” is translated at each transition
into a fresh symbolic constant of the appropriate type. We
will sometimes write the transition relation as R(V, I,V ′) to
emphasize that it relates current-state variables V and next-
state variables V ′ based on the inputs I received.

Example 1: We formally describe our model from Sec. II. Let
ST = (I, O,V , Init , A) be the system, with

• I = {addr}. addr is the 32-bit address to read from
memory.

• O = {out}. out is the value read from either memory or
the cache.

• V = {mem, cache}. mem is constant and is modeled as
an array of (one-bit) bit-vectors. It is represented by an
uninterpreted function that maps a 32-bit address to a single
bit. cache is a 33-bit vector; it holds the one-bit data value
and 32-bit address of that value.

• Init = (mem0, cache0). mem is initialized to hold arbitrary
data values at each address. cache is initialized to hold
an invalid address, 0x00000000, with an arbitrary data
value.

• A. On each read command cache is updated with the
address read and the value returned by the read; mem
remains constant.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

69

B. Problem Definition

Consider a system S modeled as described in the preceding
section. We similarly model the environment E that provides
the inputs for S and consumes its outputs. The composition
of S and E , written S‖E , is the model under verification,
M. The form of the composition depends on the context; we
use both synchronous and asynchronous compositions. We
will represent the closed system M as a transition system
(VM, InitM,RM), where the elements respectively denote
state variables, initial states, and transition relation. In all
of our examples, the environment E is stateless, generating
completely arbitrary inputs to S at each step; thus VM = V ,
InitM = Init and RM = R.

This paper is concerned with verification of temporal safety
properties of the form GΦ, where G is the temporal operator
“always” and Φ is a state invariant of the form

∀x1, . . . , xk. φ(x1, . . . , xk) (1)

where φ is a Boolean expression following the syntax of bE.
The parameters x1, . . . , xk are bit-vector valued, but usually
too large to exhaustively case split on.

Example 2: In our running example, we verify GΦ2, where

Φ2
.
= ∀x. (addr = x) →

((cache.addr = addr ∧ cache.addr 	= 0) →
cache.data = mem[addr]) (2)

The problem tackled by this paper, temporal safety verification
for systems with large data structures, is formally defined as
follows.

Definition 1 (Large Data Safety Verification): Given a model
M formed as a composition of system S and its environment
E , and a temporal safety property GΦ, determine whether or
not M satisfies GΦ. �
This problem is known to be undecidable in general since a
two-counter machine can be encoded in our formalism using
applications of uninterpreted functions [16]. Hence, we can
only devise a semi-decision procedure for the problem. In the
next section, we describe such a procedure that is based on
abstraction.

IV. METHODOLOGY

S2W is based on a combination of abstraction and Bounded
Model-Checking (BMC). We tackle state-space explosion by
abstracting away all but a small subset of the space of the
system. We call this mostly-abstracted system our “small
world.” The abstracted portion of the system can be considered
as being updated with an arbitrary value (“∗”) at each step of
execution. All other parts of the system are modeled precisely.
Thus, this abstraction is a form of localization abstraction [17],
where the localization is to small, finite portions of large data
structures.

We check the safety property on the small world using BMC.
To make BMC sound, we first find and prove the length of the
diameter D of our small world to use as the bound – i.e., D
is an integer such that every state reachable in D+1 steps is
also reachable in D or fewer steps. Proving that a conjectured
diameter D is correct is undecidable in our formalism [10].

The key to our approach is a set of heuristics that are
effective in our chosen application domain of emulators and
hypervisors. For our examples, the diameter of the mostly-
abstracted system is typically small; we therefore term this
the “short world.”

If BMC runs for D steps and does not find a violation of the
safety property in our small world, then the original model is
safe. If BMC finds a counter-example, we cannot say whether
the property holds for the original model: BMC can return
a spurious counter-example. Choosing the small world well
reduces the likelihood of finding spurious counter-examples.

To summarize, there are two crucial pieces to our approach:
choosing the right small world and proving the length of the
short world. We discuss both of these in more detail below.

As an optimization, we prefix the above approach with an at-
tempt to prove the safety property using one-step induction (on
the original, non-abstract model, M). If that succeeds, there
is no need to continue on to S2W’s abstraction. (This step can
be generalized to perform k-step induction as needed.)

For the presentation in this section, it is convenient to rep-
resent the system under verification S as a transition system
(I,V,R, Init) where the elements of the tuple have the same
meanings as in Sec. III. The environment E sets the values of
the input variables in I at each step; in all our case studies,
the inputs from E are completely unconstrained. Verification
(using induction or BMC) is performed on the composition
of S and E .

A. Induction

First, S2W attempts to prove the safety property using simple
one-step induction on the non-abstract model M. We check
the validity of the following two formulas, as per standard
practice:

InitM(VM) → Φ(VM) (3)

Φ(VM) ∧RM(VM,V ′
M) → Φ(V ′

M) (4)

If both checks pass, the verification is complete. We report
“Property valid” and exit. If check (3) fails, the property is
invalid. We report “Property invalid in initial state” and exit.
If check (4) fails, we continue with S2W, to find the small
world.

B. Small World

The objective of this step is to identify a small portion of
system state that we should model precisely during BMC.
Everything else will be allowed to take on arbitrary values at
each step of execution.

It is important to note that the soundness of S2W does not
depend on the choice we make for the small world; we could
randomly select some portion of the state to model precisely,
abstract everything else away, and if our three steps complete
and verify the property, the property would be true of the
original, non-abstracted system. However, choosing the small
world wisely ensures that the short world is indeed short,
which allows BMC to complete in a reasonable amount of
time. A well-chosen small world also reduces the amount of
spurious counter-examples returned by the BMC step.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

70

We present here a heuristic for choosing the small world
when dealing with systems involving large or unbounded data
structures. In our case studies, the heuristic found a small
world whose short world was reasonable in length and for
which no spurious counter-examples were returned by the
BMC.

To select those state variables to model precisely, S2W
starts with the property G Φ, where Φ is of the form
∀x1, x2, . . . , xn. φ(x1, x2, . . . , xn). If we prove Φ by instan-
tiating the quantifier with a completely arbitrary, symbolic
parameter vector (a1, a2, . . . , an), that suffices to prove the
original property. Thus, starting with the symbolic vector
(a1, a2, . . . , an), we compute a dependence set (U) for the in-
stantiated property φ(a1, a2, . . . , an). U is a set of expressions
involving state variables and the parameters a1, . . . , an such
that fixing the values of the expressions in this set fixes the
value of the instantiated property. For variable M modeling a
memory, these expressions typically involve indexing into M
at a finite number of (symbolic) addresses. For a Boolean or
bit-vector variable, either the variable is in U or not.

Typically, this set of expressions is derived syntactically by
traversing the expression graph of the formula φ represented
in terms of state and input variables (after performing certain
simplifications).

Example 3: In our running example, recall that the property
is G Φ2 where:

Φ2
.
= ∀x. (addr = x) →

((cache.addr = addr ∧ cache.addr 	= 0) →
cache.data = mem[addr])

Φ2 has the form ∀x. φ(x). Instantiating x with a, a fresh
symbolic constant, we can drop the quantifer and get φ(a),
for which, by propagating the equality addr = a, we see that
its value is determined by the expressions mem[a] and cache.
Thus, we use U = {mem[a], cache} as our dependence set.

Once we have computed U , using the above heuristic or some
other method, we can define our small world. Recall that S
is represented as a symbolic transition system (I,V,R, Init).
Let R̂ be a transition relation that differs from R by setting
all state not in U to a non-deterministic value and leaving all
others unchanged. Abusing notation slightly to use U wherever
we use V , this means that R̂(U , I,U ′) = R(U , I,U ′), and

R̂(W, I,W ′) = true for W = V \ U . Similarly, ˆInit(U) =
Init(U) and ˆInit(W) = true.

Then the abstracted small world is Ŝ = (I,V, R̂, ˆInit). Ŝ
is an overapproximate (abstract) version of S that precisely
tracks only the state in U , and allows all other variables
to change arbitrarily at each step of execution. Thus, the
composition of Ŝ and E is an overapproximate model M̂.
(Note that if M was infinite-state, M̂ is too.)

The next step is proving a short world for M̂ and using BMC
on M̂ to verify the property.

C. Short World

The objective of this phase is to determine a bound on the
diameter D of the abstract model M̂. For this section, we
will assume that E is stateless, as is the case for all of our

case studies; the approach extends in a straightforward manner
for the general case. Thus, the diameter of M̂ is the same as
that of Ŝ.

Suppose we believe the diameter to be ≤ k. To verify this
bound, we check the validity of the following logical formula:

∀V0,V1, . . . ,Vk+1, I1, I2, . . . , Ik+1.[
Init(V0) ∧

k∧
i=0

R̂(Vi, Ii+1,Vi+1)
]

→
[
∃V ′

0,V ′
1, . . . ,V ′

k, I ′
1, I ′

2, . . . , I ′
k.

Init(V ′
0) ∧

k−1∧
i=0

R̂(V ′
i, I ′

i+1,V ′
i+1) ∧

k∨
i=0

Vk+1 = V ′
i

]
(5)

Since R̂ modifies state expressions outside U arbitrarily on
each step, we can replace V everywhere in the above formula
with U , and obtain the actual convergence criterion that must
be checked.

Nevertheless, checking the convergence criterion is undecid-
able for the class of systems we are interested in, due to the
presence of uninterpreted functions, memories, and possibly
parameters with unbounded bitwidth [10]. The quantified
formula in (5) is also very hard to solve in practice. Therefore,
quantifier instantiation heuristics must be devised to perform
the convergence check. In this section, we present two such
heuristics that have worked well for the range of case studies
considered in this paper.

The Sub-Sequence Heuristic: The first heuristic checks that
for any state reachable in k + 1 steps using k + 1 symbolic
inputs to Ŝ, one can also reach that state using some sub-
sequence of length ≤ k of those k+1 symbolic inputs. We can
express the sub-sequence heuristic as performing a particular
instantiation of the existential quantifiers in criterion (5), and
checking the validity of the following formula that results:

∀U0,U1, . . . ,Uk+1, I1, I2, . . . , Ik+1,U ′
0,U ′

1, . . . ,U ′
k.[

Init(U0) ∧ (U0 = U ′
0) ∧

k∧
i=0

R̂(Ui, Ii+1,Ui+1)
]
→

∨
(I′

1,...,I′
k)≺(I1,...,Ik+1)

[
k−1∧
i=0

R̂(U ′
i , I ′

i+1,U ′
i+1) ∧

k∨
i=0

Uk+1 = U ′
i

]
(6)

Here the symbol ≺ denotes that (I ′
1, . . . , I ′

k) is a sub-sequence
of (I1, . . . , Ik+1).

The intuition for the sub-sequence heuristic is that in many
systems with large arrays and tables, locations in those tables
are updated destructively based on the current input, meaning
that past updates do not matter. The address translation logic
in the emulators we have studied has this nature. Thus, for
such systems, it is possible to drop from the input sequence
inputs that have no effect on the k + 1-st step.

Observe the quantifier alternation in criterion (5) has been
eliminated in the stronger criterion (6). Thus, we can simply
perform a validity check of an SMT formula in the combi-
nation of theories required by our model. If the sub-sequence
criterion (6) holds, then so does (5). However, it is possible
that criterion (6) is too strong, even when a short diameter

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

71

exists. This scenario necessitates an alternative semi-automatic
approach, described next.

The Gadget Heuristic: The gadget heuristic is an approach to
instantiating the existential quantified variables in criterion (5)
that is particularly useful for systems in which some state
in U depends on the past history of state updates in a non-
trivial manner. A gadget is a small sequence of state transitions
manually constructed to generate some subset of all reachable
system state. A universal gadget set is a set of such sequences
that, in concert, can generate any reachable system state1. The
length k of the longest gadget in the universal gadget set is
then an upper bound on the diameter of the system.

In terms of the formula expressed as criterion (5), a gadget
is a particular guess for a set of initial states V ′

0 (expressed
symbolically) and a sequence I ′

1, I ′
2, . . . , I ′

l (for l ≤ k) of
symbolic input expressions to use. For a finite number of
gadgets, the inner existential quantifier in criterion (5) can
be replaced as a disjunction over all the formulas obtained
by substituting the gadget expressions for (V ′

0, I ′
1, I ′

2, . . . , I ′
l).

If this instantiated formula is valid, then so is the original
formula (5).

We defer further discussion about gadget construction to
Sec. IV-D, where we discuss its use on our running example.

Performing BMC: Once we have proven k is an upper bound
on the length of the diameter of Ŝ, we run BMC on Ŝ for k
steps. If φ(a1, . . . , an) holds at each step of the simulation,

then it follows that Ŝ satisfies G Φ. Because Ŝ is an
overapproximation of all states reachable by S, it follows that
S satisfies G Φ.

If BMC fails, we return a “short” counter-example. The
counter-example will be no longer than k. If this is a valid
counter-example, the property does not hold. If it is a spurious
counter-example, we can return to step two of S2W and
expand our set U to include more state variables and inputs.
Such a strategy would be an instance of counterexample-
guided abstraction refinement.

Restricted State Spaces: In some systems, we are interested
in proving a safety property over a restricted state space,
where the restriction can be captured by a predicate over state
variables. The restriction predicate is often specified as an
antecedent in the temporal safety property. Examples of such
a restriction can be found in Sections V-A and V-B. In such
cases, we note that it is enough to compute a bound on the
reachability diameter — the short world bound — under that
restriction. It also sufficient to perform model checking under
this restriction.

D. Example

To illustrate the above approach, we apply it to our example.
In step one we attempt to prove property G Φ2 by induction.
For this, we perform the following two checks:

Init(mem, cache) → Φ2 (7)

Φ2 ∧RT (V,V ′) → Φ2 (8)

1Our gadgets are inspired by “state-generation gadgets,” used for automated
testing of CPU emulators from arbitrary but reachable initial states [19], and
by gadgets identified for return-oriented programming, used to produce a
Turing-complete command set for malicious exploits [26].

Check (7) passes, since the cache is initially empty. However,
the induction step (check (8)) does not pass. Starting from
a state in which Φ2 holds, it is possible to transition to a
state in which Φ2 is violated. To see why this is so, consider
the following state for the cache and two particular entries of
mem:

mem[i] := a, mem[j] := b, cache.addr := i, cache.data := z

where z 	= a, the last read was for address j, and the output
was b. (This state is not reachable in our model, but one-step
induction does not take this into account.) Note that Φ2 holds
in this state: for every x 	= j, the antecedent (addr = x)
of the property is false and therefore the property is true;
when x = j, the nested antecedent (cache.addr = addr ∧
cache.addr 	= 0) is false and therefore the property is true. In
this state, a read(i) command will hit in the cache and the
output will be z, making the property evaluate to false in the
next state.

Since simple induction failed for our toy example, we move
to the next step, identifying the small world ŜT . As described
in Section IV-B, we introduce a fresh symbolic constant a
for x, removing the ∀x quantifier from the property. We
then select U syntactically from the property to be the set
of expressions U = {mem[a], cache}. In ŜT the variables
in U are updated according to the original model (ST). All
other state variables (all entries of mem other than mem[a])
are made to be fully abstract: they are allowed to update to
non-deterministic values on every step. The same symbolic
constant is used throughout the following short world checks.

The last step of our verification is to identify a short world
and then run BMC on the abstract model for the length of
the short world. We describe the gadget heuristic here; the
sub-sequence heuristic would also work, although it finds a
slightly looser bound on the length of the diameter. To build
the gadgets we enumerate the possible end-state valuations
for the system’s state variables (cache, mem[a]) and for each,
determine how to get there from a possible starting state.
Notice that we only need to consider mem[a] and not all of

mem. This is because, in our small world ŜT , all entries of
mem other than mem[a] receive new arbitrary values at the
end of each step, so we know they can hold any possible
value at every step of any trace. In theory there are 234 end-
states: one for each possible value of cache.addr times the two
possible values of cache.data and mem[a] each. However, for
our property, we do not really care about the precise valuation
of cache.addr, rather, we care about whether cache.addr = a
and whether cache.addr = 0. So we can abstract away the
details of cache.addr and consider the following 16 ending
states:

{cache.addr = a, cache.addr 	= a}
× {cache.addr = 0, cache.addr 	= 0}
× {cache.data = 0, cache.data = 1}
× {mem[a] = 0,mem[a] = 1}

Not all of the above 16 states are reachable, and in the end
four gadgets are enough to reach all reachable states. Each
gadget uses either one or two read commands. We build the
gadgets with the appropriate values for addr and show they
form a universal gadget set and therefore, that the short world

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

72

Page

Word

Word

...

Page Table

PTE

PTE

...

Page Directory

PDE

...

PDE

dir table offset

VPN

vaddrrvaddr
paddr

PPN

TLB
VPN PPN R/W/X/G

VPN PPN R/W/X/G

...

VPN PPN R/W/X/G

Fig. 3: On the left, we show a two-level page walk translating VPN
to PPN addresses. The TLB caches VPN to PPN translations along with
read/write/execute/global permission bits.

has length two. We then perform BMC and verify that the
property holds.

V. EVALUATION

We have evaluated S2W on six case studies and describe them
here: the TLB of the Bochs x86 emulator, a set-associative
cache, shadow paging in a hypervisor, hypervisor integrity
for SecVisor [12], the Chinese Wall access-control policy
in sHype [12], and separation in the original version of
ShadowVisor [11]. We describe the first three in detail; the last
three were verified using one-step induction and we describe
them only briefly. The code for all of our models, along
with their verification, is available online.2 All experiments
were performed using UCLID [3] (with the Plingeling SAT
solver [1] backend) on a machine with 8 Intel Xeon cores and
4 GB RAM.

A. Bochs’ TLB

Bochs [23] is an open source x86 emulator (in C++) for
emulating CPU, BIOS, and I/O peripherals. Bochs emu-
lates virtual memory using paging, which includes logic
to translate a virtual address (VPN) to a physical address
(PPN). Figure 3 illustrates the steps of a page walk. The
input virtual address vaddr is partitioned into 3 sets of bits
(vaddrdir, vaddrtable, vaddroffset). First, the vaddrdir bits index a
page directory entry (PDE) within the page directory region.
The PDE contents, along with the vaddrtable bits, index into
the page tables to retrieve a page table entry (PTE). The PTE
contents identify a 4KB physical page, and when concatenated
with the 12 bit vaddroffset index a particular byte within
this page. Since the above page walk includes two memory
lookups, most x86 processors implement a TLB to cache
VPN to PPN translations. The TLB also caches permission
bits (r/w/x/g) checked during memory accesses. With this
optimization, Bochs’ address translation logic first checks its
TLB for an entry describing the wanted VPN. If no such
entry exists, Bochs performs a page walk to compute the
corresponding PPN, and then stores that translation in its TLB
for future accesses. We would like to prove that the optimized
paging unit (with Bochs TLB) is functionally equivalent to the
original paging unit (without TLB).

The Bochs TLB + page table system is modeled as a tuple
SBochs = (I, O, V , Init , A) where

• I = {vaddr, data, pl, rwx, command}. vaddr is the virtual
address to translate. data is used to update the page table

2http://uclid.eecs.berkeley.edu/s2w/

Command Modifies Guard
write pte mem true
write pde mem true
translate TLB ¬present ∨ ¬permission
set cr3 TLB true
invlpg TLB TLB[vaddrtable].vpn31:12 = (vaddrdir ◦

vaddrtable)
invlpg all TLB TLB[vaddrtable].vpn31:22 = vaddrdir

TABLE I: The allowable operations in our model of the Bochs TLB.

memory. pl indicates the CPU’s current privilege level
(either user or supervisor mode). rwx indicates whether
this memory access writes and/or executes this address.

• O = {paddr TLB, pagefault TLB, paddr noTLB,
pagefault noTLB}. paddr TLB is the result of address
translation with TLB. paddr noTLB is the result of
address translation without the TLB. pagefault TLB in-
dicates a page fault occurred (due to insufficient per-
mission) during translation with TLB. pagefault noTLB
indicates a page fault during translation without the TLB.

• V = {mem, TLB, legal}, where mem is a 32-bit address-
able memory containing both the page directory and page
tables. TLB is an array (210 entries in Bochs) of structs,
where each struct is 160 bits wide and has 5 32-bit fields:
vpn, ppn, access bits (ab), etc. legal is a Boolean variable
denoting whether the system reached the current state via
a legal sequence of transitions.

• Init = (mem0, TLB0, true), where TLB0[i].vpn :=
0xffffffff for all i and mem0 is an uninterpreted function
from 32 bit addresses to arbitrary 32 bit values. The
Bochs TLB is initialized with its vpn field set to 0xffffffff
in all entries, thus making it empty. legal is initialized to
true.

• A: V evolves via operations write pde, write pte, invlpg,
invlpg all, setcr3, and translate, and the environment
non-deterministically chooses one of these operations at
each step. Table I describes each of these commands.

Each command is implemented in distinct functions within
Bochs (src/cpu/paging.cc). Since Bochs executes on a single
thread, we can safely model each function as an atomic
operation, i.e., a single step in the state transition system.
The commands write pde and write pte are used to update
the page directory and page tables respectively, typically
to modify access permissions or page mapping. translate
performs address translation and assigns the result to variables
in O. Furthermore, if a page walk was deemed necessary,
then translate updates a TLB entry with the results of that
page walk. If global pages are enabled, then a setcr3 (which
switches to a new page table, typically during a context
switch) flushes all non-global entries in the TLB. Otherwise
if global pages are disabled, all TLB entries are flushed on
a setcr3. The x86 instruction invlpg flushes a specific TLB
entry containing the translation for vaddr; invlpg is needed
to invalidate the TLB entry following a write to the page
table. invlpg all atomically flushes all TLB entries that have
vaddrtable in their vpn (bits 31 to 22); invlpg all is needed to
invalidate a set of TLB entries following a write to the page
directory.

We check equivalence of both the physical address and
whether a page fault occurred. Since the x86 manual only
guarantees cache coherency when the TLB is flushed properly,
we only require equivalence on traces where each write pde

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

73

is followed by a invlpg all and each write pte is followed by
invlpg. This constraint is enforced by legal, which is true only
if the sequence of operations abides by these constraints. Any
state that satisfies legal is guaranteed to be reachable from the
initial state via a legal sequence of state transitions.

The property that we check is:

Φ9
.
= ∀v, p, r. (vaddr = v ∧ pl = p ∧ rwx = r) →

legal → ((pagefault TLB ⇔ pagefault noTLB) ∧
(¬pagefault noTLB → (paddr noTLB = paddr TLB))) (9)

1) Induction: The one-step induction check consists of prov-
ing (10) and (11) using the UCLID verifier.

Init(VBochs) → Φ9(VBochs) (10)

Φ9(VBochs) ∧R(VBochs,V ′
Bochs) → Φ9(V ′

Bochs) (11)

Our initial state satisfies Φ9 because the TLB is initialized
to be empty, thereby forcing both optimized and unoptimized
designs to undergo the two-level page walk. However, one-
step induction (check (11)) fails because the back-end SMT
engine cannot solve the formula, which has a quantifier
alternation. Consequently, we proceed onto the small and short
world steps.

2) Small World: We syntactically derive the dependence set
UΦ9 by traversing the expression graph of Φ9. After introduc-
ing a fresh 32-bit symbolic constant v = (vdir, vtable, voffset),
the dependence set is

UΦ9 = {legal, TLB[vtable],mem[cr331:12 ◦ vdir],

mem[mem[cr331:12 ◦ vdir]31:12 ◦ vtable]}
The last three expressions represent the TLB entry, page direc-
tory entry, and page table entry pointed to by v, respectively.
(Here cr331:12 refers to the upper 20 bits of the cr3 control
register and is modeled as a symbolic constant.) Our abstract
model ŜBochs precisely tracks only the variables in UΦ9 ; other
state elements get updated with arbitrary values at each step.

3) Short World: We use the sub-sequence heuristic to find an
upper bound on the diameter of ŜBochs. We find a bound of
9 steps. Finally, we perform bounded model checking for 9
steps, proving that all reachable states of ŜBochs‖EBochs satisfy
Φ9. The sub-sequence check and BMC took about 45 minutes
and 25 minutes respectively.

B. Content Addressable Memory

While the TLB functions as a direct-mapped cache (each
concrete logical address is associated with a single TLB
entry), S2W also applies to systems with set-associative caches
and Content Addressable Memories (CAMs). A CAM stores
associations between keys and data. The key is typically stored
as part of the data, and is used for comparison during lookups.

Figure 4 shows a system containing slow memory and a CAM-
based cache. We would like to prove that a lookup in slow
memory yields the same data as lookup in the CAM-based
cache (if the data is present in the CAM). We model the
CAM’s state using a variable cam that maps a CAM index
to its contents, a 65-bit vector containing fields present, key,
and data. The cam[i].present bit indicates whether the key
cam[i].key and data cam[i].data are valid entries. cam[i].key

Fig. 4: Our model of a slow memory and its CAM-based cache.

and cam[i].data contain the 32-bit key and 32-bit data stored
at CAM index i (if cam[i].present is true). Memory is modeled
as an variable mem mapping a 32-bit address to a 32-bit vector.
That is, mem[a] refers to the 32-bit data at address a.

We also maintain a state variable map that maps an address
a to a 32-bit CAM index. map is updated when data is
added or deleted from the CAM. A read(addr) command
checks the contents of the CAM at index map[addr]. If
cam[map[addr]].key = addr and cam[map[addr]].present is
true, then SCAM assigns cam[map[addr]].data to output vari-
able out camdata and true to output variable out campresent.
Otherwise, SCAM assigns false to out campresent. read also
assigns mem[addr] to output variable out memdata. The
insert(addr, data) command checks map for an existing map-
ping of address addr. If map[addr] 	= ⊥, then SCAM updates
the CAM at index map[addr] with data data and key addr.1

Otherwise, we arbitrarily choose a new location arb[addr] to
insert data and addr, and update map[addr] with this new
location. The set(addr, data) command updates mem[addr]
with data, possibly making the CAM contents stale. The
reset(addr) command resynchronizes cam with mem at ad-
dress addr (if the CAM contains a valid entry for address
addr). These commands are implemented using atomic oper-
ations, and they update map, mem and cam in parallel.

The CAM + memory system is modeled as a tuple SCAM =
(I, O, V , Init , A) where

• I = {addr, data, command}
• O = {out camdata, out campresent, out memdata}
• V = {cam,mem,map, legal}: These are all modeled

as bit-vector functions. cam returns a 65-bit vector: 1-
bit present, 32-bit data, 32-bit addr. Both mem and
map return a 32-bit vector. legal is a Boolean variable
denoting whether the system legally reached the current
state.

• Init = (c0,m0,map0, true), where map0[a] = ⊥ for all
a, the present field of each CAM entry is initialized to
false, memory is initialized to arbitrary values, and legal
is initialized to true.

1Note that ⊥ in our model equals 0x00000000; it is an acceptable design
choice to not cache that address.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

74

• A: The state evolves via commands insert, delete, set,
reset and read. The environment non-deterministically
chooses one of these commands at each step. Figure 4
defines the state transition relation for each command.

The safety property Φ12 checks that the CAM and memory
have the same data for all keys present in CAM. Note that the
CAM only guarantees cache coherency if it is resynchronized
with memory after each set. The state variable legal enforces
this constraint: it is true if every set is followed by a reset.

Φ12
.
= ∀a. (addr = a) → legal →

(out campresent → (out camdata = out memdata)) (12)

Since Φ12 is expressed over output variables, we check if a
state s satisfies Φ12 by performing a read operation on state
s with a fresh symbolic constant for a.

1) Induction: We first try one-step induction on this system
to prove Φ12. The initial state satisfies Φ12 because both the
CAM and map are empty. However, the inductive check fails
because of the quantifier alternation, similar to the TLB case
study. Hence, we continue onto the small world step of our
approach.

2) Small World: We syntactically derive the dependence set
by traversing the expression graph of Φ12. We introduce a
fresh 32-bit symbolic constant a for the address that we
precisely track in map and mem. We precisely track legal,
map[a], mem[a], and cam[map[a]].

UΦ12
= {legal, cam[map[a]],mem[a],map[a]} (13)

Our abstract model ŜCAM precisely tracks updates to only these
variables.

3) Short World: Using the sub-sequence heuristic, we find an
upper bound on the reachability diameter of 5 steps. Finally,
we perform bounded model checking for 5 steps, proving
that all reachable states of ŜCAM‖ECAM satisfy Φ12. The sub-
sequence check and BMC takes about 15 seconds and 5
seconds respectively.

C. Shadow Paging

For our third case study, we model a shadow page table
system. A hypervisor may use shadow page tables to assure
address space separation between the guest and host. The
guest page tables can be updated arbitrarily by the guest
operating system, while the shadow page tables are updated
only by the hypervisor. The hardware uses the shadow page
tables for address translation, so it is the hypervisor’s responsi-
bility to make sure the shadow page tables stay synchronized
with the guest tables, while at the same time ensuring no
translation will ever allows the guest to access memory outside
its allocated sandbox. We model the synchronization process
and verify that the physical address returned by translation
never exceeds some constant limit, LIMIT.

Our shadow paging model (Figure 5) is as follows. There
are two page table structures: guest and host. Each is a two-
level structure: a page directory table (PDT) and a page table
(PT). We refer to the guest and shadow page tables as gPDT,
gPT and sPDT, sPT, respectively. Entries in the PDT have
three fields: present (p), page-size-extension (pse), and address

sPDT
p pse addr

p pse addr

p pse addr

p pse addr

...

sPT

... ...

p addr

p addr

p addr

p addr

gPDT
p pse addr

p pse addr

p pse addr

p pse addr

...

gPT

... ...
p addr

p addr

p addr

p addri

j

i

j

page-faultinval-page

j

i

adversarynew-context

Fig. 5: An illustration of the shadow page table model.

(addr). Entries in each nested PT have two fields: present (p)
and address (addr).

Let SSP = (I, V , Init , A) be the shadow paging model with

• I = {i, j, command}: i and j index into the PDT and
PT, respectively; command is one of page-fault, inval-page,
new-context, or adversary.

• V = {gPDT, gPT, sPDT, sPT,LIMIT}. gPDT, gPT, sPDT,
and sPT are modeled as functions that map indices to bit-
vectors. gPDT and sPDT return 34-bit vectors: (1-bit p,
1-bit pse, 32-bit addr). gPT and sPT return 33-bit vectors:
(1-bit p, 32-bit addr). LIMIT is a constant 32-bit vector.

• Init = (sPDT0, sPT0, gPDT0, gPT0), where sPDT and sPT
are both initialized with the p bit cleared in all entries.
gPDT and gPT are initialized to arbitrary values.

• A: The four commands update state in the following
way: page-fault synchronizes the shadow tables with the
guest tables. inval-page conditionally invalidates (zeros
out) entries in sPDT and sPT. new-context unconditionally
invalidates entries in sPDT. adversary writes to gPDT and
gPT. The assignments to gPDT, gPT, sPDT, and sPT are
summarized in Table II.

Command Modifies Guard

page-fault(i, j)

sPDT[i]
gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)

sPDT[i]
gPDT[i].pse ∧ ¬(gPDT[i].p∧
(gPDT[i].addr < LIMIT))

sPDT[i], sPT[j]
¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
gPT[j].p ∧ (gPT[j].addr < LIMIT)

sPDT[i]

¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
¬(gPT[j].p ∧ (gPT[j].addr < LIMIT))∧
¬(sPDT[i].p ∧ ¬sPDT[i].pse)

sPDT[i]
¬gPDT[i].pse ∧ ¬(gPDT[i].p∧
(gPDT[i].addr < LIMIT))

sPT[j]

¬gPDT[i].pse ∧ gPDT[i].p∧
(gPDT[i].addr < LIMIT)∧
¬(gPT[j].p ∧ (gPT[j].addr < LIMIT))∧
(sPDT[i].p ∧ ¬sPDT[i].pse

inval-page(i, j)
sPDT[i]

(sPDT[i].p ∧ ¬gPDT[i].p)∨
(sPDT[i].p ∧ gPDT[i].p∧
(sPDT[i].pse ∨ gPDT[i].pse))

sPT[j]
sPDT[i].p ∧ gPDT[i].p∧
¬gPDT[i].pse ∧ ¬sPDT(i).pse

new-context gPDT true

adversary gPDT true
gPT true

TABLE II: Next-state assignments for the shadow paging model.

Our model is based on the ShadowVisor model [11], but has
been extended to introduce pointers. The safety properties we
verify are similar to those of ShadowVisor. We verify that a
translation using the shadow page tables will never return an
address above a fixed limit.

Φ14 = ∀i. (sPDT[i].p ∧ sPDT[i].pse) →
sPDT[i].addr < LIMIT (14)

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

75

Φ15 = ∀i, j. (sPDT[i].p ∧ ¬sPDT[i].pse ∧ sPT[j].p) →
sPT[j].addr < LIMIT (15)

1) Induction: The property G Φ14 is proven by induction.
However, one-step induction fails to prove G Φ15. If sPT[j]
is marked as present, but has an address greater than LIMIT,
Φ15 is still true as long as sPDT[i] is marked not present.
From that state, it is possible to update sPDT[i] to present
without updating sPT[j], so that in the next state the sPDT[i]
and sPT[j] entry are both marked present and the data in the
sPT[j] entry is greater than LIMIT, violating Φ15. Therefore,
we move on to the small and short world steps for G Φ15.

2) Small World: The properties are concerned with a single
entry i in sPDT and a single entry j in sPT. Therefore
we use a fresh symbolic constant to choose an arbitrary
entry from each. In particular, our conditional dependency
set is Uφ15

= {sPDT[ai], sPT[aj]}. In our abstract symbolic

transition system, ŜSP , we track precisely only the state in
Uφ15

. ai, aj stay constant.

3) Short World: The sub-sequence short-world heuristic does
not work for page tables, because page-table entry updates can
depend on previous writes to the entry or to other entries; it is
not always possible to drop one step of a trace to achieve an
equivalent final state. Instead, we use gadgets to find and prove
the short world. We manually construct a universal gadget set
to prove the length of the diameter of ŜSP .

To build the gadgets we case split on the possible end-state
valuations for the variables in Uφ15

, and for each, determine
how to get there from a valid starting state. The model has
only four commands and it was usually obvious which com-
mands were needed to get to a particular state. The gadgets
must also specify the parameters (i, j) to the command, and,
in the case of the adversary command, the value that gets
written to the guest tables. Figuring out the correct parameters
to use for each command was more difficult. In this case, the
parameters were always either i := ai or i := a′i (where
a′i 	= ai is arbitrarily chosen), and similarly for j. The
adversary data that gets written to the guest tables was a
combination of the addr field of the (symbolic) end-state
valuation we were trying to achieve and a particular value for
the p and pse bits, which we chose according to the particular
gadget we were building.

We needed a total of thirteen gadgets, each four commands
or less, to prove the short world has length four. We then ran
BMC on ŜSP for four steps and verified the property held at
each step. The verification of the short world took less than
a minute; BMC took approximately five seconds.

D. Other Hypervisor Models

We applied our abstraction technique to three additional
hypervisor models. All were verified using one-step induction,
each within 5 seconds.

SecVisor: SecVisor [12], [25] is a small hypervisor that sup-
ports a single guest OS. It virtualizes the memory management
unit by implementing shadow page tables and synchroniz-
ing them with the guest page tables. The model assumes
an adversary can write arbitrary values to the guest page
tables. SecVisor aims to execute only approved code in kernel

mode; therefore, the page-table synchronization must prevent
adversary-provided code from having execute permissions
while in kernel mode. We verified the security property using
one-step induction on a model given by Franklin et al. [12].

sHype: sHype [12] is an access control system used by the
Xen [2] hypervisor. Based on the Chinese Wall policy, it
establishes “conflict of interest” classes and guarantees each
virtual machine will never access two pieces of data from
the same conflict of interest class. We verified the security
property using a model presented by Franklin et al. [12].

ShadowVisor: ShadowVisor [11] served as the starting point
for our shadow page table model. It models the page tables
of a simple hypervisor that assures address space separation
between guest and host by maintaining separate guest and
shadow page tables. Like our shadow page table model,
ShadowVisor guarantees that if an address is marked as
present, it will never exceed a certain fixed limit. We model
ShadowVisor in our modeling language and use one-step
induction to verify the property.

VI. RELATED WORK

Verification of infinite-state or parametrized systems has been
well-studied. Here we present the most closely-related work.

Franklin et al. [11], [12] present a small-model approach to
verifying systems with parametrized data structures (arrays).
In essence, they present a formal language such that if the
system can be modeled in their language, then a small-model
theorem applies, stating that the unbounded arrays can be
reduced to arrays with one designated element alone. Finite-
state model checking can then be employed on the resulting
system. While this approach is very elegant, there are some
important differences with the approach in this paper. First,
our modeling language is more expressive, allowing us to
model the Bochs TLB, CAM, and shadow paging examples
which cannot be modeled in their language. Second, our
approach is different: we compute an abstraction based on
localization within the large data structures, and we use
bounded model checking.

The use of inductive invariant checking is common in this
problem domain. The method of invisible invariants [6], [22]
is an example of an inductive verification technique applied
to systems of N identical finite-state processes. The core
idea in this method is to generalize from the reachable states
of a small number of processes into a quantified inductive
assertion of the form ∀i.φ(i), where the index i ranges over
process IDs. Namjoshi [24] also discusses the so-called cutoff
method, which is a small-model approach for such systems
of parametrized processes, drawing connections between in-
ductive methods, small-model approaches and compositional
reasoning. In general, these approaches are not easily applied
to our examples since they are not naturally decomposed
into a system of N identical finite-state processes. Instead,
in our problem domain, the number of interacting processes
is usually finite and small, but the shared data structures are
large and complicated.

Abstraction-based approaches have also been presented for
infinite-state or parametrized systems similar to those studied
in this paper. Lahiri and Bryant [18] presented an approach
for verifying universally-quantified invariants on parametrized

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

76

systems using predicate abstraction. While predicate abstrac-
tion can be quite effective for verifying control-related prop-
erties, especially when one can guess suitable predicates, it
is not suitable for verifying equivalence of two code versions
(such as in the Bochs TLB case study), which is a highly data-
dependent property. McMillan [21] presents a semi-automatic
approach to compositional reasoning using an abstraction
similar to ours. Given a system with large arrays, he uses
a form of localization abstraction (guided by case splitting
performed by the user) to only model a few entries in the
arrays precisely, allowing all other entries to be updated by an
arbitrary value ⊥. This abstraction is used to compute a finite-
state abstract model on which reachability analysis is per-
formed. In contrast, our method computes an abstraction based
on index terms derived from the property, and uses a BMC-
based approach to verify the system. Bjesse [8] describes an
automatic approach for verifying sequential circuits with large
memories, if the memories are “remodellable” (a notion made
formal in [8]). The work takes a “small-world” approach,
transforming an initial netlist into another with memories with
precise updates only to a small number of entries in memories,
and uses counterexample-guided abstraction-refinement. Our
work does not require the “remodellable” restriction. Ger-
man [14] presents a novel approach for constructing sound
and complete abstractions for similar systems. The approach
is based on performing static analysis on the system model,
and (in contrast to [8]) can handle unbounded delays between
the time the array is read and when the read value propagates
to the output. While the approach is completely automatic, it
cannot handle certain data structures such as CAMs, in which
a read, in principle, requires scanning the entire array. Our
approach, while not always automatic, does handle structures
such as CAMs (see Sec. V-B).

Efficient memory modeling is a technique used for bounded
verification problems, either symbolic simulation (e.g. [27]) or
bounded model checking (e.g. [13]). In contrast, our approach
focuses on unbounded verification based on abstraction and
a sound application of BMC based on heuristics to find the
reachability diameter.

There has also been prior work on verifying emulators and
hypervisors. Alkassar et al. [5] presented the verification
of the TLB logic in the Hyper-V hypervisor. They verify
invariant properties of the TLB using the VCC verifier. Their
approach, like ours, is not fully automatic. While our approach
uses abstraction-based model checking, assuming a particular
model of atomicity of operations, theirs is a classic deductive
verifier for C code (using VC generation and theorem proving)
that operates at a somewhat lower level of abstraction.

VII. CONCLUSION

We have presented S2W, a new approach to verifying systems
with large or unbounded data structures that combines in-
duction and abstraction-based model checking. Experimental
results have been presented on several examples of emulators
and hypervisors. In ongoing work, we are investigating how to
make the technique more automated, to automatically generate
abstract, term-level models from C/C++ code, and to validate
these models.

Acknowledgments. This research was supported in part by
SRC contract 2045.001, by Intel through the ISTC for Secure

Computing, by the AFOSR under MURI award FA9550-09-1-
0539, and by a generous gift from Intel. We thank Randal E.
Bryant, Orna Kupferman, and Anupam Datta for their valuable
feedback.

REFERENCES

[1] Plingeling SAT Solver. http://fmv.jku.at/lingeling.
[2] The Xen Hypervisor. http://www.xen.org/.
[3] UCLID Verification System. Available at http://uclid.eecs.berkeley.edu.
[4] VMware Security Advisory vmsa-2009-0015. http://www.vmware.com/

security/advisories/VMSA-2009-0015.html, 2009.
[5] E. Alkassar, E. Cohen, M. A. Hillebrand, M. Kovalev, and W. J. Paul.

Verifying shadow page table algorithms. In FMCAD, 2010.
[6] T. Arons, A. Pnueli, S. Ruah, J. Xu, and L. D. Zuck. Parameterized

Verification with Automatically Computed Inductive Assertions. In
CAV, 2001.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
SOSP, 2003.

[8] P. Bjesse. Word-Level Sequential Memory Abstraction for Model
Checking. In Formal Methods in Computer-Aided Design (FMCAD),
2008.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Modeling and Verifying
Systems using a Logic of Counter Arithmetic with Lambda Expressions
and Uninterpreted Functions. In Computer-Aided Verification (CAV’02),
2002.

[10] R. E. Bryant, S. K. Lahiri, and S. A. Seshia. Convergence Testing in
Term-Level Bounded Model Checking. In Correct Hardware Design
and Verification Methods (CHARME), 2003.

[11] J. Franklin, S. Chaki, A. Datta, J. M. McCune, and A. Vasudevan.
Parametric Verification of Address Space Separation. In POST, 2012.

[12] J. Franklin, S. Chaki, A. Datta, and A. Seshadri. Scalable Parametric
Verification of Secure Systems: How to Verify Reference Monitors
without Worrying about Data Structure Size. In IEEE Security &
Privacy, 2010.

[13] M. K. Ganai, A. Gupta, and P. Ashar. Efficient Modeling of Embedded
Memories in Bounded Model Checking. In Proc. Computer-Aided
Verification (CAV), 2004.

[14] S. German. A theory of abstraction for arrays. In FMCAD, 2011.
[15] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Practical

Taint-Based Protection using Demand Emulation. In EuroSys, 2006.
[16] A. J. Isles, R. Hojati, and R. K. Brayton. Computing reachable control

states of systems modeled with uninterpreted functions and infinite
memory. In Computer-Aided Verification (CAV ’98), 1998.

[17] R. Kurshan. Automata-Theoretic Verification of Coordinating Processes.
In 11th International Conference on Analysis and Optimization of
Systems – Discrete Event Systems, volume 199. Springer Berlin /
Heidelberg, 1994.

[18] S. K. Lahiri and R. E. Bryant. Predicate abstraction with indexed
predicates. ACM Trans. Comput. Log., 9(1), 2007.

[19] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis.
Path-Exploration Lifting: Hi-Fi Tests for Lo-Fi Emulators. In ASPLOS,
2012.

[20] L. Martignoni, R. Paleari, G. F. Roglia, and D. Bruschi. Testing CPU
Emulators. In ISSTA, 2009.

[21] K. L. McMillan. Verification of Infinite State Systems by Compositional
Model Checking. In Correct Hardware Design and Verification Methods
(CHARME), 1999.

[22] K. L. McMillan and L. D. Zuck. Invisible Invariants and Abstract
Interpretation. In SAS, 2011.

[23] D. Mihocka and S. Shwartsman. Virtualization Without Direct Execu-
tion or Jitting : Designing a Portable Virtual Machine Infrastructure.
AMASBT, 2008.

[24] K. S. Namjoshi. Symmetry and Completeness in the Analysis of
Parameterized Systems. In VMCAI, 2007.

[25] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A Tiny Hypervisor
to Provide Lifetime Kernel Code Integrity for Commodity OSes. In
SOSP, 2007.

[26] H. Shacham. The Geometry of Innocent Flesh on the Bone: Return-
Into-Libc Without Function Calls (on the x86). In ACM CCS, 2007.

[27] M. N. Velev, R. E. Bryant, and A. Jain. Efficient Modeling of Memory
Arrays in Symbolic Simulation. In Proc. Computer-Aided Verification
(CAV), 1997.

[28] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat,
A. C. Snoeren, G. M. Voelker, and S. Savage. Neon: System Support
for Derived Data Management. In VEE, 2010.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

77

Decompilation into Logic — Improved

Magnus O. Myreen, Michael J. C. Gordon
Computer Laboratory, University of Cambridge, UK

Konrad Slind
Rockwell Collins, USA

Abstract—This paper presents improvements to a technique
which aids verification of machine-code programs. This tech-
nique, called decompilation into logic, allows the verifier to
only deal with tractable extracted models of the machine code
rather than the concrete code itself. Our improvements make
decompilation simpler, faster and more generally applicable. In
particular, the new technique allows the verifier to avoid tedious
reasoning directly in the underlying machine-code Hoare logic
or the model of the instruction set architecture. The method
described in this paper has been implemented in the HOL4
theorem prover.

I. INTRODUCTION

Verification of machine-code programs is hopelessly tedious

without good tool support, particularly if verification is to

be done against realistic models of commercial machine

languages, e.g. x86, ARM, PowerPC, MIPS, whose formal

models are several thousand lines long. Done naively, verifi-

cation efforts fail to scale, get tied to a specific architecture

model and may require reading or even annotating machine-

code programs.
In previous work [13], we have proposed a technique that

can significantly ease verification of machine-code programs,

namely: decompilation into logic. Given some concrete ma-

chine code and a model of an instruction set architecture

(ISA), this decompilation extracts functions (defined in logic)

which capture the functional behaviour of the machine code.

We have demonstrated that this decompilation technique can

be used for post hoc verification, as described below, and

also for implementation of proof-producing synthesis tools, as

described in [14]. We have shown that these techniques scale

to significant examples, including verification of functional

correctness of garbage collectors and Lisp implementations

in ARM, x86 and PowerPC [10], [11], and decompilation of

the seL4 microkernel [12] (12,000 lines of ARM).
This paper’s contribution is a presentation of significant

technical improvements to our decompilation method [13].

The improvements make the new approach faster, simpler

and more widely applicable. In particular, the new technique

allows the verifier to avoid reasoning directly in the underlying

machine-code Hoare logic, even in the presence of code

pointers. The new approach retains all of the features of the

previous approach and adds a few new ones (Section II-A).

The technique described in this paper has been implemented

(www.cl.cam.ac.uk/∼mom22/decompilation) in the HOL4 the-

orem prover [16] and applied to ARM machine code.

This document is an overview of MOD sponsored research and is released to inform projects that include high integrity

software or complex electronics. The information contained in this document should not be interpreted as representing the

views of the MOD, nor should it be assumed that it reflects any current or future MOD policy. The information cannot

supersede any statutory or contractual requirements or liabilities and is offered without prejudice or commitment.

A. Example: Sum of An Array
We start with an example which illustrates what we mean

by decompilation and verification via decompilation. Consider

the following C code which calculates the sum of an array. (It

ignores indexed 0 to make the ARM assembly neater.)

do { k += a[i] } while (--i != 0);

The C code above can be compiled to ARM assembly:

L0: ldr r1,[r2,r3] ; load mem[r2+r3] into r1
L1: add r0,r1 ; add r1 to r0
L2: subs r3,#4 ; decrement r3 by 4

L3: bne L0 ; goto L0 if r3 �= 0

L4:

which can be assembled into ARM machine code:

E7921003 E0800001 E2533004 1AFFFFFB

Decompilation takes concrete machine code as input. From

this machine code it extracts a function which describes the

behaviour of the code. In this case, sum below which records

how registers r0–r3 and memory are affected and also what

side condition must hold for correct execution. The side

conditions are collected by the cond component.

sum(cond, r0, r1, r2, r3,m) =

let cond = cond ∧ valid address (r2 + r3) m in
let r1 = m(r2 + r3) in
let r0 = r0 + r1 in
let r3 = r3 − 4 in

if r3 = 0 then (cond, r0, r1, r2, r3,m)

else sum(cond, r0, r1, r2, r3,m)

Decompilation also automatically proves a theorem, which

we call a certificate theorem, relating the new function to the

machine code from which it was extracted. The certificate

theorem is derived w.r.t. a model of the ISA of the machine

code; in this case, a model of ARM developed by Fox [4].

We state these certificate theorems using a machine-code

Hoare triple which is parametrised by the ISA model. The

Hoare triples will be explained in later sections, for now

read the following certificate theorem for sum informally:

for any input (c, r0, r1, r2, r3,m) which sum relates to output

(c′, r′0, r
′
1, r

′
2, r

′
3,m

′
), the execution of the ARM machine code

can perform the state update corresponding to sum:

(sum(c, r0, r1, r2, r3,m) = (true, r′0, r
′
1, r

′
2, r

′
3,m

′
)) =⇒

{ ARM state holds (r0, r1, r2, r3,m) }
E7921003 E0800001 E2533004 1AFFFFFB
{ ARM state holds (r′0, r

′
1, r

′
2, r

′
3,m

′
) }

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

78

The benefit of using decompilation in verification is that

once the machine code has been decompiled, subsequent

verification can concentrate on only proving properties of the

extracted function, since any property proved of the extracted

function applies directly to the machine code via the certificate

theorem. For example, with an appropriate definition of how

arrays are stored in memory, it is easy to prove that sum
correctly sums the content of an array and using the certificate

theorem relate this property to the machine code.

II. IMPROVEMENTS

As mentioned above, this paper’s contribution is to present

improvements to the decompilation approach. In particular, we

show how decompilation into logic can be made simpler, faster

and more generally applicable.

Simpler: The original approach to decompilation was geared

towards automating proofs in a Hoare logic that was intended

for manual proofs — a complicated Hoare logic that was

never optimised for mechanisation performance. In this paper,

we show that a much simpler Hoare logic can be used for

decompilation. The new Hoare logic (Section III-A) is only a

thin layer over the model of the ISA.

Faster: In the new approach, we carefully state the inter-

mediate theorems so that composition of intermediate results

can be done in a handful of fast operations. In the previous

approach, composition was the main performance bottleneck:

often involving simplification through rewriting and calcu-

lation of a separation logic ‘frame’. The new approach to

composition is described in Section III-B. The speed-up we

gained can seen in benchmarks listed in Figure 1.

More widely applicable: The main practical drawback of the

previous approach was its inability to deal with code involving

exotic control flow (e.g. code using more than just goto-

like jumps). This lead to an unsatisfactory compromise where

certain complicated code had to be verified manually using the

machine-code Hoare triples. The new approach is engineered

so that it successfully extracts a function even in the presence

of code pointers. With the new approach, one can practically

always avoid reasoning directly in the underlying Hoare logic.

The new approach extracts a single function from the given

machine code as before if possible; otherwise, it extracts a

function which describes each chunk of well-behaved code.

The example below will illustrate what we mean.

A. Example: Calling Every Code Pointer of An Array

To illustrate how the new decompilation approach deals

with complicated control-flow, consider the following example

program which calls each code pointer stored in an array.

do { (a[i])() } while (--i != 0);

The C code above can be compiled to ARM assembly:

L0: ldr r4,[r5,r6] ; load mem[r5+r6] into r4
L1: blx r4 ; call code-pointer r4
L2: subs r6,#4 ; decrement r6 by 4

L3: bne L0 ; goto L0 if r6 �= 0

L4:

Our previous approach to decompilation is not able to

process the resulting ARM code, because it is unclear what

function describes the effect of the call to the code pointer. In

the new approach, we avoid this issue by essentially leaving

‘holes’ in the extracted function.

The ARM code above decompiles into a function which

explicitly mentions the value of the program counter pc. The

extracted function has three parts; the first part describes the

effect of starting execution from the top of the code (pc = L0):

in this case, a load is performed and a call is made to a code

pointer, i.e. the pc is updated (with a word-aligned address)

and a return address is stored in r14. Note that this function

does not make any assumption that the call to the code pointer

returns (it might not). The second part of the function describes

what happens if execution returns (pc = L2): in this case r6
is decremented and control moves either to the top or bottom

of the code. The third case just states that all other cases are

ignored, i.e. no progress is made.

calls(cond, pc, r4, r5, r6, r14,m) =

if pc = L0 then
let cond = cond ∧ valid address (r5 + r6) m in
let r4 = m(r5 + r6) in
let cond = cond ∧ word aligned address r4 in
let (pc, r14) = (r4,L2) in

(cond, pc, r4, r5, r6, r14,m)

else if pc = L2 then
let r6 = r6 − 4 in

if r6 = 0 then (cond,L4, r4, r5, r6, r14,m)

else (cond,L0, r4, r5, r6, r14,m)

else (cond, pc, r4, r5, r6, r14,m)

The automatically derived certificate theorem makes use of

a feature of our machine-code Hoare triple that allows the

pre- and postconditions to mention the value of the program

counter (PC) as state component, i.e. control does not need to

enter/exit at specific points of the code in the Hoare triple.

(calls(c, pc, r4, r5, r6, r14,m) = (true, pc′, r′4, . . .)) =⇒
{ ARM state holds (r4, r5, r6, r14,m) and PC is pc }
E7954006 E12FFF34 E2566004 1AFFFFFB
{ ARM state holds (r′4, r

′
5, r

′
6, r

′
14,m

′
) and PC is pc′ }

With this result from decompilation one can verify proper-

ties of this code without tedious proofs in the Hoare logic.

III. IMPROVED DECOMPILATION ALGORITHM

The new decompilation algorithm has three phases. The

key technical differences over our previous approach [13] are

highlighted with bold text.
Phase 1: Evaluate the underlying ISA model for each

machine instruction; derive a theorem, stated in terms of
a simple machine-code Hoare triple, describing each in-

struction; and in order to make phase 3 faster, also make the
code segment of each Hoare triple identical (explained in

Section III-A).

Phase 2: Compute the control-flow graph (CFG) of the

given code using information gathered from the Hoare triples.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

79

ARM machine code instr. time/cost of old time/cost of new reduction model eval.
sum of array (Sec. I-A) 4 2.5 s (73,039 i) 0.3 s (4,019 i) 86 % (94 %) 7.8 s (1.5 Mi)
copying garbage collector [10] 89 50 s (1,526,281 i) 6.0 s (53,301 i) 88 % (97 %) 173 s (40 Mi)
1024-bit multiword addition 224 70 s (1,029,685 i) 1.2 s (10,802 i) 98 % (99 %) 37 s (8.9 Mi)
256-bit Skein hash function 1,352 5,366 s (21,432,926 i) 56 s (1,842,642 i) 99 % (91 %) 500 s (105 Mi)

Fig. 1. Benchmarks comparing the new approach (new) with our previous approach (old). The cost is given in seconds (s) and number of primitive higher-order
logic inferences (i) in HOL4 [16]. The cost of evaluating the ISA model is separated as this cost is independent of decompilation approach.

Split the CFG into separate decompilation rounds, i.e. separate

inner loops from enclosing outer loops where possible. For

complicated CFGs, insert an extra final decompilation
round which ties up the disjoint pieces if necessary (as

illustrated by the example in Section II-A).
Phase 3: For each decompilation round: compose the Hoare

triples following the CFG in a way which directly constructs
the extracted function in the postcondition of the theorem
(Section III-B). This function in the postcondition also
collects accumulated side conditions as if they were updates
to a state component (cond in Section III-A). If the code has

a loop, a loop rule is applied which wraps the result up using a

tailrec-combinator and combines the resulting side condition
on termination with the other side conditions.

A. Simple Machine-Code Hoare Logic
The machine-code Hoare triples, { pre } code { post }, that

were used above will be explained next. More formally, these

are parametrised by two functions: next, a the next-state

function for the ISA model of interest; and assert , a state

assertion which inspects the state (explained below).

(assert ,next) � { pre } code { post } (1)

This machine-code Hoare triple is defined to be true: if for

all states that satisfy pre and including code, then another

state can be reached (by some n applications of next) such

that post is true for this state and code is included in it. The

total-correctness Hoare triple (1) is formally defined to mean,

∀state c. assert (code ∪ c, pre) state =⇒
∃n. assert (code ∪ c, post) (nextn(state))

where the set union ∪ with arbitrary code extension c is present

to facilitate extension of the code (explain in the next section).
We instantiate next and assert for each supported archi-

tecture, e.g. ARM, x86 or PowerPC. We instantiate assert
to check that each state component is consistent with code
and pre/post. Here code is represented as a set of (ad-

dress,instruction) pairs, and pre and post are, for efficiency

reasons, simply a large tuple listing the value of state com-

ponents, e.g. (pc, r0, r1, . . .) asserts that the value of PC is

pc and register 0 is r0 etc. By representing pre/post as

tuples, composition and matching becomes fast and simple.

We always include a special cond element in assert . This

cond is a condition for the entire assertion to make sense, e.g.

for ARM we instantiate assert with:

arm assert (code, pc, r0, r1, . . . , cond) state =

(cond =⇒ code is in memory of state and

the PC of state is pc and . . .)

{ARM registers r1-r3 are (r1, r2, r3) and

m is a model of part of memory and PC is L0}
E7921003 E0800001 E2533004 1AFFFFFB
{ARM registers r1-r3 are (m(r2 + r3), r2, r3) and

m is a model of part of memory and PC is L1 and

valid address(r2 + r3) m is added to cond}

{ ARM assert (c, r0, r1, r2, r3,m) and PC is L1 }
E7921003 E0800001 E2533004 1AFFFFFB
{ let (pc′, c′, r′0, r

′
1, r

′
2, r

′
3,m

′
) =

(let r0 = r0 + r1 in
let r3 = r3 − 4 in

if r3 = 0 then (L4, c, r0, r1, r2, r3,m)

else (L0, c, r0, r1, r2, r3,m)) in
ARM assert (c′, r′0, r

′
1, r

′
2, r

′
3,m

′
) and PC is pc′ }

Fig. 2. Two machine-code Hoare triples for: (a) the load instruction from
Section I-A, and (b) the last three ARM instructions from Section I-A. Both
contain other code too, explained in Section III-B.

B. Composing Hoare triples

Our machine-code Hoare triple supports composition:

{pre} code {m} ∧ {m} code {post} =⇒ {pre} code {post}
For this rule to be applicable, the Hoare triples must have

identical code sets code. Note that each code set is a set of

(address,instruction) pairs which is a sufficient assumption for

getting execution from pre to post. To make the code sets

identical, we apply the following theorem which can be used

to extend the code sets. This theorem is applied as a pre-

processing step in Phase 1 to speed up composition in Phase 3.

Here ⊆ is the ordinary subset relation.

{pre} code1 {post} ∧ code1 ⊆ code2 =⇒ {pre} code2 {post}
In Phase 3, composition of Hoare triples is performed

bottom-up following the CFG (or the part of it which is rele-

vant for this decompilation round). Each compositions returns

a theorem where the relevant part of the extracted function,

including the side conditions, appears in the postcondition.

Each composition returns a theorem of the form:

{pre[v0 . . . vn]}
code
{let (v′0 . . . v

′
n) = f(v0 . . . vn) in post[v′0 . . . v

′
n]}

(2)

Figure 2 show the concrete inputs to the final composition for

the sum-of-an-array example (Section I-A). The second input

carries the extracted function in the form of (2).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

80

C. Extracting Recursive Functions

As illustrated by our first example in Section I-A, loops

in the machine code turn into loops in the extracted function

(if the control-flow is simple enough). We define these tail-

recursive functions by instantiating f , g and d in the following

function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

Our definition of tailrec is based on while g f x which

repeatedly applies f to x until g becomes false. Crucially, while
can be defined in (higher-order) logic without a termination

proof [7], which is important because most of the functions the

decompiler extracts do not terminate for all inputs. However,

note that our Hoare triples are total-correctness Hoare triples,

i.e. we need to know that our use of while terminates for

certain inputs: it terminated for input x if ¬g (fn x). For

this reason, we insert the termination requirement into the

definition of tailrec. We make this requirement part of the cond
side condition that our extracted functions produce:

tailrec g f d x =

let (cond, v1 . . . vn) = d (while g f x) in
(cond ∧ (∃n. ¬g (fn x)), v1 . . . vn)

Any verification that uses such extracted function must prove

that the returned cond is equal to true (for relevant input

values); otherwise, the postcondition of the certificate theorem

has no meaning (due to =⇒ at the bottom of Section III-A).

To introduce a tail-recursive function, we apply the follow-

ing theorem with appropriate instantiations of pre, post etc.

(∀x. {pre x} code {if g x then pre (f x) else post (d x)}
=⇒
(∀x. {pre x} code {post (tailrec g f d x))}

Often pre and post are instantiated with functions that simply

just set the program counter value. For the example mentioned

above, pre is instantiated as follows to set the PC to L0.

λ(c, r0, r1, r2, r3,m).
ARM state holds (r0, r1, r2, r3,m, c) and PC is L0

In our implementation, we avoid defining separate compo-

nent functions f , g and d by defining a single function which

returns three different outcomes. We omit the details of this

space optimisation as it is not crucial for understanding the

main novelties of the new technique: the new Hoare triple;

collection of side conditions as if they were state updates; and

our new approach to handling complicated control flow.

IV. SUMMARY AND RELATED WORK

This paper has presented significant improvements to de-

compilation into logic — a technique which aids verification

of machine-code programs. We have simplified the technique,

optimised it for mechanisation speed and made it applicable

even to code with arbitrary use of code pointers.

Formal verification of machine code using theorem provers

was pioneered in impressive work by Boyer and Yu [2]. Boyer

and Yu verified functional correctness of string functions

compiled for the Motorola MC68020. Their proofs were

carried out in the Boyer-Moore theorem prover Nqthm [6]

and required significant manual effort. Since then most work

in this area has focused on making proofs easier: Matthews

et al. [8] have showed how verification condition generation

for machine code can be accomplished, Hardin et al. [5] show

how ACL2 can be used and our work [13] has shown how

functions can be extracted from machine code and how that

aids verification. Various program logics for assembly and

machine code have also been developed [10], [15], [1], [3].

Chlipala’s approach [3], using Coq, has a distinct emphasis

on proof automation for functional correctness. There has also

been work targeting mostly automatic proofs of basic safety

properties for low-level code [18], [9], [17].

REFERENCES

[1] Nick Benton. Abstracting allocation: The new new thing. In Computer
Science Logic (CSL), Computer Science Logic. Springer, 2006.

[2] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a
widely used microprocessor. J. ACM, 43(1):166–192, 1996.

[3] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In Programming Language Design and
Implementation (PLDI). ACM, 2011.

[4] Anthony C. J. Fox and Magnus O. Myreen. A trustworthy monadic
formalization of the ARMv7 instruction set architecture. In Matt Kauf-
mann and Lawrence C. Paulson, editors, Interactive Theorem Proving
(ITP), LNCS. Springer, 2010.

[5] David S. Hardin, Eric W. Smith, and William D. Young. A robust
machine code proof framework for highly secure applications. In
Proceedings of the sixth international workshop on the ACL2 theorem
prover and its applications, ACL2 ’06, pages 11–20, New York, NY,
USA, 2006. ACM.

[6] M. Kaufmann, R. S. Boyer, and J Moore. The Boyer-Moore theorem
prover and its interactive enhancement. Computers and Mathematics
with Applications, 29(2):27–62, 1995.

[7] Panagiotis Manolios and J. Strother Moore. Partial functions in ACL2.
J. Autom. Reasoning, 31(2):107–127, 2003.

[8] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Verifi-
cation condition generation via theorem proving. In Logic Programming
and Automated Reasoning (LPAR). Springer, 2006.

[9] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly language. In Principles of Programming
Languages (POPL). ACM, 1998.

[10] Magnus O. Myreen. Formal verification of machine-code programs.
PhD thesis, University of Cambridge, 2009.

[11] Magnus O. Myreen and Jared Davis. A verified runtime for a verified
theorem prover. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien
Schmaltz, and Freek Wiedijk, editors, Interactive Theorem Proving
(ITP), LNCS. Springer, 2011.

[12] Magnus O. Myreen, Thomas Sewell, Michael Norrish, and Gerwin
Klein. Using the Cambridge ARM model to verify the concrete machine
code of seL4. Talk at HCSS’11 http://cps-vo.org/node/1127, 2011.

[13] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-
code verification for multiple architectures – An application of de-
compilation into logic. In Formal Methods in Computer-Aided Design
(FMCAD). IEEE, 2008.

[14] Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon. Extensible
proof-producing compilation. In de Moor and Schwartzbach, editors,
Compiler Construction (CC), LNCS. Springer, 2009.

[15] Zhaozhong Ni and Zhong Shao. Certified assembly programming
with embedded code pointers. ACM SIGPLAN Notices, 41(1):320–333,
January 2006.

[16] Konrad Slind and Michael Norrish. A brief overview of HOL4. In
Theorem Proving in Higher Order Logics (TPHOLs). Springer, 2008.

[17] Gang Tan and Andrew W. Appel. A compositional logic for control
flow. In E. Allen Emerson and Kedar S. Namjoshi, editors, Verification,
Model Checking and Abstract Interpretation (VMCAI). Springer, 2006.

[18] Lu Zhao. A program logic and its applications to fully verified software
fault isolation. PhD thesis, University of Utah, 2012.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

81

Complete and Effective Robustness Checking by Means of Interpolation
Stefan Frehse1 Görschwin Fey1,3 Eli Arbel2 Karen Yorav2 Rolf Drechsler1,4

1Institute of Computer Science 2IBM Research Labs
University of Bremen, Germany Haifa, Israel

sfrehse@informatik.uni-bremen.de {arbel,yorav}@il.ibm.com

3Institute of Space Systems 4Cyber-Phsyical Systems
German Aerospace Center DFKI-GmbH

Bremen, Germany Bremen, Germany
goerschwin.fey@dlr.de rolf.drechsler@dfki.de

Abstract

Technology scaling continues to downscale feature sizes. As
a side-effect this has some serious drawbacks, in particular
increasing vulnerability of circuits against transient faults
caused, e.g., by radiation. Even under malfunctions of
internal components the circuit must behave as specified.
Several techniques have been proposed to overcome this
problem. However, the implementation of those techniques
in the design might be buggy and needs to be verified.
This paper provides an effective algorithm using formal

reasoning to completely analyze the fault tolerance of a
circuit, under all input sequences and all transient faults.
The algorithm based on interpolation identifies components
in which transient faults are observable. Experiments show
that the newly introduced complete approach analyzes
ITC’99 and IBM circuits, effectively.

I. Introduction

Technology scaling decreases power consumption and
increases the integration density as well as computational
throughput. As a side-effect technology scaling comes
inherently with serious problems. In particular vulnerability
against transient faults increases, caused by radiation or
process variation. Transient faults are modeled as the
negation of a signal at logic level, i.e, switching from
0 to 1 or 1 to 0 for a short period of time. However, the
circuit must behave as specified even under those internal
faults. Various techniques to catch and handle those faults
are available. These techniques operate on different levels of
the design flow. At design level, techniques such as Triple-
Modular-Redundancy (TMR) or Hamming-Code are applied

This work was supported in part by the European Union (Project
DIAMOND, FP7-2009-IST-4-248613).

for detection and correction of internal faults. Furthermore,
application specific techniques are available [1]. However,
the implementation of these techniques in the design may
be faulty itself and needs to be verified to ensure correctness
or to show vulnerable parts of the circuit [2].
To ensure correctness of the implementation complete

robustness checking must be performed: 1) under all
possible input sequences and 2) under all transient faults it
has to be proven that 3) all outputs sequences adhere to
the specification.
Formal approaches have been proposed, which analyze

the impact of transient faults on the functional output of
the circuit. Previous complete approaches [3], [4], [5], [6]
analyzing sequential circuits relying on Binary Decision
Diagrams are restricted to small circuits due to the state
explosion problem. The approach of [7] computes the
vulnerability against a user-defined specification in terms of
a property based on model checking techniques. Approaches
based on Boolean Satisfiability (SAT) are either restricted
to self-checking circuits (e.g. [8]) or consider only short
time intervals [9].
Bounded Model Checking (BMC) based on SAT has

been significantly improved by interpolation [10], which is
further enhanced in, e.g., [11], [12], [13], [14], [15]. The
approach proves or disproves a safety property for finite
systems by a fixed-point computation and is successfully
applied in complex hardware verification in industry.
Here, we propose two approaches for robustness checking:

First, SAT-based robustness checking is improved by
utilizing interpolation similarly to interpolation in BMC.
Second, we go one step beyond by over-approximating the
entire set of reachable states also based on interpolation.
This over-approximation can be utilized in BMC for a series
of safety properties in general. In robustness checking this
is required to identify components that may cause Silent
Data Corruption (SDC) upon failure - called unbounded
dangerous components in the following. Knowing such

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

82

components is mandatory as any second fault may corrupt
the system behavior. Previous SAT-based approaches for
robustness checking cannot identify unbounded dangerous
components. Experimental results on hard benchmarks show
the effectiveness in comparison to a previous approach.
The paper is structured as follows: Section II covers

the preliminaries in particular the fault model and the
computational model. In Section III, the approach adapting
interpolation-based model checking for robustness checking
is presented. Section IV describes the complete approach
including the over-approximation of reachable states and
the fixed-point iteration based on interpolation. Section V
provides the evaluation of both approaches and Section VI
concludes.

II. Preliminaries

A. Circuits and Transition Systems

A synchronous circuit C = (V,E, L) is a directed graph
with vertices (components) V , edges E ⊆ V × V , and a
labeling function L : V → {IN,FF,AND,NOT}, which
maps each vertex to a function. The vertices labeled with FF
are state elements. A state of the circuit is represented by
the values of the FF nodes: Each FF vFF ∈ V is mapped to a
Boolean value, i.e., vFF �→ B. From a circuit C a transition
system M = (I, S, T) is derived. The set I ⊆ S describes
the initial states. The state space of a circuit with m FFs is
given by S = B

m. The transition relation T (s, s′) is true,
if there is a transition from present state s to a next state s′.
The set img(Q) = {s′ ∈ S | ∃s ∈ Q ∧ T (s, s′)} contains
all successor states reachable in one step from the states in
Q ⊆ S. The operator img is called an exact image operator.
Let img(Q)

0
= Q and img

i+1
(Q) = img(img

i
(Q)), all

states reachable from I are given by: S∗
=
⋃

i≥0 img
i
(I).

The over-approximation operator ˆimg has the following
properties: img(Q) ⊆ ˆimg(Q) for Q ⊆ S and hence it

holds S∗ ⊆ Ŝ with Ŝ =
⋃

i≥0
ˆimg

i
(I).

In this paper a set of states S is often described by a
Boolean predicate δ. We say the set δ is an abbreviation for
S = {s|δ(s) = 1}. Both symbols are used interchangeably.
A formula is called concrete if the formula does not contain

any approximation operators. Otherwise, the formula is
called abstract.

B. Boolean Satisfiability & Interpolation

Given a Boolean function, the Boolean satisfiability
problem (SAT-problem) is to decide whether there exists
an assignment such that the function evaluates to true.
If there exists such an assignment, the formula is called
satisfiable otherwise unsatisfiable. Often a Conjunctive
Normal Form (CNF) is given as input to a SAT solver.

A CNF is a conjunction of clauses, where a clause is a
disjunction of literals. A literal is a variable x or its negation
¬x. A CNF formula F is a set of clauses F = {c1, . . . , ck},
whereas a clause is a set of literals ci = {l1, . . . , lm}. The
set of variables of a formula F is denoted as Var(F).
Given a pair of propositional formulas (A,B) such that
A ∧ B is unsatisfiable, there exists an interpolant σ of
(A,B) with the following properties based on Craig’s
Interpolation Theorem [16]: 1) σ is a propositional formula
over the subset of common variables of A and B, i.e.,
Var(σ) ⊆ Var(A)∩Var(B), 2) A implies σ, and 3) B ∧ σ
is unsatisfiable. Intuitively, this means, σ abstracts some
facts of A while σ contradicts B. Given a resolution proof
of an unsatisfiable CNF an interpolant is computed by,
e.g., [10], [17], [18], [19] in linear time with respect to
the size of the proof. Note, the size of the proof may
be exponentially larger than |A ∪ B|. Let itp(A,B) be a
function that computes an interpolant of the unsatisfiable
pair (A,B).

C. Robustness Checking

The goal of robustness checking is to identify parts of a
circuit that may cause unwanted behavior under occurrences
of transient faults or to prove that any fault of a component
is detected. We consider gates in this work to simplify the
presentation. By considering more complex modules as
components, multiple faults can be modeled as well [9].
Our approach can easily be lifted to component level, too.
A transient fault is modeled as a non-deterministic bit flip

of an output of a node for one time frame. Furthermore,
suppose the circuit is equipped with a fault signal f , which
reports detected faults of the system by setting f to one. If
the system does not have a fault signal, f is equal to zero
is assumed. Components of the circuit are classified based
on the behavior of the system when a fault is injected,
i.e., a component v ∈ C belongs to one of three classes:
non-robust: at least one fault at node v is observable after
any number of time frames at the primary outputs and no
fault is reported, i.e., f = 0, dangerous: any fault at v
only modifies the state after any number of time frames
but is not observable on the primary outputs and f = 0, or
robust: otherwise, i.e., all faults are either masked and not
observable at the primary outputs or they are reported by
the fault signal. Let T be the set of robust components, S the
set of non-robust components and D the set of dangerous
components: V = T ∪ S ∪ D.
Given a circuit under verification C = (V,E, L), the

circuit CD(V ′, E′, L′
) with D ⊆ V is constructed by

inserting a multiplexer at the component’s output for
each component v ∈ D and the primary inputs of C
and C ′ are stimulated by the same values. Each new
multiplexer has a selector variable denoted by av for a
component v ∈ D. The data 1-input of the multiplexer

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

83

is a fresh primary input and if the selector variable av
is activated, an arbitrary value is chosen for this input.
Otherwise, the normal computation of the component is
performed, based on the data 0-input connected to the
output of the respective component. This construction
allows for a non-deterministic bit flip if one selector variable
av is activated. The derived transition system of CD is
given by MD = (I, S′, T ′

) where the transition relation
T ′ is extended as follows: TD = T ′ ∧

(∑
v∈D av = 1

)
,

where
∑

adds Boolean variables, i.e., exactly one fault
injection is performed. Formulas for determining non-robust
components are constructed as follows:

init(l) = I(x0) ∧
l∧

i=1

T (xi−1, xi) (1)

inj(l,D) = T (xl, xl+1) ∧ TD(xl, ẋl+1) (2)

propNR(l, k) =
l+k∧

i=l+1

(T (xi, xi+1) ∧ T (ẋi, ẋi+1))

∧ P (xl+k+1, ẋl+k+1) (3)

where P (xl+k+1, ẋl+k+1) forces the primary outputs to
be different in the last time frame. The fault signal is
forced to be zero to consider scenarios where malfunctions
are not detected. However, this is not explicitly written
in the formula, to keep the formulas simple. Formula (1)
is satisfiable if and only if there is at least one path of
length l from the initial state x0 to a state xl. Formula (2)
computes a normal transition from xl to xl+1 based on
the transition relation T and a transition from xl to ẋl+1

based on TD, i.e., a single fault is injected at a component
v ∈ D. Finally, in Formula (3), the correct state xl+1 and
the faulty state ẋl+1 are propagated over k time frames
and the primary outputs are checked for equivalence at the
last time frame expressed by P . Conjoining these three
formulas the entire formula for determining non-robust
components is obtained:

φ(l, k,D) = init(l) ∧ inj(l,D) ∧ propNR(l, k) (4)

Lemma 1. Given a non-empty set of components to classify
D ⊆ V . If the formula φ(l, k,D) is satisfiable for an l
and k, with av = 1 for a component v ∈ D, then the
component v is non-robust.

Similar to Formula 4 dangerous components are computed
using the following formula that compares the states in the
last time frame. Here, only the last part is different from
Forumla 4 which is given by:

propD(l, k) =
l+k∧

i=l+1

(T (xi, xi+1) ∧ T (ẋi, ẋi+1))

∧ (xl+k+1 �= ẋl+k+1) (5)

and the entire formula for classifying dangerous components
is given by:

ψ(l, k,D) =init(l) ∧ inj(l,D) ∧ propD(l, k)

The function sol(φ(l, k,D)) computes all non-robust com-
ponents of D and the function sol(ψ(l, k,D)) computes
all dangerous components of D with respect to the values
of l and k. For each combination of l and k non-robust
components are determined and afterwards the dangerous
components are determined.
In order to compute the complete set of non-robust

components of the circuit under verification each com-
bination of l ∈ {0, . . . , l′} and k ∈ {0, . . . , k′} has to be
checked, where l′ and k′ are sufficiently large completeness
thresholds, i.e.,

S =

⋃
l∈{0,...,l′}
k∈{0,...,k′}

sol(φ(l, k, V)).

Once all combinations of l and k have been checked, all
non-robust components are determined. While checking
all combinations of l and k dangerous components are
computed by comparing state bits instead of primary out-
puts. SDC may occur, i.e., components remain classified as
dangerous even when the thresholds for l and k are reached.
That means, under all input sequences, any possible faults
is not observable at any time on the primary outputs,
but at least one fault corrupts the state. This behavior
is classified as unbounded dangerous and components
showing this behavior are in the set U ⊆ V . Given all non-
robust components and unbounded dangerous components,
the robust components are given by T = V \ (S ∪ U).
However, the completeness thresholds might be very large,
which makes it hard or practically impossible to check all
combinations. The threshold for l is given by the diameter
of the transition system M(I, S, T), i.e., l′ = dia(M),
because all reachable states can be reached within this
number time frames. A completeness threshold for k is
given by k′ = 2

2m with m FFs nodes, because all states
of the product machine of the normal transition system
and the transition system with fault injection have to be
discovered.

III. BMC with Interpolation for Robustness
Checking

Checking every combination of l and k is infeasible in
practice. However, a complete answer can often be given
before reaching l′ by applying interpolation-based model
checking [10] for robustness checking. Interpolation is
exploited in order to a find termination criterion before
unrolling the transition relation l′ times by computing a
fixed-point.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

84

A safety-property holds on a circuit if it is proven that
the property holds in every reachable state of the circuit’s
automaton. BMC has been introduced to check the property
on states by iteratively unrolling the transition relation. All
reachable states are checked when the transition relation
is unfolded l′ times. This may become very expensive for
larger circuits. Interpolation-based model checking [10]
often terminates before reaching l′. Interpolants abstract
some facts which are irrelevant to prove the property and
therefore speeds up the convergence to a fixed-point. In
order to prove a property only relevant states are considered.
In robustness checking a series of safety properties for all
k ∈ {0, · · · , k′} has to be checked. For each new property
a model checking instance is solved determining the set
of non-robust components under relevant reachable states.
Mapping robustness checking to interpolation-based model
checking, avoids considering all values of l ∈ {0, . . . , l′}.
That means, for each k an earlier termination may be
reached.
In the following, interpolation-based model checking [10]

is adapted for robustness checking. Given φ(l, k,D) as
defined in Equation 4, the property to check is composed
of injection, propagation, and forcing the primary outputs
to be different: inj(l,D)∧propNR(l, k). Starting with l = 0,
consider a non-empty set of components to classify D ⊆ V
and the formula pair (A,B) with:

A := I(x0) ∧ T (x0, x1) (6)

B :=

l∧
i=2

T (xi−1, xi) ∧
property of length k+1︷ ︸︸ ︷

inj(l,D) ∧ propNR(l, k) (7)

Suppose all non-robust components have been determined
with respect to the values of l and k and only the remaining
components not shown to be non-robust (at least one,
i.e.,|D| ≥ 1) are extended by a multiplexer to inject a fault.
In this case, A ∧B is unsatisfiable. An interpolant σ with
σ = itp(A,B) is computed based on the resolution proof
of the SAT solver. The interpolant σ is defined over the
state variables expressed by x1, i.e, the common variables
of A and B with Var(σ) ⊆ Var(A) ∩ Var(B).
The part B may be unsatisfiable itself in circuits containing

checker circuitry: The fault signals is constrained to zero
but any injection of a fault forces the fault signal to one.
In this case, determining the interpolant is skipped because
all reachable states are covered.
Otherwise, the interpolant is added to A such that
A = (I(x0) ∨ σ(x0)) ∧ T (x0, x1) where the variable x1

of σ is replaced by x0 and the procedure restarts. A fixed-
point is reached when the disjunction of all previously
computed interpolants implies the new interpolant. Once
the instance becomes satisfiable on such an abstract formula,
a potentially spuriously classified non-robust component
has been determined due to the over-approximation by
the interpolant. Then, the procedure restarts by increasing

non-robust complete

approx.

robust

unbounded dangerous

1
2

3

4

5

Fig. 1: Flow of new approach

the value of l, which either allows for classifying non-
robust components on the concrete formula or makes the
interpolants weaker by strengthening B. A fixed-point will
be eventually found and the classification is complete with
respect to the current value of k [10]. After reaching a
fixed-point, k is increased by one and the interpolation-
based model checking procedure restarts, discarding all
interpolants.

IV. Complete Classification

The approach from the previous Section III may find
earlier termination criterion for each k. However, calling
this approach for all values of k still remains infeasible.
A new approach presented in this section may terminate
earlier than reaching l′ and k′.
A rough overview of the new approach is depicted in

Figure 1: Step 1 classifies non-robust components. The
subsequent Step 2 checks whether all relevant reachable
states are considered for a fixed k. These steps have been
described in the previous Section III and are embedded in
this flow. Any classification of non-robust components is
based on reachable states. If there are more states to be
covered, the transition relation is further unrolled and the
flow goes back to Step 1 . Otherwise, if all relevant states
are considered an over-approximation of the entire set of
reachable states based on a newly introduced construction
of interpolants is performed in Step 3 and is described in
Section IV-A. After having a new over-approximation, non-
robust and dangerous components are over-approximated.
This classification is exploited in order to compute robust
components. All dangerous components are considered for
a further analysis in Step 4 , because these components
are potentially unbounded dangerous. For example, this

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

85

S

S∗

I
σ1

σ2

σ3

(a) Interpolation by McMillan: (σ)

S

S∗

I

δ̄

(b) Adequate Approximation: (δ)

Fig. 2: Approximations by Interpolation

occurs in TMR circuits: a fault is corrected by the majority
voter but the affected module remains in an erroneous state.
In order to prove that these components are unbounded
dangerous the proof procedure is called in Step 5 and is
presented in Section IV-C.

A. Over-approximation of Reachable States

The termination before reaching k′ requires that at least
all reachable states are modeled for fault injection. Since
computing the exact set of reachable states is hard, an
over-approximation is introduced in the following based
on interpolation. The difference of the interpolants from
Section III ([10]) and those here is illustrated in Figure 2.
In both figures S is the complete state space and S∗ is the
set of states reachable from the initial state as introduced
in Section II. The left figure shows interpolants σ1, σ2, and
σ3 after reaching a fixed-point in three steps. The union of
all interpolants yields an over-approximation of the exact
set of reachable states. In order to compute a fixed-point
using interpolation-based model checking at least one step
of interpolation is required, often a few steps, in order to
reach a fixed-point. The right figure shows an interpolant δ̄
from the new approach. The computation of this interpolant
requires exactly one step of interpolation with additional
model checking steps.
Both 1) the union of all interpolants from McMillan’s

approach and 2) the interpolant introduced in this work
over-approximate the exact set of reachable states but the
quality, i.e., the number of included non-reachable states
may differ. Due to space limitation a detailed comparison
about differences cannot not be discussed.
The computation of the over-approximation is introduced

in the following. A new partition of (A,B) and a check
whether the computed interpolant is an adequate approxi-
mation are introduced.

. . .

I reach

To compute the
over-approximations,
interpolants are derived
from the formula reach(l)
which models all states

reachable in l steps from the initial state illustrated in the
figure on the right hand side.

reach(l) =I(x0) ∧
l∧

i=1

(I(xi) ∨ T (xi−1, xi)) (8)

All reachable states are modeled on xl, if l ≥ l′. The entire
formula to determine non-robust components becomes:

φreach(l, k,D) = reach(l) ∧ inj(l,D) ∧ propNR(l, k) (9)

The difference between φ(l, k,D) and φreach(l, k,D) is
that the state xl for injection might be any state along
any path of length l from the initial state rather than only
states reachable in l steps. Based on this formulation an
over-approximation of the exact set of reachable states is
derived.

Definition 1. Given a transition system M = (I, S, T) and
a predicate δ defined over the state variables of M . Then
δ is an adequate approximation if the set δ contains only
non-reachable states.

Lemma 2. Given an adequate approximation δ, then for all
s ∈ S∗, δ̄(s) is true. That means δ̄ is an over-approximation
of the reachable states.

In order to compute adequate approximations consider the
following pair (A′, B′

) of formulas for given l and k

φreach(l, k,D) =

B′︷ ︸︸ ︷
reach(l)∧

A′︷ ︸︸ ︷
inj(l,D) ∧ propNR(l, k) .

(10)

The interpolant δ = itp(A′, B′
) computes states that are

not reachable from the initial state in l or less steps, but A′

implies δ, i.e., states in δ fulfill the property. These states
are possibly reachable from the initial state in more than l
steps or are non-reachable states.

Theorem 1. Given a transition system M = (I, S, T).
There exists an l ≤ l′ and an k ≤ k′ with a non-empty set
D ⊆ V of components proven to be not non-robust with
respect to l and k. Then, φreach(l, k,D) is unsatisfiable and
δ = itp(A′, B′

) is an adequate approximation.

Proof: Setting l = l′ and k = k′, reach(l) models
all reachable states and φreach(l, k,D) is unsatisfiable with
|D| ≥ 1. An interpolant δ = itp(A′, B′

) is computed. All
states for which A′ is true satisfy δ. These states are only
non-reachable states since δ ∧ B′ is unsatisfiable and B′

models all reachable states for l = l′.
This proves that an adequate over-approximation is com-

puted when setting l to l′. However, in practice an adequate
approximation is often computed before l reaches l′. In
order to verify that the computed interpolant δ is an
adequate approximation, a separate model checking step
is performed, i.e., the interpolant is checked for reachable

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

86

states. We employ an interpolation-based model checker to
check the invariant δ̄.
While checking each combination of l and k to determine

non-robust components using φreach(l, k,D), interpolants
are computed based on Theorem 1. If an interpolant is
an adequate approximation, the interpolant is added to the
set Δ, where Δ contains all adequate approximations.

B. Approximation of Robust Components

Given a set of adequate approximations Δ = {δ1, . . . , δn}
non-robust and dangerous components are over-
approximated using the following formulas. All remaining
components are robust components.
At first, the formula for over-approximating non-robust

components is constructed:

φ̂(l, k,D,Δ) =

∧
δ∈Δ

δ̄(xl) ∧ inj(l,D) ∧ propNR(l, k).

(11)

Lemma 3. Given a non-empty set D ⊆ V and a set of
adequate approximations Δ. Let Skl = sol(φ(l, k,D)) and
Ŝ
k
l = sol(φ̂(l, k,D,Δ)), then S

k
l ⊆ Ŝ

k
l is true for any l and

k. That means, Ŝkl is an over-approximation of non-robust
components.

Since the formula φ̂ may consider more states that φ
because an over-approximation is constrained and thus
non-robust components are over-approximated.
Next, an over-approximation of the set of dangerous

components is introduced. As described in Section II, a
fault injected into a dangerous component corrupts the state
but is not observable at the primary outputs. The formula
to over-approximate dangerous components is given by:

ψ̂(l, k,D,Δ) =

∧
δ∈Δ

δ̄(xl) ∧ inj(l,D) ∧ propD(l, k) (12)

Lemma 4. Given a non-empty set D ⊆ V and a set
of adequate approximations Δ. Let Dk

l = sol(ψ(l, k,D))

and D̂
k
l = sol(ψ̂(l, k,D,Δ)), then D

k
l ⊆ D̂

k
l is true for

any l and k. That means, D̂k
l is an over-approximation of

dangerous components.

The over-approximated sets of non-robust and of dangerous
components determine a subset of robust components as
stated in the following lemma.

Lemma 5. Given an over-approximated set of non-robust
Ŝ
k
l and dangerous D̂

k
l components, respectively. A set of

robust components is given by: Ťk
l = V \ (Ŝkl ∪ D̂

k
l).

By checking all combinations of l and k the final
result of non-robust and robust components is determined,
i.e., S =

⋃
l,k S

k
l and T =

⋃
l,k Ť

k
l . Reaching l′ and k′, the

classifications are complete.

However, components are unbounded dangerous on certain
circuits even when the thresholds for l and k are met. All
these unbounded dangerous components are reconsidered in
a next iteration. In order to prove that these components are
unbounded dangerous, it is required to prove that any fault
of these components will not affect the primary outputs for
any combination of l and k. The following section provides
the corresponding proof procedure.

C. Fixed-point Computation on the Property

Suppose arbitrary values for l and k > 0, and a non-
empty set of components D ⊆ V which are to be proven
or to be refuted to be unbounded dangerous components.
Formula (11), φ̂(l, k,D) is unsatisfiable, therefore an
interpolant of σ = itp(X,Y) can be computed where:

X :=

∧
δ∈Δ

δ̄(xl) ∧ inj(l,D)

∧ T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2) (13)

Y :=

l+k+1∧
i=l+2

T (xi, xi+1) ∧ T (ẋi+1, ẋi+1)

∧ P (xl+k+1, ẋl+k+1) (14)

The interpolant σ contains state variables xl+2 and ẋl+2

of transition relation T , i.e., Var(σ) = Var(A′′
)∩Var(B′′

).
Intuitively, σ computes an approximated set of pairs of
successor states of the correct states and faulty states
reached after injecting a fault. The variables xl+2 and
ẋl+2 of the interpolant σ are replaced by xl+1 and ẋl+1,
respectively. The interpolant is added to X , i.e.,

X ′
=

(
(

∧
δ∈Δ

δ̄(xl) ∧ inj(l,D)) ∨ σ(xl+1, ẋl+1)

)

∧ T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2) (15)

Next, the extended formula X ′ ∧ Y is checked for satis-
fiability. If the formula is satisfiable, the classification is
potentially spurious. In that case, k is increased by one and
the computation proceeds clearing problem instances and
interpolants but keeping Δ. Otherwise, i.e., the formula
is unsatisfiable, a new interpolant is computed and it is
checked whether the disjunction of all previously computed
interpolants implies the new interpolant – a fixed-point
has been reached. This proves that no fault injection in
components of D is observable at the outputs. Thus, all
components of D are proven unbounded dangerous and
constitute the set U .

D. Algorithm

The overall procedure which exploits Theorem 1 and the
fixed-point iteration on the property from Section IV-C is

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

87

Algorithm 1: ROB-COMPL

Input: C = (V,E, L) a sequential circuit
Output: (S,T,U) with S ⊆ V the non-robust and T ⊆ V the robust as

well as U unbounded dangerous comps.
begin1

k = l = 0;Δ = ∅;2
S = T = U = ∅;3
D = V ;4
while true do5

S = S ∪ sol(φ(l, k,D));6
D = D \ S;7
if (S ∪ T = V) or (k = k′) then return (S,T,U);8
δ = itp(inj(l, D) ∧ propNR(l, k), reach(l));9
if δ is an adequate approximation then10

Δ = Δ ∪ δ;11
end12
if necessary states are checked with respect to k then13

l = 0;14
else15

l = l + 1;16
continue;17

end18
Ŝ
k
l = sol(φ̂(l, k,D,Δ));19

D̂
k
l = sol(ψ̂(l, k,D \ Ŝ

k
l ,Δ));20

Ť
k
l = V \ (Ŝkl ∪ D̂

k
l);21

D = D \ Ť
k
l ;22

T = T ∪ Ť
k
l ;23

if T ∪ S = V then24
return (S,T,U)25

else26
if k = 0 then k = 1; continue;27
Q =

∧
δ∈Δ δ̄(xl) ∧ inj(l, D̂k

l);28
X = T (xl+1, xl+2) ∧ T (ẋl+1, ẋl+2);29
Y =

∧l+k+1
i=l+2 T (xi, xi+1) ∧ T (ẋi+1, ẋi+1) ∧30

P (xl+k+1, ẋlk+1);
repeat31

σ = itp(Q ∧ X,Y);32
if Q → σ then33

U = U ∪ D̂
k
l ;34

D = D \ D̂
k
l ;35

continue;36
else37

Q = Q ∨ σ(xl+1, ẋl+1);38
end39

until Q ∧ X ∧ Y is satisfiable ;40
k = k + 1;41

end42
end43

end44

shown as pseudo-code in Algorithm 1. The algorithm gets
the circuit under verification as input and determines the
set of non-robust as well as robust components. Lines 2-
4 initialize the required sets and the values for l and k.
All components are to be classified, i.e., D = V . The
while-loop iterates until all components are classified or
the threshold for k is reached (line 8). In each iteration at
first non-robust components are determined (line 6) and are
excluded from the components to be classified in further
iterations (line 7). Next, in line 9 an interpolant is computed
based on Formula (10) and it is checked whether the
interpolant is an adequate approximation using interpolation-
based model checking (line 10). If the computed interpolant
is an adequate approximation, then the interpolant is added
to the set Δ (line 11). If all necessary states are covered
as checked by interpolation-based fixed-point computation,
then l is set to zero and the algorithm proceeds with line 19.
Otherwise, the value of l is increased by one (line 16) if
not all necessary states are checked for the current value

of k and the outer loop restarts. That means either further
classifications are performed or an adequate approximation
will be found by strengthening A′ by increasing l by one.
Eventually an adequate approximation will be found

according to Theorem 1 and the procedure continues with
line 19. Here, the over-approximations of the set of non-
robust and dangerous components are computed, such
that a subset of the robust components is determined. In
line 27–41 the fixed-point computation on the property
is performed. If a fixed-point is found, all components
previously classified as dangerous in line 22 are proven
to be unbounded dangerous components. If the formula
becomes satisfiable, k is increased by one to get a weaker
approximation by interpolation on the property. In a next
iteration further non-robust components may be classified
from the set of remaining dangerous components.

E. Adequate Approximation in Model Checking

Since, the computed adequate approximations are invari-
ants specifying reachable states of the circuits they can be
used in model checking in general. While model checking
to prove a property, adequate approximations can be derived
in the same way as described above. These adequate
approximations may be applied as invariants to prune the
search space while proving other properties.

V. Experiments

An evaluation of the proposed approaches is presented
in this section. Experiments have been carried out on a
Dual-Core AMD OpteronTM Processor with 3.0 Ghz and
64GB main memory under Linux. Reaching a timeout of 15
hours is marked by timeout. As SAT-solver MiniSAT’s proof
logging version [20] has been used and interpolants are
computed based on McMillan’s interpolation system [10].
Preliminary experiments have shown that the HKP [17],
[18], [19] interpolants yielded consistently longer run
times of the proposed algorithms than using McMillan’s
interpolants. Interpolants are represented as And-Inverter-
Graphs (AIG) by the Aiger software package1.

A. ITC’99 Benchmarks

For the first evaluations ITC’99 benchmarks were taken and
enhanced with TMR techniques to catch single transient
faults. TMR circuits are marked with the suffix -tmr.
Faults are injected into gates and flipflops, i.e., initially
D = V . The two proposed approaches from Section III and
Section IV as well as the approach from the work of [9]
are compared in this section.
The circuits are known to be hard for formal robustness

checking, because fault effects propagate until reaching the

1Available under: http://fmv.jku.at/aiger/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

88

APPROACH OF [9] INTERP.-BASED BMC COMPLETE APPROACH

Circuit |IN| |OUT| |FF| Rlb Rub Runtime k Rub Runtime l k invalid valid ∅ size Rlb Rub Runtime

b01-tmr 2 2 15 7.9 98.2 timeout 236 97.8 timeout 17 4 15 4 3k 97.8 97.8 3
b02-tmr 1 1 12 1.7 98.2 timeout 351 98.0 timeout 25 9 23 4 1k 98.0 98.0 <1
b03-tmr 4 4 90 1.2 98.7 timeout 40 98.7 timeout 24 4 22 4 91k 98.7 98.7 31
b04-tmr 11 8 198 0.6 100.0 timeout 1 100.0 timeout 6 1 4 1 3583k 0.0 99.2 timeout
b05-tmr 1 36 102 6.9 99.0 timeout 70 98.9 timeout 16 4 14 3 29k 98.9 98.9 319
b06-tmr 2 6 27 3.6 97.0 timeout 28 96.7 timeout 9 3 7 3 6k 96.7 96.7 11
b07-tmr 1 8 147 0.9 99.5 timeout 72 99.4 timeout 21 4 19 3 22k 99.4 99.4 1621
b08-tmr 9 4 63 1.2 99.4 timeout 25 99.4 timeout 14 5 12 3 4k 99.4 99.4 68
b09-tmr 1 1 84 0.3 99.6 timeout 84 99.6 timeout 19 4 17 4 6k 99.6 99.6 44
b10-tmr 11 6 51 1.5 97.8 timeout 9 97.8 timeout 16 4 14 3 1286k 97.8 97.8 778
b11-tmr 7 6 93 0.6 99.4 timeout 11 99.4 timeout 13 2 11 3 537k 99.4 99.4 373
b12-tmr 5 6 363 0.3 99.8 timeout 12 99.8 timeout 19 2 17 3 1012k 99.8 99.8 395
b13-tmr 10 10 159 2.3 99.0 timeout 4 99.0 timeout 7 3 5 3 9k 99.0 99.0 213

TABLE I: Determined robustness of ITC’99 circuits

majority voter and are then masked late in the design. This
structure is hard for most SAT-solvers to handle causing
long run times. Furthermore, faults on most components
do not affect the primary outputs of the circuit, i.e., the
faults are masked by the majority voter, but modify the
state. That means, in each iteration most components are
reconsidered as dangerous until they are finally proven to
be unbounded dangerous components. The approach of [9]
and from Section III are practically not able to compute the
unbounded dangerous components, due to the large value
of k′. The new complete approach that does not explicitly
unroll the transition relation for k′ time frames.
Results are shown in Table I. Properties of the circuit

like name, number of primary inputs, number of primary
outputs and number of state elements are shown in the first
four columns. Values for the robustness are computed as
follows:

Rlb =
|T ∪ U|
|V | , Rub = 1− |S|

|V | . (16)

The runtimes are given in seconds.
Once the computation is finished by the evaluated ap-

proaches, the robustness is computed based on the respec-
tive sets of non-robust and robust components returned by
the approaches. The approach from Section III computes
only a set of non-robust components and therefore only
the upper bound of the robustness Rub is computed.
Furthermore, the values for l and k are shown for the
complete approach in Table I, to denote when the approach
finished with a complete answer. Furthermore, details
about the interpolants are given. The approach computes
interpolants to get adequate approximations. Column invalid
denotes the number of interpolants which are not an
adequate approximation. Column valid denotes the number
of adequate approximations. Column ∅ size denotes the
average size of the interpolants given as number of nodes
of the AIGs. The run times to check whether an interpolant
is an adequate approximation are quite short, i.e., less than
5 minutes accumulated over all instances.
For the approach from [9] the gap of the bounds is very

large for each considered circuit. This happens, because
almost all faults are masked by the majority voter of the
TMR circuit, but are not corrected such that one of the
TMR modules is corrupted unless resetting the circuit. That
means, the approach of [9] was not able to prove that the
dangerous components will not affect the primary outputs
at any time.
The approach from Section III computes a tight up-

per bound. As shown in the table the approach clas-
sifies some more components as non-robust than the
approach of [9] for the circuits, b01-tmr, b02-tmr,
b04.tmr, b05-tmr, b06-tmr, b07-tmr. Rather
than a pre-defined under-approximation of reachable
states [9], necessary reachability information is computed.
In principle, the approach of [9] uses fixed values l = 10

and k = 10 that prevent a complete classification. The
BMC-based approach does not terminate even for a large
observation window as no fixed-point iteration after fault
injection is performed. However, a complete classification
is possible even for a small observation window k which
also requires precise reachability information. This shows
that both interpolation steps are required for an effective
classification.
The complete approach proves lower and upper bounds

very effectively and provides an exact analysis for almost
all circuits. In these cases lower bound and upper bound
meet.

B. IBM Benchmarks

Next, we checked the proposed complete method on a set
of IBM design blocks. In this setting, two groups of design
blocks were used: 1) blocks taken from a data-path design,
and 2) blocks taken from a micro-processor control unit.
All of these design blocks contain self error checking and
correction mechanisms implemented in hardware. In this
benchmark, an Intel i5 processor running at 3.1GHz with
4GB RAM was used. Table II summarizes the benchmark
results: blocks D1-13 are the data-path blocks, D14-D27

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

89

Circuit |IN| |OUT| |FF| Classified [%] l k Runtime

D1 204 259 1430 9.30% 2 0 2728
D2 228 65 1424 17.49% 5 1 783
D3 727 293 1395 7.74% 3 0 220
D4 700 497 1038 70.52% 7 1 678
D5 364 142 940 100.00% 2 1 60
D6 105 60 699 99.86% 2 57 1699
D7 284 262 513 84.99% 18 3 3797
D8 112 56 456 100.00% 6 2 144
D9 268 99 447 89.26% 8 1 8281
D10 734 194 435 87.36% 2 1 611
D11 155 120 394 100.00% 2 1 11
D12 53 37 322 100.00% 2 1 19
D13 124 67 222 48.20% 5 3 37

D14 119 112 878 81.55% 5 3 1492
D15 140 55 804 88.56% 31 0 710
D16 29 24 555 15.86% 61 1 1201
D17 377 25 506 70.16% 6 6 1504
D18 176 154 464 70.26% 55 1 2044
D19 252 131 451 56.54% 7 7 1714
D20 327 102 428 67.06% 3 44 9050
D21 173 256 412 88.35% 8 4 486
D22 135 206 247 90.28% 2 33 23170
D23 218 96 231 95.24% 2 86 3631
D24 119 57 231 96.54% 2 2 580
D25 227 114 216 95.37% 4 95 7589
D26 70 51 210 17.62% 131 0 3697
D27 103 63 207 91.30% 7 6 598
D28 130 79 195 95.90% 2 80 35888
D29 100 37 126 100.00% 5 5 353
D30 139 94 123 100.00% 4 5 59

TABLE II: IBM Benchmarks

are the control logic blocks, number of flip flops, primary
inputs and primary outputs are given for each design in
the |IN|, |OUT| and |FF| columns respectively. In addition,
the percentage of classified flip-flops are given, as well as
the l and k bounds which were reached during each run.
One can see in Table II, the method was able to classify

significant percentage of flip-flops in most of the blocks. In
case where the implementation ran out of memory less than
100% of the flip flops were classified. This can be attributed
to several reasons: 1) The underlying SAT solver simply
ran out of memory trying to solve a particular instance,
2) problem instance itself may get too large to fit into
memory. In addition it is worth noting that in the current
implementation the interpolants are not being optimized,
which might also contribute to sub-optimal performance.
However, the implementation of the newly introduced
approach was able to effectively classify industrial design
coming from a micro-processor design.

VI. Conclusion

This work proposed a new complete approach for robust-
ness checking utilizing interpolants to overcome complexity
problems. We over-approximate the exact set of reachable
states and compute a fixed-point on the property. Our
approach is effective and provides exact results for hard
benchmarks.

References

[1] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P.
Hayes, “Enhancing design robustness with reliability-aware
resynthesis and logic simulation,” in ICCAD, 2007, pp. 149–
154.

[2] A. Pellegrini, V. Bertacco, and T. Austin, “Fault-based attack
of RSA authentication,” in DATE, 2010, pp. 855–860.

[3] J. Hayes, I. Polian, and B. Becker, “An analysis framework
for transient-error tolerance,” in VTS, may 2007, pp. 249–
255.

[4] N. Miskov-Zivanov and D. Marculescu, “Multiple transient
faults in combinational and sequential circuits: A systematic
approach,” IEEE Trans. on CAD, vol. 29, no. 10, pp. 1614
–1627, 2010.

[5] M. Bozzano, A. Cimatti, and F. Tapparo, “Symbolic fault
tree analysis for reactive systems,” in ATVA, ser. LNCS, vol.
4762, 2007, pp. 162–176.

[6] R. Leveugle, “A new approach for early dependability
evaluation based on formal property checking and controlled
mutations,” in IOLTS, 2005, pp. 260–265.

[7] S. A. Seshia, W. Li, and S. Mitra, “Verification-guided soft
error resilience,” in DATE, 2007, pp. 1442–1447.

[8] M. Hunger, S. Hellebrand, A. Czutro, I. Polian, and
B. Becker, “ATPG-based grading of strong fault-secureness,”
in IOLTS, 2009, pp. 269 –274.

[9] G. Fey, A. Sülflow, S. Frehse, and R. Drechsler, “Effective
robustness analysis using bounded model checking tech-
niques,” IEEE Trans. on CAD, vol. 30, no. 8, pp. 1239
–1252, 2011.

[10] K. L. McMillan, “Interpolation and SAT-Based model
checking,” in CAV, ser. LNCS, 2003, pp. 1–13.

[11] J. Marques-Silva, “Interpolant learning and reuse in SAT-
based model checking,” Electron. Notes Theor. Comput. Sci.,
vol. 174, no. 3, pp. 31–43, May 2007.

[12] V. D’Silva, M. Purandare, G. Weissenbacher, and D. Kroen-
ing, “Interpolant strength,” in VMCAI, ser. LNCS, vol. 5944,
2010, pp. 129–145.

[13] G. Cabodi, M. Murciano, S. Nocco, and S. Quer, “Boost-
ing interpolation with dynamic localized abstraction and
redundancy removal,” TODAES, vol. 13, no. 1, pp. 1–20,
2008.

[14] V. D’Silva, M. Purandare, and D. Kroening, “Approximation
refinement for interpolation-based model checking.” in
VMCAI, ser. LNCS, 2008, pp. 68–82.

[15] S. F. Rollini, O. Sery, and N. Sharygina, “Leveraging
interpolant strength in model checking,” in CAV, Springer.
Berkeley, California, USA: Springer, 2012.

[16] W. Craig, “Linear reasoning. A new form of the Herbrand-
Gentzen theorem,” The Journal of Symbolic Logic, vol. 22,
no. 3, pp. 250–268, 1957.

[17] G. Huang, “Constructing Craig interpolation formulas,”
in Annual International Conference on Computing and
Combinatorics, 1995, pp. 181–190.

[18] J. Krajicek, “Interpolation theorems, lower bounds for proof
systems, and independence results for bounded arithmetic,”
The Journal of Symbolic Logic, vol. 62, no. 2, pp. 457–486,
1997.

[19] P. Pudlák, “Lower bounds for resolution and cutting plane
proofs and monotone computations,” The Journal of Sym-
bolic Logic, vol. 62, no. 3, pp. 981–998, 1997.

[20] N. Eén and N. Sörensson, “An extensible SAT solver,” in
SAT 2003, ser. LNCS, 2003, pp. 502–518.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

90

Symbolically Synthesizing Small Circuits

Rüdiger Ehlers1, Robert Könighofer2, and Georg Hofferek2

1Reactive Systems Group, Saarland University, Germany
2Institute for Applied Information Processing and Communications, Graz University of Technology, Austria

Abstract—Reactive synthesis, where a finite-state system is
automatically generated from its specification, is a particularly
ambitious way to engineer correct-by-construction systems. In
this paper, we propose implementation-extraction based on com-
putational learning of Boolean functions as a final synthesis step in
order to obtain small and fast circuits for realizable specifications
in a symbolic way. Our starting point is a restriction of the system
player’s choices in a synthesis game such that all remaining
strategies are winning. Such games are used in most symbolic
synthesis tools, and hence, our technique is not tied to one
specific synthesis workflow, but rather supports a large variety
of these. We present several variants of our implementation-
learning approach, including one based on Bshouty’s monotone
theory. The key idea is the efficient use of the system player’s
freedom in the game. Our experimental results show a significant
reduction of implementation size compared to previous methods,
while maintaining reasonable computation times.

I. INTRODUCTION

A common criticism on formal methods for the verification

of reactive systems is that they only aid the system engineer

with ensuring correctness after the system is constructed.

The idea of reactive synthesis is to change this situation

by automatically computing a correct-by-construction system

after the specification is stated. While the theoretical com-

plexity of the synthesis problem is long-established for many

important specification formalisms, only recently, progress on

the practical solution of this problem has gained momentum,

as new results on symbolic synthesis [18], [17], smart specifi-

cation decomposition techniques [16], [29], and specification

formalisms explicitly targeting synthesis have emerged [7].

Early theory on the subject was mainly concerned with

checking the realizability of a specification, i.e., testing if

there exists an implementation. Procedures for obtaining an

implementation in case of a positive answer were rudimentary

and did not consider the quality of the synthesized solutions.

With the rise of synthesis technology from its infancy, a

growing interest in synthesizing solutions of high quality

(e.g., requiring only a small on-chip area, or reacting quickly)

emerged, witnessed by the introduction of synthesis methods

that take quantitative criteria into account. Introducing quanti-

tative criteria at the start of the synthesis process however typ-

ically breaks the possibility to perform the synthesis process in

a symbolic way, e.g., using binary decision diagrams (BDDs).

This work was supported in part by the European Commission through
project DIAMOND (FP7-2009-IST-4-248613), by the German Science Foun-
dation (DFG) through the AVACS Transregional Collaborative Research
Center (SFB/TR 14), and by the Austrian Science Fund (FWF) through project
QUAINT (I774-N23) and the national research network RiSE (S11406-N23).

The key idea to solve this problem is to consider the

quality only at a later stage in the synthesis process, when the

realizability of a specification has already been determined.

Most synthesis approaches reduce the realizability problem

of a given specification to solving a two-player game in

which one player models the environment and provides the

input to a system to be synthesized, whereas the other player

models the system and provides the output. If and only if the

system player can always win the game, the specification is

realizable. We call the characterization of a set of moves a

general strategy if the system player wins when taking only

moves from this set. Calling it general is justified by the fact

that there are often situations in which the strategy can be

non-deterministic, i.e., it has multiple choices for the system

player to win in that situation. Any implementation that

resolves this non-determinism, and is thus a specialization
of such a general strategy, satisfies the original specification.

Since a general strategy is a natural by-product of most

game solving algorithms used in synthesis, we can easily

take the general strategy as input to a process for finding

a small implementation. This way, we have separated the

problems of synthesizing any solution and obtaining a good
one. While we might miss the smallest implementation this

way, we do not introduce any additional computational hassle

by combining the two goals in one step.

Theoretical work on computing small implementations from

general strategies shows that approximating the size of a

smallest finite-state machine within any polynomial quality

function [14] from a general strategy is NP-hard.1 This holds

even if we do not have any input to the system. The fact that

for scalable synthesis, we also have to be able to cope with

symbolically represented general strategies2, and also want a

circuit rather than an explicit finite-state machine as result,

does not quite make the problem easier in terms of complexity.

As a consequence, current methods minimize the circuit size

heuristically while only guaranteeing correctness. Experience

however shows that with these techniques, the circuit sizes are

often prohibitively large, calling for a better approach.

In this paper, we present a learning-based approach to com-

1For example, any algorithm that (1) outputs false if for some given general
strategy and value of n, there exists no finite-state machine of size n that
behaves in a way allowed by the general strategy, (2) outputs true if there
exists such a finite-state machine of size at most n10, and (3) outputs an
arbitrarily result otherwise, solves an NP-hard problem.

2A symbolic representation of the synthesis game and the general strategy
is crucial for scalability of reactive synthesis because the transformation of a
specification into a game can lead to huge state spaces.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

91

puting small circuits in symbolic reactive synthesis. In contrast

to previous approaches, we do not exploit special properties

of the data structure involved for symbolic reasoning (such

as BDDs), but rather use computational learning of Boolean

functions. This allows us to utilize the non-determinism of

general strategies in a much more effective way. We learn

a CNF (conjunctive normal form), DNF (disjunctive normal

form), CDNF (conjunction of DNFs), or DCNF (disjunction

of CNFs) representation of output and next-state bit valuations,

which can immediately be translated into circuits. These

circuits are not only typically smaller, but also more shallow

than those of previous approaches, which allows running them

at higher clock rates.

Our approach is not bound to one specific synthesis work-

flow, but supports any flow that computes a general strategy.

For our experimental evaluation, we used two different BDD-

based synthesis tools, namely RATSY [4], and UNBEAST [15].

RATSY provides us with general strategies stemming from

the generalized reactivity(1) synthesis approach [7]. UNBEAST

is a symbolic implementation [16] of a bounded synthesis

variant [18]. In our experiments, we obtained circuit-size im-

provements of around one order of magnitude, when compared

to the built-in approaches of these tools. The computation

times are longer but still reasonable, thus allowing the new

approach to be applied also to large problem instances.

This paper is structured as follows. In the next section, we

give an overview of related work and provide experiences with

previous approaches to circuit computation in synthesis. Then,

we briefly discuss preliminaries and give literature pointers to

the computation of general strategies in synthesis workflows.

In Section IV, we describe our new learning-based approach,

followed by an experimental evaluation in Section V. We

conclude with a summary and ideas for future work.

II. PREVIOUS APPROACHES AND RELATED WORK

Computing an implementation in case of a realizable spec-

ification is the last step of every reactive synthesis approach.

There are a few of these for which this last step is an easy

one. In SMT-based bounded synthesis [18], the realizability

of a specification by some finite-state machine with b states is

encoded into a satisfiability modulo theory (SMT) formula,

whose solution is an explicit implementation. Anti-chains-

based bounded synthesis [17] uses anti-chains, rather than

BDDs, as symbolic data structure during a game-solving

process. It is then trivial to extract an implementation with

as many states as there are elements in the final anti-chain.

Both approaches come at a price. SMT-based bounded syn-

thesis is only reasonable if there exist small implementations

and the number of input/output signals is not too high. Anti-

chains-based bounded synthesis requires the specification to be

a conjunction of relatively small sub-specifications in order to

scale well. To counter these limitations, we are concerned with

general circuit extraction approaches that start with symbolic

general strategies. In the remainder of this section, we describe

previous techniques for this task, state our experiences with

them, and discuss techniques similar to our new approach.

Kukula and Shiple [23] described a simple technique to

compute a circuit from a general strategy in BDD form. The

main idea is to take the graph structure of the BDD and

instantiate an 8-gate building block for all nodes to obtain an

implementation. The resulting circuits have a very high depth

(more than two times the number of state and input variables)

and experience shows that they are often huge [6].

ANZU [21] uses a simple, cofactor-based approach [6] to

compute a completely specified Boolean function for each

output signal. The BDDs that represent these functions are

then dumped into a network of multiplexers. Bloem et al. [6]

also mention a simple but effective optimization. For each

output, they remove unnecessary input variables by existential

quantification. This method has also been implemented in

RATSY [4]. To the best of our knowledge, this is the most

effective circuit synthesis approach previously known, and it

will be used as a baseline for comparison in Section V. We will

subsequently refer to this method as the cofactor approach.

Baneres et al. [3] present a recursive paradigm for extracting

completely specified Boolean functions from general strate-

gies. Their approach is based on first computing the single

output functions independently, without resubstitution. In a

second stage they recursively resolve inconsistencies resulting

from uncoordinated choices during the first stage. They also

introduce a recursion-depth limit. If the limit is reached, their

algorithm falls back to an arbitrary other relation-solving

method. We reimplemented their approach within RATSY

and applied it to its general strategies. Unfortunately, first

experimental results were rather discouraging. Without any

recursion limit, the approach timed out even for rather small

benchmarks. However, using a recursion limit, we (almost)

always hit the fall-back mechanism. The result of the fall-back

mechanism is in almost all cases the same as if the recursive

approach of [3] had not been used at all. Therefore, this

approach does not provide any improvement concerning circuit

size, but only increases computation time significantly. We

believe that this is due to the fact that our general strategies are

highly non-deterministic, and in particular have many vertices

that [3] calls “non-don’t-care extendable”.

Another approach that we tried was implementing the

Minato-Morreale algorithm for computing an Irredundant
Sum-of-Products [24], [26]. It is a recursive procedure that

takes a general strategy as an input and computes a Sum-of-

Products form for a compatible completely specified function.

The final result is irredundant in the sense that no single literal

or cube can be deleted without changing the function. We

use the recursive structure of the algorithm to build a multi-

level Boolean circuit along the way. The resulting circuits are

comparable in size to the ones obtained through the cofac-

tor approach. Computation times, however, are significantly

higher. To further improve these results, we also tried using

a “cache”. In each step, the algorithm first checks whether a

function lying in the desired interval of functions has already

been built as a circuit in previous steps. If so, this function

(and the corresponding wire in the circuit) is reused. To keep

the memory footprint of the cache small and to speed up the

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

92

process of a cache look-up, we did not store the BDDs of

the functions, but rather used a signature-based approach as

in [25]. We only store the function’s output for some random

input vectors. These outputs are called a signature. Signatures

have a very low memory footprint. When doing a look-up, we

can use the signature to perform a fast pre-test. This pre-test

may, however, create false positives. Thus, whenever the pre-

test yields a positive result, we (recursively) reconstruct a BDD

for the function in question from the structure of the circuit

generated so far. We subsequently use this BDD to perform a

sound comparison to check whether or not the function really

lies within the desired interval. Experimental results have

shown that, unfortunately, we get almost no cache hits. The

hits we do get are mostly very small, almost trivial functions,

consisting of only a handful of gates. Thus, the gain due to

sharing is negligible. On the other hand, computation time

rises significantly due to the many look-up checks that have

to be performed. We also noticed that, when extended from

completely specified functions [25] to intervals, the signature-

based pre-test gives too many false positives to be of use.

Jiang et al. [19] presented a SAT-solver-based approach to

compute functions from a general strategy. Their method is

based on Craig interpolation [13], which is supported by many

modern SAT solvers. Also here, preliminary experimental

results suggest that this method cannot deal well with the high

degree of non-determinism which is characteristic for general

strategies in reactive synthesis. First tests produced circuits

that were at least one order of magnitude larger than the ones

obtained by the cofactor approach.

Our method for computing circuits is based on computa-

tional learning. It starts with simple candidate functions and

refines them based on the counterexamples that are returned

by a teacher oracle. Counterexample-guided refinements have

already been used in program sketching [30] to synthesize

missing program parts, and for program repair [22], [10].

Natively, these methods can only synthesize integer constants.

Templates or user-provided generators containing unknown

integers are used to synthesize more sophisticated program

parts. In contrast, our method is able to compute circuits

directly and without the help of the user.

Computational learning of Boolean function has many ap-

plications apart from implementation extraction. Becker et

al. [2] use the concept to turn a quantified Boolean formula

(QBF) solver into a tool for obtaining a compact representation

of all solutions to a Boolean formula that may or may not

have some quantifiers. While the representation types for

the solutions are the same as in this work (CNF, DNF, and

a conjunction of DNF formulas), Becker et al. focus on

integrating a QBF solver into the classical learning algorithms

for these representations. In this paper, on the other hand, we

are not concerned with such low-level technical considerations,

and simplify the details of our approach by taking BDDs

as data structure for symbolic reasoning. This allows us to

start right away with tackling the special properties of the

implementation extraction domain, in particular how to obtain

efficient circuits with multiple output signals, and how to make

��������	
���	�
�����

���

� �

�� ��

� �

Fig. 1. Implementation of a general strategy.

the best use of the non-determinism in the general strategies.

The work in [11] addresses learning of Boolean functions

over enlarging sets of variables, especially for loop invariant

generation and assumption synthesis. The learning method is

based on Bshouty’s monotone theory [8], just like one of our

algorithms. However, while [11] concentrates on efficiency in

presence of an unbounded number of variables, we focus on

utilizing non-determinism effectively to obtain small circuits.

III. PRELIMINARIES

A. Basic Notation

Let V be a set of Boolean variables. To simplify notation,

we treat subsets X of V and their characteristic functions

interchangeably. Thus, a subset X of V induces a variable

valuation x : V → B by setting x(v) = true for some v ∈ V
if and only if v ∈ X , and likewise, a variable valuation x :

V → B induces a subset X of V by choosing X = {v ∈ V |
x(v) = true}. A model of a Boolean formula is a variable

valuation that satisfies the Boolean formula.

B. General strategies

A general strategy is a tuple S = (S, I,O, s0, δ), where S
is a set of state bits, I is a set of input bits, O is a set of output
bits, s0 ⊆ S is the initial state and δ ⊆ 2

S × 2
I × 2

S × 2
O

is the transition relation. To separate the two occurrences of

state bit sets in the transition relation, we will henceforth write

S′ for their second copy. In this paper, we are concerned with

extracting a small circuit for this strategy, i.e., a net with input

bits U = S ∪ I and output bits W = S′ ∪ O such that for

every input (s, i) ∈ 2
S × 2

I , if s is a reachable state and the

circuit outputs some (s′, o) ∈ 2
S′ × 2

O for this input, then

(s, i, s′, o) ∈ δ. We call such a circuit a specialization of S as

it exhibits only behavior that is allowed by the strategy, and

chooses one particular output/next state combination whenever

more than one is possible. A state s is considered to be reach-

able if there exists some sequence s0
o0−→
i0

s1
o1−→
i1

. . .
on−→
in

sn

with sn = s such that for all j ∈ {0, . . . , n}, (sj+1, oj) is

the output of the circuit for the input bit valuation (sj , ij).
Thus, we assume that some flip-flops feed back the output

state bits as input to the net in the next computation cycle. This

implementation of S in a circuit is illustrated in Fig. 1. For

the scope of this paper, the sizes and depths of combinatorial

circuits are considered at the gate level.

General strategies as defined above are computed in many

modern synthesis workflows as a by-product. Normally, not all

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

93

possible implementations of a specification are specializations

of the general strategy computed, but rather some unfavorable

ones have already been filtered out. For example, if we used a

mutual-exclusion protocol specification as input to a synthesis

tool, we would want that the general strategy computed

ensures that grants are given quickly in order not to let the

requester wait unnecessarily. For the synthesis approaches

considered in this paper, this good reactivity is ensured: in gen-

eralized reactivity(1) synthesis [7], [27], the general strategy

is built such that transitions that help towards the fulfillment

of liveness objectives are preferred, whereas in BDD-based

bounded synthesis [16], a strict bound on delays in such a

situation is imposed. Thus, in both cases, for synthesizing

implementations of high quality, we can restrict our attention

to circuit size and depth for the scope of this paper. For details

on the computation of general strategies in these two synthesis

approaches, the interested reader is referred to [16], [7], [27].

C. Binary Decision Diagrams

To handle Boolean functions and general strategies sym-

bolically, we use reduced ordered binary decision diagrams
(BDDs) [9], which represent characteristic functions f : 2

V →
B for some finite set of variables V . Let f and f ′ be two

BDDs and V ′ ⊆ V be a set of variables. We denote the

conjunction, disjunction, negation, existential quantification,

and universal quantification of BDDs as f ∧ f ′, f ∨ f ′, ¬f ,

∃V ′ . f and ∀V ′ . f , respectively. To represent the transition

relation of a general strategy S = (S, I,O, s0, δ), we take

V = S � I � S′ � O and build the characteristic function

of δ by setting fδ(X) = true for some X ⊆ V iff

(X ∩ S,X ∩ I,X ∩ S′, X ∩O) ∈ δ.

IV. LEARNING SMALL CIRCUITS

In this section, we present the core contribution of this work:

Given a general strategy S = (S, I,O, s0, δ), we show how

to compute a combinatorial circuit with input bits U = S ∪ I
and output bits W = S′ ∪ O that implements the strategy

as illustrated in Fig. 1. We break down this problem into

obtaining |W | circuits with a single output bit, each getting

|U | bits as input. First, we describe this decomposition process.

Then, in Section IV-B, we discuss how a circuit for a single

output bit can be computed using computational learning.

A. Decomposition

One reason for computing |W | one-output-bit circuits, as we

do in this paper, is to increase the freedom in the circuits due

to unreachable states. If a circuit for one output bit has been

found, we can recompute the set of states reachable by any

specialization that uses this circuit. Typically, this reachable

state set shrinks with every additional circuit, which allows

our specialization to ignore more and more input valuations

X ⊆ U as the algorithm proceeds. The following algorithm

describes the overall process:

1: procedure OBTAINCIRCUIT(S, I,O, s0, δ)

2: A := δ
3: for v ∈W do

4: r := states reachable from s0 under A as BDD

5: c := r ∧ (¬(∃W .(A ∧ v)) ∨ ¬(∃W .(A ∧ ¬v)))
6: if optimize then
7: (f, c) := MINVARS(A, v, c)
8: else
9: f := ∃W .(A ∧ v)

10: end if
11: g := LEARN(U, f, c)
12: Take g as output circuit for v
13: A := A ∧ (¬v ⊕ g)
14: end for
15: end procedure
The algorithm iterates over all outputs v ∈ W of the combi-

natorial circuit we wish to build. In every iteration, we first

compute which states are reachable in any specialization with

the circuits computed so far. Next, we compute the care set,

i.e., the set of input variable valuations X ⊆ U for which the

output matters. There are two reasons why a valuation might

not be in the care set: (1) the state is not reachable, and (2) both

values of the output bit v are allowed. The computation of c
in line 5 reflects these cases. Ignore the optional optimization

in line 7 for a moment. Line 9 now computes the target

function, and line 11 uses a black-box function LEARN to

obtain a corresponding circuit using computational learning.

We assume that LEARN returns a BDD representation of the

one-output-bit circuit that resembles f on variable valuations

X ⊆ V for which c(X) = true holds. We describe two

variants of a function LEARN in the next subsection.

After a circuit for one output v ∈ W has been obtained,

we need to update the general strategy to only allow output

variable valuations X ⊆W that are still possible when using

the circuits we already have. This happens in line 13.

The optimization in line 7 minimizes the number of input

bits v′ ∈ U on which the output bit v may depend. This idea

has been introduced in [6] and can be implemented as follows.

1: procedure MINVARS(A, v, c)
2: m0 := ¬((∃W .(A ∧ v)) ∨ ¬c)
3: m1 := ¬((∃W .(A ∧ ¬v)) ∨ ¬c)
4: for v′ ∈ U do
5: (m′

0,m
′
1) := (∃v′ .m0, ∃v′ .m1)

6: if m′
0 ∧m′

1 = false then
7: (m0,m1) := (m′

0,m
′
1)

8: end if
9: end for

10: return (m1,m0 ∨m1)

11: end procedure
The lines 2 and 3 compute the input variable valuations for

which the circuit to be learned has to output false and true,

respectively. If an existential quantification of an input variable

v′ does not make the two regions m0 and m1 overlap, then

this means that the function can still be implemented without

taking the input bit v′ into account. Otherwise, v′ is crucial for

distinguishing input variable valuations for which the circuit

has to output true from those where it has to output false.

In this case, v′ cannot be disregarded. The check is done in

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

94

line 6. After all unnecessary input bits have been discarded

using existential quantification, the target function f and the

care set c are recomputed and returned. We also use the above

algorithm in a heuristic to find a good ordering for the output

bits in line 3 of OBTAINCIRCUIT: output bits v for which f
depends on fewer variables are considered simpler to handle,

and are thus processed first.

B. Learning circuits with a single output bit

When computing a small one-output-bit circuit from a

problem instance (V, f, c), our aim is to utilize don’t care input

bit valuations (i.e., X ⊆ V with c(X) = false) as effectively

as possible, while obtaining circuits with appealing properties,

such as low depth and few gates. We describe here how to

apply the concept of computational learning to obtain small

and shallow circuits. We decompose f into a Boolean formula

that only needs to be correct on the care set, i.e., the input bit

valuations that c maps to true. The Boolean formula is built

in an incremental fashion, i.e., we start with a small formula

that we iteratively refine until it is correct with respect to the

care set. After learning the formula, it can easily be translated

to a circuit by using only AND, OR, and NOT gates.

We describe two variants of the learning process here, one

for which the target Boolean formula is in CNF form, and

one for which it is in CDNF form, i.e., a conjunction of

disjunctive normal form Boolean formulas. Both variants are

instances of Angluin-style [1] learning algorithms, in which

the learning process proceeds by performing queries of various

types to some teacher oracle. In our context, queries reduce

to operations on BDDs. We can use the CNF and CDNF

algorithms to also learn DNF and DCNF formulas: we simply

dualize f and the output formula.

1) Learning CNFs: A formula in conjunctive normal form

is a conjunction of clauses, each being a disjunction of literals.

Given a one-bit output circuit problem (V, f, c), a clause C
is sound in a CNF for (V, f, c) iff ¬C(X) implies ¬f(X) ∨
¬c(X) for all X ⊆ V . That is, a sound clause only evaluates

to false if the variable valuation can be mapped to false. On

the other hand, if a CNF formula of sound clauses maps every

X ⊆ V with c(X) ∧ ¬f(X) to false, then it has enough

clauses to be a valid solution. Using BDDs, we can easily

check if a CNF formula has enough clauses or if a clause is

sound. The following algorithm iteratively searches for sound

clauses until we have enough of them:

1: procedure LEARNCNF(V, f, c)
2: r := true

3: while r ∧ (¬f) ∧ c �= false do
4: b := pick some variable valuation in r ∧ (¬f) ∧ c
5: V ′

:= V
6: C :=

∨
v′∈V ′ v′ ⊕ b(v′)

7: for v ∈ V do
8: C ′

:=
∨

v′∈(V ′\{v}) v
′ ⊕ b(v′)

9: if ((¬C ′
) ∧ c ∧ f) = false then

10: (C, V ′
) := (C ′, V ′ \ {v})

11: end if
12: end for

13: r := r ∧ C
14: end while
15: return r
16: end procedure
The variable r stores the candidate CNF formula as BDD. In

practice, we store the BDD together with the corresponding

CNF formula to avoid reconstructing the CNF at the end.

In line 3, we check if we have found enough sound clauses

already. If this is not the case, we pick some variable valuation

b that witnesses this fact. We use b to derive a new sound

clause in line 6. In the lines 7 to 12 we shorten it as much as

possible while retaining its soundness. This way, we keep both

the length and number of the clauses in the formula small.

Let X = {X ⊆ V | c(X) ∧ ¬f(X) ∧ r(X)} be the set of

variable valuations that r must, be but does not yet, map to

false. LEARNCNF terminates because it quits on |X | = 0,

and |X | decreases in every loop iteration. It is correct because

it adds only sound clauses to r, and enough to have |X | = 0.

After LEARNCNF is finished, we remove all clauses from

r for which removing leaves the learned function consistent

with f on c. This reduces the size of the learned function.

Example 1. We illustrate LEARNCNF on the learning prob-
lem ({v1, v2}, f, c), defined in the left part of the following
truth table.
v1 v2 f c r1 C1=¬v1 ∨ v2 C ′1=r2=v2

false false false false true true false

false true false false true true true

true false false true true false false

true true true true true true true

We write ai to denote variable a in iteration i of LEARNCNF.
The first candidate is r1 = true. An input valuation b1

satisfying r1 ∧ (¬f) ∧ c is b1(v1) = true, b1(v2) = false;
the corresponding clause is C1

= ¬v1 ∨ v2. Next, C1

is simplified by removing literals as long as soundness is
preserved. C ′1

= v2 renders (¬C ′1
) ∧ c ∧ f unsatisfiable,

so C ′1 is still sound. Since the empty clause is not sound, r is
refined to r2 = C ′1

= v2. Now, r2 ∧ (¬f)∧ c is unsatisfiable,
i.e, there is no more input valuation for which the circuit must,
but does not yet, output false. Hence, the circuit outputting
r2 = v2 is a solution to the learning problem ({v1, v2}, f, c).

2) Learning CDNFs: The CNF learning approach above

computes two-level combinatorial circuits. While these are

shallow, there are many functions for which we need more

levels in order to obtain a circuit with few gates. Here, we use

Bshouty’s learning algorithm, based on his monotone theory
[8] as a basis for learning a CDNF representation of the

target function, which leads to three levels in the computed

circuits. This is still a low number, and thus allows to drive

the resulting circuit with high clock rates, but offers a better

chance for minimizing the number of gates. We start with an

explanation of the necessary theory, and then describe how it

can be applied when f and c are given in BDD form.

Let V be some set of variables and X,Y, and Z be subsets

of V . We write X ⊆Z Y if and only if (X ∩ (V \ Z)) ⊆

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

95

(Y ∩ (V \ Z)) and (X ∩ Z) ⊇ (Y ∩ Z). A Boolean function

f : 2
V → B is Z-monotone if for all X,Y ⊆ V , if X ⊆Z Y

and f(X) = true, then f(Y) = true.

Bshouty’s learning algorithm represents the function-to-

learn as a conjunction of Boolean formulas in disjunctive

normal form. Each of this DNF formulas is Z-monotone

for some Z ⊆ V . From the computational learning theory

perspective [1], Bshouty’s CDNF learning algorithm employs

two types of queries: membership queries and equivalence

queries. In this paper, we extend its idea by modifying

the algorithm in order to make use of don’t care variable

valuations. Performing a membership query in this context

then means that for a variable valuation X , we check if

f(X) ∨ ¬c(X) = true. Performing an equivalence query

means checking if the variable valuations that c maps to true

are models of the candidate CDNF formula if and only if they

are mapped to true by f . The following code describes the

learning process:

1: procedure LEARNCDNF(V, f, c)
2: P = ∅
3: while true do
4: g :=

∧
(h,d)∈P h

5: if (g ∧ (¬f) ∧ c) �= false then
6: b := pick some variable valuation in g ∧ (¬f) ∧ c
7: P := P ∪ {(false, b)}
8: else if ((¬g) ∧ f ∧ c) �= false then
9: b := pick some variable valuation in (¬g) ∧ f ∧ c

10: for {(h, d) ∈ P | b �|= h} do
11: b′ := b
12: for v ∈ {v′ ∈ V | b′(v′) �= d(v′)} do
13: b′′ := b′

14: b′′(v) := ¬b′′(v)
15: if f(b′′) ∨ ¬c(b′′) then
16: b′ := b′′

17: end if
18: end for

19: h′
:= h ∨∧v∈V,b′(v) =d(v)

{
v if b′(v) = true

¬v else

20: P := P \ {(h, d)} ∪ {(h′, d)}
21: end for
22: else
23: return g
24: end if
25: end while
26: end procedure

The algorithm maintains a candidate CDNF formula in P . Ev-

ery DNF formula is stored together with its monotonicity base.

Line 5 checks for false-positives, and line 8 for false-negative
variable valuations. False-positives are valuations X ⊆ V with

c(X) = true that are models of the candidate formula, but for

which f(X) = false. Likewise, false-negatives are valuations

X for which c(X) = f(X) = true, but X is not a model

of the candidate formula. Both witness the misclassification

of a variable valuation. Whenever we find a false-positive X ,

we add a DNF that is kept X-monotone during the run of the

algorithm. For a false-negative X , we update all DNFs with a

cube (a conjunction of literals) that ensures that X becomes a

model of the DNF. For this, we first make the false-negative as

similar to the monotonicity base as possible without changing

the fact that the circuit is allowed to output true for this

valuation. Then we add a cube that contains only literals that

point away from the monotonicity base. This way, the DNF

formula remains d-monotonous with respect to its base d, but

stays small at the same time. For more details on Bshouty’s

CDNF learning algorithm, the reader is referred to [28].
The algorithm terminates because in every iteration, either a

false-positive or a false-negative is resolved, and the maximum

number of potential misclassifications is finite. Note that

resolving a false-positive will typically add new false-negatives

because the newly added DNF is initially empty, i.e. false.

However, resolving a false-positive X eliminates it once and

for all. The reason is that the new DNF that is added is

kept X-monotone. It is extended with cubes containing literals

that point away from the monotonicity base only. Hence,

X can never become a model of that DNF and g(X) will

always remain false. The algorithm is correct because upon

termination, there are no more misclassifications.
In a post-processing step, we simplify the formula produced

by LEARNCDNF. We remove all DNFs, cubes and literals for

which removing leaves the CDNF consistent with f on c.

Example 2. We apply LEARNCDNF to the learning problem
({v1, v2}, f, c) from Example 1, defined by the following table.

v1 v2 f c g1 g2 g3

false false false false true false false

false true false false true false true

true false false true true false false

true true true true true false true

We have that P 1
= ∅, so g1 = true. Since g1∧(¬f)∧c is sat-

isfiable, there exists a false-positive b1 with b1(v1) = true and
b1(v2) = false. To resolve it, a new DNF formula, initialized
to false, is added to P together with its monotonicity base b1.
In the next iteration, g2 is false. Consequently, g2∧(¬f)∧c is
unsatisfiable, so there exists no false-positive. However, there
is a false-negative b2, defined as b2(v1) = b2(v2) = true.
To resolve it, the DNF formula h2

= false is weakened with
an additional cube. To get a small cube, b2 is modified to
match the monotonicity base b1 as well as possible. b1 and
b2 differ only in v2, so this value is flipped to obtain b′′2

as b′′2(v1) = true, b′′2(v2) = false. However, for b′′2 it
is not allowed to output true, because f(b′′2) ∨ ¬c(b′′2) is
false, so the flip is retracted. Since b1 and b2 differ only in
v2 and b′2(v2) = true, the empty DNF in h2 is extended to
v2. Since P 3 now contains only the DNF v2, g3 is v2 in the
next iteration. Using g3, there is neither a false-positive nor
a false-negative, so g3 = v2 is reported as solution.

V. EXPERIMENTAL RESULTS

In this section, we first briefly describe our implementation

and experimental setup. Then we present our experimental

results with the synthesis tools RATSY and UNBEAST.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

96

A. Implementation and Experimental Setup

We implemented the learning algorithms in a circuit ex-

traction tool that can be run in 9 different modes. For every

mode, the following table summarizes the learning method,

whether the basic method is complemented, whether variables

are minimized using MINVARS, and the output format. We

say that a method is complemented if we negate the function

to learn before applying the learning algorithm. By duality, we

can then use the CNF learning algorithm for obtaining a DNF

result, and the CDNF learner to get a DCNF (disjunction of

DNFs) output. Mode 8 is special: for every output, it applies

the learning methods of modes 1, 3, 5, and 7, and picks the

smallest implementation.

Mode Learning Method Compl. MINVARS Outcome

0 Bshouty no no CDNF

1 Bshouty no yes CDNF

2 Bshouty yes no DCNF

3 Bshouty yes yes DCNF

4 CNF Refinement no no CNF

5 CNF Refinement no yes CNF

6 CNF Refinement yes no DNF

7 CNF Refinement yes yes DNF

8 both both yes all

As input, our tool takes a file containing a general strategy S .

As output, it produces a circuit in SMV or BLIF format.

All symbolic computations are done using BDDs. We use

CUDD [31] as BDD library with dynamic variable reordering

enabled. Our tool is written in C++. The implementation

as well as the input files and all scripts to reproduce the

experimental results are available for download3.

In our experiments, we run RATSY and UNBEAST to

synthesize circuits for several specifications. We also export

the general strategies and synthesize circuits with our learning-

based extractor. ABC4 70930 is used to map circuits to

standard cells. The gates in our standard cell library have

a fan-in of at most 4 (which can increase the depth of the

circuit). All circuits produced by our extractor have been suc-

cessfully model-checked against their original specifications,

using NUSMV 2.5.4 [12] with bounded model checking.

All experiments were performed on an Intel Xeon E5430

CPU with 4 cores running at 2.66GHz, 64GB of RAM, and

a 64 bit Linux. All programs run single-threaded, so only one

core was actually used. The maximum memory consumption

of our new circuit extractor was 3.3GB in our experiments.

B. Experiments with RATSY

RATSY’s built-in circuit extractor uses the cofactor approach

sketched in Section II. Table I compares this technique with

our new approach. Due to space constraints, the comparison

includes mode 1 and 7 (see Section V-A) only. These modes

were chosen because they achieved good results. Results for

the other modes can be found in Table III in the appendix. We

3http://www.iaik.tugraz.at/content/research/design verification/others/
4http://www.eecs.berkeley.edu/∼alanmi/abc/

evaluate the methods on three parametrized specifications. The

first one defines an arbiter for ARM’s AMBA AHB bus [6].

It is parametrized with the number of masters it can handle.

These specifications are denoted as Ai, where i is the number

of masters. The second specification, denoted A’i, is a less

optimized variant of the former. It is described in [5]. The

third specification is denoted by Gi and defines a generalized

buffer [6] connecting i senders to two receivers. The bit

numbers of the general strategies range from |U | = 24 and

|W | = 12 (for G2) to |U | = 129 and |W | = 63 (for A15).

Table III contains the exact numbers for every benchmark.

Column 1 in Table I lists the time needed by RATSY to turn

the general strategy into a circuit. The size of the resulting

circuit in terms of the total number of standard cells (gates

plus flip-flops, but the flip-flops are typically negligible) is

given in column 2. Column 3 contains the corresponding depth

of the combinational circuit. The columns 4 to 7 show the

results for circuit extraction with our extractor in mode 1.

Column 4 gives the circuit extraction time. The columns 5

and 6 list the size and depth of the resulting circuits. Column 7

contains the circuit size improvement factor due to our method.

The columns 8 to 11 show the same information for mode 7.

Computation time entries preceded by a “>” indicate time-

outs. A “-” stands for missing data due to a time-out. The suffix

k stands for a multiplication of the respective number by 1 000.

The table does not contain entries for A’i with i > 5 because

for these specifications, RATSY did not finish within 100 000

seconds. The sums and averages in the last two lines only take

into account benchmarks for which all methods terminate.

C. Experiments with UNBEAST

UNBEAST is a bounded synthesis tool that applies the Kuku-

la/Shiple method (see Section II) for circuit extraction. The

comparison with our new approach is summarized in Table II

for the modes 1 and 7 of our new circuit extraction tool.

Results for the other modes can be found in the appendix. For

the comparison, we use the (realizable) LILY benchmarks [20],

which are denoted as Li. For some of these benchmarks

we created several variants. They are named Li-j, where j
is a size parameter. We also use a specification for a load

balancer [16] (the final version), which is parameterized by

the number i of clients. These specifications are referred to as

Bi. Table II is organized just like Table I. A circuit depth of

0 means that the combinatorial circuit could be implemented

without gates, i.e., all outputs are either equal to an input or to

the constants true or false. The bit numbers of the general

strategies range from |U | = 9 and |W | = 9 (on L13) to

|U | = 93 and |W | = 92 (on B5). The individual bit numbers

can be found in Table IV in the appendix.

D. Discussion

Fig. 2 shows a scatter plot comparing the size of the

circuits produced by our new extractor in mode 1 against

those produced by RATSY or UNBEAST. On most benchmarks

run through RATSY, an improvement of around one order of

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

97

TABLE I
COMPARISON WITH RATSY.

Col. 1 2 3 4 5 6 7 8 9 10 11

RATSY Mode 1 Mode 7

ti
m

e:
co

d
e

g
en

er
at

io
n

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

ti
m

e

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

sh
ri

n
k
in

g
fa

ct
o
r

ti
m

e

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

sh
ri

n
k
in

g
fa

ct
o
r

[sec] [#cells] [-] [sec] [#cells] [-] [-] [sec] [#cells] [-] [-]

A2 1.2 733 18 1.4 269 5 2.7 1.3 260 5 2.8
A3 19 5.6 k 25 19 355 5 16 21 565 5 9.9
A4 67 10 k 33 461 1.8 k 7 5.5 480 3.7 k 8 2.7
A5 135 5.7 k 25 221 663 5 8.5 239 1.2 k 6 4.9
A6 204 8.2 k 26 233 819 6 10 251 1.3 k 6 6.4
A7 840 16 k 36 452 1.0 k 6 16 488 1.6 k 6 10
A8 6.6 k 135 k 46 >100 k − − − >100 k − − −
A9 1.8 k 22 k 41 4.2 k 1.3 k 6 16 6.7 k 2.4 k 6 9.3
A10 3.0 k 19 k 44 8.9 k 1.5 k 6 12 7.0 k 2.4 k 7 7.6
A11 4.0 k 39 k 46 7.4 k 1.8 k 7 21 7.5 k 3.1 k 6 13
A12 10 k 38 k 50 16 k 2.0 k 6 19 37 k 3.1 k 7 12
A13 15 k 65 k 54 45 k 2.4 k 6 28 31 k 3.5 k 7 19
A14 15 k 47 k 42 36 k 2.6 k 7 18 83 k 3.6 k 7 13
A15 19 k 70 k 59 75 k 3.0 k 7 24 99 k 4.0 k 7 18

A’2 1.7 1.0 k 16 1.9 224 5 4.6 2.4 306 5 3.4
A’3 169 17 k 26 77 465 5 38 103 781 6 22
A’4 914 28 k 32 984 677 5 41 5.1 k 5.2 k 8 5.3
A’5 9.7 k 101 k 37 18 k 893 5 113 16 1.9 k 6 54

G2 0.1 249 11 0.1 53 3 4.7 0.1 65 3 3.8
G3 0.2 394 12 0.3 123 4 3.2 0.3 174 4 2.3
G4 0.5 721 18 0.5 119 3 6.1 0.5 262 5 2.8
G5 1.2 1.8 k 18 2.3 444 6 4.2 1.9 674 6 2.7
G6 7.7 6.2 k 22 6.8 1.1 k 6 5.8 2.1 828 6 7.5
G7 3.3 3.5 k 23 11 1.7 k 7 2.0 15 3.4 k 7 1.0
G8 8.1 5.8 k 26 2.6 278 4 21 7.4 5.5 k 8 1.1
G9 5.9 3.4 k 25 430 5.8 k 9 0.6 74 10 k 8 0.3
G10 14 6.5 k 29 8.0 k 22 k 9 0.3 57 13 k 9 0.5
G11 18 9.8 k 33 71 k 47 k 10 0.2 157 28 k 9 0.4
G12 35 14 k 34 >100 k − − − 711 62 k 10 0.2

sum 80 k 531 k 827 292 k 100 k 160 5.3 294 k 101 k 173 5.3
avg. 3.0 k 20 k 31 11 k 3.7 k 5.9 16 11 k 3.7 k 6.4 8.7

magnitude can be observed, with a tendency to greater im-

provements for larger circuits. For UNBEAST the improvement

reaches almost two orders of magnitude on many benchmarks.

Mode 8 (only included in the appendix) produces even smaller

circuits, but at the costs of higher running times. In contrast

to the many methods we have already tried (cf. Section II),

these results are very promising. Table I and II also show a

significant improvement of the circuit depths. For RATSY, the

average is reduced from 31 to 6 after mapping to standard

cells. For UNBEAST there is an average reduction from 41 to

less than 3 in our experiments.

The downside of our new method is that computation times

grow. For the RATSY benchmarks Ai and A’i, the slow-down

factor is mostly below 4. Only for the benchmarks Gi, the

circuit extraction times grow much faster with increasing i
than with the cofactor approach implemented in RATSY. Also

compared to the Kukula/Shiple method of UNBEAST, a con-

siderable slow-down can be observed on the Bi benchmarks.

On the Gi benchmarks, mode 7 appears to scale better than

TABLE II
COMPARISON WITH UNBEAST.

Col. 1 2 3 4 5 6 7 8 9 10 11

UNBEAST Mode 1 Mode 7

ti
m

e:
co

d
e

g
en

er
at

io
n

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

ti
m

e

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

sh
ri

n
k
in

g
fa

ct
o
r

ti
m

e

ci
rc

u
it

si
ze

ci
rc

u
it

d
ep

th

sh
ri

n
k
in

g
fa

ct
o
r

[sec] [#cells] [-] [sec] [#cells] [-] [-] [sec] [#cells] [-] [-]

L3 0.1 845 24 0.1 19 1 44 0.1 19 1 44
L3-6 0.3 6.3 k 86 15 2.6 k 6 2.4 0.9 79 3 80
L5 0.1 908 23 0.1 24 1 38 0.1 27 2 34
L6 0.1 2.5 k 40 0.1 38 3 65 0.1 42 2 59
L7 0.1 551 21 0.1 22 1 25 0.1 25 2 22
L8 0.1 113 11 0.1 10 0 11 0.1 10 0 11
L9 0.1 450 15 0.1 16 1 28 0.1 16 1 28
L10 0.1 1.4 k 35 0.1 22 0 64 0.1 22 0 64
L12 0.1 524 21 0.1 15 0 35 0.1 15 0 35
L13 0.1 28 7 0.1 9 1 3.1 0.1 9 1 3.1
L14 0.1 3.4 k 31 0.1 17 1 203 0.1 17 1 203
L15 0.1 277 15 0.1 16 2 17 0.1 16 2 17
L16 0.1 830 21 0.1 29 3 29 0.1 37 3 22
L17 0.1 1.5 k 37 0.1 21 1 71 0.1 25 2 60
L18 0.3 23 k 73 0.2 79 4 286 0.2 73 4 309
L19 0.1 531 26 0.1 21 1 25 0.1 21 1 25
L20 0.1 4.7 k 52 0.5 120 4 39 0.3 84 4 56
L21 0.4 13 k 70 2.6 114 5 112 3.6 205 5 62
L22 0.1 1.1 k 43 0.1 107 4 11 0.1 43 3 26
L22-5 0.1 950 35 0.1 104 4 9.1 0.1 40 3 24
L22-6 0.1 995 40 0.1 107 4 9.3 0.1 43 3 23
L22-7 0.1 1.2 k 43 0.1 107 4 11 0.1 42 3 28
L22-8 0.1 1.0 k 35 0.1 106 4 9.5 0.1 41 3 24
L22-9 0.1 910 35 0.1 105 4 8.7 0.1 41 3 22
L23 0.1 354 18 0.1 16 1 22 0.1 16 1 22

B2 0.1 3.5 k 51 0.1 35 2 99 0.1 43 2 81
B3 0.7 27 k 79 1.9 437 6 62 0.8 131 5 208
B4 5.5 171 k 151 1.1 k 6.5 k 9 26 3.5 k 23 k 9 7.4
B5 650 816 k 189 99 k 17 k 9 49 >100 k − − −
sum 7.5 268 k 1.1 k 1.1 k 11 k 77 25 3.5 k 24 k 69 11
avg. 0.3 9.6 k 41 39 387 2.8 49 125 872 2.5 57

mode 1, but at the costs of producing larger circuits.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach for extracting

circuits from general strategies that improves the circuit size by

roughly one to two orders of magnitude, compared to previous

techniques. Moreover, it reduces the depths of the resulting

circuits, allowing them to be run at higher clock rates. General

strategies are typical intermediate results of reactive synthesis

workflows, and thus our contribution significantly increases

the quality of the circuits computed in reactive synthesis.

During our quest for effective and efficient circuit extraction

techniques that go beyond the cofactor approach of Bloem

at al. [6], we tried a large number of older techniques from

literature. Our experience shows that exploiting the large

degree of non-determinism that we have in general strategies

is not a simple task and techniques not geared towards such

cases do not perform well. Our approach on the other hand

is built around the idea of computational learning of Boolean

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

98

Fig. 2. Circuit size improvement.

functions. It allows exploiting non-determinism in a natural

way, which is the reason for the effectiveness of our approach.

In the future, we plan to implement more learning al-

gorithms, refine them with heuristics for selecting better

false-positives, false-negatives, and variable orderings, and to

implement the algorithms also with SAT-solvers instead of

BDDs. Furthermore, we want to compare the produced circuits

with manual implementations to see how much potential for

optimizations still exists, and to get new inspirations.

REFERENCES

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–
342, 1987.

[2] M. Lewis B. Becker, R. Ehlers and P. Marin. ALLQBF solving by
computational learning. In Automated Technology for Verification and
Analysis (ATVA’12), volume 7561 of LNCS, pages 370–384. Springer,
2012.

[3] D. Bañeres, J. Cortadella, and M. Kishinevsky. A recursive paradigm to
solve Boolean relations. In Design Automation Conference (DAC’04),
pages 416–421. ACM, 2004.

[4] R. Bloem, A. Cimatti, K. Greimel, G. Hofferek, R. Könighofer,
M. Roveri, V. Schuppan, and R. Seeber. RATSY - A new requirements
analysis tool with synthesis. In Computer Aided Verification (CAV’10),
volume 6174 of LNCS, pages 425–429. Springer, 2010.

[5] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Interactive presentation: Automatic hardware synthesis
from specifications: a case study. In Design, Automation and Test in
Europe (DATE’07), pages 1188–1193, 2007.

[6] R. Bloem, S. J. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Specify, compile, run: Hardware from PSL. Electronic
Notes in Theoretical Computer Science, 190(4):3–16, 2007.

[7] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis
of reactive(1) designs. Journal of Computer and System Sciences,
78(3):911–938, 2012.

[8] N. H. Bshouty. Exact learning Boolean functions via the monotone
theory. Electronic Colloquium on Computational Complexity (ECCC),
2(8), 1995.

[9] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142–170, 1992.

[10] K.-H. Chang, I. L. Markov, and V. Bertacco. Fixing design errors with
counterexamples and resynthesis. In Asia and South Pacific Design
Automation Conference (ASP-DAC’07), pages 944–949. IEEE, 2007.

[11] Y.-F. Chen and B.-Y. Wang. Learning Boolean functions incrementally.
In Computer Aided Verification (CAV’12), volume 7358 of LNCS, pages
55–70. Springer, 2012.

[12] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: A
new symbolic model checker. International Journal on Software Tools
for Technology Transfer (STTT), 2(4):410–425, 2000.

[13] W. Craig. Three uses of the Herbrand-Gentzen Theorem in relating
model theory and proof theory. Journal of Symbolic Logic, 22(3):269–
285, 1957.

[14] R. Ehlers. Short witnesses and accepting lassos in ω-automata. In
Language and Automata Theory and Applications (LATA’10), volume
6031 of LNCS, pages 261–272. Springer, 2010.

[15] R. Ehlers. Unbeast: Symbolic bounded synthesis. In Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’11),
volume 6605 of LNCS, pages 272–275. Springer, 2011.

[16] R. Ehlers. Symbolic bounded synthesis. Formal Methods in System
Design, 40(2):232–262, 2012.

[17] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional
algorithms for LTL synthesis. Formal Methods in System Design,
39(3):261–296, 2011.

[18] Bernd Finkbeiner and Sven Schewe. Bounded synthesis. International
Journal on Software Tools for Technology Transfer (STTT), 2012.
10.1007/s10009-012-0228-z.

[19] J. R. Jiang, H. Lin, and W. Hung. Interpolating functions from large
Boolean relations. In International Conference on Computer-Aided
Design (ICCAD’09), pages 779–784. IEEE, 2009.

[20] B. Jobstmann and R. Bloem. Optimizations for LTL synthesis. In
Formal Methods in Computer-Aided Design (FMCAD’06), pages 117–
124. IEEE, 2006.

[21] B. Jobstmann, S. J. Galler, M. Weiglhofer, and R. Bloem. Anzu: A
tool for property synthesis. In Computer Aided Verification (CAV’07),
volume 4590 of LNCS, pages 258–262, 2007.

[22] R. Koenighofer and R. Bloem. Automated error localization and
correction for imperative programs. In Formal Methods in Computer
Aided Design (FMCAD’11), pages 91–100. IEEE, 2011.

[23] J. H. Kukula and T. R. Shiple. Building circuits from relations. In
Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages
113–123. Springer, 2000.

[24] S. Minato. Fast generation of irredundant sum-of-products forms from
binary decision diagrams. In Synthesis and Simulation Meeting and
International Interchange (SASIMI’92), pages 64–73, 1992.

[25] A. Mishchenko, S. Chatterjee, and R. Brayton. FRAIGs: A unifying
representation for logic synthesis and verification. Technical report,
EECS Dept., UC Berkeley, 2005.

[26] E. Morreale. Recursive operators for prime implicant and irredun-
dant normal form determination. IEEE Transactions on Computers,
100(6):504–509, 1970.

[27] M. Schlaipfer, G. Hofferek, and R. Bloem. Generalized reactivity(1)
synthesis without a monolithic strategy. In Haifa Verification Conference
(HVC’11), 2011. To appear.

[28] R. H. Sloan, B. Szörényi, and G. Turán. Learning Boolean functions with
queries. In Boolean Models and Methods in Mathematics, Computer
Science, and Engineering. Cambridge University Press, 2010.

[29] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for LTL
games. In Formal Methods in Computer-Aided Design (FMCAD’09),
pages 77–84. IEEE, 2009.

[30] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat.
Combinatorial sketching for finite programs. In Architectural Support for
Programming Languages and Operating Systems (ASPLOS’06), pages
404–415. ACM, 2006.

[31] F. Somenzi. CUDD: CU decision diagram package, release 2.4.2, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

99

APPENDIX

TABLE III
EXTENSIVE PERFORMANCE RESULTS USING RATSY. “T” INDICATES A TIME-OUT AFTER 100 000 SECONDS.

RATSY Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

|U | |W | time size time size time size time size time size time size time size time size time size time size

[-] [-] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells]

A2 32 18 1.2 733 4.2 339 1.4 269 4.4 358 1.5 259 3.4 358 1.3 217 7.6 551 1.3 260 2.0 249
A3 41 23 19 5.6 k 48 406 19 355 162 732 23 540 29 420 20 423 94 732 21 565 21 303
A4 48 26 67 10 k 5.1 k 2.5 k 461 1.8 k 65 k 11 k 1.8 k 5.3 k 4.4 k 3.4 k 123 1.2 k T − 480 3.7 k 2.7 k 2.1 k
A5 56 30 135 5.7 k 921 703 221 663 2.5 k 1.2 k 235 824 717 850 233 756 1.4 k 1.6 k 239 1.2 k 265 581
A6 63 33 204 8.2 k 1.1 k 835 233 819 5.7 k 1.9 k 260 1.3 k 714 1.4 k 292 960 3.3 k 2.1 k 251 1.3 k 299 691
A7 71 37 840 16 k 2.4 k 1.1 k 452 1.0 k 8.7 k 2.2 k 498 1.6 k 1.8 k 1.8 k 964 1.2 k 9.8 k 2.6 k 488 1.6 k 664 912
A8 78 40 6.6 k 135 k T − T − T − T − T − T − T − T − T −
A9 86 44 1.8 k 22 k 24 k 1.3 k 4.2 k 1.3 k 26 k 3.4 k 4.4 k 2.1 k 8.6 k 2.7 k 6.5 k 1.6 k 37 k 3.4 k 6.7 k 2.4 k 4.9 k 1.2 k
A10 93 47 3.0 k 19 k T − 8.9 k 1.5 k T − 7.0 k 2.5 k 24 k 3.2 k 9.3 k 1.9 k T − 7.0 k 2.4 k 13 k 1.4 k
A11 100 50 4.0 k 39 k 77 k 1.9 k 7.4 k 1.8 k T − 7.4 k 2.9 k 16 k 3.9 k 12 k 2.2 k T − 7.5 k 3.1 k 11 k 1.6 k
A12 107 53 10 k 38 k T − 16 k 2.0 k T − 20 k 3.1 k T − 48 k 2.4 k T − 37 k 3.1 k 36 k 1.7 k
A13 114 56 15 k 65 k T − 45 k 2.4 k T − 28 k 3.6 k 45 k 5.3 k 87 k 2.7 k T − 31 k 3.5 k T −
A14 121 59 15 k 47 k T − 36 k 2.6 k T − 38 k 3.9 k 58 k 5.9 k T − T − 83 k 3.6 k 92 k 2.3 k
A15 129 63 19 k 70 k T − 75 k 3.0 k T − T − T − T − T − 99 k 4.0 k T −
A’2 35 21 1.7 1.0 k 4.7 298 1.9 224 5.2 400 2.2 265 3.6 365 1.6 188 8.4 540 2.4 306 2.4 183
A’3 43 25 169 17 k 142 307 77 465 114 450 99 561 120 310 103 555 159 555 103 781 83 444
A’4 52 30 914 28 k T − 984 677 T − 4.1 k 4.8 k 61 k 4.8 k 1.7 k 1.2 k T − 5.1 k 5.2 k 1.1 k 656
A’5 60 34 9.7 k 101 k 7.6 k 466 18 k 893 8.6 k 842 12 k 1.1 k 6.7 k 475 15 k 900 11 k 1.4 k 16 k 1.9 k 9.1 k 834

G2 24 12 0.1 249 0.3 79 0.1 53 0.4 81 0.1 61 0.2 80 0.1 57 0.2 87 0.1 65 0.1 56
G3 28 14 0.2 394 0.8 153 0.3 123 0.9 165 0.3 181 0.7 173 0.3 147 0.7 214 0.3 174 0.4 136
G4 32 16 0.5 721 1.7 140 0.5 119 2.0 169 0.5 190 1.7 149 0.5 111 1.7 267 0.5 262 0.5 119
G5 36 18 1.2 1.8 k 11 261 2.3 444 9.2 356 2.5 673 11 332 1.7 387 20 565 1.9 674 3.3 268
G6 39 19 7.7 6.2 k 20 502 6.8 1.1 k 15 371 2.4 601 8.7 463 4.3 1.0 k 14 617 2.1 828 5.8 212
G7 42 20 3.3 3.5 k 41 483 11 1.7 k 121 518 27 3.5 k 179 668 5.3 1.4 k 927 1.2 k 15 3.4 k 47 1.4 k
G8 46 22 8.1 5.8 k 22 417 2.6 278 28 483 18 3.9 k 17 414 2.7 261 178 626 7.4 5.5 k 21 278
G9 50 24 5.9 3.4 k 249 872 430 5.8 k 551 790 180 9.9 k 22 k 1.1 k 91 5.2 k 34 k 1.4 k 74 10 k 644 1.4 k
G10 53 25 14 6.5 k 871 1.9 k 8.0 k 22 k 418 790 95 9.8 k 14 k 1.3 k 1.3 k 19 k 8.4 k 1.3 k 57 13 k 3.6 k 410
G11 56 26 18 9.8 k 7.4 k 3.4 k 71 k 47 k 300 969 263 20 k 1.4 k 1.5 k 3.7 k 35 k T − 157 28 k 25 k 470
G12 59 27 35 14 k 740 2.2 k T − 1.4 k 1.2 k 1.1 k 44 k 37 k 1.7 k 14 k 75 k 95 k 1.6 k 711 62 k T −
avg. 62 31 3.0 k 23 k 5.8 k 930 11 k 3.7 k 5.7 k 1.3 k 4.6 k 4.7 k 12 k 1.7 k 7.7 k 6.0 k 11 k 1.1 k 11 k 5.8 k 8.0 k 794

TABLE IV
EXTENSIVE PERFORMANCE RESULTS USING UNBEAST. “T” INDICATES A TIME-OUT AFTER 100 000 SECONDS.

UNBEAST Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8

|U | |W | time size time size time size time size time size time size time size time size time size time size

[-] [-] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells] [sec] [cells]

L3 21 19 0.1 845 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19 0.1 19
L3-6 59 57 0.3 6.3 k 1.2 115 15 2.6 k 34 3.7 k 0.9 90 1.2 118 2.5 2.7 k 13 3.1 k 0.9 79 18 89
L5 26 24 0.1 908 0.1 24 0.1 24 0.1 27 0.1 27 0.1 24 0.1 24 0.1 27 0.1 27 0.1 24
L6 34 32 0.1 2.5 k 0.1 40 0.1 38 0.1 49 0.1 41 0.1 41 0.1 43 0.1 54 0.1 42 0.1 37
L7 24 22 0.1 551 0.1 22 0.1 22 0.1 25 0.1 25 0.1 22 0.1 22 0.1 25 0.1 25 0.1 22
L8 10 10 0.1 113 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10 0.1 10
L9 16 16 0.1 450 0.1 20 0.1 16 0.1 18 0.1 16 0.1 20 0.1 16 0.1 18 0.1 16 0.1 16
L10 22 22 0.1 1.4 k 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22 0.1 22
L12 15 15 0.1 524 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15 0.1 15
L13 9 9 0.1 28 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9 0.1 9
L14 17 17 0.1 3.4 k 0.1 17 0.1 17 0.1 21 0.1 17 0.1 17 0.1 17 0.1 21 0.1 17 0.1 17
L15 14 14 0.1 277 0.1 15 0.1 16 0.1 21 0.1 16 0.1 15 0.1 16 0.1 21 0.1 16 0.1 16
L16 18 18 0.1 830 0.1 39 0.1 29 0.1 47 0.1 41 0.1 40 0.1 28 0.1 48 0.1 37 0.1 29
L17 20 21 0.1 1.5 k 0.1 33 0.1 21 0.1 35 0.1 25 0.1 36 0.1 21 0.1 37 0.1 25 0.1 21
L18 34 35 0.3 23 k 1.3 249 0.2 79 3.0 465 0.2 85 1.0 224 0.2 70 1.9 451 0.2 73 0.3 83
L19 21 21 0.1 531 0.1 32 0.1 21 0.1 33 0.1 21 0.1 31 0.1 21 0.1 28 0.1 21 0.1 21
L20 28 29 0.1 4.7 k 0.4 76 0.5 120 0.4 126 0.3 102 0.3 77 0.3 99 0.4 92 0.3 84 0.6 86
L21 32 32 0.4 13 k 2.2 123 2.6 114 16 468 12 419 3.3 248 4.1 261 4.3 218 3.6 205 4.6 101
L22 28 26 0.1 1.1 k 0.1 61 0.1 107 0.4 215 0.1 40 0.1 63 0.1 109 0.2 169 0.1 43 0.2 38
L22-5 24 22 0.1 950 0.1 53 0.1 104 0.3 205 0.1 38 0.1 59 0.1 105 0.1 175 0.1 40 0.1 34
L22-6 28 26 0.1 995 0.1 61 0.1 107 0.4 215 0.1 40 0.1 63 0.1 109 0.1 169 0.1 43 0.2 38
L22-7 27 25 0.1 1.2 k 0.1 56 0.1 107 0.4 209 0.1 39 0.1 62 0.1 108 0.2 178 0.1 42 0.1 37
L22-8 26 24 0.1 1.0 k 0.1 55 0.1 106 0.4 207 0.1 38 0.1 61 0.1 107 0.1 177 0.1 41 0.1 36
L22-9 25 23 0.1 910 0.1 54 0.1 105 0.4 206 0.1 39 0.1 60 0.1 105 0.1 176 0.1 41 0.1 35
L23 16 16 0.1 354 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16 0.1 16

B2 33 32 0.1 3.5 k 0.2 45 0.1 35 0.5 113 0.1 44 0.2 54 0.1 33 0.2 66 0.1 43 0.2 36
B3 44 43 0.7 27 k 4.2 453 1.9 437 7.9 280 1.6 165 2.5 467 1.1 447 1.1 169 0.8 131 3.3 160
B4 77 76 5.5 171 k T − 1.1 k 6.5 k T − T − 19 k 7.9 k 264 8.1 k 8.1 k 22 k 3.5 k 23 k T −
B5 93 92 650 816 k T − 99 k 17 k T − T − T − T − T − T − T −
avg. 27 26 23 37 k 0.4 64 3.4 k 947 2.4 250 0.6 54 663 349 9.7 451 291 993 125 872 1.0 40

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

100

Automated Debugging of Missing Input Constraints
in a Formal Verification Environment

Brian Keng
Dept. of Elec. and Comp. Eng.

University of Toronto
Toronto, Canada

Andreas Veneris
Dept. of Comp. Sci & Elec. and Comp. Eng.

University of Toronto
Toronto, Canada

Abstract—In the past decade, formal tools have increased
functional verification efficiency by exhaustively searching for
hard to find bugs. Often the counter-examples returned are not
due to design bugs but due to missing constraints that are needed
to model the surrounding environment. These types of false
positives have become a great concern in the industry today.
To address this issue, input constraints are typically added by
the engineer to restrict the input space a formal tool is allowed
to explore. These constraints are difficult to generate as they
are usually implicit in the documentation or implementation of
adjacent design blocks. As a consequence, this process reduces
the efficiency of formal methodologies because missing input
constraints must be determined before deep design bugs can
actually be detected.

In this work, we present an algorithm to automatically gen-
erate missing input constraints given a failing counter-example.
The process begins by building a filtering function that models
the failing behaviors from the counter-example. Next, using
this function a list of fixed cycle properties are generated and
filtered to return a set of candidate input constraints for use
in debugging. Preliminary experimental results show that the
generated properties provide a strong intuition as to what input
constraints may be missing.

I. INTRODUCTION

Functional verification is one of the most time consuming
steps in the VLSI design flow taking up to 46% of the total
design time [1]. To ease this growing burden, new tools and
technologies have been developed such as assertion-based ver-
ification (ABV). ABV has shown to improve observability and
increase overall verification efficiency. Along with traditional
simulation-based techniques, modern ABV flows make wide
use of formal technologies.

Formal methods allow a user to exhaustively explore the
state space of a design in an attempt to find corner case
counter-examples that elude traditional simulation-based veri-
fication. In formal property checking, a design block is verified
against a precisely defined formal property written in an
assertion language such as SystemVerilog Assertions (SVA)
or Property Specification Language (PSL). As such, when a
formal verifier returns a counter-example, the expectation is
that a design bug has been detected. Although ideal, reports
from the industry indicate that many failures are due to missing
constraints from the surrounding environment and not because
of design errors [2]. In the context of this work, we refer
to such a situation as a false positive. These false positive
are typically caused by missing constraints that are built into

the environment but not explicitly documented. This results in
formal tools reporting a failure when, in fact, the design may
work as intended for the given environment.

To solve this issue, constraints in the form of formal prop-
erties are added by the engineer to restrict the space in which
the formal tool can explore. The purpose of these constraints
is to precisely model the restricted input space allowing the
formal tool to find “real” design bugs. However, this presents
a large debugging challenge to the engineer who is asked to
play a guessing game as to which constraints need to be added.
Adding to this overhead, often these constraints are implicitly
specified in the documentation or implementation of adjacent
design blocks. In many cases, the time-consuming manual
process needed to identify these missing input constraints
dominates the formal verification process leading to reduced
efficiency.

This situation of generating constraints has also appeared
in other contexts. During constrained random simulation, the
work in [3] automatically generates constraint properties to
bias the stimulus generator towards missing coverage holes.
In compositional verification [4], a key step is generating
assumption properties in order to verify the correctness of
components separately. Previous work [5]–[7] aims to auto-
matically generate an assumption on the interface between two
components with the goal of proving the target property. Ad-
ditionally, generating environmental constraints for software
model checking [8], [9] and reactive system synthesis [10],
[11] have also been studied. In these situations, the techniques
effectively generate constraints to accomplish their respective
goals. However, none of them addresses the wide-spread pain
of debugging missing input constraints in a formal hardware
verification flow.

In this work, we present an algorithm that takes the first
steps towards automated debugging of missing input con-
straints in a formal Register Transfer Level (RTL) verification
flow. This algorithm automatically generates fixed cycle input
constraints in the form of SystemVerilog properties from a
failing formal counter-example. The benefit of these generated
constraints is twofold. First, the constraints are generated
efficiently from the counter-example without the need to re-
run the entire formal flow thus providing feedback quickly in
the verification cycle. Further, the constraints are in the form
of simple properties that can aid debugging by either being

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

101

directly used for the actual missing constraint(s), or indirectly
used to give intuition about the failure. The key insight is
that the engineer cannot be taken out of the debugging loop
entirely. Instead, the algorithm aims to efficiently return easy
to understand feedback to speed up the debugging of missing
constraints.

The algorithm begins by using the time-unrolled counter-
example and extracting all minimal correction sets with respect
to the inputs of the design. This information is used to
build a filtering function that encodes the incorrect input
combinations that led to the failure in the counter-example.
Next, a dictionary of fixed cycle properties is used to generate
a list of candidate input constraints based on relevant signals
from the counter-example. Each property on the list is then
used in conjunction with the filtering function to generate a
small SAT instance to determine if the property is a candi-
date for a missing constraint. The result is a set of input
constraints that each can restrict the bad input behavior seen in
the counter-example. Preliminary experimental results confirm
the efficiency in generating the new properties as well as
their ability to provide effective guidance as to what input
constraints may be missing.

The remaining sections of this paper proceed as follows.
Section II and Section III present background material and
the proposed approach, respectively. Section IV presents ex-
perimental results and Section V concludes this work.

II. PRELIMINARIES

A. Minimal Correction Sets and Unsatisfiable Cores
Given an unsatisfiable (UNSAT) Boolean formula φ in

conjunctive normal form (CNF), an UNSAT core is a subset of
clauses that are unsatisfiable. A Minimal Unsatisfiable Subset
(MUS) is an UNSAT core where every proper subset is satis-
fiable (SAT). A Minimal Correction Set (MCS) is a minimal
subset of clauses of φ such that removing the subset will
result in φ being satisfiable. There exists a duality relationship
between MUSs and MCSs as it is possible to compute the set
of one from the other [12]. Using this relationship, one can
calculate all MUSs from all MCSs.

Given an UNSAT CNF formula φ, MCSs can be computed
by introducing a fresh variable to each clause called a re-
laxation variable. If the variable is active, then the clause
is effectively removed from the problem. Using this idea,
cardinality constraints [13] can be used to find all minimal
sets of relaxation variables that make φ SAT. For each solution,
the set of active relaxation variables correspond to an MCS.
This idea has been used extensively in modern Max-SAT
solvers [14], [15] to compute MCSs.

With respect to debugging, a MUS intuitively represents one
way in which a counter-example can excite an error, traverse
its effects through the design components and cause a failure
at the observation points. In this view, clauses correspond
to the counter-example, components of the design and target
property. Alternatively, an MCS represents a minimal set of
clauses related to components that are potentially erroneous.
In other words, removing the components related to the MCS

clauses is a potential way to “correct” the design. UNSAT
cores and MCSs have been widely used in various debugging
applications such as [16].

III. DEBUGGING MISSING INPUT CONSTRAINTS

A. Extracting Failing Behaviors from a Counter-Example
In this subsection, we develop a methodology to quickly

determine whether a candidate input constraint will prevent a
failure from occurring. A naive way to detect this is to simply
re-run the formal tool with the added candidate constraint. This
can be very computationally intensive especially if multiple
input constraint candidates need to be tested. Instead, we will
generate an approximate solution to this process by generating
a function that intuitively represents the disallowed input
behaviors from the unrolled counter-example. More precisely,
this function will represent all MUSs with respect to the
input unit clauses of the unrolled counter-example. Using this
function, potential input constraints can be efficiently checked
to ensure that they do not cause a failure in a similar manner
to the given counter-example.

Consider the CNF formula φ of the time-frame expanded
circuit and the corresponding counter-example:

φ = S ·X · T · P (1)

where S represents the initial state, X the counter-example
input vector, T the unrolled circuit transition relation, and
P the property to be checked. Since φ models the counter-
example of the unrolled circuit, it is guaranteed to be UNSAT.

Instead of computing all MUSs for φ to generate our desired
function, a less expensive computation can be performed by
examining only the inputs clauses from X . The intuition here
is that we are only concerned with missing input constraints,
so it is unnecessary to perform extra computation for finding
all MUSs not relating to inputs.

More precisely, we wish to extract all minimal∗ subsets of
input unit clauses from X (denoted by Uk for the kth such
set) such that S · T · P · Uk is UNSAT. This will allow us
to build a function, F , that represents the disjunction of all
MUSs with respect to the inputs, shown in the next equation:

F = U0 + ...+ Uk (2)

Given a candidate input constraint, A, if F · A is SAT, then
A does not prevent the failure given in the counter-example
since at least one of Uk is SAT. Inversely, if F ·A is UNSAT,
then A will ensure that future failures will not occur in the
same way as the given counter-example. However in the latter
case, A may not constrain the input space enough to prevent
all failures, but it at least prevents failures similar to those
seen in the counter-example.

For the ith literal in Uk, denoted by uk

i
, Equation 2 can be

expanded to give:

F =u0
0u

0
1...u

0
|U0|

+ ...+ uk

0u
k

1 ...u
k

|Uk|

=(u0
0 + u0

1 + ...+ u0
|U0|

)...(uk

0 + uk

1 + ...+ uk

|Uk|
) (3)

∗ Minimal in the sense that removing any clause from U
k will make

S · T · P · Uk become SAT.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

102

Notice that when F evaluates to false, at least one literal in
each Uk term is false. In other words, all Uk MUSs can be
broken by negating at least one literal from each term in F .
Correspondingly, φ can be made SAT if at least one literal
from each term in F is negated for the respective unit clauses
in φ. Further, removing a minimal set of the corresponding
unit clauses from the original problem will give an equivalent
effect. Define this minimal set to be V k ⊆ X for the kth such
set.

The set V k can be thought of as the kth MCS with respect to
the input literals. In fact, the relationship between the minimal
subsets of inputs to make φ UNSAT (Uk), and the minimal
subsets of inputs that need to be removed to make φ SAT (V k),
is analogous to the relationship between MUSs and MCSs.

Using this relationship and the fact that these sets only
contain unit clauses, F can be simplified further. Let the
ith literal in V k ⊆ X be denoted by vk

i
. Equation 3 can

be simplified, by distributing the conjunctions and removing
redundant terms/literals, to:

F =v00v
0
1...v

0
|V 0|

+ ...+ vk0v
k

1 ...v
k

|V k|
(4)

Now each term of Equation 4 contains the conjunction of the
negated literals of each V k. Thus to build the function F , one
only needs to find all V k.

This can be accomplished in a similar manner to computing
all MCSs. Begin by adding a fresh relaxation variable to each
clause in X . Using cardinality constraints, find all minimal
SAT solutions with respect to these relaxation variables similar
to the process used by modern Max-SAT solvers [14], [15].
Each such solution will correspond to a V k. After all such
solutions are found, construct a SAT instance of the form
F · A, where A is the given input constraint to be checked.
This instance checks whether A can restrict the input space
to prevent a failure similar to the one seen in the counter-
example.

Although computing MCSs can be computationally inten-
sive in general, the proposed method only calculates them with
respect to the input unit clauses. This allows the method to be
more efficient as shown in the experimental results.

Example 1 Consider the implementation of the simple state
machine shown in Figure 1 that implements a modulo-2
counter that counts up when a = 1 and resets if b = 1. The
property to be verified is:

P: s == 2’b01 && a |=> s == 2’b10

Informally, if the counter is at 01 and a is high, then
in the next cycle it should be at 10. If sent to a formal
property checker, the property will fail because the property
was written under the assumption that the reset signal b does
not go high. A two cycle counter-example to this property
is X =< (a0, b0), (a1, b1) >, where the superscripts indicate
the clock-cycle. Solving for all V k, we find: V 0 = {a0}, V 1 =
{b0}, V 2 = {a1}, V 3 = {b1}. Which can directly be used to
build F = a0 + b0 + a1 + b1.

a = 1, b = 0

a = 0||b = 1

b = 1

s0s1 = 10 s0s1 = 01

s0s1 = 00

a = 0, b = 0

a = 1, b = 0

b = 1

a = 0, b = 0

a = 1, b = 0

Fig. 1. Example 1: A Simple Modulo-2 Counter

B. Generating Fixed Cycle Properties
Missing constraints can be arbitrarily complex properties

ranging from constant values to complex bus protocols that
depend on the specifications. In general, there is no automated
method to precisely generate these missing constraints that
model the external environment. Even in cases where it
may be possible, it is usually not practical. This is because
algorithmically computed properties will likely be in some
complex form that is unintelligible to user. This limits the
benefit of any such technique to the user.

Instead, we take a different approach where simple fixed
cycle properties are generated to give guidance to the user. In
this way, the feedback can be used in conjunction with the
user’s knowledge to determine the missing input constraint,
which frequently requires higher level design semantics. These
properties may not be able to model all the complexities of
the surrounding environment in all cases. However, the benefit
of the proposed approach lies in the fact that it points the user
to what types of constraints may be needed. Note that a more
comprehensive set of properties can be used to expand upon
the simple models presented in this preliminary study to gain
greater benefit.

The process begins by selecting which input signals are
involved in the counter-example failure. Any signal whose
bit is used in F is considered to be a candidate for use in
a generated property. Here, signals are categorized either as
single-bit or multi-bit based upon the definition in the RTL.

For single bit signals and bits composing multi-bit signals,
denoted by a, the following family of properties are generated:

• Stuck-at properties: !a and a.
• Hold: $past(a) == a, $rose(a) |=> a,
$rose(a) |=> !a, $fell(a) |=> a,
$fell(a) |=> !a

This family comprises of simple stuck-at properties and hold
properties. These types of properties can be useful for detect-
ing many different types of issues such as setting incorrect
modes, or writing incorrect data.

Next, these multi-bit properties provide detection for com-
mon bus constraints such as one-hot, or incorrect addresses.
b1 and b2 represent multi-bit signals, while <val> represents
an assignment to the respective signal seen when simulating

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

103

the counter-example. The following is a family of multi-bit
properties:

• One-hot properties: $onehot(b) and $onehot0(b).
• Equality operators: b1 <op> <val> and b1 <op>
b2. Where <op> is one of {<, <=, ==, >=, >},
and where the size of b1 and b2 match.

These are slightly higher-level properties that may give intu-
ition about certain missing constraints.

Once a list of properties are generated, each one can be
efficiently filtered, as described in Section III-A, by creating a
small SAT instance F ·A. Each instance is significantly smaller
than the original unrolled circuit, allowing an efficient means
of filtering these potential constraints without having to do an
entire formal check.

Example 2 Consider the filtering function F generated from
Example 1 and the four stuck-at fault properties that would be
generated: a, a, b, and b. Of these, only the first one would be
filtered out since it would return SAT when run with F , while
the others all return UNSAT. Of the remaining, it is easy to
see how they translate to high-level behavior of the design: a
prevents the counter from incrementing (a vacuous condition),
b continually resets the machine (also vacuous), and b turns
off reset (desired result).

IV. EXPERIMENTAL RESULTS

This section presents preliminary experimental results for
the proposed approach. All experiments are run on a single
core of a Intel Core i5 3.1 GHz quad-core workstation with
8 GB of RAM. Three designs are selected for our evaluation.
The first two designs are from OpenCores [17] (hpdmc, spi),
while the last one is a DDR2 controller from the OpenSparc
project (ddr) [18]. For the OpenCores designs, SVA assertions
are written based upon the accompanying design documenta-
tion. For the DDR2 controller, assertions from [19] are used
which are based on the DDR2 specifications. These assertions
are formally verified against the design using a commercial
formal property checker [20], and any failures are considered
instances of missing constraints. Each failing assertion is
considered separately and is labeled by adding a number to
the suffix of the circuit name.

Using these instances, our experimental methodology pro-
ceeds as follows. First, for each failing assertion, a counter-
example is generated using a formal property checker. Next,
the proposed approach from Section III uses the counter-
example to generate a filtered list of missing constraints.
Minisat [21] is used to solve all SAT instances, including
generating the filtering function F . Finally, to check if any
of the generated properties can be used as actual missing
constraints, each property is re-run in a separate formal check
with the original failing assertion. The comprehensive results
for each instance are shown in Table I.

The first four columns of Table I show the instance name,
number of gates, number of state elements, and counter-
example length. The next three columns list the overall run-
time in seconds of the proposed approach, which includes

creating the filtering function as well as filtering, along with
the original number of generated properties candidates from
Section III-B, followed by the number remaining after filtering
with function F . From the filtered list, the last three columns
show the total run-time, number of non-vacuous passing
instances and vacuous passing instances when re-running all
generated constraints separately with the formal tool.

Overall, the results show that the filtering function can
significantly reduce the number of candidates constraints from
an average of 166 properties in column 6, down to an average
of 24 in column 7 after filtering. Moreover, this is done
with relatively little run-time making it ideal for fast analysis
for use when debugging missing constraints. Compared to
running each generated constraint in a separate formal check
(column 8), the proposed method shows a 33.4x speedup on
average. The last two columns show that in certain cases (e.g.
hpdmc and spi), the simple properties can generate an exact
constraint to prevent the failing assertion. Although in the case
of ddr, none of the generated properties are able to prevent
the failing assertion.

This is not a big surprise considering the simplicity of the
generated constraints. However, a main point of this work
is to aid debugging of missing constraints, not necessarily
generate the exact constraint for the user. The simplicity of
the generated constraints in this case is beneficial since it
gives a intuitive method for the user as to which constraint is
potentially missing. To further illustrate this point, we describe
in detail the results of several cases from Table I.

Consider the first failing property for hpdmc1 that specifies
that after a read, an acknowledge signal should be asserted
several cycles later based on the tim_cas register.
P: $rose(read) |-> (!tim_cas ##5 $rose(ack))

or (tim_cas ##6 $rose(ack))

The proposed approach generates 29 constraints, which deal
primarily with bus and address line input pins. In particular,
these generated constraints seemed relevant:
A1: wbc_adr_i[3:2] == 2’b00
A2: !wbc_we_i
A3: wbc_dat_i[6]
A4: !wbc_dat_i[6]

The first two constraints force tim_cas not to be over-written
during programming of the control registers, while the last
two† ensure that regardless of what is programmed, tim_cas
should be held stable. These constraints give intuition that the
tim_cas register should be held constant when checking this
property.

For spi1, the assertion is a simple property to detect that
the internal FIFO raises the empty flag correctly:
P: (re && (rp+2’h1)==wp) |=> empty;

The proposed approach generated 10 constraints, where the
following were of particular interest:

† The reason that both wbc_dat_i[6] and its complement are suggested
is that it ensures that the signal is held constant throughout the trace so that
it does not toggle.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

104

TABLE I
AUTOMATED GENERATION OF MISSING CONSTRAINTS EXPERIMENTAL RESULTS

instance info algorithm check
instance # # c-ex time cand filter time passing vacuous
name gates states len (s) (s)
hpdmc1 9794 430 13 25 211 29 716 11 2
hpdmc2 9794 430 12 58 325 45 984 1 5
hpdmc3 9794 430 2 1 14 5 46 3 1
spi1 1724 132 4 1 40 10 80 1 8
spi2 1724 132 21 4 82 40 169 0 10
ddr1 55069 2474 9 248 310 20 3477 0 0
ddr2 55069 2474 6 42 180 20 1869 0 0

A1: adr_i[1:0] != 2’b10
A2: !we_i

These constraints attempt to disable writing to the FIFO. In
this case, the assertion was written under the assumption that
the writes cannot happen if the current operation has not been
acknowledged yet, as given by this property: !ack_o |=>
!we_i. In this case, the missing constraint involves a more
complex protocol that is dependent on an output pin, ack_o.
Despite this, the returned constraints can remind the user that
this protocol should be followed.

In the case of ddr1, the assertion involves a more complex
setup described in [19] to reach the target property of: “No
more than 4 activate commands may be issued to the DDR2
SDRAM within a window of t FAW clock cycles.” All the
returned constraints deal with the other_que_pos signal,
which controls the we signal, which in turn causes an acti-
vate command. The work in [19] suggests that the issue is
either a design error, or a constraint is missing to model an
adjacent block that enforces this behavior. In the latter case,
other_que_pos constraints point to this conclusion.

V. CONCLUSION

In this work, an algorithm is proposed that automatically
generates missing input constraints from a failing counter-
example. It begins by building a filtering function that models
the failing behaviors from the counter-example. Next, a list
of fixed cycle properties are generated and filtered to return
a set of constraints that restrict the failing behavior in the
counter-example. Preliminary experimental results show that
the constraints can be efficiently generated and they provide
effective guidance to improve the formal verification flow.

REFERENCES

[1] H. Foster, “Applied assertion-based verification: An industry perspec-
tive,” Foundations and Trends in Electronic Design Automation, vol. 3,
no. 1, pp. 1–95, 2009.

[2] A. Matsuda. (2011, May.) Overcoming the chal-
lenges of formal verification and debug. [On-
line]. Available: http://www.eetimes.com/design/eda-design/4216119/
Overcoming-the-challenges-of-formal-verification-and-debug

[3] H.-H. Yeh and C.-Y. R. Huang, “Automatic constraint generation for
guided random simulation,” in ASP Design Automation Conf., 2010, pp.
613–618.

[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[5] J. M. Cobleigh, D. Giannakopoulou, and C. S. Psreanu, “Learning
assumptions for compositional verification,” in Tools and Algorithms
for the Construction and Analysis of Systems. Springer-Verlag, 2003,
pp. 331–346.

[6] A. Gupta, K. L. Mcmillan, and Z. Fu, “Automated assumption generation
for compositional verification,” Formal Methods in System Design: An
International Journal, vol. 32, no. 3, pp. 285–301, June 2008.

[7] Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and
B.-Y. Wang, “Automated assume-guarantee reasoning through implicit
learning,” in Computer Aided Verification, 2010, pp. 511–526.

[8] F. Ivancic, G. Balakrishnan, A. Gupta, S. Sankaranarayanan, N. Maeda,
H. Tokuoka, T. Imoto, and Y. Miyazaki, “DC2: A framework for
scalable, scope-bounded software verification,” in Automated Software
Engineering, 2011, pp. 133 –142.

[9] S. Joshi, S. K. Lahiri, and A. Lal, “Underspecified harnesses and
interleaved bugs,” in Principles of Programming Languages, 2012, pp.
19–30.

[10] W. Li, L. Dworkin, and S. A. Seshia, “Mining assumptions for syn-
thesis,” in Int’l Conf. on Formal Methods and Models for Codesign,
2011.

[11] K. Chatterjee, T. A. Henzinger, and B. Jobstmann, “Environment As-
sumptions for Synthesis,” in Int’l Conf. on Concurrency Theory, 2008.

[12] M. H. Liffiton and K. A. Sakallah, “On Finding All Minimally Un-
satisfiable Subformulas,” in Int’l Conf. on Theory and Applications of
Satisfiability Testing, 2005, pp. 173–186.

[13] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
SAT,” in JSAT, vol. 2, 2006, pp. 1–26.

[14] J. Marques-Silva and J. Planes, “Algorithms for maximum satisfiability
using unsatisfiable cores,” in Design, Automation and Test in Europe,
2008, pp. 408–413.

[15] M. H. Liffiton and K. A. Sakallah, “Generalizing Core-Guided Max-
SAT,” in Int’l Conf. on Theory and Applications of Satisfiability Testing,
2009, pp. 481–494.

[16] S.Safarpour, M.Liffton, H.Mangassarian, A.Veneris, and K.A.Sakallah,
“Improved Design Debugging Using Maximum Satisfiability,” in Formal
Methods in CAD, 2007.

[17] OpenCores.org, 2007. [Online]. Available: http://www.opencores.org
[18] OpenSparc, 2012. [Online]. Available: http://www.opensparc.net
[19] A. Datta and V. Singhal, “Formal Verification of a Public-Domain DDR2

Controller Design,” in VLSI Design, 2008, pp. 475–480.
[20] Cadence Design Systems, “Incisive Formal Verifier,” 2012. [Online].

Available: http://www.cadence.com/products/ld/formal verifier/pages/
default.aspx

[21] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Int’l Conf. on
Theory and Applications of Satisfiability Testing, 2003, pp. 502–518.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

105

Algorithms for Software Model Checking:
Predicate Abstraction vs. IMPACT

Dirk Beyer
University of Passau, Germany

Philipp Wendler
University of Passau, Germany

Abstract—CEGAR, SMT solving, and Craig interpolation are
successful approaches for software model checking. We compare
two of the most important algorithms that are based on these
techniques: lazy predicate abstraction (as in BLAST) and lazy
abstraction with interpolants (as in IMPACT). We unify the algo-
rithms formally (by expressing both in the CPA framework) as
well as in practice (by implementing them in the same tool). This
allows us to flexibly experiment with new configurations and gain
new insights, both about their most important differences and
commonalities, as well as about their performance characteristics.
We show that the essential contribution of the IMPACT algorithm
is the reduction of the number of refinements, and compare this
to another approach for reducing refinement effort: adjustable-
block encoding (ABE).

Index Terms—Formal Verification, Software Model Checking,
Predicate Abstraction, Lazy Abstraction, Refinement Techniques,
Interpolation, Large-Block Encoding

I. INTRODUCTION

Software model checking has been successful for improving

the quality of computer programs [4]. Several fundamental

concepts were invented in the last decade which made it

possible to scale the technology from tiny examples to real

programs. Predicate abstraction [16] with counterexample-

guided abstraction refinement (CEGAR) [14] and lazy ab-

straction [19] is one such technique. It was made popular

by the tools SLAM [6] and BLAST [9], and is implemented

in a number of other tools. Lazy abstraction with inter-

polants [20] is another approach, which is implemented in

the tools IMPACT, WOLVERINE [24], and UFO [3]. More than

half of the participants in the first competition on software

verification [7], and almost all of those that are not based on

bounded model checking, use one of these two concepts. Thus,

we are interested in comparing the two concepts with each

other, identifying their essential differences, and potentially

learning new insights from them.

The contribution of our work is to systematically compare

the two approaches. First, we re-implemented the IMPACT

algorithm within the CPACHECKER framework. This is nec-

essary in order to compare predicate abstraction with the

IMPACT algorithm in the same framework: with the same parser

frontend, SMT solver, and run-time environment. This verifies

that our re-implementation shows all known characteristics in

the comparison. Second, we present a unifying framework for

predicate-based software model checking with an algorithm

that can be configured (parametrized) such that it works

like BLAST’s predicate abstraction or IMPACT’s approach. We

show that the framework causes almost no overhead and the

algorithms —when expressed in our framework— perform

similarly to their original versions.

Now, we can conceptually and experimentally identify the

differences of the algorithms. A performance comparison of

our implementations of both algorithms (in the unified frame-

work) shows that the key advantage of the IMPACT algorithm

is the forced covering optimization that was presented by

McMillan together with the algorithm [20]. This optimization

effectively reduces the number of refinements and leads to a

significant performance boost. However, without this optimiza-

tion IMPACT does not perform better than predicate abstraction.

Another technique that has been shown to effectively re-

duce the number of refinements is adjustable-block encoding

(ABE) [12] (a generalization of large-block encoding [8]),

which was originally presented for predicate abstraction. We

do not only compare the IMPACT algorithm to predicate ab-

straction with ABE, but also experiment with the combination

of the IMPACT algorithm and ABE.

Availability of Data and Tools. We implemented all presented

approaches (where not already existing) in the open-source

verification framework CPACHECKER [11]. All experiments are

based on publicly available benchmark programs from the last

competition on software verification [7]. Our extensions of

CPACHECKER are available under the Apache 2.0 license in

the project repository via http://cpachecker.sosy-lab.

org. Tables with our detailed results, as well as all benchmark

programs, the configurations files, scripts, and a ready-to-run

version of CPACHECKER are available on the supplementary

webpage http://www.sosy-lab.org/˜dbeyer/cpa-uni.

Related Work. A different approach to combine predicate ab-

straction and the IMPACT algorithm was presented by Albargh-

outhi et al. [1]. Their algorithm is similar to the IMPACT algo-

rithm, but optionally computes an abstraction using predicates

from previous refinements when creating new abstract states,

instead of always setting these states to true. Furthermore,

this approach represents the program counter symbolically (not

explicitly), and does a single refinement for all error paths after

the control-flow graph (CFA) has been completely unrolled

into an abstract reachability graph (ARG) (instead of doing

a separate refinement whenever a path to the error location

was found). McMillan presented an application of the IMPACT

principle to testing [21] and similarly proposed computing

predicate abstractions in order to speed up the convergence

of the algorithm.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

106

Ermis et al. presented a technique for software verification

which is also based on interpolation [15]. Instead of unrolling

the CFA into an ARG by iteratively creating new abstract

states at a frontier, they start with a path to the error location

in the CFA and split all nodes along this path into two nodes,

labeling one with the interpolant computed for this node, and

the other with its negation [13]. Afterwards, all transitions

between the newly created nodes and their neighbors are

checked for feasibility and removed if appropriate. This is con-

tinued until no infeasible path to the error location is left. The

authors compared their algorithm with the IMPACT algorithm,

and applied large-block encoding to it. Complementing this

work, we compare IMPACT with predicate abstraction. Ermis

et al. support programs in the programming language Boogie

and the tool cannot be directly applied to C benchmarks.

Extensions of the IMPACT approach have also been presented

by Heizmann et al. [17] and Albarghouthi et al. [2]. These

works add support for recursive programs.

II. BACKGROUND

We briefly provide some basic notions and concepts from

the literature [9], and describe the two algorithms.

Programs. We restrict the presentation to a simple impera-

tive programming language, where all operations are either

assignments or assume operations, and all variables range

over integers.1 A program is represented by a control-flow
automaton (CFA), which consists of a set L of program

locations (models the program counter l), an initial program

location l0, and a set G ⊆ L×Ops×L of control-flow edges

(models the operation that is executed when control flows from

one program location to another). The set of program variables

that occur in operations from Ops is denoted by X . A concrete
state of a program is a variable assignment c : X ∪ {l} → Z

that assigns to each variable an integer value. The set of all

concrete states of a program is denoted by C. A set r ⊆ C of

concrete states is called a region. Each edge g ∈ G defines a

(labeled) transition relation
g→ ⊆ C ×{g}×C. The complete

transition relation → is the union over all control-flow edges:

→ =
⋃

g∈G

g→. We write c
g→c′ if (c, g, c′) ∈ →, and c→c′ if

there exists a g with c
g→c′. A concrete state cn is reachable

from a region r, denoted by cn ∈ Reach(r), if there exists a

sequence of concrete states 〈c0, c1, . . . , cn〉 such that c0 ∈ r
and for all 1 ≤ i ≤ n, we have ci−1

g→ci.

Lazy Predicate Abstraction. Predicate abstraction in com-

bination with CEGAR and lazy abstraction is a forward

reachability analysis that unrolls the CFA into an abstract

reachability graph (ARG) until a fixed point is reached.

Abstract states are represented using predicates over program

variables from a given set (the precision), which is initially

empty. An abstract state is created by computing a boolean

combination of these predicates that over-approximates the

reachable concrete states. This abstraction computation is done

using an SMT solver. When an abstract state that belongs to

1Our implementation is based on CPACHECKER [11], which supports C pro-
grams in the CIL [22] subset of C and interprocedural program analysis.

the error location is discovered, the concrete program path that

leads to this state is reconstructed from the ARG and checked

for feasibility. If the concrete path is infeasible, the current

counterexample is said to be spurious, and the precision of the

analysis needs to be refined in order to rule out this counterex-

ample. This is done by computing a Craig interpolant [18] for

each location on the path. The predicates contained in these

interpolants are then added to the precision, and the analysis

is restarted. This guarantees that all necessary predicates for

proving program safety will be automatically discovered. For

improved performance, the previously computed ARG is not

completely deleted after refinement, but only those parts that

need to be, are re-computed. Furthermore, the new predicates

will not be used globally for all abstraction computations, but

only in the part of the ARG and only at those locations of

the CFA, for which they are relevant. The analysis terminates

if either a non-spurious counterexample is found, or a fixed

point is reached during unrolling the ARG (in which case the

program is safe). In order to speed up the coverage checks

between abstract states (which are necessary for determining

whether the fixed point was reached), binary decision diagrams

(BDDs) are used for representing the abstract states. This

approach corresponds, e.g., to what is implemented in BLAST.

Lazy Predicate Abstraction with Adjustable Block-Encoding.
Adjustable block-encoding (ABE) [12] aims at improving

the performance of predicate abstraction by reducing the

number of abstraction computations and refinements. It does

not compute an abstraction for each new abstract state, but

instead it groups abstract states into blocks and computes

abstractions only once per block (at the end). Abstract states

are now tuples of an abstract-state formula and a concrete

path formula. The path formula of any abstract state always

represents a set of concrete paths from the block entry to the

location of this state. When a new state is created, the strongest

post-condition of the previous state and the current edge is

created and used as the concrete path formula. The abstract-

state formula is copied from the previous state. If there exists

already an abstract state with the same location inside the

same block, both states are merged into one state by taking

the disjunction of their path formulas. Only at the block end,

an abstraction of the conjunction of the abstract-state formula

and the concrete path formula of the current state is computed

and used as the new abstract-state formula. The path formula

is reset to true at the block end. ABE does not only reduce

the number of abstraction computations, but also the number

of coverage checks (which are only done at block ends), and

the size of the ARG (due to merging of abstract states). The

latter is the reason for a vastly reduced number of refinements.

During refinement, interpolants are computed only for those

abstract states at the block ends, because only for those states,

predicates are needed for computing abstractions.

The block size can be freely chosen in ABE and does

not need to be statically fixed (as in LBE [8]). If the block

size is restricted to one single CFA edge (we name this

single-block encoding, or SBE), an abstraction is computed

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

107

for every new abstract state and the analysis behaves exactly

like predicate abstraction in BLAST. Experiments have shown

that for a good performance, the program structure should

be taken into account when defining the block encodings. A

good configuration is for example to define block ends at loop

head locations of the program (ABE-Loops), such that the

blocks will be the largest loop-free subgraphs of the CFA.

Another suitable configuration with somewhat smaller blocks

is to define block ends not only at loop heads but also at

function entry and exit points (ABE-LF). This configuration

is similar to large-block encoding [8]. ABE is implemented,

for example, in CPACHECKER.

IMPACT (Lazy Abstraction with Interpolants). The IMPACT

algorithm [20] similarly creates an unwinding of the CFA.

However, it never performs abstraction computations, and

instead initializes all new abstract-state formulas to true. This

is similar to how predicate-abstraction algorithms work while

the precision is still empty.

The algorithm consists of three basic steps, which are

applied until no further change can be made. In theory, the

steps can be executed in any order, but the right strategy is

crucial for good performance. The steps are:

Expand(e). If the state e has no successors (i.e., it is a sink in

the ARG) and is not covered, create the successor states using

true as their initial state formula, and add them to the ARG.

Refine(e). If e is an abstract state at the error location

with a state formula different from false , compute inductive

interpolants for the path from the ARG root to this state. For

each state along this path, the state formula is strengthened by

conjunctively adding the corresponding interpolant, and the

state is marked as not covered. If the error path is infeasible,

the state formula of the state at the error location is guaranteed

to be false (which marks unreachable states) after this step.

Cover(e1, e2). In this step, a state e1 is marked as covered by

another state e2 if the following properties hold:

• e2 is (and all of its ancestors are) not covered,

• both states belong to the same program location,

• the state formula of e1 implies the one of e2, and

• e1 is not an ancestor of e2.

If e1 gets marked as covered, then (1) all states that are covered

by e1 or e1’s children are uncovered, and (2) all children of e1
are implicitly considered as covered. Note that covered states

never cover any other states themselves, i.e., no chains of

coverage exist. In order to prevent an infinite loop of coverings

and uncoverings, the step Cover may be applied only to pairs

(e1, e2) where e1 was created after e2 (only older states can

cover newer states, not vice versa).

The application order of the steps as proposed by McMillan

is to expand nodes in a depth-first search. During the search, he

keeps the invariant that the currently being expanded state and

all its ancestors are not coverable by any other state (otherwise

the current state would not need to be expanded). As soon as a

state is found that belongs to the error location, the refinement

procedure is run for this state. After a successful refinement,

the invariant that no state on the path from the ARG root

to the current state is coverable, is re-established by trying to

cover all these states. (This can be optimized by checking only

those states that have been strengthened during refinement.)

This algorithm corresponds to the core algorithm of IMPACT,

as presented by McMillan [20]. It is not available in IMPACT

without the following optimization.

IMPACT with Forced Covering. When a new state is created in

the IMPACT algorithm, its state formula is always true and thus

it can only be covered by another state at the same location

with the same state formula. However, after some refinements,

most states are expected to have stronger formulas, and thus

coverage is unlikely, causing a large number of expansions and

abstract states. As an optimization, one can try to strengthen

the state formula of a new state such that this state can be

covered by an existing state at the same location. This is

called forced covering. In order to forcefully cover a state

e1 by another state e2, the path from the nearest common

ancestor of both states to e1 is considered. If it can be proven

that the state formula of e2 holds at the location of e1 after

following this path from the nearest common ancestor, the

state formula of e2 can be set as the state formula of e1.

Thus, e1 is immediately covered by e2. Additionally, the states

along the path from the nearest common ancestor to e1 are

strengthened by computing Craig interpolants for this path.

This corresponds to the algorithm used for the benchmarks in

the IMPACT article and to the tool implementation [20].

III. UNIFYING ALGORITHM

We formalize our unifying algorithm using the framework

of configurable program analysis (CPA) [10]. A CPA specifies

—independently of the analysis algorithm— the abstract do-

main and a set of operations that control the program analysis.

Such a CPA can be plugged in as a component into the

software-verification framework without the need to work on

program parsers, exploration algorithms, and their general data

structures. A CPA C = (D,�,merge, stop) consists of an

abstract domain D, a transfer relation � (which computes

abstract successor states), a merge operator merge (which

specifies if and how to merge abstract states when control flow

meets), and a stop operator stop (which determines whether an

abstract state is covered by another abstract state). The abstract

domain D = (C, E , [[·]]) consists of a set C of concrete states,

a semi-lattice E over abstract-domain elements (i.e., abstract

states), and a concretization function that maps each abstract-

domain element to the represented set of concrete states.

Using this framework, program analyses can be composed

of several component CPAs. For example, we have defined and

implemented separate CPAs for tracking the program counter,

the call stack, and the successor-predecessor relationship of

the ARG. Thus, we do not need to specify these aspects when

defining a new core analysis.

Analysis Algorithm. We use the CPA algorithm for reach-

ability analysis, which gets as input a CPA and two sets of

abstract states: one is the set R0 (reached) of reachable abstract

states, and one is the set W0 (waitlist) of abstract states that

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

108

the algorithm is told to process next. The algorithm loops

until the set waitlist is empty (all abstract states completely

processed) and returns the two sets reached and waitlist. In

each iteration, the algorithm takes one state e from the waitlist,

computes all abstract successors and processes each of them.

The algorithm checks if there is an existing abstract state in

the set of reached states with which the new state is to be

merged (e.g., at join points where control flow meets after

completed branching). If this is the case, then the new, merged

abstract state is substituted for the existing abstract state in

both sets reached and waitlist. The stop operator ensures that

a new abstract state is inserted into the work sets only if this

is needed, i.e., the state is not already covered by a state in

the set reached.

In order to be able to use CEGAR, we modify this existing

CPA algorithm such that it terminates whenever a target state

(a state at the error location) is encountered. First, we run

the algorithm with singleton sets containing the initial state as

input. If the algorithm terminates with a non-empty waitlist

(target state found), we start the refinement procedure, which

may modify both sets. Then, if the refinement was successful

(i.e., the counterexample was infeasible), we run the CPA

algorithm again with the modified sets as input. The analysis

terminates if either the CPA algorithm finishes due to an empty

waitlist (‘safe’), or the refinement procedure determines that

a feasible error path was found (‘bug’).

Another modification of the algorithm is necessary to sup-

port forced covering. We define a new operator fcover, which

is called before an abstract state is going to be expanded. It

takes as input the current state and the set of reached states,

and returns a new set of reached states. This operator may

change the set reached only by strengthening some states if

this leads to the current state being covered afterwards. If the

current state is still in the set reached afterwards (i.e., was not

replaced by a strengthened version), then this state is explored,

otherwise we continue with the next state from the waitlist.

The modified algorithm is shown as Algorithm 1. Our

changes can be seen in lines 4–5 and 17–18. The shortness

and simplicity of these modifications show that using the CPA

framework as basis for new approaches is a good idea.

Configurable Predicate Analysis. We use a previous def-

inition of a CPA for predicate abstraction with ABE [12]

and configure it. The CPA for predicate analysis D =

(D,�,merge, stop) consists of an abstract domain D, a

transfer relation �, a merge operator merge, and a stop

operator stop, which are defined as follows. (Given a pro-

gram P = (L, l0, G), we use X for denoting the set of

program variables occurring in P , P for the set of quantifier-

free predicates over variables from X , and Π : L → 2
P for

the precision of the predicate abstraction.) Note that this CPA

is expected to be used in conjunction with separate CPAs for

abstract domains like program counter and call-stack tracking.

1. The abstract domain D = (C, E , [[·]]) is a tuple that consists

of a set C of concrete states, a semi-lattice E = (E,�,!,�),
and a concretization function [[·]] : E → C. The lattice

Algorithm 1 CPAfcover(D, R0,W0)

Input: a CPA D = (D,�,merge, stop),
a forced covering strategy fcover,
a set R0 ⊆ E of abstract states,
a subset W0 ⊆ R0 of frontier abstract states,
where E denotes the set of elements of the semi-lattice of D

Output: a set of reachable states and a subset of frontier states
Variables: two sets reached and waitlist of elements of E

1: reached := R0; waitlist := W0;
2: while waitlist �= ∅ do
3: choose e from waitlist; remove e from waitlist;
4: reached = fcover(e, reached);
5: if e ∈ reached then
6: for each e′ with e�e′ do
7: for each e′′ ∈ reached do
8: // Combine with existing abstract state.
9: enew := merge(e′, e′′);

10: if enew �= e′′ then
11: waitlist :=

(
waitlist ∪ {enew}

) \ {e′′};

12: reached :=
(
reached ∪ {enew}

) \ {e′′};
13: // Add new abstract state?
14: if ¬ stop(e′, reached) then
15: waitlist := waitlist ∪ {e′};
16: reached := reached ∪ {e′};
17: if isTargetState(e′) then
18: return (reached,waitlist);
19: return (reached, ∅);

elements e ∈ E (or abstract states) are tuples (ψ, lψ , ϕ) ∈
(P × (L∪{l�})×P), where the state formula ψ is a boolean

combination of predicates that occur in Π(lψ), lψ is the

location at which ψ was computed, and ϕ is a disjunctive path
formula representing some or all concrete paths from lψ to the

location of state e. The top element of the lattice is the abstract

state � = (true, l�, true). The partial order ! ⊆ E × E is

defined such that for any two elements e1 = (ψ1, l
ψ
1, ϕ1) and

e2 = (ψ2, l
ψ
2, ϕ2) from E the following holds:

e1 ! e2 ⇔ (e2 = �) ∨
(
(lψ1 = lψ2) ∧ (ψ1 ∧ ϕ1 ⇒ ψ2 ∧ ϕ2)

)
The join operator � : E×E → E yields the least upper bound

of the two operands, according to the partial order.

2. The transfer relation � ⊆ E × G × E contains all

tuples (e, g, e′) with e = (ψ, lψ , ϕ), e′ = (ψ′, lψ ′
, ϕ′

) and

g = (l, op, l′) for which the following holds:⎧⎪⎪⎨
⎪⎪⎩
(ϕ′

= true) ∧
(
ψ′

= (SPop(ϕ) ∧ ψ)Π(l′)
)
∧ (lψ

′
= l′)

if blk(e, g)

(ϕ′
= SPop(ϕ)) ∧ (ψ′

= ψ) ∧ (lψ
′
= lψ) otherwise

The ‘mode’ of the transfer relation, i.e., whether to compute

an abstraction, is determined by a block-adjustment operator

blk : E×G→ B, which is given as parameter to the analysis.

Inside each block (the second case) the successor states are

created by purely syntactically assembling the strongest post-

condition SP of the program code attached to the current edge.

At the end of the current block (the first case), an abstraction
state is created. For such a state, the path formula is reset to

true, and the state formula is set to the result of an abstraction

computation (·)Π(·) using the path formula and previous state

formula as input. Thus, the choice of blk determines the block-

encoding (i.e., how much to collect in the path formula before

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

109

abstraction). The precision of the predicate abstraction can

vary between program locations (parsimonious precision [9]).

3. The merge operator merge : E × E → E for two abstract

states e1 = (ψ1, l
ψ
1, ϕ1) and e2 = (ψ2, l

ψ
2, ϕ2) is defined as

follows: merge(e1, e2) ={
(ψ2, l

ψ
2, ϕ1 ∨ ϕ2) if (ψ1 = ψ2) ∧ (lψ1 = lψ2)

e2 otherwise

This operator combines the two abstract states using a dis-

junctive path formula, if the abstraction formulas are equal

and were computed at the same program location (i.e., if they

belong to the same block).

4. The stop operator stop : E×2
E → B checks if e is covered

by a state in the set reached: stop(e,R) = ∃e′ ∈ R : (e ! e′)
Our refinement procedure first reconstructs all program

paths to the error state by traversing the ARG, and creates

a concrete path formula for them. This formula is checked for

satisfiability using an SMT solver. If it is satisfiable, a feasible

error path was found. Otherwise we split the formula, such that

one formula is for one block. This way the cut points exactly

match the abstraction states in the ARG. We query the solver

to produce an inductive Craig interpolant for each cut point.

Configuration / Instantiation. This framework can now be

configured to behave similar to the lazy predicate abstraction

of BLAST as well as the lazy abstraction with interpolants

algorithm of IMPACT by defining the following three items:

(1) how the state formula ψ of each abstract state (ψ, lψ , ϕ)
is represented and how the abstraction computation (·)Π(·)

is defined, (2) how the partial order ! of the lattice is

implemented, and (3) how the interpolants are used to modify

the ARG during refinement.

The configuration for BLAST-like lazy predicate abstraction

works as follows: (1) Each state formula is represented by

a binary decision diagram (BDD). It is computed by taking

either the cartesian or the boolean abstraction [5] of the

conjunction of the previous abstract-state formula and con-

crete path formula. Which abstraction mechanism is chosen

needs to depend on the block size, to achieve a reasonable

performance [8]. (2) Coverage checks are done by checking

the entailment of the BDDs that represent the state formulas of

the two abstraction states for which coverage is checked. (The

path formulas of such states are always equal to true and thus

need not be considered.) (3) During refinement, the obtained

interpolants are split into their basic atoms, and a predicate

is created for each of these atoms. All those predicates are

added to the precision for the program location for which the

interpolant was computed. The first abstraction state in the

paths to the error state, for which a new predicate was found,

is identified. This state and all states in the ARG that are

reachable from it are removed from the ARG (and from the

sets reached and waitlist). Its predecessor state is re-added to

the waitlist with the new precision. States that were covered

by one of the removed states are also re-added to the waitlist.

To configure the framework as IMPACT algorithm, we use

the following setup: (1) State formulas are represented by

symbolic formulas. All abstraction states have true as their

initial state formula, and ϕΠ(l)
= true for all formulas ϕ and

locations l. (2) Coverage checks are done by querying an SMT

solver whether the implication of the state formulas of the two

states holds. (3) After the interpolants are computed during

refinement, we conjunct them to the state formulas of the

abstract states to which they belong. If a state is strengthened

(i.e., the interpolants actually added a conjunct to the state

formula), we need to re-check all coverage relations of this

state. If a previously covered state is now uncovered, we re-add

all sink states in the subgraph of the ARG that starts with this

state, to the waitlist. We also check each of the strengthened

states whether it is now covered by any other state at the same

location. If this is successful, we mark the subgraph that starts

with that state as covered and remove all leafs therein from the

waitlist (we do not need to expand covered states). The only

change to the set reached is the removal of all states whose

state formula is false and their successors. It is guaranteed that

this is the case for the error state (if the error path is infeasible).

This refinement procedure is similar to the function REFINE

in the original presentation of the IMPACT algorithm [20].
One last configuration option of our framework is the

choice of the fcover operator. For the IMPACT algorithm, we

may decide to use interpolation-based forced covering. For

predicate abstraction, we use an implementation that always

returns the set of reached states that was given as parameter

(i.e., no change).
This unification makes the essential differences between

these two algorithms explicit and removes those differences

that have no impact on the performance. We show in our

experimental evaluation in Sect. IV that our version of the

IMPACT algorithm has similar performance to the original one.

Discussion. Now that we have identified the important differ-

ences, we can evaluate them and discuss their meaning. One

main difference is that lazy predicate abstraction computes

costly abstractions in order to have cheap coverage checks

later on. This is an eager technique: computing effort is spent

ahead, not knowing whether this will actually pay off. For

example, along a long path within a single loop we might

compute abstractions for every state, but check coverage only

for the states at the loop head. On the other hand, the IMPACT

algorithm delays all computation effort until it is actually

needed, which means that whenever some information is

needed about a state, a costly SMT-solver query is needed.
A further difference is how the coverage relationship is

determined. In order to find as much coverage situations as

possible and guarantee termination, the IMPACT algorithm may

check coverage for a single node several times, specifically

whenever it starts expanding nodes in the subtree below this

state. Predicate abstraction checks coverage only once directly

after the state has been created. However, states are deleted

during refinement and might get rediscovered, where they are

again checked for coverage.
For predicate abstraction, two choices exist for how to

compute an abstraction when creating a state, cartesian ab-

straction and boolean abstraction. It was shown that if using

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

110

single-block encoding, boolean abstraction is too slow to be

useful and only cartesian abstraction is feasible. However, the

latter is imprecise if there are disjunctions in the formulas

that represent program operations, because it can infer truth

values only for predicates independently from each other.

Disjunctions occur, e.g., if pointer-alias information is encoded

in the formulas, and thus predicate abstraction with cartesian

abstraction may fail to prove properties that rely on this.

Boolean abstraction can handle all boolean combinations of

predicates and is thus more precise, but is only usable with

large blocks. The IMPACT algorithm does not have this prob-

lem: it uses the interpolant directly and never loses precision.

Implementation. In order to effectively compare the perfor-

mance of two algorithms, it is important to implement them

in the same tool. Separate tools typically differ in many ways,

which have an impact on the performance, for example the

programming language, the parser frontend, the used SMT

solver, support for additional features like function pointers or

pointer aliasing, and optimizations like constant propagation,

which are independent from the core algorithm. As a basis

for our implementation we took the open-source software

verification platform CPACHECKER [11]. It supports verifying

C programs, is based on the CPA framework and already has

an implementation of lazy predicate abstraction with CEGAR

and adjustable-block encoding. We took the existing CPA for

predicate abstraction, made the state-formula representation

configurable (providing a BDD-based and a symbolic repre-

sentation with their respective forms of coverage checks), and

added an IMPACT-like refinement strategy. We also extended

the CPA algorithm to support forced coverings. Thus the

implementations of both algorithms differs only in the points

listed above; everything else is the same code. The common

code includes for example parsing, the traversal algorithm, the

encoding of C code into SMT formulas, and the SMT solver.

For comparison, we also implemented the unchanged IM-

PACT algorithm as described by McMillan [20]. All code that

is not related to the algorithm itself and the representation of

abstract states is still shared with the other algorithms, so the

same parser, formula encoding, and SMT solver are used.

Basic optimizations like caching queries to the SMT solver

were implemented in the common code and are thus used by

all algorithms. For both versions of the IMPACT algorithm (the

original and ours), an optional implementation of the forced-

covering optimization was added.

IV. EXPERIMENTAL EVALUATIONS

Benchmark Programs. For our experimental evaluation, we

took all 277 C programs from the last competition on software

verification [7], out of which 119 programs contain a known

specification violation.

Experimental Setup. All experiments were performed on

machines with a 3.4 GHz Quad Core CPU and 16 GB of

RAM. The operating system was Ubuntu 10.04 (64 bit), using

Linux 2.6.35 and OpenJDK 1.6. A time limit of 15 minutes and

a memory limit of 15 GB were used. We took CPACHECKER

��

���

����

�����

�� ��� ���� ���� ����

��
	

�
��
��

��������
����
����

�	���������������
�	�����������������������

�	���������	
��� �
�	�����������������	
��� �

Fig. 1. Original IMPACT algorithm and our framework version; both
implemented in CPACHECKER; quantile functions for verification results

from revision 6013 of the ‘forced-covering’ branch in the

repository, and configured it with a Java heap size of 12 GB

and MathSAT 4.2.17 as SMT solver. For comparison, we also

executed benchmarks with BLAST 2.7 [23] (a tool for lazy

predicate abstraction) and WOLVERINE 0.5c [24] (a tool im-

plementing the IMPACT algorithm). For both tools we used the

version and the configuration parameters which were submit-

ted to the last software-verification competition. Unfortunately,

the original IMPACT tool was not available for benchmarking.

We also did benchmarks with UFO 0.1 2 [3]. For this tool, the

programs needed to be pre-processed with a special variant

of CIL, compiled with LLVM, and optimized (we ignored the

run time necessary for this). This pre-processing failed for

11 benchmarks.

Tables with the detailed results, as well as all benchmark

programs, the used configurations, scripts, and a ready-to-run

version of CPACHECKER are available on the supplementary

webpage http://www.sosy-lab.org/˜dbeyer/cpa-uni.

Variants of the IMPACT Algorithm. As a first set of bench-

marks, we compare our implementation of the original IMPACT

algorithm with the IMPACT algorithm expressed in our unifying

framework, both without and with forced covering enabled.

The original version is able to solve 86 and 142 instances,

respectively, whereas the unifying version is able to solve 80

and 146 instances. The few differences are due to some out-

of-memory conditions in the configuration. Figure 1 shows

the performance for all successful verification runs of all

four configurations using a plot of the quantile functions.

The function graph for a configuration yields the maximum

run time y (measured as used CPU time) for the xth fastest

computed correct results. For example, a time of 10 s for the

100th fastest result would mean that this configuration could

successfully verify 100 programs in under 10 s each, and took

longer than that for all remaining programs. The x-value for

which a graph ends at the top gives the maximal number

of successfully verified programs for the configuration. The

area below a graph (its integral) represents the accumulated

verification time that the configuration needed for all programs

that it could verify.

From these results we draw the conclusion that the original

version of the IMPACT algorithm and our variant perform

2Taken from http://www.cs.utoronto.ca/˜aws/ufo/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

111

���

����

�����
��
�
��
��
��

��	
��
��	
���������

�����������
�����
��
��

���������
���!
�	��!

��
�� �"� ���� ��"� �#��

�$���%
������������

Fig. 2. SBE-based CPACHECKER configurations, BLAST, WOLVERINE, and
UFO; quantile functions for verification results

TABLE I
CHARACTERISTICS OF DIFFERENT CPACHECKER CONFIGURATIONS

a) Number of successfully verified programs

SBE ABE-LF ABE-Loops
IMPACT 80 124 139
IMPACT with Forced Covering 146 182 176
Predicate Abstraction 102 168 196

b) Average number of refinements for successfully verified programs

SBE ABE-LF ABE-Loops
IMPACT 513 304 42.5
IMPACT with Forced Covering 52.2 19.6 14.6
Predicate Abstraction 887 79.5 8.47

similar enough and we are able to further experiment with

our unifying framework only.

Benchmarks using Single-Block Encoding. Now we compare

the configurations of our analysis framework against each

other: the IMPACT algorithm and lazy predicate abstraction.

The former is run with and without the forced-covering

optimization. For reference, we also run benchmarks with

other tools that implement one of these algorithms: BLAST,

WOLVERINE, and UFO. The latter is run in two configurations,

without abstraction computations (uUFO, similar to IMPACT)

and with cartesian predicate abstraction (cpUFO). All con-

figurations except the two UFO configurations use single-

block encoding, i.e., the former do not group several program

statements into larger blocks.

Figure 2 shows the performance of these configurations and

tools. The number of solved instances for the CPACHECKER

configurations can also be seen in the column ‘SBE’ of

Table I a). Comparing the IMPACT algorithm (1st row) with

predicate abstraction (3rd row), we can see that the latter can

solve 22 more programs, and is somewhat faster (cf. graph).

This indicates that the eagerness of predicate abstraction pays

off, and the amount of work spent for computing abstractions

is worth the effort. Omitting the abstraction computation and

delegating the coverage checks to an SMT solver needs more

time, although the SMT solver queries are cached. However,

when forced covering is enabled for the IMPACT algorithm, it

can solve 66 more programs, and is much faster than predicate

abstraction. These results show that reducing the number of

paths in the ARG and the number of refinements is worth-

while, even if substantial effort is needed. One forced covering

consists of a satisfiability check and an interpolation query, and

��

���

����

�����

�� ��� ���� ���� ����

��
	

�
��
��

��������
����
����

�	������������
�	��������������������

	�

����
��������������������
�	���������������

�	�����������������������
	�

����
�����������������������

Fig. 3. Large-block CPACHECKER configurations to reduce the number of
refinements; quantile functions for verification results

can thus be similarly expensive as a refinement. However, the

formulas used during a check for forced covering are smaller

than those during refinements, and a single successful forced

covering can prevent the expansion of a whole subgraph of

the ARG and thus save several refinements.

Comparing these results to the results of the other tools

that are also shown in the graph is difficult, because the

performance characteristics of tools written in Java, OCaml,

and C/C++ are typically quite different, different SMT solvers

are used, and the amount of work that was put into the

tools for adding optimizations and performance tuning differs

vastly. This can be seen, for example, by the fact, that in

this comparison the lazy predicate abstraction implementations

of CPACHECKER and BLAST have a significant performance

difference, although they are conceptually the same.

Benchmarks with Large Blocks. We have already identified

that the most important performance factor is the number of re-

finements, and not the algorithm itself. Thus, we are interested

in seeing how both algorithms perform when adjustable-block

encoding (ABE) is used to group many program statements

into larger blocks. This approach is known to vastly reduce

the number of refinements [12]. One important advantage of

our unified framework is that we can now use ABE with both

algorithms without any further work, although it was originally

only designed and implemented for predicate abstraction. Of

course, ABE does not save abstraction computations if the

IMPACT algorithm is used, but it still does allow to merge

paths and does reduce the number of refinements, and it saves

coverage checks as these are only done at block ends. The

first results have shown that the original version of IMPACT

behaves similarly to our framework version, therefore, we did

not implement adjustable-block encoding for it.

For the larger blocks, we use two different block sizes:

ABE-LF (block ends at function entries/exits and loop heads)

and ABE-Loops (block ends only at loop heads). The number

of solved instances is shown in Table I a) and the performance

results in Fig. 3. First of all, the results show the expected

improvement in performance and number of solved instances

if the block size is increased from SBE to ABE-LF and further

to ABE-Loops. This holds for all three configurations with one

exception which we will discuss below. The results further

confirm that the IMPACT algorithm without forced covering

is the slowest of those configurations regardless of the block

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

112

Lazy

More refinements

Eager

Fewer refinements

Impact Impact
(ABE-LF)

Impact
(ABE-Loops)

Impact
with FC

Impact with FC
(ABE-LF/Loops)

Pred. Abs.
(SBE)

Pred. Abs.
(ABE-LF)

Pred. Abs.
(ABE-Loops)

Fig. 4. Classification of various combinations of lazy predicate abstraction
and IMPACT with forced covering and adjustable-block encoding

size. For ABE-LF (the medium block size), forced covering

provides a performance benefit for the IMPACT algorithm

similar to when SBE is used, making it faster than predicate

abstraction. However, for ABE-Loops (the largest block size)

the results differ: The performance improvement of forced

covering still exists, but is smaller than for the other block

sizes. The IMPACT algorithm is now slower than predicate

abstraction, even with forced covering enabled. Furthermore,

this configuration solves fewer instances with ABE-Loops than

with ABE-LF, although for all other configurations an increase

in the block size also leads to a significant performance

increase. The reason for this is that the ABE-Loops block

size has reduced the number of refinements already so much

that the forced-covering optimization has little chance to

achieve a further reduction. Because the only abstraction states

that remain belong to loop-head locations, forced covering is

attempted only for such states. However, for loop heads the

abstract states need to be annotated with loop invariants in

order to reach the fixed point, and those invariants are only

discovered by refinements, not by forced-covering attempts.

The overhead for the unsuccessful attempts then leads to a

performance decrease. Table I b) shows the average number of

refinements for each successful verification run and confirms

this. For SBE and ABE-LF, forced covering can reduce the

number of refinements by one order of magnitude, however,

for ABE-Loops it only manages to reduce it to one third.

V. CONCLUSION

We have presented a new unifying framework for predicate-

based model checking, and expressed the two most successful

existing approaches in this framework. This allowed us to

gain new insights about these algorithms, especially that

the performance benefit of IMPACT compared to SBE-based

predicate abstraction is not due to the omitted abstractions,

but instead due to the reduction of the number of refinements

using forced covering. We can now classify all existing and

new configurations as in Fig. 4. We showed that using our

framework does not add overhead compared to the original

versions of the algorithms. Instead it is beneficial for flexibly

experimenting with new configurations, such as combining the

IMPACT-based algorithm and adjustable-block encoding.

These experiments confirm that the common property of

the most successful configurations is to reduce the number of

refinements. The new insights from this experimental study

are useful for directing future research on software model

checking. Specifically, we have provided an experimental

infrastructure to study the impact of the various parameters

that distinguish the algorithms.

We plan to extend our framework by incorporating further

model-checking algorithms. A comprehensive framework will

allow us to learn more about other algorithms and to experi-

ment with new —perhaps even more powerful— strategies for

software model checking that were not possible before.

REFERENCES

[1] A. Albarghouthi, A. Gurfinkel, and M. Chechik. From under-
approximations to over-approximations and back. In Proc. TACAS,
LNCS 7214, pages 157–172. Springer, 2012.

[2] A. Albarghouthi, A. Gurfinkel, and M. Chechik. WHALE: An
interpolation-based algorithm for inter-procedural verification. In Proc.
VMCAI, LNCS 7148, pages 39–55. Springer, 2012.

[3] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. UFO: A
framework for abstraction- and interpolation-based software verification.
In Proc. CAV, LNCS 7358, pages 672–678. Springer, 2012.

[4] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The
Static Driver Verifier research platform. In Proc. CAV, LNCS 6174,
pages 119–122. Springer, 2010.

[5] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and cartesian abstrac-
tions for model checking C programs. In Proc. TACAS, LNCS 2031,
pages 268–283. Springer, 2001.

[6] T. Ball and S. K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proc. POPL, pages 1–3. ACM, 2002.

[7] D. Beyer. Competition on software verification (SV-COMP). In Proc.
TACAS, LNCS 7214, pages 504–524. Springer, 2012.

[8] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani.
Software model checking via large-block encoding. In Proc. FMCAD,
pages 25–32. IEEE, 2009.

[9] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker BLAST. Int. J. Softw. Tools Technol. Transfer, 9(5-6):505–
525, 2007.

[10] D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and pro-
gram analysis. In Proc. CAV, LNCS 4590, pages 504–518. Springer,
2007.

[11] D. Beyer and M. E. Keremoglu. CPACHECKER: A tool for configurable
software verification. In Proc. CAV, LNCS 6806, pages 184–190.
Springer, 2011.

[12] D. Beyer, M. E. Keremoglu, and P. Wendler. Predicate abstraction with
adjustable-block encoding. In Proc. FMCAD, pages 189–197. FMCAD,
2010.

[13] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing
abstractions. Fundam. Inform., 89(4):369–392, 2008.

[14] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for symbolic model
checking. J. ACM, 50(5):752–794, 2003.

[15] E. Ermis, J. Hoenicke, and A. Podelski. Splitting via interpolants. In
VMCAI, LNCS 7148, pages 186–201. Springer, 2012.

[16] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS.
In Proc. CAV, LNCS 1254, pages 72–83. Springer, 1997.

[17] M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In
Proc. POPL, pages 471–482. ACM, 2010.

[18] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Proc. POPL, pages 232–244. ACM, 2004.

[19] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In Proc. POPL, pages 58–70. ACM, 2002.

[20] K. L. McMillan. Lazy abstraction with interpolants. In Proc. CAV,
LNCS 4144, pages 123–136. Springer, 2006.

[21] K. L. McMillan. Lazy annotation for program testing and verification.
In Proc. CAV, LNCS 6174, pages 104–118. Springer, 2010.

[22] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate
language and tools for analysis and transformation of C programs. In
Proc. CC, LNCS 2304, pages 213–228. Springer, 2002.

[23] P. Shved, M. Mandrykin, and V. Mutilin. Predicate analysis with BLAST

2.7. In Proc. TACAS, pages 525–527. Springer, 2012.
[24] G. Weissenbacher, D. Kröning, and S. Malik. WOLVERINE: Battling

bugs with interpolants. In Proc. TACAS, pages 556–558. Springer, 2012.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

113

Incremental Upgrade Checking by Means of
Interpolation-based Function Summaries

Ondrej Sery∗† Grigory Fedyukovich∗ Natasha Sharygina∗
∗Formal Verification Lab, University of Lugano, Switzerland

†D3S, Faculty of Mathematics and Physics, Charles University, Czech Rep.

Abstract—During its evolution, a typical software/hardware
design undergoes a myriad of small changes. However, it is
extremely costly to verify each new version from scratch. As
a remedy to this problem, we propose to use function summaries
to enable incremental verification of the evolving systems. Dur-
ing the evolution, our approach maintains function summaries
derived using Craig’s interpolation. For each new version, these
summaries are used to perform a local incremental check. Benefit
of this approach is that the cost of the check depends on the
extent of the change between the two versions and can be
performed cheaply for incremental changes without resorting
to re-verification of the entire system. Our implementation and
experimentation in the context of the bounded model checking
for C confirms that incremental changes can be verified efficiently
for different classes of industrial programs.

I. INTRODUCTION

Software and hardware designs are usually not written all

at once, but are built incrementally, due to numerous reasons:

1) requirements change and have impact on the design and

implementation; 2) errors are often discovered late in the

design cycle and must be removed; 3) software components are

updated or substituted to adapt to architectural and requirement

changes; just to name a few. Changes are done frequently

during the lifetime of many products and can introduce errors

that were not present in the old versions, or expose errors

that were present before but did not get exposed. The state

of the affairs is that the correctness of the system has to be

re-validated from scratch after any (even minor) change. Often

the cost of this validation dominates costs of the products.

Currently, re-validation mostly relies on the execution of

extensive test suits, which is inherently not exhaustive; fault

localization is mainly manual and driven by experts’ knowl-

edge of the system; fault fixing often introduces new faults that

are hard to detect and remove. To address this problem, this

paper presents a new fully automated approach that extends

formal verification by model checking to the problem of

validation of system upgrades. The new technique focuses

on the incremental changes and takes advantage of the effort

already invested in the verification of previous versions. The

target of our approach is to avoid (when possible) re-validation

of the new system and to reduce analysis only to the parts of

the system which were affected by the change.

The advantages of model checking are often shaded by

its high consumption of computational resources (known as

This work is partially supported by the European Community under the
call FP7-ICT-2009-5 — project PINCETTE 257647.

the state-space explosion problem). Many efficient complex-

ity reduction algorithms have been developed to cope with

this problem among which the representative approaches

are symbolic verification such as Bounded Model Checking

(BMC) [1], and different types of automated abstraction (pred-

icate abstraction [2], interpolation-based reasoning [3], func-

tion summarization [4], [5], [6], [7], etc.). Most state-of-the-

art model checking tools implement some (or combinations) of

these methods in order to deal with complex designs. Notably,

combinations of such techniques are known to be crucial for

combating the high complexity of verification.

This paper presents a solution to the upgrade checking

problem that extends the existing efficient techniques known

to work well for standalone verification to the problem of

analysis of system changes. In particular, it presents an incre-

mental bounded model checking approach that uses function

summarizations for local upgrade checks. The upgrade check-

ing algorithm maintains program function summaries (i.e.,

over-approximations of the actual behavior of the functions,

in our case computed by means of Craig interpolation [7])

and when a new version arrives, it checks if the summaries

of the modified functions are still valid over-approximations.

This is a local and cheap check. If it succeeds, the upgrade

is safe with respect to both the preserved and newly added

behaviors. If not, the check is propagated by the call tree

traversal to the caller of the modified function. As soon as the

safety is established, new summaries are generated using Craig

interpolation for all the functions with invalid summaries. If

the check fails for the call tree root (the main function of the

program), an error trace is created and reported to the user as

a witness to the violation.

The upgrade checking algorithm implements the refinement

strategy for dealing with spurious behaviors which can be

introduced during computation of the over-approximated sum-

maries. The refinement procedure for upgrade checks builds

on ideas of using various summary substitution scenarios [7],

[8] and extends it to 1) handle summaries of nested function

calls and 2) consequently to use them to further simplify the

validity checks of the upgraded functions summaries. Failures

of such checks may be due to the use of too weak summaries,

in which case, the refinement is used to expand the involved

function calls on demand.

We developed a prototype implementation of the proposed

algorithm and evaluated it using a set of industrial benchmarks.

Our experimentation confirms that the incremental analysis of

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

114

upgrades containing incremental changes is often orders of

magnitude faster than analysis performed from scratch.

Although we implemented the proposed upgrade checking

algorithm in the context of bounded model checking, the

algorithm itself is more general and can be employed in other

contexts, where over-approximative function summaries are

used. For example, the WHALE approach [6] designed for

standalone verification could be easily extended to incremental

upgrade checking using our algorithm.

In summary, the contributions of the paper are as follows:

• It presents a fully automated model-checking-based tech-

nique for verification of incremental upgrades. It is able

to re-validate all previously established safety properties

and to detect newly introduced errors.

• It efficiently combines bounded model checking with

function summarization for local and incremental analy-

sis of changes. The use of Craig interpolation to compute

summaries allows capturing symbolically all execution

traces through the function and, together, with the local

per-function checks of the new algorithm, results in the

efficient analysis procedure.

• It reports on the prototype implementation of the new

technique and its validation on industrial benchmarks.

The rest of the paper is organized as follow. Sect. II

defines the notation and presents background on function

summarization in BMC. Sect. III presents the new upgrade

checking algorithm and proves its correctness. Sect. IV de-

scribes implementation and evaluation of the approach. Sect. V

discusses the related work and Sect. VI concludes the paper.

II. BACKGROUND AND PREVIOUS WORK

Craig Interpolation [9] is a popular abstraction technique

widely used in Model Checking. Given a pair of formulas

(A,B), Craig interpolant of (A,B) is a formula I such

that A → I , I ∧ B is unsatisfiable, and I contains only

free variables common to A and B. For an unsatisfiable

pair of formulas (A,B), an interpolant always exists [9].

As shown in [10], an interpolant can be constructed from a

proof of unsatisfiability by an algorithm referred as Pudlák’s
algorithm. Although other algorithms exist, we will focus

on Pudlák’s throughout the paper. Interpolants are useful in

various verification gambits including refinement of predicate

abstraction [4], and bounded model checking [3] to name

a few. The following outlines how interpolation is used for

function summarization in BMC [7].

BMC is aimed at searching for errors in a program within

the given number (bound) of loop iterations and recursion

depth. First, it unwinds the program according to the bound.

Second, it constructs the Static Single Assignment (SSA) form

of the program, supplies it with the negated property to be

checked, and encodes it into a logical formula, a BMC formula.

The formula is satisfiable if and only if an error is reachable

in the unwound program. If the formula is satisfiable, a

satisfying assignment identifies a trace leading to an error.

If unsatisfiable, the program is safe.

Standard BMC constructs a monolithic BMC formula with

all function calls inlined. To make interpolation applicable for

extraction of function summaries, we construct BMC formula

so that each function call is represented by a separate conjunct,

and call it a partitioned BMC (PBMC) formula. To describe

construction of PBMC formula in more details, we use the

notion of an unwound program in terms of its call tree.
An unwound program for a bound ν is a tuple Pν =

(F, fmain), s.t. F is a finite set of functions, fmain ∈ F is

an entry point and every loop and recursive call is unrolled

(unwound) ν times. In addition, we define a relation child
⊆ F × F which relates each function f to all the functions

invoked by f . Relation subtree ⊆ F ×F is a transitive closure

of child. F̂ denotes the finite set of unique function calls,

with f̂main being the implicit call to the program entry point.

The relations child and subtree are naturally extended to F̂ ,

s.t. ∀f̂ , ĝ ∈ F̂ : child(f̂ , ĝ) → child(f, g), and subtree is a

transitive closure of the extended relation child. A summary
of a function is a relation over its input and output variables,

which over-approximates the precise behavior of the given

function. This means that a summary contains all possible

behaviors of the function (under the given bound ν) and

possibly more. We use S to denote the set of all summaries.
Algorithm 1 summarizes the method for construction of

function summaries in BMC. There are two major differences

from the standard BMC algorithm that should be pointed out.

First, the PBMC formula is constructed as a conjunction of

parts representing individual functions. Second, function sum-

maries are extracted using interpolation for every individual

part of the PBMC formula.
PBMC formula construction (line 1). The PBMC formula

is constructed in the recursive method CreateFormula as

follows.
CreateFormula(f̂) � φf̂∧∧

ĝ∈F̂ :child(f̂ ,ĝ)

CreateFormula(ĝ)

For a function call f̂ ∈ F̂ , the formula is constructed by

conjunction of the partition φf̂ reflecting the body of the

function and a separate partition for every nested function call.

The logical formula φf̂ is constructed from the SSA form of

the body of the function f . The bodies of the nested calls

are encoded into separate logical formulas (using a recursive

call to CreateFormula) and thus separate partitions in

the resulting PBMC formula. In addition, φf̂ contains spe-

cial propositional symbols to bind the individual partitions

together. An example of such a symbol is errorf̂ , which is

constrained to be true if and only if the function call f̂ results

in an error. Consequently, errorf̂main
encodes reachability of

an error in the entire program (for further details see [7]).
Summarization (line 6). If the PBMC formula is unsat-

isfiable, i.e., the program is safe, the algorithm proceeds

with interpolation. The function summaries are constructed

as interpolants from a proof of unsatisfiability of the PBMC

formula. In order to generate the interpolant, for each function

call f̂ the PBMC formula is split into two parts. First, φsubtree
f̂

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

115

Algorithm 1: Function summarization in BMC [7]

Input: Unwound program Pν = (F, fmain) with function

calls F̂
Output: Verification result: {SAFE, UNSAFE}, mapping

of function calls to their summaries summaries
Data: φ: PBMC formula

1 φ← CreateFormula(f̂main) ∧ errorf̂main
;

2 result, proof ← Solve(φ) ; // run SAT-solver
3 if result = SAT then
4 return UNSAFE;

5 foreach f̂ ∈ F̂ do // extract summaries

6 summaries(f̂)← Interpolate(proof, f̂);

7 end
8 return SAFE;

corresponds to the partitions representing the function call f̂
and all the nested functions. Second, φenv

f̂
corresponds to the

context of the call f̂ , i.e., to the rest of the encoded program.

φsubtree
f̂

�
∧

ĝ∈F̂ :subtree(f̂ ,ĝ)

φĝ

φenv
f̂

� errorf̂main
∧

∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ)

φĥ

Therefore, for each function call f̂ , the Interpolate
method separates the PBMC formula into A ≡ φsubtree

f̂
and

B ≡ φenv
f̂

and generates an interpolant If̂ for the pair (A,B).

Such interpolant If̂ is a summary for the function f . The

generated interpolants are associated with the function calls

by a mapping1 summaries: F̂ → S, i.e., summaries(f̂) = If̂ .

Refinement. When the same program is being verified again

(e.g., with respect to a different property), the exact function

calls can be substituted by the constructed summaries. In

this case, the method CreateFormula of Algorithm 1 is

replaced by the following:

CreateFormula(f̂) � φf̂ ∧(∧
ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=inline

CreateFormula(ĝ)
)

(∧
ĝ∈F̂ :child(f̂ ,ĝ)∧Ω(ĝ)=sum

summaries(ĝ)
)

where a substitution scenario Ω : F̂ → {inline, sum, havoc}
determines how each function call should be handled. Initially,

Ω depends on existence of function summaries. If a summary

of a function exists, it is used to represent the function - sum. If

not, the function is either represented precisely - inline (eager
scenario), or abstracted away - havoc (lazy scenario).

If the resulting formula is satisfiable, it may be due to

too coarse summaries. Refinement, first, identifies which sum-

1Here, we consider only a single summary per a function call for the sake
of simplicity. This still means multiple summaries per a single function called
multiple times. Our prototype implementation does not have this restriction.

maries affect satisfiability of the PBMC formula. This is

done by analyzing the occurrence of summaries along an

error trace, determined by a satisfying assignment and by

dependency analysis. Second, the refined substitution scenario

Ω
′ is constructed from Ω by mapping the function calls

corresponding to the identified summaries to inline. Then, the

next iteration of the algorithm is run using Ω
′. If no summary

is identified for refinement, the error is real.

III. UPGRADE CHECKING

This section describes our solution to the upgrade check-

ing problem, the incremental summary-based model checking

algorithm. As an input, the algorithm takes two versions of

the system, old and new, and the function summaries of the

old version. If the old version or its function summaries are

not available (e.g., for the initial version of the system), a

bootstrapping verification run is needed to analyze the entire

new version of the system and to generate the summaries,

which are then maintained during the incremental runs.

The incremental upgrade check is performed in two phases.

First, in the preprocessing phase, the two versions are com-

pared at the syntactical level. This allows identification of

functions that were modified (or added) and which summaries

need rechecking (or they even do not exist yet). An additional

output of this phase is an updated mapping summaries, which

maps function calls in the new version to the old summaries.

For example, Figure 1-a depicts an output of the preprocess-

ing, i.e., a call tree of a new version with two changed function

calls (gray fill). Their summaries need rechecking. In this

case, all function calls are mapped to the corresponding old

summaries (i.e., functions were possibly removed or modified,

but not added). Summaries of all the function calls marked by

a question mark may yet be found invalid. Although the code

of the corresponding functions may be unchanged, some of

their descendant functions were changed and may eventually

lead to invalidation of the ancestor’s summary.

In the second phase, the actual upgrade check is performed.

Starting from the bottom of the call tree, summaries of all

functions marked as changed are rechecked. That is, a cheap

local check is performed to show that the corresponding

summary is still a valid over-approximation of the function’s

behavior. If successful, the summary is still valid and the

change (i.e., rightmost node in Figure 1-b) does not affect

correctness of the new version. If the check fails, the summary

is invalid for the new version and the check needs to be

propagated to the caller, towards the root of the call tree

(Figure 1-b,c). When the check fails for the root of the call

tree (i.e., program entry point f̂main), a real error is identified

and reported to the user. The following first presents this basic

algorithm in more details and then describes its optimization

with a refinement loop and proves its correctness. Note that

we will describe the upgrade checking algorithm instantiated

in the context of bounded model checking. However, the algo-

rithm is more general and can be applied in other approaches

relying on over-approximative function summaries.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

116

valid summary nondet summary

affected summary

validated/new summary

invalid summary

(a) (b) (c)

changed function

Figure 1: Progress of the upgrade checking algorithm; the faded parts of the call tree were not yet analyzed by the algorithm

(a) (b) (c)

Figure 2: Sample outcomes of Alg. 2; analyzing the faded parts of call tree is not required to decide safety of the upgrade

A. Basic Algorithm

We proceed by presenting the basic upgrade checking

algorithm (Alg. 2). As an input, Alg. 2 takes the unwound

new version of the program, a mapping summaries from the

function calls in the new version to the summaries from the

old version, and a set changed marking the function calls

corresponding to the functions that were changed or added

in the new version (as an output of the preprocessing).

The algorithm keeps a set D of function calls that require

rechecking. Initially, this set contains all the function calls

marked by changed (line 1). Then the algorithm repeatedly

removes a function call f̂ from D and attempts to check

validity of the corresponding summary in the new version.

The algorithm picks f̂ so that no function call in the subtree

of f̂ occurs in D (line 3). This ensures that summaries in the

subtree of f̂ were already analyzed (shown valid or invalid).

The actual summary validity check occurs on lines 6,

7. First, the PBMC formula encoding the subtree of f̂ is

constructed and stored as φ. Then, conjunction of φ with a

negated summary of f̂ is passed to a solver for the satisfiability

check. If unsatisfiable, the summary is still a valid over-

approximation of the function’s behavior. Here, the algorithm

obtains a proof of unsatisfiability which is used later to create

new summaries to replace the invalid or missing ones (line 9-

11). If satisfiable, there is a combination of inputs and outputs

of the function f that is not covered by its original summary,

thus the summary is not valid for the new version (line 14).

In this case, either a real error is identified (lines 16, 17) or

the check is propagated to the function caller (line 18).

Note that if the chosen function call f̂ has no summary, e.g.,

due to being a newly added function, the check is propagated

to the caller immediately (condition at line 5) and the summary

of f̂ is created later when the check succeeds for an ancestor

function call.

The algorithm always terminates with either SAFE or

UNSAFE value. Creation of each PBMC formula terminates

because they operate on the already unwound program. The

algorithm terminates with SAFE result (line 20) when all func-

tion calls requiring rechecking were analyzed (line 2). Either

all the summaries possibly affected by the program change

are immediately shown to be still valid over-approximations

(see Figure 2-a) or some are invalid but the propagation stops

at a certain level of the call tree and new valid summaries

are generated (see Figure 2-b). The algorithm terminates with

UNSAFE result (lines 17), when the check propagates to the

call tree root, f̂main, and fails (see Figure 2-c). In this case, a

real error is encountered and reported to the user.

B. Optimization and Refinement

To optimize the upgrade check, old function summaries

can be used to abstract away the function calls. Consider the

validity check of a summary of a function call f̂ . Suppose

there exists a function call ĝ in the subtree of f̂ together with

its old summary, already shown valid. Then this summary can

be substituted for ĝ, while constructing the PBMC formula of

f̂ (line 6). This way, only a part of the subtree of f̂ needs

to be traversed and the PBMC formula φ can be substantially

smaller compared to the encoding of the entire subtree.

If the resulting formula is SAT, it can be either due to

a real violation of the summary being checked or due to

too coarse summaries used to substitute some of the nested

function calls. In our upgrade checking algorithm, this is

handled in similar way as in the refinement of the standalone

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

117

Algorithm 2: Upgrade checking algorithm

Input: Unwound program Pν = (F, fmain) with function

calls F̂ , mapping summaries : F̂ → S, set

changed ⊆ F̂
Output: Verification result: {SAFE, UNSAFE}
Data: D ⊆ F̂ : function calls to recheck, φ: PBMC

formula, invalid ⊆ S: set of invalid summaries

1 D ← {f̂ | f̂ ∈ changed}, invalid← ∅;
2 while D �= ∅ do
3 choose f̂ ∈ D, s.t. ∀ĥ ∈ D : ¬subtree(f̂ , ĥ);
4 D ← D \ {f̂};
5 if f̂ ∈ dom(summaries) then
6 φ← CreateFormula(f̂);

7 result, proof ← Solve(φ ∧ ¬summaries(f̂));

8 if result = UNSAT then
9 for ĝ ∈ F̂ : subtree(f̂ , ĝ) ∧ (ĝ /∈

dom(summaries) ∨ summaries(ĝ) ∈ invalid)
do

10 summaries(ĝ)← Interpolate(proof, ĝ);

11 end
12 continue;

13 end
14 invalid← invalid ∪ {summaries(f̂)};
15 end

16 if f̂ = f̂main then
17 return UNSAFE; // real error found

18 D ← D ∪ {parent(f̂)}; // check parent
19 end
20 return SAFE; // system is safe

verification by analyzing the satisfying assignment. The set of

summaries used along the counter-example is identified. Then

it is further restricted by dependency analysis to only those

possibly affecting the validity. Every summary in the set is

marked as inline in the next iteration. If the set is empty, the

check fails and the summary is shown invalid. This refinement

loop (replacing lines 6, 7 in Alg. 2) iterates until validity of

the summary is decided.

This optimization does not affect termination of the algo-

rithm (in each step at least one of the summaries is refined).

Regarding complexity, in the worst case scenario, i.e. when a

major change occurs, the entire subtree is refined one summary

at a time for each node of the call tree. This may result in a

number of solver calls quadratic in the size of the call tree,

where the last call is as complex as the verification of the entire

program from scratch. This paper focuses on incremental

changes and thus for most cases there is no need for the

complete call graph traversal. Moreover, the quadratic number

of calls can be easily mitigated by limiting the refinement

laziness using a threshold on the number of refinement steps

and disabling this optimization when the threshold is exceeded.

C. Correctness

This section demonstrates the correctness of the upgrade

checking algorithm, i.e., given an unwinding bound ν, the

algorithm always terminates with the correct answer w.r.t. ν.

Note that throughout this section, program safety is understood

considering the bound ν2. Also, we use σf̂ as a shortcut for

summaries(f̂). The key insight for the correctness is that after

each successful run of Alg. 2 (i.e., when SAFE is returned),

the following two properties are maintained.

errorf̂main
∧ σf̂main

→ ⊥ (1)

Given each function call f̂ and its children calls ĝ1, . . . , ĝn:

σĝ1 ∧ . . . ∧ σĝn ∧ φf̂ → σf̂ (2)

Theorem 1 is needed to prove the correctness of Alg. 2. It

considers properties of interpolants (a.k.a. tree interpolants)

generated from the same resolution proof using Pudlák’s

algorithm (we kindly refer reader to [10] for details).

Theorem 1. Let X1 ∧ . . . ∧Xn ∧ Y ∧ Z be an unsatisfiable
formula and let IX1

, . . ., IXn
, and IXY be Craig interpolants

for pairs (X1, X2 ∧ . . . ∧Xn ∧ Y ∧ Z), . . ., (Xn, X1 ∧ . . . ∧
Xn−1 ∧ Y ∧ Z), and (X1 ∧ . . . ∧ Xn ∧ Y, Z) respectively,
derived using Pudlák’s algorithm over a resolution proof P.
Then (IX1

∧ . . . ∧ IXn
∧ Y)→ IXY .

We first state and prove a version of Theorem 1 limited to

two partitions abstracted by interpolants, then we generalize.

Lemma 1. Let X ∧Y ∧Z be an unsatisfiable formula and let
IX , IY , and IXY be Craig interpolants for pairs (X,Y ∧Z),
(Y,X∧Z), and (X∧Y, Z) respectively, derived using Pudlák’s
algorithm over a resolution proof P. Then (IX ∧ IY)→ IXY .

Proof: By structural induction over the resolution proof,

we show that (IX ∧ IY) → IXY for all partial interpolants

at all nodes of the proof P. As a base case, there is a clause

C and we need to consider three cases: C ∈ X , C ∈ Y , and

C ∈ Z. When C ∈ X , we have (false ∧ true) → false,

which holds. The case C ∈ Y is symmetric. When C ∈ Z,

we have (true∧ true)→ true, which again obviously holds.

As an inductive step, we have a node C1 ∨C2 representing

resolution over a variable x with parent nodes x∨C1 and ¬x∨
C2. From the inductive hypothesis, we have partial interpolants

I1X , I1Y , and I1XY for the node x∨C1 so that (I1X∧I1Y)→ I1XY

and partial interpolants I2X , I2Y , and I2XY for the node ¬x∨C2

so that (I2X ∧ I2Y)→ I2XY . We need to consider the different

cases of coloring of x based on its occurrence in different

subsets of the parts of the formula X ∧ Y ∧Z. The cases are

summarized in Table I. In case x ∈ X , we have:

IX ≡ I1X ∨ I2X , IY ≡ I1Y ∧ I2Y

IXY ≡ I1XY ∨ I2XY

2 We expect the same ν for the old and new version. To keep correctness,
if the user increases the bound for a specific loop, the corresponding function
has to be handled as if modified.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

118

Table I: Variable classes; a, b: x occurs only in A, resp. B,

ab: x occurs in both A and B

x in
class of x for partial interpolant

IX IY IXY

X a b a
Y b a a
Z b b b

X + Y ab ab a
X + Z ab b ab
Y + Z b ab ab

X + Y + Z ab ab ab

Using the inductive hypothesis, we have ((I1X ∨ I2X) ∧ I1Y ∧
I2Y)→ (I1XY ∨I2XY), which is the required claim (IX∧IY)→
IXY . The case x ∈ Y is symmetric.

In case x ∈ Z, we have:

IX ≡ I1X ∧ I2X , IY ≡ I1Y ∧ I2Y

IXY ≡ I1XY ∧ I2XY

Using the inductive hypothesis, we have (I1X∧I2X∧I1Y ∧I2Y)→
(I1XY ∧ I2XY), which is the required claim (IX ∧ IY)→ IXY .

In case x ∈ X + Y + Z, using sel(x, S, T) as a shortcut

for (x ∨ S) ∧ (¬x ∨ T), we get:

IX ≡ sel(x, I1X , I2X), IY ≡ sel(x, I1Y , I
2
Y)

IXY ≡ sel(x, I1XY , I
2
XY)

Using the inductive hypothesis and considering both possible

values of x, we have (sel(x, I1X , I2X) ∧ sel(x, I1Y , I
2
Y)) →

sel(x, I1XY , I
2
XY), which is the required claim (IX ∧ IY) →

IXY . The other cases where x ∈ X+Y or x ∈ X+Z or x ∈
Y +Z are subsumed by this case as (P∧Q)→ sel(x, P,Q)→
(P ∨Q). Structural induction yields (IX ∧IY)→ IXY for the

root of the proof tree and for the final interpolants.

When we apply the result of Lemma 1 iteratively, we obtain

a generalized form for cases using multiple interpolants mixed

with original parts of the formula, i.e., a proof of Theorem 1.

Proof: By iterative application of Lemma 1, we get (IX1
∧

. . .∧ IXn
∧ IY)→ IXY , where IY is Craig interpolant for the

pair (Y,X1 ∧ . . .∧Xn ∧Z) derived using Pudlák’s algorithm

over the resolution proof P. Using Y → IY , we obtain the

claim (IX1 ∧ . . . ∧ IXn ∧ Y)→ IXY .

In the following two lemmas, we first show that the proper-

ties (1, 2) hold after an initial whole program check. Then we

show that the properties are maintained between the individual

successful upgrade checks.

Lemma 2. After an initial whole-program check, the proper-
ties (1, 2) hold over the call tree annotated by the generated
interpolants.

Proof: Recall that the summaries are constructed only

when the program is safe. In other words, errorf̂main
∧φsubtree

f̂main
→

⊥. Thus, by definition of interpolation, errorf̂main
∧ If̂main

is ob-

viously unsatisfiable, i.e., the property (1) holds. The property

(2) follows from Theorem 1. It suffices to choose Xi ≡ φsubtree
ĝi

for i ∈ 1..n, Y ≡ φf̂ , and Z ≡ φenv
f̂

.

Lemma 3. The properties (1, 2) are reestablished whenever
the upgrade checking algorithm successfully finishes (SAFE is
returned).

Proof: The property (1) could be affected only when

the summary of f̂main is recomputed (line 10). However, this

happens only when we are checking the root of the tree and,

at the same time, the check succeeds (line 8). Therefore, by

definition of interpolation, the property (1) is maintained.

If Alg. 2 successfully finishes, then each function call f̂
with an invalidated summary must have been assigned a new

summary σf̂ (line 10) when some of its ancestors ĥ passed the

summary validity check (line 8). Otherwise, the invalidation

would propagate to the root of the call tree and eventually

produce an UNSAFE result. Therefore, it suffices to show that

the newly generated interpolants satisfy the property (2). For

this purpose, we can use the same argument as in the proof of

Lemma 2, again relying on Theorem 1. Note that if any already

valid summaries are used in the summary validity check, we

keep those (see condition on line 9) instead of generating new

ones. This is sound as we know that σĝi → IXi , which is

consistent with our claim. Analogically, we also keep the old

summary σĥ for the root of the subtree that passed the check

and caused generation of the new summaries. This is sound

as Iĥ → σĥ is implied by the summary validity check.

We now show that the properties (1, 2) are strong enough

to show that the entire program is safe.

Theorem 2. When the program call tree annotated by in-
terpolants satisfies the properties (1, 2), then errorf̂main

∧
φsubtree
f̂main

→ ⊥ (i.e., the entire program is safe).

Proof: The property (1) yields errorf̂main
∧ σf̂main

→ ⊥.

Repeated application of the property (2) to substitute all

interpolants on the right hand side yields the claim errorf̂main
∧

φsubtree
f̂main

→ ⊥.

We proved correctness of the upgrade checking algorithm

in the context of bounded model checking and interpolation-

based function summaries. The upgrade checking algorithm,

however, is not bound to this context and can be employed also

in other verification approaches based on over-approximative

function summaries (including the use of other interpolation

algorithms). The key ingredient of the correctness proof, the

property (2), has to be ensured for the particular application.

IV. EVALUATION

We implemented a prototype, eVolCheck, of the upgrade

checking algorithm for incremental verification. It performs

the checks of upgrades using outputs of the previous check and

provides its own outputs to the next one. The required input

is function summaries of the previous version. eVolCheck

communicates with FunFrog [7] for bootstrapping (to create

function summaries of the original code) and exploits its

interface with the OpenSMT solver [11] to solve a PBMC

formula, encoded propositionally, and to generate interpolants.

Altogether, the tool implements two major tasks: syntactic

difference check, and the actual upgrade check.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

119

For the first task, we implemented a syntactic difference

tool called goto-diff. First, goto-diff extracts inter-

mediate representations of a pair of (old and new) programs

expressed in simple statements (assignments, guards, gotos,

function calls) and constructs a so called goto-binary.

For this, we use the goto-cc3 verification front-end. Since,

goto-binary is a semantically clean representation of the

source code, some syntactically different programs may result

in an equivalent representation, i.e., some refactoring changes

may be shown safe already at this stage without running the

upgrade checking algorithm. Second, goto-diff compares

the call trees of the programs. For each pair of matching func-

tions, goto-diff analyzes their bodies.4 Unreachable func-

tions of the programs are not processed. Finally, goto-diff
outputs the new call tree, marked by old summaries and the

changed set of modified functions. Afterwards, eVolCheck

performs the actual upgrade check by following the steps of

Alg. 2. After its completion, the result of the change validation

is returned to the user. If the upgrade is unsafe, an error is

reported and the user is expected to fix it. When the fix is done,

it is checked against the latest correct version. Otherwise, the

program is correct, the new call tree and the summaries are

stored for the use by the next upgrade checking run.
Experiments. We evaluated eVolCheck on a set of industrial

benchmarks. Four of them (VTT_n) were provided by our

industrial partner, the VTT company. The rest is derived from a

library of Windows device drivers (floppy_n, kbfiltr_n,

diskperf_n). We invented all changes artificially.
Safety of all benchmarks was verified against assertions,

either existing in the code or inserted by us into code without

assertions. Table II contains results of the experiments. Each

row corresponds to a different benchmark, groups of columns

represent statistics about the bootstrapping verification and

verification of two upgrades, respectively. NoI estimates the

size of the original source code as a number of instructions

in the goto-binary (NoI is an accurate representation of

code without definitions, and often represents much higher

number of lines of code). IC represents the number of changed

instructions between current and the previous version. The

overhead introduced by upgrade checking, i.e. the syntactic

difference check (Diff) and the interpolants generation (Itp), is

also included in the total running time (Total). To show advan-

tages of our upgrade checking approach, for each change we

calculated the speedup (Speedup) of the upgrade check versus

verification of the changed code from scratch, performed only

for the sake of comparison reasons and hidden from the table.
In order to demonstrate different performance of our tech-

nique, we chose two different classes of changes for each

benchmark. The first class (1st change) represents changes

with small impact. As expected, those can be verified with

a few local checks. The second one (2nd change) presents

upgrades that affect large portion of the code, potentially

causing traversal of the complete call tree of the program.

3http://www.cprover.org/goto-cc/
4Two functions match iff their signatures are the same (function name,

types and order of arguments, and return type).

Our experiments demonstrate that for the class of problem

with small impact, the upgrade checking approach outperforms

the standalone verification (order(s) of magnitude speedup).

For the second class of changes, the performance of the

upgrade check varies. For some cases, analysis could be done

locally and the speedup is still substantial. For cases where

the algorithms needed to analyze large portion of the call

tree, the performance, as expected, degrades. Note that the

bad performance occurs when the change introduces a bug

(indicated by ‘—’ in the Itp column; the PBMC formula is

satisfiable and interpolants are not generated). In this case,

the upgrade check traverses to the root of the call tree, in

order to reconstruct a complete error trace. Of course, this

can be an easy task when the change is close to the root of

the call tree (e.g., in the floppy_D benchmark). The results

support our initial intuition that upgrade checking works well

for incremental changes, which is the most common class in

the evolution of systems.

V. RELATED WORK

The area of software upgrade checking is not as studied as

model checking of standalone programs. The idea of reusing

information learned during analysis of the previous program

version was employed in [12], [13], [14]. The approaches

in [13], [14] store the entire abstract reachable state space

and revalidate the affected parts after a change. Our approach

works on a function level and stores only the summaries and

not the entire abstract state space.

In [12], the authors study substitutability of updated com-

ponents of a system. Their algorithm is based on inclusion

of behaviors and uses a CEGAR loop combining over- and

under-approximations of the component behaviors. First, a

containment check is performed, ensuring behaviors of the

old component occur also in the new one. Second, learning-

based assume-guarantee reasoning algorithm is used to to

check compatibility, i.e., that the new component satisfies a

given property when the old component does. When com-

pared, our approach focuses on real low-level properties of

code expressed as assertions rather than abstract inclusion of

behaviors. The use of interpolants also appears to be a more

practical approach as compared to the application of learning

regular languages techniques employed in [12].

The authors of [15] study effects of code changes on

function summaries used in compositional directed testing

(white-box fuzzing), using must summaries as an under-

approximation of the behavior. Their goal is to identify sum-

maries that are affected by the change and cannot be used to

analyze the new version. The actual testing is performed using

the preserved summaries. In contrast, our algorithm uses over-

approximative interpolation-based function summaries and

performs the actual verification during the analysis.

Another group of related work aims at equivalence checking

of programs [16], [17], [18]. Differential Symbolic Execu-

tion [16] attempts to show equivalence of two versions of code

using symbolic execution or to compute a behavioral delta

when not equivalent. The comparison is function-by-function,

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

120

Table II: Experimental evaluation

benchmark bootstrap 1st change 2nd change
name NoI Total [s] Itp [s] IC Total [s] Diff [s] Itp [s] Speedup IC Total [s] Diff [s] Itp [s] Speedup
VTT_A 329 4.889 0.133 2 0.318 0.006 <0.001 15.6x 10 15.102 0.006 — 0.3x
VTT_B 332 23.178 0.003 6 7.793 0.007 0.007 3.0x 6 7.805 0.007 0.014 3.0x
VTT_C 129 0.144 0.001 2 0.017 0.002 <0.001 8.4x 1 0.187 0.002 — 0.8x
VTT_D 247 24.735 0.001 0 0.008 0.008 <0.001 3098.0x 2 46.910 0.006 — 0.8x
floppy_A 292 1.025 0.015 2 0.039 0.009 0.002 26.1x 6 0.201 0.009 0.013 5.0x
floppy_B 294 0.763 0.003 2 0.038 0.009 <0.001 19.8x 7 0.046 0.009 0.001 16.4x
floppy_C 2082 1.280 0.004 2 0.383 0.182 <0.001 3.4x 7 0.394 0.183 0.001 3.2x
floppy_D 2099 60.469 0.257 6 0.374 0.182 <0.001 161.7x 23 3.614 0.189 — 16.8x
kbfiltr_A 529 1.307 0.014 2 0.030 0.011 <0.001 43.1x 6 0.111 0.012 0.006 10.6x
kbfiltr_B 529 1.040 0.001 1 0.052 0.011 0.001 19.6x 2 1.835 0.011 — 0.6x
kbfiltr_C 1010 2.522 0.014 2 0.063 0.021 0.002 40.2x 23 0.124 0.021 0.002 20.3x
kbfiltr_D 1011 3.060 0.009 2 0.061 0.022 <0.001 50.5x 7 0.231 0.022 0.003 7.0x
diskperf_A 486 1.028 0.001 1 0.033 0.008 <0.001 31.3x 2 1.751 0.008 — 0.6x
diskperf_B 492 2.580 0.049 2 0.091 0.009 0.006 28.3x 12 2.468 0.009 0.029 1.1x
diskperf_C 1664 1.126 0.001 1 0.072 0.034 <0.001 15.6x 4 0.097 0.034 0.001 11.5x
diskperf_D 1685 38.609 1.179 1 0.295 0.035 0.016 130.4x 2 0.508 0.035 0.020 75.7x

the unchanged portions of code are abstracted by the same

uninterpreted functions. A similar approach is implemented in

the SymDiff tool [17], which decides conditional partial equiv-

alence, i.e., equivalence under certain input constraints. More-

over, SymDiff also allows extraction of the constraints and

reports them to the user. Regression Verification [18] employs

model checking to prove partial equivalence of programs. As

in our algorithm, regression verification starts with syntactic

difference check, that identifies the set of modified functions.

Then it also traverses the call graph bottom-up, and separately

checks equivalence between the old and new versions of the

functions, while other functions are abstracted again using

the same uninterpreted functions. In these approaches, if the

versions do differ, the user is alerted and possibly informed

what the different output is and for which input it occurs.

For evolving systems, the versions almost always differ and

thus the user is distracted by many such reports. In contrast,

our algorithm focuses on checking safety of the versions with

respect to assertion violation and the user is only alerted

when a new violation is introduced by the change. Also, our

approach may skip processing parts of the program, if they do

not influence safety of the code.

Last group of related work includes approaches using

interpolation-based function summaries (such as [4], [5], [6]).

Although these do not consider upgrade checking, we believe

that our incremental algorithm may be instantiated in their

context similar to how we instantiated it in the context of [7].

VI. CONCLUSION

We presented a new upgrade checking algorithm using

interpolation-based function summaries. Instead of model

checking the entire new version of a program, the modified

functions are first compared against their over-approximative

summaries from the old version. If this local check succeeds,

the upgrade is safe. We proved that the proposed algorithm

is sound, if the summaries are generated from the same proof

using the original Pudlák’s algorithm. Experimental evaluation

using our prototype implementation supports our intuition

about ability to check system upgrades locally and demon-

strates that the algorithm significantly speeds up checking

programs with incremental changes.

REFERENCES

[1] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model
Checking without BDDs,” in TACAS ’99, vol. 1579 of LNCS, pp. 193–
207, 1999.

[2] S. Graf and H. Saı̈di, “Construction of Abstract State Graphs with PVS,”
in Computer Aided Verification, CAV ’97, LNCS, pp. 72–83, 1997.

[3] K. L. McMillan, “Applications of Craig Interpolation in Model Check-
ing,” in TACAS ’05, vol. 3440 of LNCS, pp. 1–12, 2005.

[4] K. L. McMillan, “Lazy abstraction with interpolants,” in CAV ’06,
vol. 4144 of LNCS, pp. 123–136, 2006.

[5] K. L. McMillan, “Lazy annotation for program testing and verification,”
in CAV’ 10, vol. 6174 of LNCS, pp. 104–118, 2010.

[6] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Whale: An
Interpolation-Based Algorithm for Inter-procedural Verification,” in VM-
CAI ’12, vol. 7148 of LNCS, pp. 39–55, 2012.

[7] O. Sery, G. Fedyukovich, and N. Sharygina, “Interpolation-based func-
tion summaries in bounded model checking,” in HVC ’11, vol. 7261 of
LNCS, 2012.

[8] D. Babić and A. J. Hu, “Structural Abstraction of Software Verification
Conditions,” in CAV ’07, vol. 4590 of LNCS, pp. 371–383, 2007.

[9] W. Craig, “Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory,” J. of Symbolic Logic, vol. 22, no. 3,
pp. 269–285, 1957.

[10] P. Pudlák, “Lower bounds for resolution and cutting plane proofs and
monotone computations,” J. of Symbolic Logic, vol. 62, no. 3, pp. 981–
998, 1997.

[11] R. Bruttomesso, E. Pek, N. Sharygina, and A. Tsitovich, “The OpenSMT
Solver,” in TACAS ’10, vol. 6015 of LNCS, pp. 150–153, 2010.

[12] S. Chaki, E. Clarke, N. Sharygina, and N. Sinha, “Dynamic Component
Substitutability Analysis,” in FM ’05, vol. 3582 of LNCS, pp. 512–528,
Springer, 2005.

[13] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido, “Ex-
treme Model Checking,” in Verification: Theory and Practice, vol. 2772
of LNCS, pp. 332–358, 2003.

[14] C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards, “Incre-
mental algorithms for inter-procedural analysis of safety properties,” in
CAV ’05, vol. 3576 of LNCS, pp. 449–461, 2005.

[15] P. Godefroid, S. K. Lahiri, and C. Rubio-González, “Statically Vali-
dating Must Summaries for Incremental Compositional Dynamic Test
Generation,” in SAS ’11, vol. 6887 of LNCS, 2011.

[16] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu, “Differential
symbolic execution,” in FSE ’08, pp. 226–237, 2008.

[17] M. Kawaguchi, S. K. Lahiri, and H. Rebelo, “Conditional equivalence,”
Tech. Rep. MSR-TR-2010-119, Microsoft Research, 2010.

[18] B. Godlin and O. Strichman, “Regression verification,” in DAC ’09,
pp. 466–471, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

121

Verification of Parametric System Designs

Alessandro Cimatti, Iman Narasamdya, and Marco Roveri
Fondazione Bruno Kessler, Italy.

Via Sommarive 18, I-38050, Trento, Italy

{cimatti,narasamdya,roveri}@fbk.eu

Abstract—System designs are often modeled as sets of threads
whose activations are controlled by a domain-specific scheduler.
Especially in the early design phases, the interactions between
the threads and the scheduler often depend on parameters (such
as the duration of thread suspensions) for which a value is not
available.

In this paper, we tackle the verification of designs with para-
metric scheduler-thread interaction. We propose a new method,
called Semi-Symbolic Scheduler/Symbolic Threads (S3ST), to
prove that a design satisfies the specified assertions for all possible
values of the interaction parameters. We build on Explicit-
Scheduler/Symbolic-Threads (ESST), an effective technique for
verifying designs with cooperative scheduling, that is however
limited to the case of non-parametric interactions. As in ESST,
S3ST analyzes each thread symbolically using lazy predicate
abstraction. The key difference is in the way the scheduler is
dealt with. In ESST, the scheduler is directly executed, using
techniques similar to explicit-state model checking. In S3ST, the
scheduler is analyzed by combining concrete execution of parts
of its state, with the evolution of a symbolically represented set
of configurations of interaction parameters.

We have implemented S3ST in the KRATOS software model
checker, and have performed an experimental evaluation on a
significant set of benchmarks with parametric scheduler-thread
interaction. The results clearly demonstrate the effectiveness of
the new approach.

I. INTRODUCTION

System designs, in many embedded-system settings, are

becoming software. Such designs are amenable for high-speed

simulations before synthesizing the hardware description. The

software typically consists of a set of threads that are activated

by a scheduler that implements a set of domain-specific

rules. Particularly relevant are multi-threaded software with

cooperative (or non-preemptive) scheduling policy: a thread

executes, without any interruption, until it either terminates or

explicitly yields the control to the scheduler.

Especially in the early stages of the development process,

system designs feature parametric interactions between threads

and scheduler. For example, when a thread suspends itself, it

does so by calling a suitable scheduler primitive, specifying

the duration of the suspension as argument. However, such

duration is not necessarily a known numerical constant, but

may be modeled in the design by a parameter for which

the designer has not selected a value. Thus, the verification

process must show that the required properties hold for all

subsequent choices of values to the interaction parameters. We

also remark that the semantics of some important high-level

design languages (e.g. SystemC [1]) allows the parameters of

the scheduler-thread interaction primitives to range over reals,

thus resulting in timed traces. Restricting the parameters to

range over the integers (representing numbers of cycles of

fixed duration) is only an approximation.

The problem of model checking cooperative threads

has been recently tackled with Explicit-Scheduler/Symbolic-
Threads (ESST) [2]). ESST combines explicit state tech-

niques to analyze the scheduler with symbolic techniques,

based on the lazy predicate abstraction [3], to analyze the

threads. ESST orchestrates the analysis of the threads by the

direct execution of the scheduler. The threads communicate

with each other through shared variables, and communi-

cate/interact with the scheduler (e.g., querying and updating

scheduler states) by calling primitive functions provided by

ESST. ESST is not able to verify designs with parametric

scheduler-thread interactions. In fact, the ability to directly

execute the scheduler during the search follows directly from

the assumption that the values for the interaction parameters

are statically determined.

In this paper, we overcome the limitation of ESST by

proposing a new technique, called Semi-Symbolic Sched-
uler/Symbolic Threads (S3ST), that is able to deal with

parametric thread-scheduler interactions.

Similar to ESST, in S3ST the threads are analyzed by

means of the lazy predicate abstraction. The key difference is

that the scheduler, instead of being explicitly executed, is dealt

with in a semi-symbolic manner, by combining concrete exe-

cution of parts of its state, with the evolution of a symbolically

represented set of configurations of interaction parameters.

The approach is based on the following steps. First, we

introduce a symbolic representation of time delays for each

event, and further abstract the time delays of event notifications

with the relations between the symbolic representations. Such

an abstraction is carried out by the symbolic analysis, and is

passed to the scheduler when it is run. Second, we enable the

scheduler to perform reasoning on the relations between the

symbolic representations of the time delays. This reasoning

determines which event notifications should be triggered at

the earliest future time. This can be reduced to checking

the satisfiability modulo theory (SMT) [4] of formulas that

symbolically represent sets of possible time delays. Third, we

enable symbolic analysis, via the lazy predicate abstraction, on

the part of the scheduler that modifies the time delays. The

part concerns the phase of the scheduler that accelerates the

simulation time. This step is non-trivial, because the scheduler

must operate on both concrete and symbolic data.

The introduction of ESST was originally motivated by the

attempt to avoid performing the lazy predicate abstraction on

the scheduler. In order not to lose the ESST advantages, it

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

122

update phase

updates

run
thread

select
thread

threads
runnable

time
acceleration notification

delta

channel
updates notification

delta

evaluation phase

threads
no runnable

notification
timed

no runnable threads

fail

no fail

initialization phase

end

start

channel

Fig. 1. The SystemC scheduler.

is necessary to control the interactions between the concrete

and symbolic data during the scheduler runs. We introduce

a technique for predicate filtering, that carefully determines

which predicates are relevant to compute the evolution of the

scheduler.

In the following we focus on parametric SystemC designs,

whose parameters can determine the amount of time delays of

event notifications. We have implemented the S3ST algorithm

within the KRATOS software model checker [5]. We per-

formed an experimental evaluation on a significant set of new

benchmarks and benchmarks adapted from [6], [7] that stress

S3ST algorithm. In the experimental evaluation we compare

S3ST against the sequentialization approach [2], where the

verification problem is reduced to the problem of verifying a

sequential program. We also compare S3ST against ESST,

by generating non-parametric threaded designs by random

sampling the space of parameters. The results of experiments

show the effectiveness of S3ST, not only for verification, but

also for bug finding.

The paper is organized as follows. Section II provides a

background on SystemC and overviews the ESST algorithm.

Section III explain the inability of ESST to handle designs

with parametric event-notification time delays. Section IV

describes the proposed extension to the ESST algorithm.

Section V describes some related work. Section VI presents

the results of the experimental evaluation. Finally, Section VII

concludes this paper and outlines some future work.

II. BACKGROUND

SystemC is a C++ library that consists of a core language

for modeling the components of a system design and their

interconnections, and a simulation kernel (or a scheduler) for

fast simulations of the design. The core language models

system components by means of modules (or C++ classes) and

abstracts communication between modules by means of chan-

nels. SystemC provides several primitive channels such as sig-

nal, mutex, semaphore, and queue. A module can have one or

more thread definitions that model the parallel behavior of the

system design. The core language provides general-purpose

events as synchronization mechanisms between threads.

The SystemC scheduler runs the threads during simulations.

Following the SystemC semantics in [1], the scheduler consists

of several phases (see Figure 1). In the initialization phase
all channels are initialized. The scheduler then enters the

evaluation phase where it executes all runnable threads while

postponing the materialization of channel updates performed

by the threads. This phase employs a cooperative scheduling

policy with mutually-exclusive thread execution. When there

are no more runnable threads, the scheduler goes into the up-
date phase where it materializes all channel updates postponed

during the evaluation phase. An evaluation phase followed by

an update phase constitutes a delta cycle. A thread, during

its execution, can perform delayed event notifications. That

is, the involved events will be notified at some time in the

future, including at the delta notification. The materializations

of channel updates also often require the events associated with

the updated channels to be notified at the delta notifications.

In turn, all threads that are waiting for the notified events

or are sensitive to the channels whose associated events

are notified become runnable. If, after the delta notification,

there are runnable threads, the scheduler goes back to the

evaluation phase to run them. Otherwise, it accelerates the

simulation time to the nearest time point where there exist

events to be notified. These events are then notified at the timed
notification. Similar to the delta notification, some waiting

threads can become runnable after the timed notifications, and

thus the scheduler has to go back to the evaluation phase to

run them. If there are no more events to be notified at some

future time, denoted in Figure 1 by failure in time acceleration,

then the simulation ends.

SystemC provides several synchronization functions. For

example, when a thread calls wait(e) for an event e, then

the thread suspends itself and waits for the notification of e.

If another thread calls e.notify(), then all threads waiting

for the notification of e are made runnable immediately during

the current delta cycle. Event notifications can be delayed. If

a thread calls e.notify(t), for a time t, then e will not be

notified immediately. If t is a constant zero, then e will be

notified at the delta-notification, otherwise it will be notified

after the simulation time accelerates t time units. Similarly, if a

thread calls wait(t), then it suspends itself and will become

runnable at the timed notification after the simulation time

accelerates t time units.

Explicit-Scheduler/Symbolic-Threads (ESST) [2], [8] is an

effective technique for the verification of shared-variable
multi-threaded software with cooperative scheduling and

mutually-exclusive thread executions. The threads communi-

cate with each other through shared variables, and communi-

cate with the scheduler (e.g., querying and updating scheduler

states) through a set of primitive functions provided by ESST.

ESST is a counter-example guided abstraction refinement

(CEGAR) [9] technique that combines explicit and symbolic

model checking techniques. It analyzes each thread with the

lazy predicate abstraction [3], and orchestrates the whole

verification by the direct execution of the scheduler using

techniques similar to explicit-state model checking. That is,

ESST keeps track of the state of the scheduler explicitly, and

includes the scheduler as part of the verification algorithm.

For the direct execution of the scheduler, ESST needs precise

scheduler states, and thus it requires the arguments passed to

the primitive function calls to be constants. Both the scheduler

and the set of primitive functions are left abstract, but they are

required to exhibit a cooperative scheduling policy.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

123

The ESST algorithm is based on the construction and

analysis of an abstract reachability forest (ARF) that describes

the reachable abstract states of the multi-threaded program. An

ARF consists of connected abstract reachability trees (ART’s),

each of which is obtained by unwinding the control-flow graph

(CFG) of the running thread. For a program with N threads,

an ARF node is a tuple (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S), where li
and ϕi are, respectively, the location and the region of thread

i, ϕ is the global region, and S is the scheduler state. Regions

are formulas describing the values of program variables, while

the scheduler state maintains information about the states of

the threads as a mapping from scheduler variables to concrete

values.

An ARF is constructed by unwinding the CFGs of threads,

and by executing the scheduler. Each ART in the ARF is

constructed using the lazy predicate abstraction as for the case

of sequential programs. In particular, when the operation of the

unwound CFG edge involves a call to a primitive function,

then ESST has a primitive executor that takes as inputs the

scheduler state and the call to a primitive function, and returns

the updated scheduler state obtained from directly executing

the function call.

Given a node (〈l1, ϕ1〉, . . . , 〈li, ϕi〉, . . . , 〈lN , ϕN 〉, ϕ, S),
such that there are no running threads indicated by S, ESST

runs the scheduler on S. The scheduler itself is a function that

takes a scheduler state S (with no running thread) as an input

and outputs a set {S′1, . . . , S′m} of scheduler states representing

all possible schedules such that there is only one running

thread in S
′
i for i = 0, . . . ,m. Each of these states forms

an ARF node (〈l1, ϕ1〉, . . . , 〈li, ϕi〉, . . . , 〈lN , ϕN 〉, ϕ, S′j), that

becomes the root of a new ART of the subsequent running

thread. Coverage checks and refinements in ESST are similar

to that of the lazy predicate abstraction. In particular, the

subsumption checks are done thread-wise and require the

scheduler states to coincide. We refer the reader to [2], [8]

for the details on coverage checks and on the ARF refinement

techniques.

To verify SystemC designs, we specialize ESST to SystemC

by instantiating the ESST scheduler with the SystemC sched-

uler, and by defining a set of primitive functions that imple-

ment the synchronization functions of SystemC. For example,

for an event e and a time t, the SystemC synchronization

functions wait(e), wait(t), and e.notify(t) correspond,

respectively, to the primitive functions wait_event(e),

wait_time(t), and notify_event(e,t).

III. PARAMETRIC THREAD-SCHEDULER INTERACTIONS

We focus on parametric designs where the values for the

parameters can control the interaction between the threads

and the scheduler. In particular we are interested in verifying

parametric SystemC designs where the values of parameters

determine the amount of delays of event notifications. For

example, the design can contain a call notify_event(e,t)

or wait_time(t) where t is non-constant and its values

depend on the value of some parameters. Subsequently, we

refer to such a form of design as SystemC designs with
parametric event-notification time delays.

To verify SystemC designs, ESST maintains information

about threads and events in the scheduler state. For each

thread T , the domain of the scheduler state includes the

scheduler variables stT and evT that keep track of, respec-

tively, the state of T and the event whose notification is

awaited by T . The variable stT ranges over the enumerations

{Waiting ,Runnable,Running}, whose meanings are obvi-

ous. The variable evT ranges over the events in the design

and are relevant only when stT is Waiting . For each thread

T , we implicitly introduce an event eT whose notification is

awaited by the thread when it suspends itself, e.g., by calling

the timed wait function wait_time(t), for a time t.
For each event e, the domain of scheduler states in-

cludes the scheduler variables ste and timee that keep

track of, respectively, the state and the notification time

delay of e. The variable ste ranges over the enumerations

{Notified ,Delta,Timed ,None}, where Notified indicates

that the event is notified, Delta and Timed indicate that the

event will be notified at, respectively, the delta notification

and the timed notification, and None indicates that there is no

notification. The value of timee is a concrete time that ranges

over R≥0 and is relevant only when ste is Timed .

The parameters that determine the event notification delays

may range over R
≥0. Such parameters cause state explosion.

That is, to keep track of such delays, ESST requires infinitely

many scheduler states, which in turn needs infinitely many

ARF nodes to represent the reachable abstract states. Thus,

ESST cannot handle SystemC designs of our interest.

IV. SEMI-SYMBOLIC SCHEDULER/SYMBOLIC THREADS

The proposed technique for verifying SystemC designs with

parametric event-notification time delays is called S3ST, for

Semi-Symbolic Scheduler/Symbolic Threads, and is based on

the following ideas. First, the threads are analyzed by means

of the lazy predicate abstraction technique, in order to build

an ARF. Second, the primitive executor is able to handle

calls to primitive functions with non-constant time arguments,

by enabling the lazy predicate abstraction on the definitions

of primitive functions. Third, the scheduler is modeled in

such a way that it can perform reasoning on symbolic data

carried by the thread and the global regions of ARF nodes.

Similar to the primitive executor, the lazy predicate abstraction

is enabled on the part of the scheduler that constrains and

modifies the time delays, that is, the delta-notification, the

timed-notification, and the time acceleration phases. Finally,

we ensure that the ARF construction explores all schedules

allowed by the possible combinations of event notifications.

Time-Delay Variables. To overcome the state explosion prob-

lem described in Section III, we first introduce, for each event

e, a time-delay variable ϑe as a symbolic representation (or a

symbolic value) of all possible time delays for the notification

of e. The variable timee in the scheduler state now ranges over

R
≥0∪{ϑe}. For example, in analyzing a call to wait_time(t)

by a thread T , for a non-constant time t, the primitive executor

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

124

produces an updated scheduler state that maps steT to Timed ,

timeeT to ϑeT , stT to Waiting , and evT to eT .

Primitive Function Executor. A key idea of our approach

is to abstract the time delays of event notifications by the

relations between the time-delay variables. These relations are

carried by the regions of the ARF nodes, and are analyzed

by the lazy predicate abstraction. To this end, we first need

to make the time-delay variables visible to the lazy predicate

abstraction. Second, we require the primitive executor to pro-

vide the lazy predicate abstraction with part of the definition

of the called primitive function that updates the time delays.

Let P be a threaded program with N threads, T1, . . . , TN .

We denote by SVar the set of shared variables of P , by LVarT
the set of local variables of the thread T in P , and by VarP the

set of all variables in P . We assume that LVarT ∩ SVar = ∅
for every thread T and LVarTi

∩ LVarTj
= ∅ for each two

different threads Ti and Tj . To make time-delay variables

visible to the lazy predicate abstraction, we consider them as

being shared variables in P . That is, given a set {e0, . . . , em}
of events in P , we have {ϑe0 , . . . , ϑem} ⊆ SVar . Besides an

updated scheduler state, the primitive executor generates on-

the-fly a loop-free program defining the update of the time-

delay variable. This program is then analyzed by the lazy

predicate abstraction.

Let SState be the set of scheduler states, PrimCall be the

set of primitive function calls, and LFProgP be the set of

loop-free programs over the variables in VarP . For simplicity

of presentation, we assume that primitive functions do not

return any value. The primitive executor for P in S3ST is the

function

SEXEC : (SState × PrimCall)→ (SState × LFProgP)

that takes a scheduler state and a primitive function call as in-

put, and outputs an updated scheduler state along with a loop-

free program. For example, in executing wait_time(exp)

called by a thread T , for some expression exp, besides

outputting an updated scheduler state, as explained before, the

primitive executor generates the program

assume(exp >= 0); ϑeT := exp.

Note that, the time-delay variables are viewed as symbolic

values by scheduler states, but as program variables by the

lazy predicate abstraction.

The scheduler to determine which events to notify at the

delta- and timed-notification needs to know the relations

among the time-delay variables of the events with constant and

non-constant delays. Thus, to enable lazy predicate abstraction

to discover predicates that speak about such relations, even if

the time delays are constants, the primitive executor always

generates the loop-free program.

Semi-Symbolic Scheduler. The scheduler consists of the

phases shown in Figure 1. Particularly, in the delta- and timed-

notification the scheduler has to reason about the relations

between time-delay variables to determine which events to

notify. Due to the parameters that affect the time delays, there

can be more than one combination of events that can be noti-

fied in those phases. Different combinations can result in the

simulation time being accelerated to different earliest future

times. The scheduler though must allow for the exploration of

all possible combinations. Moreover, similar to the primitive

executor, because the time acceleration essentially updates the

time delays, the scheduler must generate on-the-fly programs

representing the updates of the time-delay variables.

The S3ST scheduler is the function

SCHED : ARFNode → P(P(SState)× LFProgP)

that takes an ARF node η as an input and returns a set

{(S1, P
lf
1), . . . , (Sn, P

lf
n)} where Si is a set of scheduler

states and P lf
i is a loop-free program. Particularly for SystemC

verification, each Si is a result of notifying a different set of

events in the delta- or timed-notification. In what follows we

focus on the timed-notification of the scheduler; the delta-

notification can be explained in a similar way.

We denote by S[x0 �→ v0, . . . , xn �→ vn] the scheduler state

obtained from a scheduler state S by replacing the images of

xi in S with vi for i = 0, . . . , n. For simplicity of presentation,

we assume that the relations over the time-delay variables and

over the parameters are tracked by the global regions of the

ARF nodes.

The procedure TIMEDNOTIFICATION shown in Algorithm 1

implements the time acceleration and the timed-notification of

Figure 1. Let (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S) be the input ARF

node, and let TE be the set of events with Timed state.

TIMEDNOTIFICATION checks for every non-empty subset

E = {e0, . . . , em} of TE whether the events in E can be

notified at the same earliest future time, while delaying further

the notifications of others in TE . This is done by analyzing

the time-delay variables and their relations carried by the

global region ϕ. The analysis amounts to checking, by the

procedure SAT, if the conjunction between ϕ, the equalities

ϑe0 = · · · = ϑem , and the inequalities ϑe0 > 0 ∧ ∧{ϑeo <
ϑe′ | e′ ∈ TE \ E} is satisfiable. If it is, then the simulation

time is accelerated by the procedure ACCELERATETIME, the

events in E are notified, and the threads that are waiting for

the notifications of the events in E are woken up by the

procedure WAKEUPTHREADS, by changing the threads’ states

from Waiting to Runnable .

Intuitively, the procedure TIMEDNOTIFICATION tries all

possible combinations of event notifications. If the satisfia-

bility check of the set E is successful, then it means that all

events in E can be notified at the same earliest future time,

while postponing the notifications of the other events in TE .

The procedure ACCELERATETIME is shown in Algorithm 2.

The first for-loop sets the variable timee of the event e in

TE to ϑe if timee0 has the symbolic value ϑe0 . But, note

that, if timee0 and timee are concrete values, then the time

acceleration is the same as in the ESST scheduler, i.e., it

simply subtracts the value of timee0 from the value of timee
and sets the result as the new value for timee. The pseudo-

code following the first for-loop generates a loop-free program

P lf that represents the formula checked by SAT, as well

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

125

Algorithm 1: TIMEDNOTIFICATION

Input : An ARF node (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S).
Output: A set R of pairs (S′, P lf) of a scheduler state S′ and a

loop-free program P lf .
R ← ∅
TE ← {e | S(ste) = Timed}
if TE �= ∅ then

for E ∈ P(TE) andE �= ∅ do
Let E = {e0, . . . , em}
Eq ← ϑe0 = · · · = ϑem
InEq ← ϑeo > 0 ∧∧{ϑeo < ϑe′ | e′ ∈ TE \ E}
if SAT(ϕ ∧ Eq ∧ InEq) then

(S′, P lf) ← ACCELERATETIME(S, E)
S′ ← S′[ste0 �→ Notified , . . . , stem �→ Notified]
S′ ← WAKEUPTHREADS(S′)
S′ ← S′[ste0 �→ None, . . . , stem �→ None]
R ← R

⋃{(S′, P lf)}

Algorithm 2: ACCELERATETIME

Input : A pair (S, E) of a scheduler state S and a non-empty set E of
to-be-notified events.

Output: A pair (S′, P lf) of a scheduler state S′ and a loop-free
program P lf .

Let E = {e0, . . . , em}
S′ ← S

TE ← {e | S(ste) = Timed}
for e ∈ TE do

if S(timee0) = ϑe0 then S′ ← S′[timee �→ ϑe]
else

if S(timee) �= ϑe then
t ← S(timee)− S(timee0)
S′ ← S′[timee �→ t]

P lf ← “assume(ϑe0 > 0);”
for e ∈ TE do

if e ∈ E then P lf ← P lf + “assume(ϑe = ϑe0);”

else P lf ← P lf + “assume(ϑe > ϑe0);”

P lf ← P lf + “ϑe := ϑe - ϑe0;”

as the updates of time-delay variables caused by the time

acceleration. For example, if E = {e0} and TE = {e0, e1},
such that timee0 is mapped to the time-delay variable in the

input scheduler state, then the generated loop-free program is:

assume(ϑe0 > 0);
assume(ϑe0 = ϑe0); ϑe0 := ϑe0 - ϑe0;
assume(ϑe1 > ϑe0); ϑe1 := ϑe1 - ϑe0;

The result of TIMEDNOTIFICATION is a set

{(S1, P lf
1), . . . , (Sn, P

lf
n)} of pairs of a scheduler state

and a loop-free program. Each scheduler state Si has

some runnable threads that must be run in the evaluation

phase. That is, for each Si such that stTi0
, . . . , stTim

are mapped to Runnable , the scheduler generates a set

Si = {S0i , . . . , Smi } of scheduler states where each S
j
i is

Si[stTij
�→ Running]. Finally, the scheduler returns the set

{(S1, P
lf
1), . . . , (Sn, P

lf
n)}.

ARF Construction. Similar to ESST, the S3ST algorithm is

based on the construction of ARF by unwinding the CFGs of

threads and by executing the scheduler. Expanding an ARF

node involves computing the abstract strongest post-condition
SPπ

op(ψ) of a region ψ with respect to the operation op and

the precision π. The operation op can be the operation labeling

the unwound CFG edge or the loop-free program generated by

the primitive executor or by the scheduler. The precision π is

a set of predicates that are associated locally with a thread

(or a location in the CFG of a thread) or associated with the

global region.

We expand an ARF node η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S)
by means of the following rules:

E1. There is a running thread i in S that performs an

operation op and (li, op, l
′
i) is an edge of the CFG of

thread i:

• If op is not a call to a primitive function, then let

ôp be op and S
′
= S.

• If op is a call to a primitive function, then (S
′, ôp) =

SEXEC(S, op).

The successor node is (〈l1, ϕ′
1〉, . . . , 〈l′i, ϕ′

i〉, . . . ,
〈lN , ϕ′

N 〉, ϕ′, S′), where

• ϕ′
i = SPπl′i

ôp (ϕi ∧ ϕ),

• ϕ′
j = SPπlj

HAVOC(ôp)(ϕj ∧ ϕ) for j �= i, and

• ϕ′
= SPπ

ôp(ϕ).

The function HAVOC collects all global variables possi-

bly updated by ôp, and builds a new operation where

these variables are assigned with fresh variables. The

precisions πl and π are associated with the location

l of the corresponding CFG and the global region,

respectively.

E2. There is no running thread in S. For each (S, P lf
) ∈

SCHED(η) and for each scheduler state S
′ ∈ S, we

create a successor node (〈l1, ϕ′
1〉, . . . , 〈lN , ϕ′

N 〉, ϕ′, S′),
where

• ϕ′
j = SPπlj

HAVOC(P lf)(ϕj ∧ ϕ), for j = 1, . . . , n, and

• ϕ′
= SPπ

P lf (ϕ).

such that the successor node becomes the root node of

a new ART added to the ARF.

Note that the strongest post-condition with respect to P lf can

always be computed because P lf is a loop-free program.

Similar to ESST, the construction of an ARF in S3ST

starts with a single ART representing reachable states of the

main thread. In the root node of that ART all regions are

initialized with True , all thread locations are set to the entries

of the corresponding threads, and the only running thread in

the scheduler state is the main thread.

The ARF is expanded using the rules E1 and E2. An

ARF is complete if it is closed under the expansion of

those rules. An ARF is safe if it is complete and, for

every node (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S) in the ARF such

that ϕ ∧ ∧i=1,...,n ϕi is satisfiable, none of the locations

l1, . . . , lN are error locations. If one of the locations l1, . . . , lN
is an error location, we build a counter-example consisting

of paths in the trees of the ARF and check if the counter-

example is feasible. Unlike ESST, in the building of counter-

example S3ST has to take into account the generated loop-

free programs. If the counter-example is feasible, then we have

found a real counter-example witnessing that the program is

unsafe. Otherwise, we use it to discover predicates to refine

the ARF. Coverage checks and refinements of S3ST are the

same as those of ESST. We refer to [8] for further details.

Note that, because the updates of the time-delay variables

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

126

are represented by the on-the-fly generated programs that are

analyzed symbolically, the existing refinement methods of

ESST can discover predicates that speak about the relations

between time-delay variables.

Predicate Filtration. One possible bottleneck in S3ST is

there can be too many predicates about the relations between

time-delay variables that have to be tracked during the ARF

construction. The more predicates to track, the more expensive

the computations of abstract strongest post-conditions. To

alleviate this problem, we perform a predicate filtration that

looks up the scheduler state to filter out predicates that contains

“inactive” time-delay variables during the computations of

abstract strongest post-conditions.

Let q be a predicate and S be a scheduler state. Denote

by fvar(q) the set of free variables occurring in q and by

Θ(S) the set of time-delay variables such that, for each ϑe

in Θ(S), we have S(ste) = None . Given an ARF node

η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S) to be expanded with an

operation ôp such that the successor scheduler state is S
′,

then instead of computing the successor global region ϕ′ as

SPπ
ôp(ϕ), we compute ϕ′ as SPπ′

ôp(ϕ), where π′
= π \ {q ∈

π | fvar(q) ∩ Θ(S
′
) �= ∅}. The successor thread regions can

be computed similarly.

Partial-Order Reduction (POR). POR [10] alleviates the

problem of exploring a large number of redundant thread

interleavings by exploiting the commutativity of concurrent

transitions that result in the same state when they are executed

in different orders. The POR techniques developed for ESST

in [6] are applicable to S3ST. In [6] we have the procedure

PERSISTENT that implements the persistent-set technique. The

procedure takes as inputs an ARF node η and a set S of

scheduler states resulting from a scheduler run, and outputs

a subset of S. For S3ST, we simply run PERSISTENT(η, Si)

for each Si in {(S1, P
lf
1), . . . , (Sn, P

lf
n)} = SCHED(η).

We remark that, the S3ST approach is not a form of

POR, particularly because TIMEDNOTIFICATION explores all

possible combinations of event notifications. Indeed we can

optimize TIMEDNOTIFICATION by techniques inspired by

POR. Suppose that we can partition the set of threads in

the system design such that in each partition the variables

accessed by the threads and the events notified and waited

by the threads are disjoint from those of other partitions.

Such a partitioning is often possible on a system design that

consists of components that do not interact with each other.

Given partitions of threads, if a subset E′ of E of events

to be notified by TIMEDNOTIFICATION wake up threads in

partitions different from those woken up by the events in

E \ E′, and the notifications of events in E′ can be delayed,

then we do not explore the possibility to notify E′ together

with E \ E′, but only explore the case where the notification

of E′ is further delayed.

Correctness. Let S3STSC be the specialization of S3ST to

SystemC, as explained above. In what follows, we assume

to work on a threaded program P (representing a SystemC

design) with N threads T1, . . . , TN . Following the program-

ming framework in [8], a configuration γ of P is a tuple

〈γT1 , . . . , γTN
, gs, S〉 where (1) each γTi = (li, si) is a thread

local configurations, where li is a program location and si is a

mapping (or state) from LVarTi
to values, (2) gs is a mapping

(or state) from SVar to values, and (3) S is a scheduler state.

Given a configuration γ and an expression e consisting of

variables in SVar and LVarTi (for i = 1, . . . , N), we denote

by γ(e) the value resulting from the evaluation of e over γ. The

evaluation can be extended naturally to the case of multiple

expressions as arguments. For a configuration γ with S as

its scheduler state, we denote by γ[S′/S] the configuration

obtained from γ by replacing S with a scheduler state S
′.

Given a state s, we denote by Dom(s) the domain of s. For

two states s1, s2 with disjoint domains, we denote by s1 ∪ s2
the union s1 and s2 such that, for every x ∈ Dom(s1 ∪ s2),
we have (s1 ∪ s2)(x) = s1(x) if x ∈ Dom(s1), otherwise

(s1 ∪ s2)(x) = s2(x). Let ϕ be a formula over variables in

the domain of a state s, we denote by s |= ϕ for a state s
satisfying ϕ.

Let η = (〈l1, ϕ1〉, . . . , 〈lN , ϕN 〉, ϕ, S) be an ARF node.

We denote by eq(S) the conjunctions of equalities induced

by the mappings in S. We say that the configuration γ =

〈(l′1, s1), . . . , (l′N , sN), gs, S′〉 satisfies the node η, denoted by

γ |= η, if for all i = 1, . . . , N , we have li = l′i, si ∪ gs |= ϕi,⋃
i=1,...,N si∪gs |= ϕ, and

⋃
i=1,...,N si∪gs∪S′ |= ϕ∧eq(S).

Following [8], the semantics of each n-ary primitive func-

tion f is defined by an n + 1-ary function f̂ that takes as

input, in addition to the arguments of f , a scheduler state S

and returns an updated scheduler state S
′. For the correctness

of S3STSC, we assume that the primitive executor SEXEC

implements correctly the definitions of primitive functions. Let

η, η′ be ARF nodes such that η′ is obtained from η by applying

rule E1, where the operation op is a call f(�e) to primitive

function f with expressions �e as the arguments. Then, for

configurations γ, γ′ such that γ |= η, S is the scheduler state

of γ, and γ′
= γ[f̂(γ(�e), S)/S], we have γ′ |= η′.

In what follows, we show that the scheduler SCHED of

S3STSC explores all possible combinations of event notifi-

cations. First, let η be an ARF node such that there is no

running thread indicated by its scheduler state. Let (S, P lf
) ∈

SCHED(η) and S ∈ S, we denote by ηS,S the successor node

obtained from S and S by rule E2. Second, the SystemC

scheduler, as in [8], can be implemented by a function Sched
that takes a scheduler state as an input and outputs a set of

scheduler states.

Lemma 1: Let η be an ARF node such that there are

no running threads in its scheduler state, and let γ be a

configuration such that γ |= η and S is γ’s scheduler state.

Let Ŝ = Sched(γ) be the set of scheduler states obtained

by running the scheduler. Then, there are a pair (S, P lf
) ∈

SCHED(η) and a one-to-one correspondence C between Ŝ
and S such that, for every scheduler state S

′ ∈ Ŝ, we have

γ[S′/S] |= ηS,C(S).

Proof: (Sketch) The proof of this lemma relies on the fact

that TIMEDNOTIFICATION of SCHED enumerates all possible

combinations of event notifications yielded by configurations

that satisfy the ARF node η.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

127

Intuitively, the above lemma says that, for any configuration

that satisfies the ARF node η, the successor configuration

obtained by running the scheduler Sched is in the set of con-

figurations represented by the successor abstract state obtained

by running S3STSC’s scheduler SCHED.

The following theorem states the correctness of S3STSC:

Theorem 1: Let P be a SystemC design with parametric

event-notification time delays. For every terminating execu-

tion, S3STSC(P) returns a safe ARF if and only if P is safe

for all possible values of its parameters.

Proof: (Sketch) The proof can be derived from that of

ESST in [8]. The correctness of S3STSC relies on the above-

mentioned assumption about the primitive executor SEXEC

and Lemma 1. In particular the computations of abstract

strongest post-condition on the on-the-fly generated loop-free

programs over-approximate the set of possible values for the

time-delay variable ϑe of an event e when ste is Timed .

V. RELATED WORK

There has been a large amount of work on developing tech-

niques for the verification of both sequential and concurrent

(or multi-threaded) programs; see [11] and the related work

section of [8] for recent surveys. Most of these techniques do

not address timed systems, and assume to deal only with a

simple non-deterministic scheduler.

Sequentialization. One popular approach to verifying multi-

threaded programs is by means of sequentialization. In this

approach the multi-threaded program is translated into a

(non-deterministic) sequential program that is behaviorally

equivalent, or equivalent up to some bounds (e.g., number of

context switches), to the multi-threaded program. The resulting

program is then analyzed by off-the-shelf techniques for se-

quential programs. Our previous work in [2] on sequentializing

SystemC designs is already able to handle SystemC designs

with parametric event-notification delays because the sequen-

tialization captures the precise semantics of the SystemC

scheduler. Indeed, the sequentialization approach can be used

to verify general parametric SystemC designs. However, as

demonstrated in that paper, the approach does not scale up to

large designs.

The work in [12] is concerned with the verification of safety

properties of periodic real-time systems with priority-sensitive

scheduling. The verification is based on the translation of the

system into a sequential program that over-approximates all

executions of the system up to some time bound. The resulting

sequential program is then verified using bounded model

checking (BMC). Similar to our work, the work abstracts

time via job-bounded abstraction. However, due to being over-

approximations, the analysis of the sequential programs can

result in false warnings.

Timed and Hybrid Systems. Other branch of work on the

analysis of timed systems is in the context of timed and hybrid

systems/automata [13], [14]. The analysis mostly abstracts

away data variables, and particularly for timed automata,

the analysis cannot handle non-deterministic inputs. Notable

exceptions are the SMT-based verification of timed and hybrid

automata in [15], [16]. The work in [15] reduces schedulability

analysis of parametric timed automata to reachability of error

location in the symbolic representation (SMT formulas) of

the automata. The reachability analysis is done via BMC and

is complete only for periodic systems. The analysis involves

neither abstraction nor refinement processes. The work in [16]

is concerned with the scenario verification of hybrid systems.

Similar to [15], the hybrid systems are represented symboli-

cally as SMT formulas and analyzed by means of BMC.

Path Exploration and Test Case Generation. Techniques

that involve mixed symbolic and concrete executions have also

been developed in the context of automated path exploration

and test cases generations. Popular approaches have been

implemented in DART (Directed Automated Random Test-

ing) [17], EXE [18], SPF (Symbolic PathFinder) [19], [20],

and S2E [21] DART performs bounded concrete executions

on random inputs, while at the same time collects the path

constraints of the executed paths. The constraints are then

systematically negated to obtain new input values that will

direct the next concrete executions to alternative paths. These

steps are repeated until the coverage criteria is achieved. EXE

and SPF essentially perform symbolic executions, but perform

concrete executions to simplify the path constraints. S2E

interleaves concrete and symbolic executions. On switching

from concrete execution to symbolic one, S2E generalizes the

concrete values to symbolic values, and run simultaneously

concrete and symbolic executions. On switching in the reverse

direction, S2E performs lazy concretization by on-demand

instantiations of symbolic data.

VI. EXPERIMENTAL EVALUATION

We have implemented the S3ST algorithm, and its spe-

cialization to SystemC, in the KRATOS software model

checker [5].

Setup. We have carried out an experimental evaluation using

new benchmarks and benchmarks derived from [6] and [7].

The derived benchmarks generalize the original ones by adding

parameters that control the time delays of event notifications.

The number of added parameters corresponds to the number of

primitive function calls that concern event notifications (which

is linear with the number of threads). For each benchmark x
from [6] and [7], we call the derived benchmark p-x. The

benchmarks that exhibit thread-scheduler interaction delays

that may vary from cycle to cycle are marked with a �.

We compared the S3ST algorithm with the sequentialization

approach described in [2]. For the experiments with S3ST, we

enabled partial-order reduction. For the sequentialization, we

experimented with the lazy predicate abstraction of KRATOS

and CPACHECKER SVN revision 6080 [22], the eager abstrac-

tion of SATABS-3.0 [23], and the BMC of CBMC-4.0 [24].

For CBMC, we set the number of loop unwinding to 3 and

only considered the unsafe benchmarks.

We ran our experiments on an Intel Xeon 3GHz box with

4GB of RAM, and running Linux. We set the time limit to

1000s and the memory limit to 2GB.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

128

Data to reproduce our experiments is available at http://es.

fbk.eu/people/roveri/tests/fmcad2012.

Results. Table I shows the results of experiments. The column

V shows the status of the benchmarks: S for safe and U for

unsafe. For each tool we report the execution time in seconds.

We use T.O for out of time, M.O for out of memory, U.R for

returning unknown, E.R for having run time errors, and N.A

for not available. For S3ST, we performed experiments with

and without predicate filtration (resp. columns PF and No-PF).

In general, it is clear that S3ST outperforms the sequen-

tialization techniques. For the sequentialization approach, a

close inspection on KRATOS reveals that, even for the small

p-token-ring.2 benchmark, the analysis has to keep track

of 45 predicates. For CBMC, the * mark on the results indicate

that, due to insufficient loop unwindings, CBMC reports that

the benchmarks are safe. Any attempt to increase the number

of loop unwindings results in out of time. We also see that

the impact of the predicate filtration is very significant for

the scalability of S3ST. For example, for p-token-ring.4

benchmark the predicate filtration, on average, can filter out

44% of predicates used in the abstraction computations. Fi-

nally, we notice that the � benchmarks, featuring cycle-varying

parameters, are even harder for sequentialization.

The following table shows the behavior of S3ST when the

number of parameters in the benchmarks is increased. We

present the results for the p-token-ring.10 and the p-toy

benchmarks that have, respectively, 11 and 3 parameters.

(Other benchmarks show a similar behavior.)
p-token-ring.10 p-toy

#Parameters 0 1 2 3 4 5 6 7 8 0 1 2 3

Run Time 1.6 23.6 27.6 33.4 42.2 61.8 289.5 448.2 743.0 2.5 4.7 99.7 99.8

ARF Nodes 1378 2513 3422 4673 5941 9324 21110 24558 28018 673 787 4245 4233

#Preds 23 54 56 60 66 74 84 96 110 23 27 55 54

For the p-token-ring.10 table, the column j shows the ex-

periment on a benchmark obtained from p-token-ring.10

by concretizing 11 − j parameters with some constants.

Similarly for the p-toy table. The presence of parameters

potentially increases the number of thread interleavings that

S3ST has to explore, as shown by the number of visited ARF

nodes. For the experiments reported in the p-token-ring.10

table, the predicate filtration is effective in reducing the num-

ber of predicates that concern the relations of the time-delay

variables: on average, 41.46% reduction. However, S3ST still

has to keep track of the predicates that concern the relations

between the constraints over the parameters themselves. The

more parameters, the more predicates it has to track, as

indicated in the row #Pred. Analyzing benchmarks containing

both constant and parametric time delays can be as hard as

analyzing those containing only parametric time delays. Recall

that the scheduler uses the relations between the time-delay

variables to determine the events to notify. Thus, even though

the time delay of the notification of an event is a constant,

S3ST may still have to keep track of predicates containing

the time-delay variable associated with that event.

We have also investigated the possibility of analyzing

with ESST the benchmarks obtained by grounding the time

delay parameters with a number of (random) values. For

TABLE I
RESULTS OF EXPERIMENTAL EVALUATION (IN SEC).

S3ST Sequentialization

Name V PF No-PF KRATOS CPA SATABS CBMC

p-kundu-bug-1 U 1.18 1.19 23.18 U.R 375.04 5.26

p-kundu-bug-2 U 0.87 0.89 44.54 U.R T.O 22.04

p-kundu S 54.62 62.66 T.O U.R T.O N.A

p-mem-slave-tlm.1 S 10.07 38.87 T.O E.R 531.79 N.A

p-mem-slave-tlm.2 S 54.16 T.O T.O M.O 878.71 N.A

p-mem-slave-tlm.3 S 185.95 T.O T.O M.O T.O N.A

p-mem-slave-tlm.4 S 517.00 T.O T.O M.O T.O N.A

p-mem-slave-tlm.5 - T.O T.O T.O E.R T.O N.A

p-mem-slave-tlm-bug.1 U 6.65 25.18 T.O M.O T.O *306.33

p-mem-slave-tlm-bug.2 U 35.64 882.55 T.O M.O T.O *286.46

p-mem-slave-tlm-bug.3 U 106.80 T.O T.O M.O T.O *278.67

p-mem-slave-tlm-bug.4 U 402.51 T.O T.O M.O T.O *293.06

p-mem-slave-tlm-bug.5 U 991.57 T.O T.O M.O T.O *323.01

p-mem-slave-tlm-bug2.1 U 4.23 4.79 T.O M.O T.O *295.68

p-mem-slave-tlm-bug2.2 U 15.48 17.58 T.O M.O T.O *295.17

p-mem-slave-tlm-bug2.3 U 43.17 45.87 T.O M.O T.O *283.85

p-mem-slave-tlm-bug2.4 U 99.73 104.42 T.O M.O T.O *306.81

p-mem-slave-tlm-bug2.5 U 236.81 244.65 T.O M.O T.O *336.84

p-pc-sfifo-1 S 3.45 4.29 T.O U.R 197.29 N.A

p-pc-sfifo-2 S 3.49 4.00 239.01 U.R 193.05 N.A

p-token-ring.1 S 0.56 0.59 20.97 83.22 904.94 N.A

p-token-ring.2 S 1.49 2.09 T.O M.O T.O N.A

p-token-ring.3 S 3.49 13.48 T.O M.O T.O N.A

p-token-ring.4 S 8.08 430.58 T.O M.O T.O N.A

p-token-ring.5 S 14.73 T.O T.O M.O T.O N.A

p-token-ring.6 S 27.84 T.O T.O M.O T.O N.A

p-token-ring.7 S 70.53 T.O T.O M.O T.O N.A

p-token-ring.8 S 192.87 T.O T.O E.R T.O N.A

p-token-ring.9 S 789.14 T.O T.O M.O T.O N.A

p-token-ring.10 - T.O T.O T.O M.O T.O N.A

p-token-ring-bug.1 U 0.47 0.49 14.73 20.59 485.92 6.47

p-token-ring-bug.2 U 1.18 1.29 T.O E.R 773.84 16.62

p-token-ring-bug.3 U 2.49 5.09 T.O M.O T.O *33.83

p-token-ring-bug.4 U 5.68 95.05 T.O M.O T.O *91.53

p-token-ring-bug.5 U 9.98 T.O T.O E.R T.O *154.57

p-token-ring-bug.6 U 17.76 T.O T.O M.O T.O *250.71

p-token-ring-bug.7 U 45.55 T.O T.O M.O T.O *478.11

p-token-ring-bug.8 U 106.39 T.O T.O M.O T.O *752.50

p-token-ring-bug.9 U 537.08 T.O T.O M.O T.O T.O

p-token-ring-bug.10 U T.O T.O T.O M.O T.O T.O

p-token-ring-bug2.1 U 0.48 0.49 14.05 15.51 465.44 6.55

p-token-ring-bug2.2 U 1.39 1.59 T.O M.O 740.50 20.55

p-token-ring-bug2.3 U 3.56 6.49 T.O E.R T.O *46.87

p-token-ring-bug2.4 U 8.76 103.04 T.O M.O T.O *81.79

p-token-ring-bug2.5 U 24.66 T.O T.O M.O T.O *165.14

p-token-ring-bug2.6 U 47.55 T.O T.O M.O T.O *310.16

p-token-ring-bug2.7 U 100.49 T.O T.O M.O T.O *499.32

p-token-ring-bug2.8 U 372.45 T.O T.O M.O T.O *748.97

p-token-ring-bug2.9 U 925.20 T.O T.O M.O T.O T.O

p-token-ring-bug2.10 - T.O T.O T.O M.O T.O T.O

p-toy-bug-1 U 13.66 18.39 T.O M.O T.O *47.09

p-toy-bug-2 U 25.04 24.88 T.O M.O T.O *52.23

p-toy S 99.90 T.O T.O M.O T.O N.A

p-transmitter.1 U 0.07 0.09 8.20 7.73 470.19 2.84

p-transmitter.2 U 0.29 0.29 T.O E.R 618.49 *8.96

p-transmitter.3 U 0.49 0.49 T.O E.R T.O *21.49

p-transmitter.4 U 0.89 0.99 T.O M.O T.O *43.43

p-transmitter.5 U 1.59 1.79 T.O E.R T.O *101.71

p-transmitter.6 U 2.49 2.99 T.O M.O T.O *180.11

p-transmitter.7 U 3.97 4.89 T.O M.O T.O *299.19

p-transmitter.8 U 5.89 7.89 T.O M.O T.O *503.97

p-transmitter.9 U 8.57 12.38 T.O M.O T.O *815.18

p-transmitter.10 U 11.66 20.08 T.O M.O T.O T.O

rod1-bug.c � U 28.89 34.16 T.O M.O T.O *312.76

rod1.c � S 285.18 308.38 T.O M.O T.O N.A

rod2.c � S 76.84 88.13 T.O M.O T.O N.A

modtrans-bug.c U 64.77 379.59 T.O M.O T.O *643.61

modtrans-nudc-bug1.c � U 238.11 T.O T.O M.O T.O *583.50

modtrans-nudc-bug2.c � U 232.91 T.O T.O M.O T.O *569.42

modtrans-nudc-bug3.c � U 131.25 657.79 T.O M.O T.O *584.66

modtrans-nudc-bug4.c � U 111.53 675.21 T.O M.O T.O *604.64

modtrans-nudc1.c � S 211.64 T.O T.O M.O T.O N.A

modtrans-nudc2.c � U 157.75 649.20 T.O M.O T.O *827.36

modtrans-rec1-bug1.c U 4.08 4.89 T.O M.O T.O *588.06

modtrans-rec1-bug2.c U 4.09 4.90 T.O M.O T.O *602.50

modtrans-rec1.c - T.O T.O T.O M.O T.O N.A

modtrans-rec2-bug1.c U 6.27 17.58 T.O M.O T.O *585.99

modtrans-rec2-bug2.c U 4.49 6.89 T.O M.O T.O *607.05

modtrans-rec2.c - T.O T.O T.O M.O T.O N.A

modtrans.c - T.O T.O T.O M.O T.O N.A

modtrans2-nudc-bug1.c � U 143.80 T.O T.O M.O T.O *810.07

modtrans2-nudc-bug2.c � U 173.04 T.O T.O M.O T.O *567.25

modtrans2-nudc-bug3.c � U 236.81 T.O T.O M.O T.O *564.44

modtrans2-nudc-bug4.c � U 237.52 T.O T.O M.O T.O *561.79

modtrans2-nudc-bug5.c � U 226.81 T.O T.O M.O T.O *804.03

modtrans2-nudc1.c � U 150.09 720.50 T.O M.O T.O *557.49

modtrans2-nudc2.c � U 159.44 705.55 T.O M.O T.O *565.91

ss1.c � U 4.59 6.98 T.O M.O T.O *235.45

ss2-bug.c � U 1.19 1.29 38.04 M.O T.O *7.12

train-hytech-bug1.c � U 0.29 0.29 T.O M.O 883.89 472.02

train-hytech-bug2.c � U 0.29 0.30 T.O M.O 995.21 451.60

train-hytech-bug3.c � U 13.79 15.88 T.O M.O 784.59 492.15

train-hytech-bug4.c � U 13.78 15.68 T.O M.O 784.22 454.18

train-hytech1.c � S 34.46 57.56 T.O M.O 787.31 N.A

train-hytech2.c � S 34.25 52.34 T.O M.O 789.87 N.A

train1-bug.c � U 0.99 1.09 T.O M.O T.O *208.07

train1.c � S 1.59 1.59 T.O M.O T.O N.A

train2-bug.c � U 2.59 2.78 T.O M.O T.O *200.73

train2.c � S 2.09 2.19 T.O M.O T.O N.A

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

129

TABLE II
RESULTS OF GROUNDING APPROACH VS. S3ST.

Number of Ground Values (ESST) S3ST

2 3 4 5 6

#Unsafe/Safe/T.O 1/9/0 3/7/0 4/6/0 4/4/2 2/0/8 -

Max. Unsafe Time 12.9 47.2 193.8 700.8 828.7 25.1

Avg. Unsafe Time 12.9 39.9 159.5 457.2 590.6 25.1

Max. Safe Time 12.1 51.8 167.5 388.8 - -

Avg. Safe Time 5.7 32.4 115.8 305.2 - -

p-toy-bug-2

example, given a primitive function call wait_time(t) for

a non-constant time t and assume that t ranges over the set

{v0, . . . , vk} of concrete values, we replace the call with the

following code:

assume(t == v0 || . . . || t == vk);
if (t == v0) wait_time(v0); . . .;
if (t == vk) wait_time(vk);

This is clearly an under-approximation, that can only be used

for bug finding. The results for p-toy-bug-2 are reported on

Table II. The column k reports the results of 10 experiments

with k concrete values. The table also compares the grounding

approach with S3ST (on the original parametric benchmark).

The table shows that increasing the number of values may in-

crease the chance to find violations; however, the performance

of ESST degrades (and possibly times out), even when it does

find the bug.

VII. CONCLUSION AND FUTURE WORK

We have presented a novel approach, called S3ST, to

the verification of designs where the interactions between

thread and scheduler are parametric. The key feature of the

approach is the semi-symbolic analysis of the scheduler, that

requires a careful control of the interactions between the

concrete and symbolic data. The approach allows us to verify

parametric designs that are out of reach for techniques based

on sequentialization, and is also competitive for bug finding.

For future work, we want to improve further the scalability

of ESST and S3ST by applying symmetry reduction, and to

generalize the methods to the case of multi-threaded software

that is parameterized on the number of threads.

REFERENCES

[1] D. Tabakov, G. Kamhi, M. Y. Vardi, and E. Singerman, “A Temporal
Language for SystemC,” in FMCAD, A. Cimatti and R. B. Jones, Eds.
IEEE, 2008, pp. 1–9.

[2] A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri, “Verifying
SystemC: A software model checking approach,” in FMCAD, R. Bloem
and N. Sharygina, Eds. IEEE, 2010, pp. 51–59.

[3] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in POPL. ACM, 2002, pp. 58–70.

[4] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability, ser. Frontiers in Art. Int.
and Applications, A. Biere, M. Heule, H. van Maaren, and T. Walsh,
Eds. IOS Press, 2009, vol. 185, pp. 825–885.

[5] A. Cimatti, A. Griggio, A. Micheli, I. Narasamdya, and M. Roveri,
“Kratos - a software model checker for SystemC,” in CAV, ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp.
310–316.

[6] A. Cimatti, I. Narasamdya, and M. Roveri, “Boosting Lazy Abstraction
for SystemC with Partial Order Reduction,” in TACAS, ser. LNCS, P. A.
Abdulla and K. R. M. Leino, Eds., vol. 6605. Springer, 2011, pp.
341–356.

[7] D. Campana, A. Cimatti, I. Narasamdya, and M. Roveri, “An analytic
evaluation of SystemC encodings in promela,” in SPIN, ser. LNCS,
A. Groce and M. Musuvathi, Eds., vol. 6823. Springer, 2011, pp.
90–107.

[8] A. Cimatti, I. Narasamdya, and M. Roveri, “Software model checking
with explicit scheduler and symbolic threads,” Journal of Logical Meth-
ods in Computer Science, vol. 8, no. (2:18), 2012, arXiv:1206.3182v2
[cs.LO], http://arxiv.org/abs/1206.3182.

[9] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[10] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems - An Approach to the State-Explosion Problem, ser. LNCS.
Springer, 1996, vol. 1032.

[11] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

[12] S. Chaki, A. Gurfinkel, and O. Strichman, “Time-bounded analysis
of real-time systems,” in FMCAD, P. Bjesse and A. Slobodova, Eds.
FMCAD Inc, 2011, pp. 72–80.

[13] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson,
W. Yi, and M. Hendriks, “Uppaal 4.0,” in QEST. IEEE, 2006, pp.
125–126.

[14] R. Alur, “Formal verification of hybrid systems,” in EMSOFT,
S. Chakraborty, A. Jerraya, S. K. Baruah, and S. Fischmeister, Eds.
ACM, 2011, pp. 273–278.

[15] A. Cimatti, L. Palopoli, and Y. Ramadian, “Symbolic computation of
schedulability regions using parametric timed automata,” in IEEE Real-
Time Systems Symposium. IEEE Computer Society, 2008, pp. 80–89.

[16] A. Cimatti, S. Mover, and S. Tonetta, “Efficient scenario verification for
hybrid automata,” in CAV, ser. LNCS, G. Gopalakrishnan and S. Qadeer,
Eds., vol. 6806. Springer, 2011, pp. 317–332.

[17] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in PLDI, V. Sarkar and M. W. Hall, Eds. ACM,
2005, pp. 213–223.

[18] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically Generating Inputs of Death,” ACM Trans. Inf. Syst.
Secur., vol. 12, no. 2, 2008.

[19] C. S. Pasareanu, N. Rungta, and W. Visser, “Symbolic execution with
mixed concrete-symbolic solving,” in ISSTA, M. B. Dwyer and F. Tip,
Eds. ACM, 2011, pp. 34–44.

[20] C. S. Pasareanu and N. Rungta, “Symbolic pathfinder: symbolic execu-
tion of java bytecode,” in ASE, C. Pecheur, J. Andrews, and E. D. Nitto,
Eds. ACM, 2010, pp. 179–180.

[21] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for in-
vivo multi-path analysis of software systems,” in ASPLOS, R. Gupta and
T. C. Mowry, Eds. ACM, 2011, pp. 265–278.

[22] D. Beyer and M. E. Keremoglu, “CPAchecker: A Tool for Configurable
Software Verification,” in CAV, ser. LNCS, G. Gopalakrishnan and
S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 184–190.

[23] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav, “SATABS:
SAT-Based Predicate Abstraction for ANSI-C,” in TACAS, ser. LNCS,
N. Halbwachs and L. D. Zuck, Eds., vol. 3440. Springer, 2005, pp.
570–574.

[24] E. M. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C
Programs,” in TACAS, ser. LNCS, K. Jensen and A. Podelski, Eds., vol.
2988. Springer, 2004, pp. 168–176.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

130

Deciding Floating-Point Logic
with Systematic Abstraction

Leopold Haller∗, Alberto Griggio†, Martin Brain∗, Daniel Kroening∗
∗Computer Science Department, University of Oxford, Oxford, UK

first.last@cs.ox.ac.uk
†Fondazione Bruno Kessler, Trento, Italy

griggio@fbk.eu

Abstract—We present a bit-precise decision procedure for the
theory of binary floating-point arithmetic. The core of our ap-
proach is a non-trivial generalisation of the conflict analysis al-
gorithm used in modern SAT solvers to lattice-based abstractions.
Existing complete solvers for floating-point arithmetic employ
bit-vector encodings. Propositional solvers based on the Conflict
Driven Clause Learning (CDCL) algorithm are then used as a back-
end. We present a natural-domain SMT approach that lifts the
CDCL framework to operate directly over abstractions of floating-
point values. We have instantiated our method inside MATHSAT5
with the floating-point interval abstraction. The result is a sound
and complete procedure for floating-point arithmetic that out-
performs the state-of-the-art significantly on problems that check
ranges on numerical variables. Our technique is independent of
the specific abstraction and can be applied to problems beyond
floating-point satisfiability checking.

Index Terms—floating point, decision procedures, abstract in-
terpretation.

I. INTRODUCTION

Floating-point computations are used pervasively in low-

level control software and embedded applications. Such pro-

grams are frequently used in areas where safety is of critical

importance, such as the automotive and aerospace industry.

Floating-point numbers have a dual nature that complicates

complete logical reasoning. On the one hand, they are approxi-

mate representations of real numbers, suggesting a numeric ap-

proach to their analysis. On the other hand, their discrete nature

leads to “odd behaviours”, which purely numeric techniques are

ill-equipped to handle.

Current complete satisfiability decision procedures for con-

straints over floating-point numbers are based on bit-vector

encodings [1]. The resulting instances are often hard for cur-

rent Satisfiability Modulo Theory (SMT) solvers. On the other

hand, inexpensive techniques such as floating-point interval

propagation [2] can be employed to solve some instances very

efficiently.

To illustrate this point, consider the formula x ∈ [0.0, 10.0]∧
y = x5 ∧ y > 10

5, over double-precision floating-point

variables x and y. Interval propagation can deduce in a fraction

Supported by the Toyota Motor Corporation, ERC project 280053, EPSRC
project EP/H017585/1, and the FP7 STREP PINCETTE.† Supported by Provincia Autonoma di Trento and the European Commu-
nity’s FP7/2007-2013 under grant agreement Marie Curie FP7 – PCOFUND-
GA-2008-226070 “progetto Trentino”, project ADAPTATION.

of a second that y ∈ [0.0, 100000.0] holds, which contradicts

the final conjunct y > 10
5. In stark contrast, the SMT solver

Z3 requires 16 minutes on a modern processor to prove un-

satisfiability of a corresponding bit-vector encoding. Likewise,

it is possible to construct very simple formulas that interval

propagation cannot solve: Consider the floating-point formula

z = y ∧ x = y · z ∧ x < 0. Standard interval propagation

cannot determine that y · z must be positive and fails to prove

unsatisfiability. Z3 solves the problem above in less than a

second.

The power of an incomplete proof technique such as interval

propagation can be boosted by decomposing the proof attempt

into cases. In classic DPLL(T) [3], for example, a SAT solver

based on the Conflict Driven Clause Learning (CDCL) algo-

rithm enumerates cases by assigning predicates occurring in the

formula to candidate truth values. A separate theory decision

procedure is then used to check whether the resulting cases are

consistent.

In the above examples, classic DPLL(T) would not be able to

provide a further refinement since all predicates must be true for

the formulas to be satisfiable. However, further decomposition

into cases is still possible if we directly enter the domain of the

theory. If we assume that y < 0 it follows that z < 0, which is

sufficient to show that x > 0. The complementary case y ≥ 0

can be shown with similar ease. A complete procedure can be

obtained in this way since i) interval propagation is complete

for sufficiently small cases, e.g., the case where every variable

is assigned to a singleton range and ii) there is a finite number

of such cases that need to be checked.

In essence, it is possible to use the DPLL(T) framework to

perform case splitting directly in the theory [4]. This requires

introduction of a potentially large number of new propositions

to represent theory facts and makes implementation of good

learning heuristics difficult, since the propositional learning

algorithm is unaware of the theory semantics associated with

propositions. To handle problems such as the above, the emerg-

ing area of natural domain SMT procedures [5]–[9] aims at

increasing the power of SMT techniques by lifting them directly

to richer logics. For example, where a CDCL solver makes

decisions that force Boolean variable to true or false, a natural

domain SMT solver for linear integer arithmetic may set a

variable to some specific integer value [6]. Such procedures

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

131

typically require custom, domain-specific decision heuristics

and learning procedures.

The work presented in this paper can be seen as a systematic

derivation of a learning algorithm for floating-point logic from

an abstract domain. We exploit a simple insight, advocated in

an earlier paper [10]: Propositional SAT solvers internally op-

erate over a lattice-theoretic abstraction that overapproximates

the space of possible solutions. Natural liftings of CDCL-style

learning to richer logics can be obtained by considering a wider

scope of abstractions.

In this paper, we show how the FIRST-UIP learning algo-

rithm [11] used in CDCL solvers can be lifted to a wider range

of domains. This lifting is non-trivial since it has to address the

additional complexity of abstractions for domains that go be-

yond propositional logic. We present a new implementation of

our approach for floating-point logic as part of the MATHSAT5

framework. The implementation outperforms approaches based

on bit-blasting significantly on our set of benchmarks.

Contribution: The contributions of this paper are three-

fold: (i) we present a novel natural domain solver for the theory

of floating-point arithmetic that significantly outperforms the

state of the art; (ii) we introduce a lifting of the FIRST-UIP

conflict analysis algorithm used in modern SAT solvers to

abstractions, (iii) we evaluate our work on a set of benchmarks.

Outline: Section II provides a brief introduction to

floating-point numbers, the theory of floating-point arithmetic

and some formal background on abstract interpretation. Sec-

tion III gives a high-level account of model search and conflict

analysis over abstract domains. The main algorithmic contribu-

tion is presented in Section IV: A lifting of the FIRST-UIP algo-

rithm to abstract domains. The implementation of our floating-

point solver, the specific heuristics we used and experiments

are discussed in Section V. An extensive survey of related work

from the areas of theorem proving, abstract interpretation, and

decision procedures is given in Section VI.

II. FLOATING-POINT ARITHMETIC AND ABSTRACTION

A. Floating-Point Arithmetic

This section gives an informal introduction to the theory of

floating-point arithmetic. For an exhaustive treatment, see [12]

which formalises the IEEE-754 floating-point standard as an

SMT theory.

Floating-point numbers are approximate representations of

the reals that allow for fixed size bit-vector encoding. A

floating-point number represents a real number as a triple of

positive integers (s,m, e), consisting of a sign bit s taken

from the set of Booleans B =̂ {0, 1}, a significand m and an

exponent e. Its real interpretation is given by (−1)s · m · 2e.

Note that all numbers have a sign, therefore, the real number 0

is represented both by an unsigned zero +0 and a signed zero
−0.

A floating-point format determines the number of bits used

for encoding significand and exponent. The IEEE-754 standard

defines several floating-point formats and their bit-encodings.

An example of an IEEE-754 binary16 floating-point number

is given below.

1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0

s e m

= −1 · 218−15 · 1.3359375
= −10.6875

Some bit-patterns are used to encode the special values positive

infinity +∞, negative infinity−∞, and NaN , which represents

an invalid arithmetic result. We do not go into details regarding

this encoding and simply define F to be the set of all floating-

point numbers including the special values.

Terms in FPA are constructed from floating-point variables,

constants, standard arithmetic operators and special operators

such as square roots and combined multiply-accumulate oper-

ations used in signal processing. Most operations are parame-

terized by one of five rounding modes. The result of floating-

point operations is defined to be the real result (computed with

‘infinite precision’) rounded to a floating-point number using

the chosen rounding mode.

Formulas in FPA are Boolean combinations of predicates

over floating-point terms. In addition to the standard equality

predicate =, FPA offers a number of floating-point specific

predicates including a special floating-point equality =F, and

floating-point specific arithmetic inequalities < and ≤. Since

these operators approximate real comparisons they have un-

usual properties. For example, any comparison with the value

NaN returns false, therefore =F is not reflexive since NaN =F

NaN does not hold. On the other hand, +0 and −0 compare as

equal since they represent the same real number.

B. Lattices and Abstractions

Following the theory of abstract interpretation [13] we define

abstraction in terms of lattices and closure operators. A com-
plete lattice is a partially ordered set (P,!) in which any subset

S ⊆ P has a unique least upper bound
⊔

S and unique greatest

lower bound
�
S. A complete lattice has a least element ⊥

and a greatest element �. A powerset lattice of a set Q is

a complete lattice (℘(Q),⊆) with least upper bound
⋃

, and

greatest lower bound
⋂

. A transformer on P is a monotone

function f : P → P . Transformers over P form a complete

lattice under the pointwise order, f ! g if ∀p ∈ P.f(p) ! g(p).
Least upper bounds and greatest lower bounds extend pointwise

to the transformer lattice, e.g., f # g = λp. f(p) # g(p). We

denote the least fixed point of a transformer g as lfpX. g(X)

or lfp g, and the greatest fixed point gfpX. g(X) or gfp g. The

image of f is the set Img(f) =̂ {f(p) | p ∈ P}.
A closure operator on P is a transformer ζ : P → P such

that for all p, q ∈ P , (i) ζ is extensive, i.e., p ! ζ(p) and

(ii) ζ is idempotent, i.e., ζ(p) = ζ(ζ(p)). An abstraction of

a lattice (P,!) is a complete sublattice (Q,!) with Q ⊆ P ,

such that Q = Img(ζ) for some closure operator ζ. We call P
the concrete and Q the abstract domain. The closure operator

ζ maps a set to its most precise abstract representation. We

assume throughout this paper that ζ(⊥) = ⊥. An abstract
transformer g : Q → Q is an overapproximation of a

transformer f : P → P if ∀q ∈ Q. f(q) ! g(q) and an

underapproximation if ∀q ∈ Q. g(q) ! f(q). The unique best
overapproximation of f : P → P w.r.t. to a closure operator ζ
is the function g = ζ ◦ f ◦ ζ. A best underapproximation does,

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

132

in general, not exist.

Example II.1 (Intervals for ℘(F)). Intervals approximate sets

of numbers by their closest enclosing range. In addition to the

arithmetic ordering ≤, the IEEE-754 standard dictates a total

order % over all floating-point values, including special values

such as NaN . The interval abstraction is defined by a closure

operator ζ : ℘(F)→ ℘(F) where ζ(S) =̂ {v ∈ F | min�(S) %
v % max�(S)}.
C. Logic and Abstraction

In this section, we summarise our basic framework for

model-theoretic approximations of logical formulas using ab-

straction (see [10] for more details) and show how it applies

to FPA. Let Forms be the set of formulas, Structs be a set of

semantic structures. The semantics of a logic are given as an

interpretation function �·�· : (Forms × Structs) → B. An

element σ ∈ Structs is a model of a formula ϕ ∈ Forms
if �ϕ�σ = 1 and a countermodel otherwise. A formula is

satisfiable if it has a model and unsatisfiable otherwise.

Semantic structures in FPA are given by floating-point assign-
ments, defined as FloatAsg =̂ Vars → F, where Vars is a

finite set of first-order variables.

For a formula ϕ, we define two transformers on the powerset

lattice ℘(Structs).

Definition II.1. The model transformer modsϕ and the conflict
transformer confsϕ are defined as follows.

modsϕ(S) =̂ {σ ∈ Structs | σ ∈ S ∧ �ϕ�σ = 1}
confsϕ(S) =̂ {σ ∈ Structs | σ ∈ S ∨ �ϕ�σ = 0}

The model transformer maps a set of structures to its smallest

subset that contains the same models. The conflict transformer

(also referred to as the universal countermodel transformer
in [10]) maps a set of structures to its largest superset that

contains the same models. The model transformer can be used

to refine an overapproximation of a set of models, and the

conflict transformer to generalise an underapproximate set of

countermodels.

Satisfiability can be expressed in terms of these opera-

tors. Note that modsϕ and confsϕ are idempotent, therefore

modsϕ(Structs) = gfpmodsϕ and confsϕ(∅) = lfp confsϕ.

Theorem 1. The following statements hold.
1) gfpmodsϕ = ∅ exactly if ϕ is unsatisfiable.
2) lfp confsϕ = Structs exactly if ϕ is unsatisfiable.

We can compute these fixed points abstractly to perform

incomplete satisfiability checks. Propositional solvers use the

partial assignment abstraction [10]. For example a partial as-

signment 〈p:true, q:false〉 abstractly represents the set of as-

signments σ from propositions to truth values, where σ(p) =

true and σ(q) = false and all other propositions may be mapped

to either truth value.

In this paper, we use the interval abstraction. Recall that

IEEE-754 requires a total ordering %. We use it to define an

interval abstraction for the powerset lattice ℘(FloatAsg). An

interval assignment, written 〈x1 : [l1, u1], . . . , xk : [lk, uk]〉, is

a set of floating-point assignments {σ | ∀i. li % σ(xi) % ui}.
We denote the set of all interval assignments by IF, which forms

a complete lattice under the set order ⊆. The closure operator

defining the interval abstraction is given as ζ(S) =̂ 〈x1 :

[l1, u1], . . . , xk : [lk, uk]〉 where li = min�{σ(xi)|σ ∈ S}
and ui = max�{σ(xi)|σ ∈ S}.

For example, let f = {x �→ 4.2, y �→ 2.3} and g = {x �→
1.8, y �→ 10.5}, then applying ζ yields ζ({f, g}) = 〈x :

[1.8, 4.2], y : [2.3, 10.5]〉.
We can use the interval abstraction to approximate the fixed

points of Theorem 1.

Theorem 2. Let amodsϕ be an overapproximation of modsϕ
and let aconfsϕ be an underapproximation of confsϕ.

1) If gfp amodsϕ = ∅ then ϕ is unsatisfiable.
2) If lfp aconfsϕ = Structs then ϕ is unsatisfiable.

One view is that overapproximations of modsϕ perform

deduction by establishing necessary properties of models, while

underapproximations of confsϕ perform abduction by finding

sufficient conditions (or explanations) for conflicts.

III. LIFTING CDCL TO ABSTRACTIONS

CDCL consists of two interacting phases, model search and

conflict analysis. Model search aims to find satisfying assign-

ments for the formula. This process may fail and encounter

a conflicting partial assignment, that is, a partial assignment

that contains only countermodels. Conflict analysis extracts

a general reason which is used to derive a new lemma over

the search space in the form of a clause. In this section we

show how model search and conflict analysis can be lifted to

abstractions to yield an Abstract CDCL (ACDCL) algorithm. We

assume familiarity with CDCL [14].

A. Abstract Model Search
Model search alternates two steps, deductions and decisions,

which refine a given partial assignment. We model these steps

as transformers on abstract lattices.
1) Deduction: Deduction rules are overapproximations of

the model transformer. Modern CDCL solvers use efficient but

imprecise overapproximations, such as the unit rule.

Definition III.1. A deduction rule for an abstraction Q of

℘(Structs) and formula ϕ ∈ Forms is an overapproximation

ded : Q→ Q of modsϕ.

Example III.1. Consider the formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 with

ϕ1 =̂ (5 ≤ x ≤ 10), ϕ2 =̂ (x = y) and ϕ3 =̂ (y = z). We

define a deduction rule ded(S) =̂
�

i∈{1,2,3} ζ(modsϕi(ζ(S)))
by computing the best overapproximations of modsϕi for

i ∈ {1, 2, 3} and intersecting the result. We now compute the

greatest fixed point gfp ded which is the analogue of performing

Boolean constraint propagation in propositional solvers, where

F0 = � and Fi = ded(Fi−1).

F0 = FloatAsg F1 = 〈x : [5.0, 10.0]〉
F2 = F1 # 〈y : [5.0, 10.0]〉 F3 = F2 # 〈z : [5.0, 10.0]〉

The resulting element F3 = 〈x : [5.0, 10.0], y : [5.0, 10.0], z :

[5.0, 10.0]〉 imprecisely overapproximates the set of models.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

133

2) Decisions: Once no new information can be deduced,

a CDCL solver makes a decision by restricting the value of

a proposition p to a truth value v. In lattice theoretic terms,

this can be viewed as computation of the greatest lower bound

π # 〈p : v〉, where π is the original partial assignment.

In terms of the abstraction, an important property of single-

ton partial assignments is that their complement is precisely

expressible as a partial assignment. We generalise:

Definition III.2. Let Q be an abstraction of ℘(Structs). The

set of complementable elements Comp(Q) ⊆ Q is the set of all

q ∈ Q such that q = Structs \ q is also in Q. A transformer

f : Q→ Q is complementable if Img(f) ⊆ Comp(Q).

Example III.2 (Complementable elements). Complementable

interval assignments map a variable to a half-open interval. The

element σ = 〈x : [+0,max�(F)]〉 is complementable, the

elements 〈x:[1, 2]〉 and 〈x:[1,max�(F)], y:[4.2,max�(F)]〉 are

not.

For convenience, we write complementable elements

〈x:[c,max�(F)]〉 and 〈x:[min�(F), c]〉 as 〈x & c〉 and 〈x % c〉,
respectively.

Modern CDCL solvers implement decision heuristics that use

statistical information generated from the execution history of

the procedure. Since we do not intend to give a fully stateful

account of CDCL here, we abstractly formalise this idea by

defining H to be a set of execution histories.

Definition III.3. A decision heuristic for an abstraction Q of

℘(Structs) and ϕ ∈ Forms is a function decide : H → Q →
Q s.t. for all h ∈ H, q ∈ Q, decide(h)(q) is a complementable

element and q # d = q implies that q is a set of models of ϕ.

B. Abstract Conflict Analysis

Model search iterates deduction and decisions until a con-

flicting element a is encountered, that is, an element that does

not represent any models. The aim of conflict analysis is to

obtain a more general element a′ ⊇ a that is still conflicting.

Conflict analysis can be viewed as an instance of abductive rea-

soning, since the goal is to find a general reason or explanation

for a given deduction.

1) Abduction: A conflict analysis procedure computes a

propositional abduction rule, which generalises explanations

for a deduction π over a formula ϕ. We model this as a

transformer abdϕ,π : PartAsg → PartAsg such that for any

model σ ∈ abdϕ,π(π
′
) of ϕ, σ is in π′ or in π. In other words,

the transformer may only introduce models that are in π. We

generalise:

Definition III.4. An abduction rule for an abstraction Q of

℘(Structs), an element q ∈ Q and a formula ϕ ∈ Forms
is an extensive underapproximation abdϕ,q : Q → Q of the

transformer λx. confsϕ(x) ∪ q.

Essentially, one could simply work with underapproxima-

tions of confsϕ. The slight variation presented above allows

to find explanations not only for conflicts, but also for specific

deductions q.

2) Choice: Note that in contrast to deduction rules, which

are overapproximations, there is no single best underapprox-

imate abduction rule. In general, multiple maximally general

abduction rules of incomparable generality may exist.

Example III.3. Let ϕ = . . . ∧ (p ∨ q) ∧ (p ∨ ¬q) be a propo-

sitional CNF formula, and assume that the partial assignment

π = 〈p : 0, q : 1〉 is conflicting with ϕ. The presence of either

assignment to p or q is sufficient to deduce the other. We can

build two incomparable abduction transformers abd1 and abd2

with abd1
ϕ,⊥(π) = 〈p:0〉 and abd2

ϕ,⊥(π) = 〈q:1〉.
Example III.4. Let ϕ = x + y ≤ 10.0 be an FPA formula.

The interval assignment σ = 〈x < 10.0, y % 10.0〉 is

conflicting w.r.t. ϕ, since x + y is at least 20.0. We can build

two incomparable abduction transformers, abd1 and abd2 with

abd1
ϕ,⊥(σ) = 〈x % 10.0, y % 0.0〉 and abd2

ϕ,⊥(σ) = 〈x %
1.0, y % 9.0〉.

The abduction rule used in propositional CDCL solvers is

computed using a graph-based algorithm which will be dis-

cussed in more detail in the next section. The absence of a best

abduction operator is reflected by the possibility of extracting

various incomparable partial assignments from a single graph.

Among these, one is heuristically chosen. We formalise this

heuristic choice as a function that takes as argument an exe-

cution history and returns an abduction rule.

Definition III.5. A choice heuristic for an abstraction Q of

℘(Structs), q ∈ Q and ϕ ∈ Forms is a function chooseq,ϕ :

H → Q → Q s.t. for all h ∈ H, chooseϕ,q(h) is an abduction

rule for q and ϕ.

IV. LEARNING IN ABSTRACT IMPLICATION GRAPHS

Effective learning is essential for the performance of CDCL.

Learning algorithms in CDCL solvers operate over an implica-

tion graph, a data structure that records decisions and the result

of deductions. We present a generalisation to abstract implica-

tion graphs. There are various aspects of the CDCL framework

that we do not discuss here, such as restarts, backjumps and

learning of asserting clauses. These can also be lifted from the

propositional case in a relatively straightforward way.

A. Abstract Trails from Complementable Decompositions

Partial assignments and intervals share an important property

regarding the decomposition of lattice elements.

Example IV.1. Let π = 〈x:1, y:0, z:1〉 be a partial assignment.

The element π is not complementable, but it can be decomposed

into π = 〈x:1〉 # 〈y:0〉 # 〈z : l〉. Each element of the above

decomposition is complementable.

Now let σ = 〈x : [0.5, 2.2], y : [0.5,max�(F)]〉 be

an interval assignment. Analogous to the previous case, the

complement of σ is not an interval assignment, but σ can be

decomposed into complementable elements as 〈x & 0.5〉#〈x %
2.2〉 # 〈y & 0.5〉.
Definition IV.1. An abstraction Q of ℘(Structs) has comple-
mentable decompositions if for every element q of Q there is a

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

134

finite set S ⊆ Comp(Q) of complementable elements such that

q =
�
S.

As illustrated above, both partial assignments and interval as-

signments admit complementable decompositions. We assume

the existence of a decomposition function decomp : Q →
℘(Comp(Q)). Implication graph construction necessitates a

decompositon of deduction rules into complementable trans-

formers.

Example IV.2. Let ded be the best deduction rule over interval

assignments for the predicate −x = y, and let σ = 〈x :

[5.0, 10.0]〉. It holds that ded(σ) = σ # 〈y : [−10.0,−5.0]〉.
We can decompose ded into a set of complementable rules

Ded = {ded l
x, ded

u
x, ded

l
y, ded

u
y} s.t.

�
Ded = ded , and each

of the elements of Ded infers a lower or an upper bound on

x or y: ded l
x(σ) = 〈x & 5.0〉, dedu

x(σ) = 〈x % 10.0〉,
ded l

y(σ) = 〈y & −10.0〉 and dedu
y (σ) = 〈y % −5.0〉.

Abstract Trail: CDCL solvers record decisions and deduc-

tions in a stack-based data structure called trail, which records

variable assignments due to decisions and deductions. Deduc-

tions are associated with the clause used to derive them.

An abstract trail is a finite sequence of complementable

elements in Comp(Q). We denote the i-th element of a trail

tr by tr i, the concatenation of two sequences tr , tr ′ by tr · tr ′
and the subsequence tr i . . . tr j by tr i:j . In Algorithm 1, we

give a generic model search procedure that extends an abstract

trail tr and maps trail indices to reasons in a map reasons .

The procedure can be instantiated over any abstraction Q with

complementable decompositions and a decomposition Ded of

the deduction rule into complementable rules.

modelSearch(tr , reasons , Ded)
loop

repeat
forall the ded ∈ Ded do

q ← ded(
�

tr);
if (

�
tr) � q �

�
tr then

tr ← tr · q;
reasons[|tr |] ← ded ;

end
if q = ⊥ then return (tr , reasons)

end
until tr unchanged;
q ← decide(getHistory())(

�
tr);

if q �� �
tr then return SAT ;

tr ← tr · q;

Algorithm 1: Model search with Abstract Trail

The current abstract element is represented by the greatest

lower bound
�
tr . Deduction iterates over all deduction rules

ded ∈ D, and appends a new element to the abstract trail

if applying ded refines
�
tr . If a conflict is deduced, the

procedure returns the trail and the reason map. This process is

iterated until no new deductions can be made, at which point a

decision is attempted. If the current element cannot be refined

further, SAT is returned, otherwise the procedure appends the

decision to the trail and reenters the deduction phase.

B. FIRST-UIP in Abstract Conflict Graphs

In propositional CDCL, a trail implicitly encodes a graph

structure that records dependencies between deductions on

the trail. The edges are represented implicitly by the clauses

associated with each element. The FIRST-UIP algorithm [15] is

a popular strategy for learning: it is a strategy to choose a set

of nodes in this graph called a cut that suffices to produce a

conflict. We now give a generalisation of FIRST-UIP to abstrac-

tions. Naively lifting the algorithm is insufficient to learn good

reasons in the interval abstraction as the following example will

illustrate.

Example IV.3. Consider the FPA formula z = y∧x = y·z∧x <
0 and the interval assignment σ = 〈z % −5.0〉. Starting from

σ, we can make the following deductions.
〈z % −5.0〉

〈y % −5.0〉

〈x & 25.0〉 ⊥

Arrows indicate sufficient conditions for deduction, e.g.,

〈x & 25.0〉 can be deduced from the conjunction of 〈z % −5.0〉
and 〈y % −5.0〉. The last deduction 〈x & 25.0〉 conflicts with

the constraint x < 0. A classic conflict cutting algorithm may

analyse the above graph to conclude that π = 〈z % −5.0〉 is

the reason for the conflict. It is easy to see though that there is a

much more general reason: The conflict can be deduced in this

way whenever z is negative.

analyse(tr , reasons)
i ← |tr |; m ← {1 �→ �, . . . , (i− 1) �→ �, i �→ ⊥};
loop

q ← generalise(
�

tr1:i, reasons[i],m[i]);
updateMarking(q, tr ,m);
m[i] ← �; i ← i− 1;
if open(tr ,m) = 1 then

return
�

1≤i≤|tr| m[i];

end

generalise(q, d, r)
repeat

abd ← choosed,r(getHistory());
q ← abd(q);

until q unchanged;
return q;

updateMarking(q, tr ,m)
Π ← decomp(q);
forall the c in Π do

r ← smallest index r′ s.t. trr′ � c;
m[r] ← m[r] � c;

end
Algorithm 2: Abstract FIRST-UIP

Abstract FIRST-UIP breaks down the global abduction task of

conflict analysis by finding generalised explanations for single

deduction results. We associate with each ded ∈ Ded a separate

choice function chooseded,q , which maps an execution history

h to an abductive transformer for inferring q.

The procedure is presented in Algorithm 2. It takes as input

a conflicting trail tr with final element ⊥ and a mapping from

indices i to the deduction rule used to derive an element tr i. The

main data structure is a marking m which maps trail indices to

elements of Comp(Q). Essentially, m maps each element of

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

135

x+ 5.0 = z ∧ x+ z = 2y ∧ z + y > 10.0formula

impl. graph x % 0.0 z % 5.0

y % 2.5

⊥

trail

initial marking

first iteration

second iteration

. . . x � 0.0 z � 5.0 y � 2.5 ⊥

. . . � � � ⊥

. . . � z � 6.0 y � 4.0 �

. . . x � 2.0 z � 6.0 � �

Fig. 1. Markings in Abstract FIRST-UIP

the trail tr to a generalisation that is still sufficient to produce a

conflict.

Initially, m maps only the final, conflicting element to ⊥ and

everything else to �. The procedure steps backwards through

the trail. A call to a function generalise(q,d,r) finds a

generalisation of q ∈ Q such that the current trail marking r can

still be deduced. This is done by computing a fixed point using

heuristic choice over abductive transformers. The generalised

deduction reason is decomposed into its complementables, and

for each element c of the decomposition, the earliest occurrence

of a stronger element on the trail is marked with c. Finally, the

current marking is removed and the algorithm proceeds.

An example execution of the algorithm is illustrated in

Figure 1. There, an implication graph and corresponding trail

is shown which records consequences of a decision x % 0.0.

Similar to propositional CDCL, no explicit graph is constructed.

Instead, the algorithm implicitly explores the graph via mark-

ings, which overapproximate the trail pointwise and encode

sufficient conditions for unsatisfiability. The first iteration of

the algorithm determines via abduction that ⊥ can be ensured

whenever z % 6.0 and y % 4.0 are the case. The second

iteration finds that y % 4.0 can be dropped from the reason

if x % 2.0 holds in addition to z % 6.0.

It is an invariant during the run of the procedure that the

greatest lower bound over all markings is sufficient to ensure a

conflict. Hence the procedure could essentially terminate during

any iteration and yield a sound global abduction result. We use

the usual FIRST-UIP termination criterion and return once the

number of open paths open(tr ,m) reaches 1. This number is

defined as the number of indices j greater or equal to the index

of the most recent decision, such that m[j] �= �.

C. Abstract Clause Learning

Propositional solvers learn new clauses that express the

negation of the conflict analysis result. The new clauses open

up further possibilities for deduction using the unit rule. The

unit rule states that for a clause l1 ∨ . . . ∨ lk, if l1 to lk−1 are

contradicted by the current partial assignment, then the partial

assignment can be refined to make lk evaluate to true.

We model learning directly as learning of a new deduction

rule, rather than learning a formula in the logic. A lattice-

theoretic generalisation of the unit rule is given below. Note that

we define the rule directly in terms of the conflicting element,

rather than its negation.

Definition IV.2. For an abstraction P of ℘(Structs) with

complementable decompositions, let c ∈ P be an element that

contains no models of ϕ. The abstract unit rule Unitc : P → P
is defined as follows.

Unitc(p) =̂

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
⊥ if p ! c

r otherwise, if r ∈ decomp(c) and

∀r′ ∈ decomp(c) \ {r}. p ! r′

� otherwise

Example IV.4. Let c = 〈x:[0.0, 10.0], y % 3.2〉 be a con-

flicting element of ϕ. Let p = 〈x:[3.0, 4.0], y:[1.0, 1.0]〉, then

Unitc(p) = ⊥, since p ! c. Let p′ = 〈x:[3.0, 4.0]〉, then

Unitc(p
′
) = 〈y ' 3.2〉, since p′ ! 〈x & 0.0〉 and p′ ! 〈x %

10.0〉.
The unit rule Unitc for a conflicting element c soundly

overapproximates the model transformer. Furthermore, it is

complementable; we can perform learning by adding Unitc to

Ded .

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented our approach over floating-point in-

tervals inside the MATHSAT5 SMT solver [16]. We call our

prototype tool FP-ACDCL. The implementation uses the MATH-

SAT5 infrastructure, but is currently independent of its DPLL(T)

framework. The implementation provides a generic, abstract

CDCL framework with FIRST-UIP learning. The overall ar-

chitecture is shown in Figure 2. An instantiation requires

abstraction-specific implementations of the components de-

scribed earlier, including deduction, decision making, abduc-

tion and heuristic choice. We first elaborate on those aspects of

the implementation and then report experimental results.

A. Abstract CDCL for Floating-Point Intervals

1) Deductions: We implement the deduction rule ded using

standard Interval Constraint Propagation (ICP) techniques for

floating-point numbers, defined e.g., in [2], [17]. The imple-

mentation operates on CNF formulae over floating-point predi-

cates.

Propagation is performed using an occurrence-list approach,

which associates with each variable a list of the FPA clauses

in which the variable occurs. Learnt clauses (corresponding

Floating Point Intervals
Interval
Splitting

Trail-guided
Choice

Abstract CDCL

Model Search Conflict Analysis

Decision
Heuristic

Deduction Abduction
Choice

Heuristic

Fig. 2. FP-ACDCL Solver Architecture

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

136

to new unit rules) are stored as vectors of complementable

elements and are propagated in a similar way. When a deduction

is made, we scan the list of affected clauses to check for new

deductions to be added to the trail. This is done by applying ICP

projection functions to the floating-point predicates in a way

that combines purely propositional with theory-specific rea-

soning. A predicate is conflicting if some variable is assigned

the empty interval during ICP. If all predicates of a clause are

contradicting, then we have found a conflict with the current

interval assignment and ded returns ⊥. If all but one predicate

in a clause are conflicting, then the result of applying ICP to the

remaining predicate is the deduction result. In this case, ded
returns a list containing one complementable element 〈x & b〉
(or 〈x % b〉) for each new bound inferred.

2) Decisions: FP-ACDCL performs decisions by adding to

the trail one complementable element 〈x & b〉 or 〈x % b〉
that does not contradict the previous value of x. Clearly, there

are many possible choices for (i) how to select the variable x,

(ii) how to select the bound b, and (iii) how to choose between

〈x & b〉 and 〈x % b〉.
In propositional CDCL, each variable can be assigned at most

once. In our lifting, a variable can be assigned multiple times

with increasingly precise bounds. We have found some level

of fairness to be critical for performance. Decisions should be

balanced across different variables and upper and lower bounds.

A strategy that proceeds in a “depth-first” manner, in which the

same variable is refined using decisions until it has a singleton

value, shows inferior performance compared to a “breadth-

first” exploration, in which intervals of all the variables are

restricted uniformly. We interpret this finding as indication that

the value of abstraction lies in the fact that the search can be

guided effectively using general, high-level reasoning, before

considering very specific cases.

FP-ACDCL currently performs decisions as follows: (i) vari-

ables are statically ordered, and the selection on which variable

x to branch is cyclic across this order; (ii) the bound b is chosen

to be an approximation of the arithmetic average between the

current bounds l and u on x; note that the arithmetic average

is different from the median, since floating-point values are

unevenly distributed; (iii) the choice between 〈x & b〉 and

〈x % b〉 is random. Considering the advances in heuristics for

propositional SAT, there is likely a lot of room for enhancing

this. In particular, the integration of fairness considerations with

activity-based heuristics typically used in modern CDCL solvers

could lead to similar performance improvements. This is part of

ongoing and future work.

3) Generalised Explanations for Conflict Analysis: In ab-

duction, a trade-off must be made between finding reasons

quickly and finding very general reasons. We perform ab-

duction that relaxes bounds iteratively. As mentioned earlier,

there may be many incomparable relaxations. Our experiments

suggest that the precise way in which bounds are relaxed is

extremely important for performance. Fairness considerations

similar to those mentioned for the decision heuristic need to be

taken into account. However, there is an additional, important

criterion. Learnt lemmas are used to drive backjumping. It

is therefore preferable to learn deduction rules that allow for

backjumping higher in the trail. This will lead to propagations

that are affected by a smaller number of decisions, and thus will

hold for a larger portion of the search space.

Our choice heuristic, called trail-guided choice, is

abstraction-independent, and is both fair and aims to increase

backjump potential. In the first step, we remove all bounds

over variables from the initial reason q which are irrelevant to

the deduction. Then we step backwards through the trail and

attempt to weaken the current element q using trail elements.

The process is illustrated below.

. . . x � 5.2 . . . y � 1.3 . . . y � 7.2 x � 0.4

Step 1: Attempt weakening x � 0.4 to x � 5.2

Step 2: Attempt weakening y � 7.2 to y � 1.3

When an element tr j is encountered such that tr j is used in

q (that is, q ! tr j), we attempt to weaken q by replacing the

bound tr j with the most recent trail element more general than

tr j . If no such element exists, we attempt removing the relevant

bound altogether. We check whether the weakened q is still

sufficiently strong to deduce d. If not, we undo the weakening,

and do not consider any further weakenings with elements more

general than tr j . After this, we repeat the process for element

tr j−1. The algorithm terminates once no further generalisations

are possible.

Since we step backwards in order of deduction, we heuristi-

cally increase the potential for backjumps: The procedure never

weakens a bound that was introduced early during model search

at the expense of having to uphold a bound that is ensured only

at a deep level of the search.

We have experimented with stronger but computationally

more expensive generalisation techniques such as finding maxi-

mal bounds for deductions by search over floating-point values.

Our experiments indicate that the cheaper technique described

above is more effective overall. We see two main avenues

for improvement: First, for many deductions it is possible to

implement good or optimal abduction transformers effectively

without search. Second, we expect that dynamic heuristics that

take into account statistical information may guide conflict

analysis towards useful clauses.

B. Experimental Evaluation

We have evaluated our prototype FP-ACDCL tool over a set

of more than 200 benchmark formulas, both satisfiable and

unsatisfiable. The formulas have been generated from problems

that check (i) ranges on numerical variables and expressions,

(ii) error bounds on some numerical computations using dif-

ferent orders of evaluation of subexpressions, and (iii) feasi-

bility of systems of inequalities over bounded floating-point

variables. The first two sets originate from verification prob-

lems on some C programs performing numerical computations,

whereas the instances in the third set are randomly generated.

We make our benchmarks and the FP-ACDCL tool available

for experimentation by other researchers at http://www.cprover.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

137

FP-ACDCL

b
it

-v
ec

to
r

en
co

d
in

g
(Z

3
)

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
(a)

FP-ACDCL

F
P
-A

C
D

C
L

w
.o

.
g

en
er

al
is

at
io

n

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
(b)

Fig. 3. Comparison of FP-ACDCL against Z3 with bit-vector encoding (a);
effects of generalisations in conflict analysis (b). Darker colour indicates
unsatisfiability. Points on the borders indicate timeouts (1200 s).

org/fmcad2012/. All results have been obtained on an Intel

Xeon machine with 2.6 GHz and 16 GB of memory running

Linux, with a time limit of 1200 seconds.

We have performed two different sets of experiments. In the

first, we have compared FP-ACDCL with the current state-of-

the-art procedures for floating-point arithmetic, based on en-

coding into bit-vectors. We have generated bit-vector encodings

of all the benchmark instances in our set using MATHSAT5

and solved them with the Z3 SMT solver [18], which was

the winner of the main bit-vector division in the SMT-COMP

2011 competition. The results of this comparison are reported

in Figure 3(a). FP-ACDCL over FPA significantly outperforms

Z3 over corresponding bit-vector encodings on most of the

instances, often by several orders of magnitude. More specif-

ically, FP-ACDCL could solve 35 benchmarks more than Z3,

with an overall total speedup of more than 25x (for the subset

of benchmarks that both tools could solve).1 There are some

instances that turn out to be relatively easy for Z3, but cannot be

solved by our tool. This is not surprising, since there are simple

instances that are not amenable to analysis with ICP, even with

1FP-ACDCL timed out in 28 instances, whereas Z3 ran out of time or memory
in 63 cases. On the subset of benchmarks solved by both tools, the total run time
was of 585 seconds for FP-ACDCL, and of 15973 seconds for Z3.

the addition of decision-making and learning.2 To handle such

cases, our framework can be instantiated with abstract domains

or combinations of domains [13] that are better suited to the

problems under analysis.

The second set of experiments is aimed at evaluating the

impact of our novel generalisation technique. In order to do

this, we have run FP-ACDCL with generalisation of deductions

turned off, and compared it with the default FP-ACDCL. Es-

sentially, FP-ACDCL without generalisation corresponds to a

naive lifting of the conflict analysis algorithm. The results are

summarised in Figure 3(b). From the plot, we can clearly see

that generalisation is crucial for the performance of FP-ACDCL:

without it, the tool times out in 44 more cases, whereas there

is no instance that can be solved only without generalisation.

However, there are a number of instances for which perfor-

mance degrades when using generalisations, sometimes signif-

icantly. This can be explained by observing that (i) generali-

sations come at a runtime cost, which can sometimes induce

a non-negligible overhead; (ii) the performance degradation

occurs on satisfiable instances (shown in a lighter colour in the

plots), for which it is known that the behaviour of CDCL-based

approaches is typically unstable (even in the propositional

case).

VI. A SURVEY OF RELATED WORK

We separately survey work in three related branches of re-

search: 1) the analysis of floating-point computations, 2) lifting

existing decision procedure architectures to richer problem

domains and 3) automatic and intelligent precision refinement

of abstract analyses.

A. Reasoning about Floating-Point Numbers

This section briefly surveys work in interactive theorem

proving, abstract interpretation and decision procedures that

target floating-point problems. For a discussion of the special

difficulties that arise in this area, see [19].

Theorem Proving: Various floating-point axiomatisations

and libraries for interactive theorem provers exist [20]–[23].

Theorem provers have been applied extensively to proving

properties over floating-point algorithms or hardware [24]–

[31]. While theorem proving approaches have the potential

to be sound and complete, they require substantial manual

work, although sophisticated (but incomplete) strategies exist

to automate substeps of the proof, e.g., [32]. A preliminary

attempt to integrate such techniques with SMT solvers has

recently been proposed in [33].

Abstract Interpretation: Analysis of floating-point com-

putations has also been extensively studied in abstract inter-

pretation. An approach to specifying floating-point properties

over programs was proposed in [34]. A number of general

purpose abstract domains have been constructed for the analysis

of floating-point programs [35]–[40]. In addition, specialised

approaches exist which target specific problem domains such

2A simple example of this is the formula x = y ∧ x �= y, which requires
an abstraction that can express relationships between variables. Intervals are
insufficient to efficiently solve this problem.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

138

as numerical filters [41], [42]. The approaches discussed so

far mainly aim at establishing the result of a floating-point

computation. An orthogonal line of research is to analyse the

deviation of a floating-point computation from its real counter-

part by studying the propagation of rounding errors [43], [44].

Case studies for this approach are given in [45], [46]. Abstract

interpretation techniques provide a soundness guarantee, but

may yield imprecise results.

Decision Procedures: In the area of decision procedures,

study of floating-point problems is relatively scarce. Work in

constraint programming [47] shows how approximation with

real numbers can be used to soundly restrict the scope of

floating-point values. In [17], a symbolic execution approach

for floating-point problems is presented, which combines in-

terval propagation with explicit search for satisfiable floating-

point assignments. An SMTLIB theory of FPA was presented

in [12]. Recent decision procedures for floating-point logic are

based on propositional encodings of floating-point constraints.

Examples of this approach are implemented in MATHSAT5 [16],

CBMC [48] and Sonolar [49]. A difficulty of this approach is

that even simple floating-point formulas can have extremely

large propositional encodings, which can be hard for current

SAT solvers. This problem is addressed in [1], which uses

a combination of over- and underapproximate propositional

abstractions in order to keep the size of the search space as

small as possible.

B. Lifting Decision Procedures

The practical success of CDCL solvers has given rise to

various attempts to lift the algorithmic core of CDCL to new

problem domains. This idea is extensively studied in the field

of satisfiability modulo theories. The most popular such lifting

is the DPLL(T) framework [50], which separates theory-specific

reasoning from Boolean reasoning over the structure of the

formula. Typically a propositional CDCL solver is used to

reason about the Boolean structure while an ad-hoc procedure

is used for theory reasoning. The DPLL(T) framework can

suffer from some difficulties that arise from this separation. To

alleviate these problems, approaches such as theory decisions
on demand [4] and theory-based decision heuristics [51] have

been proposed.

Our work is co-located in the context of natural-

domain SMT [5], which aims to lift steps of the CDCL algorithm

to operate directly over the theory. Notable examples of such

approaches have been presented for equality logic with unin-

terpreted functions [52], linear real arithmetic and difference

logic [5], [6], linear integer arithmetic [7], nonlinear integer

arithmetic [9], and nonlinear real arithmetic [8]. The work in [9]

is most similar to ours since it also operates over intervals and

uses an implication graph construction.

We follow a slightly different approach to generalisation

based on abstract interpretation. The work in [10] shows that

SAT solvers can naturally be considered as abstract interpreters

for logical formulas. Generalisations can then be obtained by

using different abstract domains. Our work is an application of

this insight. A similar line of research was independently un-

dertaken in [53], [54], which presents an abstract-interpretation

based generalisation of Stålmarck’s method and an application

to computation of abstract transformers.

C. Refining Abstract Analyses

A number of program analyses exist that use decision pro-

cedures or decision procedure architectures to refine a base

analysis. A lifting of CDCL to program analyses over abstract

domains is given in [55]. In [56], a decision-procedure based

software model checker is presented that imitates the architec-

ture of a CDCL solver. A lifting of DPLL(T) to refinement of

abstract analyses is presented in [57] which combines a CDCL

solver with an abstract interpreter.

Modern CDCL solvers can be viewed as refinements of the

original DPLL algorithm [58], which is based on case-analysis.

Case analysis has been studied in the abstract interpretation

literature. The formal basis is given by cardinal power domains,

already discussed in [13], in which a base domain is refined

with a lattice of cases. The framework of trace partitioning [59]

describes a systematic refinement framework for programs

based on case analysis. The DPLL algorithm can be viewed as

a special instance of dynamic trace partitioning applied to the

analysis of logical formulas.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a decision procedure for the theory of

floating-point arithmetic based on a strict lifting of the conflict

analysis algorithm used in modern CDCL solvers to abstract do-

mains. We have shown that, for a certain class of formulas, this

approach significantly outperforms current complete solvers

based on bit-vector encodings. Both our formalism and our

implementation are modular and separate the CDCL algorithm

from the details of the underlying abstraction. Furthermore,

the overall architecture is not tied to analysing properties over

floating-point formulas.

We are interested in a number of avenues of future research.

One of these is a comparison of abstract CDCL and DPLL(T)-

based architectures, and investigating possible integrations. An-

other avenue of research is instantiating ACDCL with richer

abstractions (e.g., octagons). Combination and refinements of

abstractions are well studied in the abstract interpretation lit-

erature [13]. Recent work [60] has shown that Nelson-Oppen

theory combination is an instance of a product construction

over abstract domains. We hope to apply this work to obtain ef-

fective theory combination within ACDCL. In addition, product

constructions can be used to enhance the reasoning capabilities

within a single theory, e.g., by fusing interval-based reasoning

over floating-point numbers and propositional reasoning about

the corresponding bit-vector encoding.

We see this work as a step towards integrating the abstract

interpretation point of view with algorithmic advances made in

the area of decision procedures. Black-box frameworks such

as DPLL(T) abstract away from the details of their component

procedures. Abstract interpretation can be used to express an

orthogonal, algebraic “white-box” view which, we believe, has

uses in both theory and practice.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

139

Acknowledgements: We gratefully acknowledge the con-

tributions of Vijay D’Silva who helped create the formal frame-

work advocated in this paper.

REFERENCES

[1] A. Brillout, D. Kroening, and T. Wahl, “Mixed abstractions for floating-
point arithmetic,” in FMCAD. IEEE, 2009, pp. 69–76.

[2] C. Michel, “Exact projection functions for floating point number con-
straints,” in AMAI, 2002.

[3] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability
modulo theories,” in Handbook of Satisfiability. IOS Press, 2009, pp.
825–885.

[4] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Splitting on
demand in SAT modulo theories,” in LPAR, 2006, pp. 512–526.

[5] S. Cotton, “Natural domain SMT: a preliminary assessment,” in FOR-
MATS. Springer, 2010, pp. 77–91.

[6] K. McMillan, A. Kuehlmann, and M. Sagiv, “Generalizing DPLL to
richer logics,” in CAV. Springer, 2009, pp. 462–476.

[7] D. Jovanovic and L. de Moura, “Cutting to the Chase: Solving Linear
Integer Arithmetic,” in CADE. Springer, 2011, pp. 338–353.

[8] ——, “Solving non-linear arithmetic,” in IJCAR. Springer, 2012, pp.
339–354.

[9] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure,” JSAT, vol. 1, no. 3-4, pp. 209–236, 2007.

[10] V. D’Silva, L. Haller, and D. Kroening, “Satisfiability solvers are static
analyzers,” in SAS, ser. LNCS, vol. 7460. Springer, 2012, pp. 317–333.

[11] L. Zhang, C. F. Madigan, M. W. Moskewicz, and S. Malik, “Efficient
conflict driven learning in a Boolean satisfiability solver,” in ICCAD.
ACM, 2001, pp. 279–285.

[12] P. Rümmer and T. Wahl, “An SMT-LIB theory of binary floating-point
arithmetic,” in SMT Workshop, 2010.

[13] P. Cousot and R. Cousot, “Systematic design of program analysis frame-
works,” in POPL, 1979, pp. 269–282.

[14] J. P. M. Silva, I. Lynce, and S. Malik, “Conflict-driven clause learning
SAT solvers,” in Handbook of Satisfiability. IOS Press, 2009, pp. 131–
153.

[15] L. Zhang, C. Madigan, M. H. Moskewicz, and S. Malik, “Efficient conflict
driven learning in a boolean satisfiability solver,” in ICCAD. IEEE, 2001,
pp. 279–285.

[16] A. Griggio, “A Practical Approach to Satisfiability Modulo Linear Integer
Arithmetic,” JSAT, vol. 8, pp. 1–27, January 2012.

[17] B. Botella, A. Gotlieb, and C. Michel, “Symbolic execution of floating-
point computations,” STVR., vol. 16, no. 2, pp. 97–121, 2006.

[18] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in TACAS.
Springer, 2008, pp. 337–340.

[19] D. Monniaux, “The pitfalls of verifying floating-point computations,”
TOPLAS, vol. 30, no. 3, 2008.

[20] M. Daumas, L. Rideau, and L. Théry, “A generic library for floating-point
numbers and its application to exact computing,” in TPHOLs. Springer,
2001, pp. 169–184.

[21] G. Melquiond, “Floating-point arithmetic in the Coq system,” Inf. Com-
put., vol. 216, pp. 14–23, 2012.

[22] P. S. Miner, “Defining the IEEE-854 floating-point standard in PVS,”
NASA, Langley Research, PVS. Technical Memorandum 110167, 1995.

[23] J. Harrison, “A machine-checked theory of floating point arithmetic,” in
TPHOLs. Springer, 1999, pp. 113–130.

[24] ——, “Floating point verification in HOL light: The exponential func-
tion,” FMSD, vol. 16, no. 3, pp. 271–305, 2000.

[25] ——, “Formal verification of square root algorithms,” FMSD, vol. 22,
no. 2, pp. 143–153, 2003.

[26] ——, “Floating-point verification,” J. UCS, vol. 13, no. 5, pp. 629–638,
2007.

[27] B. Akbarpour, A. Abdel-Hamid, S. Tahar, and J. Harrison, “Verifying
a synthesized implementation of IEEE-754 floating-point exponential
function using HOL,” Comput. J., vol. 53, no. 4, pp. 465–488, 2010.

[28] R. Kaivola and M. Aagaard, “Divider circuit verification with model
checking and theorem proving,” in TPHOLs. Springer, 2000, pp. 338–
355.

[29] J. S. Moore, T. Lynch, and M. Kaufmann, “A mechanically checked proof
of the correctness of the kernel of the AMD5K86 floating-point division
algorithm,” TC, vol. 47, 1996.

[30] D. Russinoff, “A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multi-
plication, division, and square root instructions,” JCM, vol. 1, pp. 148–
200, 1998.

[31] J. Harrison, “Formal verification of floating point trigonometric func-
tions,” in FMCAD, 2000, pp. 217–233.

[32] A. Ayad and C. Marché, “Multi-prover verification of floating-point
programs,” in IJCAR. Springer, 2010, pp. 127–141.

[33] S. Conchon, G. Melquiond, C. Roux, and M. Iguernelala, “Built-in
Treatment of an Axiomatic Floating-Point Theory for SMT Solvers,” in
SMT Workshop, 2012.

[34] S. Boldo and J. Filliâtre, “Formal verification of floating-point programs,”
in ARITH. IEEE, 2007, pp. 187–194.

[35] A. Miné, “Relational abstract domains for the detection of floating-point
run-time errors,” in ESOP. Springer, 2004, pp. 3–17.

[36] L. Chen, A. Miné, and P. Cousot, “A sound floating-point polyhedra
abstract domain,” in APLAS. Springer, 2008, pp. 3–18.

[37] L. Chen, A. Miné, J. Wang, and P. Cousot, “Interval polyhedra: An
abstract domain to infer interval linear relationships,” in SAS. Springer,
2009, pp. 309–325.

[38] B. Jeannet and A. Miné, “Apron: A library of numerical abstract domains
for static analysis,” in CAV. Springer, 2009, pp. 661–667.

[39] A. Chapoutot, “Interval slopes as a numerical abstract domain for
floating-point variables,” in SAS. Springer, 2010, pp. 184–200.

[40] L. Chen, A. Miné, J. Wang, and P. Cousot, “An abstract domain to
discover interval linear equalities,” in VMCAI. Springer, 2010, pp. 112–
128.

[41] J. Feret, “Static analysis of digital filters,” in ESOP. Springer, 2004, pp.
33–48.

[42] D. Monniaux, “Compositional analysis of floating-point linear numerical
filters,” in CAV. Springer, 2005, pp. 199–212.

[43] E. Goubault, “Static analyses of the precision of floating-point opera-
tions,” in SAS. Springer, 2001, pp. 234–259.

[44] K. Ghorbal, E. Goubault, and S. Putot, “The zonotope abstract domain
Taylor1+,” in CAV. Springer, 2009, pp. 627–633.

[45] E. Goubault, S. Putot, P. Baufreton, and J. Gassino, “Static analysis of
the accuracy in control systems: Principles and experiments,” in FMICS.
Springer, 2007, pp. 3–20.

[46] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of FLUCTUAT on safety-critical avionics
software,” in FMICS, 2009, pp. 53–69.

[47] C. Michel, M. Rueher, and Y. Lebbah, “Solving constraints over floating-
point numbers,” in CP, 2001, pp. 524–538.

[48] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in TACAS, ser. LNCS, vol. 2988. Springer, 2004, pp. 168–
176.

[49] E. V. Jan Peleska and F. Lapschies, “Automated test case generation with
SMT-solving and abstract interpretation,” in NFM. Springer, 2011, pp.
298–312.

[50] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,
“DPLL(T): Fast decision procedures,” in CAV. Springer, 2004, pp. 175–
188.

[51] D. Goldwasser, O. Strichman, and S. Fine, “A theory-based decision
heuristic for DPLL(T),” in FMCAD, 2008, pp. 1–8.

[52] B. Badban, J. van de Pol, O. Tveretina, and H. Zantema, “Generalizing
DPLL and satisfiability for equalities,” Inf. Comput., vol. 205, no. 8, pp.
1188–1211, 2007.

[53] A. Thakur and T. Reps, “A method for symbolic computation of abstract
operations,” in CAV. Springer, 2012.

[54] ——, “A generalization of Stålmarck’s method,” in SAS. Springer, 2012.
[55] V. D’Silva, L. Haller, D. Kroening, and M. Tautschnig, “Numeric bounds

analysis with conflict-driven learning,” in TACAS. Springer, 2012, pp.
48–63.

[56] K. L. McMillan, “Lazy annotation for program testing and verification,”
in CAV, 2010, pp. 104–118.

[57] W. R. Harris, S. Sankaranarayanan, F. Ivančić, and A. Gupta, “Program
analysis via satisfiability modulo path programs,” in POPL, 2010, pp. 71–
82.

[58] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” CACM, vol. 5, pp. 394–397, July 1962.

[59] X. Rival and L. Mauborgne, “The trace partitioning abstract domain,”
TOPLAS, vol. 29, no. 5, 2007.

[60] P. Cousot, R. Cousot, and L. Mauborgne, “The reduced product of abstract
domains and the combination of decision procedures,” in FoSSaCS, 2011,
pp. 456–472.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

140

Formal Verification of Error Correcting Circuits
Using Computational Algebraic Geometry

Alexey Lvov, Luis A. Lastras-Montaño
IBM T.J.Watson Research Center

Yorktown Heights, NY, 10598

{lvov, lastrasl}@us.ibm.com

Viresh Paruthi, Robert Shadowen, Ali El-Zein
IBM Systems and Technology Group

Austin, TX, 78758

{vparuthi, shadowen, elzein}@us.ibm.com

Abstract— Algebraic error correcting codes (ECC) are widely
used to implement reliability features in modern servers and
systems and pose a formidable verification challenge. We present
a novel methodology and techniques for provably correct design
of ECC logics. The methodology is comprised of a design
specification method that directly exposes the ECC algorithm’s
underlying math to a verification layer, encapsulated in a tool
“BLUEVERI” , which establishes the correctness of the design
conclusively by using an apparatus of computational algebraic ge-
ometry (Buchberger’s algorithm for Gröbner basis construction).
We present results from its application to example circuits to
demonstrate the effectiveness of the approach. The methodology
has been successfully applied to prove correctness of large error
correcting circuits on IBM’s POWER systems to protect memory
storage and processor to memory communication, as well as a
host of smaller error correcting circuits.

I. INTRODUCTION

ECCs are widely used in practice to protect data against

random errors that inevitably occur during transmission as well

as during prolonged storage. As semiconductor technology is

scaling down to the nanometer regime and tens of gigabits

per second transmission rates, error-free data handling requires

larger and more sophisticated error correcting circuits, with the

code construction and encoding/decoding algorithms almost

always going beyond the templates found in classical literature

due to feature set requirements. For example, the IBM z196

systems feature “RAIM” (Redundant Array of Independent

Memory, [1], [2]) with a 90 byte ECC that allows the system to

recover instantaneously from a full DIMM failure even in the

presence of additional chip failures. Each such error correcting

circuit has to be individually designed and programmed by a

human designer. The resulting implementation complexity in

hardware can lead to design errors which can cause costly

re-spins of the Silicon and derail schedules. Establishing

correctness/verification of such complex hardware is of critical

importance, though poses formidable challenges.

Traditional verification methods such as software simula-

tion, hardware-accelerated simulation or post-Silicon debug

offer insufficient coverage given the difficult nature of the logic

and the large solution space to be investigated. State-of-the-art

formal verification algorithms (which inherently check circuit

behavior against all possible legal combinations of inputs)

offering high capacity have been found lacking in proving

correctness because of their inability to exploit the specifics

of the underlying algebra - Galois field arithmetic.

We propose a solution to the problem of complete symbolic

verification of logical circuits which substantially rely on

arithmetic over Galois fields. Most of the error correcting

circuits fall in the above category, as well as some of the

circuits for data encryption and arithmetic logic unit (ALU).

The verification technique is encapsulated in a reasoning

tool “Blue Code Verifier” - “BLUEVERI” - and applies

algebraic geometry methods (e.g. checks on the consistency

of polynomial systems of equations using the concept of

Gröbner basis and the associated Buchberger’s algorithm) to

the problem of verifying circuits defined over Galois fields

in order to establish correctness of the logic circuit against

a mathematical specification. The methodology has been suc-

cessfully applied to verify real life error correcting codes at

IBM resulting in substantially improved verification quality,

by providing full proof of the correctness of the design which

was otherwise unobtainable, and in improved productivity, via

significantly reduced verification time and effort. We expect

the improvements to accumulate as the methodology gets

applied “out-of-the-box” to future processor chips employing

even stronger ECC designs, and will be key to integrate

commodity memories in products as well as in the design of

communication link transceivers. The techniques involved are

applicable to other types of logic circuitry based on Galois

field arithmetic such as Elliptic Curve Cryptography.

A. Previous Art

Simulation-based methods such as software simulation or

hardware-accelerated simulation are inapplicable to the prob-

lem of complex ECC verification. This is due to the fact that

the problem has large numbers of inputs which precludes an

exhaustive exploration to fully verify the ECC circuitry to

cover all possible combinations of input bit strings and injected

errors (within the claimed error correction capability of the

code) and check to see if in each case the decoded bit string is

equal to the original one. Directed simulation to cover the vast

majority, if not all, of “corner cases” again requires a careful

analysis of the code to enumerate correction capability and

features - a process which is inherently subject to human lim-

itations and errors. Systematic methods such as SAT or graph-

based canonical representations of the logic with Decision

Diagrams (DD) such as BDDs [3], BMDs [4], FDDs [5] run

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

141

out of steam quickly due to the large input space and the com-

plexity of the underlying logic employing exclusive-ORs. Our

experience suggests that these existing decision procedures

have difficulty scaling to designs beyond circuits with more

than 24-bit inputs. Enhanced verification techniques leveraging

Transformation-based Verification (TBV) [11] concepts to

simplify then prove the designs become capacity gated for 32-

bit Galois field algorithms and beyond. Satisfiability Modulo

Theory (SMT) solvers which utilize specialized theories to

address specific problem domains (e.g. bit-vectors) do not

address polynomial equation solving over Galois fields. Our

approach addresses this niche and proposes a methodology to

solve such systems of polynomial equations over Galois fields

efficiently.

A search for verification of Galois field circuits reveals the

following applicable references - [6] and [7]. [6] defines a

formal first-order logic language for symbolic arithmetic over

an arbitrary binary Galois field along with a set of rules for

manipulation of formal sentences (such as transformation of

the sentence into prenex normal form, usage of DeMorgan’s

law, elimination of variables etc.). The correctness criterion

for parts of some ECC circuits can be formally expressed in

this language, e.g. finding the error locator polynomial from

the value of the syndrome for Reed-Solomon codes. A formal

reasoning in the language is then applied to prove or disprove

the correctness statement. The method is only applicable to

verification of algorithms which are correct in any GF (2
k
)

independently of the value of k. In our method the size of the

field is specified; in particular this allows the use of constants

of the field other than ‘0’ and ‘1’ in the circuit. The method

does not employ any of the computational algebraic geometry

machinery; that bounds it to purely GF (2
k
) circuits (with no

bit operations allowed), while our method works on circuits

with mixed bit and GF signals (Boolean result of test value

operations on GF signals is computed by building Gröbner

basis of polynomial algebraic system).

The latter [7] applies Gröbner basis techniques to the very

narrow problem of verifying multipliers over a large Galois

field. The class of the multipliers is further limited to those

based on representation of the large field as an extension of

degree m of a smaller field of degree n. The paper reports

practical results of verifying multipliers up to maximum field

size of GF (2
1024

), (m = 32, n = 32), but it does not make

any attempts to verify circuits other than this multiplier circuit

with a fixed structure parameterized with only two integers m
and n. In contrast our method is capable of verifying virtually

any circuit built with GF , Boolean and mixed operations, with

the runtime and memory being the only limiting factors for

large circuits.

II. PROPOSED METHOD

Our method was first inspired by the need to verify a

large 1024-bit input error correction circuit responsible for

protecting the memory store as well as the communication

between a POWER processor and memory. A traditional

XOR

CONST 1
MULT

bit b xGF GF y GF z

bit GF

IS_ZERO

cr
uc

ia
l

ADD

SQUARE

WHEN_ELSE

Fig. 1. Example of BLUEVERI circuit representation.

formal verification approach to verify the circuitry quickly

became intractable given the vast search space.

The main idea is to use the fact that algebraic ECCs operate

mostly on the elements of finite fields, and there are powerful

techniques for symbolic reasoning in this domain. The process

of verification of such circuits reduces to the verification of a

number of algebraic statements of the type “A certain system

of multivariate polynomials over a finite field implies some

other system of multivariate polynomials over a finite field”.

The latter problem relates to computational algebraic geometry

and can be solved by building Gröbner bases for certain sets

of polynomials by using Buchberger’s algorithm ([8], pp.77,

82-87).

A. Verification Set-up

The verification set-up consists of two parts: the circuit

to be verified, and a check file containing information about

the set of legal inputs and the expected values for some set

of “crucial” signals; an example of the latter would be an

uncorrectable error flag (see subsection III-A) or a signal that

tests the equality between two bit vectors (see subsection III-

B). The verification task at hand is to formally prove (or

disprove) that for any legal combination of inputs, the values

of the crucial signals match their expected values.

In a standard processing methodology, the circuit is gen-

erally represented by a directed graph where the edges are

wires carrying only Boolean signals, and nodes are gates

performing only basic Boolean operations. Since we assume

that a large portion of the operations in the circuit are opera-

tions in GF (2
k
) arithmetic, we modify this representation by

“glueing” together wires which represent the same GF (2
k
)

elements and putting “black boxes” around the pieces of the

circuit which represent basic GF (2
k
) arithmetic operations.

Practically this is done by passing a special option to the HDL

compiler, telling it to not synthesize functions from a given

list. The circuit in our representation typically looks similar to

the example on Fig 1.

After this transformation, each wire carries either a Boolean

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

142

signal or a GF (2
k
) signal. For this reason, we generalize the

concept of “gate” so that now each gate performs one of the

following operations:

• Basic binary arithmetic operations on GF (2
k
):

ADD (both x+y and x−y), MULT (xy), DIV (xy2
k−2

).

• Any fixed set of unary operations on GF (2
k
) which

are linear over GF (2), e.g. Frobenius automorphism

(square), projections on elements of a fixed basis, square

root, bit permutations etc.

• Any fixed set of GF (2
k
) constants (functions without

arguments).

• WHEN ELSE(b, x, y) function which returns GF (2
k
)

element x when bit b is 1 and GF (2
k
) element y

otherwise.

• GF (2
k
) value test functions which return value is a bit:

IS ZERO(x), IS NONZERO(x).
• Boolean functions:

NOT, AND, OR, XOR.

The check file contains algebraic constraints on the GF (2
k
)

inputs, optionally initial values for some Boolean and GF (2
k
)

inputs, and the expected values for the crucial Boolean signals

testing the desired behavior for the circuit. The crucial signals

are restricted to Boolean because any condition on GF (2
k
)

signals can be expressed as a condition on Boolean signals

by adding just a few gates to the circuit. For example, if one

wants to state that a GF signal x is equal to a given constant

const, then one may alternatively assert that we expect(
IS ZERO(ADD(x, const))

to be equal to 1.

The algebraic constraints are specified in conjunctive nor-

mal form (CNF) whose literals are multivariate polynomial

equalities or inequalities on the free variables associated with

each of the GF (2
k
) inputs.

Here is an example of a check file for the circuit on Fig 1:

BEGIN_CHECK;

IN_BITS_SETTINGS;
b <= ’0’;

EXPLICIT_EXPRESSIONS_FOR_SOME_GF_INPUTS;
x <= "8F3A";

ALGEBRAIC_CONSTRAINTS_ON_GF_INPUTS;
[(yˆ3 + zˆ5 == 0) or (yˆ2 + z != 0)]
and
[(y == 0) or (z == 0) or (y + z != 0)]

BIT_EXPECTED_VALUES;
crucial must be ’1’;

END_CHECK;

We support multiple checks in one check file in which case

our tool verifies them independently one by one, and append-

ing new checks at the end of the file during verification (a

necessary feature for the “fork on unresolved bits” mechanism

outlined later).

B. Verification Flow

The process starts by assigning a free variable (e.g. the

symbolic string identifier used in the HDL file) to each of

the GF (2
k
) inputs. Next the values of the crucial bit signals

are computed one by one by applying the following recursive

procedure. The procedures for “. . . execute the operation . . . ”

will be explained for each type of operation subsequently.

COMPUTE OUTPUT OF GATE(signal g) {
// case g is Boolean : Attempt to compute to const. ‘0’ or

‘1’ .

// case g is GF (2
k
) : Compute as a symbolic rational

expression in the free variables.

for all inputs gi of g {
COMPUTE OUTPUT OF GATE(gi)

}
switch (type of g) {
ADD: . . . Execute the operation . . .

MULT: . . . Execute the operation . . .

· · · · · ·
XOR: . . . Execute the operation . . .

}
}

Given unlimited time and memory and assuming that all

recursive sub-calls successfully compute values of g1, g2, . . .
a call to COMPUTE OUTPUT OF GATE(g) always succeeds

if g is a GF (2
k
) signal. However, it may fail for Boolean

signals because Boolean signals are (generally) not constants

but depend on the inputs. If a Boolean signal cannot be

computed to ‘0’ or ‘1’ we skip to the next check and add

two new checks at the end of the check file assuming values

‘0’ and ‘1’ for that bit by applying the “fork on unresolved bit”

procedure described later in this subsection. Note that although

it may seem that this would fork on nearly every bit in the

circuit, in our experience for ECCs the situation is typically

just the opposite: given a restricted set of inputs (e.g. exactly

one injected error) most of the Boolean signals in the circuit

do not depend on the inputs; an example of this can be seen in

subsection III-A in the computation of the uncorrectable error

flag of a decoder 1. Furthermore, BLUEVERI performs signal

dependency checks that result in the value of many boolean

signals in the circuit not being needed; such booleans never

cause a fork as described above.

Given g1, g2, . . ., we compute g depending on the type of

operation as follows:

ADD and MULT : Perform the operation on the mutivariate

rational expressions. E.g. ADD(x
y+z , y

x+z) = x2+xz+y2+yz
xy+xz+yz+z2 ,

MULT(x+ 1, y + 1) = xy + x+ y + 1 etc.

UNARY LINEAR i : Any operation on GF (2
k
) which is

linear over GF (2) can be given by a linearized polynomial

(a polynomial containing only terms of the form cx2t , see [9]

pp.107-124). Substitute the input rational expression into the

linearized polynomial. E.g. in GF (16) Tr(x)
def
= x8

+x4
+x2

+

1Very often the uncorrectable error signal is both an internal signal upon
which further things depend and also an output by itself.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

143

g4
g3

g1

OR

g

NOT
AND

AND
IS_NONZERO IS_ZERO

IS_ZERO

ADD Input
bit

DIV

CONST 1

XOR

WHEN_ELSE

WHEN_ELSE

g2

Fig. 2. Example of maximal “algebraic system” subgraph for signal g.

x, Tr(y + z3) = y8 + y4 + y2 + y + z24 + z12 + z6 + z3.
CONST i : Set signal g to the constant (a rational expression

containing no free variables).

WHEN ELSE(b,X, Y) : Set rational expression g to rational

expression X if b is ‘1’ and to rational expression Y otherwise.

IS ZERO, IS NONZERO, NOT, AND, OR, XOR : Compu-

tation of values of gates with Boolean output constitutes the

most complex part of our algorithm.

To compute the value of g we first find the maximal

subgraph consisting of all gates hj such that there exists a

directed path from hj to g and all gates on this path except

for hj itself are elementary Boolean gates (NOT, AND, OR or

XOR). An example is shown on Fig. 2. Note that the subgraph

may only contain IS ZERO, IS NONZERO and elementary

Boolean gates, and any IS ZERO or IS NONZERO in the

subgraph must be a top most gate. The input signals gi of

the subgraph are either GF (2
k
) inputs of value test functions

or Boolean inputs of the whole circuit.

By inductive hypothesis for our recursive function

COMPUTE OUTPUT OF GATE(g) all GF (2
k
)-type gi have

already been assigned some rational expression in the free

variables, and all Boolean type gi have been computed to

constant ‘0’ or ‘1’ (this is possible for all Boolean inputs to the

circuit due to an explicit assignment in the “In bits settings”

section of the check which may be set either by the user or

as a result of forking on unresolved bits).

The Boolean function given by the subgraph can be written

as a conjunctive normal form whose literals are gi = 0 or

gi �= 0, where gi are rational expressions. As we will show

in the description of DIV operation, we always make sure

the denominators of our rational expressions cannot be zero.

This allows replacement of gi = 0 and gi �= 0 literals by

numerator(gi) = 0 and numerator(gi) �= 0 polynomial

equalities/inequalities and express g as an algebraic system

of the form⎧⎨
⎩
[
P∗(x0, x1, . . .) =, �= 0

]
or . . . or

[
P∗(x0, x1, . . .) =, �= 0

]
,

.[
P∗(x0, x1, . . .) =, �= 0

]
or . . . or

[
P∗(x0, x1, . . .) =, �= 0

]
,
(1)

where P∗ denote arbitrary polynomials in the free variables

x0, x1, x2, . . . associated with the GF (2
k
) inputs of the circuit.

The algebraic constraints on the inputs are also given as

CNF, and form an algebraic system of the same type.

g is constant‘0’ if and only if

{input constraints CNF} AND {g-subgraph CNF} (2)

is unsatisfiable.

g is constant‘1’ if and only if

{input constraints CNF} AND NOT{g-subgraph CNF} (3)

is unsatisfiable.

Each of the expressions (2) and (3) can be converted to a

single CNF of the form (1). Hence, it suffices to show how to

check whether a system of the form (1) is unsatisfiable.

Satisfiability checking algorithm:

The first step is to get rid of inequalities in the system. For

each inequality P∗(x0, x1, . . .) �= 0 we introduce an auxiliary

free variable t∗ and replace the inequality by

t∗ · P∗(x0, x1, . . .)− 1 = 0.

One can easily check that if the system before replace-

ment is satisfiable in variables {x0, x1, . . . , t0, t1, . . .} then

the system after replacement is satisfiable in variables

{x0, x1, . . . , t0, t1, . . .} ∪ {t∗} and vice versa.

The new system contains only polynomial equalities. Next

we replace all OR operations with multiplication:⎧⎨
⎩
(
Q∗({x∗}, {t∗})

)
· . . . ·

(
Q∗({x∗}, {t∗})

)
= 0,

.(
Q∗({x∗}, {t∗})

)
· . . . ·

(
Q∗({x∗}, {t∗})

)
= 0,

Now we have a regular algebraic system of multivariate

polynomials over GF (2
k
).

By Hilbert’s Weak Nullstellensatz a system of multivariate

polynomials is unsatisfiable over an algebraically closed field

if and only if the ideal generated by the polynomials of the

system coincides with the whole ring (i.e. contains 1) (refer

[8], pp. 169-173), x ∈ GF (2
k
) if and only if[

x ∈ alg closure
(
GF (2

k
)
)
AND x2k − x = 0

]
. For each

variable v∗ of our system add equation v2
k

∗ − v∗ = 0. The

new system (denote it S) is satisfiable in the algebraic closure

of GF (2
k
) if and only if the original system is satisfiable in

GF (2
k
).

Next we build a Gröbner basis of the ideal given by the

polynomials of system S. This can be done by Buchberger’s

algorithm ([8], pp. 77, 82-87). The original system is unsatisfi-

able in GF (2
k
) if and only if the Gröbner basis ofS contains 1.

If the value of g is proved to be a constant ‘0’ or ‘1’ assign

this value to g (computation successful). Otherwise fork on

the unresolved Boolean signal g as follows:

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

144

Add two copies of the current check at the end of the check

file as given below.

• If g is an input Boolean signal add g <= ’0’ to the

“In bits settings” section of copy 1 and g <= ’1’ to

the “In bits settings” section of copy 2.

• Otherwise add NOT(System (1)) to the conjunctive

normal form in “Algebraic constraints on GF inputs” sec-

tion of copy 1 and System (1) to the CNF in “Algebraic

constraints on GF inputs” section of copy 2.

Skip the current check and continue to the next one with

the two additional checks added at the end of the queue. As

a side note, the two examples in subsections III-A and III-B

do not require branching of this type for completion.

The only operation we have not explained yet is division.

DIV : In logical circuits division is usually implemented as

if y �= 0 return x/y; else return 0; (which is

equivalent to xy2
k−2). To compute the result of division we

first attempt to prove that the constraints on the inputs imply

that the divisor is either always = 0 or always �= 0 by the

same algebraic method as for the gates with Boolean output. If

successful, we simply assign 0 or the rational expressionx/y
to g. Otherwise we fork on the test of [denominator = 0] the

same way as shown above for non-input Boolean signals.

We have shown how to compute value of any gate given the

values of its inputs. GF (2
k
) signals are computed as symbolic

rational expressions in the input signals, and Boolean signals

must compute to constant ‘0’ or ‘1’ creating new branches with

additional algebraic constraints on the inputs if necessary. This

completes the description of our algorithm.

Our actual C implementation contains many more features

than described above. The most important ones include:

• Careful manipulations of conjunctive normal form sys-

tems: A brute force manipulation of CNFs, and opening

parenthesis in polynomial products which come from

large OR-clauses would cause an immediate exponential

explosion of the size of the system. However special care

is taken of systems of the form (1) which most commonly

appear in algebraic circuits. This prevents a rapid increase

of the size of the system - at least for typical cases. In

particular, if g-CNF has only one OR clause of length

≥ 2, i.e. has the form
(
[P∗ =, �= 0] or . . . or [P∗ =

, �= 0]

)
and [P∗ =, �= 0] and . . . and [P∗ =, �= 0], our

implementation ensures the size of any system for which

we build a Gröbner basis is simply equal to the sum of the

sizes of the input constraints system and g-CNF system.

• “Lazy” signal computation method: In order to find

values of expressions such as (‘1’ or x), (‘0’ and x),

(when ‘1’ : const else x) etc., we do not compute

x. This gives a significant speed up especially when the

signals whose values we need to verify are localized in

a relatively small part of a large circuit.

• Verification flow control: The user can control a number

of verification process options such as whether to spend

more time on Gröbner basis computation of a given bit

vs. fork; whether to attempt to save time by skipping the

x ∈ GF (2
k
) constraints which makes false negatives (but

not false positives) possible; etc.

The verification process can have three possible outcomes:

1) For all checks all crucial bit values are computed and

match the expected values.

2) One of the checks (including checks added by “fork on

unresolved bit”) fails because the value of one of the

crucial bits is opposite to the expected value specified

in the check file.

3) One of the checks (including checks added by “fork on

unresolved bit”) fails to compute one of the crucial bit

values due to insufficient time or memory.

In the latter two cases an interactive bug tracing interface

allows the user to browse the graph of signals and view

their values in the form of symbolic rational expressions and

algebraic systems.

III. EXPERIMENTAL RESULTS

If there is no restriction on time and memory the verification

process is guaranteed to prove or disprove the specification

in the check file. We will give in what follows two simple

examples (subsections III-A and III-B) where this is accom-

plished within a reasonable amount of time, demonstrating the

power of reasoning at the Galois field level as opposed to the

Boolean level. For complex, real-life designs (as exemplified in

subsection III-C) we have found it useful to help BLUEVERI

by manually partitioning the search space, resulting in very

little use of the “forking” feature described earlier. In addition,

in some instances care is taken to specify the circuit in

otherwise equivalent forms to aid BLUEVERI in keeping

down the size of its internal rational expressions and the

complexity of algebraic systems it generates; this was not

necessary in the two examples below.

A. The uncorrectable error flag of a sample Reed-Solomon
decoder

As a first example, we consider a Reed-Solomon code with

symbols belonging to a finite field GF (q) with q = 2
k

elements for some integer k. We shall assume that the length

of this code is n = 2
k − 1. Let r denote the number of

check symbols of the Reed-Solomon code. We assume that this

Reed-Solomon code has been furnished with a decoder that is

capable of correcting any one symbol error, and can detect up

to r−1 different errors. This decoder has a number of different

components, one of which is responsible for the computation

of the uncorrectable error flag. This flag is a single Boolean

output that is raised whenever the decoder has detected 2,3, or

up to r − 1 errors, and kept low whenever the error scenario

corresponds to a single error, or alternately whenever there is

no error.

For our choice of Reed-Solomon code, the r syndromes of

this Reed Solomon code can be computed from a (potentially

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

145

corrupted) encoded vector v ∈ GF (q)n using the formula

Si =

n−1∑
j=0

vjω
ij

for i ∈ {0, · · · , r − 1}, where ω denotes a primitive element

of the field. Furthermore, letting e ∈ Fn
q denote the error

vector affecting v, so that v = e + x where x ∈ Fn
q is the

uncorrupted codeword it is also known that due to linearity of

the addition operator in finite fields and the vector that x has

zero syndrome,

Si =

n−1∑
j=0

ejω
ij (4)

The design of the uncorrectable error flag for this scenario is

a well understood problem; for the sake of demonstration we

deduce what might be a reasonable method to test it directly

through formal methods. It can be easily seen from (4) that

if there is only one error in e then the syndromes satisfy the

following condition: SiSi+2 = S2
i+1 for i = 0, · · · , r − 3.

Furthermore it is also known whenever e has at least one

error and at most r errors, one or more of the {Si}r−1
i=0 is

nonzero. This leads to the conjecture that one can compute

the uncorrectable error flag through the following code, written

using BLUEVERI VHDL style semantics:

t_comp : for i in 0 to r-3 generate
t(i) <= add(mult(s(i),s(i+2)),square(s(i)));

end t_comp;
snz <= is_nz(s(0)) or ... or is_nz(s(r-1));
tnz <= is_nz(t(0)) or ... or is_nz(t(r-3));
UE <= snz and tnz;

As written above, snz and tnz represent two distinct

systems of equations which BLUEVERI will treat indepen-

dently of each other. On the other hand, BLUEVERI will

attempt to establish whether tnz (for example) is true or

false by examining the properties of t(0) ... t(r-3)
simultaneously as opposed to testing whether each t(i) is

zero or not individually.

In order to test the ability of a model checker to prove

the correctness of this implementation of the uncorrectable

error flag, we assume that the syndrome generation portion

of the decoder has been proved correct separately; this task

is in fact generally computationally simpler than the one

currently at hand. We then build a module that accepts

inputs e m(0)...e m(t-1) (for the error magnitudes) and

inputs l(0)...l(t-1) (for the error locations) where t
is the maximum number of errors one can inject into the

decoder during the test; in this particular example for the

uncorrectable error flag to be correct it is known that t =

r − 1. This module emulates the syndrome generator and

computes s(0)...s(r-1) using the equation s(i) =∑t−1
i=0 l(i) e_m(i) (as per Equation 4), and then passes

the resulting syndromes to a module that computes the uncor-

rectable error flag as previously described.

In order to test a variety of error scenarios, we can place

constraints on e m(i) and l(i). For example, one can

restrict the test to have exactly two errors by specifying the

following constraints:

e(0) != 0, e(1) != 0, l(0) != 0, l(1) != 0
add(l(0),l(1)) != 0, e(1) = ... = e(t-1) = 0

Note that in a field of characteristic 2, addition is equivalent to

subtraction, and hence the addition constraint effectively con-

strains l(0) != l(1). These constraints can be specified in

a BLUEVERI check file as equal/not equal to zero conditions

on multivariate polynomial expressions. When BLUEVERI

examines the dependencies of the UE signal, it finds that it

depends on snz and tnz. BLUEVERI must either resolve

that both are true, or that at least one of them is false. As

described earlier, this is accomplished by invoking an attempt

to compute the Gröbner basis of various system of equations

related to the constraints and the expressions defining snz
and tnz. Similar experiments can be conducted by updating

the constraints to specify “at least two, but not more than y
errors” where y is a number between 2 and r − 1.

In order to test the capability of BLUEVERI as applied

to this problem and contrast it with that of a formal prover

(we chose SixthSense, IBM’s state-of-the-art formal and semi-

formal verification tool set, for that purpose), we set up a test

with r = 8, b = 8 and with the capability to inject from 2

up to 7 errors at arbitrary locations, since the corresponding

Reed-Solomon decoder is supposed to be able to detect all

those errors. We also set up a parallel test with b = 4 which is

a considerably simpler problem for a Boolean oriented formal

verification system such as SixthSense [11]. The SixthSense

and BLUEVERI experiments do not have any special tuning

of the VHDL or the tool to improve the outcomes.

We refer the reader to Table I where the experiments

were performed in a single processor (POWER6 processor @

5GHz running AIX) and the SixthSense was run as a single

software thread mainly orchestrating redundancy removal and

SAT algorithms. In this set of experiments, BLUEVERI was

configured to reason about the circuit with the variables (due

to inputs or constraints) belonging to the algebraic closure of

the fields. This in essence means that we did not constrain

the variables to belong to the field GF (256) (resp. GF (16))

depending on whether the symbols used were 8 bit (resp. 4

bit) symbols. The consequence of this is that although the

BLUEVERI results are listed under 8-bit column, they in fact

hold for any field size, including larger field sizes which would

be even harder for a bit-level verification system to handle.

Both formal systems were able to prove the correctness of the

uncorrectable error flag under the single error scenario quite

easily, but SixthSense was not able to prove the correctness

of this flag in the double error case in the amount of time

indicated in the table. In order to test the sensitivity of SXS

to the field size, we performed a similar experiment for a

Reed-Solomon code defined over GF (16). In this case we saw

better results from SixthSense, since we were able to prove

the correctness of double and triple error detect cases but not

four error case. It is worth noting that the field size determines

many important properties of an error control code, including

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

146

symbol errors expected UE
8 bit symbols 4 bit symbols

BLUEVERI input bits SXS input bits SXS
1 false Success after 0.1 s. 16 Success after 14 s. 8 Success after 0.7 s
2 true Success after 1 s. 32 Gives up after 24 h. 16 Success after 3 s
3 true Success after 1 s. 48 N/A 24 Success after 55 m
4 true Success after 33 m. 64 N/A 32 Gives up after 24h
5 true Gives up after 6 h. 80 N/A 40 N/A

TABLE I

EXPERIMENTAL RESULTS FOR THE FORMAL VERIFICATION OF THE UNCORRECTABLE ERROR FLAG OF A SINGLE ERROR CORRECT, MULTIPLE ERROR

DETECT REED-SOLOMON DECODER. SXS REFERS TO SIXTH SENSE, A BIT-LEVEL FORMAL VERIFICATION TOOL SET DEVELOPED AT IBM.

errors
8 bit symbols 4 bit symbols

BLUEVERI
input
bits

SXS
input
bits

SXS

2 Succ. 2 s. 32
Gives up
after 24h

16 Succ. 0.6s

3 Succ. 2.1 s. 48 N/A 24 Succ. 16m

4 Succ. 2.1 s. 64 N/A 32
Gives up
after 24h

5 Succ. 2.3 s. 80 N/A 40 N/A
6 Succ. 3.1 s. 96 N/A 48 N/A
7 Succ. 49.4 s. 112 N/A 56 N/A
8 Succ. 8m 128 N/A 64 N/A
9 Succ. 53m 144 N/A 72 N/A

TABLE II

EXPERIMENTAL RESULTS FOR THE FORMAL VERIFICATION OF THE ERROR

MAGNITUDE COMPUTATION STAGE OF A REED-SOLOMON CODE.

the total codeword length, and thus it cannot be modified for

the purposes of formal verification since the resulting code is

entirely different and, in all likelihood, not applicable to the

original problem.

B. Computing error magnitudes in a Reed-Solomon code

One of the tasks that an error control decoder for a code

defined over multibit (q > 2) symbols must perform is to

compute the locations of the symbols in error and then to

compute the multibit pattern that one must add to those

locations in order to correct the codeword. This multibit

pattern is called the error magnitude. Suppose that there are t
errors in a codeword, and let s(0), · · · ,s(t-1) be the first

t syndromes (note that this example is for a different setting

than the example in the previous subsection). From (4), we

can derive that error magnitude computation can be carried

over using the equation

⎡
⎢⎣

e_m(0)
.
.
.

e_m(t-1)

⎤
⎥⎦=

⎡
⎢⎢⎢⎣

1 · · · 1
l(0) · · · l(t-1)

.

.

.
. . .

.

.

.
l(0)t−1 · · · l(t-1)t−1

⎤
⎥⎥⎥⎦

−1⎡
⎢⎣

s(0)
.
.
.

s(t-1)

⎤
⎥⎦

The inverse matrix above can be derived analytically. It is

well known that the inverse is non singular if and only if the

locations l(i) are all distinct of each other. This restriction

can be specified through
(
t
2

)
constraints each of which is a

polynomial with two monomials. We refer the reader to Table

III-B where we show that in this case, BLUEVERI was able to

show the correctness of the corresponding circuit with up to 8

errors, while SixthSense was unable to finish the double error

case within the time allocated. As in the previous subsection,

in this particular example the result for BLUEVERI is actually

field size independent since it exploits only the algebraic

properties of the symbols. It is worth noting that the Gröbner

basis machinery in BLUEVERI does get involved in proving

the correctness of this circuit. This is because the inversion

of the Vandermonde matrix results in rational expressions (as

opposed to plain polynomial expressions) whose denominator

could be zero. The task of Gröbner in here then is to show

that the denominator is not zero given the assumptions on the

inputs, so that BLUEVERI can proceed with the corresponding

algebraic simplifications leading to the desired result.

C. A note on a real life application of BLUEVERI

The examples in the previous subsections are meant to

illustrate the capabilities of a formal verification system such

as BLUEVERI when compared to Boolean oriented sys-

tems. In our experience, the implementation of a real-life

encoder/decoder employs many custom algorithm variants as

one tries to address problems that are specific to the application

at hand. In the most significant application of BLUEVERI so

far, we have succeeded in proving the correctness of an ECC

of a POWER microprocessor that is based on the mathematics

of Reed-Solomon codes. The correctness criteria included all

correctable and uncorrectable cases for which we had given

guaranteed behavior (e.g. recovery from complete chip failures

and detection of multiple errors). The ECC, from the decoders

perspective, had over 1000 bits of input including several

tens of bits worth of configuration parameters. The number

of syndrome bits produced by the decoder was over 100 bits,

although our testing did include testing the behavior of the

encoder with analytically generated symbolic syndromes, it

was not limited to it - approximately half of the total testing

time exercised the more than 1000 bits of input of the circuit

directly. The number of Galois field and Boolean elements in

the corresponding graph is over 100,000 (compared to at most

a few hundred in the previous experiments). Because of the

complexity of the problem, we had to case-split to create 1M

different tests, each of which exercised formally a particular

region of the test space. It took about 2 weeks to prove the

correctness of the entire design in a 10 machine Linux (x86)

cluster.

IV. TECHNICAL SOLUTIONS

The BLUEVERI tool leverages IBM’s existing front-end

and simulation tools and flows. For language processing we

are using Portals, IBM’s HDL compiler, which accepts the

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

147

synthesizable subset of standard VHDL and Verilog languages.

Portals performs behavioral synthesis on procedural HDL and

produces an elaborated netlist, for BLUEVERI this is in the

DADB logic database. DADB is a box-pin-net logic database

used for verification flows, such as topology checking and

simulator model build, which supports client transforms via a

dynamically loaded plugin architecture.

Portals was modified for BLUEVERI to support the black-

boxing of function calls, enabling the logic to be represented

in a form amenable to analysis by BLUEVERI. High level

language constructs which are output by Portals into the

netlist, such as case statements, can be synthesized into lower

level representations by the use of DADB client transforms.

The BLUEVERI analysis tool has its own custom input

netlist format. A netlist translator was built as a DADB client

to enable the tools flow from Portals into BLUEVERI.

The MESA logic simulator is a high performance cycle

simulator used for functional verification within IBM. MESA

simulation models are built from logic netlists in DADB by

using model build clients.

The BLUEVERI code is written in C. For the computation

of Gröbner bases we use ”SINGULAR” [10] a powerful pro-

gram for algebraic geometry computations distributed under

general public license. BLUEVERI runs SINGULAR as a

child process and uses ”EXPECT.h”, (a standard C library),

for sending queries and receiving results from SINGULAR’s

Gröbner basis engine. The Gröbner basis obtained is for the

inverse degree lexicographical ordering.

V. CONCLUSIONS

In this article we presented a novel technique for designing

and verifying circuits based on the mathematics of Galois

fields. At the heart of our approach is the idea of exposing

operations on Galois field directly to a verification layer

(encapsulated in a tool called BLUEVERI) which leverages

powerful techniques from algebraic geometry to reason about

the properties of the abstract Galois field rational expressions

generated in the circuit. Our circuits are specified using a

subset of existing Hardware Description Languages and as

such, remain fully synthesizable, an important attribute to

reduce the possibility of human error in the design process.

We demonstrated the value of the ideas we proposed in the

context of two problems representative of the type of situations

encountered when designing error correcting codes. In both

instances, we showed BLUEVERI can significantly outper-

form conventional bit-level formal verification. We outlined

a successful application of the BLUEVERI system to prove

correctness of a real production complex error correcting code

implemented on a POWER microprocessor which otherwise

could not be verified conclusively with traditional verification

methods.

VI. ACKNOWLEDGMENTS

The authors would like to thank Barry M Trager, Shmuel

Winograd and Geert Janseen of IBM Research for insightful

discussions to help shape the solution.

1b

6a

6b

8

9a 9b
10

7

1a

2

3

5

4

A set of alg. systems of
polynomials on Galois field input
variables and expected values of

crucial signals

script parser
"Settings for checks"

bugs tracing
User interface for

C library for

over Galois field
rational expressions
manipulations with

Buchbergers algorithm
for Grobner basis

computation

a galois field operation
−or−

as described in Section II.a
a bit operation

A set of black−boxed functions.
Each black−boxed function is

PORTALS
compile with

then use
DA−DB

with a dynamically
linked set of our

functions

Library of GF
arithmetic functions

(by exhaustive checking)
GF ar. func. verifier

Check
file

Report
pass/fail Log file

My
circuit

Fig. 3. General schema of BLUEVERI tool.

REFERENCES

[1] Meaney, P. J. and Lastras-Montaño, L. A. and Papazova, V. K. and
Stephens, E. and Johnson, J. S. and Alves, L. C. and O’Connor, J. A.
and Clarke, W. J., IBM zEnterprise redundant array of independent
memory subsystem IBM Journal of Research and Development, Jan-
Feb, Vol. 56, 2012.

[2] Lastras-Montaño, L.A.; Meaney, P.J.; Stephens, E.; Trager, B.M.;
O’Connor, J.; Alves, L.C., A new class of array codes for memory
storage, Information Theory and Applications Workshop (ITA), 2011 ,
vol., no., pp.1-10, 6-11 Feb. 2011

[3] R. E. Bryant Graph Based Algorithms for Boolean Function Manipula-
tion, IEEE Trans. on Computers, vol. C-35, pp. 677691, August 1986.

[4] R. E. Bryant and Y-A. Chen Verification of Arithmetic Functions with
Binary Moment Diagrams, Design Automation Conference 1995.

[5] U. Kebschull and W. Rosentiel Efficient graph-based computation and
manipulation of functional decision diagrams, European Conference on
Design Automation, pp. 278 - 282, 1993.

[6] S. Morioka, Y. Katayama and T. Yamane Towards Efficient Verification
of Arithmetic Algorithms over Galois Fields. Proc. Computer Aided
Verification 2001, vol. 2102, pp.465-477.

[7] Jinpeng Lv, Priyank Kalla and Florian Enescu Verification of Composite
Galois Field Multipliers over GF (2m

n
) Using Computer Algebra

Techniques. Proc. IEEE International High Level Design Validation and
Test Workshop 2011, pp.136-143.

[8] David Cox, John Little, and Donald O’Shea. Ideals, Varieties and
Algorithms. Undergraduate Texts in Mathematics. Springer, 2010. ISBN:
0-387-35650-9.

[9] Rudolf Lidl and Harald Niederreiter. Finite Fields. Encyclopedia of
Mathematics and Its Applications, Volume 20. Cambridge University
Press, 1997. ISBN: 0-521-39231-4.

[10] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: SINGULAR

3-1-3 — A computer algebra system for polynomial computations.
http://www.singular.uni-kl.de (2011).

[11] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
Scalable automated verification via expert-system guided transforma-
tions, Formal Methods in Computer-Aided Design, 2004, pp. 159173.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

148

1

Abstract— Formal Verification (FV) is widely acknowledged
for improving validation effectiveness. Usually formal
verification has been used to supplement more traditional
coverage oriented testing activities. Arithmetic Data-path FV has
matured over the time to completely replace traditional dynamic
validation methodologies. Moreover, it gives an additional
promise of 100% data-space coverage. Symbolic Trajectory
Evaluation (STE) is the best proven method of FV on Intel®
data-path designs. The Floating Point Units (FPUs) are generally
very data-path intensive. In the next generation Intel Processor
Graphics design, the FPU was completely re-architected and this
necessitated a methodology which could guarantee complete
verification in a tight verification schedule. STE was brought in
to meet this formidable target. This paper discusses the efficient
application of this methodology to achieve convincing results.
More than 201 bugs were caught in a very short verification cycle
using STE.

I. INTRODUCTION

VER since Intel graphics moved from chipset to CPU,
there is an ever-increasing demand on the graphics design

to make the combination of CPU and graphics more
compelling for the end user. The current generation graphics
processor unit (GPU) is not just solely used for image
rendering but also to share the workload with core-CPU
processor [1, 2]. Graphics processor designs have very short
design cycles to cope with the market requirements. In this
paper, we address the problem of verifying large arithmetic
data-path circuits using formal verification techniques in such
short design cycles.

Intel microprocessor design cycles follow a uniform
methodology over successive generations, known as “tick-tock
cadence” [3]. In a typical “tock” part of this cadence, major
innovative architectural changes are introduced in the
microprocessor design. In a typical “tick” part of this cadence,
relatively less architectural changes are introduced while
design is moved to the next generation semi-conductor
manufacturing process technology. This cadence effectively
allows consistently improving next generation microprocessor
capabilities and performance.

The latest “tick” CPU processor of Intel encases a graphics
engine that can be called “tock” taking into account the

number of architectural changes that went into the design.
Such aggressive architectural changes were introduced to
provide significantly increased graphics performance. This
presented a huge challenge to the verification team to verify
these architectural changes in a relatively shorter time. STE-
based formal verification methodology was used to tackle this
challenge providing a high degree of confidence in the
correctness of this design.

Execution units performing arithmetic computation inside
graphics microprocessors are becoming more available to end
users for high-performance computing using general purpose
graphics processor unit (GPGPU) programming methodology.
This makes it much more critical to ensure that the next
generation Intel Processor Graphics design implements the
arithmetic standards faithfully and the stakes are much higher
than previous generation graphics designs if a really tricky bug
were to be missed in the graphics execution unit [4, 5, 6].

This paper talks about how this challenging task of validating
“tock” features in “tick” timeline, was simplified and
successfully accomplished by making use of STE. We
describe how STE was used to establish correctness of
floating-point data-path circuits which resulted in discovery of
201 bugs. Many of these bugs were truly “FV-quality” bugs
which would have never been found by other forms of
validation or discovered much later in the project cycle.
Similar bugs were discovered very late in the post-silicon
phase in previous generation graphics design where STE-
based formal verification was not applied. Discovery of these
bugs in the latest graphics design has greatly contributed to
achieving higher RTL quality way ahead of tape-out1 and
significantly reducing the risk of encountering them in the
post-silicon verification.

A. Related Work
STE based formal verification approach has been widely

used at Intel in the past for various microprocessor designs to
formally verify data-path designs [7, 8, 9, 10, 11, 12]. It has
been proven very effective at handling large arithmetic circuits
and establishing their correctness against a formal
specification and discovering very difficult to find bugs in the

1 Sending design for semi-conductor manufacturing production is referred

to as tape-out.

Symbolic Trajectory Evaluation:
The Primary Validation Vehicle for Next

Generation Intel® Processor Graphics FPU
M Achutha KiranKumar V, Aarti Gupta, and Rajnish Ghughal

Intel Corporation
{achutha.kirankumar.v.m, aarti.gupta, rajnish.ghughal}@intel.com

E

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

149

2

process which would have been undetected by any other form
of validation. For example, STE-based formal verification was
used in an execution cluster of Intel microarchitecture code
named Nehalem to replace traditional simulation [7].

At Intel, FV techniques have also been applied to formally
verify designs other than arithmetic data-path in
microprocessor using other forms of formal verification, e.g.,
pipeline scheduler verification, cache coherence protocol
verification etc. [19, 20, 21]. These formal techniques
typically involve using explicit state model-checking,
symbolic model checking or bounded model checking using
SAT. In our experience, these techniques are not as suitable as
STE for verifying industrial scale floating point arithmetic
data-path designs.

Formal verification of floating-point arithmetic designs is a
well-studied problem both at Intel and elsewhere in the
industry [7, 8, 9, 10, 23, 24, 25, 26, 27] due to the critical need
of correctness of floating-point arithmetic. Majority of these
work [7, 8, 9, 10, 24, 25, 26] concentrate on verifying floating-
point addition, multiplier or divider operation but do not
address floating-point fused multiply addition operation which
presents a lot of unique challenges of its own.

In [23], formal verification of FMA operation is done by
excluding multiplier from the cone of influence and hence the
proof of the correctness of multiplication is missing. In our
experience, proof of the correctness of multiplication,
especially for double precision floating-point arithmetic is a
very challenging task and is critical to verify. In [23], a key
assumption was to disallow other operations in the pipeline
before or after the FMA operation. Our work allows arbitrary
operations to come before and after the FMA operation in
pipeline. In fact, some of the most interesting bugs that we
found involved interaction between FMA and other operations
in the pipeline. Such bugs are near impossible to discover by
any other forms of validation and hence it is critical that such
limiting assumptions should not be employed in formal
verification of floating-point arithmetic designs. One of the
many such bugs discovered by our work is described in a later
sub-section of this paper (see Complex Interaction Bugs).

In [27], Slobodova describes a FMA formal verification
proof developed at Intel previously using STE. This approach
mirrors closely with the approach used by us with some key
differences. FMA design implementation described in [27]
was significantly simpler than the FMA design in the next
generation Intel graphics, which uses an approach known as
“sea of multipliers” to implement very power-efficient and
latency-optimized multiplication. Such a FMA design
challenged us to approach the problem of verifying booth-
encoded partial products generation completely differently
than similar efforts in the past. Also in [27], FMA operation
on denormal floating-point numbers was not formally verified
due to limited hardware support of denormal floating-point
numbers in the design under consideration. In the next

generation of Intel graphics design, FMA operation fully
supports denormal floating-point numbers in the hardware.
This significantly expanded the data-space of the problem and
required us to completely rethink the traditional case-split
strategy employed in floating-point addition operation from
ground-up. In addition, a lot more floating-point precisions are
supported in the next generation Intel graphics design than the
design under consideration in [27].

Despite STE’s success in formally verifying arithmetic
designs in microprocessors previously, its application to
graphics design projects has been limited. This paper presents
first such application to large-scale industrial graphics design
where formal verification was used as a primary method of
validation resulting in a very large number of high quality
bugs found in the process.

II. WHAT IS STE?
Symbolic Trajectory Evaluation (STE) is a formal

verification method originally developed by Seger & Bryant in
1995 [13]. It is a high-performance model checking technique
using a symbolic simulation-based approach [14, 15, 16]. It
works over binary decision diagrams (BDDs), which are
symbolic Boolean expressions. STE is particularly well suited
to handle data-path properties, and it is used to verify gate-
level models against more abstract reference models.

A. Technical Framework
Formal Verification of data-paths in the design under test

(DUT) is done using the Forte framework, originally built on
top of the Voss system [14]. The framework and methods built
around it are depicted in Figure 1.

Figure 1 Building Blocks of STE Infrastructure

The interface language to the Forte is reFLect (FL for
short), a lazy, strongly-typed functional language in the ML
family [18]. The Forte framework directly supports symbolic
simulation on circuit models through STE as a built-in
function.

Relational STE (rSTE) is a package built around STE to
support relational specifications. Effectively, rSTE is a tool to
check whether a set of constraints (“the input constraints”),

Forte

rSTE

STE

CVE

LEGEND:

Forte framework

STE: built-in symbolic engine of Forte

rSTE: wrapper package around
STE

CVE: Common Verification
environment using rSTE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

150

3

implies another set of constraints (“the output constraints”)
over all traces of the circuit. It provides sophisticated debug
support, breakpoints etc. It also provides a number of
capabilities to manage the complexity of the formal
verification tasks.

The Common Verification Environment (CVE) was
developed to create a standard, uniform methodology for
writing specifications and carrying out verification tasks using
STE. The CVE is built upon a generic abstract model of the
DUT (design under test). The CVE combines proof
engineering and software engineering to create a standard,
uniform methodology for writing specifications and carrying
out verification tasks. The aim of the effort is to support reuse
and code maintenance over a constantly changing design, and
separate common and project-specific parts to allow shared
code to be written only once. The CVE collects all verification
code to a single common directory structure and provides a
platform to share code across projects.

B. Verification flow using STE
The basic flow-diagram of verification using STE is shown

in Figure 2. STE checks that given a set of constraints, the
symbolic simulation output of the DUT matches the given
specifications or not. Constraints define the behavior of input
nodes (src_nodes) at arbitrary input time (src_time). For a
particular data-path to be tested, nodes that may take variable
values are driven symbolic values, nodes those are required to
be fixed are driven constants(0/1), and all other nodes that
don’t fall in cone of influence are made don’t care (X).
Specifications express requirements that should hold on output
nodes (wb_nodes) at writeback time (wb_time = src_time +
latency of data-path). The set of constraints are applied to the
specification which are spec constraints. Constraints and
specifications are written by the user in FL. STE computes a
symbolic representation for each node (n,t), extracts node-time

information at writeback (wb_ckt) and checks against the
writeback specification (wb_spec) provided by the user. The
result could be either a full proof or a counter example or X as
depicted in the Fig.2. The X signifies one of the three options:
(1) Circuit output results in X which is undesirable or (2) the
antecedent needs refinement or (3) the BDD size just blew out
of proportions of the defined weakening limit and hence
complexity reduction techniques had to be employed to get it
under control.

It is quite often that the verification engineer needs to prove
properties of the intermediate states of the data-path design in
order to be able to prove correctness of the final result. These
properties are written as invariants and proven using either
inductive methods using STE or as a data-path property.
Discovery and proofs of these invariants play a key role in
enabling formal verification of data-path designs.

STE has been extremely successful in verifying properties
of circuits containing large data-paths. FPU validation using
STE in the next generation Intel Processor Graphics design
produced exceptional and unprecedented results. Section IV
describes the story of this success and path taken to achieve it.

III. NEXT GENERATION GRAPHICS PROCESSOR FPU

The bulk of processing in a graphics processor is done by an
array of programmable cores or Execution Units (EUs). The
main processing engine of an EU is its Floating Point Unit
(FPU). FPU performs the desired operation by means of
executing the micro-instructions (uops) launched by the EU.
The goal of FPU validation is to verify the results of these
uops.

A. Graphics Processor FPU Validation Challenges
The FPUs of the graphics processor are data-path intensive

and getting complete vector coverage on all the operations is
almost impossible, even with multibillion-cycle dynamic
simulation runs. In addition to this, with the introduction of

Compute Shaders
(CS), more stringent
precision requirements
are now imposed on
FPUs to comply with
various standards like
IEEE standard for
binary floating-point
arithmetic, Open
Computing Language
(OpenCL®), Open
Graphics Library
(OpenGL®), DX11,
etc. [4, 5, 6]. Before
the introduction of
Compute Shaders, the
FPU operations were
limited to executing
instructions for the 3D.
But now, the FPUs are

Figure 2 Basic flow diagram of verification methodology using STE

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

151

4

exposed to general purpose applications similar to the CPU
cores and the accuracy/precision requirements have become
more exacting. The challenge in validating the FPU data-path
is to get 100% coverage while meeting the precision/accuracy
requirements.

Though the CVE provides a common base and
methodology for implementing uops, the implementations
vary from project to project and design-specific intricacies had
to be taken care of. The graphics instruction set2 is compact
but has a complex format. The instruction format had a
number of qualifiers which were not present in a CPU
instruction. Challenges faced due to these additional qualifiers
for the implementation of the GT STE are explained in the
Table1 below.

Table 1: GT Specific challenges for STE deployment

GT intricacy Brief description

Support for
Various Dsizes

Unequal Dsizes for
sources/destinations

Flag Generation/
interpretation

In addition to IEEE flags, GT also
supports flag output based on outputs

Source modifiers Negation, absolute, negation of
absolute

Saturation Floating point saturation allowed for
GT

Accumulator
Source

Allows implicit/explicit accumulator
source

Accumulator
Destination

Allows implicit/explicit accumulator
destination

Denorm Handling Non uniform for different precisions

ALT mode Support for non-IEEE compliant mode

NaN Handling Fixed NaN output for some operations

Rounding modes Instruction specific rounding
Channel enables Selective enabling of FPU pipelines

Apart from the above common validation challenges of any
graphics processor validation, the next generation Intel
graphics processor faced a new set of validation changes due
to huge architectural changes done for better graphics
performance. Performance improvement of graphics directly
translates to enhancing the raw execution power source of the
graphics engine i.e. EU. FPU which is the main data-cruncher
of EU was completely re-designed for the next generation
Intel Processor Graphics design to get the desired performance
improvement and area-reduction per EU. This overhaul of
design and architecture imposed a lot of validation challenges.
Some of the major design change categories in FPU are
described in Table 2.

Due to the complete redesigning of FPU in latest GPU

2 Graphics instruction set is for internal consumption and not exposed for
external reference.

design, validation was considered as a high risk to be
completed with high confidence level. Data-path formal
verification using STE was brought in to the rescue.

Table 2: FPU Specific changes in next generation Intel
Processor Graphics design

FPU Changes Validation Risk
FPU Pipeline Restructure High

Increased Conformance to Arithmetic
Standards High

Improved Programming capability Medium
Improved Clock Gating Low

Area, Power & Throughput
optimizations Low

IV. OPERATION FV BUG-HUNT

The following section explains how STE enabled an early
validation of the design and how it helped in unearthing a
wide variety of bugs. The methodology was applied on the
design where it passed the basic check-in gates and ready for
mass regression. STE proof regressions were run on every
released model and the failures were debugged.

A. Proof readiness before the design and validation
reference models
Like any other design methodology, the new graphics

design followed a phased implementation of new design
features (DCNs). Thus register transfer level (RTL) hardware
design was under constant churn and so was the C++ based
golden reference model for dynamic validation3 (DV).
Because of the following remarkable qualities of STE, we
were ready to develop proofs before RTL or DV Reference
Model was ready:

1. One proof – many projects:
The beauty of CVE is the specification code reusability
across projects. The specification of processor micro-
operations doesn’t change much over the generations of
design. As most of the proofs are agnostic to the
implementation details, they are easily portable to any
project with/without minor changes. Many graphics-
specific integer and floating-point (FP) STE proofs
were developed during the previous generation Intel
Processor Graphics verification timeframe. Most of
these proofs could be seamlessly integrated into the
new graphics design verification with minor
modifications. Though we were not ready with full set
of proofs, we were equipped enough to do the basic
checking and getting RTL to a stable state.

2. One proof-wider coverage:
Just like any other Formal methodology, STE doesn’t
depend on any scalar vectors for simulation. It takes

3 Dynamic validation refers to the traditional method of doing verification

using simulation over concrete (as opposed to symbolic) input values.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

152

5

into account all the control signals and results in a
comprehensive coverage. Just one proof can provide
the control space coverage for all signals in the cone of
influence of the operation being checked, in addition to
the comprehensive data space checking. During the
first month of verification cycle, we focused on
developing and regressing formal proofs to check
correctness for simple operations (For example, logical
operations like OR, AND, integer add, etc.), to get the
RTL healthy. This simple operation checking itself
unearthed much more number of bugs in different areas
of the design as compared to the dynamic validation
which was being run in parallel on the full instruction
set of FPU. Once the basic proofs started passing, we
embarked on proving the formal proofs for more
complex operations (like floating point conversions to
integer/floats, floating point add, mul, mad, etc.).
Regressions were run on every new model and the
failures were debugged and reported out. A passing
proof guarantees 100% coverage of the input data space
within the defined constraints of control logic.

3. Capability to mask unimplemented features:
During Front End Development all the new design
features are implemented in a phase-wise manner.
Validation needs to be in close tandem with the design
implementation to verify only the implemented
features. STE provides the user with the capability of
selectively masking the unimplemented features
through addition of simple constraints. This enabled us
to make uninterrupted forward progress in validation.
Once the proofs are passing, the constraints are phased
out as the RTL matured with the planned
implementation.

4. Ease of debugging:
The counter examples provided by the tool were very
intuitive and could easily help in reproducing the
failure in dynamic simulation. The in-house developed
AGM viewer utility aids in debugging through
waveforms and schematics and was of great help in
debugging.

B. STE as monster bug-hunter
 STE could help in stabilizing the RTL quality by regressing

over every design iteration and point out the failures in
different areas. A wide range of bugs varying in both quantity
and quality were unearthed in the process. The bugs ranged
from bugs on controls related to data-path, instruction
interaction bugs, clock gating bugs to deep corner case
scenarios. Some of these bugs are mentioned below to
highlight the uniqueness of the bugs found:

1. Clock-gating Bugs:
The new graphics design implements very aggressive
clock gating and bugs were found on logic with flops
gated with incorrect pipeline signals, unintended gating

and non-uniform gating across the data.

Figure 3: Clock Gating Bug Example

As an example, in the scenario depicted in Figure 3, the
buggy RTL missed the flop shown in the highlighted
circle. While the data input of stage 3 flop received a
stage 2 signal, the signal that drives the enable input
was of stage 1. Dynamic simulation couldn’t catch this
miss, as all the flops were initialized to zero during
reset phase. As STE simulation would work with
symbols driven at the inputs, the resultant of the above
logic would result in X4s at the flop output.
Reproduction of the similar scenario in dynamic
simulation wasn’t a straight forward task.

2. Data space Corner Cases:
Majority of the bugs found using STE are deep corner
case scenarios. Finding deep-rooted data space issues is
one of the most sought after features of STE.
To mention one example, a particular evasive bug in a
three source floating point operation “OP (A, B, C)”
manifested itself only when the following data
requirements were met:

The probability of hitting this specific data requirement
is 1 in 2192 (264*264*264) possibilities. The chance of
reaching this kind of scenario with any other validation
methodology is very remote.

3. Complex Interaction Bugs:
This category of bugs manifest when two operations
occur one after another with specific data requirements
on the sources for each of these operations. Due to the
nature of the source supplied to each of these
operations, a certain incorrect behavior in the design is
exposed that would only manifest when these two
operations are in close temporal proximity to each
other.
One such specific interaction bug was found when a
particular two source operation “OP1 (A, B)” produced
incorrect results, when it was immediately preceded by

4 X is introduced by STE to automatically abstract symbolic computation

that may not be relevant for the verification task.

A = 0x1cc9_9398_0003_3273
B = 0x1ff4_04b2_5a15_c2bb
C = 0x8000_0000_0000_0001

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

153

6

a particular three source operation “OP2 (C,D,E)” and
the input data of both these uops followed the data
requirements given below:

This was a rare combination of “Instruction
Interaction” and “Data space Corner-case” issue. Such
scenario with specific data requirements on current and
previous operations is almost impossible to be caught
by any other validation methodology.

4. Initialization Bugs:
This set of bugs relates to erroneous initialization of
state elements in the design. One example of these
kinds of bugs is explained in Figure 4. The figure
illustrates priority selection logic where a raw move (a
move operation without any modifiers or qualifiers) has
a higher precedence to create a data valid (dv) signal.
The integer to float conversion signal was missing in
this cone of logic of the buggy RTL. Usually, the
dynamic tests start with initializing the configuration
registers which are usually raw move instructions and
hence the flop in this logic would get initialized and the
int2float conversion in these tests would run as
expected. On the contrary, the STE simulation signal
would see Xs on the dv signal, oblivious to the
preceding instructions.

Figure 4: Initialization Bug Example

5. Control Logic Bugs:
This set of bugs is the result of faulty control logic in
the circuit. The usual sources of these bugs are typos in
the RTL or incorrect bug fixes.

These bugs are not hard to detect by other validation
methodologies as they don’t have very stringent data
requirements and can be reproduced by just appropriate
setting of control parameters. But still some of these
bugs evade capture by other methodologies because of
their random nature.

STE, however, guarantees complete coverage of data
and control variables and makes sure that these bugs
are weeded out. These kinds of bugs are usually found
in the first formal verification attempt for the concerned
operation.

Source
Modification

function

Data
Computation

A
B
C

A’
B’
C’

Figure 5: Control Logic Bug Example

 One simple example of such bug is presented in Figure
5. In this case, due to a typo mistake in the RTL, one of
the sources was taken for data computation without
applying a source modification function which was the
design requirement.

V. RESULTS

The results achieved by applying STE early in the design
cycle are explained in the sections below:

A. Comparison against contemporary methodologies
In addition to STE, FPU validation in graphics projects is

carried out by a set of other standard validation
methodologies. Table 3 gives a short summary of these
techniques.

Table 3: List of Contemporary Validation techniques for
graphics FPU validation

Validation
Technique

Methodology Reference
Model

DV1 Dynamic stress
validation using
targeted vectors
generated by Intel
Internal Tool

DV C++ based
Reference

Model +
Intel Internal

Floating Point
Library

DV2 Dynamic coverage-
based validation using
controlled random
vector generation by
Intel Internal Tool

DV C++ based
Reference

Model

A, B, C, D, E are floating-point numbers
below.

Conditions on Preceding Operation:
� Operation must be OP2 (C, D, E)
� C is negative
� C is not Infinity/Not a Number

(NAN)/Zero
Conditions on Current Operation:

� Operation must be OP1 (A, B)
� A or B is a negative NAN

OP2 must come in the cycle
immediately before OP1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

154

7

DV3 Dynamic validation
using standard random
test bench features of
System Verilog

DV C++ based
Reference

Model

FV1 Another Formal
Verification Approach
with C++ specification
against the RTL

C++ based
specification

Figure 6: RTL bugs found by validation methodologies

Figure 6 gives the distribution of RTL bugs exposed and
filed by different methodologies for pre-silicon verification in
the new graphics processor.

Of the total number of discrepancies found, STE takes the
lion share with 72% of the bugs being exposed by this
methodology. The bugs which were found by the other
methodologies were from:

1. Operations which were not verified by STE.
2. A very small set of RTL bugs in the areas covered by

STE, were found because either the STE proof was
under development or they were debugged ahead of
STE failures.

As we approached the end of the project cycle, we reviewed
all the constraints with the designers and refined them. These
could also catch a good deal of issues in the design. We are
yet to implement an automated way of converting the
constraints to SVA based monitors.

As evident from the Figure 6, STE formed the backbone of
major feature validation for FPU. Almost 3 out of the 4 RTL
bugs filed in the new-GPU FPU were found by STE. The
confidence on STE verifying uops were so high that the rest of
the methodologies were realigned to target only those areas
which were not covered through STE.

STE was the tool of choice from the RTL side for any
optimizations in the micro-architecture. Any optimizations for
timing fixes, and power optimizations were run first through
STE and based on our feedback, the fixes were either selected
or rejected for functionality. STE helped in maintaining the
health of the RTL and could avoid the downtrends which are
typically seen in any of the design projects.

B. Bug Distribution
Figure 7 depicts the division of 201 bugs found by STE in

the next generation Intel Processor Graphics FPU. Though

majority of them were RTL bugs, we also found ample issues
with the Spec (the architectural specification) and the golden
DV Reference Model.

Figure 7: Distribution of 201 STE bugs

There are a decent number of bugs filed on DV Reference
Model. These bugs were found through STE when bugs
caught by STE were tried to be reproduced on dynamic
simulation. Dynamic simulation runs tests on both RTL and
Reference Model and any difference in the results between
these two models are reported as error. If the DV Reference
Model implementation also bears the bug, then Reference
Model would be in unison with RTL and the bug would be
masked. The bugs that are filed from STE on DV Reference
Model fall in a category which exposed the issues where the
Reference Model also has the bug like the RTL and the
masked issue would never get exposed in any of the other
methodology. Hence, we could cleanse not only the RTL but
also the golden model which is used by other methodologies
too.

Architectural Specification bugs were found by STE when
the defined pseudo code of an operation in Spec didn’t match
with the standard CVE proofs. Since, CVE proofs conform to
most of the arithmetic standards and have been verified in
variety of projects, some of the failures turned out to be Spec
issues. The whole execution was carried out by a two member
team during a span of 9months and the man-year effort is
comparable and even lesser than what has been observed in
STE validation on EU in CPU projects. Thanks to the
reusability of the CVE.

C. Forward and Backward Compatibility of Proofs
Once the proofs were completely developed, we could

execute them on some of the earlier projects which were
currently under post silicon debug and found some issues. The
proofs developed are broadly compatible with generations of
graphics designs, both forward and backward.

VI. SUMMARY

The next generation Intel processor graphics FPU was
completely redesigned to comply with arithmetic standards,

DV Reference
Model , 12%

Architectural
Spec, 4%

RTL, 84%

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

155

8

increase programmability and to optimize on latency, power
and area. This paper detailed the architectural complexities
introduced due to the design improvements. A comprehensive
mechanism was needed to validate this new design in a short
time span. This paper discussed how STE was used as a
primary validation vehicle on FPU to thwart out issues in the
RTL and specifications by early deployment in the project
cycle. More than 200 bugs were unearthed by STE in this
project. To date, we haven’t found any bug escape in the uops
verified by STE nor any spec bugs found through DV, which
boosts our confidence in the tool and its capabilities to achieve
zero post silicon bugs.

Our experiences through the project execution confirm the
fact that if STE is implemented early in the project design
cycle, it could stabilize the RTL earlier. A reusable proof that
is ready before the RTL and validation environment helps in
early bug hunting and improving the quality early in the
project, which means significant improvement in the
effectiveness of validation. We strongly believe that the
effectiveness of STE for improved quality of validation would
prove valuable in the validation of a wide range of designs.
We proved that it is possible to reach a better level of quality
with a lower investment of resources, thereby reducing the
overall cost of validation.

ACKNOWLEDGMENT

Sincere thanks to Tom Schubert and Roope Kaivola for
training us on STE and providing constant support. We would
like to acknowledge Naveen Matam, Ashutosh Garg, Jin Xu
and Shubh Shah for helping us with micro-architecture and
design front. We would like to thank Durairaghavan
Kasturirangan and Archana Vijaykumar for giving us the
opportunity to perform this work.

REFERENCES

[1] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips, “GPU Computing: Graphics Processing
Unit--powerful, programmable, and highly parallel—are increasingly
targeting general-purpose computing applications”, Proceedings of the
IEEE, Vol. 96, No. 5, May 2008.

[2] Martin Rumpf and Robert Strzodka, “Graphics Processor Units: New
Prospects for Parallel Computing”, Numerical Solution of Partial
Differential Equations on Parallel Computers, volume 51 of Lecture
Notes in Computational Science and Engineering, Springer-Verlag,
2005.

[3] Intel Tick Tock Model, [Online]. Available:
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-
tock-model-general.html .

[4] IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std
754-1985, 1985.

[5] OpenCL - The open standard for parallel programming of heterogeneous
systems, [Online]. Available: http://www.khronos.org/opencl/

[6] OpenGL, [Online]. Available: http://www.opengl.org/
[7] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,

Jesse Whittemore, Sudhindra Pandav, Anna Slobodov´a, Christopher
Taylor, Vladimir Frolov, Erik Reeber and Armaghan Naik, “Replacing
Testing with Formal Verification in Intel CoreTM i7 Processor
Execution Engine Validation”, CAV '09 Proceedings of the 21st
International Conference on Computer Aided Verification, Sept 2009.

[8] R. Kaivola, “Formal verification of Pentium® 4 components with
symbolic simulation and inductive invariants” In CAV, Computer Aided
Verification, volume 3576 of LNCS, pages 170–184. Springer, 2005.

[9] R. Kaivola and M. D. Aagaard. “Divider circuit verification with model
checking and theorem proving” In TPHOLs, volume 1869 of LNCS,
pages 338–355. Springer, 2000.

[10] R. Kaivola and K. Kohatsu, “Proof engineering in the large: formal
verification of Pentium® 4 floating-point divider”, Int’l J. on Software
Tools for Technology Transfer, 4:323–334, 2003.

[11] R. Kaivola and A. Naik, “Formal verification of high-level conformance
with symbolic simulation”, In HLDVT, IEEE International Workshop on
High-Level Design Validation and Test, pages 153–159, 2005.

[12] R. Kaivola and N. Narasimhan, “Formal verification of the Pentium® 4
floating-point multiplier”, In DATE, Design, Automation and Test in
Europe, pages 20–27, 2002.

[13] C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic
evaluation of partially-ordered trajectories”, Formal Methods in System
Design, 6(2), 1995.

[14] S. Hazelhurst and C.-J. H. Seger, “Symbolic trajectory evaluation,” in
Formal Hardware Verification, T. Kropf, Ed. New York: Springer
Verlag, 1997, ch. 1, pp. 3–78.

[15] J. O Leary, X. Zhao, R. Gerth, and C.-J. H. Seger. (1999, First quarter).
“Formally verifying IEEE Compliance of floating-point hardware”,
Santa Clara, CA: Intel Corp. [Online]. Available:
http://developer.intel.com/technology/itj/

[16] R. B. Jones, “Symbolic Simulation Methods for Industrial Formal
Verification”, Kluwer Academic Publishers, 2002.

[17] Carl- Johan H. Seger, Robert B. Jones, John W. O'Leary, Tom Melham,
Mark D. Aagaard, Clark Barrett, and Don Syme, “An Industrially
Effective Environment for Formal Hardware Verification”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits &
Systems, Sep2005, Vol. 24 Issue 9, p1381-1405, 15p.

[18] L. Paulson, ML for the Working Programmer, Cambridge
University Press, 1996.

[19] Robert Beers, Rajnish Ghughal and Mark Aagaard. Applications of
Hierarchical Verification in Model Checking, Formal Methods in
Computer-Aided Design 2000. Lecture Notes in Computer Science,
2000, Volume 1954/2000, 1-19, DOI: 10.1007/3-540-40922-X_1

[20] Robert Beers, "Pre-RTL formal verification: An Intel experience,"
Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE ,
vol., no., pp.806-811, 8-13 June 2008

[21] B. Bingham, J. Bingham, F. de Paula, J. Erickson, M. Reitblatt, and G.
Singh, ``Industrial Strength Distributed Explicit State Model Checking'',
International Workshop on Parallel and Distributed Methods in
Verification (PDMC) 2010.

[22] Slobodova, A.; Davis, J.; Swords, S.; Hunt, W.; , "A flexible formal
verification framework for industrial scale validation," Formal Methods
and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM
International Conference on , vol., no., pp.89-97, 11-13 July 2011

[23] Jacobi, C.; Weber, K.; Paruthi, V.; Baumgartner, J.; , "Automatic formal
verification of fused-multiply-add FPUs," Design, Automation and Test
in Europe, 2005. Proceedings , vol., no., pp. 1298- 1303 Vol. 2, 7-11
March 2005

[24] Warren A. Hunt, Sol Swords, Jared Davis and Anna Slobodova: “Use of
Formal Verification at Centaur Technology”. Design and Verification of
Microprocessor Systems for High-Assurance Applications. 2010, 65-88,
DOI: 10.1007/978-1-4419-1539-9_3

[25] Russinoff, D. M., Hunt, W. A., & Johnson, S. D. A case study in formal
verification of register-transfer logic with ACL2: the floating point
adder of the AMD AthlonTM processor. Formal Methods in Computer-
Aided Design. Third International Conference, FMCAD 2000.
Proceedings.

[26] D. Russinoff, M. Kaufmann, E. Smith, and R. Sumners. Formal
verification of floating-point RTL at AMD using the ACL2 theorem
prover. In Nikolai Simonov, editor, Proceedings of the 17th IMACS
World Congress on Scientific Computation, Applied Mathematics and
Simulation, July 2005.

[27] Anna Slobodova. Challenges for Formal Verification in Industrial
Setting. Formal Methods: Applications and Technology Lecture Notes in
Computer Science, 2007, Volume 4346/2007, 1-22, DOI: 10.1007/978-
3-540-70952-7_1

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

156

Enhanced Reachability Analysis via Automated

Dynamic Netlist-Based Hint Generation

Jiazhao Xu Mark Williams Hari Mony Jason Baumgartner

IBM Systems & Technology Group

Abstract— While SAT-based algorithms have largely displaced
BDD-based verification techniques due to their typically higher
scalability, there are classes of problems for which BDD-based
reachability analysis is the only existing method for an automated
solution. Nonetheless, reachability engines require a high degree
of tuning to perform well on challenging benchmarks. In addition
to clever partitioning and scheduling techniques, the use of
hints has been proposed to decompose an otherwise breadth-
first fixedpoint computation into a series of underapproximate
computations, requiring a larger number of (pre-)image iter-
ations though often significantly reducing peak BDD size and
thus resource requirements. In this paper, we introduce a novel
approach to boost the scalability of reachability computation:
automated netlist-based hint generation. Experiments confirm
that this approach can yield significant resource reductions; often
over an order of magnitude on complex problems compared to
reachability analysis without hints, and even compared to SAT-
based proof techniques.

I. INTRODUCTION

Since the advent of symbolic model checking more than two

decades ago, automated verification tools have evolved dramat-

ically in capacity. This evolution is due to a variety of inno-

vations, including (in extreme brevity) advanced BDD-based

techniques [1], [2], SAT-based proof [3], [4] and falsification

engines [5], [6], [7], a variety of simplification and abstraction

techniques to reduce problem complexity [8], [9], [10], and a

modular transformation-based tool architecture to allow all of

the above to synergistically decompose a complex verification

problem [11] under guidance of advanced orchestration tech-

niques [12]. Clever software engineering techniques, parallel

processing, and more powerful computers upon which to run

these tools have also played an important role. This boost in

scalability has yielded a boost in usability, proliferating model

checking from a craft requiring dedicated verification expertise

to pervasive use even by non-experts, e.g., for lighter-weight

assertion-based verification or sequential equivalence check-

ing. Even state-of-the-art academic solvers such as ABC [13]

and PdTrav [14] have become quite powerful through the

above techniques.

The advent of unbounded SAT-based proof techniques such

as interpolation [3] and IC3 [4] has played a particularly

pronounced role in the scalability of contemporary model

checkers. Whereas BDD-based reachability analysis tends to

become impractical if the design under verification cannot

be reduced or abstracted below several hundred state vari-

ables, SAT-based techniques on occasion can scale beyond

tens of thousands of state variables. Nonetheless, BDDs may

dramatically outperform SAT-based techniques for classes of

problems, thus a well-tuned BDD-based reachability engine is

an essential component of a state-of-the-art verification tool.

Numerous techniques have been developed to boost the scal-

ability of BDD-based reachability engines. Examples include

using a partitioned transition relation (TR) instead of a mono-

lithic representation [1], advanced quantification and conjunc-

tion scheduling based upon metrics such as variable depen-

dency [2], as well as heuristics to balance splitting and conjoin-

ing strategies [7]. The application of BDD-reduction operators

such as bdd constrain, bdd restrict and bdd compact [15] on

the transition relation and state set representations have also

yielded substantial scalability improvements.

The concept of hints was presented in [16] as a method

to mitigate the BDD size explosion that often happens during

intermediate steps of breadth-first reachability analysis, despite

the BDDs being much more compact at early and even

late stages. The intuition behind this phenomenon is that

breadth-first analysis explores many disjoint design behaviors

in parallel, causing asymmetries and thus bloat in the interme-

diate BDD representations – whereas the final reached state

representation may have many asymmetries “filled in” hence

be more compact. Hints are used to iteratively constrain the

transition relation and thereby direct the symbolic search, com-

puting states reachable along the constrained transition relation

from those reached using prior hints. Completeness is ensured

by finally restoring the original transition relation once the

hints have been exhausted. Despite requiring a greater number

of (pre-)image computations, this compaction of intermediate

BDDs results in fewer and less-expensive dynamic variable or-

dering computations. These benefits collectively often reduce

resources for complex problems, in cases enabling a solution

for problems which would otherwise exhaust time or memory

limitations. As noted in [16], as concurs with our practical

experience: even arbitrary hints often reduce complexity for

difficult problems. This preliminary work proposed the use of

manually-generated hints based upon design insight.

This work was extended toward automation in [17], [18].

In [17] the authors propose to analyze the control-data flow

graph of a behavioral Verilog design, using branch conditions

as hints that effectively decompose the design similar to pro-

gram slicing techniques. [18] extends this approach by using

these conditions as a known-complete disjunctive partitioning,

without requiring the final fixedpoint computation where the

unconstrained transition relation is used to ensure complete-

ness. While demonstrated as effective on a set of designs, these

approaches are of limited practical applicability since they

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

157

require a high-level behavioral design format which may not

be available. This becomes prohibitive in application domains

such as sequential equivalence checking which may require

analysis of post-synthesis netlists, and within a transformation-

based verification toolset which may have applied numerous

reduction and abstraction techniques to aggressively shrink the

original netlist to something feasible for BDD-based analysis.

These approaches also may not be suitable for classes of

designs which are harder to program slice such as those with

highly-pipelined or multi-threaded behavior.

Other techniques have also been proposed to reduce peak

BDD size through departing from breadth-first search, such

as high-density reachability analysis [19]. This technique re-

sorts to intermediate under-approximate reachability analysis,

partitioning images when BDD sizes exceed a threshold. Our

practical experience with such approaches is that they suffer

convergence problems (e.g., requiring a virtually-unbounded

number of image computations) rendering them of limited

practical utility. In contrast, a benefit of hints is that their

impact on the number of image computations may provably

be linearly bounded given proper controls.

In this paper, we introduce a novel automated dynamic hint

generation approach to boost the scalability of reachability

computation. In contrast to [17], [18], our work is focused

upon generating high-quality hints from arbitrary netlist repre-

sentations, and is triggered on-demand only when reachability

computation exceeds a resource threshold. We have used

this technique successfully both for property checking and

sequential equivalence checking. Our specific contributions,

as detailed in Section III, include a method to dynamically

introduce hints to the reachability process based upon resource

thresholds; dynamic algorithms to compute effective hint se-

quences from a transition relation; and a method to truncate

reachability analysis under a given hint if it is deemed to

risk increasing the number of overall image computations by

too large a factor. While these techniques are all heuristic

in their attempt to reduce the complexity of a reachability

computation, our experiments in Section IV confirm that they

often significantly boost performance for complex problems,

and in many cases outperform SAT-based techniques.

II. PRELIMINARIES

A model checking problem may be expressed as a netlist: a

directed graph whose nodes (termed gates) comprise primary

inputs, state elements, and a variety of combinational logic

operators. State elements have associated initial values and

next-state functions. A state is a Boolean valuation to the

state elements. An initial state is a state consistent with the

conjunction of the initial values.

The transition relation TR(x, i, y) associated with a netlist

comprises current state variables {x1, . . . , xm}; next state

variables {y1, . . . , ym}; and input variables {i1, . . . , in}. It is

defined in a straight-forward way from the next-state functions

of the state elements of the netlist.

An image computation is used to compute the successors

of a set of states s, defined by ∃i.∃x.TR(x, i, y) ∧ s. A

Algorithm 1 Reachability using Hints

1: function FORWARDREACH(TR, hints, init states)
2: reached = init states

3: // true will be the last-used hint in hints

4: while (hint = pop(hints)) do

5: hint TR = apply hint(TR, hint) // constrain TR with hint

6: frontier = reached // first image with hint TR uses reached

7: while (true) do

8: image = compute image(hint TR, frontier)
9: frontier = compute frontier(image, reached)

10: if (frontier is empty) then break

11: end if

12: reached = bdd or(reached, frontier)
13: end while

14: end while

15: end function

reachability computation may be performed by first setting the

partial set of reached states to the initial states, then growing

that set by iteratively computing its image to add to the partial

set via union.

III. ENHANCED REACHABILITY ALGORITHMS

In this section we present our automated hint generation

algorithms. Algorithm 1 depicts a traditional framework for

reachability analysis using hints [16]. In a traditional appli-

cation, the hints are manually provided to the reachability

process, and the final hint must be true (or constant 1) to

ensure that the original transition relation will be restored for

a complete reachability computation.

There are several limitations of the use of hints in practice

which we address in this paper.

1. Requiring manual specification of hints diminishes their

utility, and enabling automation only for problems of suitable

Verilog syntax [17] is limiting in practice. We thus introduce

in Section III-A an effective automated hint generation al-

gorithm which operates directly upon the transition relation,

and in Section III-B an algorithm which iterates through the

generated hints.

2. In cases, hints may degrade performance of the reach-

ability computation because they increase the number of

image computations, while not significantly reducing effort vs.

unconstrained image computation. For easier problems, this is

a risk because the image computations are already efficient.

For complex problems, a fixed set of hints may not adequately

simplify image computation, whereas a more aggressive set of

hints may be helpful. To address this issue, we introduce in

Section III-C a reachability framework which introduces hints

upon demand, when BDDs exceed configurable thresholds.

3. In rare cases, hints may result in convergence problems

for reachability computation. A pathological example is for a

counter with a parallel load port, where any arbitrary state

may be loaded into the counter under control of a particular

input – otherwise it may take an exponential number of steps to

transition from one reachable state of the counter to another. If

a hint disables that parallel load, it may dramatically increase

the number of necessary image computations for a fixedpoint

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

158

Algorithm 2 Hint Introduction Algorithm

function GENERATE HINTS(TR, hints, reached, reduction limit, var limit)
2: vars = all variables that are not in hints

for all BDD variable var in vars do

4: compute rank of positive and negative literals of var

add best rank literal to array ranks

6: end for

sort ranks // ranks used to generate the initial hint cube
8: hint cube = bdd 1 ∧

∧
hints // form cube for already-selected hints

while (|ranks|) do

10: literal = best candidate from rank

prune rank from ranks

12: new cube = hint cube ∧ literal

if (new cube contradicts TR or reached) then

14: compute rank for opposite literal polarity; add to ranks

re-sort ranks; continue

16: else

hint cube = new cube

18: hints = hints ∪ literal

compute TR size reduction of TR from new cube

20: if ((TR reduction exceeds reduction limit) or (|hints| exceeds
var limit)) then

break
22: end if

end if

24: end while

return hints

26: end function

computation, slowing overall progress. We thus introduce in

Section III-D a mechanism to truncate the use of a specific

hint prior to fixedpoint if necessary, for overall robustness.

A. Automated Hint Generation Algorithm

Algorithm 2 outlines our automated hint-generation tech-

nique. The hints that we have found most effective are BDD

cubes over input variables and/or current state variables. A

BDD cube is a conjunction of BDD literals (positive or

negative) over a set of BDD variables.

There are several heuristics that we have found effective

for selecting the best BDD literals to include in hints. One

heuristic is to first select a BDD variable using the use count

of that variable as its ranking measure; i.e., the number of

BDD nodes associated with a given variable, then to select the

positive or negative literal of that variable based on the amount

of reduction to the transition relation each literal provided. The

intuition of using this metric is that it provides an indication

that asymmetries over the corresponding variable may be the

cause of intermediate BDD growth. Another heuristic is to

rank all the BDD literals according to the criteria of how much

reduction a given variable cofactoring provides to the transition

relation, which in turn provides an estimate of how much they

may speed up image computation. We have empirically found

that the former works best. The ranking metrics, along with

the most promising variable polarity, are recorded in the ranks

data structure against which each BDD variable will be sorted.

After ranking the BDD variables the next task is to select

a set of BDD literals to form the first hint cube. This is

not merely a matter of choosing the k highest-ranked literals

from the sorted ranks data structure, as the result may yield

a “contradicting” hint cube which has an empty intersection

with the transition relation or reached set, which begins as

the initial states. We thus perform a consistencycheck on the

candidate hint cube before adding a literal to it, and in case

of a contradiction, we flip the polarity of that variable and re-

rank. To avoid adding more literals to the first hint cube than

necessary, we use two termination criteria: (1) reduction limit

measures the degree to which the given hint cube reduces the

TR, i.e.
(
sizeof (TR) − sizeof (TR ∧ hint cube)

)
/sizeof (TR),

and (2) var limit which provides an upper-bound on the

number of literals to be added to hints. Our experience shows

that reduction limit may be left large, on the order of 100%

since a small transition relation will be fast for reachability

computation anyway, and a var limit of between 10 and 15

literals yields the best results for larger netlists (see further

discussion in Section IV and Figure 3). We use the bdd and

operation to constrain the transition relation with the hint cube.

Since the hint is merely a cube, the bdd and operation is as

effective as other BDD constraining operations.

It is noteworthy that the generated hints are highly depen-

dent upon BDD variable ordering. This algorithm may be

called multiple times in the overall reachability framework

as per Algorithm 4, possibly adding additional hints to a

non-empty set of previously-generated hints. It is likely that

dynamic variable ordering was invoked between these calls,

hence the added hints will reflect the best choice under the

current ordering.

B. Hint Iteration Algorithm

In addition to deciding the set of literals that will be

used for the hints, it is important to decide the sequence

of hints that will be applied given this set. We have found

the most consistently-effective hint-successor strategy to be

iteratively eliminating literals from the original hint cube,

thus starting the computation with a maximally-restrictive con-

straint and gradually relaxing that constraint. This observation

was formed over years of relying upon the use of manual

hints for BDD-based reachability analysis in practice, prior to

the availability of more scalable alternative proof techniques.

It is consistent with the intuitive notion that hints should

be introduced to decompose an overly-complex fixedpoint

computation from following many disparate design behaviors

to focusing on a smaller yet growing set of behaviors. This

process is depicted in Algorithm 3.

The gen next hint function is called as part of the overall

reachability framework in Algorithm 4. When reachability

analysis exceeds a complexity threshold and hint literals are

generated, this algorithm determines the sequence in which

literals are removed from that set for successive hints. Note

also that the sequence of applied hints is dynamically deter-

mined, vs. merely deciding a fixed order when hint literals

are generated via Algorithm 2, as variable ordering may have

changed between those points.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

159

Algorithm 3 Hint Successor Algorithm

function GEN NEXT HINT(TR, hints, first, reached)
cur hint = bdd 1 ∧

∧
hints

3: if (first) then

return cur hint

end if

6: re-rank and re-sort hints

while (|hints|) do

remove lowest-rank literal from hints

9: next hint = bdd 1 ∧
∧

hints

if ((next hint ∧ reached) ⊆ (cur hint ∧ reached)) then

continue // next hint is vacuous

12: else

return next hint

end if

15: end while

return bdd 1

end function

In our experiments, we observed occasional occurrences

of “vacuous” hints which do not add any new states to

the reached set. Rather than waste resources performing a

useless image and frontier computation in such cases, we

developed an inexpensive test to detect most vacuous hints

and avoid generating them. This test consists of computing the

conjunction Ic of cur hint with the reached set, and checking if

Ic contains the conjunction In of the candidate next hint with

the reached set. If so, next hint is vacuous and we proceed to

the next literal. Since our hints are cubes, this computation is

efficient in practice. Empirically, we found that approximately

20% of candidate hints are vacuous, and this step results in

approximately 15% improvement in overall performance.

C. Dynamic Hint Introduction

In practice, a monolithic application of hints may not

be ideal for several reasons. First, for easier problems, the

use of hints often degrades performance of the reachability

computation because they increase the number of image

computations, while not significantly reducing effort compared

to the unconstrained image computations. In other cases, the

application of hints is inadequate to reduce the complexity and

make image computation tractable. We thus have developed a

framework which introduces hints only upon demand, as BDD

sizes exceed configurable thresholds.

We exploit a “node limit” feature provided by our BDD

package which limits the peak number of nodes it is allowed to

generate within a BDD operation. If an operation exceeds this

limit, a special UNKNOWN handle is returned, which is treated

similarly to the X value in ternary analysis. Every image

computation is performed using a node limit, which allows

that computation to add at most a fixed number of BDD nodes.

If the image computation returns UNKNOWN, additional hint

literals are generated to mitigate the BDD explosion, and

the constrained image computation is repeated. Our practical

experience is that the threshold should not be too small, nor

overly large; an allowance of 350000 nodes is the best setting

we have practically found. To allow convergence on very

complex problems, whenever we generate hints, we increase

this threshold by a configurable factor (50% is effective) to

avoid future hints from being triggered too frequently on

problems that intrinsically need large BDDs. This process is

depicted in our overall reachability flow in Algorithm 4, under

control of variable bdd threshold.

D. Hint Truncation

In a traditional hint application as per Algorithm 1, a full

fixedpoint of states reachable under the corresponding hint-

constrained transition relation is performed for each hint. How-

ever, in cases, a hint may dramatically increase the number

of necessary image computations as per the example of a

counter with parallel load capability discussed in Section III.

For robustness, we thus have found it useful to place a limit on

the maximum number of image computations that are allowed

for a given hint. Because it is difficult to predict the number of

image computations which would be necessary without hints

(i.e., the diameter of the design), this metric in practice can

be kept quite large (on the order of 10000), and optionally

increased every time this limit is encountered. Using such a

facility, one may thus ensure that the use of hints increases

the number of image computations vs. reachability without

hints by at most a linear factor. This process is depicted in

our overall reachability flow in Algorithm 4, under control of

variable hint iters.

E. Overall Enhanced Reachability Algorithm

Algorithm 4 summarizes our overall enhanced reachability

framework, combining aspects described in prior sections.

Compared to Algorithm 1, the primary differences are: (1) au-

tomated generation of hints (Section III-A); (2) dynamically-

prioritized iteration among the generated hints, taking into

account current variable ordering (Section III-B); (3) dynamic

triggering of hint introduction (Section III-C); and (4) trunca-

tion of a hint if too many image computations are required

under that hint (Section III-D).

IV. EXPERIMENTAL RESULTS

In this section we provide experimental results to illustrate

the effectiveness of our techniques. These experiments are all

derived from the Hardware Model Checking Competition 2011

benchmarks [20], pruned to the 92 that: (1) were not trivially

solved by light-weight logic optimizations or random simula-

tion; (2) could complete a reachability computation either with

or without hints within a 4 hour time limit and 4GB memory:

and (3) our dynamic hint-generation algorithm was invoked

due to resource requirements. Because these benchmarks are

provided in AIGER form, not in behavioral Verilog syntax,

the technique of [17] is not applicable. Furthermore, the

benchmarks used in [17] are a small set that are not publicly

available, hence we could not readily contrast our approaches.

restrict our focus to those of [20].

We implemented our techniques in the reachability engine

included in the IBM verification tool SixthSense [12]. This

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

160

Algorithm 4 Reachability using Dynamic Automated Hints

1: function FORWARDREACH(TR, init states, var limit, bdd threshold,
bdd growth factor, depth threshold, reduction limit, hint iters)

2: reached = init states

3: hints = emptyset

4: first = true

5: while (hint = GET NEXT HINT(TR, hints, first)) do

6: first = false

7: hint iters = 0
8: hint TR = apply hint(TR, hint) // constrain TR with hint

9: frontier = reached

10: while (true) do

11: image = compute image(hint TR, frontier, bdd threshold)

12: if (image ≡ UNKNOWN) then // aborted due to bdd threshold

13: bdd threshold = bdd threshold * bdd growth factor

14: hints = GENERATE HINTS(TR, hints, reached, reduc-

tion limit, var limit)
15: first = true

16: break
17: end if

18: hint iters++

19: if (hint iters ≥ depth threshold) then break // goto next hint
20: end if

21: frontier = compute frontier(image, reached)

22: if (frontier is empty) then

23: if (hints ≡ emptyset) then return // fixedpoint complete
24: end if

25: break // goto next hint
26: end if

27: reached = bdd or(reached, frontier)
28: end while

29: end while

30: end function

engine uses an internally-developed BDD package [21], with

standard features such as dynamic variable ordering, as well as

more advanced techniques such as support for multiple distinct

BDD “managers” with the ability to cast BDDs from one to the

other as long as they share the same set of variables, though not

necessarily in the same order. One occasion to use a different

BDD manager is for on-the-fly counterexample generation

when concurrently solving multiple properties, to avoid trace

generation from triggering a dynamic variable ordering which

hurts continued reachability analysis. An initial ordering of

the variables is computed using the interleaved approach

described in [22]. We use the transition relation partitioning

techniques of [2] by default. Cutpointing is supported in both

the transition relation and the BDD representing the property.

A number of optimizations are used during the reachability

computation to reduce BDD size, including backward and

forward pruning of the transition relation as described in [23].

In addition, we make use of the BDD reduction operations

described in [15] when computing frontiers.

Figures 1 and 2 summarize our experiments for runtime

and memory, respectively, of performing a reachability com-

putation after light-weight logic optimization techniques, with

and without our dynamic hint generation approach. Note that

we forced a complete reachability computation on each of

 10

 100

 1000

 10000

 10 100 1000 10000

R
ea

ch
ab

ili
ty

 w
ith

 H
in

ts
 (

se
co

nd
s)

Reachability without Hints (seconds)

Fig. 1. Reachability Computation Runtime with vs. without Hints

these, even if an on-the-fly failure could have enabled early

termination. None of these experiments exhausted memory,

though there were timeouts which are omitted from Figure 2.

These results demonstrate that hints do introduce a computa-

tional overhead for simpler problems – primarily those which

complete within several minutes. However, for a majority of

the complex problems, hints significantly improve runtime and

memory requirements. In fact, the benefit achieved by hints

is largely proportional to the complexity of the verification

problems: those which would otherwise require approximately

1000 seconds often speed up to within one order of magnitude,

and those which otherwise require approximately 10000 sec-

onds often speed up to approaching two orders of magnitude.

There are several examples which timeout without hints,

yet which complete with hints. This is a promising result,

as the practical need to improve runtimes of complex, if

not “otherwise unsolvable,” problems is at the forefront of

industrial relevance.

Note that the memory plot exhibits a fair amount of clus-

tering of data points, caused by thresholds at which dynamic

 10

 100

 1000

 10000

 10 100 1000 10000

R
ea

ch
ab

ili
ty

 w
ith

 H
in

ts
 (

M
B

)

Reachability without Hints (MB)

Fig. 2. Reachability Computation Memory with vs. without hints

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

161

 200

 400

 600

 800

 1000

 1200

 10 15 20 25 30

R
ea

ch
ab

ili
ty

 C
om

pu
ta

tio
n

R
un

tim
e

(s
ec

on
ds

)

Number of Hints

pdtvisvsar29
nusmvbrp

pdtvsarmultip12

Fig. 3. Impact of number of hints on runtime

variable ordering is invoked. Similarly to the runtime analysis,

there are frequent benefits of one to two orders of magnitude

for more complex problems, though some penalties primarily

for simpler problems.

The observation that hints often entail an overhead for

simpler problems prompts the question of whether the intro-

duction of hints should be delayed until a larger threshold. We

performed significant experimentation to assess the validity of

this strategy and found that delaying the onset of hints almost

uniformly hurt complex problems. Invoking hints when the

reached set has grown to millions of BDD nodes often requires

more expensive dynamic variable ordering calls, and applying

a large number of hints at that point degrades performance.

Adjusting our hint heuristics to improve performance of sim-

pler problems would compromise performance on complex

problems, where hints yield the biggest advantage. We also

note that in an industrial-strength multi-engine verification

flow, slowdown of simpler problems is not as serious of a

concern since within that runtime, one likely would have spent

comparable resources trying various alternate algorithms such

as bounded model checking and IC3.

Figure 3 illustrates the impact of number of generated

hints on runtime. In the experiment, reachability analysis was

performed varying the number of hints from 8 to 25. These

experiments demonstrate that it is disadvantageous to use

too few or too many hints. With too few, the hints do not

adequately simplify image computation, while with too many

there is too large of an overall increase in the number of

computed images. Recall from Algorithm 2 that we use a

parameter var limit to limit the maximum number of literals

that may be included in a hint. Practically, we have found

it useful to bound this parameter based upon netlist size (a

percentage of the total number of inputs and state elements)

to preclude introducing too many hints for smaller problems.

To justify the importance of highly-tuned reachability en-

gine in a state-of-the-art verification tool, we ran light-weight

logic optimization techniques followed by our implementation

of IC3 [4], interpolation [3], and k-step unique-state induction

engines [24], which are all highly-tuned and competitive with

the best academic solvers. Of the 92 benchmarks, 11 resulted

in counterexamples for all their properties hence the SAT-

based techniques terminated upon finding these counterexam-

ples, whereas we disabled early-termination in our reachability

engine for these experiments. We thus omit these 11 from

the following experiments. We illustrate the runtimes for the

remaining 81 benchmarks using reachability without hints,

reachability with hints, and the three SAT-based techniques

mentioned above, in Table I. The runtime for the technique

which solves most quickly is shown in bold.

Note that 5 benchmarks are solved most quickly using

reachability with hints, whereas 14 are solved most quickly

using reachability without hints. This collectively represents

23.4% of the benchmarks which are solved more quickly using

BDD-based reachability than SAT-based techniques, often by

orders of magnitude. The converse is not surprisingly true

as well; the SAT-based techniques inherently reason about

the design in an abstract manner vs. precisely computing the

reachable states, often resulting in much faster runtimes. If we

preceded reachability computation by abstraction techniques

such as localization [8] or phase abstraction [10], or sequential

reductions such as redundancy removal [9] or retiming [11],

this would have enabled reachability computation on a larger

fragment of the benchmark suite, and have narrowed the

precise vs. abstract penalty imposed by these experiments.

IC3 solves 27 most quickly (33.3%), and induction solves 35

(43.2%)most quickly, where we broke ties in favor of induction

given the maturity and simplicity of that technique. Interpola-

tion was somewhat surprisingly not the winning engine in any

of these benchmarks. While we have found IC3 to very often

outperform interpolation in practice, there are industrial cases

where interpolation is the winning technique.

To further emphasize the role of reachability analysis and

hints, we note the following.

1. We only included examples for which hints were generated

in these experiments, thus omitted numerous easy wins for

reachability in this benchmark suite.

2. Reachability with hints solved all these benchmarks,

whereas reachability without hints has 3 timeouts, IC3 has

13, and interpolation and induction each have 41.

3. Reachability using hints outperformed reachability without

hints in 46 of these examples (56.8%). As per Figure 1, hints

offers greater benefits for more complex benchmarks; if we

increase the timeout period, our practical experience is that

hints and BDD-based techniques overall play a larger role.

4. In a state-of-the verification tool, lighter-weight algorithms

are often leveraged with a moderate resource limit before

heavier-weight techniques. If we discount benchmarks solv-

able within 10 seconds, only 29 of these benchmarks remain:

19 are solved most quickly using reachability (65.5%), 7 using

IC3 (24.1%), and 3 using induction (10.3%).

5. Cumulative runtime for reachability with hints is much

lesser than for the other techniques while counting timeouts at

4 hours, and even outperforms reachability without hints by a

factor of 1.77 when discounting the 3 timeouts for the latter.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

162

Benchmark Name Inputs / Ands / Reachability Reachability IC3 Interpolation Induction

Registers w/o Hints with Hints

6s4 209 / 2448 / 201 405.4 (3918) 976.1 (7738) TO TO 6081.3

6s48 72 / 796 / 66 7151.8 (17) 3884.1 (31) TO TO TO

6s48p0 72 / 795 / 66 2434.8 (17) 10620.2 (57) TO TO 430.4

6s52 35 / 1226 / 207 65.1 (52) 179.1 (245) TO TO TO

6s53 35 / 1228 / 207 115.7 (259) 557.6 (1052) TO TO TO

bjrb07amba10andenv 23 / 62516 / 58 36.0 (41) 76.8 (69) 240.1 TO TO

bjrb07amba7andenv 17 / 22312 / 45 15.6 (33) 63.2 (98) 26.2 TO TO

bjrb07amba9andenv 21 / 45216 / 52 33.3 (41) 84.5 (188) 75.1 TO TO

boblivea 5 / 540 / 102 7117.3 (49) 3130.9 (104) 8.0 TO TO

boblivear 5 / 321 / 77 2220.7 (49) 7109.3 (119) 68.8 7638.8 TO

eijkbs1512 29 / 817 / 123 TO (544) 5675.1 (1300) 1.3 TO TO

eijkbs3330 37 / 1407 / 166 TO (4) 11637.8 (48) 23.2 TO TO

intel055 222 / 3847 / 124 561.5 (24) 908.6 (75) 16.6 TO TO

intel059 280 / 1955 / 140 646.2 (24) 1257.5 (83) 13.7 TO TO

intel063 288 / 1773 / 240 34.1 (7) 67.9 (19) 0.6 0.7 TO

nusmvbrp 11 / 378 / 51 1952.2 (57) 864.8 (158) 2.2 3492.6 TO

nusmvdme1d3multi 54 / 236 / 61 TO (38) 104.6 (270) TO TO TO

nusmvqueue 82 / 1200 / 84 462.4 (45) 1270.0 (136) 5246.5 TO TO

pdtfifo1to0 6 / 860 / 142 251.6 (62) 1440.6 (398) 5517.9 TO TO

pdtpmsbufferalloc 6 / 477 / 66 78.6 (31) 46.0 (57) TO TO TO

pdtpmseisenberg 3 / 1765 / 125 544.9 (90) 366.2 (223) TO TO TO

pdtpmsfpmult 17 / 929 / 166 49.0 (7) 178.6 (37) 1.0 14176.8 TO

pdtpmsgigamax 22 / 681 / 85 6.9 (8) 22.5 (37) 0.3 4.5 TO

pdtpmsns2 16 / 1742 / 278 339.1 (16) 322.7 (38) 56.2 TO TO

pdtpmstimeout 10 / 922 / 80 12.3 (28) 27.1 (64) TO TO TO

pdtswvibs8x8p1 9 / 1039 / 96 81.5 (83) 813.3 (523) 5.1 47.3 4.6

pdtswvqis10x6p1 7 / 1609 / 92 124.0 (99) 1187.1 (487) 81.0 TO TO

pdtswvqis10x6p2 7 / 1771 / 88 84.5 (99) 1871.4 (489) TO TO TO

pdtswvqis8x8p1 9 / 1685 / 98 18.6 (79) 215.5 (325) 48.6 2492.3 6612.2

pdtswvqis8x8p2 9 / 1866 / 94 37.9 (79) 326.4 (349) TO TO TO

pdtswvrod6x8p1 9 / 1314 / 74 40.0 (132) 39.2 (748) 100.4 TO TO

pdtswvrod6x8p2 9 / 1331 / 70 38.0 (132) 371.0 (772) TO TO TO

pdtswvroz10x6p1 7 / 926 / 73 52.1 (87) 152.1 (367) 3.5 3413.2 27.6

pdtswvroz10x6p2 7 / 941 / 73 192.9 (87) 234.6 (391) 13.3 TO 2262.8

pdtswvsam6x8p4 9 / 2003 / 116 1385.7 (69) 4125.2 (453) TO TO 264.9

pdtswvtma6x4p2 5 / 457 / 42 37.5 (60) 81.4 (159) 92.4 TO 8.3

pdtswvtma6x4p3 5 / 459 / 42 14.9 (60) 24.1 (164) 918.4 TO 42.2

pdtswvtma6x6p1 7 / 640 / 58 205.4 (60) 984.1 (235) 48.6 904.2 6.7

pdtswvtma6x6p2 7 / 607 / 58 280.3 (60) 861.9 (242) 1002.1 TO 49.0

pdtvisns3p00 21 / 1210 / 100 371.3 (25) 174.8 (60) 3.6 TO TO

pdtvisns3p01 21 / 1220 / 100 157.7 (25) 84.7 (83) 5.6 TO TO

pdtvisns3p02 21 / 1206 / 100 322.8 (25) 191.8 (130) 3.0 TO TO

pdtvisns3p03 21 / 1200 / 100 249.4 (25) 121.1 (43) 2.2 TO TO

pdtvisns3p04 21 / 1183 / 100 246.5 (25) 134.6 (146) 3.9 TO TO

pdtvisns3p05 21 / 1179 / 100 95.3 (25) 105.7 (150) 3.3 TO TO

pdtvisns3p06 21 / 1181 / 100 256.4 (25) 159.9 (42) 6.7 TO TO

pdtvisns3p07 21 / 1190 / 100 236.6 (25) 169.2 (78) 3.9 TO TO

pdtvisns3p08 21 / 1176 / 100 242.4 (25) 148.5 (127) 0.8 TO TO

pdtvisns3p09 21 / 1178 / 100 119.5 (25) 89.7 (90) 0.9 TO TO

pdtvissoap1 11 / 1510 / 124 23.8 (46) 40.5 (77) 1.7 TO TO

pdtvissoap2 11 / 1548 / 124 21.0 (46) 39.0 (118) 1.2 149.7 TO

pdtvisvsar27 17 / 898 / 62 1622.1 (36) 217.5 (192) 0.1 0.3 0.1

pdtvisvsar29 17 / 1081 / 61 3994.4 (36) 383.9 (111) 120.2 5049.6 0.3

pdtvsarmultip 17 / 1473 / 77 2922.6 (36) 541.6 (116) 65.2 1891.5 0.8

pdtvsarmultip00 17 / 860 / 61 1683.8 (36) 133.8 (139) 0.1 0.2 0.1

pdtvsarmultip03 17 / 873 / 61 1942.7 (36) 199.7 (118) 0.1 0.1 0.1

pdtvsarmultip04 17 / 873 / 61 3285.1 (36) 125.1 (237) 0.1 0.1 0.1

pdtvsarmultip05 17 / 850 / 61 855.9 (36) 914.6 (187) 0.5 0.3 0.1

pdtvsarmultip06 17 / 862 / 61 7017.1 (36) 104.3 (261) 0.2 0.2 0.1

pdtvsarmultip07 17 / 890 / 61 4134.4 (36) 137.3 (94) 0.4 0.4 0.1

pdtvsarmultip08 17 / 857 / 61 3584.0 (36) 2650.1 (478) 0.1 0.2 0.1

pdtvsarmultip09 17 / 852 / 61 1653.3 (36) 291.2 (180) 0.1 0.2 0.1

pdtvsarmultip10 17 / 852 / 61 2065.2 (36) 241.1 (131) 0.4 0.3 0.1

pdtvsarmultip11 17 / 870 / 62 1252.5 (36) 438.4 (132) 0.1 0.1 0.1

pdtvsarmultip12 17 / 866 / 61 1229.7 (36) 121.1 (214) 0.1 0.1 0.1

pdtvsarmultip13 17 / 869 / 64 3613.9 (36) 237.8 (173) 0.1 0.1 0.1

pdtvsarmultip14 17 / 900 / 61 1074.4 (36) 100.9 (170) 0.1 0.1 0.1

pdtvsarmultip15 17 / 880 / 61 1057.6 (36) 228.4 (124) 0.1 0.1 0.1

pdtvsarmultip17 17 / 879 / 63 3326.2 (36) 143.7 (121) 0.1 0.1 0.1

pdtvsarmultip19 17 / 876 / 62 977.3 (36) 130.7 (109) 0.1 0.1 0.1

continued on next page

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

163

Benchmark Name Inputs / Ands / Reachability Reachability IC3 Interpolation Induction

Registers w/o Hints with Hints

pdtvsarmultip21 17 / 874 / 62 496.3 (36) 375.0 (254) 0.1 0.1 0.1

pdtvsarmultip22 17 / 846 / 62 1356.7 (36) 197.6 (115) 0.1 0.1 0.1

pdtvsarmultip23 17 / 865 / 62 1852.7 (36) 159.1 (121) 0.1 0.1 0.1

pdtvsarmultip24 17 / 861 / 62 5350.6 (36) 158.4 (170) 0.1 0.1 0.1

pdtvsarmultip26 17 / 865 / 62 2016.4 (36) 612.8 (234) 0.1 0.1 0.1

pdtvsarmultip27 17 / 882 / 62 1186.4 (36) 121.8 (220) 0.1 0.3 0.1

pdtvsarmultip29 17 / 1064 / 61 1735.2 (36) 1747.5 (176) 802.6 2636.6 0.5

pdtvsarmultip31 17 / 1002 / 62 1781.9 (36) 502.7 (167) 0.1 0.1 0.1

pdtvsarmultip32 17 / 983 / 61 6739.3 (36) 491.7 (179) 25.5 86.0 0.2

pj2009 304 / 7498 / 269 3734.3 (31) 5748.3 (159) 4.3 20.4 TO

sm98a7multi 82 / 3337 / 89 12346.1 (37) 1632.9 (161) 2.8 1.4 1.1

Cumulative 158558.6 82707.6 201872.0 632409.5 606195.3

TABLE I. Runtimes for various proof engines. Column 2 provides size of the benchmark after light-weight reductions. Subsequent columns list runtimes in
seconds; TO refers to 4-hour timeout. The number in parenthesis in Columns 3 and 4 indicates the number of image computations until fixedpoint or TO.

While points 2 and 3 above are skewed by the selection of

benchmarks for which reachability in some form converges,

these experiments do emphasize that reachability often out-

performs SAT-based techniques, and hints increase the overall

robustness of reachability computation.

V. CONCLUSION

Despite many advances in SAT-based proof techniques,

BDD-based reachability remains a critical technology which

is able to significantly outperform alternative proof techniques

on numerous classes of problems. In this paper, we introduce

a novel technique to increase the scalability of reachability

computation: automated dynamic netlist-based hint generation.

Experiments demonstrate that this approach is able to reduce

resources well over an order of magnitude on many complex

verification problems, outperforming SAT-based techniques in

many cases. These techniques have played a vital role in

revitalizing reachability analysis as a core industrial-strength

proof technique in our multi-algorithm verification toolsuite.

REFERENCES

[1] J. R. Burch, E. M. Clarke, and D. E. Long, “Symbolic model checking
with partitioned transition relations,” in VLSI, pp. 49–58, Aug. 1991.

[2] I.-H. Moon, G. D. Hachtel, and F. Somenzi, “Border-block triangular
form and conjunction schedule in image computation,” in FMCAD, Nov.
2000.

[3] K. McMillan, “Interpolation and SAT-based model checking,” in CAV,
2003.

[4] A. Bradley, “SAT-based model checking without unrolling,” in VMCAI,
Jan. 2011.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in TACAS, March 1999.

[6] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bertacco,
J. Taylor, and J. Long, “Smart simulation using collaborative formal
and simulation engines,” in ICCAD, Nov. 2000.

[7] I.-H. Moon, J. H. Kukula, K. Ravi, and F. Somenzi, “To split or to
conjoin: the question in image computation,” in DAC, June 2000.

[8] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in CAV, July 2000.

[9] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton, “Speculative
reduction-based scalable redundancy identification,” in DATE, 2009.

[10] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for
formal verification,” in ICCAD, Nov. 2005.

[11] A. Kuehlmann and J. Baumgartner, “Transformation-based verification
using generalized retiming,” in CAV, July 2001.

[12] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transforma-
tions,” in FMCAD, Nov. 2004.

[13] Berkeley Logic and Synthesis Group, ABC: A System for Sequential

Synthesis and Verification. http://www.eecs.berkeley.edu/alanmi/abc.

[14] G. Cabodi, S. Nocco, and S. Quer, “Benchmarking a model checker for
algorithmic improvements and tuning for performance,” Formal Methods

in System Design, vol. 39, no. 2, pp. 205–227, 2011.

[15] P. A. Beerel, J. R. Burch, and K. L. McMillan, “Sibling-substitution-
based BDD minimization using don’t cares,” TCAD, vol. 19, Jan. 2000.

[16] K. Ravi and F. Somenzi, “Hints to accelerate symbolic traversal,” in
CHARME, Oct. 1999.

[17] D. Ward and F. Somenzi, “Automatic generation of hints for symbolic
traversal,” in CHARME, Sept. 2005.

[18] D. Ward and F. Somenzi, “Decomposing image computation for sym-
bolic reachability analysis using control flow information,” in ICCAD,
Nov. 2006.

[19] K. Ravi and F. Somenzi, “High-density reachability analysis,” in ICCAD,
Nov. 1995.

[20] Hardware Model Checking Competition 2011.
http://fmv.jku.at/hwmcc11.

[21] G. Janssen, “Design of a pointerless BDD package.,” in IWLS, 2001.

[22] H. Fujii, G. Ootomo, and C. Hori, “Interleaving based variable ordering
methods for ordered binary decision diagrams,” in ICCAD, Nov. 1993.

[23] H. Jin, A. Kuehlmann, and F. Somenzi, “Fine-grain conjunction schedul-
ing for symbolic reachability analysis,” in Tools and Algos. Construction

and Analysis of Systems, April 2002.

[24] N. Eén and N. Sörennson, “Temporal induction by incremental SAT
solving,” in Workshop on Bounded Model Checking, 2003.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

164

Oscillator Verification with Probability One
Chao Yan Mark Greenstreet

Intel University of British Columbia

Abstract—This paper presents the formal verification of start-
up for a differential ring-oscillator circuit used in industrial
designs. Dynamical systems theory shows that any oscillator must
have a non-empty failure; however, it is possible to show that
these failures only occur with zero probability. To do so, this
paper generalizes the “cone argument” initially presented in [1]
and proves the soundness of this generalization. This paper also
shows how concepts from analog design such as differential
operation can be soundly incorporated into the verification
to produce simpler models and reduce the complexity of the
verification task.

I. INTRODUCTION

System-on-Chip (SoC) and analog-mixed-signal (AMS) de-
signs have created new challenges for analog circuit designers.
Typical analog design relies heavily upon simulation tools
such as HSPICE and Spectre. Long simulation times along
with the continuous nature of device parameters, operating
conditions and input waveforms mean that simulation tools can
only provide partial verification of analog designs. In practice,
designers typically focus their simulation efforts on parametric
and small-signal sensitivity analysis when the circuit is in
or near its intended operating mode. Such analysis can be
used to determine the gain and bandwidth of an amplifier,
the jitter transfer function of a phase-locked loop, along with
finding transistor sizes to optimize a given circuit topology
for an objective function formulated in terms of steady-state
properties of the circuit. However, simulations cannot show
that the circuit will eventually reach its intended operating
condition from all possible starting conditions.

This paper presents a rigorous, formal verification that a
commonly used differential ring-oscillator circuit correctly
starts oscillation with probability 1. As shown in Figure 1,
the oscillator consists of two stages, where each stage has a
pair of “forward” inverters (labeled fwd in the figure) and a
pair of “cross-coupling” inverters (labeled cc). If the forward
inverters are much larger than the cross-coupling inverters,
then the circuit acts like a ring of four inverters settles to one
of two states:

State 1: X1 and X3, are low; and X2 and X4 are high.
State 2: X1 and X3, are high; and X2 and X4 are low.

(1)

Conversely, if the cross-coupling inverters are much larger than
the forward ones, then the circuit acts like two separate static
latches and has four stable states. If the forward and cross-
coupling inverters have comparable strength, then the circuit
should oscillate in a stable fashion.

In 2008, researcher from Rambus posed the problem of
showing that the oscillator circuit shown in Figure 1 starts
from all initial conditions for a particular choice of transistor

cc cc

fwd

fwd

cc cc

fwd

fwd

x3 x4

x2x1

Fig. 1. Ring-Oscillator Example from Rambus

sizes [2]. They described this as a “real-world” problem noting
that oscillators of this type had been observed to fail in the test-
lab. They posed a further problem of determining the range of
transistor sizes for which proper start-up is guaranteed. This
paper presents solutions to these problems.

A. Prior Work

Oscillator circuits have been a popular example for applying
formal methods to analog circuit verification [3]–[6]. These
early papers focused on simple oscillators, such as a tunnel-
diode based design, that are not representative of the oscillator
circuits used in real VLSI designs. More recently, several
groups have reported results for the Rambus oscillator problem
described above.

The earliest attempted verification of the oscillator that we
have seen [7] predates the formulation by [2] and considers
the behaviours of a 128 stage oscillator for a pulse-width
modulated voltage regulator. Their “proof” of correct oper-
ation assumes differential and periodic operation, and does
not consider weak coupling between stages (e.g. due to power
supply noise), that could stabilize undesired, higher harmonic
modes of oscillation.

A more rigorous approach was taken in [8] which used
monotonicity properties of the ids functions of MOSFETs to
reduce the search for DC-equilibria in a Rambus ring oscillator
with an arbitrary, even number of stages to a one-dimensional
search, regardless of the number of stages in the oscillator.
They then used standard, small-signal analysis techniques to
determine if any of these equilibria are stable. If an oscillator
circuit had no stable DC equilibria, it was deemed free from
DC lock-up. The authors noted that their proof did not rule
out other behaviours such as higher harmonic oscillations or
chaotic behaviours.

Several subsequent papers have also treated the verification
problem as one of ruling out the existence of DC equilibria.
For example, Tiwari et al. [9], [10] used a SAT solver to
identify DC equilibria. To find stable equilibria, they added

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

165

constraints that at least one node of the circuit must be within
0.2 volts of power or ground. They did not state how they
had arrived at these extra constraints or whether or not they
can be shown to be sound. Steinhorst et al. [11] presented
a particle filtering approach and compared it with a model-
checking method. The correctness condition for the model-
checking was lack of stable DC-equilibria. While higher-
harmonic oscillations or chaotic behaviours were not consid-
ered, they presumably would show up in the visualizations if
suitable particles were included in the state-space sampling.
Zaki et al. [12] presented an approach where the “pencil-and-
paper” analysis from [8] was automated using HySAT [13] and
Matlab toolboxes for interval arithmetic and matrix pseudo-
spectrum calculations.

Little et al. [14] showed that trajectories in a neighbourhood
of the nominal periodic trajectory for the oscillator remain
close to that nominal trajectory. This replaces the small-signal
analysis of traditional analog design with linear hybrid Petri
net (LHPN) model checking and confirms the stability of the
desired oscillating behaviour. As the analysis only considers a
portion on the state space near the desired trajectory, it does
not verify proper start-up for all initial conditions.

B. Contributions
This paper combines analytical techniques based on dy-

namical systems theory with reachability tools to present
the first verification of the Rambus oscillator problem that
actually addresses the question posed by Jones et al: “Will the
oscillator start up from all initial conditions?” In Section II
we consider the dynamics of any oscillator that is modeled
by non-linear differential equations and show that it must
have some set of initial conditions for which the circuit fails
to oscillate. However, this failure set can be negligible, i.e.
have zero probability. We present a generalization of the cone
argument from [1] to verify that the failure set has zero
probability, and thus that the oscillator starts with a probability
of one. We also introduce a symmetry reduction method that
allows us to exploit the differential operation of the oscillator
in a formal verification context. Section IV describes our
implementation of the verification method using Matlab and
Coho [15]. Section V presents the results of verifying the
oscillator circuit with these methods.

II. NO PERFECT OSCILLATOR

This section shows that no physically plausible oscillator
starts from all initial conditions.

A. Dynamical Systems and Oscillators
We assume that a circuit, such as an oscillator, is modeled

by a system of ordinary differential equations. If the model
has d variables, states of the circuit correspond to points in
R

d . The model includes a function, f : Rd → R
d that is the

time derivative of the system: for state x ∈Rd , ẋ = f (x) is the
time-derivative of the system in state x. For x0 ∈Rd , the initial
value problem is to find a function x : R+ →Rd such that for
all t ≥ 0, d

dt x(t) = f (x(t)) and x(0) = x0. Let Q ⊆ Rd be a

closed set. Q is invariant with respect to f if all trajectories
that start in Q remain in Q forever. To show that Q is invariant
with respect to f , it is sufficient to show that for every x ∈ Q
there is an ε > 0 such that x+ ε f (x) ∈ Q. We impose two
restrictions on f :
R1: There is a Q ⊆ Rd and some K ∈ R such that Q is

invariant with respect to f and for every x∈ Q, ‖ f (x)‖<
K.

R2: f is C 1 in Q. This means that f (x) is differentiable with
respect to the components of x, and these derivatives are
continuous.

These two conditions guarantee the existence and uniqueness
of solutions to the initial value problem for f and any x0 ∈ Q
(see [16, chap. 8.3]). We can define a function Φ f (x0, t) such
that if x is the solution to the initial value problem for f with
x(0) = x0, then x(t) = Φ f (x0, t). Given restrictions R1 and
R2, Φ f (x0, t) is a C 1 function with respect to x0 and t for
any x0 ∈ Q and t ≥ 0 (see [16, chap. 8.4]). We extend Φ f to
sets in the natural way: if X ⊆Rd , then Φ f (X , t) = {x2|∃x1 ∈
X . x2 = Φ f (x1, t)|}.

We assume that any physically plausible oscillator can be
modeled by an ODE with f and Q satisfying restrictions R1
and R2. The requirement that f is C 1 follows from the smooth-
ness of the underlying physical models for electric fields,
charge distributions, etc. The requirement of the existence of
the set Q is satisfied because VLSI circuits generally have
node voltages that are bounded by the voltages of ground and
the power supply or that have limited excursions beyond these
power supply voltages.

We now define “oscillation.” If there is a x0 ∈ Q and a P> 0
such that Φ f (x0,P) = x0, and for all 0 < t < P, x(t) 	= x0,
then f has a solution with period P. In this case, we write
Γ f ,x0 = {x|∃t ∈ [0,P]. x = Φ f (x0, t)} to denote the set of
points in this periodic orbit. It is straightforward to show
∀t > 0.Φ f (Γ, t) = Γ. Let J = JacΦ f (x0,P), i.e., J is the matrix
of partial derivatives of Φ f (x0,P) with respect to x0. If J has
d−1 eigenvalues with magnitude less than 1, then the periodic
solution for x0 is a periodic attractor [16, Theorem 13.2]. We
say that a system is an oscillator with period P if it has a
periodic attractor with period P.

B. Oscillator Start-Up
First consider the set of possible initial states. Labeling one

terminal of the power supply as “ground” and the other as
“Vdd” is simply a designer convention. Depending on circuit
details, the node voltages on power-up may be arbitrary values.
Rather than trying to analyse the circuit in detail, we simply
assume that each node has an arbitrary initial voltage in
[Vlo,Vhi]; typically Vlo is ground or close to ground, and Vhi
is close to Vdd . Let X0 = [Vlo,Vhi]

d denote the set of initial
node voltages. Because X0 contains all reachable states of the
circuit, we assume γ ⊆ X0 ⊂Q, where γ is the desired periodic
attractor of the oscillator.

We can now describe an ideal oscillator.
A d-dimensional dynamical system with time-derivative

function f is an ideal oscillator iff

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

166

The system is physically plausible: There is a set Q ⊆ R
d

such that f and Q satisfy conditions R1 and R2.
Periodic behavior: The system has a periodic attractor. Let

Γ be the orbit associated with this attractor.
Start up: There is a convex set X0 ⊆ Rd of initial states

such that Γ ⊆ X0 ⊆ Q and for every point x0 ∈ X0 and
every ε > 0, there is a t > 0 and a point x1 ∈ Γ such that
‖x1 −Φ(x0, t)‖< ε .

The first two conditions were described in the previous section.
The last condition states that the set of initial states must
contain the periodic orbit as described above, and that for
any initial state, the trajectories emanating from that state
must eventually be arbitrarily close to the periodic orbit.
The requirement that this initial set be convex reflects the
topological properties of sets such as [Vlo,Vhi]

d described
above. We believe that this definition of an ideal oscillator
captures the notion of the oscillator starting from all initial
conditions requested in [2].

Theorem 1. There is no ideal oscillator.

Proof: This follows directly from the property that solu-
tions of ODEs that satisfy properties R1 and R2 are continuous
in their initial conditions. Thus, the topology of the initial set,
X0, is preserved by Φ f (X0, t). However, any small neighbor-
hood of a periodic attractor must have genus 1 (be “torus-like”)
whereas the set of initial states has genus 0 (i.e. it is “sphere-
like”). Thus, it is not that case that all initial conditions lead
to trajectories that are arbitrarily close to the desired attractor.
This establishes the claim.

III. VERIFICATION OUTLINE

Our verification proceeds in three main phases:
Differential Operation The oscillator shown in Figure 1 is a

differential design: nodes X1 and X3 form a “differential
pair” and likewise for nodes X2 and X4. The first phase
of the verification shows that each of these differential
pairs can be treated as a single signal.

Escape from the Failure Set As shown in Section II,
for any oscillator, there must be initial conditions from
which it does not properly start. The second phase of the
verification shows that this occurs with probability zero.

Proper Oscillation The first two phases show that most
initial conditions lead to a fairly small subset of the full
state space. In the final phase, we use existing reachability
methods to show that the oscillator starts up properly
from the region.

This section describes the dynamical systems issues associated
with each of these phases. Section IV describes our verification
method based on these observations.

We model the oscillator circuit from Figure 1 using non-
linear ordinary differential equations (ODEs) of the form:

ẋ = f (x) (2)

where x is a vector of node voltages, ẋ is the vector of
time derivatives for these voltages, and f is the function

modeling the non-linear dynamics of this circuit. Let d be the
dimensionality of x. We assume that f is C1 which guarantees
that Equation 2 has a unique solution for any initial state, x(0).
For simplicity, we model the system as being autonomous (no
inputs or outputs). Inputs (e.g. to model VCO control inputs,
power supply noise), can be modeled by giving f additional
parameters, i.e. f (x, in).

A. Differential Behaviour
Nodes X1 and X3 in the oscillator from Figure 1 form a

“differential pair” and likewise for nodes X2 and X4. Let xi
denote the voltage on node Xi. The differential component
of the differential pair is x1 − x3, and x1 + x3 is the common
mode component. When the oscillator is operating properly,
the common mode components are roughly constant and the
oscillation is manifested in the differential components. Let
V+

0 be the nominal value for the common mode components.
We show that for a relatively small Verr if |x1+x3−V+

0 |>Verr,
then d

dt (x1 + x3) and (x1 + x3 −V+
0) have opposite signs. This

shows that that the common mode component for nodes X1
and X3 converges to within Verr of the nominal value. Likewise
for nodes X2 and X4.

B. Escape from the Failure Set
Theorem 1 shows that there is no perfect oscillator. For the

Rambus ring-oscillator, there is an equilibrium point, xfail, i.e.
a point where ẋ = 0, and there is a manifold, Xfail such that

∀x ∈ Xfail. lim
t→∞

‖Φ f (x, t)− xfail‖= 0 .

Thus, direct application of continuous state-space model
checkers (e.g. [3], [17]) to the oscillator start-up problem will
identify regions where trajectories might stay forever. Because
we cannot show that the set of failure states is empty, we
must settle for showing that it is negligible (i.e. occurs with
probability zero). This is sufficient in practice, as designers
are not worried about a design that fails with probability zero.

For intuition, consider an oscillator where all inverters are
identical. We define Veq as the voltage that can be applied to
the input of the inverter such that the output settles to the same
voltage. When all of the inverters are identical, xfail is the point
at which all node voltages are Veq. Furthermore, any trajectory
starting at a point where x1 = x3 and x2 = x4 converges to xfail;
thus, such points are in Xfail.

Using existing reachability methods, we can find a small
region, Ufail, that contains the point xfail. Furthermore, we can
show that if an oscillator starts any point where each node has
a voltage in the interval [0,Vdd], then within bounded time, the
oscillator state will either be in Ufail, or it will be in a region
where we can show convergence to the desired periodic orbit.

We will show that the set of failing trajectories is sufficiently
small as to ensure that the oscillator fails to start with a
probability of zero. As in the previous section, we write R

d

to denote the phase space. We will avoid a detailed treatment
of measure theory (see [18]) by noting that when we say that
B ⊆ Rd is measurable, we mean that it has a well-defined
d-dimensional “volume” (i.e. it is Lesbesgue measurable),

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

167

and we write |B| to denote this volume (i.e. measure). We
write μ(B) to denote the probability that the initial state of
the oscillator is in B. Our assumption that μ is smooth (i.e.
absolutely continuous) means that if |B| is zero, then μ(B) is
zero as well. For example, let

B = {(x1,x2,x3,x4) | (x1 = x3)∧ (x2 = x4)}

i.e. the plane described above. Because this plane has zero
volume, |B|= 0, and by our smoothness assumption, μ(B) = 0
as well.

Let U be a bounded, measurable subset of Rd . We define
escape f (x,U) = ∃t ∈ R+. Φ f (x, t) 	∈U
trapped f (U) = {x ∈U | ¬escape f (x,U)}

For any U ⊆ R+, and any t ∈ R, |U |= 0 ⇔ |Φ f (U, t)| = 0.
Thus, it suffices to show that |trapped f (Ufail)| = 0. The next
theorem presents conditions that ensure μ(trapped f (U)) = 0.

Theorem 2. Let μ be a smooth probability measure over Rd.
Let U be a bounded, measurable subset of Rd, and f : Rd →

Rd be bounded and C1 in U. If there is a matrix H ∈ Rd×d

such that at least one eigenvalue of H has a positive real part,
and k > 0 such that for all x1,x2 ∈U:

(x2 − x1)
T H(x2 − x1) > 0

⇒ (x2 − x1)
T H(f (x2)− f (x1)) > k(x2 − x1)

T H(x2 − x1) ,

then μ(trapped f (U)) = 0.

Proof: Assume that trapped f (U) 	= /0 as the other case is
trivial. Let ρmax be the maximum real part of any eigenvector
of H. Let u be a unit vector such that uT Hu = ρmax. Let x0
be any point in trapped f (U), and α ∈R such that α > 0 and
x0 +αu ∈U . We’ll define x1 = x0 +αu.

We now show x1 	∈ trapped f (U). Consider two trajectories,

η0(t) = Φ f (x0, t), the trajectory that starts at x0
η1(t) = φ f (x1, t), the trajectory that starts at x1

Note that both trajectories start in U . We’ll show that these
two trajectories diverge, and thus at most one of them can
remain in U . Let

w(t) = (η1(t)−η0(t))T H(η1(t)−η0(t))

We claim that for t ≥ 0, w(t)≥ α2ρmaxekt > 0. First note that
w(0) = α2ρmax which satisfies the claim (at t = 0). Both w(t)
and α2ρmaxekt are continuous functions of t. Thus, if the claim
were ever to be violated, there would have to be a value of
t for which w(t) = α2ρmaxekt and d

dt w(t) < d
dt α2ρmaxekt . For

the sake of contradiction, let t be such a time. Then
d
dt w(t) = (η1(t)−η0(t))T H(f (η1(t))− f (η0(t)))

> k(η1(t)−η0(t))T H(η1(t)−η0(t))
= kw = kα2ρmaxekt = d

dt α2ρmaxekt

But this shows that d
dt w(t) > d

dt α2ρmaxekt , a contradiction.
Thus, w(t)≥ α2ρmaxekt as claimed.

Because, w(t)≥ α2ρmaxekt , ‖η1(t)−η0(t)‖ must diverge as
t → ∞. By assumption, η0(t) stays in U , and U is bounded.
Therefore, η1(t) must exit U .

We have shown that for any point x0 ∈ trapped f (U), all
points in the cone defined by H whose apex is at x0 must
escape from U . This shows that trapped f (U) must have lower
dimension than the full space. Thus, |trapped f (U)| = 0, and
therefore μ(trapped f (U)) = 0 as claimed.

Note: Theorem 2 was based on the cone argument from
[1]. The present theorem generalizes the result from [1] to
systems of arbitrary dimensions and whose Jacobian matrices
have complex eigenvalues. The conditions for Theorem 2 are
slightly stronger than those from [1] (for the systems where
the latter applies) – this is mainly for simplicity.

C. Proper Oscillation
For the trajectories under consideration after the first two

steps, the common mode components of both differential
signal pairs are within Verr of V+

0 . This allows the differential
equation model from Equation 2 to be rewritten as a differen-
tial inclusion [19]:

u̇ ∈ F(u) (3)

where u is the vector (
√

2/2)[x1 − x3,x2 − x4]. By using an
inclusion, F accounts for all values of the common mode
components in [V+

0 − Verr,V+
0 + Verr]. Reducing the four-

dimensional state space of the original problem to a two-
dimensional space makes the exploration of trajectories from
all remaining start conditions straightforward.

By showing that all such trajectories lead to an oscillation in
the fundamental mode, we solve the first part of the challenge
problem from [2]: we show that for a particular choice of
transistor sizes, the circuit will start oscillation from all initial
conditions except for a set of zero measure. Section V provides
a brief description of how these methods can be extended to
establish a range of transistor sizes for which the oscillator
will start with probability one.

IV. IMPLEMENTATION

This section describes our implementation of the verification
techniques described in the previous section. We construct
an ODE model for the ring oscillator circuit using standard,
modified nodal analysis. We obtain drain-to-source current
data by tabulating HSPICE outputs and fitting piece-wise
quadratic functions to this tabulated data. The resulting errors
are less than 1%; thus, our transistor models closely match
those used by practicing circuit designers in industry.

A. Differential Operation
This verification phase starts by changing the coordinate

system to one based on the differential and common mode
representation of signals.

Let u be the circuit state in “differential” coordinates:

u = M−1x

M =

√
2

2

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦ (4)

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

168

We assume each of nodes X1, X2, X3 and X4 can independently
have initial voltages anywhere in [0,1.8]V. Thus, the differen-
tial components, u1 and u2, are initially in [−0.9

√
2,+0.9

√
2],

and the common mode components, u3 and u4, are initially in
[0,1.8

√
2].

To establish differential operation, we divide the range of
each component ui of u into m intervals, creating m4 cubes.
We construct a graph, G = (V,E) to represent the reachability
relationship between these cubes. Let vi, j,k,� be a vertex
corresponding to the ith interval for u1, the jth interval for
u2 and so on. There is an edge from v to w if f allows a flow
out of the cube for v directly into the cube for w, and there is
a self-loop for v if each component of f is zero somewhere in
v. If a vertex of G has no incoming edges, then any trajectory
that starts in the corresponding cube will eventually leave that
cube, and no trajectories will ever enter the cube. Such a cube
can be eliminated from further consideration. Thus, we only
need to consider cubes whose vertices are members of cycles.
These vertices can be identified in O(V +E) = O(m4) time.
With a direct implementation of this computation, constructing
G dominates the entire time for verifying the oscillator.

To obtain a more efficient computation, we first note that
the goal is to establish differential operation. It is sufficient to
project the vertices of V onto the common-mode components
of the differential signals and show that most of this projection
can be eliminated from further consideration. Let G′ = (V ′,E ′)
where v′k,� corresponds to the kth interval of u3 and the �th

interval of u4. There is an edge in E ′ from v′k1,�1
to v′k2,�2

iff
there exist i and j such that (vi, j,k1,�1 ,vi, j,k2,�2) ∈ E . Clearly, G′

over approximates reachability. Thus, if a vertex of G′ has no
incoming edges, then all of the corresponding vertices in G
must have no incoming edges as well. Computing the edges
in E ′ requires examining all of the edges of E , but subsequent
operations on the graph G′ are much faster than those on G.

To reduce the time required to find edges of E , we start
with a small value of m and thus a coarse grid. Many large
blocks can be eliminated from G′ even with a coarse grid.
We then double m (i.e. divide each vertex of G′ into four) and
recompute reachability using the finer grid for finding edges in
E as well. In practice this adaptive griding approach eliminates
blocks quickly while achieving enough precision to allow the
rest of the verification to proceed without difficulties.

B. Escape from the Failure Set
At the end of establishing differential operation, there are a

few cubes with self-loops – there is more than one such cube
because of the over approximations described above. These
cubes contain the point xfail. We now construct a larger cube
that contains all of these and make a change of variables so
that this cube is centered at the origin. We’ll write x for vectors
in the original coordinate system and u for vectors in the
coordinates where the center of a cube with a self-loop is
at the origin. Let r be the maximum �2 distance of any point
in this cube from the origin.

As described at the beginning of this section, we use
piecewise quadratic models for transistor currents and model

node capacitances as constants. Thus, the derivative function,
f , is piecewise quadratic. Our repeated subdivision of cubes
when establishing differential operation ensures that the cube
containing xfail is modeled by a simple quadratic (i.e. a single
“piece”). We can write this model as:

u̇ = A0 + A1u + ∑d
j=1(uT A2, ju)b j (5)

where b j is a unit vector corresponding to the jth component
of u. We will assume wlog that the A2, j matrices are symmetric
throughout paper.

To establish the hypotheses of Theorem 2, we again exploit
the differential operation of the oscillator and choose H =
diag([+1,+1,−1,−1]). The two +1 elements of H anticipate
a growing, differential component of the state, and the two
−1 elements are for a diminishing common-mode component.
Consider (u2 −u1)

T H(f (u2)− f (u1)):

(u2 −u1)
T H(f (u2)− f (u1))

= (u2 −u1)
T HA1(u2 −u1)

+ (u2 −u1)
T H ∑d

j=1((u2 −u1)
T A2, j(u2 +u1))b j

(6)

We now derive a lower bound for
(u2 −u1)

T HA1(u2 −u1)

(u2 −u1)T H(u2 −u1)
(7)

and an upper bound for∣∣∣∣∣ (u2 −u1)
T H ∑d

j=1((u2 −u1)
T A2, j(u2 +u1))b j

(u2 −u1)T H(u2 −u1)

∣∣∣∣∣ (8)

when (u2 −u1)
T H(u2 −u1)> 0.

Equation 7 is a convex conic program and can be solved
by standard techniques (see [20, chap. 4.4]); let linmin be the
minimum value for Equation 7. To bound the magnitude of
the quadratic term, let σmax denote the largest singular value
of any of the A2, j matrices. Then, for all j ∈ 1 . . .d,

(u2 −u1)
T A2, j(u2 +u1) ≤ σmax(u2 −u1)

T (u2 +u1)

Therefore, ∥∥∥∑d
j=1((u2 −u1)

T A2, j(u2 +u1))b j

∥∥∥
≤

√
dσmax(u2 −u1)

T (u2 +u1)

Noting that the largest singular value of H is 1, and ‖u2 +
u1‖ ≤ 2r, we get:

(u2 −u1)
T H ∑d

j=1((u2 −u1)
T A2, j(u2 +u1))b j

≤ 2r
√

dσmax‖u2 −u1‖
2 (9)

By our choice of H,

(u2 −u1)
T H(u2 −u1) ≤ ‖u2 −u1‖

2 (10)

Now, let k = linmin − 2r
√

dσmax. Combining the results from
Equations 6 through 10, we get

(u2 −u1)
T H(f (u2)− f (u1)) ≥ k(u2 −u1)

T H(u2 −u1)

If k > 0, then we can satisfy the conditions of Theorem 2.
In practice, the conditions of Theorem 2 can be satisfied by
choosing r to be sufficiently small.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

169

C. Proper Oscillation
As described in Section III-C, we reduce the state space

from four dimensions to two by replacing the differential
equation model for the circuit with a differential inclusion.
The space to be considered forms a ring: the outer boundary
is determined by the assumption that all signals have voltages
between ground and Vdd , and the inner boundary is estab-
lished by eliminating trajectories in a neighborhood near xfail.
Figure 3 shows the remaining region. We use a collection of
“spokes” as shown in Figure 4, and show that all trajectories
in these wedges converge to a unique, periodic attractor. The
computation has three parts:

1) Starting from each “spoke”, show that all trajectories
starting at that spoke eventually cross the next spoke.

2) Show that all trajectories starting from the inner or outer
boundary eventually cross the next spoke.

3) Starting from one spoke, compute the reachable set until
it converges to a limit set.

V. RESULTS

We generated transistor models using HSPICE to determine
drain-to-source currents for 0.18μ long and 1μ wide nMOS
and pMOS devices with the gate and drain voltages swept
from 0 to 1.8V in 0.01V steps. For the nMOS transistors,
we assume that the source and body are at 0V, and for the
pMOS devices, we assume that they are at 1.8V. We assume
that all transistors have a length of 0.18μ , and obtain current
for other widths by linear scaling from the 1μ data. For all
inverters, we use pMOS devices that are twice as wide as
the nMOS devices. All forward inverters have transistors of
the same size, and likewise for the cross-coupled inverters.
In the following, s denotes ratio of the cross-coupled inverter
size to the forward inverter size. This section first presents the
verification of an oscillator with s = 1. Then, the oscillator is
verified for 0.673 ≤ s ≤ 2.0.

The verification routines were implemented using Matlab
with Coho used for the final reachability computation. All
times were obtained running on a dual Xeon E5520 (quad
core) 2.27GHz machine with 32GB of memory. The compu-
tations described here are all performed using a single core.

A. Verification with equal-size inverters
The first phase of the verification establishes differential

operation. Initially, the computation partitions the space for
each of the ui variables into 8 regions, creating a total of
84 = 4096 cubes to explore. After eliminating cubes that have
no incoming or self-circulating flows, the remaining cubes are
subdivided and rechecked until there are 64 intervals for each
variable. Figure 2 shows the remaining cubes projected onto
the common-mode variables, u3 and u4 at the end of this phase.

With 8 intervals per region, there are 752 cubes under
consideration (18% of the total space). With each subdivision,
the number of cubes remaining increases by a factor of roughly
4.6, and thus the volume of the space under consideration
drops by about a factor of roughly 0.29. With 64 intervals
per region, 74676 cubes remain (0.45% of the total space).

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

u3

u 4

Fig. 2. Common-mode convergence to Vdd
√

2/2

The decrease in the volume is steady, suggesting that further
reductions would be possible with more iterations. However,
the time per iteration increases with the number of cubes under
consideration, and the time for this phase dominates the total
verification time. Thus, for verifying this circuit, there is no
incentive to further refine the region bounding the common-
mode signal.

The second phase of the verification eliminates the unstable
equilibrium. The equilibrium is near the point where all node
voltages are 0.867V. We chose U to be the hyper-rectangle
with sides of length 0.1V whose center is at this point. The
region U contains all cubes that correspond to graph-vertices
with self-loops from phase 1. There is more than one such
cube due to the use of interval arithmetic in computing the
adjacency graph to ensure soundness. Using the least-squares
best-fit quadratic model for points in U yields:

linmin > 5× 1010sec−1,

σmax < 2× 109sec−1V−1, and
r = 0.1V

from which we get that the conditions of Theorem 2 are
satisfied for any k with 0 < k < 4.92× 1010sec−1. Thus, we
can safely remove the cubes in U .

We can now repeat the procedure from phase 1 to remove
all cubes that transitively have no incoming flows. This phase
eliminates roughly half of the remaining cubes, leaving 38384
cubes for analysis by the final phase.

The final phase starts with the 38384 cubes from the
second phase. As described in Section IV-C, we divide these
cubes into 16 wedges divided by “spokes” in the u1 × u2
projection. As described in Section IV-C, it is sufficient to
show trajectories starting on the boundary of the wedge lead to
points inside the next wedge in the clockwise direction. With
16 wedges, we perform 48 reachability computation runs. At
this point, the oscillator is verified.

We also ran a longer reachability computation starting from
a spoke and completing two complete cycles of the oscillation.
The second cycle starts from a smaller region that the first
and establishes tighter bounds on the limit cycle. The blue
polygons in Figure 4 indicate this limit cycle. The remaining

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

170

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

u1

u 2

Fig. 3. Eliminating the unstable equilibrium

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 4. Computing the invariant set

width of the limit cycle is mainly due to approximating
the four-dimensional differential equation with a differential
inclusion.

The computation is very efficient. The run-time of the first
phase is about 720 seconds, and the run-time of reacha-
bility computation is less than 470 seconds. Reducing state
space helps to improve performance significantly. It takes
several hours to completes the reachability computation in
full-dimensional space from a single cube. In contrast, the run-
time in reduced-space is less than 10 minutes as shown above.
Reducing the space also introduces over-approximations to the
reachable regions. However, this did not lead to false-negative
results, as the circuit converges to the oscillation orbit rapidly.

B. Verification for a range of sizes

Phases 1 and 3 of our verification method use conservative
over-approximations to guarantee soundness of the results.
These approximations make it straightforward to model s as
being in an interval rather than having a precise value. We have
verified escape from the failure set for values of s from 0.673
to 2.0 by testing values of s in steps of 0.01 for 0.6≤ s≤ 2 and
in steps of 0.001 for 0.67 ≤ s ≤ 0.7. The lower-bound for s is
slightly higher than the one reported in [8]. We conjecture
that our transistor current tables are slightly different than
those used in [8] perhaps due to an updating of the SPICE

models provided by the foundry. For s > 2, the third phase
of the verification fails to show that trajectories leave the
“corners” of the u1 × u2 space. These correspond to lock-up
of the cross-coupled inverters. The DC analysis method shows
that these lock-up states become stable for s > 2.25. The gap
between the reachability computation and the DC analysis is
presumably due to conservative over-approximations used in
the reachability method.

VI. CONCLUSIONS

This paper has presented the first, formal verification that
the differential oscillator circuit presented in [2] properly starts
from almost all initial conditions. In particular:

• no “physically plausible” oscillator starts from all initial
conditions (Theorem 1, Section II);

• we presented a generalization of the “cone-argument”
from [1] to show that the failures occur with probability
zero and thus the oscillator starts with probability one
(Theorem 2, Section III);

• our approach shows how reachability analysis can be
combined effectively with dynamical systems analysis;

• we showed how differential-operation, a common feature
of analog designs, can be exploited for model reduction.

We elaborate on some of these below.
First, metastable behaviors is unavoidable for most mode-

switching circuits. While metastability is most often associated
with synchronizer circuits [21], [22], it arises anytime the
state of a continuous system can evolve to two or more
distinct states. For example, when a phase-locked loop (PLL)
locks, the VCO phase may advance to match the phase of
the reference, or the VCO may drop back depending on
the initial conditions. Thus, there are conditions where any
physically realizable PLL takes an arbitrarily long time to
lock. On the other hand, there are are published verifications
of bounded lock time for phase-locked loops (e.g. [23]). The
discrepancy is resolved by noting that [23] uses an abstract
model for the phase-comparator that makes a discontinuous
step as the phase-difference passes through 180◦. For many
designs, this is a reasonable abstraction; yet, we note that a
PLL can fail to lock if there is a dead-spot in the response
of the phase-comparator at the wrap-around point. We see our
work as complementary to that of [23] – they provide powerful
abstractions that enable the verification of larger designs, and
we provide methods of ensuring that those abstractions are
sound.

Second, our verification combined analytical methods from
dynamical systems theory with reachability methods that are
more typical of the formal methods community. Neither alone
is sufficient to verify the oscillator. Reachability techniques are
inadequate because they cannot show escape from a failure set
of zero measure. Such “failures” are not of concern to practical
designers as they are unobservable in the physical system. On
the other hand, the dynamical systems methods that allow us
to establish probability-one results are arguments about local
dynamics. The reachability computations are needed to go
from these local results to proving global properties.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

171

The notion of probability that we used, a smooth distribution
over initial states, was simplistic. A more physical model
would use stochastic integration techniques to determine the
evolution of this distribution under the circuit dynamics as
perturbed by noise processes such as thermal noise. While this
might be more satisfying, it would mainly serve to make the
mathematics more complicated, and quantitative results would
be hard to obtain due to the highly non-linear dynamics of the
circuits. However, the basic topological observations on which
we base our results would be preserved. Thus, we believe that
our probability one results would continue to hold in a more
detailed, stochastic model.

Proving that something happens “eventually” can be un-
satisfying, as such proofs often don’t give an indication of
how long one needs to wait. Our proof for Theorem 2 shows
that the divergence is at least as fast as an exponential with
time-constant k. For the oscillator considered, k ≈ 1/(20ps).
Thus, we can make a quantitative conclusion that in a few
nanoseconds, the probability that the oscillator has not started
is extremely small. This should satisfy practicing designers.

Of course, there are many areas of future work. Most
immediately, we claimed escape from the failure set for a
wide-range of inverter sizes by verifying the property for a
large number of closely spaced choices of the sizes. We would
like to use interval-arithmetic methods to show that these
intervals are completely covered. To do so, we are making
a few extensions to the intlab package [24]. Likewise, we
plan to show that the method can be applied to a design in
a more state-of-the-art process (e.g. using PTM models [25]).
We expect to include results for interval arithmetic and other
processes in the final version of this paper.

We would like to verify larger circuits. For example, a
ring oscillator with six or more stages can have stable higher
harmonic modes if small inter-stage couplings are included in
the model. We would like to verify (and refute) such designs.
We expect that the first two phases of our verification could
readily be generalized to a oscillators with an arbitrary number
of stages with straightforward inductive formulations. We
don’t see induction working directly to extend the reachability
analysis to larger designs. Instead, we are looking further into
dynamical systems approaches to rule out entire classes of
failure modes. Then we use reachability analysis techniques
like those presented in the paper to complete the verification.
The Rambus oscillator circuit is a good example for detailed
analysis of how reachability computation complexity scales
with circuit size.

REFERENCES

[1] I. Mitchell and M. Greenstreet, “Proving Newtonian arbiters correct,
almost surely,” in Proceedings of the Third Workshop on Designing
Correct Circuits, Båstad, Sweden, Sep. 1996.

[2] K. D. Jones, J. Kim, and V. Konrad, “Some “real world” problems in
the analog and mixed-signal domains,” in Proc. Workshop on Designing
Correct Circuits, Apr. 2008.

[3] W. Hartong, L. Heidrich, and E. Barke, “Model checking algorithms
for analog verification,” in Proceedings of the 39th ACM/IEEE Design
Automation Conference, Jun. 2002, pp. 542–547.

[4] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verification
of analog designs,” in Proceedings of 2004 IEEE/ACM International
Conference on Computer Aided Design, Nov. 2004, pp. 210–217.

[5] G. Frehse, B. H. Krogh, and R. A. Rutenbar, “Verifying analog oscillator
circuits using forward/backward abstraction refinement,” in Proceedings
of Design Automation and Test Europe, Mar. 2006, pp. 257–262.

[6] S. Little, N. Seegmiller, D. Walter, C. Myers, and T. Yoneda, “Verifica-
tion of analog/mixed-signal circuits using labeled hybrid petri nets,” in
Proceedings of the International Conference on Computer Aided Design,
Nov. 2006, pp. 275–282.

[7] J. Xiao, A. V. Peterchev, and S. R. Sanders, “Architecture and IC
implementation of a digital VRM controller,” in IEEE 32nd Annual
Power Electronics Specialists Conference (PESC’01), vol. 1, Jun. 2001,
pp. 38–47.

[8] M. R. Greenstreet and S. Yang, “Verifying start-up conditions for a ring
oscillator,” in Proceedings of the 18th Great Lakes Symposium on VLSI
(GLSVLSI’08), May 2008, pp. 201–206.

[9] S. K. Tiwari, A. Gupta et al., “fSpice: a boolean satisfiability based
approach for formally verifying analog circuits,” presented at the 2008
Workshop on Formal Verification for Analog Circuits (FAC’08), Prince-
ton, NJ, Jul. 2008.

[10] S. Tiwari, A. Gupta et al., “First steps towards SAT-based formal analog
verification,” in Proceedings of the 2010 International Conference on
Computer Aided Design, Nov. 2010.

[11] S. Steinhorst, M. Peter, and L. Hedrich, “State space exploration of
analog circuits by visualized multi-parallel particle simulation,” in In-
ternational Conference on Signal Processing Systems (ICSPS’09), May
2009, pp. 858–862.

[12] M. H. Zaki, I. Mitchell, and M. R. Greenstreet, “Towards a formal analy-
sis of DC equilibria of analog designs,” Presented at the 2009 Workshop
on Formal Verification for Analog Circuits (FAC’09), Grenoble, France,
Jun. 2009.

[13] M. Fränzle, “HySAT: An efficient proof engine for bounded model
checking of hybrid systems,” Formal Methods in System Design, vol. 30,
no. 3, pp. 179–198, 2007.

[14] S. Little and C. Myers, “Abstract modeling and simulation aided verifi-
cation of analog/mixed-signal circuits,” presented at the 2008 Workshop
on Formal Verification for Analog Circuits (FAC’08), Princeton, NJ, Jul.
2008.

[15] C. Yan and M. R. Greenstreet, “Faster projection based methods for
circuit-level verification,” in Proceedings of the 2008 Asia and South
Pacific design automation conference (ASPDAC’08), Jan. 2008, pp. 410–
415.

[16] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems,
and Linear Algebra. San Diego, CA: Academic Press, 1974.

[17] G. Frehse, “PHAVer: Algorithmic verification of hybrid systems past
HyTech,” in Proceedings of the Fifth International Workshop on Hybrid
Systems: Computation and Control. Springer-Verlag, 2005, pp. 258–
273, LNCS 3414.

[18] D. Pollard, A User’s Guide to Measure Theoretic Probability. Cam-
bridge University Press, 2001.

[19] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi, “Algorithmic analysis of
nonlinear hybrid systems,” IEEE Transactions on Automatic Control,
vol. 43, no. 4, pp. 540–554, Apr. 1998.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[21] T. Chaney and C. Molnar, “Anomalous behavior of synchronizer and
arbiter circuits,” IEEE Transactions on Computers, vol. C-22, no. 4, pp.
421–422, Apr. 1973.

[22] D. J. Kinniment, C. Dike et al., “Measuring deep metastability and
its effect on synchronizer performance,” IEEE Transactions on VLSI
Systems, vol. 15, pp. 1028–1039, Sep. 2007.

[23] M. Althoff, A. Rajhans et al., “Formal verification of phase-locked loops
using reachability analysis and continuization,” in Proceedings of the
2011 International Conference on Computer Aided Design, Nov. 2011,
pp. 659–666.

[24] S. Rump, “INTLAB - INTerval LABoratory,” in Developments in Re-
liable Computing, T. Csendes, Ed. Dordrecht: Kluwer Academic
Publishers, 1999, pp. 77–104, http://www.ti3.tu-harburg.de/rump/.

[25] Y. Cao, “PTM: predictive technology model,” http://ptm.asu.edu, 2008.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

172

Lazy Abstraction and SAT-Based Reachability in
Hardware Model Checking

Yakir Vizel∗, Orna Grumberg∗, Sharon Shoham†
∗Computer Science Department, The Technion, Haifa, Israel

†School of Computer Science, Academic College of Tel Aviv-Yaffo

Abstract—In this work we present a novel lazy abstraction-
refinement technique for hardware model checking, integrated
with the SAT-based algorithm IC3.

In contrast to most SAT-based model checking algorithms, IC3
avoids unrolling of the transition relation. Instead, it applies local
checks, while computing over-approximated sets of reachable
states. We find IC3 most suitable for lazy abstraction, since each
one of its local checks requires different information from the
checked model.

Similarly to IC3, our algorithm obtains a series of over-
approximated sets of states. However, when constructing the
series, different abstractions are used for different sets.

If an abstract counterexample is obtained, we either find a
corresponding concrete one, or apply refinement to eliminate
all counterexamples of the same length. Refinement makes the
abstractions more precise as needed, and where needed. After
refinement, the computation resumes from the same step where
it was interrupted. The result is an incremental abstraction-
refinement algorithm where the abstraction is lazy.

We implemented our algorithm, called L-IC3, and compared
it with the original IC3 on large industrial hardware designs. We
obtained significant speedups of up to two orders of magnitude.

I. INTRODUCTION

In this work we introduce a novel lazy abstraction-

refinement technique for hardware model checking, integrated

with the SAT-based algorithm IC3 [3].

Model checking [5] is an automatic procedure that deter-

mines whether a given system satisfies a specification. In

spite of its great success in verifying hardware and software

systems, the applicability of model checking is impeded by its

high space and time requirements.

The introduction of SAT-based model checking algo-

rithms [1], [15], [12], [16], [3] significantly increased the size

of the verified systems. Still, the search for improved, more

scalable methods is neverending.

Most SAT-based model checking algorithms are based on an

unrolling of the model’s transition relation in order to traverse

its state space. In contrast, the recently introduced IC3 algo-

rithm [3] avoids such unrolling. To verify a safety property,

IC3 gradually builds a series of sets of states F0, . . . , Fi, . . .,
where Fi over-approximates the set of states reachable within

i steps from the initial states. The computation moves back

and forth along the Fi’s and strengthens them by eliminating

unreachable states. This is done via local reachability checks
between consecutive sets Fi and Fi+1. IC3 either reaches a

fixpoint, in which case all reachable states satisfy the desired

property, or returns a counterexample.

Abstraction-refinement is a well known methodology for

tackling the state-explosion problem. Abstraction hides model

details that are not relevant for the checked property. The

resulting abstract model is then smaller. Lazy abstraction [10],

[13], developed for software model checking, is a specific

type of abstraction that allows hiding different model details

at different steps of the verification.

In this work we develop, for the first time, a lazy abstraction-

refinement framework for hardware. We use the visible vari-
ables abstraction [11], which is particularly suitable for hard-

ware. However, we use it in a lazy manner in the sense that

different sets of visible variables are used in different iterations

of the state-space traversal.

We find the IC3 algorithm most suitable for lazy abstrac-

tion since its state traversal is performed by means of local

reachability checks, each involving only two consecutive sets.

Thus, at each check a different set of variables is relevant.

Our model checking algorithm, called L-IC3, thus integrates

a lazy abstraction-refinement mechanism into IC3. Similarly

to IC3, L-IC3 computes a series of over-approximating sets

Fi, each referring to a certain time frame. However, L-IC3

considers abstractions of the model during this computation.

When constructing Fi+1, we determine a set of variables

Ui, needed for its construction, and abstract both states and
transitions accordingly. The variables in Ui are referred to as

“visible”, while the others are invisible and treated as inputs.

The key ingredients of L-IC3 are therefore a series Ω

of over-approximating sets of states Fi and an abstraction

sequence Ū of sets of variables Ui.

L-IC3 works in stages. Each stage consists of an abstract
model checking step, followed by a refinement step. At a given

stage, the abstract model checking extends both Ω and Ū and

checks if they include a potential abstract counterexample. If

not, the sequences are further extended. If a potential abstract

counterexample is found, the algorithm strengthens the sets

Fi by eliminating abstract states that might be a part of an

abstract counterexample.

We use a nonstandard notion of abstract counterexample,

based on both Ω and Ū . It consists of a sequence of abstract

states connected by abstract transitions, satisfying: (i) each

transition is based on a different abstraction Ui, and (ii) each

abstract state intersects the set Fi at the corresponding time

frame. Our notion of counterexample reflects the incorporation

of lazy abstraction into the mechanism of computing Ω.

If an abstract counterexample is found, meaning that no

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

173

strengthening is possible anymore based on the abstractions,

the refinement step is invoked. Refinement applies just one

iteration of a concrete variation of IC3, on the Ω computed

by the abstract model checking. By doing so, it either finds

a concrete counterexample or strengthens the Fi’s so that all
concrete counterexamples of length k are eliminated. In the

latter case, the Ui’s are also refined by adding more visible

variables to each of them, as needed and where needed. Once

refinement is finished we move to the next L-IC3 stage and

the abstract model checking is re-invoked, continuing the

computation from iteration k+1, with the refined sequences.

This makes L-IC3 incremental.
L-IC3 terminates with either a fixpoint, in which case we

conclude that the system satisfies the property, or with a

concrete counterexample.

In summary, the main contribution of our work is a novel

lazy abstraction-refinement technique for hardware. To the best

of our knowledge this is the first time lazy abstraction is

considered in the context of hardware. Our abstract model

checking and refinement are SAT-based. Both avoid unrolling

of the transition relation. Since our framework is based on a

subtle combination of the abstract and concrete models, we

provide theoretical arguments to its correctness.

In order to evaluate our new algorithm we compared it with

IC3 on a set of large industrial designs and properties. We

obtained speedups of up to two orders of magnitude. Our

experiments demonstrate that our lazy abstraction indeed uses

different sets of variables in different time frames. Moreover,

only a small portion of the design’s variables are used.

A. Related Work

[6] and [2] suggest optimizations and extensions to IC3,

but they do not combine it with a lazy abstraction-refinement

mechanism ([6] suggests the use of abstraction for IC3 but

without implementation details nor results). In [14], [9], [7],

[4], [8], SAT-based refinement is introduced. However, they

use an unrolling of the model while we use local checks a-la

IC3. Similarly to [14], [4], we also exploit an unSAT-core for

refinement. However, we never unroll the model, while [14]

does. Further, [14] is not incremental since after refinement it

resumes its (abstract) model checking from time frame 0.

IC3 [3] is sometimes also viewed as an abstraction-

refinement algorithm, since it refers to over-approximated sets

Fi and the strengthening of these sets resembles refinement.

However, the underlying model used by IC3 is concrete, and

only the concrete transition relation is considered. We, on

the other hand, alternate between abstract transition relations

(in the abstract model checking step) and the concrete tran-

sition relation (in the refinement step). Our algorithm thus

adds a layer of abstraction-refinement on top of this over-

approximation-strengthening mechanism.

II. PRELIMINARIES

Definition 1. A finite state transition model is a tuple M =

(V,U, INIT, TR) where V is a set of variables, U ⊆ V is a set

of state variables, V \U is a set of input variables, INIT(V) is

a propositional formula over V describing the initial states and

TR(V, V ′
) is a propositional formula over V and the next-state

variables V ′
= {v′ | v ∈ V } describing the transition relation.

We assume that TR(V, V ′
) =

∧
v∈U

(v′ = fv(V, V
′
)) where

fv(V, V
′
) is a propositional formula that assigns the next value

to v ∈ U based on current and next-state variables. Note that

for an input variable v ∈ V \ U , fv is not defined. From this

point on M is a finite state transition model.

The set of boolean variables of M induces a set of states

S = {0, 1}|V |, where each state s ∈ S is given by a

valuation of the variables in V . A formula over V (resp. V, V ′)
represents the set of states (resp. pairs of states) obtained by

its satisfying assignments. With abuse of notation we will refer

to a formula η over V as a set of states and therefore use the

notion s ∈ η for states represented by η.

The formula η[V ← V ′
], or η′ in short, is identical to η

except that each variable v ∈ V is replaced with v′.
For a formula η over V ∪ V ′ we use Vars(η) ⊆ V ∪ V ′ to

denote all (current or next state) variables appearing in η.

Definition 2. An over-approximated reachability sequence
(OARS) with respect to a model M and a property AGp,

denoted Ω(M,p), is a sequence 〈F0, . . . , Fk〉 of propositional

formulas over V such that the following holds:

• F0 = INIT
• Fi ⇒ Fi+1 for 0 ≤ i < k
• Fi ∧ TR ⇒ F ′

i+1 for 0 ≤ i < k
• Fi ⇒ p for 0 ≤ i ≤ k

The set of states represented by Fi over-approximates the

states reachable from INIT in at most i steps. We refer to i as

time frame (or frame) i. When M and p are clear from the

context we omit them and write Ω.

Definition 3. Let Ω be an OARS. A formula η is inductive
up to j, if Fj ∧ η ∧ TR ⇒ η′. η is an invariant up to level j
if Fi ⇒ η holds for each i ≤ j.

Note that if η is inductive up to j then Fi ∧ η ∧ TR ⇒ η′

holds for each i ≤ j. Due to the properties of an OARS, η is

an invariant up to j iff it is inductive up to level j− 1, and in

addition F0 ⇒ η (initialization).

A. SAT-based Reachability via IC3

IC3 [3] is a SAT-based model checking algorithm that, given

a model M and a property AGp, computes increasingly long

sequences Ω(M,p). The algorithm works iteratively, where at

iteration k, the OARS of length k is extended to an OARS

of length k + 1 by initializing the set Fk+1 and possibly

updating previous sets (with index i ≤ k+1). The computation

continues until either a counterexample is found or a fixpoint

is reached (i.e. Fi+1 ⇒ Fi for some i).
One of the main features of IC3 is the fact that no unrolling

of the transition relation is needed. We give a brief overview

of how it operates. More details are given along the paper as

needed. For the exact details we refer the reader to [3].

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

174

IC3 starts by checking if INIT ∧ ¬p or INIT ∧ TR ∧ ¬p′
is satisfiable, in which case a counterexample of length zero

or one is found and the algorithm terminates. If both are

unsatisfiable, F0 is initialized to INIT and F1 is initialized to

p. 〈F0, F1〉 is an OARS (it satisfies the conditions in Def. 2).
IC3 extends and updates Ω, while strengthening the Fi’s.

The kth iteration starts from an OARS 〈F0, . . . , Fk〉. Then

Fk+1 is initialized to p. Clearly, Fk ⇒ Fk+1 and Fk+1 ⇒
p hold. Therefore, the purpose of strengthening is to ensure

that Fk ∧ TR ⇒ F ′
k+1. This is done by checking that Fk ∧

TR ∧ ¬p′ is unsatisfiable. If this formula is satisfiable then a

state s ∈ Fk is retrieved from the satisfying assignment. s
is a bad state since it reaches ¬p (and by that violates Fk ∧
TR ⇒ F ′

k+1). At this point, either s is reachable from INIT,

in which case a counterexample exists, or s is unreachable

and needs to be removed from Fk. In order to determine if s
is reachable, IC3 checks the formula: Fk−1 ∧ TR ∧ s′. If this

formula is unsatisfiable, then s can be removed from Fk (since

the property Fk−1 ∧ TR ⇒ F ′
k of an OARS holds without it

as well), and the same process is repeated for other states in

Fk that can reach ¬p (if any). However, if Fk−1 ∧ TR ∧ s′

is satisfiable, a predecessor t ∈ Fk−1 of s is extracted and

handled similarly to s in order to determine if t (which is also

a bad state) is reachable from INIT or not. IC3 therefore moves

back and forth along the Fi’s, while retrieving bad states b and

checking their reachability from INIT via local reachability

checks of the form Fi∧TR∧b′. During this process, the Fi’s are

strengthened by removing bad states that are not reachable1. If

a state in F0 = INIT is reached during the backwards traversal,

then a counterexample is obtained.

Definition 4. Satisfiability checks of the form Fi ∧ TR ∧ η
(where Vars(η) ⊆ V ∪ V ′) are called i-reachability checks.

B. Abstraction
Throughout the paper we consider the “visible variables”

abstraction [11]. Let Mc = (V,U, INIT, TR) be a model and

let Ui ⊆ U be a set of state-variables. We refer to Ui as the

set of “visible variables”.
Given Ui, we consider an abstract model Mi = (Vi, Ui, TRi)

of Mc where TRi =
∧

v∈Ui

(v′ = fv(V, V
′
)) is an abstract

transition relation, and Vi = {v ∈ V | v ∈ Vars(TRi) ∨ v′ ∈
Vars(TRi)} ⊆ V . Note that the behavior of invisible state

variables (in U \ Ui) is nondeterministic.
We do not introduce an abstraction of INIT as part of Mi

since we always consider the concrete set of initial states. Mi

is an abstraction of Mc, denoted Mc %Mi, in the sense that

both its set of states and its transition relation are abstractions

of the concrete ones. Mi induces a set of abstract states Si

which includes all valuations to Vi. Specifically, each concrete

state s ∈ S is abstracted by the abstract state si ∈ Si that

agrees with s on the assignment to the joint variables in Vi.

In this case we write s % si. We sometimes refer to si as the

set of concrete states it abstracts: {s ∈ S|s % si}.
1In fact, in order to remove a bad state b from Fi, IC3 finds a clause c

that is an invariant up to i and implies ¬b, and adds c to Fi as a conjunct.

In addition, TR is abstracted by TRi in the sense that TR ⇒
TRi. Formally, the relation {(s, si) | s % si} is a simulation

relation from Mc to Mi.

Given an OARS Ω(Mc, p) = 〈F0, . . . , Fk〉 and an abstract

model Mi, we say that a formula η is inductive up to level j
w.r.t. Mi, if Fj ∧ η ∧ TRi ⇒ η′.

Lemma 5. Any formula inductive up to j w.r.t. Mi is also
inductive up to j w.r.t. Mc.

The lemma holds since TR ⇒ TRi. When we do not

explicitly mention a model, we refer to inductiveness w.r.t.

Mc. The notion of an invariant always refers to Mc.

C. Lazy Abstraction

As mentioned above, lazy abstraction [10] allows to use

different details of the model at different iterations of the state-

space traversal. We adapt the notion of lazy abstraction to

abstraction based on visible variables [11], and allow different

variables to be visible at different time frames.

Definition 6. An abstraction sequence w.r.t. a model Mc is a

sequence Ū = 〈U0, . . . , Uk〉 where Ui ⊆ U for 0 ≤ i ≤ k, is

a set of visible state-variables. Ū is monotonic if Ui ⊆ Ui+1

for each 0 ≤ i < k.

An abstraction sequence Ū represents different levels of

abstraction of Mc. It induces a sequence of abstract models

〈M0, . . . ,Mk〉 where Mi is defined as in Sec. II-B. If Ū is

monotonic, the induced sequence of abstract models is also

monotonic in the sense that M0 & . . . &Mk &Mc.

Definition 7. Let Ū = 〈U0, . . . , Uk〉 be a monotonic abstrac-

tion sequence and Ω(Mc, p) = 〈F0, . . . , Fk〉 an OARS. A

sequence si, . . . , sj of abstract states where 0 ≤ i < j ≤ k+1

is an abstract path from i to j if (i) for each i ≤ l < j,

(sl, sl+1) |= TRl, and2 (ii) for each i ≤ l ≤ min{j, k},
sl ∩ Fl �= ∅.

An abstract path s0, . . . , sj from 0 to j is an abstract
counterexample of length j if sj ∩ ¬p �= ∅.

Note that the definition above is not standard. It refers to

different transition relations at different steps. Also, it requires

the abstract states to be part of the corresponding Fi.

Definition 8. An abstraction sequence 〈U0
r, . . . , Uk

r〉 is a

refinement of an abstraction sequence 〈U0, . . . , Uk〉 if Ui ⊆
Ui

r for each i.

III. LAZY ABSTRACTION AND IC3

In this section we describe our proposed algorithm for lazy

abstraction, called L-IC3. The key ingredients of L-IC3 are an

abstraction sequence Ū that induces different abstractions at

different time frames as well as an OARS Ω.

L-IC3 starts with an initialization step and then works in

stages (Fig. 1). Its initialization (lines 2-5) is similar to the

2Requirement (ii) dismisses paths that are known to be spurious based on
Ω. min{j, k} is used for the case where j = k + 1, in which nonempty
intersection is required only up to k.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

175

1: function L-IC3(p)
2: Ω = 〈INIT, p〉; Ū = 〈Vars(p)〉
3: if INIT-IC3(Ω, Ū , p) == cex then
4: return cex
5: end if
6: while A-IC3(Ω, Ū) == abs-cex do
7: if REFINE(Ω, Ū) == cex then
8: return cex
9: end if

10: end while
11: return fixpoint
12: end function

Fig. 1: L-IC3

initialization of IC3 with one exception. If no counterexample

of length 0 or 1 exists, then in addition to initializing Ω to

〈F0 = INIT, F1 = p〉, it initializes Ū to 〈U0 = Vars(p)〉.
Clearly, after initialization, Ω is an OARS.

Each L-IC3 stage (lines 6-10) consists of an abstract model

checking step and a refinement step, both performed by

variations of IC3. Ū and Ω are updated in both steps.

The abstract model checking extends and updates the OARS

Ω until either a fixpoint is reached, or an abstract counterex-

ample is found (line 6). In the latter case, the counterexample

is abstract since it is computed w.r.t. the abstract transitions.

However, it is also restricted by Ω (see Def. 7). A refinement

is then performed (line 7). If the refinement finds a concrete

counterexample then it terminates. Otherwise it refines Ū and

updates Ω into an OARS (of the same length).

A new L-IC3 stage (line 6) of abstraction-refinement then

begins, invoking A-IC3 with the updated Ω and the refined Ū .

An invocation of L-IC3 results in either a fixpoint (in which

case the property is proved), or a concrete counterexample.

A. Abstract Model Checking via A-IC3

The abstract model checking algorithm, A-IC3 (Fig. 2),

either finds an abstract counterexample (line 22), or reaches a

fixpoint (line 26) by computing an OARS Ω.

Using different abstractions The computation of Ω is done

using a variation of IC3 which considers a sequence of abstract
models, induced by a monotonic abstraction sequence Ū =

〈U0 . . . , Uk〉. Both abstract transition relations and abstract

states are used. Even though abstract models are used, the

obtained OARS satisfies the requirements of Def. 2, which

refer to the concrete transition relation TR. To emphasize this,

we sometimes refer to the sequence as a concrete OARS.

Recall that IC3 performs i-reachability checks of the form

Fi ∧ TR ∧ η. A-IC3 also performs these checks (within

STRENGTHEN, line 20), but instead of using the concrete TR
it uses the abstract TRi. This means that when traversing the

model’s state space, A-IC3 uses different abstract transition

relations at different time frames. Further, when Fi ∧ TRi ∧ η
is satisfiable, A-IC3 retrieves an abstract state sa ∈Mi from

the satisfying assignment. This abstract state is either used to

strengthen Ω, or it is part of an abstract counterexample.

Incrementality If A-IC3 finds a counterexample at iteration

k it returns. After refinement (line 7) A-IC3 is re-invoked

13: function A-IC3(Ω, Ū)
14: k = |Ω| − 1
15: while Ω.fixpoint() == false do
16: Uk = Uk−1

17: Ū .add(Uk)
18: Fk+1 = p
19: Ω.add(Fk+1)
20: result = STRENGTHEN(Ω, Ū , k)
21: if result == abs-cex then
22: return abs-cex
23: end if
24: k = k + 1
25: end while
26: return fixpoint
27: end function

Fig. 2: A-IC3

with an updated Ω that is an OARS of the same length. The

computation of Ω resumes from iteration k + 1 (line 14)3.

Iterations In iteration k ≥ 1, the OARS 〈F0, . . . , Fk〉 and the

abstraction sequence 〈U0, . . . , Uk−1〉 are extended by 1 and

updated as follows (see Fig. 2).

1) Check if a fixpoint is reached. If not:

2) Uk is initialized to Uk−1 and added to Ū .

3) Fk+1 is initialized to p and added to Ω.

4) The sets F0, . . . , Fk+1 are strengthened iteratively until

〈F0, . . . , Fk+1〉 becomes an OARS, or an abstract coun-

terexample is found.

Below we describe items 2 and 4 in more detail.

(2) Extending Ū: Uk is initialized to Uk−1 (line 16). This is

aimed at immediately eliminating from TRk spurious transi-

tions that lead from states in Fk−1 ⊆ Fk to ¬p and were

already removed from TRk−1. Note that this initialization

does not imply that the Ui sets will always be equal, since

refinement might change them in different ways.

(4) Iterative Strengthening of Ω: A-IC3 obtains an OARS of

length k + 1 by strengthening the Fi’s s.t. no abstract coun-

terexample of length k+1 exists w.r.t. the OARS 〈F0, . . . , Fk〉.
This is a sufficient condition to ensure that Ω is an OARS. For

this purpose, A-IC3 finds abstract states that might be a part

of an abstract counterexample at a certain time frame, and

attempts to block them by learning corresponding invariants.

Recall that the abstract counterexamples we consider are

restricted not only by the abstract transition relations, but also

by the Fi sets (Def. 6). Technically, such states are described

by abstract proof obligations (similarly to the notion of proof

obligations used in IC3).

Definition 9. An abstract proof obligation, or an obligation
in short, is a pair (sa, n) consisting of a level n ≤ k and an

abstract state sa s.t. (1) sa is a “bad state” that reaches ¬p
along some abstract path, (2) ¬sa is an invariant up until n,

(3) sa ∩Fn+1 �= ∅, and (4) Fn reaches sa in one step of TRn.

Thus n+ 1 is the minimal level intersecting sa, and n is the

minimal level reaching sa in one abstract step. Note that it is

3An abstract counterexample is found w.r.t. Ω = 〈F0, . . . , Fk+1〉 produced
in iteration k, where |Ω| = k + 2. When A-IC3 is re-invoked, k is set to
|Ω| − 1 = k + 1.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

176

possible that Fn cannot reach sa along the concrete transitions.

A-IC3 maintains two sets of obligations - may and must.

Definition 10. An obligation (sa, n) is a must obligation
w.r.t. iteration k if sa must be shown unreachable from Fn

in one step w.r.t. TRn, in order to ensure that no abstract

counterexample of length k + 1 exists. All other obligations

are may obligations w.r.t. k.

If sa can reach ¬p via an abstract path from level n + 1

to level k + 1, then (sa, n) is a must obligation: unless sa is

blocked from Fn+1 (by removing from Fn all states that reach

sa in one step), an abstract counterexample of length k + 1

would exist. The same violation may also be reached from sa
in later levels Fj , n + 1 < j ≤ k + 1, in which case it will

be a suffix of a longer abstract counterexample with a longer

prefix up to sa. Therefore, we may also want to block sa in Fj ,

n+1 < j ≤ k+1. However, since different abstract transition

relations are considered at each level, it is also possible that

the same path leading from sa to ¬p is not valid from level

j > n+ 1 since, for example, Uj ⊃ Un+1 and hence the first

transition along the path does not satisfy TRj . The attempt to

block a state sa that is known to reach a violation from level

n+ 1 in levels greater than n+ 1 creates may obligations4.

The may obligations are not required to be blocked, but

blocking them can prevent A-IC3 from encountering the

same obligations/states in future iterations. On the other hand,

if we report an abstract counterexample based on a may

obligation, it is possible that no real abstract counterexample

exists, resulting in an unnecessary refinement step which can

damage the efficiency of the algorithm. We therefore greedily

try to handle may obligations and strengthen Ω accordingly,

but refrain from reporting abstract counterexamples based on

them. Note that if a may obligation is in fact a must w.r.t.

some greater k, then it will reappear as a must obligation in

the following iterations.

In order to handle an obligation (sa, n) and show sa to

be unreachable from Fn in one step, A-IC3 attempts to

strengthen Fn by extracting predecessors ta of sa that satisfy

Fn∧TRn∧ s′a, defining new proof obligations based on them,

and handling these obligations (by the same procedure). If

Fn is successfully strengthened s.t. Fn ∧ TRn ∧ s′a becomes

unsatisfiable, then ¬sa becomes an invariant up to n+ 1.

Adding Invariants If ¬sa is an invariant up to n+ 1, then a

stronger invariant that blocks sa up to Fn+1 is learned based

on the abstract model Mn. Namely, ¬sa is strengthened to

some sub-clause5 c s.t. F0 ⇒ c and Fn ∧ c ∧ TRn ⇒ c′, i.e. c
is inductive up to n w.r.t. Mn and hence, by Lemma 5, also

w.r.t. Mc. Consequently, c is also an invariant up to n+1, but

it is a stronger invariant than ¬sa (since c⇒ ¬sa). The clause

c is added as a conjunct to F0, . . . , Fn+1 while maintaining

4IC3 does not make a distinction between may and must obligations and
handles them all the same since in the concrete case, a longer counterexample
is always a valid path (its suffix reaching a violation is always valid).

5A state sa is represented by a conjunction of literals, which makes its
negation ¬sa a clause (i.e., a disjunction of literals). A sub-clause of ¬sa
consists of a subset of its literals.

28: function REFINE(Ω,Ū)
29: result = C-STRENGTHEN(Ω)
30: if result == cex then
31: return cex
32: end if
33: REFINEABSTRACTION(Ω,Ū)
34: return done
35: end function

Fig. 3: REFINE procedure of A-IC3

the properties of a (concrete) OARS6.

Key procedures used by A-IC3 are described in Sec. III-D.

B. Refinement

If A-IC3 finds an abstract counterexample of length k + 1,

refinement is invoked by L-IC3 (line 7). Refinement either

finds a concrete counterexample or eliminates all concrete

spurious counterexamples of length k + 1. In the latter case,

refinement also refines Ū to ensure that no abstract coun-

terexample of length k + 1 exists. Both an updated OARS

Ω
r
= 〈F r

0 , . . . , F
r
k+1〉 and a refined monotonic abstraction

sequence Ūr
= 〈Ur

0 , . . . , U
r
k 〉 are returned.

The REFINE procedure is described in Fig. 3. REFINE

first invokes C-STRENGTHEN, the strengthening procedure of

the concrete IC3, on the sequence 〈F0, . . . , Fk+1〉 (whose

prefix up to Fk is an OARS) obtained from the abstract

model checking. If a concrete counterexample is found the

algorithm terminates (lines 29-32). Otherwise, no concrete

counterexample of length k+1 exists. Moreover, the updated

(strengthened) sets F r
0 , . . . , F

r
k+1 comprise an OARS. It re-

mains to refine the abstraction sequence Ū in order to eliminate

all abstract counterexamples of length k + 1 as well. Thus,

REFINEABSTRACTION is invoked (line 33).

REFINEABSTRACTION: A-IC3 found an abstract coun-

terexample since it failed to strengthen the Fi’s. Meaning, the

relevant i-reachability checks Fi∧TRi∧ t′a could not be made

unsatisfiable when using TRi. C-STRENGTHEN, on the other

hand, succeeds to do so. Namely, for each i-satisfiability check

Fi ∧ TRi ∧ t′a of A-IC3 that was satisfiable, C-STRENGTHEN

manages to make the corresponding check F r
i ∧ TR ∧ t′ for

each t % ta unsatisfiable, either by strengthening F r
i or simply

since it considers TR. Moreover, once F r
i ∧ TR ∧ t′ becomes

unsatisfiable, C-STRENGTHEN derives from it a clause c⇒ ¬t
s.t. F r

i ∧ c ∧ TR ⇒ c′ holds. C-STRENGTHEN strengthens Ω
r

by adding c (invariant) as a new clause in all sets up to F r
i+1.

We consider it a learned clause at level i+1. The purpose of

REFINEABSTRACTION is to ensure that for a learned clause

c at level i+ 1, F r
i ∧ c ∧ TRr

i ⇒ c′ (with TRr
i instead of TR)

also holds. Meaning, c is inductive up to i w.r.t. Mr
i .

Lemma 11. Let c be a clause learned by C-STRENGTHEN at
level i+ 1. If F r

i ∧ TRr
i ⇒ F r

i+1
′ then F r

i ∧ c ∧ TRr
i ⇒ c′.

Based on the previous lemma, in order to ensure F r
i ∧ c ∧

TRr
i ⇒ c′, it suffices to ensure unsatisfiability of F r

i ∧ TRr
i ∧

¬F r
i+1

′ for every level i+ 1 in which learned clauses exist.

6c is not necessarily inductive w.r.t. Mi where i < n (in case Ui ⊂ Un).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

177

To ensure unsatisfiability of a formula F r
i ∧TRr

i∧¬F r
i+1

′, we

consider the same formula over TR, which is clearly unsatisfi-

able. We derive from it an unSAT-core. The next-state variables

that appear in the unSAT-core, denoted NS(unSatCore) =

{v ∈ V | v′ ∈ Vars(UnSatCore)}, are added to Ui.

Lemma 12. Let F r
i ∧TR∧η′ be an unsatisfiable formula and

let UnSatCore be its unsat core. Let Ur
i ⊇ NS(UnSatCore).

Then F r
i ∧ TRr

i ∧ η′ is unsatisfiable.

Finally, we propagate variables that were added to Ur
i

forward in order to obtain a monotonic abstraction sequence.

Since we only add variables to Ur
i , i.e. make the transition

relation TRr
i more precise, then the corresponding formulas

remain unsatisfiable.

C. Correctness Arguments

The OARS obtained by L-IC3 is concrete. Specifically, it

does not necessarily satisfy Fi ∧ TRi ⇒ Fi+1. This results

both from refinement that adds invariants learned based on the

concrete TR, and from A-IC3 that learns an invariant based on

some TRi, but also adds it to Fj+1 for j < i even if it is not

inductive w.r.t. TRj . This complicates the correctness proof.

In particular, in IC3, when a proof obligation (s, n) is

handled, then for any predecessor t of s, ¬t is an invariant

up to n−1, otherwise s would belong to a lower frame (since

Fi ∧ TR ⇒ Fi+1). Now consider an abstract proof obligation

(sa, n). If we assume to the contrary that the predecessor ta
intersect some Fi (for i < n) then we can still deduce that

the transition (ta, sa) |= TRn also exists at a lower frame, i.e.

(ta, sa) |= TRi for i < n. This is since TRn ⇒ TRi (recall

that the same does not necessarily hold for i > n). However, if

ta∩Fi �= ∅, we cannot immediately deduce that sa∩Fi+1 �= ∅
since Fi ∧ TRi ⇒ Fi+1 might not hold. It turns out that this

property does hold (see Lemma 15), but more complicated

arguments are needed, based on the following:

Lemma 13. Let Ω = 〈F0, . . . , Fk+1〉 and Ū = 〈U0, . . . , Uk〉
be the sequences obtained at the end of a refinement step
or at the end of an iteration of A-IC3 in the case that no
counterexample was found. Then

1) Ω is an OARS.
2) For every clause c that was added to some Fi in Ω there

exists some j ≥ i− 1 s.t. c is inductive up to j w.r.t. Mj .
3) No abstract counterexample of length k + 1 exists w.r.t.

the prefix 〈F0, . . . , Fk〉 of Ω.

Theorem 14. L-IC3 either terminates with a fixpoint, in which
case the property holds, or with a concrete counterexample.

D. Detailed Description of Strengthening

We now describe the procedures used by A-IC3 in detail.

STRENGTHEN (Fig. 4): STRENGTHEN starts by checking

Fk∧TRk∧¬p′ (line 37). If it is unsatisfiable, then Fk∧TR∧¬p′
is also unsatisfiable as well (since TR ⇒ TRk). Thus Ω is

already an OARS and no further strengthening is needed.

Assume Fk ∧ TRk ∧ ¬p′ is satisfiable. An abstract state

sa ∈ Mk that reaches ¬p in one abstract step is extracted

36: function STRENGTHEN(Ω,Ū ,k)
37: while Fk ∧ TRk ∧ ¬p′ == SAT do
38: obligations = ∅
39: retrieve abstract predecessor sk
40: if BLOCKSTATE(Ω,sk ,k,k,must) == abs-cex then
41: return abs-cex
42: end if
43: while obligations �= ∅ do
44: ((sa, n), handleMay) = CHOOSENEXT(obligations)
45: if Fn ∧ TRn ∧ s′a == SAT then
46: retrieve abstract predecessor tn
47: if BLOCKSTATE(Ω,tn,n,k,must) == abs-cex then
48: if handleMay then
49: obligations.clearAllMust()
50: else
51: return abs-cex
52: end if
53: end if
54: else
55: obligations.removeMust(sa,n)
56: BLOCKSTATE(Ω,sa,n+ 2,k,may)
57: end if
58: end while
59: end while
60: PROPAGATECLAUSES(Ω)
61: return done
62: end function

Fig. 4: Iterative strengthening of A-IC3

from the satisfying assignment, meaning sa ∩ Fk �= ∅. All

concrete states in sa∩Fk can reach ¬p via TRk and therefore,

if the property is to be proven, sa must be blocked in Fk.

Otherwise, an abstract counterexample exists.

In order to block sa in Fk, STRENGTHEN calls BLOCK-

STATE on the bad state sa at level k (line 40). BLOCKSTATE

either finds a counterexample or initializes the set(s) of obli-

gations to reflect the need to block sa (and possibly adds

invariants to the Fi’s).

STRENGTHEN then handles the proof obligations one at a

time. CHOOSENEXT (line 44) first considers obligations from

the must set only. Obligations are chosen in increasing order

of their time frames. If the must set becomes empty, then as

long as the may set is not empty, one may obligation with

a minimal time frame is moved from the may set to the

must set. STRENGTHEN then continues, with the exception

that counterexamples are no longer reported.

Given a proof obligation (sa, n):

• If Fn can indeed reach sa in one (abstract) step, i.e.,

Fn ∧ TRn ∧ s′a is satisfiable, then a predecessor ta of sa
s.t. ta∩Fn �= ∅ is extracted from the satisfying assignment

(line 46). By Lemma 15, ta ∩Fi = ∅ for all i < n. Thus

¬ta is an invariant up to n− 1. Next, the state ta needs

to be blocked (eliminated) from level l = n (line 47).

• When Fn ∧ TRn ∧ s′a becomes unsatisfiable, the proof

obligation (sa, n) is removed (line 55) since sa can no

longer be reached from level n. In fact, ¬sa is now an

invariant up to level n + 1. In order not to encounter

sa in later iterations, we speculatively attempt to block

(eliminate) sa from level l = n+2, while using the may
parameter (line 56).

A counterexample found by BLOCKSTATE is reported iff

may obligations are not yet handled (lines 41 and 51).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

178

63: function BLOCKSTATE(Ω,ta,l,k,type)
64: if l > k + 1 then
65: min = k + 1
66: else
67: min = FINDNONINDUCTIVE(Ω,¬ta,l − 1,k)
68: if min == 0 then
69: return abs-cex
70: end if
71: if min ≤ k then
72: if type == must && min == l-1 then
73: obligations.addMust(ta,min)
74: else
75: obligations.addMay(ta,min)
76: end if
77: end if
78: end if
79: ADDINVARIANT(Ω,¬ta,min)
80: return done
81: end function

Fig. 5: BLOCKSTATE procedure of A-IC3

Lemma 15. Let (sa, n) be a proof obligation, and let ta be
an abstract state such that (ta, sa) |= TRn. Then ta ∩ Fi = ∅
for every i ≤ n− 1.

BLOCKSTATE (Fig. 5): BLOCKSTATE(Ω,ta,l,k,type) is

used for blocking a “bad state” ta from level l up to k + 1,

where ¬ta is already known to be an invariant up to l − 1.

Note that if l > k + 1 (line 65) then ta is already blocked

up to k + 1. Thus ¬ta is added as an invariant up to k + 1

(line 79). Otherwise, BLOCKSTATE looks for a level such that

¬ta is invariant up to it.

Specifically, BLOCKSTATE looks for the minimal level min
between l− 1 and k s.t. Fmin ∧TRmin ∧ t′a is satisfiable (line

67). The important property is that ¬ta is an invariant up to

min: If min = l − 1, this holds since ¬ta is already known

to be an invariant up to level l−1 (this is also why the search

for min starts at l − 1). If min > l − 1, then the fact that

Fmin−1 ∧ TRmin−1 ∧ t′a is unsatisfiable implies that ¬ta is

inductive at min− 1 w.r.t. Mmin−1, and hence, by Lemma 5

also w.r.t. Mc. Thus, it is an invariant up to min.

If min = 0, then the “bad state” ta is reachable from INIT in

one step of TR0. Thus, an abstract counterexample is reported

(line 69). If min = k + 1 then no corresponding level was

found up to k, i.e., ¬ta is an invariant up to k+1 and no new

proof obligation is added. However, if min ≤ k is found then

the pair (t,min) is added as a new proof obligation (lines 72-

76). Either way, ¬ta is added as an invariant up to min by

calling ADDINVARIANT (line 79). ADDINVARIANT learns an

invariant that strengthens ¬ta and adds it to F0, . . . , Fmin.

Classifying obligations as may/must is performed in

lines 72- 76 of BLOCKSTATE. Note that only obligations of

the form (ta, l − 1) are must obligations.

PROPAGATECLAUSES: Similarly to IC3, if the main loop

in STRENGTHEN terminates, added clauses are propagated

forward by PROPAGATECLAUSES (line 60). Specifically, if

Fi ∧ c ∧ TRi ∧ ¬c′ is unsatisfiable then the clause c from Fi

can safely be added to Fi+1 while maintaining the properties

of an OARS. This is done in order to get to a fixpoint.

(a) Runtime trend. Dots represent IC3, triangles represent L-IC3. Test-cases are
sorted in an increasing runtime order.

(b) Comparing runtime. IC3 on X-axis and L-IC3 on Y-axis

Fig. 6: Runtime information for L-IC3 and IC3

IV. EXPERIMENTAL RESULTS

For the implementation of the two algorithms we collab-

orated with Jasper Design Automation7. We used Jasper’s

formal verification platform in order to implement both the

original IC3 and our L-IC3 algorithm. In both implementations

we used optimizations from [6] (such as ternary simulation).

Implementing these algorithms using Jasper’s platform al-

lowed us to develop and experiment with various real-life

industrial designs and properties from various major semi-

conductor companies. All designs contain thousands of state

variables in the cone of influence of the properties.

The timeout was set to 3600 seconds and experiments were

conducted on systems with Intel Xeon X5660 running at

2.8GHz and 24GB of main memory.

We experimented with 122 real safety properties from dif-

ferent designs. Fig. 6 shows two different analyses comparing

the runtime of L-IC3 and IC3. Runtime trends are shown

in Fig. 6a. As can be seen, the overall trend is in favor of

L-IC3. In Fig. 6b runtime for IC3 and L-IC3 is represented

by the X-axis and Y -axis respectively. We can clearly see

the advantage of using L-IC3 on the more complicated test

cases. These test cases are represented by the dots that are

below the diagonal by a big margin. On these examples, the

improvement in runtime is up to two orders of magnitude.

The cases where IC3 performs better are usually cases where

L-IC3 spends most of the time in refinement. Also, for false

properties (counterexample exists), the performance of L-IC3

is affected by the way we treat may and must obligations.

Due to our special handling, L-IC3 may lose the ability to

7An EDA company: http://www.jasper-da.com

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

179

N �Vars Laziness - Time Frames and Number of Vars
�TF �AV �TF �AV �TF �AV �TF �AV �TF �AV �TF �AV �TF �AV �TF �AV �TF �AV

f1 11866 [0-0] 323 [1-1] 647 [2-2] 686 [3-3] 699 [4-4] 705 [5-5] 713 [6-6] 714 [7-7] 728 [8-8] 743
[9-9] 752 [10-10] 755 [11-11] 761 [12-12] 767 [13-13] 777 [14-14] 783 [15-15] 789 [16-18] 811

f2 5693 [0-7] 12
f3 5693 [0-0] 8 [1-1] 56 [2-2] 64 [3-3] 74 [4-4] 82 [5-7] 91
f4 5693 [0-6] 31 [7-7] 42 [8-8] 51 [9-13] 54
f5 5773 [0-0] 260 [1-1] 381 [2-2] 401 [3-3] 419 [4-34] 430
f6 1183 [0-0] 185 [1-1] 248 [2-2] 255 [3-3] 259 [4-4] 262 [5-5] 268 [6-8] 270 [9-9] 273 [10-30] 274
f7 1247 [0-0] 57 [1-1] 62 [2-2] 73 [3-7] 76
f8 1247 [0-0] 63 [1-1] 64 [2-2] 72 [3-6] 83
f9 1277 [0-0] 263 [1-1] 303 [2-2] 318 [3-3] 321 [4-4] 322 [5-5] 323 [6-26] 347
f10 1389 [0-0] 253 [1-1] 304 [2-2] 324 [3-3] 341 [4-4] 351 [5-5] 355 [6-7] 363 [8-9] 399 [10-10] 409

[11-12] 415 [13-13] 419 [14-16] 429 [17-18] 431
f11 1183 [0-0] 79 [1-1] 113 [2-9] 114
f12 1204 [0-0] 58 [1-1] 67 [2-2] 75 [3-7] 76
f13 3844 [0-0] 470 [1-1] 504 [2-2] 528 [3-3] 533 [4-4] 534 [5-11] 650
f14 3832 [0-0] 333 [1-1] 365 [2-2] 386 [3-5] 391 [6-6] 442 [7-10] 446
f15 3854 [0-0] 428 [1-1] 453 [2-2] 495 [3-3] 499 [4-4] 503 [5-5] 560 [6-6] 574 [7-7] 576 [8-10] 577
f16 3848 [0-0] 432 [1-1] 462 [2-2] 487 [3-3] 498 [4-4] 501 [5-5] 634 [6-6] 650 [7-13] 658
f17 3854 [0-0] 426 [1-1] 480 [2-2] 525 [3-3] 539 [4-4] 540 [5-5] 559 [6-11] 570
f18 3848 [0-0] 469 [1-1] 547 [2-2] 551 [3-3] 553 [4-4] 635 [5-5] 672 [6-10] 674

TABLE I: Lazy abstraction. N stands for the name of the verified property. �Vars stands for the number of state variables in the concrete model Mc.
�TF stands for the time frames and �AV represents the number of variables (defining the abstract TRi) in the abstract model Mi at the given time frame i
(appearing in the column �TF).

find a counterexample which is longer than the length of the

computed Ω. In those cases, IC3 may perform better. Note that

the scatter at the middle is a bunch of comparable properties

where both algorithms are on par.

In the given timeout, 7 properties cannot be solved by IC3

but are solved by L-IC3; 5 properties cannot be solved by L-

IC3 but are solved by IC3. There are also 5 properties that

cannot be solved by either algorithm. The overall runtime for

IC3 is 75558 seconds while for L-IC3 it is 55424 seconds.

The laziness of our abstraction-refinement algorithm is

demonstrated in Table I. The table shows how the abstraction is

refined along increasing time frames. Different frames contain

different variables that are needed in order to prove or disprove

the given property. This demonstrates the fact that L-IC3

indeed takes advantage of the lazy abstraction framework.

Table II presents runtime characteristics for L-IC3 and IC3.

In particular, it shows the number of clauses and the number

of variables in Ω when either a fixpoint or a counterexample

is found. In many of the examples the number of clauses

produced by L-IC3 for its Ω is significantly smaller than the

number of clauses produced by IC3. Recall that each of the

clauses is learned via several local reachability checks. The

reduced number of clauses thus indicates that L-IC3 applies

a smaller number of checks and therefore issues a smaller

number of calls to the SAT solver. This can explain the

speedups it obtains.

An additional reason for the speedups is the fact that the

local reachability checks of L-IC3 are easier than those of

IC3. This is because the abstract transition relations TRi are

much smaller (in number of variables) than TR (see table I).

Further, the sets Fi, computed by L-IC3 are smaller than those

computed by IC3 (see Table II).

Recall that in Section III-A we distinguish between must and

may obligations. The results reported above are obtained while

using this distinction and handling all the may obligations

after the must obligations, as described there. We also tried

N �Vars Stat �V[Ω] �V[ΩL] �C[Ω] �C[ΩL] k kL T TL

f1 11866 false 1001 818 8457 3939 15 18 1646 599
f2 5693 true 236 11 617 62 14 8 133 9.2
f3 5693 true 229 121 1314 570 13 8 351 40.5
f4 5693 true 104 24 2101 32 32 14 513 13.6
f5 5773 true > 616* 414 > 16689* 12425 7* 35 TO 1223
f6 1183 true 432 370 50511 29316 36 31 2216 2763
f7 1247 true 250 152 10732 238 11 8 432 2.6
f8 1247 true 177 96 14702 293 8 7 520 3.5
f9 1277 false 357 331 8762 3788 13 27 164 101
f10 1389 false 397 417 12455 19742 13 19 262 1268
f11 1183 true 114 106 29183 2589 9 10 1153 109
f12 1204 true 114 105 18698 229 8 8 818 3.0
f13 3844 true 320 578 547 1529 10 12 16.7 59.1
f14 3832 true 650 488 2414 1553 12 11 117 61
f15 3854 true > 470* 666 > 8320* 5363 6* 11 TO 730
f16 3848 true > 687* 826 > 7733* 5506 8* 14 TO 381
f17 3854 true 811 673 10934 1837 13 12 919 83
f18 3848 true 898 716 9889 2080 13 11 1891 84
f19 3848 true 966 > 216* 13370 > 266* 11 7* 2225 TO

TABLE II: Running parameters for various properties. N stands for the
name of the verified property. �Vars stands for the number of state variables
in the cone of influence. �V[Ω] - number of variables in Ω, �C[Ω] - number
of clauses in Ω, k - size of Ω(M,p) and T - the runtime in seconds. The
subscript L represents the value for the Lazy version (L-IC3).

other configurations. For example, we ran experiments that

do not distinguish between must and may obligations. Our

experiments show that distinguishing between the two yields

a better overall performance.

In addition to the industrial experiments, we also ran ex-

periments on the HWMCC’11 benchmark. We used the test-

cases with single properties. Most of the properties in this

benchmark are fairly easy and can be solved in a matter of

a few seconds both by IC3 and L-IC3. There are also a few

cases where IC3 performs better or even reaches a result while

L-IC3 does not. In these cases L-IC3 spends most of the time

in refinement. On the other hand, there are several test cases

that can only be solved by L-IC3 while IC3 reaches timeout.

V. ACKNOWLEDGMENTS

The authors would like to thank Håkan Hjort, Ziyad Hanna

and Yael Meller for valuable comments. Jasper Design Au-

tomation is thanked for the help in conducting the experiments.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

180

REFERENCES

[1] A. Biere, A. Cimatt, E. Clarke, and Y. Zhu. Symbolic Model Checking
Without BDDs. In TACAS, 1999.

[2] A. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. An incremental
approach to model checking progress properties. 2011.

[3] A. R. Bradley. SAT-based model checking without unrolling. In VMCAI,
2011.

[4] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In TACAS, 2005.

[5] E. Clarke and D. Peled O. Grumberg. Model Checking. MIT press,
1999.

[6] N. Een, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In FMCAD, 2011.

[7] A. Gupta, M. Ganai, Z. Yang, and P. Ashar. Iterative abstraction using
SAT-based BMC with proof analysis. In ICCAD, 2003.

[8] A. Gupta and O. Strichman. Abstraction refinement for bounded model
checking. In CAV, 2005.

[9] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In POPL, 2004.

[10] T.A. Henzinger and R. Majumdar R. Jhala. Lazy abstraction. In POPL,
2002.

[11] R. P. Kurshan. Computer-aided verification of coordinating processes:
the automata-theoretic approach. Princeton University Press, 1994.

[12] K. L. McMillan. Interpolation and SAT-based Model Checking. In CAV,
2003.

[13] K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
[14] K. L. McMillan and N. Amla. Automatic Abstraction without Coun-

terexamples. In TACAS, 2003.
[15] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a SAT-solver. In FMCAD, 2000.
[16] Y. Vizel and O. Grumberg. Interpolation-sequence based model check-

ing. In FMCAD, 2009.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

181

IC3-Guided Abstraction

Jason Baumgartner, Alexander Ivrii, Arie Matsliah, Hari Mony
IBM Corporation

Abstract—Localization is a powerful automated
abstraction-refinement technique to reduce the complexity
of property checking. This process is often guided by SAT-
based bounded model checking, using counterexamples
obtained on the abstract model, proofs obtained on
the original model, or a combination of both to select
irrelevant logic. In this paper, we propose the use of
bounded invariants obtained during an incomplete IC3
run to derive higher-quality abstractions for complex
problems. Experiments confirm that this approach yields
significantly smaller abstractions in many cases, and that
the resulting abstract models are often easier to verify.

I. INTRODUCTION

Automated property checking techniques hold consid-

erable promise to mitigate what has become one of the

most important problems facing the semiconductor in-

dustry today: the verification crisis. Through the advent

of numerous advanced proof, falsification, abstraction

and reduction techniques, formal property checking has

scaled to the necessary level to address many practical

industrial applications, and has become an essential CAD

technology. However, many problems remain beyond the

capacity of current property checking algorithms, thus

continued advances are of critical importance.

Localization is a powerful abstraction technique which

reduces the size of a verification problem by replacing

gates by cutpoints, which act as unconstrained nondeter-

ministic variables. Because the cutpoints may simulate

the behavior of the original gates, this approach over-

approximates the behavior of a design hence is sound

yet incomplete. Refinement is used to eliminate spurious

failures on the abstract design by eliminating cutpoints

which are deemed responsible for the failure. Ultimately,

the abstract design is passed to a proof engine. It is

desirable that the abstract design be as small as possible

to enable more efficient proofs, while being immune to

spurious counterexamples.

Various techniques have been proposed to guide

the abstraction-refinement process of localization. Most

state-of-the-art localization implementations use SAT-

based bounded model checking to select the abstract

netlist upon which an unbounded proof is attempted,

given relative scalability of bounded model checking

vs. proof techniques. This abstraction process is either

based upon counterexamples obtained on the abstract

design [1], based upon proofs obtained on the original

design [2], or a hybrid of both [3]. It has been noted

that the latter approach tends to yield the smallest

abstractions, albeit at the cost of additional runtime.

Specifically, the abstraction-refinement process relies

upon heuristics and thus may include unnecessary logic,

in turn entailing unnecessary proof complexity. In hybrid

approaches, one approach is often used to re-process

the abstraction computed by the other, in an attempt to

eliminate this unnecessary logic. The additional runtime

spent on the abstraction-refinement process is often a

worthwhile strategy for overall minimal resources.

Various SAT-based unbounded proof techniques have

been developed which in cases are very scalable, such as

IC3 [4]. One powerful characteristic of IC3 is that when

successful, it may yield a proof or counterexample while

analyzing only a small approximation of the overall

behavior of the design under verification. In the case of a

proof, an often-compact inductive invariant is derived. In

the case of a counterexample, a directed search from the

initial states toward the property found a path, in cases

requiring less effort than bounded model checking.

While often efficient, the intrinsic complexity of prop-

erty checking explains why IC3 often fails to solve a

complex problem given practical resources. Furthermore,

while IC3 intrinsically attempts to analyze the design

in an abstract manner, it is well-known that abstrac-

tion may synergistically boost the scalability of various

verification algorithms, even approximate ones. In this

paper, we seek to exploit this synergy in two ways. (1)
We extract design insight from an incomplete IC3 run

via its (bounded) invariants. (2) We use the extracted

information to improve the quality of localization, and

thereby boost the scalability of subsequent verification

algorithms including IC3.

II. PRELIMINARIES

We focus on verification of safety properties on finite

state machines (FSMs). An FSM M is a tuple 〈X, I, T 〉,
where X is a set of Boolean state variables, such that

each assignment s ∈ {0, 1}X corresponds to a state of

M , and the predicates I ⊆ {0, 1}X and T ⊆ {0, 1}X ×
{0, 1}X define its initial states and the transition relation,

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

182

respectively. A predicate P ⊆ {0, 1}X defines a property

to be verified on M .

State variables and their negations are called literals,

and disjunctions (conjunctions) of literals are called

clauses (cubes). A CNF formula is a conjunction of

clauses. We follow the standard notation of X ′ repre-

senting next-state variables, and derive CNF formulas

from FSMs in a straight-forward way.

A sequence π of states t0, . . . , tn is a path if for each

0 ≤ i < n, 〈ti, ti+1〉 ∈ T . If t0 is an initial state, the

path is called initialized. A state t is reachable if there

is an initialized path that ends in t. Let R denote the set

of all reachable states, and for k ≥ 0, let Rk denote the

set of states reachable by initialized paths of length at

most k. The verification objective is to prove R ⊆ P .

A CNF formula ϕ is an invariant if s ∈ R =⇒ s |=
ϕ. Furthermore, ϕ is a k-step invariant if s ∈ Rk =⇒
s |= ϕ. A CNF formula ϕ is an inductive invariant if

I =⇒ ϕ and
(
(s |= ϕ) ∧ (〈s, s′〉 ∈ T)

)
=⇒ s′ |= ϕ.

If ϕ is an inductive invariant and ϕ =⇒ P , then

R ⊆ P and ϕ is called an inductive proof of P .

III. GENERATING HINTS WITH IC3

In this section we briefly describe IC3 [4], [5]. This

algorithm proceeds by incrementally refining and extend-

ing a sequence F1, . . . ,Fk of sets of clauses (termed

bounded invariants) referring solely to state variables.

For simplicity we define F0 = I . Throughout the run of

IC3 the following invariants are preserved:

• Fi ⇒ Fi+1, for 0 ≤ i ≤ k − 1,

• Fi ⊇ Fi+1 as sets of clauses, for 1 ≤ i ≤ k − 1,

• Fi ∧ T ⇒ F ′
i+1, for 0 ≤ i ≤ k − 1,

• Fk ⇒ P .

Initially k = 1, and is increased whenever Fk ∧T ⇒ P ′

holds. Note that each Fi constitutes an overapproxima-

tion of Ri, and F1(= F1 ∪ . . . ∪ Fk) implies that P
holds in the first k timesteps. While processing bound

k, the condition Fk ∧ T ⇒ P ′ might fail to hold, and

then IC3 attempts to propagate additional information to

sets Fi≤k to address this potential failure. If it cannot,

this signifies a true counterexample. Otherwise, each

added clause is pushed to the highest-possible Fi. Some

bounded invariants may be determined to be unbounded

invariants, and when that set implies P an inductive

proof has been completed.

A. Hint Generation

Recall that the conjunction of clauses in F1∪ . . .∪Fk

implies that P holds for the first k timesteps. This leads

to the idea of creating a localization including only the

state variables appearing in these clauses. However, as

with traditional localization, some of these state variables

may be unnecessary to complete a proof of correctness.

Note that there is additional information one may

draw on the relevance of various state variables from

the IC3 invariants which may be used to improve the

abstraction quality. In particular, for each IC3 invariant

c one can consider whether it is an unbounded invariant,

the first bound k for which c was introduced, and the

maximal frame i that it can be pushed to relative to k. For

each state variable, one can analyze the number or the

proportion of bounded invariants or clause sets it belongs

to. In this section we address how to use the sets Fi to

provide hints to localization on the relative priority of

various state variables, represented by integers with the

convention that a lower number reflects a higher priority.

We experimented with numerous heuristics for assign-

ing priorities, and our best method (PM1) is as follows.

The priority of each state variable is initially ∞, and

may be decreased during the IC3 run. Whenever a new

bounded invariant clause c is produced, all state variables

referenced by c that have priority ∞ have their priorities

updated to the current bound k being processed. I.e.,

after the run the priority of each state variable represents

the earliest bound requiring a corresponding clause for

a proof of validity of P , and the clauses for proofs of

smaller bounds have higher priorities. Also note that an

abstraction including the state variables with priorities

≤ i will satisfy P for the first i timesteps.

(PM2) In this variant, the priority of each state vari-

able is initially ∞, and when a new bounded invariant

clause c is produced that is “pushable” to frame i ≤ k,

we update the priority of each latch participating in c to

k− i, unless a smaller number was assigned to it earlier.

If c is an unbounded invariant, then the priorities of those

latches in c are updated to 0.

(PM3) The priority of each state variable is initially

∞, and whenever a new invariant clause c is produced

(bounded or unbounded), we update the priority of each

latch participating in c to 0.

(PM2) and (PM3) performed generally worse than

(PM1), hence we restrict our experimental focus to

(PM1). Continued experiments with alternate heuristics

is subject of ongoing research.

IV. LOCALIZATION WITH IC3 HINTS

In this section, we detail how the priorities assigned

on the state variables may be used to guide localization.

The localization abstraction is done by selection of state

variables: if included, its entire next-state function will

also be included, else the state variable will be replaced

by a cutpoint. The localization is performed by interleav-

ing counterexample based abstraction (CBA) and proof-

2

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

183

based abstraction (PBA) in a bottom-up manner [6]. We

start with no state variables included, and perform SAT-

based bounded model checking for one timestep on the

abstract design. Spurious counterexamples are analyzed

and the abstraction is refined by adding state variables

which are deemed adequate to rule out the spurious

behavior. Once there are no more counterexamples of

a given depth, we perform proof-based abstraction for

that depth to attempt to eliminate unnecessary logic. We

then increment the depth and repeat the process for a

configurable resource limit.

The key challenge in localization abstraction is the

refinement used to to eliminate the spurious counterex-

amples. Several approaches have been proposed to min-

imize the amount of logic added to refute a spurious

counterexample, e.g., [7], [1], [8]. Our approach relies

upon counterexample trace minimization to minimize the

number of cutpoints assigned in a spurious counterexam-

ple, using a combination of SAT and ternary analysis [7],

[6]. Once the counterexample has been minimized, all

cutpoints assigned in that trace are refined.

Even with aggressive trace minimization, this mini-

mization is heuristic and greedy, which may entail a

suboptimal abstraction. Furthermore, minimality is not

unique, and across multiple refinements it is likely

that cumulative refinement choices result in unnecessary

logic being included. This is the motivation for using

PBA to attempt to further reduce the CBA. We propose

to improve this process to a greater degree by using the

IC3 priorities to guide the abstraction via one of the

following refinement methods.

(RM1) Start CBA with empty abstraction. When refin-

ing the abstract model by adding state variables that are

assigned in the spurious counterexample during CBA,

we only add the subset of those with the highest IC3

priority.

(RM2) In addition to using (RM1), we begin with the

abstract model including all state variables of highest IC3

priority vs. starting with an empty abstraction.

The aim of (RM1) is to skew CBA to avoid includ-

ing state variables with lower IC3-assigned priorities

in the abstract model. Even though this may result in

an increased number of refinements during CBA, our

experiments demonstrate that this guidance results in

smaller abstractions in practice. (RM2) was developed

based on the observation that the abstract model often

ultimately includes all state variables with the highest

IC3-assigned priority regardless; beginning with this

set reduces abstraction-refinement runtime due to fewer

refinements, and fewer refinements entail fewer heuristic

mistakes which bloat abstraction size. We have experi-

 100

 1000

 100 1000

A
bs

tra
ct

io
n

w
ith

ou
t I

C
3

hi
nt

s

Abstraction with IC3 hints
Fig. 1. Number of localized state variables with vs. without IC3 hints

mentally found that (RM2) yields smaller abstractions,

hence we restrict our experimental focus to (RM2).

V. EXPERIMENTS

In this section we present our experiments. All experi-

ments were performed on 2.0Ghz Linux-based machines

with 4Gb of RAM, using the techniques presented in this

paper as implemented in the IBM verification tool Sixth-
Sense [9]. We focused upon the single-target benchmarks

from HWMCC 2011 [10].

A. Effect on Abstraction Size

This first set of experiments compares abstraction

sizes generated with and without IC3 hints. Both include

an interleaved CBA/PBA localization for a time limit of

300 seconds. For the IC3 hint-guided abstraction, we

run IC3 for 120 seconds to generate the priorities, then

proceed with the abstraction-refinement loop (RM2).
294 instances that were solved by IC3 within the 120

seconds limit, or during localization, are excluded from

the analysis. In the remaining instances, the total number

of state variables in the abstracted models reduces from

47994 to 41036 when using IC3 hints: a cumulative

reduction of 14.5%, with median reduction of 6.8%.

Figure 1 depicts the reduction on instances with 100 to

1000 state variables after localization.

These results clearly show improved abstraction size

in most cases using IC3 hints. There are some which

yield worse abstractions, though we note that this is

likely inevitable in rare cases given the heuristic nature

of abstraction.

B. Effect on IC3 Resources

To demonstrate that the reduced abstract model size

improves verification resources, we used IC3 with a

900 second timeout on the localized design. Of the

171 HWMCC 2011 benchmarks which are unsolved

by the first 120-second IC3 or during localization, 15

3

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

184

Design Traditional IC3 Hint-Guided
Abstraction Abstraction

6s9 TO 357s

6s19 TO 519s

6s43 TO 236s

6s50 TO 484s

6s51 TO 198s

bc57sensorsp0 TO 838s

pdtvsarmultip29 TO 473s

pdtswvtma6x6p2 TO 665s

pdtswvtma6x6p1 TO 333s

TABLE I
IMPACT OF HINT-GUIDED LOCALIZATION ON SUBSEQUENT IC3

PROOF RUNTIME

were solved by the heavier-weight IC3 using traditional

abstraction-refinement without IC3 hints. In contrast, 24

were solved using abstraction with IC3 hints; a proper

superset. While this is only a modest improvement in

terms of conclusive solutions, we note that (1) 900

second IC3 runtime is not very substantial in terms

of a state-of-the-art industrial solver (see the following

section), though was motivated by the HWMCC timeout

period; (2) increasing the number of solved instances by

60% is a nontrivial improvement nonetheless. Table I

details the results of these additional solutions.

C. Effect on a State-of-the-Art Verification Tool

Due to space limits, our experiments do not detail

many algorithms which are commonplace in a state-of-

the-art verification tool. It is well-known that higher-

quality abstractions may boost the effectiveness of a

variety of these algorithms, such as the reduction ca-

pability of retiming [11]. The fact that our limited

experiments demonstrate verification benefits for IC3

alone is practically encouraging. When using a larger set

of algorithms and a larger runtime, the benefits of higher-

quality abstractions becomes even more pronounced. We

additionally note that an industrial-strength multiple-

algorithm tool likely would use a strategy of running

IC3 for a small time-bound early in its strategy, to

rule out simpler problems. Extracting localization hints

from those runs has virtually no overhead, yet may

immediately yield higher-quality abstractions. We also

note that we have tuned our bounded model checking-

based abstraction over years of industrial application,

whereas the use of IC3 hints is much less mature and

we are hopeful to discover improved invariants with

continued experience.

D. Justification for Effectiveness

A natural question is why IC3 hint-guided localization

yields better abstractions than bounded model checking

alone. We provide two insights: (1) just as CBA and PBA

complement each other to yield smaller abstractions,

IC3 offers yet another qualitatively-distinct heuristic

guidance to complement these techniques. (2) There

are commonalities in how bounded model checking and

IC3 attempt to justify a property failure via backward

analysis of the design. Some of these justification at-

tempts identify necessary logic; some spuriously involve

unnecessary logic. IC3 in a sense performs additional

filtering of the impact of the spurious justification at-

tempts, by requiring forward reachability analysis to

generate those invariants only where a potential failure

justification may be eliminated. In contrast, justifications

that cannot be eliminated by reachability analysis will

not yield invariants and thus be less likely to bloat the

abstraction.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrate how the invariants

generated by an incomplete IC3 run may be used

to generate higher-quality localization abstractions. We

furthermore demonstrate that the improved abstractions

enhance verification using IC3 itself, and have noted

even greater benefits from the higher-quality abstractions

using heavier-weight verification flows. Areas of ongoing

work include improving heuristics for prioritizing state

variables given IC3 information, and to explore methods

to prune irrelevant invariants that IC3 is tuned to ag-

gressively propagate. Another direction is to additionally

explore the use of IC3 hints on proof-based abstraction.

REFERENCES

[1] P. Chauhan et al., “Automated abstraction refinement for model
checking large state spaces using SAT based conflict analysis,”
in FMCAD, 2002.

[2] K. L. McMillan and N. Amla, “Automatic abstraction without
counterexamples,” in TACAS, April 2004.

[3] N. Amla and K. McMillan, “A hybrid of counterexample-based
and proof-based abstraction,” in FMCAD, Nov. 2004.

[4] A. Bradley, “SAT-based model checking without unrolling,” in
VMCAI, Jan. 2011.

[5] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementa-
tion of property directed reachability,” in FMCAD, Nov. 2011.

[6] N. Eén, A. Mishchenko, and N. Amla, “A single-instance in-
cremental sat formulation of proof- and counterexample-based
abstraction,” in FMCAD, 2010.

[7] D. Wang, P.-H. Ho, J. Long, J. H. Kukula, Y. Zhu, H.-K. T. Ma,
and R. F. Damiano, “Formal property verification by abstraction
refinement with formal, simulation and hybrid engines,” in DAC,
June 2001.

[8] B. Li and F. Somenzi, “Efficient computation of small abstraction
refinements,” in ICCD, Nov. 2004.

[9] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and
A. Kuehlmann, “Scalable automated verification via expert-
system guided transformations,” in FMCAD, Nov. 2004.

[10] Hardware Model Checking Competition 2011.
http://fmv.jku.at/hwmcc11.

[11] J. Baumgartner and H. Mony, “Maximal input reduction of
sequential netlists via synergistic reparameterization and local-
ization strategies,” in CHARME, Oct. 2005.

4

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

185

Formal for Everyone – Challenges in Achievable
Multicore Design and Verification

Daryl Stewart

ARM, Cambridge, United Kingdom

Abstract

Since the introduction of the ARM11 MP, an increasing number of ARM’s products have been multicore-capable. Design and
verification engineers must now cope with a myriad of interdependent behaviours and requirements – how does weak memory
ordering affect system coherency; can I simulate four, sixteen or more cores; what about heterogeneity; what guarantees does
lock free code require of the interconnect; how do I even describe barriers; what about the effect of power domains; can I safely
introduce non-determinism as a by-product of optimisation; does my architectural specification guarantee deadlock freedom and
forward progress; does my design implement my architectural specification?

We will give a brief impression of the complexity of this task, and describe progress on open problems in ensuring that future
multicore systems are not prohibitively difficult or expensive for mere mortals to develop.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

186

A quantifier-free SMT encoding
of non-linear hybrid automata

Alessandro Cimatti
Fondazione Bruno Kessler

Email: cimatti@fbk.eu

Sergio Mover
Fondazione Bruno Kessler

Email: mover@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Email: tonettas@fbk.eu

Abstract—Hybrid systems are a clean modeling framework for
embedded systems, which feature integrated discrete and contin-
uous dynamics. A well-known source of complexity comes from
the time invariants, which represent an implicit quantification of
a constraint over all time points of a continuous transition.

Emerging techniques based on Satisfiability Modulo Theory
(SMT) have been found promising for the verification and
validation of hybrid systems because they combine discrete
reasoning with solvers for first-order theories. However, these
techniques are efficient for quantifier-free theories and the
current approaches have so far either ignored time invariants
or have been limited to linear hybrid automata1.

In this paper, we propose a new method that encodes a class
of hybrid systems into transition systems with quantifier-free
formulas. The method does not rely on expensive quantifier
elimination procedures. Rather, it exploits the sequential nature
of the transition system to split the continuous evolution enforcing
the invariants on the discrete time points. This pushes the
application of SMT-based techniques beyond the standard linear
case.

I. INTRODUCTION

Embedded systems (e.g. control systems for railways, avion-

ics, and space) feature the interaction of discrete systems

with the environment by means of controlled and monitored

variables that evolve continuously in time. The validation and

verification of embedded systems designs must often take

into account a model of the continuous evolution of such

variables. Hybrid systems [3] are a clean modeling framework

for embedded systems because they exhibit both continuous

transitions ruled by flow conditions (i.e., constraints on the

derivatives of continuous variables) and discrete changes rep-

resented with logical formulas. A fundamental step in the

design of these systems is the validation and verification of the

models, performed by checking properties such as invariants or

reachability. In spite of the undecidability of these problems,

several verification techniques have been developed and have

proved to be applicable in a wide number of cases. Among

these techniques, common approaches are the computation of

the reachable states, and the use of abstraction or deduction

systems (see [2] for a recent survey).

An emerging approach to the verification of hybrid systems

is the application of verification techniques based on SMT [5].

The hybrid system is encoded into a symbolic transition

1In the context of this paper, the terms “linear”, “non-linear”, and “polyno-
mial” refer to the formulas over the time variable used to describe continuous
and discrete transitions, and not to the type of ODE.

system and reachability problems are represented by means

of first-order formulas. The encoding allows the application

of general-purpose SAT-based verification techniques such

as Bounded Model Checking (BMC) [6], interpolation-based

model checking [27], k-induction [32], and predicate abstrac-

tion [20]. Examples of such SMT-based approaches are [4],

[1], [24], [22], [17], [25], [18], [23]. Specific techniques have

also been proposed for networks of hybrid systems [9], [11],

[13], and for requirements [14]. Also thanks to the strong

progress in the field of SMT, these approaches are increasingly

applied in real settings (e.g. the design of complex space

systems [7], [8], [34]).

A well-known problem of this approach is the encoding

of invariants. In order to preserve the semantics of the hy-

brid system, the formula representing a continuous (timed)

transition between two time points t and t′ must guarantee

that the invariant holds along all points of the implicit con-

tinuous evolution between the state s(t) and the state s(t′).
A straightforward approach would create a quantified formula

which treats the invariant as a formula Inv(t) over the variable

representing real time and quantifies the formula along all

time points of the timed transition, i.e., ∀ε ∈ [t, t′], Inv(ε). In

general, it is an open question how to handle such quantifiers

(see for example [1], [18]): the elimination of quantifiers is in

general not possible, and when the elimination is theoretically

possible (such as in the case of the theory of reals, i.e.,

polynomial constraints) it is in practice not feasible beyond

the quadratic case. Only in particular cases (such as when the

continuous evolution of variables is linear in time, and Inv
is convex), the encoding is equivalent to the quantifier-free

formula Inv(t) ∧ Inv(t′).
In this paper, we propose a new approach to efficiently

encode invariants as quantifier-free formulas. Intuitively, the

encoding can be thought of as generalizing the linear case,

forcing the invariant before and after the timed transition

(Inv(t)∧Inv(t′)), and imposing the derivative of the invariant

to be constant in sign throughout the timed transition. This

reduces the invariant to a quantified formula over the deriva-

tives of the continuous variables. Applying these reduction

recursively, in some cases, one may obtain a quantifier-free

encoding. This is guaranteed, for example, in the case of

polynomial hybrid automata, where the derivatives eventu-

ally reduce to zero. We obtain a quantifier-free encoding

also in interesting cases of non-linear hybrid automata with

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

187

transcendental functions. As a result, a key contribution of

the paper is a quantifier-free encoding of polynomial hybrid

automata, which enables the application of SMT-based veri-

fication techniques to a broader class of hybrid systems. The

approach has been implemented and evaluated on a set of

benchmarks. The analysis shows that the proposed technique

allows us to solve problems where an abstraction that simply

ignores the invariants is too coarse to guarantee soundness and

completeness.

The rest of this paper is structured as follows. In Sec. II

we present some background. In Sec. III and IV we present

the encoding, together with the statement of correctness. A

comparison with related work is described in Section V, whilst

the experimental evaluation is presented in Section VI. In

Section VII we draw some conclusions, and outline directions

for future work.

II. BACKGROUND

A. First-order Transition Systems

Given a set V of variables, we denote with

V ′, V̇ , V 0, V 1, . . . copies of such set. Given a first-order

signature Σ, a first-order Σ-Transition System (TS) is a tuple

S = 〈V, Init, Inv, Trans〉 such that:

• V is a set of variables;

• Init is a first-order Σ-formula over V (called initial

condition);

• Inv is a first-order Σ-formula over V (called invariant

condition);

• Trans is a first-order Σ-formula over V ∪ V ′ (called

transition condition).

Let ΣR be the standard signature of real ordered field. In the

following, we will consider signatures Σ that are extensions

of ΣR, the structure R of the real ordered field extended

with transcendental functions such as the exponential and the

trigonometric functions, and formulas will be interpreted in

an appropriate extension of the first-order theory of the real

numbers for such structure R.

A state s is an assignment to the variables V . We denote

with s′, ṡ, s0, s1, . . . the corresponding assignment to the copy

V ′, V̇ , V 0, V 1, . . . of V .

A sequence s0, s1, . . . , sk of states is a model (also called

path) of the transition system S = 〈V, Init, Inv, Trans〉 iff:

• s0 satisfies Init;
• for every 0 ≤ i ≤ k, si satisfies Inv;
• for every 0 ≤ i < k, si, s

′
i+1 satisfy Trans.

Many verification techniques for transition systems such as

Bounded Model Checking (BMC) [6] are based on satisfiabil-

ity checking interacting with queries to SAT/SMT solvers.

B. Hybrid traces

We denote with ḟ the derivative of a real function f . Let I
be an interval of R or N; we denote with le(I) and ue(I) the

lower and upper endpoints of I , respectively. We denote with

R
+ the set of non-negative real numbers.

Hybrid traces [15], [14] describe the evolution of variables

in every point of time. Such evolution is allowed to have a

countable number of discontinuous points corresponding to

changes in the discrete part of the model.

A hybrid trace over discrete variables V and

continuous variables X is a sequence 〈f, I〉 :=

〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 such that, for all i, 0 ≤ i ≤ k,

• the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);

• le(I0) = 0 and Ik is right closed;

• fi : V ∪ X → R → R is a function such that, for all

x ∈ X , fi(x) is differentiable, and for all v ∈ V , fi(v)
is constant;

• if Ii is left open [right open] and le(Ii) = t [ue(Ii) = t]
then, for all v ∈ V ∪ X , fi(v)(t) = fi−1(v)(t),
[fi(v)(t) = fi+1(v)(t)].

We say that a trace is a sampling refinement of another

one if it has been obtained by splitting an open interval into

two parts by adding a sampling point in the middle [15]. A

partitioning function μ is a sequence μ0, μ1, μ2, . . . of non-

empty, adjacent and disjoint intervals of N partitioning N.

Formally,
⋃

i∈N
μi = N and ue(μi) = le(μi+1)− 1. A hybrid

trace 〈f ′
, I

′〉 is a sampling refinement of 〈f, I〉 (denoted with

〈f ′
, I

′〉 % 〈f, I〉) iff, there exists a partitioning μ such that

for all i ∈ N, Ii =
⋃

j∈μi
I ′j and, for all j ∈ μj , f ′

j = fi.
We extend the relation to set L1 and L2 of traces as follows:

L1 % L2 iff for every trace σ2 ∈ L2 there exists σ1 ∈ L1 such

that σ1 % σ2.

In the paper, we will assume that the evolution of predicates

along time have the finite variability property: we say that a

predicate P (t) over a real variable t has finite variability [30]

iff for any bounded interval J there exists a finite sequence of

real numbers t0 < . . . < tn such that t0 = le(J), tn = ue(J),
and for all i ∈ [1, n], either for all ε ∈ (ti−1, ti), P (ε) or for

all ε ∈ (ti−1, ti), ¬P (ε). The last condition means that the

predicate is constant in the interval (ti−1, ti). If P is in the

form g(t) �� 0 with g continuous and ��∈ {≥,≤, <,>}, in the

points in which P changes value, g(t) = 0. Thus, g �� 0 has

finite variability iff for any bounded interval J there exists

a finite sequence of real numbers t0 < . . . < tn such that

t0 = le(J), tn = ue(J), and for all i ∈ [1, n], either for all

ε ∈ [ti−1, ti], g(ε) ≥ 0 or for all ε ∈ [ti−1, ti], g(ε) ≤ 0. We

denote this condition with Constant(P, ti−1, ti).
Proposition 1: Assuming that a predicate P has finite vari-

ability, for every hybrid trace σ, there exists a sampling

refinement of σ for which which P is constant in the open

part of every interval.

C. Hybrid systems

Hybrid systems [3] extend transition systems with con-

tinuous dynamics. A Hybrid System (HS) is a tuple

〈V,X, Init, T rans, Inv, F low〉 where:

• V is the set of discrete variables,

• X is the set of continuous variables,

• Init is a ΣR-formula over V ∪ X (called the initial

condition);

• Inv is a ΣR-formula over V ∪ X (called the invariant

condition).

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

188

• Trans is a ΣR-formula over V ∪ X ∪ V ′ ∪ X ′ (called

the transition condition);

• Flow is a ΣR-formula over V ∪X ∪ Ẋ (called the flow

condition).

Given a hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉, we de-

note with sfi(t) the state assigning to every variable v ∈ V ∪X
the value fi(v)(t) and with ṡfi(t) the assignment that maps

every variable v ∈ X with the value ḟi(v)(t).
A hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is

a model (also called path) of the HS S =

〈V,X, Init, Inv, Trans, F low〉 iff:

• sf0(0) satisfies Init;
• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t) satisfies Inv;

• for every 0 ≤ i < k, if Ii is right closed with

ue(Ii) = t and Ii+1 is left closed with le(Ii+1) = t′,
then sfi(t), s

′
fi+1

(t′) satisfies Trans;

• for every 0 ≤ i ≤ k, for all t ∈ Ii, sfi(t), ṡfi(t) satisfy

Flow.

The language L(S) is the set of models of S.

Proposition 2: A sampling refinement of a path of an HS

S is a path of S too.

Intuitively, sampling refinement just splits an interval into

sub-intervals and therefore does not change either the initial

state or the discrete transitions. Thus, the conditions remain

satisfied by the corresponding points.

Sampling refinement preserves reachability properties in the

sense that if L′ % L(S) then there exists a trace in L′ reaching

a condition φ iff there exists a trace in L(S) reaching φ
(similarly for LTL properties without next operators [15] and

HRELTL properties [14]).

Remark 1: In the above definition, the flow conditions are

general predicates over the derivatives of X . In the following,

we are considering HSs with continuous dynamics described

by ODEs in form Ẋ = F (X) (i.e., for all x ∈ X , ẋ = Fx(X)).

D. Encoding of hybrid into transition systems

In this section, we show a standard encoding of HSs into

a transition system with formulas over the reals. In general,

for encoding, we mean a transition system that preserves the

properties of interest. In this paper, we say that the transition

system is an encoding of a HS if it represents its language

or a sampling refinement thereof (thus preserving for example

reachability).

In this encoding, we assume that the system of ODEs admits

a primitive solution f(V, t), which is uniquely determined by

the state at the beginning of the timed transition. Moreover, we

assume that the time intervals of the hybrid traces satisfying

the HSs are all in the form either [t1, t2) (i.e., left closed,

right open) or [t1, t1] (i.e., singular intervals). This simplifies

the encoding but a more general encoding is possible (see for

example [14]). Note also that the restriction does not affect the

validity of Proposition 1, which regards only the open parts

of the intervals.

Theorem 1: Given a HS S, there exists a TS SD such that

there exists a one-to-one mapping between the paths of S and

the paths of SD.

We call SD the encoding of S.
Sketched proof: We encode a HS S in the TS

SD = 〈VD, InitD, InvD, T ransD〉 where:

• VD := V ∪X ∪ {t}
(t is a real variable that stores the current real time of the

system).

• InitD := t = 0 ∧ Init.
• InvD := Inv

(note that this does not guarantee that the invariants of

S hold for the entire duration of a continuous transition.

This is taken into account in TransD).

• TransD := TIMED ∨ UNTIMED where

– TIMED := t′ > t∧V ′
= V ∧X ′

= f(V ∪X, t′)∧∀ε ∈
[t, t′], Inv(V, f(ε))

– UNTIMED := t′ = t ∧ Trans(V,X, V ′, X ′
).

Let the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉
be a path of S. Then, the sequence of states

f0(le(I0)), f1(le(I1)), . . . , fk(le(Ik)) is a path of SD.
Let the sequence s0, s1, . . . , sk be a path of SD. Let us

consider, for all i ∈ [1, k], fi(v)(t) = f(si, t)(v). Let us define

Ii := [si(t), si+1(t)) if i < k and si+1(t) > si(t), Ii :=

[si(t), si(t)] if i < k and si+1(t) = si(t) or if i = k. Then,

the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of S.

Remark 2: Notice that the timed transition involves a quan-

tified sub-formula to encode that the invariant holds along each

instant of the continuous evolution. This is an issue for using

standard SMT solvers which typically handle quantifier-free

formulas or are not complete for quantifiers (even if the full

theory with quantifiers is theoretically decidable). When the

primitive solution is known and is expressed in the theory of

reals (a polynomial), the quantifier can be removed to yield

an equivalent quantifier-free encoding. However, in practice,

this solution is not feasible beyond the quadratic case.
Remark 3: It is usually very useful to strictly alternate

timed and discrete transitions to simplify the encoding and

improve the search (see e.g. [1]). The encoding of Theorem 1

does not force such alternation, to enable other forms of

simplification. In the following, we will clarify when we use

alternation.
Hereafter, we assume that every universal quantifier occurs

positively in TransD and that it is in the form ∀ε ∈
[t, t′], g(ε) �� 0 with ��∈ {<,≤, >,≥,=}. As shown in

Appendix A, we can generalize the approach to generic

formulas.

III. REMOVING QUANTIFIERS FROM THE INVARIANTS

A. Reduction to flow invariants
In this section we present the main theorem of the paper.

The goal of the theorem is to reduce the quantified formula

of an invariant to a quantified formula over its derivatives. In

some cases, this simplifies the quantified formula.
The following theorems assume the finite variability of

predicates of the derivatives. Many functions have this prop-

erty, in particular polynomials and some simple transcendental

functions.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

189

Theorem 2: If g : R → R is a differentiable function

and ġ �� 0 (��∈ {≥, >,≤, <}) has finite variability, then

∀ε ∈ [t, t′], g(ε) �� 0 iff there exists a finite sequence

of real numbers t = t0 < . . . < tn = t′ such that∧
0≤i≤n g(ti) �� 0 ∧∧0<i≤n Constant(ġ ≥ 0, ti−1, ti).

Proof: Let us assume that ��∈ {≥, >}.
(⇒) Since ġ �� 0 has finite variability, there exists a finite

sequence of real numbers t0 = t < . . . < tn = t′ such

that
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) by definition. Moreover,

since ∀ε ∈ [t, t′], g(ε) �� 0, g �� 0 holds also in the time points

t0, . . . , tn.

(⇐) Assume by contradiction that there exists tb ∈ [t, t′]
such that g(tb) �� 0 is false. Since

∧
0≤i≤n g(ti) �� 0,

there exists i ∈ [1, n] such that tb ∈ (ti−1, ti). Since g is

differentiable, by the mean value theorem, there exists a point

t′b ∈ (ti−1, tb) such that ġ(t′b) =
g(tb)−g(ti−1)

(tb−ti−1)
and therefore

ġ(t′b) < 0. Similarly, there exists a point t′′b ∈ (tb, ti) such

that ġ(t′′b) =
g(ti)−g(tb)

(ti−tb)
and therefore ġ(t′′b) > 0. Thus, ġ is

not constant over (ti−1, ti) contradicting the hypothesis. We

conclude that ∀ε ∈ [t, t′], g(ε) �� 0.

The cases in which ��∈ {≤, <} can be proved similarly.

When the predicate is an equality, the reduction is simpler.

Corollary 1: If g : R → R is a differentiable function and

ġ = 0 has finite variability, then ∀ε ∈ [t, t′], g(ε) = 0 iff

g(t) = 0 ∧ g(t′) = 0 ∧ ∀ε ∈ [t, t′], ġ(ε) = 0.

The definition of Constant() contains quantified sub-

formulas in the form ∀ε ∈ [t, t′], ġ �� 0. Therefore, the

reduction can be iterated trying to remove the quantifiers.

Theorem 2 can be used to simplify the encoding of the

invariant of an HS. Let the invariant be in the form g(X) �� 0

(��∈ {≥,≤, >,<,=}). Let f : R → R
|X| be the solu-

tion of the flow condition. If f and g are differentiable

functions and d
dt (g ◦ f) �� 0 has finite variability, then

∀ε ∈ [t, t′], g(f(ε)) �� 0 iff there exists a finite sequence of real

numbers t0 = t < . . . < tn = t′ such that
∧

0≤i≤n g(f(ti)) ��

0 ∧∧0<i≤n Constant(d
dt (g ◦ f) ≥ 0, ti−1, ti).

The geometrical interpretation of d
dt (g ◦ f) is the scalar

product of the gradient of the curve g and the derivative vector

ḟ : in fact, d
dtg(f(t)) = *g · ḟ where *g = 〈 ∂g

∂x1
, . . . , ∂g

∂xn
〉

. Therefore, in the theorem, the condition of ġ ≥ 0 of being

constant in the interval means that the function f is uniformly

getting closer to (or farther from) the curve g in that interval.

As a side note, in the case of ODEs Ẋ = F (X), the new

quantified formula ∀ε ∈ [t, t′], d
dt (g ◦ f) ≥ 0 is equivalent to

the invariant *g · F ≥ 0. Thus, the reduction can be also

applied without need of the primitive solutions.

In the case that the invariants are polynomial and the

continuous variables are polynomial functions of time, the

derivative will eventually reduce to zero.

B. Applications

1) Application to polynomial hybrid automata: We con-

sider the class of HS where the invariants and the primitive so-

lution of the ODEs are polynomial functions of time (see also

[19]). The polynomial may contain some discrete variables as

coefficients to account for uncertainties in the inputs, model

parameters, etc. Note that several classes of HS with linear

ODE can be expressed as a polynomial hybrid automaton.

This is because the primitive solution to the ODEs can be

expressed as a quantifier free formula in the theory of reals

for several classes of linear systems [26]2.

Theorem 3: The invariant of a polynomial hybrid automata

can be encoded with a quantifier-free formula.

Proof: In the case of polynomial hybrid automata, the

invariant g �� 0 is encoded into a formula in the form

∀ε ∈ [t, t′], g(f(ε)) �� 0. If g and f are polynomials, g ◦ f is

also a polynomial. The derivative of a polynomial has a lower

degree than the polynomial itself. Thus, at every application of

Theorem 2, the degree of the polynomial inside the quantifier

strictly decreases. Thus, after a finite number of applications

of the theorem, we obtain a quantifier-free formula.

Example 1: Let us consider the classical example of the

bouncing ball. Suppose the ball moves in two dimensions x
and y, where x is the horizontal coordinate, with ẋ = v0, and y
is the vertical coordinate, with ẏ = w and ẇ = −g. Thus, the

primitive solution is x(t) = v0t+x0, y(t) = − g
2 t

2
+w0t+y0,

and w(t) = −gt + w0. Suppose the ball is bouncing on a

parabolic hill, a curved surface with equation y+ax2
+bx+c =

0. The invariant of the continuous transition is y+ax2
+ bx+

c ≥ 0 and its encoding is ∀ε ∈ [t, t′], y(ε) + ax2
(ε) + bx(ε) +

c ≥ 0, which is quadratic in ε. After applying the Theorem 2

twice, we obtain the following quantifier-free formula: y(t) +
ax2

(t) + bx(t) + c ≥ 0∧
y(t1) + ax2

(t1) + bx(t1) + c ≥ 0∧
y(t′) + ax2

(t′) + bx(t′) + c ≥ 0∧
((w(t)+2av0x(t)+bv0 ≥ 0∧w(t1)+2av0x(t1)+bv0 ≥ 0)∨
(w(t)+2av0x(t)+bv0 ≤ 0∧w(t1)+2av0x(t1)+bv0 ≤ 0))∧
((w(t1)+2av0x(t1)+bv0 ≥ 0∧w(t′)+2av0x(t

′
)+bv0 ≥ 0)∨

(w(t1)+2av0x(t1)+ bv0 ≤ 0∧w(t′)+2av0x(t
′
)+ bv0 ≤ 0))

2) Application to non-linear hybrid automata: In the gen-

eral case of non-linear hybrid automata (here meant as hybrid

systems with non-polynomial functions), the reduction of

Theorem 2 may result in more complex quantified formulas.

Even if we restrict to polynomial invariants, their composition

with transcendental primitive solutions may yield complex

derivatives. However, in many cases, we can convert the

derived quantified formula into a polynomial which is simpler

than the original3.

Example 2: Let us consider a temperature controller. The

system is parameterized by the lower and upper temperature

limits m and M , the outside temperature u, the rate b of tem-

perature exchanged with the outside, the rate c of temperature

increase due to the heater. The constraints on the parameters

2In particular, given a linear system Ẋ = AX + BU , the reachability
problem can be expressed in the theory of reals if the matrix A has a particular
structure: A is nilpotent, A is diagonalizable with all rational eigenvalues, A is
diagonalizable with all imaginary eigenvalues. While in the first case obtaining
a primitive solution in the theory of reals is straightforward also in the
presence of symbolic coefficients of the matrix, the other two cases are more
involved and require to perform several substitutions to remove exponential or
trigonometric functions, which assume to have constant coefficient. We refer
the reader to [26] for the details.

3This conversion is not currently automated.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

190

are u < m < M ∧ c > 0 ∧ b > 0. The HS is defined as

follows:

• V = {h} where h is a variable representing the heater.

• X = {x} where x represents the temperature.

• Init := m ≤ x ≤M .

• Inv := (h = 0→ x ≥ m) ∧ (h = c→ x ≤M).

• Trans := (h = 0 → (x = m ∧ h′
= c)) ∧ (h = c →

(x = M ∧ h′
= 0)) ∧ x′

= x.

• Flow := ẋ = b(u− x) + h.

The primitive of the ODE is x(t) := u+
(x(0)−u)

b e(−b∗t)
+

c
b . Its derivative is x(t) := −(x(0) − u)e(−b∗t), which never

changes sign. Therefore, applying Theorem 2, ∀ε ∈ [t, t′], x ≥
m is translated into the formula x(t) ≥ m ∧ x(t′) ≥ m and

similarly for ∀ε ∈ [t, t′], x ≤M .

Example 3: Consider the Traffic Collision Avoidance Sys-

tem (TCAS) example (cfr. e.g. [29]). The continuous dynamics

of a safe circular maneuver is described by the following equa-

tions ẋ1 = d1, ẋ2 = d2, ḋ1 = −ωd2, ḋ2 = ωd1, ẏ1 = e1, ẏ2 =

e2, ė1 = −ρe2, ė2 = ρe1, (x1 − y1)
2
+ (x2 − y2)

2 ≥ p2.

The primitive solution of the differential equations are:

x1 =
1

ω
sin(θ), x2 = − 1

ω
cos(θ),

d1 = cos(θ), d2 = sin(θ), θ = ωt+ t0,

y1 =
1

ρ
sin(ξ), y2 = −1

ρ
cos(ξ),

e1 = cos(ξ), e2 = sin(ξ), ξ = ρt+ t0

Substituting the primitive solution into the invariant (x1 −
y1)

2
+ (x2 − y2)

2 ≥ p2 we obtain the formula:

1

ω2
+

1

ρ2
− 2

ωρ
sin(θ)sin(ξ)− 2

ωρ
cos(θ)cos(ξ) ≥ p2.

which can be rewritten into: φ :=
1
ω2 +

1
ρ2− 2

ωρcos(θ−ξ) ≥ p2.
The standard quantified encoding is ∀t ∈ [0, δ], φ(t). Ap-

plying Theorem 2, we obtain the formula:

φ(0) ∧ φ(δ)∧ (∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) ∨
∀t(−sin(θ − ξ)(ω − ρ) ≤ 0)).

The quantified sub-formulas can be rewritten into polynomials

over θ and ξ. For example, ∀t(−sin(θ − ξ)(ω − ρ) ≥ 0) can

be rewritten into ∀t(ω− ξ ≥ 0∧ (π ≤ θ− ρ ≤ 2π)∨ω− ξ ≤
0 ∧ (0 ≤ θ − ρ ≤ π)). Since θ and ρ are linear, this can be

converted into an equivalent quantifier-free one.

IV. ENCODING POLYNOMIAL HS INTO TRANSITION

SYSTEMS

In this section, we show how Theorem 2 can be exploited to

automatically encode a polynomial HS into a transition system

with quantifier-free formulas.

A. Sequential encoding

Theorem 2 states the existence of the points t1, . . . , tn
where the derivative changes sign. However, such points are

unknown. The encoding of a HS into a transition system must

thus implicitly represent when the derivative of the invariant

changes sign. This is achieved by simply forcing that the sign

of the derivative is constant throughout the timed transition.

The encoding implicitly concatenates timed transitions one

after the other, delegating to the search the task of finding

the sequence of time points that split the interval, so that the

sign of the derivative is uniformly constant in the resulting

trace.

Given a formula T including the invariant condition ∀ε ∈
[t, t′], g(ε) �� 0, the condition can be locally replaced with

g(t) �� 0 ∧ g(t′) �� 0 ∧ Constant(ġ, t, t′) obtaining a new

formula τ(T).
τ performs a recursive substitution of the quantified expres-

sions. The recursion terminates when the quantified formula

is a linear polynomial, thus allowing to trivially remove the

quantifiers. τ is defined recursively as follows:

τ(ψ1 ∧ ψ2) := τ(ψ1) ∧ τ(ψ2) (1)

τ(ψ1 ∨ ψ2) := τ(ψ1) ∨ τ(ψ2)

τ(¬ψ) := ¬ψ, (ψ is a predicate)

τ(∀ε ∈ [t, t′], g(ε) �� 0) :=

⎧⎪⎨
⎪⎩
g(t) �� 0 ∧ g(t′) �� 0 if g linear

g(t) �� 0 ∧ g(t′) �� 0∧
τ(Constant(ġ, t, t′)) otherwise

The correctness of the transformation is given by the fol-

lowing theorem.

Theorem 4: If SD is the encoding of the HS S and τ(SD)

is the transition system obtained by replacing Trans with

τ(Trans), then τ(SD) is the encoding of a sampling refine-

ment of S.

Proof: (⇐) If a sequence of states satisfies τ(SD), then

by Theorem 2, the sequence satisfies also SD, and by Theo-

rem 1, it represents a path of S. (⇒) Consider a hybrid trace

〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of S. Assuming

that ġ has finite variability, we can refine the hybrid trace into

a new hybrid trace in which ġ is constant in every interval. The

new hybrid trace also satisfies S by Theorem 2 and thus the

corresponding discrete trace s0, . . . , sk satisfies its encoding

SD. At every i, if si satisfies ∀ε ∈ [t, t′], g(ε) �� 0, then both

f(si, t) and f(si, t
′
) satisfy g �� 0. Since ġ has constant sign

in Ii, si satisfies also τ(Trans). Therefore the discrete trace

satisfies also τ(SD).

The recursive definition of τ in (1) creates a formula whose

size is exponential in the degree of the polynomial inside the

invariant. We use the following equivalence to keep the size

of the encoding linear in the degree of the polynomial (here

g is not linear):

τ(Constant(g, t, t′)) = (g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧ (2)

τ(Constant(ġ, t, t′))) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0 ∧
τ(Constant(ġ, t, t′)))

= ((g(t) ≥ 0 ∧ g(t′) ≥ 0) ∨
(g(t) ≤ 0 ∧ g(t′) ≤ 0)) ∧
τ(Constant(ġ, t, t′))

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

191

Another optimization that we implemented is the use of

some lemmas that relate the value of polynomials to the value

of their derivatives. More specifically, we optionally add to τ
the following formulas:

(ġ(t) > 0 ∨ ġ(t′) > 0)→
((g(t) ≥ 0→ g(t′) ≥ 0) ∧ (g(t′) ≤ 0→ g(t) ≤ 0))∧
(ġ(t) < 0 ∨ ġ(t′) < 0)→
((g(t) ≤ 0→ g(t′) ≤ 0) ∧ (g(t′) ≥ 0→ g(t) ≥ 0))

The formula means that when the derivative is positive g
can only increase (thus cannot pass from positive to negative)

and vice versa when ġ is negative g can only decrease (thus

cannot pass from negative to positive).

B. Bound on required splitting

The sequential encoding may force the split of a continuous

transition in several transitions, since the predicates introduced

to remove the quantifiers forces the derivatives of the invariant

conditions to be constant. While the encoding enables to re-

move the quantifier, the depth of the bounded model checking

formula may increase due to the splitting. In incremental

bounded model checking, the burden of finding how many

splits are necessary is delegated to the search.

In the case of polynomial hybrid automata we can compute

an upper bound on the number of consecutive continuous

transitions (continuous transitions not separated by a discrete

transition) needed to simulate the longest quantified contin-

uous transition (the continuous transition with the maximum

time elapse).

We can compute the upper bound on the number of intervals

needed to “cover” the quantified continuous transition for the

invariant predicate ∀ε ∈ [t, t′]g(ε) �� 0. If Ω(g) is the degree

of the polynomial, then the maximum number of intervals that

have to be considered is ub(g) =
Ω(g)∗(Ω(g)−1)

2 . In fact, the

i-th derivative of g has degree Ω(g)− i and thus changes sign

Ω(g)− i times.

C. Layering

In the BMC settings we usually perform a search where we

check if the target is violated for an increasing path length.

In principle, the removal of the quantifiers requires more

continuous transitions, thus increasing the size of the formula

passed to solver. It is convenient to use a “layered” approach,

where we first reach the target in an over-approximation of the

HS, where invariants are not guaranteed to hold, and then we

check if there exists a path that reaches the target and where

invariants hold.

V. RELATED WORK

The quantifier-free encoding that we propose is related to

quantifier elimination procedures (see, e.g., [16]). It is not

a quantifier elimination procedure in that it contains new

variables that are implicitly existentially quantified. In fact,

we apply the reduction even in some cases of transcendental

functions. The burden to remove the quantifiers is delegated

to the verification techniques if necessary. We claim that

quantifier elimination is somehow an overkill: the verification

techniques does not often need the precise region of points

where the invariant holds; it is usually sufficient either to pick

some “good” values (in case of reachability) or to find “good”

invariants (in case of safety verification).

Several works focus on the reachability problem for hybrid

systems, but they use less expressive invariants or they restrict

the class of the analyzed hybrid automata. We extend the

bounded model checking encoding of linear hybrid automata

[4], [1], where invariants hold iff they hold at the first and the

last instant of a timed transition, thus the resulting encoding

is quantifier free. Other approaches [10], [18], [23] focus on

non-linear hybrid automata. In [10], the authors solve the

reachability problem for non-linear convex hybrid automata.

The restriction to convex invariant and linear flow conditions,

or to monotonic invariant and convex flow, allows to easily

encode the invariants without quantifiers. Many examples,

including those mentioned in this paper, do not fall in this

class of automata. In [18] the authors propose an SMT solver

modulo ODEs, that can be used to perform bounded model

checking on hybrid automata where the flow conditions are

ODEs. The only allowed invariants are of the form x ∈ [l, u],
where x is a continuous variable and l, u ∈ R. Their main

focus is on the integration of numerical methods to compute

the initial value problem for ODEs, while they cannot manage

more complex invariants (e.g. linear functions). ODEs are

also handled directly in [23]. This is done by computing the

precise intersection of the continuous flow with the guards

of the hybrid automaton. The solver can in principle handle

invariants, but the authors state that the implementation is

not mature enough to evaluate the approach. Approaches

based on motion planning [28] do not encode symbolically

the invariants, since they simulate the ODEs using numerical

methods. In contrast, we encode a set of continuous transitions.

The prominent approaches to the verification of HSs are

based either on the exploration of the reachable states or on

deductive systems. We refer the readers to [2] for a recent

survey. The focus of our work is on the SMT-based paradigm,

which, although less mature, seems promising.

Our settings also differs from the works that build ab-

stractions for HSs. The approaches described in [33], [31]

use techniques based on the sign of derivatives such as ours.

However, the purpose is different in that they generate over-

approximations of the HS.

Finally, we mention the “clock translation” described in

[21], where invariants are translated into constraints on time.

However, the translation is restricted to monotonic flows (plus

other restrictions on the independence of variables).

VI. EXPERIMENTAL EVALUATION

We applied our approach to several benchmarks of non-

linear hybrid automata, obtaining a quantifier-free encod-

ing. For the polynomial subcase we used the ETCS bench-

mark [22], an industrial case study of the braking control

system of trains, the classic bouncing ball, and a simple bal-

listics example. For the bouncing ball, we used four variants:

a ball moving vertically in one dimension and bouncing on a

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

192

vars Max degree REDLOG QEPCAD

etcs braking 4 2 0.14 0.05
ball 1d plain 4 2 0.10 0.03
ball 2d plain 4 2 0.10 0.03
ball 2d hill 5 2 0.15 T.O. > 3600.00
ball 2d slope 5 4 N.A. T.O. > 3600.00
simple ballistics 5 4 N.A. T.O. > 3600.00

TABLE I
RESULTS OF APPLYING QUANTIFIER ELIMINATION TO THE POLYNOMIAL

BENCHMARKS (MAX DEGREE IS THE MAXIMUM DEGREE OF THE

QUANTIFIED VARIABLE,T.O.IS A TIME OUT OF 3600 SECONDS, N.A.
MEANS NOT APPLICABLE).

plain floor, a two-dimensional variant with constant horizontal

speed, a third variant still in two-dimensions but bouncing on

a hill (vertical parabola), and a fourth variant bouncing on

a slope (horizontal parabola). As for the ballistics example,

we modeled an object that flies above an obstacle keeping

below a certain ceiling. As for nonlinear benchmarks with

transcendental functions, we used the temperature controller,

the TCAS benchmark and the steering car mentioned in

Sec. III-B2. All the benchmarks are publicly available at

http://es.fbk.eu/people/mover/tests/FMCAD12/.

The techniques discussed in the previous sections have been

implemented in an extension of NUSMV4, which is able to

deal with HSs formalized in the HYDI language [12]. The

NUSMV extension features an SMT-based approach to the

verification of HSs, including bounded model checking and

inductive reasoning. We automatically encode the invariants

for polynomial hybrid automata, while we manually encode

the invariants for the other benchmarks. iSAT5 is used as the

backend to solve the resulting satisfiability queries.

We evaluated the alternative use of quantifier elimination

procedures, within their range of applicability, i.e. polynomial

hybrid automata. We experimented with Cylindrical Algebraic

Decomposition (CAD) (using QEPCAD6) and Virtual Substi-

tution (using REDLOG7). Table I reports, for each polynomial

benchmark, the time needed to obtain a quantifier free formula

of the invariants using QEPCAD and REDLOG. The Virtual

Substitution approach of REDLOG can only handle formulas

quantified over a quadratic variable. QEPCAD is slightly

more general, but de facto less useful: the results highlight

the dramatic computational complexity of the procedure (e.g.

ball 2d hill, with 5 variables, times out in one hour). Thus, the

quantifier elimination approach cannot even handle the poly-

nomial benchmarks ballistic and ball 2d slope (in addition to

the benchmarks with transcendental functions).

We used the bounded model checking functionalities en-

abled by our approach to validate the various models and to

evaluate the performance of the invariant encoding. For each

model we generated different reachability properties which are

falsified by traces with an increasing length. We evaluated the

encoding of the invariant by comparing the time needed to find

these traces with BMC. When quantifier elimination was able

4http://nusmv.fbk.eu/
5http://isat.gforge.avacs.org/
6http://www.usna.edu/cs/ qepcad/B/QEPCAD.html
7http://redlog.dolzmann.de/

quantifier-free
encoding

qelim (qepcad) qelim (redlog)

etcs braking 66.75 / 17 161.52 / 17 168.16 / 17
ball 1d plain.01 0.05 / 2 0.05 / 2 0.03 / 2
ball 1d plain.02 25.50 / 6 0.09 / 4 0.06 / 4
ball 1d plain.03 31.43 / 10 0.28 / 6 0.40 / 6
ball 1d plain.04 36.23 / 14 0.46 / 8 0.65 / 8
ball 1d plain.05 151.41 / 18 1.27 / 10 1.51 / 10
ball 2d plain.01 0.08 / 2 0.18 / 2 0.28 / 2
ball 2d plain.02 4.20 / 6 3.14 / 6 3.64 / 6
ball 2d plain.03 16.04 / 10 15.90 / 10 62.64 / 10
ball 2d hill.01 1.30 / 4 na / na 0.94 / 2
ball 2d hill.02 118.67 / 8 na / na 15.36 / 4
ball 2d slope.01 to / na na / na na / na
simple ballistics 8.31 / 1 na / na na / na

TABLE II
RESULTS (RUNNING TIME / PATH LENGTH) OF BMC WITH THE DIFFERENT

ENCODINGS.

to produce a result, we also compared it with our approach

using the same SMT-based technique, in order to evaluate the

overhead caused by the splitting. The results are shown in

Table II. The encoding time of our approach is instantaneous

in all cases. In the cases where quantifier elimination is

feasible, the resulting encoding may induce traces with a

smaller number of steps, because timed transitions must not be

split. This happens for the ball 1d plain and the ball 2d hill
benchmarks. The reduced number of steps also reduces the

time needed to generate the trace.

Our approach was also able to prove a simple invariant on

the ballistics example, that was beyond the applicability of

SMT-based techniques. We chose as obstacle a circle shape

with center in (c, 0) and radius r. If the ceiling level is less

than r, the object cannot clearly pass. This has been proved

with NUSMV and iSAT. Ignoring the invariant along the

timed transitions (keeping it only on the discrete points) allows

for spurious traces that forbid the inductive proof. Note that

this small example is beyond the applicability of quantifier

elimination (see Table I).

Some remarks are in order. Our approach strongly de-

pends on the availability of SMT solvers for quantifier-

free theories of nonlinear arithmetic, to solve the formulas

resulting from our SMT-based verification engines. To this

end, we tried to use all the available solvers for nonlinear

arithmetic: Z38, SMT-RAT9, CVC310, miniSMT11, RAHD12,

hydlogic13, dReal14. and iSAT15. Z3 and SMT-RAT implement

two complete decision procedures for the non-linear arithmetic

over reals. Both solvers still do not integrate a layering

with the linear arithmetic solver: in this case all the linear

arithmetic constraints are handled using the non-linear solver,

8http://research.microsoft.com/en-us/um/redmond/projects/z3/
9http://smtrat.sourceforge.net/
10http://cs.nyu.edu/acsys/cvc3/
11http://cl-informatik.uibk.ac.at/software/minismt/
12http://homepages.inf.ed.ac.uk/s0793114/rahd/
13http://code.google.com/p/hydlogic/
14http://www.cs.cmu.edu/ sicung/dReal/
15http://isat.gforge.avacs.org/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

193

thus resulting in an inefficient approach. This is the case

for our BMC case studies, which have a significant part of

linear constraints. Instead, CVC3 and miniSMT implement an

incomplete decision procedure for non-linear arithmetic (and

miniSMT is tailored only to check satisfiable formulas). As a

result, these solvers turned out to return “unknown” on most

of the queries generated from our benchmarks. The hydlogic

system turned out to be immature, while RAHD exports

functionalities that are closer to a theory solver than a full SMT

solver, requiring an explicit treatment of disjunctions. iSAT

and dReal differ from the other solvers, since they can also

provide non-precise solutions. dReal returns an unsatisfiable

answer or a satisfiable answer if the formula is satisfiable

under a bounded numerical perturbations. iSAT may return

“unknown” exposing the results of interval constraints propa-

gation: it produces the intervals found in the search, if these

are below a user-defined threshold, as a candidate solution.

In many practical cases, this is not spurious, and represents a

satisfying assignment of the formula.

Overall, despite some recent progress, our experience has

shown that the field still requires additional research to deliver

what our approach requires, both in terms of completeness,

and performance. However, we argue that our method is

valuable regardless of the current status of SMT for nonlinear

arithmetic. First, we proposed a solution to a problem that

was a show-stopper for SMT-based verification. In fact, we are

now able to solve some benchmarks that cannot be solved by

overapproximation, just forgetting about the quantified invari-

ants. Second, we are hopeful that the field of SMT can deliver

quick progress in quantifier-free nonlinear arithmetic. In fact,

the development of SMT solving for non-linear arithmetic has

been influenced by benchmarks from other domains (e.g. most

of the SMT-LIB benchmarks in NRA are from the software

domain). To this extent, we generated and submitted to the

SMT-LIB a vast number of benchmarks, that will trigger

additional research in practically relevant directions.

VII. CONCLUSIONS

In this paper, we tackled the problem of dealing with invari-

ant constraints in non-linear hybrid automata in the setting of

SMT-based verification. This is largely an open problem, due

to the presence of the universal quantifiers required to encode

that the invariant must hold throughout all time instants in

delay transitions.

We proposed new methods that allow for the reduction

to quantifier-free theories, at the cost of introducing addi-

tional variables. Our approach is comprehensive (deals with

disjunctive invariants), encompasses a large class of hybrid

systems (nonlinear polynomials), and is open to new patterns

of reduction, when an algorithmic solution is not possible

in general. As a result, we extend the applicability of SMT-

based verification methods, and were able to verify some novel

benchmark problems.

In the future, we plan to proceed along the following direc-

tions. We will experiment with the application of the proposed

methods as a way to concretize the abstract paths. Then, we

will generalize the approach to the analysis of networks of

hybrid automata; in particular, we will exploit the locality

of the splits of the continuous transitions in the local time

semantics framework. We will also apply a layered approach

to the analysis of non-linear constraints, where less expensive

(e.g. linear) solvers are applied whenever possible before

resorting to expensive but more precise nonlinear solvers such

as RAHD. Finally, we will apply the proposed techniques to

the analysis of requirements expressed in HRELTL logic [14].

In fact, HRELTL requires the predicates to be constant in

arbitrary intervals of time.

REFERENCES

[1] E. Ábrahám, B. Becker, F. Klaedtke, and M. Steffen. Optimizing
Bounded Model Checking for Linear Hybrid Systems. In VMCAI, pages
396–412, 2005.

[2] R. Alur. Formal verification of hybrid systems. In EMSOFT, pages
273–278, 2011.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems. In Hybrid Systems, pages 209–229, 1992.

[4] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT. ENTCS, 119(2):17–32, 2005.

[5] C.W. Barrett, R. Sebastiani, S.A. Seshia, and C. Tinelli. Satisfiability
Modulo Theories. In Handbook of Satisfiability, pages 825–885. 2009.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. In TACAS, pages 193–207, 1999.

[7] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and
M. Roveri. Safety, Dependability and Performance Analysis of Extended
AADL Models. Comput. J., 54(5):754–775, 2011.

[8] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, M. Roveri,
and R. Wimmer. A Model Checker for AADL. In CAV, pages 562–565,
2010.

[9] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model Checking of
Hybrid Systems using Shallow Synchronization. In FORTE, 2010.

[10] L. Bu, J. Zhao, and X. Li. Path-Oriented Reachability Verification of a
Class of Nonlinear Hybrid Automata Using Convex Programming. In
VMCAI, pages 78–94, 2010.

[11] A. Cimatti, S. Mover, and S. Tonetta. Efficient Scenario Verification for
Hybrid Automata. In CAV, pages 317–332, 2011.

[12] A. Cimatti, S. Mover, and S. Tonetta. HyDI: a language for symbolic
hybrid systems with discrete interaction. In EUROMICRO-SEAA, 2011.

[13] A. Cimatti, S. Mover, and S. Tonetta. Proving and Explaining the
Unfeasibility of Message Sequence Charts for Hybrid Systems. In
FMCAD, 2011.

[14] A. Cimatti, M. Roveri, and S. Tonetta. Requirements Validation for
Hybrid Systems. In CAV, pages 188–203, 2009.

[15] L. de Alfaro and Z. Manna. Verification in Continuous Time by Discrete
Reasoning. In AMAST, pages 292–306, 1995.

[16] A. Dolzmann, T. Sturm, and V. Weispfenning. Real quantifier elimina-
tion in practice. In Alg. Algebra and Number Theory, pages 221–247.
Springer, 1998.

[17] A. Eggers, M. Fränzle, and C. Herde. SAT Modulo ODE: A Direct SAT
Approach to Hybrid Systems. In ATVA, pages 171–185, 2008.

[18] A. Eggers, N. Ramdani, N. Nedialkov, and M. Fränzle. Improving SAT
Modulo ODE for Hybrid Systems Analysis by Combining Different
Enclosure Methods. In SEFM, pages 172–187, 2011.

[19] M. Fränzle. What Will Be Eventually True of Polynomial Hybrid
Automata? In TACS, pages 340–359, 2001.

[20] S. Graf and H. Saı̈di. Construction of Abstract State Graphs with PVS.
In CAV, pages 72–83, 1997.

[21] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic Analysis of
Nonlinear Hybrid Systems. 1998.

[22] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysis of Hybrid
Systems Using HySAT. In ICONS, pages 196–201, 2008.

[23] D. Ishii, K. Ueda, and H. Hosobe. An interval-based SAT modulo ODE
solver for model checking nonlinear hybrid systems. STTT, 13(5):449–
461, 2011.

[24] S. Jha, B. A. Brady, and S. A. Seshia. Symbolic Reachability Analysis
of Lazy Linear Hybrid Automata. In FORMATS, pages 241–256, 2007.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

194

[25] T. King and C. Barrett. Exploring and Categorizing Error Spaces using
BMC and SMT. In SMT, 2011.

[26] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. Symbolic
reachability computation for families of linear vector fields. J. Symb.
Comput., 32(3):231–253, 2001.

[27] K.L. McMillan. Interpolation and SAT-Based Model Checking. In CAV,
pages 1–13, 2003.

[28] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Hybrid systems: from verifica-
tion to falsification by combining motion planning and discrete search.
Formal Methods in System Design, 34(2):157–182, 2009.

[29] A. Platzer and E.M. Clarke. Formal Verification of Curved Flight
Collision Avoidance Maneuvers: A Case Study. In FM, pages 547–562,
2009.

[30] A.M. Rabinovich. On the Decidability of Continuous Time Specification
Formalisms. J. Log. Comput., 8(5):669–678, 1998.

[31] S. Sankaranarayanan and A. Tiwari. Relational abstractions for contin-
uous and hybrid systems. In CAV, pages 686–702, 2011.

[32] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
Using Induction and a SAT-Solver. In FMCAD, pages 108–125, 2000.

[33] A. Tiwari. Abstractions for hybrid systems. Formal Methods in System
Design, 32(1):57–83, 2008.

[34] Y. Yushtein, M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen,
Th. Noll, X. Olive, and M. Roveri. System-software co-engineering:
Dependability and safety perspective. In SMC-IT, pages 18–25. IEEE
CS Press, 2011.

APPENDIX

In this section, we explain how the method can be extended

to handle generic predicates for the invariants (i.e. disjunctive

invariants and open intervals). We describe the extension only

in the appendix because, first, it complicates the presentation,

second, in practice we do not have disjunctive invariants in

the benchmarks.

A. Encoding of hybrid into transition systems

We modify the encoding of a HS into a transition system

with atomic quantified formulas. First, we modify the encod-

ing considering quantification over open intervals instead of

closed intervals. Later, we will prove that we can push the

quantification inside the disjunctions under the assumption of

finite variability.

We redefine SD = 〈VD, InitD, InvD, T ransD〉 as follows:

• VD := V ∪X ∪ {t}
(t is a real variable that stores the current real time of the

system).

• InitD := t = 0 ∧ Init.
• InvD := Inv.

• TransD := TIMED ∨ UNTIMED

where

– TIMED := t′ > t∧V ′
= V ∧X ′

= f(V ∪X, t′)∧∀ε ∈
(t, t′), Inv(V, f(ε))

– UNTIMED := t′ = t ∧ Trans(V,X, V ′, X ′
).

Theorem 5: There exists a one-to-one mapping between the

paths of S and the paths of SD.

We call SD the encoding of S.

Sketched proof:
Let the hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉

be a path of S. Then, the sequence of states

f0(le(I0)), f1(le(I1), . . . , fk(le(Ik) is a path of SD.

Let the sequence s0, s1, . . . , sk be a path of SD. Let us

consider, for all i ∈ [1, k], fi(v)(t) = f(si, t)(v). Let us define

Ii := [si(t), si+1(t)) if i < k and si+1(t) > si(t), Ii :=

[si(t), si(t)] if i < k and si+1 = si(t) or if i = k. Then, the

hybrid trace 〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 is a path of S.

Without loss of generality we can assume that the quantified

formula in Trans is atomic. This is not correct in general and

exploit the particular position of the quantified sub-formula in

the transition condition.

Theorem 6: Assuming that the predicates φ and ψ have fi-

nite variability, if we replace a formula ∀ε ∈ (t, t′), φ(ε)∨ψ(ε)
with ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε) inside TransD, we

obtain the encoding of a sampling refinement to the original

HS.

Proof: Clearly, ∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε)
implies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε). The opposite does

not hold in general. However, consider a hybrid trace

〈f0, I0〉, 〈f1, I1〉, . . . , 〈fk, Ik〉 which is a path of a HS S.

Assuming that the predicates φ and ψ have finite variability,

we can refine the hybrid trace into a new hybrid trace in which

φ and ψ are constant in every interval. The new hybrid trace

also satisfies S by Proposition 2 and thus the corresponding

discrete trace s0, . . . , sk satisfies its encoding SD. At every i,
if si satisfies ∀ε ∈ (t, t′), φ(ε) ∨ ψ(ε), then f(si, ε) satisfies

φ ∨ ψ for all ε ∈ (t, t′) = (le(Ii), ue(Ii)), and thus either

φ or ψ (since φ and ψ are constant in the open part of Ii).
Therefore the discrete trace satisfies also the encoding with

∀ε ∈ (t, t′), φ(ε) ∨ ∀ε ∈ (t, t′), ψ(ε).

B. Reduction to flow invariants

Theorem 7: If g : R → R is a differentiable function and

ġ �� 0 (��∈ {≥, >}) has finite variability, then ∀ε ∈ (t, t′), g ��
0 iff there exists a finite set of real numbers t = t0 < . . . <
tn = t′ such that g(t) ≥ 0 ∧ g(t′) ≥ 0 ∧∧0<i<n g(ti) �� 0 ∧∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) if ��=≥, g(t) ≥ 0∧ g(t′) ≥
0 ∧ ∧0<i<n g(ti) �� 0 ∧ ∧0<i≤n Constant(ġ ≥ 0, ti−1, ti) ∧
(g(t) = 0→ ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0), if ��=>.

Proof: (⇒) Since ġ �� 0 has finite variability, there exists

a finite set of real numbers t = t0 < . . . < tn = t′ such

that
∧

0<i≤n Constant(ġ ≥ 0, ti−1, ti) by definition. Moreover,

since ∀ε ∈ (t, t′), g �� 0, g �� 0 holds also in the time points

t1, . . . , tn−1. g(t) ≥ 0 and g(t′) ≥ 0 for the continuity of g.

Finally, (g(t) = 0 → ġ(t) > 0) ∧ (g(t′) = 0 → ġ(t) < 0), if

��=>.

(⇐) Assume by contradiction that there exists tb ∈ (t, t′)
such that g(tb) �� 0 is false. Since

∧
0<i<n g(ti) �� 0, there

exists i ∈ [1, n] such that tb ∈ (ti−1, ti). Let us consider first

the case in which g(t) �� 0 and g(t′) �� 0 or i ∈ [2, n − 1].

Since g is differentiable, for the mean value theorem, there

exists a point t′b ∈ (ti−1, tb) such that ġ(t′b) =
g(tb)−g(ti−1)

(tb−ti−1)

and therefore ġ(t′b) �� 0 is false. Similarly, there exists

a point t′′b ∈ (tb, ti) such that ġ(t′′b) =
g(ti)−g(tb)

(ti−tb)
and

therefore ġ(t′′b) �� 0 is true. Thus, ġ is not constant over

(ti−1, ti) contradicting the hypothesis. Let us now consider

the case in which ��=>, i = 1 and g(t) = 0 or i = n
and g(t′) = 0. Similarly as before there exists a point that

contradicts (g(t) = 0→ ġ(t) > 0) ∧ (g(t′) = 0→ ġ(t) < 0).

We conclude that ∀ε ∈ (t, t′), g(ε) �� 0.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

195

Piecewise Linear Modeling of Nonlinear devices for
Formal Verification of Analog Circuits

Yan Zhang, Sriram Sankaranarayanan and Fabio Somenzi.
University of Colorado, Boulder, CO. Email: {yan.zhang,srirams,fabio}@colorado.edu

Abstract—We consider different piecewise linear (PWL) mod-
els for nonlinear devices in the context of formal DC operating
point and transient analyses of analog circuits. PWL models
allow us to encode a verification problem as constraints in
linear arithmetic, which can be solved efficiently using modern
SMT solvers. Numerous approaches to piecewise linearization
are possible, including piecewise constant, simplicial piecewise
linearization and canonical piecewise linearization. We address
the question of which PWL modeling approach is the most
suitable for formal verification by experimentally evaluating the
performance of various PWL models in terms of running time
and accuracy for the DC operating point and transient analyses of
several analog circuits. Our results are quite surprising: piecewise
constant (PWC) models, the simplest approach, seem to be the
most suitable in terms of the trade-off between modeling precision
and the overall analysis time. Contrary to expectations, more
sophisticated device models do not necessarily provide significant
gains in accuracy, and may result in increased running time. We
also present evidence suggesting that PWL models may not be
suitable for certain transient analyses.

I. INTRODUCTION

In this paper, we evaluate piecewise linear models (PWL)

for the verification of nonlinear analog circuits. Analog circuits

are indispensable in modern integrated circuits. Although, in a

typical IC design, the analog circuitry occupies a small fraction

of the entire die area, its design and verification requires con-

siderable effort compared to its digital counterpart [1]. Because

analog design is error-prone, many simulations, each of which

may take several hours or even several days, are needed to

convince the designers that the specification is met. Even with

this effort, many designs still fail to work after fabrication.

Therefore, formal verification techniques for analog circuits

have recently emerged, as shown in Table I. Most efforts in

formal verification have focused on two problems:

• DC Operating Point Analysis: Satisfiability solvers are

used to characterize all operating points of a circuit.

In many cases, SPICE simulations may miss metastable

operating points that can be captured by a formal ap-

proach [2], [3].

• Dynamic (Transient) Analysis: Various models of dy-

namical systems, including ODEs [2], [4]–[6], hybrid

automata [7], hybrid Petri nets [8] and frequency domain

transfer functions [9] are used to study the evolution of

a circuit in time.

This work was funded in part by the US National Science Foundation (NSF)
under grants CNS-1016994 and CAREER grant CNS-0953941. All opinions
expressed here are those of the authors and not necessarily of the NSF.

These problems are complex due to the presence of nonlin-

ear devices such as diodes, transistors, non-Ohmic resistors

and nonlinear capacitors. While solvers for reasoning about

nonlinear systems are becoming sophisticated [10]–[13], their

capabilities are far exceeded by the linear arithmetic SMT

solvers such as MathSAT, Yices and Z3 [14]. As a result, the

problem of approximating nonlinear devices by a piecewise

linear model naturally presents itself. Fortunately, PWL mod-

eling of analog devices has been well studied by the analog

circuit simulation community [15]–[17]. In this regard, a wide

variety of PWL modeling approaches for transistors have been

considered, including simplicial piecewise linearization [16],

canonical piecewise linearization [15] and their many refine-

ments. Recent work by Tiwary et al. [2] uses simple piecewise

constant (PWC) models with interval uncertainties to approx-

imate the nonlinear characteristics of transistors, encoding

DC operating point and transient analyses problems as linear

arithmetic constraint satisfaction with promising results.

The key advantage of PWL models lies in their translation

to linear arithmetic. On the other hand, the abstraction of tran-

sistor characteristics by PWL models can potentially miss DC

operating points or transient behaviors, unless the modeling

can be made “sound” as defined in Section II. However, a

sound model may introduce spurious behaviors that do not

exist in the real circuit. To address this issue, Tiwary et al.

present a model refinement procedure that constructs a PWL

model using a restricted input domain provided by results

found from a coarse model.

Thus far, little work has been done to consider the “best”

piecewise linear modeling approach for DC and transient

analyses of analog circuits. In this paper, we ask the following

question: is one modeling approach necessarily better than the

other in terms of performance (time taken) vs. accuracy (fewer

spurious DC operating points, fewer spurious paths)?

We compare three different PWL modeling approaches,

including PWL modeling with simplicial decomposition, the

canonical PWL function proposed by Chua et al. [15] and

the PWC model used by Tiwary et al. [2] with different

modeling parameters. Our comparisons are based on the DC

operating point and transient analyses framework of Tiwary et

al. [2]. Our comparisons consider the running times, number

of SMT solver queries and the precision in terms of spurious

results. Our findings are quite surprising: for DC operating

point analysis, PWC models are more efficient in terms of

performance while providing very little difference in terms

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

196

of precision. We also present evidence suggesting that PWL

models may not be suitable for certain transient analyses.

In the next section, we discuss the device modeling ap-

proaches. In section III, we present the setup of the formal DC

operating point analysis. Next, we present the formal transient

analysis. Finally we discuss the experimental results.

II. DEVICE MODELING APPROACHES

In this section, we consider the piecewise linear (PWL)

modeling of nonlinear analog devices. We discuss the model-

ing problem based on simulation and introduce the notion of

models that are “sound” with respect to data points.

A. Modeling Nonlinear Devices

A device model is a function y = F(x,p), where y

represents the dependent variables, x the independent variables

and p the device parameters that vary with the fabrication

process, voltage and temperature (PVT). For example, a model

for a NMOS transistor is

IDS = F (VGS , VDS ,p) .

In sophisticated device models, such as BSIM4 1 and PTM 2,

F is often complicated and expressed as C (FORTRAN)

language subroutines which can be used by SPICE. In order to

enable formal verification, we need to abstract F to a simpler,

more tractable form.

Device Approximation. Approximations are achieved by

means of relational models R(VGS , VDS ,p, IDS), that relate

possible voltages, parameters values and currents over some

domain D. The domain is defined by intervals for VGS and

VDS which typically range from 0 to the supply voltage, and

some range of parameter uncertainties for p. We require the

relation R to be sound with respect to the device model.

Definition II.1 (Sound Abstraction). A relational model

of a device R(VGS , VDS ,p, IDS) is sound with respect

to a functional model IDS = F (VGS , VDS ,p) if for all

(VGS , VDS ,p) ∈ D,

IDS = F (VGS , VDS ,p) ⇒ R(VGS , VDS ,p, IDS) .

In other words, the relation R over-approximates the behavior

of the device modeled using the function F .

The purpose of piecewise linear modeling of a device is

to find a relation R that is sound with respect to some

device model such that R is expressible as a linear arithmetic

formula. A standard approach for piecewise linear modeling

is to find a piecewise linear approximation F̃ (VGS , VDS ,p)
that minimizes some penalty function

ε = max
(VGS ,VDS ,p)∈D

|F (VGS , VDS ,p)− F̃ (VGS , VDS ,p)| .

Given such an F̃ , we can obtain a relation R by “bloating” F̃
using the error ε:

R(VGS , VDS , IDS ,p) : IDS ∈ F̃ (VDS , VGS ,p) + [−ε, ε] .

1Cf. http://www-device.eecs.berkeley.edu/bsim/.
2Cf. http://ptm.asu.edu/.

If F̃ can be expressed in linear arithmetic, then R itself can be

expressed in linear arithmetic. In practice, however, the device

model F is often not available in a simple closed form, which

makes the computation of ε difficult. Instead, we use a large

number of samples

(V
(0)
GS , V

(0)
DS ,p

(0), I
(0)
DS), . . . , (V

(N)
GS , V

(N)
DS ,p(N), I

(N)
DS) ,

each consisting of observed voltages, currents and parameter

values, to compute the F̃ that minimizes the sample error. We

then compute the relation R by using the interval defined by

the sample error. The resulting relation R is sound with respect
to samples, but not necessarily with respect to F . Often, the

samples are divided into a smaller training set that is used

to find F̃ , and a large evaluation set that is used to compute

the error estimate ε. If the number of sample points is large

and the sampling is uniform, then soundness with respect to

samples can be used as a basis for constructing formal models.

Through the rest of the paper, whenever we claim “sound-

ness” of a device model, it refers to soundness with respect to

some pre-specified, sufficiently large number of data points.

B. Piecewise Linear Functions

We now discuss various forms of piecewise linear functions

and the approximation of nonlinear devices using them.

Consider a domain D ⊆ R
n. A function f(x) : D → R

m

is piecewise linear (PWL) if there exists a K-piece partition

S1, . . . , SK of D such that f(x) can be written as

f(x) =

⎧⎪⎨
⎪⎩
a1 +B1x x ∈ S1

· · · · · ·
aK +BKx x ∈ SK

(1)

where ai are m× 1 vectors, x is an n× 1 vector, and Bi are

m × n matrices. We call Equation (1) the conventional form

of PWL functions.

Any continuous function g(x) over a bounded domain D

can be approximated to arbitrary accuracy by a PWL function

g̃(x) with a large enough K. However, as K grows, PWL

functions become unwieldy.

Simplicial Form. One way to construct a PWL function in

conventional form is based on simplicial decomposition [39],

which subdivides a domain into many simplices S1, . . . , SK .

Recall that an n dimensional simplex is a polyhedron with

n + 1 vertices. For instance, a 2-simplex is a triangle and

a 3-simplex is a tetrahedron. Algorithms for simplicial de-

composition of a domain are well-known. If the domain D

is a box, a simplicial decomposition can be constructed in

two steps: (1) partition D into smaller boxes D1, . . . ,Dk by

choosing cutpoints along each dimension; (2) subdivide Dj

into simplices. For example, a rectangle yields 2 simplices, and

a cuboid yields 5 simplices. Known simplicial decomposition

schemes yield O(n!) simplices of n dimensions.

Once we decompose D into K simplices S1, . . . , SK , we

assume that for Si, the linearization is an unknown function

fi = ai+〈bi,x〉, where 〈〉 denotes inner product. Since Si has

n+1 vertices, we evaluate the function f(x) at each vertex and

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

197

TABLE I
A CROSS SECTION OF VERIFICATION APPROACHES FOR ANALOG CIRCUITS.

References Description
Althoff et al. [7] Verification of Phase Locked Loop.
Frehse et al. [18] Using Phaver [19] to verify oscillators.
Dang et al. [20] Verification of Δ− Σ modulator.
Gupta et al. [21] Using checkmate to verify Δ− Σ modulator [22], [23].
Tiwary et al. [2] SAT-based D.C analysis, piecewise interval device modeling.
Zaki et al. [6] Taylor Models Interval Arithmetic [24], [25].
Zaki et al. [3] DC operating point analysis using nonlinear solvers [10].
Steinhorst et al. [26] Specification language and model checking by guaranteed integration.
Hartong et al. [4], [27] Discretization of dynamics and Model checking.
Hartong et al. [28] Equivalence checking by sampling vector fields at finitely many points.
Little et al. [29]–[31] Translation to Hybrid Petri Nets and model-checking.
Clarke et al. [32], [33] Stat. model checking [34] of Δ− Σ modulators.
Singhee et al. [35], [36] Monte Carlo methods, rare event simulations [37], [38].
Denman et al. [9] Deriving Laplace transfer functions and verifying using theorem proving.

set up n+1 linear equations in terms of ai and bi, which yields

a unique solution. The resulting f is continuous since the

values of fi and fj agree at the common vertices of Si and Sj .

A PWL function constructed using simplicial decomposition

is said to be a simplicial PWL (SPWL) function.

SPWL functions are practical when the number of inputs is

relatively small. For instance, if we assume that the parameters

of an NMOS device are fixed, SPWL decomposes the input

space in terms of VGS and VDS into triangles. However,

if there are many inputs (e.g., VGS , VDS and a number

of uncertain transistor model parameters), models based on

SPWL can be quite expensive due to the exponential blowup

in the number of simplices.

Canonical Form. A continuous PWL function can also be

written as:

f(x) = a+Bx+

σ∑
i=1

ci |〈αi,x〉+ βi| (2)

where a and ci are m×1 vectors, x and αi are n×1 vectors,

B is an m×n matrix, and βi is a scalar. Equation (2) is known

as the canonical form [15], which is more succinct than the

conventional form.

We construct a PWL function in canonical form (CPWL) as

follows. First, we sample over D to obtain N samples xi, yi,
where 1 ≤ i ≤ N . Next, we use a gradient descent method that

minimizes the error between the output values and the sample

points. The gradient descent method is detailed in [15]. Here

we present a brief description.

Consider a real-valued function f(x) and a CPWL function

f̂(x) = a+ bx+
σ∑

j=1

cj |〈αj ,x〉+ βj | ,

where a, b, cj , αj and βj are unknown coefficients. Given a

set of N samples {(xi, yi) | yi = f(xi)}, let

z1 ≡ [a b1 · · · bn c1 · · · cσ]T ,

z2 ≡ [α1,1 · · ·αk,n β1 · · ·βk]
T ,

and define the L2-norm error as

E(z1, z2) ≡
N∑
i=1

[
w(i)

(
f̂(xi)− f(xi)

)2]
,

where w(i) is the weight of the i-th sample. The L2-norm error

E(z1, z2) is minimized by iteratively moving z2 along the

steepest descent direction and computing the local minimum

with respect to z1. When the error reaches a minimum, or is

below some threshold, we find an approximation f̂ .

We simplify the above algorithm as follows. We fix z2 such

that it subdivides the domain D into hyper-rectangles. Then

we compute the local minimum of E, where we get a set of

values for z1. The resulting z1, along with the pre-selected z2,

leads to a function that generally does not have the minimal

error. As shown later, we will “bloat” this function into a

sound abstraction. Therefore, instead of getting the CPWL

function with minimal error, our concern is more on obtaining

a reasonable approximation with low computational effort.

Piecewise Constant Functions. When B1, . . . ,BK in

Equation (1) are set to zero, a useful sub-class of functions is

obtained: piecewise constant functions (PWC). They trade off

accuracy for computational efficiency.

C. PWL Device Modeling

A PWL device model of a set of samples {xi, F (xi)}
is a pair of PWL functions F̃l and F̃u such that for all i,
F̃l(xi) ≤ F (xi) ≤ F̃u(xi). Hence, a PWL device model is a

relational model that is sound with respect to the samples. We

assume that for x ∈ D, F (x) can be evaluated. Without loss

of generality, we also assume that D is a box obtained as the

Cartesian product of intervals I1, . . . , In for each xi of x.

Model Generation. We generate a PWL model for F (x) as

follows. First, we construct a PWL function F̃ (x) using the

procedures described in the previous section. Then for a set

of N samples {xi, F (xi)}, which we call the evaluation set,

we compute an empirical error estimate

ε̂ = max
1≤i≤N

|F (xi)− F̃ (xi)| .

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

198

We add the interval [−ε̂, ε̂] to the function f̃ to obtain a

relational model that is sound with respect to the samples.

One refinement of this approach computes ε̂l and ε̂u that

capture the under-approximation and over-approximation er-

rors respectively. Furthermore, ε̂l and ε̂u can be computed for

each Si, which provides a more fine-grained error estimation.

For CPWL functions, the piecewise estimation is not imme-

diate since the subdivisions are represented implicitly.

The construction of a PWC model is straightforward. Given

a partition S1, . . . , SK , we simply compute the minimal and

maximal values of F (x) for each Si. This results in a function

interval [F̃l, F̃u] that contains all the samples.

Model Encoding. Finally, we consider the encoding of the

models in linear arithmetic. Figure 1 shows the schema for

encoding PWC, SPWL and CPWL models. Let n = |x| be

the number of inputs and assume that each component xi is

subdivided into k parts. We define the size of a formula in

terms of n and k. A PWC model considers K = kn boxes.

For each box, the size of the formula is O(n). Hence, the size

of the encoding is O(knn). For an SPWL model, we have

K = O(knn!), assuming a fixed simplicial decomposition

scheme that divides a cube into n! simplices. The size of a

formula for each box is also O(n), resulting in a encoding

whose size is O(knn!). A CPWL model encodes K = (k+1)n
boundaries (the absolute value terms in the canonical repre-

sentation) rather than boxes. Each boundary equation has a

size of O(n), yielding an encoding of size O(kn2).
Thus, CPWL models have the most economical encoding,

while SPWL results are potentially the least efficient. How-

ever, note that even if two formulae are of the same size, they

are not necessarily equivalent in terms of computational effort.

III. FORMAL DC OPERATING POINT ANALYSIS

The goal of formal DC operating point analysis is to list

all DC operating points of a circuit. The standard approach to

this problem consists of two steps: [2], [3] (a) Encode the DC

operating point condition as constraints, and (b) subdividing

the input and output voltages into many regions, query the

solvers to find if an operating point can exist inside a given

input/output region pair. The nonlinear devices are modeled

as described in Section II.

We note that DC operating regions, especially metastable

regions are relatively hard to identify using simulation tools

like SPICE. A common approach is to perform simulations

with the circuit initialized near a potential DC operating point

and check if the circuit settles to a nearby DC operating point

(see, for example [40]).

Circuit Encoding. The circuit encoding consists of the

Kirchhoff’s current law (KCL) and the device models. The

KCL asserts that the current flowing into a node is equal to

the current flowing out. If a node connects to a voltage source

or ground, its encoding is unnecessary since the current of a

voltage source or ground is unconstrained. PWL device models

are generated and encoded in linear arithmetic as discussed in

Section II.

Abstraction Refinement. The DC analysis can be performed

“monolithically” by a single fine-grained encoding, followed

by numerous queries over regions that can “pinpoint” a DC

operating point to the required degree of precision. A more

efficient top-down approach is suggested by Tiwary et al. [2]

wherein the DC operating points are discovered by repeated

subdivision much like a branch-and-bound scheme. Initially,

large regions are queried for the presence of a DC operating

point using a coarse PWL model. If the solver returns a

satisfiable answer, then the regions are subdivided and refined

PWL models are fitted to these regions.

Spurious Region. We call a region spurious if it is reported

by the analysis, but does not actually contain operating points.

Spurious regions are produced by the sound abstraction of

device models which over-approximates the behavior of de-

vices. Consider the inverter in Figure 2 with its input fixed

to 0.5V . The output can vary between 0.4V and 0.6V due to

the abstraction (in contrast to 0.5V in reality). Suppose the

transistors are linearized on the regions 0.35 ≤ Vout ≤ 0.45,

0.45 ≤ Vout ≤ 0.55 and 0.55 ≤ Vout ≤ 0.65. Then the

regions [0.35, 0.45] and [0.55, 0.65] become spurious. A finer

abstraction may lead to fewer spurious regions. But it also

results in a more complicated model.

IV. FORMAL TRANSIENT ANALYSIS

The abstraction of nonlinear devices also enables formal

transient analysis. Formal transient analysis deals with reach-

ability problems, i.e, given an initial condition, whether the

circuit output can reach values in some range. A simple

approach proposed by Tiwary et al. [2], is to generate an

approximate transition relation by encoding the change in

voltages and currents across capacitors and inductors in the

circuit. The resulting change is approximated by an Euler

step. While such a transient analysis is a poor alternative

to the more sophisticated approach adopted by linear hybrid

systems based approaches [7], [41], it allows us to encode the

approximate reachability by means of a BMC formula. This

can be a potentially faster approach to exploring all possible

behaviors for a bounded time interval.

We employ the transient analysis scheme as yet another

evaluation method for comparing the various PWL models

considered in Section II. However, we note that the Euler step

can be a large over-approximation unless the time step is small.

However, a small time step also means that the depth of the

BMC encoding needs to be larger to perform time bounded

reachability up to the same time interval.

V. EXPERIMENTAL EVALUATION

In this section, we compare the various device modeling

approaches, PWC, SPWL and CPWL. We apply them to

formal DC operating point and transient analyses, as described

in Section III and Section IV. We implement (using the Python

programming language) the various modeling approaches, DC

and transient analyses. Our program processes the input circuit

as a net list and builds a linear arithmetic formula. We use the

Z3 SMT solver to check the satisfiability of these formulae

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

199

S1(x) ⇒ y ∈ f1(x) + [−ε1, ε1]
· · ·

SK(x) ⇒ y ∈ fK(x) + [−εK , εK]

y ∈ a+Bx+
∑K

i=1 ciri + [−ε, ε]
〈α1,x1〉+ β1 ≥ 0 ⇒ r1 = 〈α1,x1〉+ β1

〈α1,x1〉+ β1 < 0 ⇒ r1 = −(〈α1,x1〉+ β1)
· · ·

〈αK ,xK〉+ βK ≥ 0 ⇒ rK = 〈αK ,xK〉+ βK

〈αK ,xK〉+ βK < 0 ⇒ rK = −(〈αK ,xK〉+ βK)

Fig. 1. (Left) Schema for encoding SPWL and PWC models; and (Right) CPWL encoding.

Vin Vout

0.60.50.4

NMOSPMOS

Vout

IDS

Fig. 2. An inverter and its I/O characteristics. Straight lines show the PWL
models of the two devices. Dashed lines are the SPICE models. Shaded region
illustrates the approximation due to abstraction. Note that there is only one
operating point in the region.

under different input/output intervals. All experiments were

run using a Ubuntu 11.10 Desktop on a Quad-core 2.8 GHz

machine with 9 GB memory.

We list the benchmarks with brief descriptions in Table II.

The letters in the second column refer to the types of devices.

M stands for MOSFET transistors, R for linear resistors, C
for linear capacitors and L for linear inductors. The numbers

count how many devices there are in each type.

The first four benchmarks are ring oscillators with different

numbers of stages. The benchmarks starting with “evenosc”

are even-stage oscillators from [1]. Their schematic is shown

in Figure 3(a). The suffixes “lcbr” and “scbr” denote oscillator

benchmarks with known bugs: the oscillators fail due to

incorrect transistor sizing [1]. The benchmark “sqwavegen” is

a square-wave generator based on a CMOS Schmitt trigger.

The “lctankvco” is a voltage-controlled oscillator that uses

the inductors and capacitors as the source of oscillation and

the cross-coupled pair of transistors as negative resistors to

compensate the energy dissipation in the inductor resistance.

The schematics of “sqwavegen” and “lctankvco” are shown in

Figure 3(b) and 3(c), respectively.

TABLE II
BENCHMARKS FOR DC AND TRANSIENT EXPERIMENTS.

Name Size Description
ringosc3s 6M

Ring oscillators
ringosc5s 10M
ringosc7s 14M
ringosc9s 18M

evenosclcbr 16M
Even-stage oscillatorsevenoscscbr 16M

evenoscncbr 16M
sqwavegen 6M, 1R, 1C A square-wave generator
lctankvco 4M, 2R, 2C, 2L An LC-tank VCO

A. Formal DC Operating Point Analysis
In this part, our goal is to compare the performance of

different device modeling approaches in terms of accuracy

with respect to SPICE simulation, the number of SMT queries

and the running time. The setup is as follows: we fix the device

parameters and apply the abstraction refinement described in

Section III. The initial number of subdivisions is set to 2 along

each dimension. Each refinement step further subdivides each

region by splitting each axis into 2 pieces. The refinement

process is applied recursively to further subdivide regions that

are deemed to contain potential operating points. This process

stops after a depth-cutoff that is set to 3 for our experiments.
We carry out our experiments using PWL models with k

subdivisions along each dimension, where k = 1, 2, 4, 6, 8, 16.

We prefix k to denote the specific approach. For instance, 4-

PWC stands for PWC models with k = 4. We omit 1-CPWL

because it does not fit into the algorithm for generating PWL

functions in canonical form [15].
We first report the number of regions that may contain

operating points by each approach in Table III. The number

of operating regions confirmed by SPICE is shown in the

last column. The regions found by various PWL models that

are not confirmed by SPICE are spurious. In Table III, the

number of spurious regions is simply the total number of

reported regions minus the number of real operating points.

The SPICE-based DC operating point discovery is a trial-and-

error process, since the operating points may be metastable.

Accuracy. We compare accuracy in terms of the number of

spurious regions in Table III. Observe that SPWL and CPWL

are only marginally better than PWC. For the ring oscillator

examples, none of the methods reports spurious regions. For

the rest of the examples, the number of regions is generally

more than twice larger than the number SPICE confirmed.

Not surprisingly, we observe that the spurious regions are

neighbors to the confirmed regions. We also observe that

with more subdivisions, the three approaches tend to get

similar results. This shows that the error in the approaches

are negligible making their predictions very similar.

SMT Queries. Next, we compare the number of SMT queries

in Table IV. The number of SMT queries is a proxy for the

number of regions where DC queries occur for a potential

operating point. Here, we see that PWC models consistently

require more queries than SPWL and CPWL. That is because

PWC models over-approximate the underlying device behavior

the most, and therefore produce a lot of false positives that are

subsequently pruned by refinement. Also, we see that SPWL

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

200

U1

U2

U3

U4

U1B U2B U3B U4B

M3
W/L=2

M1
W/L=2

W/L=6
M2

W/L=6
M4

M6
W/L=10

M5
W/L=2

C1

1pF

R1

VDD=1.0V

1MΩ

W/L=5
M1

W/L=5
M2

M3
W/L=10

M4
W/L=10

C2 1pF1pF C1

R1 L2L1 R2

1mH1mH

VDD=1.0V

4μA

10kΩ 10kΩ

(a) (b) (c)
Fig. 3. Circuit diagrams for (a) an even-stage oscillator [1], (b) a square-wave generator, and (c) a voltage controlled oscillator

TABLE III
THE NUMBER OF SPURIOUS REGIONS, WHICH MAY NOT CONTAIN OPERATING POINTS, REPORTED BY EACH APPROACH. THE LAST COLUMN SHOWS THE

NUMBER OF REAL OPERATING POINTS OBTAINED FROM SPICE SIMULATION. THE NUMBERS IN THE SECOND ROW REFER TO THE SUBDIVISION OF THE

CORRESPONDING APPROACH ALONG EACH DIMENSION. “TO” MEANS MORE THAN 500 SECONDS.

PWC SPWL CPWL SPICE
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s – 0 – 1
ringosc5s – 0 – 1
ringosc7s – 0 – 1
ringosc9s TO – 0 – TO – 0 – 1

evenosclcbr 14 4 4 4 4 0 4 4 0 0 TO TO 4 4 4 4 TO 3
evenoscscbr 10 10 6 6 6 6 6 6 6 6 TO TO 6 6 2 2 TO 3
evenoscncbr 22 12 12 12 12 12 12 12 12 TO TO TO 2 TO 2 2 TO 1
sqwavegen 7 5 4 3 3 1 2 1 3 3 3 1 3 2 2 1 1 1
lctankvco 9 9 5 5 3 3 1 3 2 2 2 2 5 5 4 3 3 1

TABLE IV
THE NUMBER OF SMT QUERIES FOR EACH APPROACH. “>” MEANS TIME-OUT WITH A 500 SECONDS LIMIT, AND THE FOLLOWING VALUE IS THE

NUMBER OF QUERIES AT TIME-OUT.

PWC SPWL CPWL
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s 97 13 7 7 7 7 33 13 7 7 7 7 13 7 7 7 7
ringosc5s 833 27 7 7 7 7 149 27 7 7 7 7 27 7 7 7 7
ringosc7s 7937 63 7 7 7 7 653 63 7 7 7 7 63 7 7 7 7
ringosc9s >43291 157 7 7 7 7 2841 157 7 7 7 >5 157 7 7 7 7

evenosclcbr 929 91 35 27 27 27 213 71 35 27 >26 >3 63 35 27 27 >25
evenoscscbr 801 75 63 55 47 47 221 67 63 55 >34 >3 59 55 39 31 >17
evenoscncbr 1185 119 75 63 55 55 177 79 63 >33 >14 >3 83 >67 63 55 >10
sqwavegen 161 55 25 27 19 15 57 35 25 23 17 15 51 25 27 19 13
lctankvco 149 71 29 27 17 13 59 53 15 19 17 13 71 21 19 17 13

is a slightly better than CPWL. Again, the approaches become

quite similar as the number of subdivisions increases.

Running Time. Finally, we consider the running time of each

approach with different subdivisions in Table V. It is obvious

that PWC models are superior to the remaining models, even

though they require more queries to the SMT solver. A likely

explanation is that each SMT query from the PWC approach

is simpler and far easier to solve than the corresponding

queries from the SPWL and CPWL approaches. The results

for CPWL models are interesting. First, the running times do

not necessarily grow with decreased granularity. Even for a

single SMT query, the average solving time does not increase

as fast as the other two approaches. A possible explanation

is that the complexity of CPWL models grows linearly with

the number of subdivisions, unlike the other two approaches,

whose models grow exponentially. On the other hand, even

the simplest CPWL models take considerably more time than

PWC and SPWL counterparts. It suggests that the CPWL

encoding is difficult for SMT solvers.

In summary, as the number of subdivisions in the models

increases, PWC outperforms SPWL and CPWL in the given

set of benchmarks. The running times of PWC and SPWL

grow as the granularity decreases. On the other hand, the

running times of CPWL are less predictable.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

201

TABLE V
RUNNING TIME FOR EACH APPROACH WITH A 500 SECONDS TIME-OUT.

PWC SPWL CPWL
1 2 4 6 8 16 1 2 4 6 8 16 2 4 6 8 16

ringosc3s <0.1 0.1 0.1 0.4 0.9 11 0.4 0.4 1.6 15 34 339 0.5 1.5 8.6 6.7 33
ringosc5s 2.8 0.3 0.2 1.5 1.5 18 2.8 1.4 3.3 17 42 365 15 4.4 8.3 13 54
ringosc7s 75 0.6 0.2 0.8 2 26 17 4.2 4.3 15 30 376 17 5.1 19 16 104
ringosc9s >500 2.1 0.3 1 2.6 33 95 16 6.8 18 44 >500 61 17 36 82 247

evenosclcbr 7.4 1.1 1.3 3.2 9.2 146 17 29 152 368 >500 >500 59 158 111 171 >500
evenoscscbr 6.5 1 2.2 7 16 277 17 29 169 406 >500 >500 85 300 371 319 >500
evenoscncbr 9.7 1.7 3.5 11 29 444 22 73 246 >500 >500 >500 199 >500 343 438 >500
sqwavegen 0.2 0.5 0.5 1.6 2.7 27 0.9 1.1 3.5 9.2 16 120 0.8 1.1 2.6 4 19
lctankvco 0.3 0.7 0.6 2 2.7 35 0.6 1.4 2 8.4 15 125 0.9 0.8 1.8 2.7 22

B. Formal Transient Analysis
We use the ring oscillator benchmarks to compare the per-

formance of the three approaches, PWC, SPWL and CPWL,

on formal transient analysis. The setup is as follows: for

each method, we perform time-bounded reachability queries

for different time frames, and compare the accuracy of the

results relative to SPICE simulations, which report a single

concrete voltage value at each time interval. A reachability

query checks whether the output can reach a certain interval

in a specified time frame. We set the initial output voltage

to 1.0V and subdivide the range of the output voltages into

ten intervals, each of which is queried individually. We use

backward Euler integration to solve the transient behavior of

active devices. The time step is fixed to a value that is small

enough to obtain accurate integration results.

TABLE VI
REACHABLE INTERVALS (OVER-APPROXIMATIONS) FOUND BY VARIOUS

APPROACHES FOR DEPTHS 1, 5 AND 10 STEPS OF TRANSIENT ANALYSIS

FOR THE THREE-STAGE RING OSCILLATOR. THE REACHABLE SETS ARE

INDEPENDENT OF TRANSISTOR SIZING. RUNNING TIMES ARE LISTED IN

TABLE VII.

Reachable Interval Approach
1-step [0.9,1.0] all approaches

5-step
[0.7,1.0] 16-PWC
[0.6,1.0] remaining approaches

10-step
[0.4,1.0] 4-PWC, 6-PWC and 8-PWC
[0.3,1.0] remaining approaches

We simulate for one time frame, five time frames and ten

time frames respectively. The results are shown in Table VI

and Table VII. Barring timeouts, the three approaches produce

almost identical reachability results.
First, let us observe that a better model is helpful in getting a

more accurate reachable interval. For instance, 4-PWC reports

a reachable interval of [0.4, 1.0] at the tenth time frame,

while 2-PWC concludes a larger reachable interval: [0.3, 1.0].
However, notice that the reachable intervals are generally too

over-approximate compared to the SPICE simulations which

report a single concrete value at each time step. Therefore,

the approximations seem to be too coarse to provide useful

reachability information. On the other hand, increasing the

number of subdivisions makes the computation intractable

(Table VII).
In terms of running time, there are many time-outs for each

approach. This may seem surprising since the benchmarks

are small and the number of time frames is not large. We

suspect that the PWL encoding forces the SMT solver to

explore a large set of transistor mode combinations, wherein

each subdivision in the PWL represents a transistor mode. The

number of such mode combinations increases exponentially

as the unrolling depth is increased. The observations suggest

that a simple BMC-style encoding of transient analysis may

be suboptimal in terms of performance and accuracy.

VI. CONCLUSION

To summarize this paper, we compare the applicability of

three device modeling approaches, PWC, SPWL and CPWL,

to the formal DC operating point and formal transient anal-

ysis. We find that PWC is the most suitable approach for

operating point analysis. Both SPWL and CPWL generate

more complicated models. The benefits from those models,

for instance, fewer spurious regions and fewer SMT queries,

do not compensate the extra cost in terms of solving time.

On the other hand, none of the approaches performs well for

transient analysis with the described simulation scheme in the

selected benchmark set. The results suggest that with a sound

abstraction of device models, the simple BMC-style unrolling

does not work well.

In the future, it is interesting to identify whether a region

contains a stable or metastable operating point. Also, we

can utilize the unsatisfiable core of SMT queries, which

can potentially rule out more than one region each time.

Techniques from unsatisfiablity solvers, such as iSAT [10],

can also be applied to the DC operating points analysis.

REFERENCES

[1] K. D. Jones, J. Kim, and V. Konrad, “Some “real world” problems in the
analog and mixed signal domains,” in Proceedings of Designing Correct
Circuits, 2008.

[2] S. K. Tiwary, A. Gupta, J. R. Phillips, C. Pinello, and R. Zlatanovici,
“First steps towards SAT-based formal analog verification,” in ICCAD,
2009, pp. 1–8.

[3] M. H. Zaki, I. M. Mitchell, and M. R. Greenstreet, “DC operating point
analysis - a formal approach,” in Proceedings of Formal Verification of
Analog Circuits (FAC), 2009.

[4] L. Hedrich and E. Barke, “A formal approach to nonlinear analog circuit
verification,” in ICCAD, 1995, pp. 123–127.

[5] M. Freibothe, J. Döge, T. Coym, S. Ludwig, B. Straube, and E. Kock,
“Verification-oriented behavioral modeling of nonlinear analog parts
of mixed-signal circuits,” in Advances in Design and Specification
Languages for Embedded Systems, 2007, pp. 37–51.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

202

TABLE VII
RUNNING TIME OF 1-STEP, 5-STEP AND 10-STEP TRANSIENT ANALYSIS.

PWC SPWL CPWL
2 4 6 8 16 2 4 6 8 16 2 4 6 8 16

1-step

ringosc3s 0.1 0.1 0.2 0.3 2.4 0.1 0.3 0.5 1.1 5.6 0.1 0.2 0.3 0.5 2.8
ringosc5s 0.1 0.2 0.3 0.8 7.1 0.2 0.6 1.4 3.1 18 0.1 0.4 1 1.3 7.8
ringosc7s 0.1 0.2 0.6 1.2 11 0.3 0.8 2 3.8 27 0.2 0.5 0.8 1.8 13
ringosc9s 0.2 0.4 0.8 1.8 17 0.5 1.4 3.2 6.4 47 0.3 0.6 1.3 2.1 17

5-step

ringosc3s 0.9 4.7 9 13 80 10 53 191 372 >500 41 44 92 106 430
ringosc5s 1.9 16 40 59 430 18 221 >500 >500 >500 >500 95 258 317 >500
ringosc7s 4.3 34 94 162 >500 31 306 >500 >500 >500 >500 161 384 >500 >500
ringosc9s 3.9 57 146 200 >500 32 >500 >500 >500 >500 >500 478 >500 >500 >500

10-step

ringosc3s 6.7 50 88 185 >500 200 >500 >500
ringosc5s 44 >500 372 >500 >500
ringosc7s 23 >500 >500 >500 >500
ringosc9s 45 >500 >500 >500 >500

[6] M. H. Zaki, G. Al-Sammane, S. Tahar, and G. Bois, “Combining
symbolic simulation and interval arithmetic for verification of AMS
designs,” in FMCAD, 2007, pp. 207–215.

[7] M. Althoff, A. Rajhans, B. Krogh, S. Yaldiz, X. Li, and L. Pileggi,
“Formal verification of phase-locked loops using reachability analysis
and continuation,” in ICCAD, 2011, pp. 659–666.

[8] S. Little, D. Walter, K. Jones, C. J. Myers, and A. Sen, “Analog/mixed-
signal circuit verification using models generated from simulation
traces,” International Journal of Foundations of Computer Science,
vol. 21, no. 2, pp. 191–210, 2010.

[9] W. Denman, B. Akbarpour, S. Tahar, M. H. Zaki, and L. C. Paulson,
“Formal verification of analog designs using MetiTarski,” in FMCAD,
2009, pp. 93–100.

[10] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige, “Efficient
solving of large non-linear arithmetic constraint systems with complex
Boolean structure,” Journal on Satisfiability, Boolean Modeling and
Computation, Special Issue on SAT/CP Integration, pp. 209–236, 2007.

[11] S. Gao, M. K. Ganai, F. Ivancic, A. Gupta, S. Sankaranarayanan, and
E. M. Clarke, “Integrating ICP and LRA solvers for deciding nonlinear
real arithmetic problems,” in FMCAD, 2010, pp. 81–89.

[12] M. K. Ganai and F. Ivancic, “Efficient decision procedure for non-linear
arithmetic constraints using CORDIC,” in Proceedings of the Formal
Methods in Computer Aided Design, 2009, pp. 61–68.

[13] P. Nuzzo, A. Puggelli, S. A. Seshia, and A. L. Sangiovanni-Vincentelli,
“CalCS: SMT solving for non-linear convex constraints,” in FMCAD,
2010, pp. 71–79.

[14] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
(TACAS), 2008, pp. 337–340.

[15] L. O. Chua and A.-C. Deng, “Canonical piecewise-linear modeling,”
IEEE Transactions on Circuits and Systems, no. 5, pp. 511–525, 1986.

[16] M.-J. Chien and E. S. Kuh, “Solving nonlinear resistive networks using
piecewise-linear analysis and simplicial subdivision,” IEEE Transactions
on Circuits and Systems, vol. 24, no. 6, pp. 305–317, 1977.

[17] V. B. Rao, D. V. Overhauser, T. N. Trick, and I. N. Hajj, Switch-Level
Timing Simulation of MOS VLSI Circuits. Kluwer Academic Publishers,
1989.

[18] G. Frehse, B. H. Krogh, and R. A. Rutenbar, “Verifying analog oscillator
circuits using forward/backward abstraction refinement,” in DATE, 2006,
pp. 257–262.

[19] G. Frehse, “Phaver: Algorithmic verfication of hybrid systems past
hytech,” in HSCC, 2005, pp. 258–273.

[20] T. Dang, A. Donze, and O. Maler, “Verification of analog and mixed-
signal circuits using hybrid systems techniques,” in FMCAD, 2004.

[21] S. Gupta, B. H. Krogh, and R. A. Rutenbar, “Towards formal verification
of analog designs,” in ICCAD, 2004, pp. 210–217.

[22] B. I. Silva, K. Richeson, B. H. Krogh, and A. Chutiman, “Modeling and
verification of hybrid dynamical system using checkmate,” in ADPM,
2000.

[23] A. Chutiman and B. Krogh, “Computing polyhedral approximations to
flow pipes for dynamic systems,” in Proceedings of IEEE CDC, 1998.

[24] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis. SIAM, 2009.

[25] M. Berz and K. Makino, “Performance of taylor model methods for
validated integration of odes,” vol. 3732, pp. 69–74, 2005.

[26] S. Steinhorst and L. Hedrich, “Model checking analog systems using an
analog specification language,” in DATE, 2008, pp. 324–329.

[27] W. Hartong, L. Hedrich, and E. Barke, “Model checking algorithms for
analog verification,” in DAC, 2002, pp. 542–547.

[28] W. Hartong, K. Klausen, and L. Hedrich, “Formal verification of non-
linear analog systems: Approaches to model and equivalence checking,”
in Advanced Formal Verification, R. Drechsler, Ed. Kluwer, 2004, pp.
205–245.

[29] S. Little, D. Walter, N. Seegmiller, C. Myers, and T. Yoneda, “Veri-
fication of analog and mixed-signal circuits using timed hybrid Petri
nets,” in Automated Technology for Verification and Analysis, 2004, pp.
426–440.

[30] S. Little, N. Seegmeller, D. Walter, C. Myers, and T. Yoneda, “Verifi-
cation of analog/mixed-signal circuits using labeled hybrid Petri nets,”
in ICCAD, 2006, pp. 275–282.

[31] D. Walter, S. Little, C. J. Myers, N. Seegmiller, and T. Yoneda,
“Verification of analog/mixed-signal circuits using symbolic methods,”
IEEE Transactions on CAD of Integrated Circuits and Systems, vol. 27,
no. 12, pp. 2223–2235, 2008.

[32] E. M. Clarke, A. Donze, and A. Legay, “Statistical model checking of
analog mixed-signal circuits with an application to a thrid order δ-σ
modulator,” in Proceedings of the 4th International Haifa Verification
Conference on Hardware and Software: Verification and Testing, 2009,
pp. 149–163.

[33] E. M. Clarke and P. Zuliani, “Statistical model checking for cyber-
physical systems,” in Automated Technology for Verification and Anal-
ysis, 2011, pp. 1–12.

[34] H. L. S. Younes and R. G. Simmons, “Statistical probabilistic model
checking with a focus on timed-bounded properties,” Information and
Computation, vol. 204, no. 9, pp. 1368–1409, 2006.

[35] A. Singhee and R. A. Rutenbar, “From finance to flip flops: A study
of fast quasi-monte carlo methods from computational finance applied
to statistical circuit analysis,” in Proceedings of the 8th International
Symposium on Quality Electronic Design, 2007, pp. 685–692.

[36] A. Singhee, S. Singhal, and R. A. Rutenbar, “Practical, fast Monte Carlo
statistical static timing analysis: Why and how,” in ICCAD, 2008, pp.
190–195.

[37] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo
Method. Wiley Series in Probability and Mathematical Statistics, 2008.

[38] ——, The Cross-entropy Method: An Unified Approach to Combi-
natorial Optimization, Monte-Carlo Simlation and Machine Learning.
Springer-Verlag, 2004.

[39] A. Hatcher, Algebraic Topology. Cambridge university Press, 2002.
[40] P. Varma, B. S. Panwar, and K. N. Ramganesh, “Cutting metastabil-

ity using aperture transformation,” IEEE Transactions on Computers,
vol. 53, pp. 1200–1204, 2004.

[41] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in CAV, ser. Lecture Notes in Computer
Science, vol. 6806. Springer, 2011, pp. 379–395.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

203

Forward and Backward : Bounded Model Checking
of Linear Hybrid Automata From Two Directions

Yang Yang∗, Lei Bu∗†, and Xuandong Li∗

Abstract—Instead of encoding the bounded state space of a
linear hybrid automaton(LHA) in given threshold k into SMT
formulas then solving them by SMT solvers, the authors proposed
a different approach to handle the bounded reachability verifica-
tion(BMC) of LHA in the previous work. First, the reachability
specification along one abstract path in LHA can be checked by
linear programming (LP). Then, all the abstract paths under the
threshold can be checked one by one by depth-first-search (DFS)
traversing. This approach was implemented in a prototype tool
BACH, and the experiment result shows it is efficient.

As BACH uses DFS to traverse the bounded state space,
clearly, if DFS traverses more quickly, the BMC can be finished
more efficiently. Nevertheless, in many cases, the path segments
which make the system infeasible are hidden “deeply” in the
model or have many entry points which makes the DFS difficult
to find them or has to traverse them many times. This burdens
the DFS-style BMC approach a lot.

To handle this problem, in this paper, the authors propose
a backward-DFS BMC approach for LHA. First, reverse the
graph structure of LHA. Then, conduct the DFS-style BMC on
the reversed LHA. In this way, the “deep” path segments in the
forward-DFS can be found very quickly to prune the DFS tree
which is needed to be traversed. This backward-DFS approach is
implemented into BACH. The experiment shows the performance
of BACH is optimized significantly to handle large cases.

I. Introduction
Reachability verification of Linear Hybrid Automata (LHA)

[1] is a very difficult and important problem. Currently,
researchers always try to handle this problem in two ways:

Classical Model Checking(CMC)[4]: Compute the com-
plete state space by methods like polyhedra computation,
like HYTECH[6] and PHAVer[7]. First of all, the classical
reachability verification problem of LHA is proven to be
undecidable[2], [3]. Furthermore, these methods are very com-
plex and sensitive to the number of variables. Thus, they do
not scale well to the size of practical problems.

Bounded Model Checking(BMC)[5]: Encoding the bounded
reachability problem into the satisfiability problem of a
boolean combination of propositional variables and linear
mathematical constraints, which can be solved by SMT
solvers[8], [9]. As this technique requires to encode the
bounded problem space firstly, when the system size or the
given threshold is large, the object problem will be very huge,
which restricts the size of the problem that can be solved.

Both classical and bounded model checking are feeding
the (partly) complete state space to the underlying solver

∗State Key Laboratory for Novel Software Technology, Department of
Computer Science and Technology, Nanjing University, Nanjing, Jiangsu,
P.R.China, 210046 Email: yangyang@seg.nju.edu.cn,{bulei, lxd}@nju.edu.cn
† Corresponding author.

at one time which suffers from the state explosion problem
and restricts the problem size that can be solved. Study[13]
proposed a linear programming (LP)-based approach to check
one abstract path at one time to find whether there exists
a behavior of LHA along this path and satisfy the given
reachability specification. Study[15] extended this approach
by using forward depth-first-search (F-DFS) to traverse on the
graph structure of LHA to enumerate and check all the abstract
paths with length no longer than the threshold one by one to
answer the bounded reachability problem. Furthermore, when
the DFS is finished before touching the bound, this approach
can prove the given specification is not satisfied in general, not
only in the given bound. A prototype tool BACH[15], [16] was
implemented based on this idea. The experiments show that
BACH is efficient in many cases.

Clearly, if DFS traverses more quickly, the BMC can be
finished more efficiently. In BACH, once a path is found to
be infeasible, the DFS will ask the underlying LP solver to
locate the path segment which makes this path infeasible and
backtrack to the path segment to prune the behavior tree which
is needed to be traversed [17]. Nevertheless, in many cases,
the path segments which make the path infeasible are hidden
“deeply” or have many entry points in the graph structure
which makes the DFS difficult to find these path segments or
has to traverse them time and time again. This asks the DFS to
traverse a lot of obviously infeasible paths, which makes the
backtracking strategy inefficient in many cases and burdens
the DFS-style BMC a lot.

To handle this problem, in this paper, the authors propose a
backward-DFS BMC (B-DFS)[10], [11] approach to comple-
ment the classical F-DFS. First, reverse the graph structure of
LHA. Mark the original target location as initial location, and
mark the original initial location as target. Then, conduct the
F-DFS BMC on the reversed LHA. As these path segments
are “deep” in the original graph structure, clearly, if the DFS
is conducted in a backward way, the path segments will
be “shallow” in the reversed graph and can be found more
quickly. Furthermore, for those path segments which have
many entry points, the abstract paths with these path segments
as suffix will be pruned easily in the reversed LHA to shrink
the size of the DFS tree which is needed to be traversed.

This B-DFS BMC idea is implemented into BACH as a
complement to the F-DFS BMC. Once a LHA and a reach-
ability specification is given, BACH will start two threads,
one conducts the F-DFS BMC on the original LHA and the
other conducts the B-DFS BMC on the reversed model. The
procedure terminates when any of these two threads finish.
We conduct a series of case studies on the new BACH, and

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

204

compare it with both state-of-the-art classical model checker
PHAVer and SMT solver MathSAT. The experiment results
show that:
• By B-DFS, the state space needed to search and verify is

pruned substantially. Therefore, BACH outperforms the
other competitors significantly.

• In many cases, the DFS is finished before touching the
bound. Then, in this situation, BACH can prove the given
specification is not satisfiable in general, not only in the
given bound, which is incapable for other BMC checkers.

II. The Underlying Techniques

A. Forward-DFS Approach
Now, let’s recall the F-DFS BMC approach given in

study [15]. The main idea is to traverse all the abstract paths
with length shorten than or equal to the bound by DFS on
the graph structure of the LHA. Whenever an abstract path
ρ, which contains the target location, is found, a decision
procedure will be called to check whether the LHA has a
feasible behavior according with ρ. The decision procedure
will encode all the syntax elements, i.e., invariants, guards
and e.t.c., in ρ into a linear constraint set R as guided by
[13] and [14]. In this manner, the reachability problem of ρ is
transformed into the feasibility of R which can be answered
by an LP solver very efficiently.

It is obvious that the performance of the F-DFS-based BMC
depends on the performance of the DFS algorithm. If the DFS
can be finished more quickly, the BMC can be finished more
efficiently. Therefore, we gave an optimization technique to
generate unsatisfiable core from the proven infeasible paths
to tailor the state space needed to be traversed[17]. Once ρ is
proved to be infeasible by the underlying LP solver, the solver
will provide a infeasible irreducible set (IIS) [18] of R, which
is a minimal set of constraints in R that makes R infeasible.
Then the constraint set R′ that IIS located can be mapped
back to a path segment ρ′ in the path ρ, which means ρ′ is
the infeasible core in the path that makes ρ infeasible. Since
removing any constraint in R′ will make it feasible, so the
DFS will backtrack to the location preceding the last location
in ρ′.

Take the sample LHA in Fig.1 for example. We want
to check whether location v6 is reachable within bound 20.
Suppose the current visiting path is ρ = 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉 which is proved to be infeasible

by an LP solver, and the infeasible path segment located by
IIS is ρ′ = 〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉, so the location that DFS will

backtrack to is v3 instead of v5. Then the DFS will begin to
search the next branch under ρ′′ = 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉, which

is 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e8
〈v5〉 −→

e5
〈v6〉. As we can see,

the subtree beneath ρ′′ −→
e3
〈v4〉 is pruned completely to speed

up the DFS.
Nevertheless, let’s look at the following path ρ1 = 〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉.

ρ1 is a graphically correct path beneath ρ′′ and contains target
location v6. Therefore, the F-DFS BMC will ask the underlying

Fig. 1. Sample Automaton

decision procedure to check whether ρ1 is feasible or not.
Indeed, as ρ1 contains ρ′, it can be proved to be infeasible at
once. Then DFS will backtrack to the second v3 in ρ1. But, as
the bound 20 is not reached yet, the DFS will traverse the loop
〈v1〉 −→e1

〈v2〉 −→e2
〈v3〉 for the third time and then ρ′ again, i.e.,

traverse a new path 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e9
〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉. In this

manner, lots of time will be wasted on DFS to traverse these
paths which are doomed to be infeasible. Obviously, if there
is a method to prune the DFS tree and avoid the visiting of
such paths, the DFS-BMC will be much more efficient.

B. Backward-DFS Approach
As discussed above, in many times, the path segments which

make the path infeasible are hidden quite “deeply” or could
have many entries in the graph structure which makes the
F-DFS difficult to find them or has to traverse them lots of
times. To solve this problem, in this paper we propose to
conduct the DFS search in a backward way(B-DFS BMC):
First, reverse the transition relation of the LHA model. For
each transition 〈v1〉 −→e1

〈v2〉 in LHA H, there will be a
transition 〈v2〉 −→e1

〈v1〉 in the reversed LHA ¬H. Then mark
the original target location as initial location, and mark the
original initial location as target. For example, Fig.2 is the
reversed model of the LHA given in Fig.1.

Now, we can conduct the F-DFS BMC on the reversed LHA,
which means searching for a reversed path from the original
target location to the initial location. Once a reversed path is
found, we will ask the LP solver to check the accordingly path
in the original model and locate the infeasible path segments
as well. As many infeasible path segments are “deep” in the
original graph structure, if the DFS is conducted in a backward
way, these path segments will be “shallow” in the reversed
structure and can be found more quickly. Furthermore, for
those path segments which have many entry points, all the
paths containing those path segments as “suffix” will be
reversed, then those infeasible path segments will become
“prefix” now. As a result, these paths can be pruned easily

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

205

in the reversed LHA to shrink the size of the DFS tree which
is needed to be traversed.

Fig. 2. Reversed Sample Automaton

Now, let’s look at the previous example again (whether v6 is
reachable within bound 20 in Fig.1). On the reversed model,
Fig.2, the first path that is traversed and solved is: ¬ρ1 =

〈v6〉 −→
e5
〈v5〉 −→

e4
〈v4〉 −→

e3
〈v3〉 −→

e2
〈v2〉 −→

e1
〈v1〉. The accordingly

path in the original model is ρ1 = 〈v1〉 −→
e1
〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉. Therefore, ρ1 is given to the underlying

LP solver. The LP solver can tell that ρ1 is infeasible and
ρ
′
1 = 〈v2〉 −→

e2
〈v3〉 −→

e3
〈v4〉 is the infeasible core. The according

infeasible core in ¬ρ1 is ¬ρ′1 = 〈v4〉 −→
e3
〈v3〉 −→

e2
〈v2〉. So, the

location which is backtracked to is v3 in ¬ρ1. As v3 has no
other successor locations in ¬H, the DFS keeps backtracking
to v5 and traverses the next path ¬ρ2 = 〈v6〉 −→

e5
〈v5〉 −→

e8
〈v1〉.

Similarly, LP solver locates the infeasible core path segment
of ¬ρ2 as ¬ρ′2 = 〈v6〉 −→

e5
〈v5〉 −→

e8
〈v1〉. In this case, the DFS

backtracks to v5 in ¬H again and finds there is no more path
to travel. This means there doesn’t exist a feasible path which
can go from the initial location to the target. Therefore, the
target location v6 can be proved to be not reachable in general,
not only within bound 20!

Clearly, in this example, the DFS tree that needed to be
traversed are shrunk significantly by B-DFS BMC. Many paths
like (〈v1〉 −→

e1
〈v2〉 −→

e2
〈v3〉)k −→

e3
〈v4〉 −→

e4
〈v5〉 −→

e5
〈v6〉 in F-DFS

are pruned. The B-DFS only needs to check two paths at all
to tell location v6 is unreachable.

C. Bidirectional-DFS Implementation
As discussed above, if the path segment which makes the

whole path infeasible is “deep” or has many entry points,
the B-DFS BMC method will be more efficient than the F-
DFS BMC method. Nevertheless, in another word, if the path
segment is “shallow” or has many exit points, then F-DFS
BMC will outperform B-DFS BMC. So, none of these two
techniques can take over the other one.

Therefore, we combine the F-DFS and B-DFS BMC to
together, which results in a bidirectional-DFS BMC. In our
bidirectional-DFS, the algorithm will start two threads, one

TABLE I
Pseudo code for Bidirectional-DFS BMC

Solver (HybridAutomata ha)
1 . HybridAutomata har=reverse(ha);
2 . Thread t1=new subSolver(ha);
3 . Thread t2=new subSolver(har);
4 . while t1.isAlive() and t2.isAlive()
5 . sleep(10);
6 . if (t1.isAlive())
7 . return t2.result();
8 . else
9 . return t1.result();
10 . return 0;

conducts the F-DFS BMC on the original LHA and the other
conducts the B-DFS on the reversed model. Be different
from classical bidirectional-DFS algorithms like[11], [12],
where the two threads can cooperate with each other, in our
algorithm, these two threads work in a competition nature,
that these two threads will not communicate with each other
during searching, and the algorithm terminates when any of
these two threads finish the searching. Under this setting, no
matter where the infeasible path segment is, our bidirectional-
DFS BMC can traverse the state space efficiently. The pseudo
code for our implementation is shown in Table. I.

III. Case Studies

We implement the bidirectional-DFS BMC, (F-DFS plus
B-DFS), into our LHA bounded model checker BACH [15],
[16] as guided by the last section. The latest version of BACH
(V4.0) is implemented in Java, and can be downloaded from
http://seg.nju.edu.cn/BACH/. As the LP solver underlying the
previous versions of BACH is OR-objects[19] which does not
support the functionality of IIS analysis, BACH 4 calls the
IBM CPLEX[20] instead, which gives a nice support of IIS
analysis. The main functionality of BACH is provided by the
following set of services:
• Graphical LHA Editor: This component allows users to

construct, edit, and perform syntax analysis of LHA
interactively. This Editor can also transform the graphical
representation of LHA to a readable text file which is used
as the input file for reachability checking.

• Path-Oriented Reachability Checker: The checker re-
quires users to select a specific path in the model. Then,
it can check whether the reachability specification is
satisfied along with the given path.

• Bounded Reachability Checker: This checker uses the
path-oriented checker as underlying solver. It traverses
the behavior tree of the model under the threshold by our
adapted DFS algorithm, and checks the related path for
reachability to perform bounded reachability checking.

In order to evaluate the performance of the BACH 4.0, we
conduct a series of case studies on a set of well-known cases,
which includes the temperature control system in Fig.3 and
water-level monitor system in Fig.4, the scalable automated
highway system in Fig.5, and the sample automaton given in
Fig.1. The target locations are all marked by double circle in
the models and they are all unreachable.

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

206

We compare the BMC performance of BACH 4.0, marked
as BACHF+B, with the previous BACH, which only in-
cludes F-DFS and marked as BACHF , and the-state-of-the-
art SMT solver MathSAT5[9]. The experiments are conducted
on a Think Center desktop machine(Intel Core2 Quad CPU
2.83GHz, 4GB RAM and Ubuntu 10.04). The time limit for
experiment is set as one hour. The input models we used in ex-
periments are all available from http://seg.nju.edu.cn/BACH/.

Fig. 3. Temperature Control System

Fig. 4. Water-Level Monitor System

Fig. 5. Automated Highway System

The experiment data for the time (second) spent in each
benchmark is shown below in Table.II-V respectively. If the
checker fails to give a result in the time limit, the correspond-
ing blank is marked as N/A. The number of bound means the
largest number of discrete locations that a path can have in
the state space under searching. Furthermore, as we mentioned
that if the DFS finished before touching the bound, then BACH
can prove the target is not reachable in general. In such cases,
the time that BACH spent for solving the problem are marked
with subscript G. For example, for the sample automaton, no
matter how large the bound is, the new BACH only needs to
check two paths to tell that the location v6 is not reachable in
general which only took 0.01 second. Therefore, in Table.II,
all the blanks in column BACHF+B are combined to together.
Besides of that, a special row ∞ is added to emphasise this
problem can be proved in general not only in given bound.

As we can see from these tables that, for sample, water and
highway system, new BACH can all give a general proof of the
unreachability of the targets. Therefore, we make a comparison
of new BACH with PHAVer[7] which is the-state-of-the-art
classical model checker for LHA. We find that for sample
automaton and water automaton, both BACH and PHAVer can
finish in 0.01 second. For highway system which size, number
of locations and variables, is scalable by increasing the number
of vehicles in the system, the experimental data is plotted in
Fig.6. We can see that the largest highway system that new
BACH solved in one hour has 150 vehicles included, which
is a big model of 150 variables and 151 locations, while in
one hour, PHAVer can only solve a system with 6 vehicles.
Furthermore, the only model that new BACH can not give
a general proof is the temperature control system, while the
computation of PHAVer can not terminate on this model and
it fails to give any result about this model.

 0.01

 0.1

 1

 10

 100

 1000

 3600

 3 4 5 6 8 10 20 40 60 80 100 150

Ti
m

e
(S

ec
on

d)

The Number of Vehicles

BACHF+B
PHAVer

Fig. 6. BACH VS PHAVer on Automated Highway System

From these data, we can see that:
• By the help of integrating backward-DFS into BACH, the

performance of BACH is optimized significantly.
• As BACH only checks one path at a time, the complexity

of the verification is well controlled. As a result, the
scalability of BACH is much better than the SMT-style
BMC solvers, like MathSAT.

• When the DFS terminates before touching the bound,
DFS-style BMC can prove the unreachability of certain

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

207

TABLE II
Performance On The Sample Automaton

�
�

�
�

�
�

��
Bound

Tech. BACHF BACHF+B MathSAT

40 0.798

0.01G

4.44
60 86.303 17.977
80 N/A 38.006
200 N/A 2597.77
∞ N/A N/A

TABLE III
Performance On The Tempreture Control System

�
�

�
�

�
�

��
Bound

Tech. BACHF BACHF+B MathSAT

20 0.201 0.136 0.748
40 140.618 0.665 7.896
100 N/A 6.903 613.774
600 N/A 1399.473 N/A

TABLE IV
Performance On TheWater-levelMonitor Automaton
�

�
�

�
�

�
��

Bound
Tech. BACHF BACHF+B MathSAT

50 0.016

0.01G

3.544
150 0.046 139.141
250 0.167 2050.204

8000 2194.268 N/A
∞ N/A N/A

TABLE V
Performance On The Automated Highway System with 10 Vehicles

�
�

�
�

�
�

��
Bound

Tech. BACHF BACHF+B MathSAT

10 1.882

0.733G

0.648
50 N/A 21.157

100 N/A 146.665
150 N/A 3100.934
∞ N/A N/A

targets in general which is incapable for SMT-style BMC
checker.

• The underlying decision procedure of BACH is LP. It
is well known that LP is much cheaper than polyhedral
computation which is under PHAVer. As polyhedral com-
putation is extremely sensitive to number of variables, we
can see BACH outperforms PHAVer substantially when
facing system with large number of variables.

IV. Conclusion and FutureWork
The state-of-the-art tools for the bounded reachability anal-

ysis of LHA can only analyze systems with small dimension
and bound. In the previous work, we present a DFS-style BMC
method to traverse and check each abstract path in bound in
the graphical structure of the LHA. Clearly, the DFS finishes
more quickly, the bounded model checking can be conducted
more efficiently.

In this paper, we present a backward searching technique
for the DFS-style traversing strategy and combine it with the
classical forward DFS in our tool BACH to accelerate the
DFS traversing. The experiments show that the size of the
problem that BACH can solve is increased substantially. By
this forward plus backward DFS approach, BACH outperforms
the-state-of-the-art competitors significantly.

In the current setting, the F-DFS and B-DFS are running
independently. In the future, we will try to let these two threads
to cooperate with each other. Then the state space has been
pruned by one thread can benefits the other one, and the DFS-
based BMC shall be finished more efficiently.

Acknowledgment
We would like to thank the anonymous reviewers for

their valuable comments and suggestions. This work is sup-
ported by the National Natural Science Foundation of China
(No.61100036, No.90818022, and No.61170066), the Na-
tional Grand Fundamental Research 973 Program of China
(No.2009CB320702), the National 863 High-Tech Programme
of China (No.2011AA010103, No.2012AA011205) and by the
Jiangsu Province Research Foundation (No.BK2011558).

References
[1] Thomas A. Henzinger. The theory of hybrid automata. In Proceedings

of LICS 1996, IEEE Computer Society Press, 1996, pp. 278-292.
[2] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.

What’s Decidable About Hybrid Automata? In Journal of Computer and
System Sciences, 57:94-124, 1998.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H.Ho, X.
Nicollin, A. Olivero, J. Sifakis, S. Yovine. The algorithmic analysis of
hybrid systems. In Theoretical Computer Science, 138(1995), pp.3-34.

[4] E. Clarke, O. Grumburg, and D. Peled. Model Checking. The MIT Press,
1999.

[5] A. Biere, A. Cimatti, E. Clarke, O. Strichman, Y. Zhu. Bounded Model
Checking. In Advance in Computers, Vol.58, Academic Press, 2003,
pp.118-149

[6] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: a model checker
for hybrid systems. In STTT, 1:110-122, Springer, 1997.

[7] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems past
HyTech. In Proceedings of HSCC’05, LNCS 2289, pp.258-273.

[8] M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. In Journal on Satisfiability, Boolean Modeling and
Computation, 2007, vol.1, pp.209-236

[9] Gilles Audemard, Marco Bozzano, Alessandro Cimatti, Roberto Sebas-
tiani. Verifying Industrial Hybrid Systems with MathSAT. In Proceed-
ings of BMC 04, ENTCS 119:2, Elsevier Science, 2005, pp. 17-32.

[10] Ofer Strichman. Accelerating Bounded Model Checking of Safety
Properties”, In Formal Methods for System Design, 24, pp.5-24, 2004.

[11] Dennis de Champeaux, Lenie Sint. An improved bidirectional heuristic
search algorithm, In Journal of the ACM 24:(2), pp.177-191, 1977.

[12] Ira Pohl. Bi-directional Search, In Machine Intelligence, 6, Edinburgh
University Press, pp.127C140, 1971.

[13] X. Li, S. Jha, and L. Bu. Towards an Efficient Path-Oriented Tool
for Bounded Reachability Analysis of Linear Hybrid Systems using
Linear Programming. In Proceedings of BMC06, ENTCS 174:3, Elsevier
Science, 2007, pp.57-70.

[14] L. Bu, and X. Li. Path-Oriented Bounded Reachability Analysis of Com-
posed Linear Hybrid Systems, In Software Tools Technology Transfer,
13:4, pp.307-317, Springer, 2011.

[15] L. Bu, Y. Li, L. Wang and X. Li. BACH: Bounded Reachability Checker
for Linear Hybrid Automata. In Proceedings of FMCAD 08, IEEE
Computer Society, pp.65-68,2008.

[16] L. Bu, Y. Li, L. Wang, X. Chen and X. Li. BACH 2: Bounded
ReachAbility CHecker for Compositional Linear Hybrid Systems, In
Proceedings of the 13th Design Automation & Test in Europe Confer-
ence, Dresden, Germany, pp. 1512-1517, 2010.

[17] L. Bu, Y. Yang and X. Li. IIS-Guided DFS For Efficient Bounded
Reachability Analysis of Linear Hybrid Automata, In Proceedings of
HVC 2011.

[18] Chinneck, J., Dravnieks, E. Locating minimal infeasible constraint sets
in linear programs. In ORSA Journal on Computing, 3 (1991), 157-168.

[19] OR-Objects. http://OpsResearch.com/ OR-Objects/index.html.
[20] CPLEX. http://www-01.ibm.com/software/integration/optimization/cplex-

optimizer/

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

208

Author Index

Abdulla, Parosh Aziz . 24 Li, Xuandong . 204
Arbel, Eli . 82 Lvov, Alexey . 141
Atig, Mohamed Faouzi . 24 Malik, Sharad . 6
Baumgartner, Jason . 157, 182 Maniatis, Petros . 68
Beyer, Dirk . 106 Manolios, Panagiotis . 3, 34
Brain, Martin . 131 Matsliah, Arie . 182
Brat, Guillaume . 3 Mony, Hari . 157, 182
Bu, Lei . 204 Mover, Sergio . 187
Cimatti, Alessandro 4, 122, 187 Myreen, Magnus O. 78
Claessen, Koen . 52 Narasamdya, Iman . 122
Drechsler, Rolf . 82 Pantel, Marc . 3
Ehlers, Rüdiger . 91 Paruthi, Viresh . 141
El-Zein, Ali . 141 Rezine, Othmane . 24
Fedyukovich, Grigory . 114 Roveri, Marco . 122
Feron, Eric . 3 Sankaranarayanan, Sriram 196
Fey, Goerschwin . 82 Sörensson, Niklas . 52
Fisher, Jasmin . 1 Sery, Ondrej . 114
Frehse, Stefan . 82 Seshia, Sanjit A. 68
Garoche, Pierre-Loic . 3 Shadowen, Robert . 141
Ghughal, Rajnish . 149 Sharygina, Natasha . 114
Goldberg, Eugene . 34 Shaub, Torsten . 2
Gordon, Michael J. C. 78 Shoham, Sharon . 173
Greenstreet, Mark . 165 Sinha, Arnab . 6
Griggio, Alberto . 131 Sinha, Rohit . 68
Grumberg, Orna . 173 Slind, Konrad . 78
Gupta, Aarti . 6, 149 Somenzi, Fabio . 196
Haller, Leopold . 131 Stenman, Jari . 24
Hoare, Tony . 5 Stewart, Daryl . 186
Hoder, Krystof . 44 Sturton, Cynthia . 68
Hofferek, Georg . 91 Tonetta, Stefano . 187
Hunt, Warren . 60 Veneris, Andreas . 101
Ivrii, Alexander . 182 Vizel, Yakir . 173
Kahlon, Vineet . 16 Voronkov, Andrei . 44
Kaufmann, Matt . 60 Wagner, David . 68
Könighofer, Robert . 91 Wendler, Philipp . 106
Keng, Brian . 101 Williams, Mark . 157
Khasidashvili, Zurab . 44 Xu, Jiazhao . 157
Kirankumar V M, Achutha 149 Yan, Chao . 165
Korovin, Konstantin . 44 Yang, Yang . 204
Kroening, Daniel . 131 Yorav, Karen . 82
Lastras-Montaño, Luis A. 141 Zhang, Yan . 196

Proceedings of the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012)

209

FMCAD 2012 SPONSORS

