
Generalized Counterexamples
to Liveness Properties

Gadi Aleksandrowicz, Jason Baumgartner, Alexander Ivrii, Ziv Nevo IBM Corporation

Abstract—We consider generalized counterexamples in
the context of liveness property checking. A generalized
counterexample comprises only a subset of values necessary
to establish the existence of a concrete counterexample.
While useful in various ways even for safety properties,
the length of a generalized liveness counterexample may
be exponentially shorter than that of a concrete counterex-
ample, entailing significant potential algorithmic benefits.

One application of this concept extends the k-LIVENESS
proof technique of [1] to enable failure detection. The
resulting algorithm is simple, and poses negligible over-
head to k-LIVENESS in practice. We additionally propose
dedicated algorithms to search for generalized liveness
counterexamples, and to manipulate generalized counterex-
amples to and from concrete ones. Experiments confirm
the capability of these techniques to detect failures more
efficiently than existing techniques for various benchmarks.

I. INTRODUCTION

It is well-known that counterexamples are often re-
dundant, containing many values that are irrelevant to
the failure exhibited therein. The process of eliminating
unnecessary values from a trace is referred to as gener-
alization, and has numerous benefits. For example, the
elimination of irrelevant values facilitates manual and
automated debugging [2], and improves the effectiveness
of counterexample-guided abstraction refinement [3].

This paper focuses upon counterexamples to liveness
properties. For finite systems, such counterexamples
may efficiently be represented as lasso-shaped traces
consisting of a prefix and a loop suffix exhibiting a state
repetition which can be infinitely unrolled. The length
of a lasso is the sum of the prefix and suffix lengths. A
unique benefit of generalizing a liveness counterexample
is that it may shorten the lasso length – possibly expo-
nentially so – if the set of state variables comprising a
state repetition is reduced during generalization.

Example 1: Let q, x, y be Boolean signals whose ini-
tial and next-state behaviors are determined as follows:
q0 = 1, x0 = 0, y0 = 0, q

0 = (q ^ x) _ (¬q ^ y),
x

0 = q ^ y, y0 = ¬x. Consider liveness property FGq,
specifying that on every trace q must eventually become
true forever. A counterexample would illustrate q = 0
at least once in its loop suffix, for example (q, x, y) =
(1, 0, 0) ! (0, 0, 1) ! (1, 0, 1) ! (0, 1, 1) ! (1, 0, 0)
of length 4. Note that (q = 1) ^ (x = 0)) (q0 = 0) ^

(y0 = 1) and (q = 0) ^ (y = 1)) (q0 = 1) ^ (x0 = 0).
This illustrates a generalized counterexample: (1, 0, ·)!
(0, ·, 1)! (1, 0, ·) of length 2.

Example 2: We may modify q

0 from Example 1 to
q

0 = (q ^ x ^ (cnt = 0)) _ (¬q ^ y), where cnt

is an n-bit cyclic counter. Now the minimal concrete
counterexample has length 2n, while the generalized
counterexample from Example 1 is still valid.

Example 3: One may argue that cnt is sequentially
unobservable in Example 2 because q ^ x ⌘ 0, hence
a transformation-based approach may enable the detec-
tion of an adequate short counterexample [4]. We may
modify this example to x

0 = (q _ i) ^ y, where i is
a nondeterministic input. Now cnt becomes observable,
precluding a direct application of transformation-based
methods. However, the generalized counterexample is
still valid since both transitions (1, 0, ·) ! (0, ·, 1) and
(0, ·, 1)! (1, 0, ·) can be achieved for some value of the
inputs, here i = 0 for transition (0, ·, 1)! (1, 0, ·).

We show that, surprisingly, the traces produced by the
underlying safety model checker of k-LIVENESS [1]
are often sufficient to witness a counterexample. Fur-
thermore, in many cases the traces which do not exhibit
a counterexample may be manipulated using our tech-
niques to yield valid counterexamples.

II. PRELIMINARIES

We represent a finite state system S as a tuple
hi, x, I(x), T (i, x, x0)i, which consists of primary inputs
i, state variables x, predicate I(x) defining the initial
states, and predicate T (i, x, x0) defining the transition
relation. Next-state variables are denoted as x

0. We
assume that T is represented as a netlist, that is a directed
acyclic graph with nodes corresponding to logic gates.
Given the values of x and i, the values of x0 may thus be
uniquely computed by propagation – i.e., using Boolean
or three-valued simulation.

State variables and their negations are called literals,
and disjunctions (conjunctions) of literals are called
clauses (cubes). A state is a Boolean assignment to all
of x. A generalized state is an assignment to a subset of
x, representing a set of states. We denote concrete states
by s and generalized states by t throughout the paper.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 152169ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

Definition 1: Given two generalized states t0 and t1,
we say that t0 is a predecessor of t1 if for every concrete
state s0 2 t0 there exists a concrete state s1 2 t1 and an
input i0 such that (i0, s0, s01) |= T.

Definition 2: We say that t0 is a concrete predecessor
of t1 if t0 is a concrete state.

Note that the definition of a predecessor is not sym-
metric, and it does not require that every state in t1 is
reachable from a state in t0. For practical purposes we
need more restricted notions of a predecessor.

Definition 3: Given two generalized states t0 and t1

and input i0, we say that t0 is an implying predecessor
of t1 with respect to i0 if t0^i0^T ^¬t01 is unsatisfiable.

Definition 4: We say that t0 is a propagating prede-
cessor of t1 with respect to i0 if t0 and i0 imply t

0
1 by

propagation.
From these definitions, each concrete predecessor is

also propagating with respect to some input, and each
propagating predecessor with respect to i0 is also imply-
ing with respect to i0. We omit explicit input references
when they are clear from context.

Example 4: Consider x0 = x^ (y� i), where x and y

are state variables and i is an input. Then x = 1^y = 1
is an implying predecessor of x = 1 with respect to
i = 0. Further, x = 1 is predecessor of x = 1 but cannot
be an implying predecessor since there is no value of i

which works for all y.
Definition 5: A concrete trace is a sequence of con-

crete states hs0, . . . , sni such that s0 |= I , and for each
0 k < n, sk is a concrete predecessor of sk+1.

Definition 6: A generalized trace is a sequence of
generalized states ht0, . . . , tni such that t0 contains an
initial state, and for each 0 k < n, tk is a predecessor
of tk+1.

We say that concretizing a state t is the process of
adding literals to t, and generalizing t is the process of
removing literals from t.

A. Generalized Counterexamples to Liveness

In the spirit of [1] we consider liveness properties
given in the form FGq. More general liveness properties
(and fairness constraints) may be reduced to this form
using additional logic. Furthermore, since the validity of
FG(Xq) is equivalent to the validity of FGq, we can
assume that q itself is a state variable.

Definition 7: A concrete counterexample to FGq is
a concrete trace hs0, . . . , sni and an index m with 0
m < n, such that (1) sm = sn, and (2) 9k 2 [m..n]
with sk =) ¬q.

Thus s0, . . . , sm�1 corresponds to the lasso prefix, and
sm, . . . , sn corresponds to the loop suffix, with cycle sk

exhibiting ¬q. Note that sm = sn implies that sn is a

concrete predecessor of sm+1, hence the loop can be
infinitely unrolled.

Definition 8: A generalized counterexample to FGq

is a generalized trace ht0, . . . , tni and an index m with
0 m < n, such that (1) tm =) tn, and (2) 9k 2
[m..n] with tk =) ¬q.

Note that we do not require that tm = tn, but rather
that tn is more concrete than tm.

Examples 1-3 illustrate that the length of a generalized
counterexample to FGq may be exponentially shorter
(with respect to netlist size) than that of a concrete
counterexample. Theorem 1 will demonstrate that the
former implies the existence of the latter. Because a gen-
eralized counterexample may be exponentially shorter
than a concrete one, in cases it may be easier to de-
tect a generalized counterexample, which motivates the
algorithms in Sections IV and V.

In practice, a generalized counterexample may actu-
ally be more informative and easier to debug since it
more clearly illustrates the “essential” reason for the
failure. Similarly, it is often undesirable in practice that a
liveness counterexample on a reduced netlist (after cone-
of-influence, redundancy removal, . . .) be extended to a
possibly exponentially-longer unreduced trace merely to
ensure a state repetition over irrelevant logic.

III. TRACE MANIPULATION ALGORITHMS

A. Trace Concretization

Given a generalized trace, we may fully or partially
concretize it using Algorithm 1. ConcretizeInitial(t0)
returns a concretization of t0 which still contains a state
in I , which may be computed with a satisfiability query.
ConcretizeForward(t̃k, tk+1) returns a concretization of
tk+1 with t̃k as its predecessor. If t̃k is a propagating
predecessor of tk+1, we can use three-valued simulation
to implement ConcretizeForward , using an unknown X

value for any state variable not in t̃k and assessing which
state variables attain fixed values in tk+1. Alternatively,
we can use a satisfiability query: if t̃k is an implying
predecessor of tk+1 with respect to some ik, for each
state variable x not in tk+1 we can consider the query
t̃k ^ ik ^ T ^ x

0. If this query is unsatisfiable, x = 0
can be added to tk+1. Similarly, if t̃k ^ ik ^ T ^ ¬x0 is
unsatisfiable, x = 1 can be added to tk+1.

Theorem 1: Any generalized counterexample c to
FGq may be extended to a concrete counterexample c̃.

Proof: Consider a generalized counterexample c to
FGq with its lasso state repeating at times m and n >

m. By the discussion above, we can find a concrete trace
c̃ which agrees with valuations in c, though the states at
times m and n in c̃ may not be identical. However, since

2

153170

Algorithm 1 Trace Concretization

Input: A trace ht0, . . . , tni
Output: A trace ht̃0, . . . , t̃ni with tk =) t̃k for all k.

1: t̃0 ConcretizeInitial(t0)
2: for k = 0, . . . , n� 1 do
3: t̃k+1 ConcretizeForward(t̃k, tk+1)

Algorithm 2 Trace Generalization

Input: A trace ht0, . . . , tni
Output: A trace ht̃0, . . . , t̃ni with t̃k =) tk for all k.

1: t̃n GeneralizeF inal(tn)
2: for k = n� 1, . . . , 0 do
3: t̃k GeneralizeBackward(tk, t̃k+1)

the loop of c can be infinitely unrolled, assuming a finite
system, eventually a state in c̃ will repeat, thus yielding
a concrete counterexample.

Theorem 1 demonstrates that a generalized liveness
counterexample may be mapped to a concrete one using
simulation, implying a scalable algorithm.

B. Trace Generalization

Given a trace, we may use Algorithm 2 to gener-
alize it. GeneralizeFinal(tn) returns a generalization
of tn. For example, if the trace witnesses a number
of failures of q and tn =) ¬q, this corresponds
to removing some of the other variables from tn.
GeneralizeBackward(tk, t̃k+1) returns a generalization
of tk which still forms a predecessor of t̃k+1. If tk is a
propagating predecessor of tk+1, then we can generalize
tk using ternary simulation: if replacing the value of a
state variable in tk by X does not influence any of the
variables in t

0
k+1, then this variable can be removed from

tk. More generally, when tk is an implying predecessor
of tk+1 with respect to some ik, we can consider the
unsatisfiability of tk ^ ik ^ T ^ ¬t0k+1 and generalize
from tk variables unnecessary in the unsatisfiable core
returned by the SAT solver.

C. Modifying Traces with Tentative Loops

The following example demonstrates that the pro-
cesses of concretizing and generalizing a trace are both
capable of creating or destroying the validity of that trace
as a counterexample.

Example 5: Let q, x, y be state variables with initial
values q0 = 1, x0 = 0, y0 = 0 and next-state values
q

0 = q ^ x, x

0 = x, y

0 = ¬y. The concrete trace
(1, 0, 0) ! (0, 0, 1) ! (0, 0, 0) does not exhibit a
counterexample to FGq. A partially-generalized trace

Design k generalized k concrete k modified
cubak 20 20 20
cujc128f 5 1 1
cutf2 9 12 5
cutq2 16 16 12
lmcs06dme2p0 4 5 4

TABLE I
VALUES OF k YIELDING VALID COUNTEREXAMPLES

Design k-LIVENESS BMC
cubak 295s 12084s
cuhanoi10 5s 3492s

TABLE II
k-LIVENESS WITH INTERNAL IC3 TRACE VS. BMC

(1, 0, ·) ! (0, 0, ·) ! (0, 0, ·) does exhibit a counterex-
ample. A futher-generalized trace (1, 0, ·)! (0, 0, ·)!
(0, ·, ·) again does not exhibit a counterexample.

Consider a generalized trace ht0, . . . , tni with a pair
of indices i < j such that ti ^ tj 6= ? and 9k 2 [i..j]
with tk =) ¬q. The condition ti ^ tj 6= ?
means that there is no state variable present in opposite
polarities in ti vs tj . We call hti, . . . , tji a tentative
loop. We propose the following technique, referred to as
C oncretizeTentative(i, j): starting from ti, concretize
the trace forward by conjuncting the states ti+1, . . . , tj

with the values forced by propagation. In this way, the
concretized state tj might now become more concrete
than ti yielding a counterexample. One may further tailor
the concretization process to yield a repeating state when
possible via an appropriate SAT query.

IV. COUNTEREXAMPLES VIA k-LIVENESS
The k-LIVENESS algorithm of [1] proves properties

of form FGq by bounding the number of times that q
can become false: if there are no traces with more than k

occurrences of ¬q, then on every trace q must eventually
become true forever. The algorithm works by gradually
increasing k until a proof is obtained.

When FGq does not hold, it is noted in [1] that a
bounded counterexample trace for some k may be ana-
lyzed to see if it is a valid unbounded counterexample:
given a finite system and large-enough k, there must
be a trace with a repeated state. Though for a realistic
system, it is stipulated that k would likely need to be
impractically large.

Surprisingly, we find that the opposite is true: on 44 of
the HWMCC’12 benchmarks with failing liveness prop-
erties, the traces returned by the underlying safety model
checker exhibit a counterexample with reasonably-small
values of k. Additionally, on most of these one may
detect a counterexample for even smaller values of k by
manipulating traces with C oncretizeTentative. A few
selected results are presented in Table I.

As in [1], we have implemented k-LIVENESS on top
of IC3/PDR. PDR minimizes proof obligations using

3

154 171

ternary simulation [5], and thus directly yields gener-
alized counterexamples for bounded property failures.
Column 2 corresponds to the smallest value of k for
which this generalized trace kept internally by IC3
exhibits a generalized counterexample. Column 3 cor-
responds to the smallest k for which the concretiza-
tion of the trace from Column 2 using Algorithm 1
exhibits a concrete counterexample. The final column
uses C oncretizeTentative(i, j) on the trace of Column
2, for each tentative loop hti, . . . , tji therein.

On cutf2 and lmcs06dme2p0, considering generalized
traces detects counterexamples earlier due to removal of
irrelevant state variables. On cujc128f, removing state
variables from later timesteps precludes the detection of
counterexamples. And on cutf2, partial concretization of
the generalized trace yields a counterexample earlier than
the other two methods.

Regarding impact on verification resources: on most
of the failing liveness HWMCC’12 testcases, direct
bounded model checking (BMC) often yields a coun-
terexample with significantly lesser resources than k-
LIVENESS augmented with our techniques. We note
that the set of public liveness testcases is unfortunately
quite small. Nonetheless, our techniques in cases are
substantially faster than existing method such as BMC:
see Table II. This offers a some evidence of the practical
utility of our techniques on classes of complex problems.

V. SEARCHING FOR GENERALIZED
COUNTEREXAMPLES

In this section we present an algorithm which di-
rectly searches for a minimal propagating generalized
counterexample. This algorithm uses bounded model
checking applied to a ternary-valued encoding of the
netlist. This algorithm incrementally increases the un-
folding depth n every time it proves that no generalized
counterexample of length n exists.

For a given n, we seek a sequence t0, . . . , tn of
generalized states and a sequence i0, . . . , in of inputs
so that the following conditions are satisfied:

1) t0 contains an initial state;
2) for each k 2 [0..n� 1] the assignments to tk and

to ik alone imply tk+1;
3) 9m 2 [0..n� 1] such that tm =) tn;
4) 9k 2 [m..n� 1] such that tk =) ¬q.
Note that every concrete lasso-shaped counterexample

satisfies these conditions, thus if there are concrete
counterexamples of length n, the suggested scheme will
succeed with the value n or less.

Unfortunately, on the limited set of failing
HWMCC’12 benchmarks, the minimal length of a

propagating counterexample is the same as the minimal
length of a concrete counterexample, and so the
proposed scheme does not help. On the other hand,
on contrived Examples 1-3, this algorithm detects
generalized counterexamples of length 2 for any size of
cnt, which not surprisingly may outperform by a large
degree other techniques which search for a concrete
counterexample.

VI. RELATED WORK

The concept of minimizing counterexample traces has
been explored extensively for a variety of purposes such
as enhanced debugging, e.g. [2]. A related concept of
generalizing a predecessor of a given state either by
ternary simulation, via a SAT solver, or using quantifier
elimination has also been widely explored, e.g. [6]. How-
ever, a significant distinction is that we we consider gen-
eralized counterexamples to liveness properties which
can be significantly shorter than concrete counterexam-
ples, and as such dedicated algorithms which search for
generalized counterexamples may be developed.

The work of [4] addresses the topic of netlist trans-
formations which preserve the existence of a liveness
counterexample. For example, the cone-of-influence re-
duction combined with other netlist rewriting techniques
can remove various signals from the netlist, thus possibly
shortening lengths of counterexamples. However, netlist
transformations apply to all time-frames and all possible
traces, which does not offer the granularity of state-
specific reductions enabled by our technique.

Cycle-dependent abstractions do allow the granular-
ity of abstracting variables irrelevant at a particular
timestep, though are typically only applicable as em-
bedded in specific proof techniques (e.g., [7]). However,
in general the existence of a counterexample on an
abstracted model does not imply the existence of a
counterexample on the concrete model. Additionally,
this prior work does not address shortening of liveness
counterexamples.

REFERENCES

[1] K. Claessen and N. Sörensson, “A liveness checking algorithm
that counts,” in FMCAD, 2012.

[2] K.-H. Chang, V. Bertacco, and I. Markov, “Simulation-based bug
trace minimization with BMC-based refinement,” in ICCAD, 2005.

[3] Dong Wang et al., “Formal property verification by abstraction
refinement with formal, simulation and hybrid engines,” in DAC,
2001.

[4] J. Baumgartner and H. Mony, “Scalable liveness checking via
property-preserving transformations,” in DATE, 2009.

[5] N. Eén, A. Mishchenko, and R. K. Brayton, “Efficient implemen-
tation of property directed reachability,” in FMCAD, 2011.

[6] P. Chauhan, E. M. Clarke, and D. Kroening, “Using SAT based
image computation for reachability analysis,” 2003.

[7] L. Zhang, M. Prasad, and M. Hsiao, “Interleaved invariant check-
ing with dynamic abstraction,” in CHARME, 2005.

4

155172

