
Parameterized Model Checking of Fault-tolerant
Distributed Algorithms by Abstraction

Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, Josef Widder
Vienna University of Technology (TU Wien)

Abstract—We introduce an automated parameterized verifica-

tion method for fault-tolerant distributed algorithms (FTDA).

FTDAs are parameterized by both the number of processes and

the assumed maximum number of faults. At the center of our

technique is a parametric interval abstraction (PIA) where the

interval boundaries are arithmetic expressions over parameters.

Using PIA for both data abstraction and a new form of counter

abstraction, we reduce the parameterized problem to finite-state

model checking. We demonstrate the practical feasibility of our

method by verifying safety and liveness of several fault-tolerant

broadcasting algorithms, and finding counter examples in the case

where there are more faults than the FTDA was designed for.

I. INTRODUCTION

Fault-tolerant distributed algorithms (FTDA) constitute a
core topic of distributed algorithm theory, with a rich body
of results [27], [2]. Yet, they have not been systematically
studied from a model checking point of view. For FTDAs
one typically considers systems of n processes out of which
at most t may be faulty. In this paper we consider various
faults such as crash faults, omissions, and Byzantine faults. As
FTDAs are parameterized in n and t, we require parameterized
verification to establish the correctness of an FTDA. The
pragmatic approach to verify a system of fixed size is not
practical, as only very small instances can be verified due
to state space explosion [24], [36], [34]. While in classic
parameterized model checking the number of processes n is
the sole parameter, for FTDAs, t is also a parameter, and is
essentially a fraction of n, expressed by a resilience condition,
e.g., n > 3t. Thus, one has to reason about all runs with n�f

non-faulty and f faulty processes, where f t and n > 3t.
From an operational viewpoint, FTDAs typically consist of

multiple processes that communicate by passing messages. As
senders can be faulty, a receiver cannot wait for a message
from a specific sender process. Thus, most FTDAs use counters
to reason about the environment; e.g., if a process receives a
certain message from more than t distinct senders, then one
of the senders must be non-faulty. A large class of FTDAs
expresses these counting arguments using threshold guards:
if received <m> from t+1 distinct processes

then action(m);

Threshold guards generalize existential and universal guards
[16], i.e., rules that wait for messages from at least one or

Supported by the Austrian National Research Network S11403 and S11405
(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) grants PROSEED, ICT12-059, and VRG11-005.
Details that had to be omitted from this paper can be found in [23].

all processes, respectively. As can be seen from the above
example, and as discussed in [24], existential and universal
guards are not sufficient to capture advanced FTDAs: Thresh-
old guards are a basic building block that has been used in
various environments (various degrees of synchrony, fault as-
sumptions, etc.) and FTDAs, such as consensus [15], software
and hardware clock synchronization [32], [19], approximate
agreement [14], and k-set agreement [13]. The ability to
efficiently reason about these guards is thus a keystone for
automated parameterized verification of such algorithms.

This paper considers parameterized verification of FTDAs
with threshold guards and resilience conditions. We introduce
a framework based on a new form of control flow automata
that captures the semantics of threshold-guarded FTDAs, and
propose a novel two-step abstraction technique. It is based
on parametric interval abstraction (PIA), a generalization of
interval abstraction where the interval borders are expressions
over parameters rather than constants. Using the PIA domain,
we obtain a finite-state model checking problem in two steps:
Step 1: PIA data abstraction. We evaluate the threshold
guards over the parametric intervals. Thus, we abstract away
unbounded variables and parameters from the process code.
We obtain a parameterized system where the replicated pro-
cesses are finite-state and independent of the parameters.
Step 2: PIA counter abstraction. We use a new form of
counter abstraction where the process counters are abstracted
to PIA. As Step 1 guarantees that we need only finitely many
counters, PIA counter abstraction yields a finite-state system.

To evaluate the precision of our abstractions, we im-
plemented our abstraction technique in a tool chain, and
conducted experiments on several FTDAs. Our experiments
showed the need for abstraction refinement to deal with
spurious counterexamples [7] that are due to parameterized
abstraction and fairness. This required novel refinement tech-
niques, which we also discuss in this paper. In addition to
refinement of PIA counter abstraction, which is automated in
a loop using a model checker and an SMT solver, we are
also exploiting simple user-provided invariant candidates (as
in [28], [35]) to refine the abstraction.

We verify several FTDAs that have been derived from
the well-known distributed broadcast algorithm by Srikanth
and Toueg [32], [33], and a folklore reliable broadcasting
algorithm [2, Sect. 8.2.5.1]. Each of these FTDAs tolerates
different faults (e.g., crash, omission, Byzantine), and uses
different threshold guards. To the best of our knowledge, we
are the first to achieve parameterized automated verification of
Byzantine FTDAs.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 184201ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

qI

q1

q2

q3

q4

sv = V1

sv 6= V1^
nsnt0 = nsnt^
sv0 = sv

nsnt0 = nsnt + 1

sv0 = SE

q5

q6

q7

q8

q9
qF

rcvd rcvd0 ^ rcvd0 nsnt + f

(t+ 1 > rcvd0)^
sv0 = sv0 ^
nsnt0 = nsnt0

t+ 1 rcvd0

sv0 = V0

sv0 6= V0^
nsnt0 = nsnt0

nsnt0 = nsnt0 + 1

n� t > rcvd0

n� t rcvd0

sv0 = SE

sv0 = AC

Fig. 1. CFA of our case study for
Byzantine faults.

qI

q1

q2q3

q4

q5

qF

rcvd rcvd0 ^
rcvd0 nsnt + nsntf

sv = V1sv = V0

sv = AC

sv = CR

1 > rcvd0

1 rcvd0

sv0 = CR

nsntf 0 =
nsntf + 1

sv0 = AC

nsnt0 =
nsnt + 1

Fig. 2. CFA of FTDA from [18]
(if x0 is not assigned, then x

0 = x).

II. OUR APPROACH AT A GLANCE

To give an intuition of our method, we start with the control
flow automaton (CFA) given in Figure 1 that formalizes our
case study FTDA. The CFA uses the shared integer variable
nsnt (capturing the number of messages sent by non-faulty
processes), the local integer variable rcvd (storing the number
of messages received by the process so far), and the local status
variable sv, which ranges over a finite domain (capturing the
local progress w.r.t. the FTDA). In [24] we show that this
formalization captures the logic of our case study FTDA.

We use the CFA to represent one atomic step of the FTDA:
Each edge is labeled with a guard. A path from qI to qF

induces a conjunction of all the guards along it, and imposes
constraints on the variables before the step (e.g., sv), after
the step (sv0), and temporary variables (sv0). If one fixes the
variables before the step, different valuations (of the primed
variables) that satisfy the constraints capture non-determinism.

A system consists of n � f processes that concurrently
execute the code corresponding to the CFA, and communicate
via nsnt. Thus, there are two sources of unboundedness: first,
the integer variables, and second, the parametric number of
processes. We deal with these two issues in two steps.
Step 1: PIA data abstraction. We observe that the CFA
contains several transitions which are labeled with threshold
guards that refer to (unbounded) variables and parameters. For
instance, the CFA in Figure 1 contains the following transition,
which is labeled with a threshold guard:

q4 q5
t+ 1 rcvd0

The CFA also contains a guard n � t rcvd0. Actually, the
correctness of the FTDA is based on the fact that the values

of the thresholds, e.g., t+1 and n� t, are sufficiently far apart
from each other under the resilience condition n > 3t^f t;
in particular, (n � t) � f � t + 1. These properties are
also used in the manual proofs [33]. We observe that such
FTDAs are designed by carefully choosing the thresholds and
the resilience condition. Consequently, our abstraction must
be sufficiently precise to preserve the relationship between
thresholds and the resilience condition.

The second important observation is that it is not necessary
to keep track of the precise value of variables that are compared
against thresholds, e.g., rcvd0. Rather, in our case study, it is
sufficient to know whether rcvd0 lies in the interval [0, t+ 1[,
or [t+1, n� t[, or [n� t,1[, in order to determine which of
the threshold guards of the CFA are satisfied. Our parametric
interval abstraction PIA exploits this idea. In addition, in
Step 2 we will see that we also have to distinguish 0 from
other values. Thus, PIA consists of mapping integers to a finite
domain of four intervals I0 = [0, 1[and I1 = [1, t+ 1[and
I2 = [t+ 1, n� t[and I3 = [n� t;1[.

Then, we replace the guards that refer to unbounded vari-
ables and parameters by their existential abstraction. For
instance, the above transition with the guard “t + 1 rcvd0”
means that rcvd0 lies in the intervals [t+1, n�t[or [n�t,1[.
As these correspond to the abstract intervals I2 and I3,
respectively, we can replace the guard by:

q4 q5rcvd0 = I2 _ rcvd0 = I3

The abstraction of the guard “nsnt0 = nsnt + 1” can be
expressed similarly, as later discussed in Figure 4. The ex-
pression “rcvd0 nsnt + f”, which is also used in a guard, is
more complicated as it involves two variables and a parameter.
Still, the basic abstraction idea is the same. The corresponding
abstract expression has the form (rcvd0 = I0 ^ nsnt =
I0)_ (rcvd0 = I0^nsnt = I1)_ · · ·_ (rcvd0 = I3^nsnt = I3).

These abstract guards are Boolean expressions over equal-
ities between variables and abstract values. Therefore, it is
sufficient to interpret the variables nsnt and rcvd over the finite
domain. Hence, all variables range over finite domains, and we
arrive at finite state processes in this way. Our system, however,
is still parameterized, namely, in the number of processes.
Step 2: PIA counter abstraction. We reduce this system to
a finite state system using the following two ideas. First, we
change to a counter-based representation, i.e., the global state
is represented by the (abstract) shared variable nsnt, and by
one counter for each of the local states. A counter stores how
many processes are in the corresponding local state. Second, as
processes interact only via the nsnt variable, precisely counting
processes in certain states may not be necessary; as nsnt
already ranges over the abstract domain, it is natural to count
processes in terms of the same abstract domain.

The local state of a process is determined by the values of sv
and rcvd. Thus, we denote by [x, y] = I that the number
of processes with sv = x and rcvd = y lies in the abstract
interval I . Then, in Figure 3, the state s0 represents the initial
states with t+ 1 to n� t� 1 processes having sv = V0 and 1
to t processes having sv = V1. (We omit local states that have
the counter value I0 to facilitate reading.)

185202

[V0, I0] = I2
[V1, I0] = I1

nsnt = I0

s0

[V0, I0] = I2
[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s1

[V0, I0] = I1
[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s2

[V0, I1] = I1
[V1, I0] = I1
nsnt = I0

s6

[V0, I0] = I2
[V0, I1] = I2
[V1, I0] = I1
nsnt = I0

s3

[V0, I0] = I1
[V0, I1] = I2
[V1, I0] = I1
nsnt = I0

s4

.

.

Fig. 3. A small part of the transition system obtained by counter abstraction.
As shown by our experimental data in Table I of Section VII, the reachable
state space is substantially larger.

Figure 3 gives a small part of the transition system obtained
from the counter abstraction starting from initial state s0.
Each transition corresponds to one process taking a step in
the concrete system. For instance, in the transition (s0, s2)
a process with local state [V0, I0] changes its state to [V0, I1].
Therefore, the counter [V0, I0] is decremented and the counter
[V0, I1] is incremented. However, as we interpret counters
over the abstract domain, the operations of incrementing and
decrementing a counter are actually non-deterministic. Conse-
quently, the transition (s0, s1) captures the same concrete local
step as (s0, s2). In (s0, s1), the non-deterministic decrement
of the abstract counter [V0, I0] did not change its value.

Typically, the specifications of FTDAs refer to global states
where “there is a process in a given local state” or “all
processes are in a given local state.” To express this via
counters, we have to check whether counter values are I0.
Abstraction refinement. Our abstraction steps result in a
system which is an over-approximation of all systems with
fixed parameters. For instance, the non-determinism in the
counters may “increase” or “decrease” the number of processes
in a system, although in all concrete system the number
of processes is constant: Consider the transition (s2, s6) in
Figure 3, and let x, y, z be the non-negative integers that
are in s2 abstracted to [V0, I0], [V0, I1], and [V1, I0],
respectively. Similarly y

0 and z

0 are abstracted to [V0, I1]
and [V1, I0] in s6. If the following inequalities do not have
a solution under the resilience condition (n > 3t, t � f), then
there is no concrete system with a transition between two states
that are abstracted to s2 and s6, respectively.

1 x < t+ 1, 1 y < t+ 1, 1 z < t+ 1,

1 y

0
< t+ 1, 1 z

0
< t+ 1,

x+ y + z = y

0 + z

0 = n� f.

We use an SMT solver for this, and examine each transition
of a counterexample returned by a model checker. If a transi-
tion is spurious, then we remove it from the abstract system.
Related abstractions. Interval abstraction [10] is a natural
solution to the problem of unboundedness of local variables.
However, if we fixed the interval bounds to numeric values,
then they would not be aligned to the thresholds, and the

abstraction would not be sufficiently precise to do parametric
verification. At the same time, we do not have to deal with
symbolic ranges over variables in the sense of [30], because
for FTDAs the interval bounds are constant in each run.

Further, we want to produce a single process skeleton that
is independent of parameters and captures the behavior of
all process instances. This can be done by using ideas from
existential abstraction [9], [12], [25] and sound abstraction of
fairness constraints [25]. We combine these two ideas to arrive
at PIA data abstraction.

The PIA counter abstraction is similar to [29], in that
counters range over an abstract domain, and increment and
decrement is done using existential abstraction. The domain
in [29] consists of three values representing 0, 1, or more.
This domain is sufficient for mutual-exclusion-like problems:
It allows to distinguish good from bad states, while it is not
possible (and also not necessary) to distinguish two bad states:
A bad state is one where at least two processes are in the
critical section, which is precisely abstracted in the three-
valued domain. However, two bad states where, e.g., 2 and 3
processes are in the critical section, respectively, cannot be
distinguished. Verification of threshold-based FTDAs requires
more involved counting; e.g., we have to capture whether at
least n� t processes or at most t processes incremented nsnt.
Therefore, we use counters from the PIA domain.

III. SYSTEM MODEL WITH MULTIPLE PARAMETERS

In this section we develop all notions that are required to
precisely state the parameterized model checking problem for
multiple parameters. As running example, we use the parame-
ters mentioned above, namely, the number of processes n, the
upper bound on the number of faults t, and the actual number
of faults f . We start to define parameterized processes (that
access shared variables) in a way that allows us to modularly
compose them into a parameterized system instance.

We apply this modeling to verify FTDAs as follows: as
input we take a process description that uses the parameters n

and t in the code. From this we construct a system instance
parameterized with n, t, and f , which then describes all runs of
an algorithm in which exactly f faults occur. The verification
problem for a distributed algorithm in the concrete case with
fixed n and t is the composition of model checking problems
that differ in the actual value of f t. This modeling also
allows us to set f = t+ 1, which models runs in which more
faults occur than expected, and search for counterexamples.
For the parameterized case, we introduce a resilience condition
on these parameters, and require to verify the algorithm for all
values of parameters that satisfy the resilience condition.

We define the parameters, local variables of the processes,
and shared variables referring to a single domain D that
is totally ordered and has the operations of addition and
subtraction. In this paper we assume that D is the set of
nonnegative integers N0.

We start with some notation. Let Y be a finite set of
variables ranging over D. We denote by D

|Y |, the set of all
|Y |-tuples of variable values. Given s 2 D

|Y |, we use the
expression s.y, to refer to the value of a variable y 2 Y in

186 203

vector s. For two vectors s and s

0, by s =X s

0 we denote the
fact that for all x 2 X , s.x = s

0
.x holds.

Process. The set of variables V is {sv} [⇤ [� [⇧: The
variable sv is the status variable that ranges over a finite
set SV of status values. The finite set ⇤ contains variables that
range over the domain D. The variable sv and the variables
from ⇤ are local variables. The finite set � contains the
shared variables that range over D. The finite set ⇧ is a set
of parameter variables that range over D, and the resilience
condition RC is a predicate over D

|⇧|. In our example,
⇧ = {n, t, f}, and the resilience condition RC(n, t, f) is
n > 3t ^ f t ^ t > 0. Then, we denote the set of
admissible parameters by PRC = {p 2 D

|⇧| | RC(p)}.
A process operates on states from the set S = SV ⇥D

|⇤| ⇥
D

|�| ⇥D

|⇧|. Each process starts its computation in an initial
state from a set S

0 ✓ S. A relation R ✓ S ⇥ S defines
transitions from one state to another, with the restriction
that the values of parameters remain unchanged, i.e., for all
(s, t) 2 R, s =⇧ t. Then, a parameterized process skeleton is
a tuple Sk = (S, S0

, R).
We get a process instance by fixing the parameter values

p 2 D

|⇧|: one can restrict the set of process states to S|p =
{s 2 S | s =⇧ p} as well as the set of transitions to R|p =
R\(S|p⇥S|p). Then, a process instance is a process skeleton
Sk|p = (S|p, S0|p, R|p) where p is constant.
System Instance. For fixed admissible parameters p, a dis-
tributed system is modeled as an asynchronous parallel com-
position of identical processes Sk|p. The number of processes
depends on the parameters. To formalize this, we define the
size of a system (the number of processes) using a function
N : PRC ! N0, for instance, when modeling only correct
processes explicitly, we use n� f for N(n, t, f).

Given p 2 PRC , and a process skeleton Sk = (S, S0
, R),

a system instance is defined as an asynchronous parallel
composition of N(p) process instances, indexed by i 2
{1, . . . , N(p)}, with standard interleaving semantics. Let AP
be a set of atomic propositions. A system instance Inst(p,Sk)
is a Kripke structure (SI , S

0
I , RI ,AP,�I) where:

• SI = {(�[1], . . . ,�[N(p)]) 2 (S|p)N(p) | 8i, j 2
{1, . . . , N(p)},�[i] =�[⇧ �[j]} is the set of (global)
states. Informally, a global state � is a Cartesian product
of the state �[i] of each process i, with identical values
of parameters and shared variables at each process.

• S

0
I = (S0)N(p) \ SI is the set of initial (global) states,

where (S0)N(p) is the Cartesian product of initial states
of individual processes.

• A transition (�,�0) from a global state � 2 SI to a
global state �0 2 SI belongs to RI iff there is an index
i, 1 i N(p), such that:

(MOVE) The i-th process moves: (�[i],�0[i]) 2 R|p.
(FRAME)The values of the local variables of the other

processes are preserved: for every process in-
dex j 6= i, 1 j N(p), it holds that
�[j] ={sv}[⇤ �

0[j].
• �I : SI ! 2AP is a state labeling function.
Remark 1: The set of global states SI and the transition

relation RI are preserved under every transposition i $ j of

process indices i and j in {1, . . . , N(p)}. That is, every system
Inst(p,Sk) is fully symmetric by construction.
Atomic Propositions. We define the set of atomic propo-
sitions AP to be the disjoint union of APSV and APD:
The set APSV contains propositions that capture comparison
against a given status value Z 2 SV , i.e., [8i. svi = Z] and
[9i. svi = Z]. Further, the set of atomic propositions APD
captures comparison of variables x, y, and a linear combina-
tion c of parameters from ⇧; APD consists of propositions of
the form [9i. xi + c < yi] and [8i. xi + c � yi].

The labeling function �I of a system instance Inst(p,Sk)
maps a state � to expressions p from AP as follows (the
existential case is defined accordingly using disjunctions):

[8i. svi = Z] 2 �I(�) iff
N(p)^

i=1

(�[i].sv = Z)

[8i. xi + c � yi] 2 �I(�) iff
N(p)^

i=1

(�[i].x+ c(p) � �[i].y)

Temporal Logic. We specify properties using temporal logic
LTL -X over APSV . We use the standard definitions of paths and
LTL -X semantics [6]. A formula of LTL -X is defined inductively
as: (i) a literal p or ¬p, where p 2 APSV , or (ii) F', G',
'U , '_ , and '^ , where ' and are LTL -X formulas.
Fairness. We are interested in verifying safety and liveness
properties. The latter can be usually proven only in the
presence of fairness constraints. As in [25], [29], we consider
verification of safety and liveness in systems with justice
fairness constraints. We define fair paths of a system instance
Inst(p,Sk) using a set of justice constraints J ✓ APD. A
path ⇡ of a system Inst(p,Sk) is J-fair iff for every p 2 J

there are infinitely many states � in ⇡ with p 2 �I(�). By
Inst(p,Sk) |=J ' we denote that the formula ' holds on all
J-fair paths of Inst(p,Sk).

Definition 2: Given a system description containing
• a domain D,
• a parameterized process skeleton Sk = (S, S0, R),
• a resilience condition RC (generating a set of admissible

parameters PRC),
• a system size function N ,
• justice requirements J ,

and an LTL -X formula ', the parameterized model checking
problem (PMCP) is to verify 8p 2 PRC . Inst(p,Sk) |=J '.

IV. THRESHOLD-GUARDED FTDAS

In [24], we formalized threshold-guarded FTDAs in
Promela. In order to introduce our abstraction technique, we
propose a language-independent approach that focuses on the
control flow and is based on control flow automata (CFA) [21].

A guarded control flow automaton (CFA) is an edge-labeled
directed acyclic graph A = (Q, qI , qF , E) with a finite set Q
of nodes called locations, an initial location qI 2 Q, and a final
location qF 2 Q. A path from qI to qF is used to describe
one step of a distributed algorithm. The edges have the form

187204

E ✓ Q⇥guard⇥Q, where guard is defined as an expression
of one of the following forms where a0, . . . , a|⇧| 2 Z, and
⇧ = {p1, . . . , p|⇧|}:
• if Z 2 SV , then sv = Z and sv 6= Z are status guards;
• if x is a variable in D and C 2 {, >}, then

a0 +
X

1i|⇧|

ai · pi C x

is a threshold guard;
• if y, z1, . . . , zk are variables in D for k � 1, and C 2

{=, 6=, <, , >,�}, and a0, . . . , a|⇧| 2 Z, then

y C z1 + · · ·+ zk +
�
a0 +

X

1i|⇧|

ai · pi
�

is a comparison guard;
• a conjunction g1 ^ g2 of guards g1 and g2 is a guard.
Status guards are used to capture the basic control flow.

Threshold guards capture the core primitive of the FTDAs we
consider. Finally, comparison guards are used to model send
and receive operations. Figure 1 shows an example CFA with
� = {nsnt}, ⇤ = {rcvd}, and ⇧ = {n, t, f}.
Obtaining a Skeleton from a CFA. One step of a process
skeleton is defined by a path from qI to qF in a CFA. Given SV ,
⇤, �, ⇧, RC, and a CFA A, we define the process skeleton
Sk(A) = (S, S0

, R) induced by A as follows: The set of
variables used by the CFA is W ◆ ⇧ [⇤ [� [{sv} [{x0 |
x 2 ⇤[�[{sv}}, which may contain also temporary variables.
A variable x corresponds to the value before a step, x0 to the
value after the step, and x

0
, x

1
, . . . to intermediate values. A

path p from qI to qF induces a conjuction of all the guards
along it. We call a mapping v from W to the values from the
respective domains a valuation. We write v |= p to denote that
the valuation v satisfies the guards of the path p. We define
the mapping between a CFA A and the transition relation of
a process skeleton Sk(A): If there is a path p and a valuation
v with v |= p, then v defines a single transition (s, t) of a
process skeleton Sk(A), if for each variable x 2 ⇤[�[{sv} it
holds that s.x = v(x) and t.x = v(x0) and for each parameter
variable z 2 ⇧, s.z = t.z = v(z). Finally, the initial states S

0

need to be specified. For the type of algorithms we consider
in this paper, all variables of the skeleton that range over D

are initialized to 0, and sv ranging over SV takes an initial
value from a fixed subset of SV . (For other algorithms, or self-
stabilizing systems, one would choose different initializations.)

Remark 3: It might seem restrictive that our guards do not
contain, e.g., increment, assignments, non-deterministic choice
from a range of values. However, all these statements can be
translated in our form using the SSA transformation algorithm
from [11]. For instance, Figure 1 has been obtained from the
Promela case study in [24], which contains the mentioned
statements. Figures 1 and 2 provide two of the algorithms we
have used for our experiments in Section VII.

Definition 4 (PMCP for CFA): We define the Parameter-
ized Model Checking Problem for CFA A by specializing
Definition 2 to the parameterized process skeleton Sk(A).

The problem given in Definition 4 is undecidable even if
the CFA contains only status variables [23].

V. ABSTRACTION SCHEME

The input to our abstraction method is the infinite parame-
terized family F = {Inst(p,Sk(A)) | p 2 PRC} of Kripke
structures specified via a CFA A. The family F has two
principal sources of unboundedness: unbounded variables in
the process skeleton Sk(A), and the unbounded number of
processes N(p). We deal with these two aspects separately,
using two abstraction steps, namely the PIA data abstraction
and the PIA counter abstraction. In both abstraction steps we
use the parametric interval abstraction PIA.

Given a CFA A, let GA be the set of all linear combi-
nations a0 +

P
1i|⇧| ai · pi in the left-hand sides of A’s

threshold guards. Every expression " of GA defines a function
f" : PRC ! D. Let T = {0, 1} [{f" | " 2 GA} be a finite
threshold set, and µ + 1 its cardinality. For convenience, we
name elements of T as ✓0, ✓1, . . . , ✓µ with ✓0 corresponding to
the constant function 0, and ✓1 corresponding to the constant 1.
E.g., the CFA in Fig. 1 has the threshold set {✓0, ✓1, ✓2, ✓3},
where ✓2(n, t, f) = t + 1 and ✓3(n, t, f) = n � t. Then, we
define the domain of parametric intervals as:

b
D = {Ij | 0 j µ}

Our abstraction rests on an implicit property of many
FTDAs, namely, that the resilience condition RC induces an or-
der on the thresholds used in the algorithm (e.g., t+1 < n�t).

Definition 5: The finite set T is uniformly ordered if for all
p 2 PRC , and all ✓j(p) and ✓k(p) in T with 0 j < k µ,
it holds that ✓j(p) < ✓k(p).

Assuming such an order does not limit the application of our
approach: In cases where only a partial order is induced by RC,
one can simply enumerate all finitely many total orders. As
parameters, and thus thresholds, are kept unchanged in a run,
one can verify an algorithm for each threshold order separately,
and then combine the results.

Definition 5 allows us to properly define the parameterized
abstraction function ↵p : D ! b

D and the parameterized
concretization function �p : b

D ! 2D.

↵p(x) =

⇢
Ij if x 2 [✓j(p), ✓j+1(p)[for some 0 j < µ

Iµ otherwise.

�p(Ij) =

⇢
[✓j(p), ✓j+1(p)[if j < µ

[✓µ(p),1[otherwise.

From ✓0(p) = 0 and ✓1(p) = 1, it immediately follows
that for all p 2 PRC , we have ↵p(0) = I0, ↵p(1) = I1, and
�p(I0) = {0}. Moreover, from the definitions of ↵, �, and
Definition 5 one immediately obtains:

Proposition 6: For all p in PRC , and for all a in D, it holds
that a 2 �p(↵p(a)).

Definition 7: We define comparison between parametric in-
tervals Ik and I` as Ik I` iff k `.

The PIA domain has similarities to predicate abstraction
since the interval borders are naturally expressed as predicates,
and computations over PIA are directly reduced to SMT
solvers. However, notions such as the order of Definition 7
are not naturally expressed in terms of predicate abstraction.

188 205

x̂2

x1

x̂1

1 t+ 1 n� t

I0 I1 I2 I3

I0

I1

I2

I3

� ⌘ x2 = x1 + 1 �̂ ⌘ x̂1 = I0 ^ x̂2 = I1

_ x̂1 = I1 ^ x̂2 = I1

_ x̂1 = I1 ^ x̂2 = I2

_ x̂1 = I2 ^ x̂2 = I2

_ x̂1 = I2 ^ x̂2 = I3

_ x̂1 = I3 ^ x̂2 = I3

Fig. 4. The shaded area approximates the line x2 = x1 + 1 along the
boundaries of our parametric intervals. Each shaded rectangle corresponds to
one conjunctive clause in the formula to the right. Thus, given � ⌘ x2 = x1+
1, the shaded rectangles correspond to ||�||9, from which we immediately
construct the existential abstraction �̂.

A. PIA data abstraction
We now discuss an existential abstraction of a formula � that

is either a threshold or a comparison guard (we consider other
guards later). To this end, we introduce notation for sets of vec-
tors satisfying �. According to Section IV, formula � has two
kinds of free variables: parameter variables from ⇧ and data
variables from ⇤[�. Let xp be a vector of parameter variables
(xp

1, . . . , x
p
|⇧|) and x

v be a vector of variables (xv
1, . . . , x

v
k)

over Dk. Given a k-dimensional vector d of values from D, by

x

p = p,x

v = d |= �

we denote that � is satisfied on concrete values x

v
1 =

d1, . . . , x
v
k = dk and parameter values p. Then, we define:

||�||9 = {d̂ 2 b
D

k | 9p 2 PRC 9d = (d1, . . . , dk) 2 D

k
.

d̂ = (↵p(d1), . . . ,↵p(dk)) ^ x

p = p,x

v = d |= �}

Hence, the set ||�||9 contains all vectors of abstract values
that correspond to some concrete values satisfying �. Parame-
ters do not appear anymore due to existential quantification. A
PIA existential abstraction of � is defined to be a formula �̂
over a vector of variables x̂ = (x̂1, . . . , x̂k) over b

D

k such that
{d̂ 2 b

D

k | x̂ = d̂ |= �̂} ◆ ||�||9.
Computing PIA abstractions. The central property of our
abstract domain is that it allows to abstract comparisons against
thresholds (i.e., threshold guards) in a precise way. That is, we
can abstract formulas of the form ✓j(p) x1 by Ij x̂1 and
✓j(p) > x1 by Ij > x̂1. In fact, this abstraction is precise in
the following sense.

Proposition 8: For all p 2 PRC and all a 2 D:
✓j(p) a iff Ij ↵p(a), and ✓j(p) > a iff Ij > ↵p(a).

For comparison guards we use the general form, well-known
from the literature, from the following proposition.

Proposition 9: If � is a formula over variables x1, . . . , xk

over D, then
W

(d̂1,...,d̂k)2||�||9 x̂1 = d̂1 ^ · · · ^ x̂k = d̂k is a
PIA existential abstraction.

If the domain b
D is small (as it is in our case), then one

can enumerate all vectors of abstract values in b
D

k and check
which belong to our abstraction ||�||9, using an SMT solver.
As example consider the PIA domain {I0, I1, I2, I3} for the

CFA from Fig. 1. Fig. 4 illustrates ||�||9 of x2 = x1 + 1 and
the use of the formula from Proposition 9.
Transforming CFA. We now describe a general method to
abstract guard formulas, and thus construct an abstract process
skeleton. To this end, we denote by ↵E a mapping from a
concrete formula � to some existential abstraction of � (not
necessarily constructed as above). By fixing ↵E , we can define
an abstraction of a guard of a CFA:

abs(g) =

8
>><

>>:

↵E(g) if g is a threshold guard
↵E(g) if g is a comparison guard
g if g is a status guard
abs(g1) ^ abs(g2) otherwise, i.e., g is g1 ^ g2

By abusing the notation, for a CFA A by abs(A) we denote
the CFA that is obtained from A by replacing every guard g

with abs(g). Note that abs(A) contains only guards over sv

and over abstract variables over b
D. For model checking, we

have to reason about the Kripke structures that are built using
the skeletons obtained from CFAs. We denote by Skabs(A),
the process skeleton that is induced by CFA abs(A), and by
Inst(p,Skabs(A)) an instance constructed from Skabs(A).
Soundness. It can be shown that for all p 2 PRC , and for
all CFA A, Inst(p,Sk(A)) is simulated by Inst(p,Skabs(A)),
with respect to APSV . Moreover, the abstraction of a J-fair
path of Inst(p,Sk(A)) is a J-fair path of Inst(p,Skabs(A)).

B. PIA counter abstraction
In this section, we present a counter abstraction inspired

by [29], which maps a system instance composed of identical
finite state process skeletons to a single finite state system.
We use the PIA domain b

D along with abstractions ↵E({x0 =
x+ 1}) and ↵E({x0 = x� 1}) for the counters.

Let us consider a process skeleton Sk = (S, S0, R), where
S = SV ⇥ D̃

|⇤| ⇥ D̃

|�| ⇥ D̃

|⇧| that is defined using an
arbitrary finite domain D̃. We present counter abstraction over
the abstract domain b

D in two stages, where the first stage is
only a change in representation, but not an abstraction.
Stage 1: Vector Addition System with States (VASS). Let
L = {` 2 SV ⇥ D̃

|⇤| | 9s 2 S. ` ={sv}[⇤ s} be the set
of local states of a process skeleton. As the domain D̃ and
the set of local variables ⇤ are finite, L is finite. We write
the elements of L as `1, . . . , `|L|. We define the counting
function K : SI ⇥ L ! D such that K[�, `] is the number
of processes i whose local state is ` in global state � 2 SI ,
i.e., �[i] ={sv}[⇤ `. Thus, we represent the system state � as a
tuple (g1, . . . , gk,K[�, `1], . . . ,K[�, `|L|]), i.e., by the shared
global state and by the counters for the local states. If a process
moves from local state `i to local state `j , the counters of `i
and `j will decrement and increment, respectively.
Stage 2: Abstraction of VASS. We abstract the counters K

of the VASS representation using the PIA domain to obtain
a finite state Kripke structure C(Sk). To compute C(Sk) =
(SC, S

0
C, RC,AP,�C) we proceed as follows:

A state w 2 SC is given by values of shared vari-
ables from the set �, ranging over D̃

|�|, and by a vector

189206

([`1], . . . ,[`|L|]) over the abstract domain b
D from Sec-

tion V. More concisely, SC = b
D

|L| ⇥ D̃

|�|.
Definition 10: The parameterized abstraction mapping h̄

cnt
p

maps a global state � of the system Inst(p,Sk) to a state w

of the abstraction C(Sk) such that: For all ` 2 L it holds that
w.[`] = ↵p(K[�, `]), and w =� �.

From the definition, one can see how to construct the initial
states. Informally, we require (1) that the initial shared states
of C(Sk) correspond to initial shared states of Sk, (2) that
there are actually N(p) processes in the system, and (3) that
initially all processes are in an initial state.

The intuition for the construction of the transition relation
is as follows: Like in VASS, a step that brings a process
from local state `i to `j can be modeled by decrementing the
(non-zero) counter of `i and incrementing the counter of `j
using the existential abstraction ↵E({0[`i] = [`i]� 1}) and
↵E({0[`j] = [`j] + 1}).
Soundness. We show that for all p 2 PRC , and for all
finite state process skeletons Sk, Inst(p,Sk) is simulated by
C(Sk), w.r.t. APSV . Further, the abstraction of a J-fair path of
Inst(p,Sk) is a J-fair path of C(Sk).

Theorem 11 (Soundness of data & counter abstraction):
For all CFA A, and for all formulas ' from LTL -X over APSV
and justice constraints J ✓ APD: if C(Skabs(A)) |=J ', then
for all p 2 PRC it holds Inst(p,Sk(A)) |=J '.

VI. ABSTRACTION REFINEMENT

The states of the abstract system are determined by variables
over b

D. Proposition 8 shows that we precisely abstract the
relevant properties of our variables, i.e., comparisons to thresh-
olds. Hence, the classic CEGAR approach [7], which consists
of refining the state space, does not appear suitable. However,
the non-determinism due to our existential abstraction leads to
spurious transitions that one can eliminate.

We encountered two sources of spurious transitions: As
discussed in Section II, transitions can “lose processes,” i.e.,
any concretization of the abstract number of processes is less
than the number of processes we started with. This is not
within the assumption of FTDAs, and thus spurious. Second,
in our case study (cf. Figure 1) processes increase the global
variable nsnt by one, when they transfer to a state where the
value of the status variable is in {SE,AC}. Hence, in concrete
system instances, nsnt should always be equal to the number
of processes whose status variable value is in {SE,AC}, while
due to phenomena similar to those discussed above, we can
“lose messages” in the abstract system.

The experiments show that in our case studies neither
losing processes nor losing messages has influence on the
verification of safety specifications. However, these behaviors
pose challenges for liveness as they lead to spurious coun-
terexamples: Message passing FTDAs typically require that a
process receives messages from (nearly) all correct processes,
which is problematic if processes (i.e., potential senders) or
messages are lost.

Besides, in Figure 1 we model message receptions by an
update of the variable rcvd, more precisely, rcvd rcvd0 ^
rcvd0 nsnt + f . One may observe that this alone does not

require that the value of rcvd actually increases. Hence, we
add justice requirements, e.g., J = {[8i. rcvdi � nsnt]} in our
case study. As observed by [29], counter abstraction may lead
to justice suppression. Given a counter-example in the form
of a lasso, we detect whether its loop contains only unjust
states. If this is the case, similar to an idea from [29], we
refine C(Skabs(A)) by adding a justice requirement, which is
consistent with existing requirements in all concrete instances.

Below, we give a general framework for a sound refinement
of C(Skabs(A)). (In [23], we provide a more detailed discus-
sion on the practical refinement techniques that we use in our
experiments.) To simplify presentation, we define a monster
system as a (possibly infinite) Kripke structure Sys! =
(S!, S

0
!, R!,AP,�!), whose state space and transition relation

are disjoint unions of state spaces and transition relations of
system instances Inst(p,Sk(A)) = (Sp, S

0
p, Rp,AP,�p) over

all admissible parameters:

S! =
[

p2PRC

Sp, S

0
! =

[

p2PRC

S

0
p, R! =

[

p2PRC

Rp

�! : S! ! 2AP and 8p 2 PRC , 8s 2 Sp. �!(s) = �p(s)

Let h : S! ! SC be an abstraction mapping, e.g., a
combination of the abstraction mappings from Section V.

Definition 12: A sequence T = {�i}i�1 is a concretization
of path T̂ = {wi}i�1 from C(Skabs(A)) if and only if �1 2 S

0
!

and for all i � 1 it holds h(�i) = wi.
Definition 13: A path T̂ of C(Skabs(A)) is a spurious path

iff every concretization T of T̂ is not a path in Sys! .
A prerequisite to abstraction refinement is to check whether

a counter-example provided by the model checker is spurious.
While for finite state systems there are methods to detect
whether a path is spurious [7], we are not aware of a method
to detect whether a path T̂ in C(Skabs(A)) corresponds to a
path in the (concrete) infinite monster system Sys! . Therefore,
we limit ourselves to detecting and refining uniformly spuri-
ous transitions and unjust states. We first consider spurious
transitions.

Definition 14: An abstract transition (w,w0) 2 RC is uni-
formly spurious iff there is no transition (�,�0) 2 R! with
w = h(�) and w

0 = h(�0).
The following theorem provides us with a general criterion

that ensures that removing uniformly spurious transitions does
not affect the property of transition preservation.

Theorem 15: Let T ✓ RC be a set of spurious transitions.
Then for every transition (�,�0) 2 R! there is a transition
(h(�), h(�0)) in RC \ T .

It follows that the system (SC, S
0
C, RC \ T,AP,�C) still

simulates Sys! . After considering spurious transitions, we
now consider justice suppression.

Definition 16: An abstract state w 2 SC is unjust under
q 2 APD iff there is no concrete state � 2 S! with w = h(�)
and q 2 �!(�).

Consider infinite counterexamples of C(Skabs(A)), which
have a form of lassos w1 . . . wk(wk+1 . . . wm)! . For such a
counterexample T̂ we denote the set of states in the lasso’s
loop by U . We then check, whether all states of U are unjust

190 207

under some justice constraint q 2 J . If this is the case, then T̂

is a spurious counterexample, because the justice constraint q
is violated. Note that it is sound to only consider infinite paths,
where states outside of U appear infinitely often; in fact, this
is a justice requirement. To refine C’s unjust behavior we add
a corresponding justice requirement. Formally, we augment J
(and APD) with a propositional symbol [o↵ U]. Further, we
augment the labelling function �C such that every w 2 SC is
labelled with [o↵ U] if and only if w 62 U .

Theorem 17: Let J ✓ APD be a set of justice requirements,
q 2 J , and U ✓ SC be a set of unjust states under q. Let ⇡ =
{�i}i�1 be an arbitrary fair path of Sys! under J . The path
⇡̂ = {h(�i)}i�1 is fair in C(Skabs(A)) under J [{[o↵ U]}.

From this we derive that loops containing only unjust states
can be eliminated, and thus C(Skabs(A)) be refined.

We encountered cases where several non-uniform spurious
transitions resulted in a uniformly spurious path (i.e., a coun-
terexample). We refine such spurious behavior by invariants.
These invariants are provided by the user as invariant can-
didates, and are then automatically checked to actually be
invariants using an SMT solver. In our example the invariant
is simply “the number of processes that sent a message equals
the number of sent messages.”

VII. EXPERIMENTAL EVALUATION

To show feasibility of our abstractions, we have imple-
mented the PIA abstractions and the refinement loop in OCaml
as a prototype tool BYMC. We evaluated it on different
broadcasting algorithms. They deal with different fault models
and resilience conditions; the algorithms are: (BYZ), which is
the algorithm from Figure 1, for t Byzantine faults if n > 3t,
(SYMM) for t symmetric (identical Byzantine [2]) faults if
n > 2t, (OMIT) for t send omission faults if n > 2t, and
(CLEAN) for t clean crash faults [37] if n > t. In addition,
we verified the RBC algorithm — formalized also in [18] —
whose CFA is given in Figure 2. In this paper we verify the
following safety and liveness specifications:

[8i. svi 6= V1] !G [8j. svj 6= AC] (U)
[8i. svi = V1] !F [9j. svj = AC] (C)

G (¬ [9i. svi = AC])_ F [8j. svj = AC] (R)

In addition, in [18] a specification A for RBC was introduced,
which we verify for RBC. In contrast to [18], we actually im-
plemented our verification method and give experimental data.

From the literature we know that we cannot expect to verify
these FTDAs without restricting the environment, e.g., with
communication fairness, namely, every message sent is even-
tually received. To capture this, we use justice requirements,
e.g., J = {[8i. rcvdi � nsnt]} in the Byzantine case.

We extended PROMELA [22] with constructs to express
⇧, AP, RC, and N [24]. BYMC receives a description of
a CFA A in this extended PROMELA, and then syntactically
extracts the thresholds. The tool chain uses the Yices SMT
solver for existential abstraction, and generates the counter
abstraction C(Skabs(A)) in standard Promela, such that we can
use Spin to do finite state model checking. Finally, BYMC
also implements the refinements introduced in Section VI

TABLE I. SUMMARY OF EXPERIMENTS

M |= '? RC Spin Spin Spin Spin | bD| #R Total

Time Memory States Depth Time

Byz |= U (A) 2.3 s 82 MB 483k 9154 4 0 4 s
Byz |= C (A) 3.5 s 104 MB 970k 20626 4 10 32 s
Byz |= R (A) 6.3 s 107 MB 1327k 20844 4 10 24 s
Sym |= U (A) 0.1 s 67 MB 19k 897 3 0 1 s
Sym |= C (A) 0.1 s 67 MB 19k 1113 3 2 3 s
Sym |= R (A) 0.3 s 69 MB 87k 2047 3 12 16 s
Omt |= U (A) 0.1 s 66 MB 4k 487 3 0 1 s
Omt |= C (A) 0.1 s 66 MB 7k 747 3 5 6 s
Omt |= R (A) 0.1 s 66 MB 8k 704 3 5 10 s
Cln |= U (A) 0.3 s 67 MB 30k 1371 3 0 2 s
Cln |= C (A) 0.4 s 67 MB 35k 1707 3 4 8 s
Cln |= R (A) 1.1 s 67 MB 51k 2162 3 13 31 s

RBC |= U — 0.1 s 66 MB 0.8k 232 2 0 1 s
RBC |= A — 0.1 s 66 MB 1.7k 333 2 0 1 s
RBC |= R — 0.1 s 66 MB 1.2k 259 2 0 1 s
RBC 6|= C — 0.1 s 66 MB 0.8k 232 2 0 1 s
Byz 6|= U (B) 5.2 s 101 MB 1093k 17685 4 9 56 s
Byz 6|= C (B) 3.7 s 102 MB 980k 19772 4 11 52 s
Byz 6|= R (B) 0.4 s 67 MB 59k 6194 4 10 17 s
Byz |= U (C) 3.4 s 87 MB 655k 10385 4 0 5 s
Byz |= C (C) 3.9 s 101 MB 963k 20651 4 9 32 s
Byz 6|= R (C) 2.1 s 91 MB 797k 14172 4 30 78 s
Sym 6|= U (B) 0.1 s 67 MB 19k 947 3 0 2 s
Sym 6|= C (B) 0.1 s 67 MB 18k 1175 3 2 4 s
Sym |= R (B) 0.2 s 67 MB 42k 1681 3 8 12 s
Omt |= U (D) 0.1 s 66 MB 5k 487 3 0 1 s
Omt 6|= C (D) 0.1 s 66 MB 5k 487 3 0 2 s
Omt 6|= R (D) 0.1 s 66 MB 0.1k 401 3 0 2 s

and refines the Promela code for C(Skabs(A)) by introducing
predicates capturing spurious transitions and unjust states.

Table I summarizes our experiments run on 3.3GHz Intel R�
CoreTM 4GB. In the cases (A) we used resilience conditions as
provided by the literature, and verified the specification. The
model RBC is the reliable broadcast algorithm also considered
in [18] under the resilience condition n � t � f . In the
bottom part of Table I we used different resilience conditions
under which we expected the algorithms to fail. The cases (B)
capture the case where more faults occur than expected by
the algorithm designer (f t + 1 instead of f t), while
the cases (C) and (D) capture the cases where the algorithms
were designed by assuming wrong resilience conditions (e.g.,
n � 3t instead of n > 3t in the Byzantine case). We
omit (CLEAN) as the only sensible case n = t = f (all
processes are faulty) results into a trivial abstract domain of
one interval [0,1). The column “#R” gives the numbers of
refinement steps. In the cases where it is greater than zero,
refinement was necessary, and “Spin Time” refers to the SPIN
running time after the last refinement step. Finally, column | bD|
indicates the size of the abstract domain.

VIII. RELATED WORK

Traditionally, correctness of FTDAs is shown by handwritten
proofs [27], [2], and, in some cases, by proof assistants [26],
[31], [5]. Completely automated model checking or synthesis
are usually not parameterized [24], [36], [34], [3]. Our work
stands in the tradition of parameterized model checking for
protocols [4], [20], [17], [29], [8], e.g., mutual exclusion and
cache coherence. In particular, counter abstraction and justice
preservation by Pnueli et al. [29] are keystones of our work.

191208

To the best of our knowledge there are two papers on
parameterized model checking of FTDAs [18], [1]. The au-
thors of [18] use regular model checking to make interesting
theoretical progress, but did not do any implementation. Their
models are limited to processes whose local state space and
transition relation are finite and independent of parameters.
This was sufficient to formalize a reliable broadcast algorithm
that tolerates crash faults, and where every process stores
whether it has received at least one message. Such models
are not sufficient to capture FTDAs that contain threshold
guards as in our case. Moreover, the presence of a resilience
condition such as n > 3t would require them to intersect the
regular languages, which describe sets of states, with context-
free languages that enforce the resilience condition.

In [1], the safety of synchronous broadcasting algorithms
that tolerate crash or send omission faults has been verified.
These FTDAs have similar restrictions as the ones considered
in [18]: Alberti et al. [1] mention that they did not consider
FTDAs that feature “substantial arithmetic reasoning”, i.e.,
threshold guards and resilience conditions, as they would
require novel suitable techniques. Our abstractions address this
arithmetic reasoning.

To the best of our knowledge, the current paper is thus the
first in which safety and liveness of an FTDA that tolerates
Byzantine faults has been automatically verified for all system
sizes and all admissible numbers of faulty processes.

IX. CONCLUSIONS

We extended the standard setting of parameterized model
checking to processes that use threshold guards, and are
parameterized with a resilience condition. As a case study
we have chosen the core of several broadcasting algorithms
under different failure models, including one [33] that tolerates
Byzantine faults. These algorithms are widely applied in the
literature: typically, multiple (possibly an unbounded number
of) instances are used in combination. As future work, we
plan to use compositional model checking techniques [28]
for parameterized verification of such algorithms. Another
open issue is to capture additional fault assumptions such as
communication faults [5], [37].

REFERENCES

[1] F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi, “Uni-
versal guards, relativization of quantifiers, and failure models in model
checking modulo theories,” JSAT, vol. 8, no. 1/2, pp. 29–61, 2012.

[2] H. Attiya and J. Welch, Distributed Computing, 2nd ed. Wiley, 2004.
[3] B. Bonakdarpour, S. S. Kulkarni, and F. Abujarad, “Symbolic synthesis

of masking fault-tolerant distributed programs,” Distributed Computing,
vol. 25, no. 1, pp. 83–108, 2012.

[4] M. C. Browne, E. M. Clarke, and O. Grumberg, “Reasoning about
networks with many identical finite state processes,” Inf. Comput.,
vol. 81, pp. 13–31, 1989.

[5] B. Charron-Bost and S. Merz, “Formal verification of a consensus
algorithm in the heard-of model,” IJSI, vol. 3, no. 2–3, pp. 273–303,
2009.

[6] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
1999.

[7] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement for symbolic model checking,” J. ACM,
vol. 50, no. 5, pp. 752–794, 2003.

[8] E. Clarke, M. Talupur, and H. Veith, “Proving Ptolemy right: the
environment abstraction framework for model checking concurrent
systems,” in TACAS’08/ETAPS’08. Springer, 2008, pp. 33–47.

[9] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM TOPLAS, vol. 16, no. 5, pp. 1512–1542, 1994.

[10] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in POPL. ACM, 1977, pp. 238–252.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM TOPLAS, vol. 13, no. 4, pp. 451–490, 1991.

[12] D. Dams, R. Gerth, and O. Grumberg, “Abstract interpretation of
reactive systems,” ACM TOPLAS, vol. 19, no. 2, pp. 253–291, 1997.

[13] R. De Prisco, D. Malkhi, and M. K. Reiter, “On k-set consensus
problems in asynchronous systems,” TPDS, vol. 12, no. 1, pp. 7–21,
2001.

[14] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, 1986.

[15] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” J.ACM, vol. 35, no. 2, pp. 288–323, 1988.

[16] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, ser. LNCS, 2000, vol. 1831, pp. 236–254.

[17] ——, “Exact and efficient verification of parameterized cache coherence
protocols,” in CHARME, ser. LNCS, vol. 2860, 2003, pp. 247–262.

[18] D. Fisman, O. Kupferman, and Y. Lustig, “On verifying fault tolerance
of distributed protocols,” in TACAS, ser. LNCS, vol. 4963, 2008, pp.
315–331.

[19] M. Függer and U. Schmid, “Reconciling fault-tolerant distributed com-
puting and systems-on-chip,” Dist. Comp., vol. 24, no. 6, pp. 323–355,
2012.

[20] S. M. German and A. P. Sistla, “Reasoning about systems with many
processes,” J. ACM, vol. 39, pp. 675–735, 1992.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy abstrac-
tion,” in POPL. ACM, 2002, pp. 58–70.

[22] G. Holzmann, The SPIN Model Checker. Addison-Wesley, 2003.
[23] A. John, I. Konnov, U. Schmid, H. Veith, and J. Widder, “Counter attack

on Byzantine generals: Parameterized model checking of fault-tolerant
distributed algorithms,” arXiv CoRR, vol. abs/1210.3846, 2012.

[24] ——, “Towards modeling and model checking fault-tolerant distributed
algorithms,” in SPIN, ser. LNCS, vol. 7976, 2013, pp. 209–226.

[25] Y. Kesten and A. Pnueli, “Control and data abstraction: the cornerstones
of practical formal verification,” STTT, vol. 2, pp. 328–342, 2000.

[26] P. Lincoln and J. Rushby, “A formally verified algorithm for interactive
consistency under a hybrid fault model,” in FTCS, 1993, pp. 402–411.

[27] N. Lynch, Distributed Algorithms. Morgan Kaufman, 1996.
[28] K. L. McMillan, “Parameterized verification of the flash cache coher-

ence protocol by compositional model checking,” in CHARME, ser.
LNCS, vol. 2144, 2001, pp. 179–195.

[29] A. Pnueli, J. Xu, and L. Zuck, “Liveness with (0,1,1)- counter
abstraction,” in CAV, ser. LNCS. Springer, 2002, vol. 2404, pp. 93–111.

[30] S. Sankaranarayanan, F. Ivancic, and A. Gupta, “Program analysis using
symbolic ranges,” in SAS, ser. LNCS, vol. 4634, 2007, pp. 366–383.

[31] U. Schmid, B. Weiss, and J. Rushby, “Formally verified Byzantine
agreement in presence of link faults,” in ICDCS, 2002, pp. 608–616.

[32] T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” Journal
of the ACM, vol. 34, no. 3, pp. 626–645, 1987.

[33] T. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Dist. Comp., vol. 2, pp. 80–94, 1987.

[34] W. Steiner, J. M. Rushby, M. Sorea, and H. Pfeifer, “Model checking a
fault-tolerant startup algorithm: From design exploration to exhaustive
fault simulation,” in DSN, 2004, pp. 189–198.

[35] M. Talupur and M. R. Tuttle, “Going with the flow: Parameterized
verification using message flows,” in FMCAD, 2008, pp. 1–8.

[36] T. Tsuchiya and A. Schiper, “Verification of consensus algorithms using
satisfiability solving,” Dist. Comp., vol. 23, no. 5–6, pp. 341–358, 2011.

[37] J. Widder and U. Schmid, “Booting clock synchronization in partially
synchronous systems with hybrid process and link failures,” Dist.
Comp., vol. 20, no. 2, pp. 115–140, 2007.

192 209

