
Verifying Global Convergence for a Digital
Phase-Locked Loop

Jijie Wei Yan Peng Ge Yu Mark Greenstreet
University of British Columbia

Abstract—We present a verification of a digital phase-locked
loop (PLL) using the SpaceEx hybrid-systems tool. In particular,
we establish global convergence – from any initial state the PLL
eventually reaches a state of phase and frequency lock. Having
shown that the PLL converges to a small region, traditional
methods of circuit analysis based on linear-systems theory can be
used to characterize the response of the PLL when in lock. The
majority of the verification involves modeling each component of
the PLL with piece-wise linear differential inclusions. We show
how non-linear transfer functions, quantization error, and other
non-idealities can be included in such a model. A limitation of
piece-wise linear inclusions is that the linear coefficients for each
component must take on fixed values. For real designs, ranges
will be specified for these components. We show how a key step
of the verification can be generalized to handle interval values
for the linear coefficients by using an SMT solver.

Index Terms—analog/mixed-signal verification, digital PLL,
global stability, hybrid systems, linear differential inclusions, non-
linear systems, SMT.

I. INTRODUCTION

Phase-locked loops (PLLs) are ubiquitous in analog and
mixed-signal designs. Their uses include frequency multi-
plication to generate a high-frequency clock from a lower
frequency reference, for clock-acquisition in high-speed links,
and as modulators and demodulators for wireless commu-
nication. Recently, PLL design has shifted from traditional,
analog, charge-pump based designs to various “all-digital”
architectures. Several consequences of device scaling to s-
maller feature sizes have motivated this transition including:
greater device-to-device parameter variation impairs designs
that depend on matched circuits; lower power supply voltages
removes the “voltage headroom” needed for high-quality, on-
chip current sources; and the scaling of passive components
such as inductors and capacitors lags that for transistors. A
failed PLL can block further test of an entire chip or major
subsystem; thus, there is a high value in verifying correctness
of PLL designs. This paper presents the formal verification of
global convergence for the digital PLL published in [1].

Functional verification of analog blocks such as PLLs can
be divided into two parts: global convergence to an intended
operating point, and small-signal analysis at the operating
point. The key insight here is that nearly all analog blocks
are intended to have some kind of linear response when at or
near their intended operating point [2]. Existing analysis tech-
niques such as periodic AC analysis (PAC) [3] are available
in standard commercial CAD tools such as Spectre R� from
Cadence. These techniques allow designers to characterize key
performance properties of analog blocks such as the jitter,

power-supply sensitivity, and tracking bandwidth of a PLL. A
designer can have high confidence in the correct functioning
of their block assuming that it reaches its intended operating
point.

To show that an analog block will reach its intended
operating point from any initial state is the global convergence

problem. Here, the non-linearities of the circuit must be
taken into account. Simulation based methods are impractical
both because of the impossibility of covering all possible
inputs, initial states, and operating conditions, and because
individual simulations may need to cover thousands of cy-
cles of the PLL’s oscillator to show the locking behaviour.
To support power-management techniques such as dynamic
voltage-frequency scaling and power down modes, PLLs may
need to start-up or change lock frequency tens to hundreds of
times per second. If a PLL occasionally fails to lock, then the
chip is useless. Tracking down such bugs on real silicon can
be extremely difficult. Thus, proving global convergence is of
great value for real designs.

In this paper, a digital PLL is modeled as a piecewise-linear
hybrid-automaton, and global convergence of the automaton
is shown. The first step of this approach is to formulate
hybrid-automaton models for each component of the PLL.
We note that the basic components of oscillators, dividers,
phase comparators, and integrators are common to all PLL
designs; thus, we expect this work to be re-usable for verifying
other PLL structures. We use the SpaceEx [4] tool to show
that all initial states converge to a small region around the
intended operating point. To obtain practical verification times,
we found it necessary to identify “phases” that the PLL passes
through when converging to its operating point. By structuring
our hybrid automaton model to reflect these phases, we avoid
SpaceEx needing to perform costly fix point computations.

A limitation of the SpaceEx based approach is that the
model parameters of the piece-wise linear inclusions are fixed.
This requires giving specific values to some analog quantitities
that a designer can only guarantee to be in some range. We
show that for the PLL from [1], a global Lyapunov function
(i.e. progress function) can be constructed using basic methods
from linear systems theory. We then use the Z3 SMT solver [5]
to show global convergence for a simplified model of the
DPLL.

The key contributions of this paper are:
• We verify global convergence for a digital PLL. Another

approach to digital PLL verification that was developed
independently was recently reported in [6]. We believe

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 96113ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

that these are the first such verifications for digital PLLs.
• We show how each component of the digital PLL can be

modeled as a hybrid automaton. Our models account for
non-linearities of the components, quantization, and other
non-idealities.

• We demonstrate how convergence can be shown by reach-
ability analysis (using SpaceEx) and by solving systems
on non-linear inequalities (using Z3).

II. RELATED WORK

There have been several previously published reports of PLL
verification using formal methods. The earliest verification that
we know of was by [7, chap. 6]. Dhingra’s design uses a fixed-
frequency oscillator that is intended to operate at N times
the frequency of a reference. The PLL adaptively chooses
edges of its internal oscillator to approximate the edges of
the lower frequency reference. The time resolution is limited
by the period of the internal oscillator. While this may be
useful for low frequency applications such as audio frequency
modems, we are not aware of any such PLLs in use for the
more standard PLL applications of clock generation, clock-
data-recovery, and wireless communication. Dhingra verified
the tracking behaviour of his design using the HOL theorem
prover.

More recently, Dong et al. [8], [9] proposed using property
checking for AMS verification, including PLLs. They used
“symbolic recurrence equations” as a property specification
language, and show how this can be used to automatically
construct a monitor to check simulation runs to see if a PLL
locks in the required time for that run. This does not address
the problems of long-simulation times to show that a PLL
locks or the incompleteness of simulation based approaches
to show convergence.

Shortly after the work by Dong et al., Jesser and
Hedrich [10] described a model-checking result for an analog
PLL with an XOR-gate phase detector. They performed sym-
bolic model checking using MTBDDs to represent both the
discrete and analog parts. They state that the four-dimensional
analog state space is partitioned into 211 hyperboxes, and that
next-box relations are determined by random simulation. It is
not clear how they guarantee the complete coverage with this
approach.

Two years ago, Althoff et al. [11] presented the verification
of a charge-pump PLL using an approach that they refer to
as “continuization.” They use a purely linear model for the
components of their PLL, and their focus is on the switching
activities of the phase-frequency detector, in particular, uncer-
tainties in switching delays. Their approach also verifies the
PLL for ranges of component parameters. We present an SMT-
based technique for handling interval parameters in Section V.
Althoff et al. is the only other work that we are aware of that
accounts for such variation.

More recently, Lin et al. [6] independently developed an
approach for verifying a digital PLL using SMT techniques.
To the best of our knowledge, they are the first to claim
formal verification of a digital PLL. Similar to the approach

LPF VCO

Phase comparator

vco

ref
qD

f
ref f

vco

v

ctrl

Fig. 1. A Simple PLL

presented in this paper, they consider a purely linear, analog
model and then reason about the discrepancies between this
idealized model and a digital implementation. They use the
KRR SMT solver to verify bounds on this discrepancy. They
verify bounds on the lock time of a digitally intensive PLL
assuming that most of the digital variables are initialized to
fixed values, and that only the oscillator phase is unknown.
Our work shows initialization for a different PLL design over
the complete state space.

III. THE DIGITAL PLL

A. A PLL Primer

The function of a phase-locked loop (PLL) is to adjust the
PLL’s oscillator so that it tracks the frequency and phase of a
reference signal. Figure 1 shows a simple PLL. The PLL sets
the control voltage, v

ctrl

of the VCO according to the phase
difference between the VCO and the reference and the integral
of this difference to match the VCO’s frequency to that of the
reference and align their phases. Simply, if the PLL’s oscillator
lags the reference, then v

ctrl

increases; and the VCO frequency
increases so that the VCO will catch up with the reference.
Conversely, if the PLL’s oscillator is ahead of the reference,
then v

ctrl

will decrease causing the PLL’s oscillator frequency
to decrease.

In more detail, the voltage-controlled oscillator (VCO) can
be understood as a voltage-to-frequency converter. Phase is
the integral of frequency; so we can express the phase of
the VCO output as q

vco

= (
R

v

ctrl

dt) mod [�p,+p). Phase
is modular, and we write q mod [�p,+p) to indicate the
value in [�p,+p) that is congruent with q modulo 2p
radians. The phase comparator generates an output voltage
that is proportional to the phase difference of its inputs:
qD = (q

vco

� q
ref

) mod [�p,+p]. The reference is assumed
to have a constant frequency, w

ref

; thus q
ref

= w
ref

t, where
t is time. The low pass filter implements the integral and
proportional correction terms with v

ctrl

= a0qD + a1
R

qDdt.
Combining these equations and differentiating twice, we get:

q
vco

= a0

Z
qDdt +a1

Z Z
qDdt dt (1)

In the simple case where a0 = 0 and a1 = 0, the PLL becomes
a simple harmonic oscillator. The frequency of the PLL
oscillates with mean value of w

ref

but never converges. If both
a0 and a1 are negative, then there is a unique solution where
the PLL’s oscillator converges to the frequency and phase of
the reference. Note that if all of the components are linear,
then simple algebraic techniques suffice to show (or refute)
global convergence.

97114

Frequency

Σ

Fref

Σ

Fref

DAC

Cdecap

−
+

Fref FDCO

FDCO

0:3

4:7

∆Σ

Bang−Bang
Frequency

Control

Linear
Phase

Control

BBPFD

0:23

0:14

15:23
LPF

0:7

DCO

PFD
+

− dn
up

∆θ

c v

Coarse

Control

�
✓

Center
code

◆

÷N

Fig. 2. The digital PLL from [1]

For real designs, the components are not perfectly linear.
The component may very closely match their linear idealiza-
tions when the PLL has locked to the reference, but significant
non-linearities may occur when out of lock. Furthermore,
the analog components of the simple PLL are difficult to
implement in advanced fabrication technologies. For example,
large capacitors are needed to implement the integrator part
of the low pass filter. For these and other reasons, designers
are making more and more extensive use of digital and mixed
signal designs for PLLs.

B. The Digital PLL

Figure 2 shows the digital PLL architecture from [1]. While
this real-world PLL has many more components than the
simple PLL from Fig. 1, its operation is similar. The digitally
controlled oscillator (DCO) performs the role of the VCO
from the simple PLL. The divider, ÷N is added to make the
lock-point for the DCO a multiple of the reference frequency.
The phase comparator of the simple PLL is replaced by two
phase-frequency detectors – a linear PFD that reports the phase
difference of the reference and the frequency divided DCO,
and a ”bang-bang” PFD that only reports the sign of this phase
difference. The remaining components implement the low-pass
filter of the simple PLL with the accumulators functioning as
integrators.

The three control paths of the PLL (linear phase, bang-
bang frequency, and coarse frequency) work together to set the
frequency, f

dco

, of the digitally controlled oscillator (DCO) to
N times the reference frequency, f

ref

, and to align the phase of
the DCO and the reference (i.e., rising edges of the reference
clock should coincide with rising edges of the DCO).

The digitally-controlled oscillator in [1] is a three-stage
ring-oscillator with three control inputs: v, c, and qD. The v

input sets the operating voltage of the DCO. First-order transis-
tor models suggest that f

dco

should be roughly proportional to
v. Figure 3(a) shows the results of Spectre R� simulations of a
ring-oscillator in a 65nm CMOS process with a 1.2V nominal
V

dd

. For an operating voltage v with 0.5  v  1.2, a linear fit
provides a good approximation of the DCO frequency.

The c input controls switches that add capacitors to increase
the load for each stage of the ring oscillator. As seen in

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

operating voltage, v (volts)

DC
O

 fr
eq

ue
nc

y,
 f DC

O
 (G

Hz
)

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

load capacitance, c (pF)

DC
O

 fr
eq

ue
nc

y,
 f DC

O
 (G

Hz
)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

simulation data
linear fit for 1/fDCO

(a) frequency vs.
operating voltage

(b) frequency vs.
load capacitance

Fig. 3. Ring-oscillator response

Fig. 3(b), the oscillator period (inverse frequency) is very
accurately modeled as a linear function of load capacitance. In
addition to the four, binary weighted, values from c, a fifth bit
with weight equal to the least significant bit, is provided from
the Delta-Sigma modulator. This provides a period averaging
to improve the frequency resolution of the bang-bang control
path.

Note that the DCO frequency, f

dco

is proportional to a linear
function of v and inversely proportional to a linear function
of c. We can write this as

f

dco

=
1+av

1+bc

f0 (2)

where f0 is the frequency of the DCO (extrapolated) to where
v and c are at zero, and a and b are the sensitivities to v and
c respectively. Most importantly, when modeling the response
to both v and c, either their ranges must be quite small, or the
model is inherently non-linear. To show global convergence,
the non-linearity of the DCO must be included in the model.

The qD input controls a linear phase path. Each stage of the
ring-oscillator consists of an inverter in parallel with two tri-
state inverters. One of the tri-state inverters is enabled when
up is asserted, and the other is disabled when dn is asserted.
This causes the oscillator to run faster when up is asserted
without dn, and slower when dn is asserted without up. This
produces a phase shift advance (resp. delay) to the length of
time that the oscillator is in its fast (resp. slow) mode.

The frequency divider, labeled ÷N in figure 2 is a modulo-N
counter. Its output has a period N times that of the DCO.

98 115

DCO/N

00

1001

DCO/N

11

ref

DCO/Nref

State Diagram

D Q

R
DQ

R

dnup

Circuit

ref

Fig. 4. The PFD

The two phase-frequency detectors (PFD and BBPFD) in
the diagram determine if the DCO should increase or decrease
its frequency. Figure 4 shows a typical circuit for the linear
phase-frequency detector, labeled PFD in Fig. 2, and its state
transition diagram. Each state is labeled with the value of
the up and dn (down) outputs of the PFD – for example,
in state 01 the up signal is low and the dn signal is high.
The PFD is reset to state 00 after it has received rising
edges from both the reference clock, ref, and the frequency
divided DCO, DCO/N. If the next event is a rising edge
from the divided DCO, this indicates that the DCO is ahead
of the reference in phase or running at a higher frequency.
Accordingly, the PFD enters state 01 (asserting dn) indicating
that the DCO should decrease in frequency (equivalently, drop
back in phase). Likewise, if the first event after resetting is a
rising edge of the reference, then up is asserted. Note that the
duration of asserting dn without up (or vice-versa) indicates
the phase difference between the reference and DCO. This is
the principle behind the linear-phase control path of the PLL.

The BBPFD is a so-called “bang-bang” phase frequency
detector. It simply detects whether the linear PFD asserts
up before dn or dn before up and then outputs +1 or �1
respectively. The output of the BBPFD indicates the direction
that the DCO should move, but does not contain the magnitude
information of the linear PFD.

The accumulators implement integrators. The integrator in
the bang-bang path directly controls the c input of the DCO.
The Delta-Sigma modulator provides an averaging: if the
lower four bits of the accumulator for c encode a value of k,
then the output of the Delta-Sigma modulator will be asserted
for k out of 16 cycles of the DCO. The integrator in the coarse
frequency control path is designed to have low-bandwidth to
ensure low jitter (cycle-to-cycle variation of the DCO period).
The output of the integrator is converted to a voltage with the
digital-to-analog converter (DAC). To suppress the coupling
of power-supply noise into the DCO, an additional low-pass
filter and linear regulator are included in the loop.

To understand the operation of the digital PLL when
1
N

f

dco

6= f

ref

, the difference will be noted by the PFD and
the BBPFD. The BBPFD will output a value to drive c

in the direction to correct for the frequency difference. For
small frequency differences, this bang-bang loop provides fast
tracking. For larger differences, the accumulator for c will
saturate at its minimum or maximum value. Any of these

v

c

region 3region 2region 1

v
=

v

m
ax

c = cmax

c = cmin

v
=

v

m
in

Fig. 5. Operation with saturating integrators based on linear model from
Eq. 3, but not to scale.

situations lead to c being different from the center code. This
drives the coarse frequency loop to change v in the direction
needed to bring 1

N

f

dco

to f

ref

and to return c to the center code
value. Because the DCO has only a fixed set of oscillation
frequencies, for most values of f

ref

there is no choice of c

and v that causes 1
N

f

dco

to be exactly f

ref

. This leads to limit-
cycle oscillations. The linear phase control path suppresses
these oscillations.

IV. VERIFYING CONVERGENCE WITH SPACEEX

We divided our verification effort into two main tasks:
designer and verifier. One of us (the “designer”) wrote Matlab
models of the components (such as the DCO, phase-frequency
detectors, etc.) and used these for simulations. The other per-
son was the “verifier” who translated these models into hybrid
automata and used SpaceEx to verify global convergence. We
found it very helpful to start with a simple, completely linear
model that reflected the structure of digital PLL and gradually
refine it and add details to faithfully model the actual PLL.

A. Modeling the digital PLL

A simple linear model. Let

f

dco

= av�bc

d

dt

qD = 1
N

f

dco

� f

ref

�gq qD
d

dt

c = �g1qD
d

dt

v = g2(c� c

center

)

(3)

where a , b , N, and qD are as described in Section III; gq is
the “time gain’ for the linear phase path; g1 is the integrator
gain for c; g2 is the integrator gain of the v path. Because the
model is linear, global convergence can be shown (or refuted)
by simple, analytical methods. If gq > 0, g1 < 0, and g2 < 0,
then this linear PLL converges globally.
Modeling the accumulators. The accumulators of the digital
PLL approximate the integrators of the linear model by
computing a Reimann sum on rounded values of the integrand.
The accumulators add perturbations due to quantization and
saturation. Saturation of the accumulators is modeled by pro-
viding bounds for c and v: cmin  c cmax and vmin  v vmax.
The model is based on Eq. 3 with the change that if c reaches
cmin and ċ < 0 by Eq. 3, then ċ = 0 in this “saturating” model.
Likewise for the cases when c = cmax or when v reaches one
of its bounds.

99116

Simulations of the Matlab model with saturating integrators
showed the behaviour depicted in Fig. 5. The colored path
shows a typical trajectory, and the red arrows show an artifact
that is can be caused by the internal delays of the PFD that
will be discussed later in this section. In region 1, v is too low
to achieve 1

N

f

dco

= f

ref

. In this case, c reaches its saturation
value of cmin (the blue curved path), and then v increases
(the blue and magenta arrow)until 1

N

f

dco

⇡ f

ref

. At this point
ċ > 0 and the trajectory enters region 2. Trajectories in region
2 asymptotically approach the equilibrium point (the curved
green path) without further saturation of c or v. In region
3, v is too high, and c saturates at cmin until the trajectory
enters region 2. The corresponding hybrid automaton has seven
modes: four for saturated values of c or v, and one for each of
the regions described above. Again, SpaceEx readily showed
global convergence.

The observation that the phase locked loop first saturates c,
then gets v close to its final value, and the converges in both
c and v applies to the actual PLL as well as to this simplified
model. This observation allowed us to describe the PLL in a
way where SpaceEx shows the convergence of one variable at
a time. In the course of verifying the PLL, cycles in the mode-
transition graph would cause time-outs while SpaceEx tried to
compute fix points. The “one variable at a time” approach
eliminated the most egregious of these cycles from the model
and achieved very practical execution times.

The SpaceEx model approximates the values of the accu-
mulators of the digital PLL with integrators. Thus, the error
analysis is basically that for a Riemann sum approximation
of an integral, but in this case the integral is approximating
the sum rather than the other way around. Let f : R+ ! R
be an integrable function such that for all t � 0. | f (t)|  F

and
�� d

dt

f (t)
�� D for some F,D 2 R+. Let round(x,g) denote

the rounding of x to the nearest integer multiple of g , for any
g � 0. Then for DT > 0

DT

N�1

Â
k=0

round(f (kDT),g) =
Z

NDT

0
f (u)+µ(u)du+r(t) (4)

for some µ,r : R+ ! R with |µ(t)| g
2 +DDT and |r(t)|

FDT + g
2 for all t � 0. Equation 4 provides error bounds for

approximating the values output by the digital accumulators
with continuous integrators. For the digital PLL design, the
integrand for the c-integrator is either +1 or �1, and its
discretization is exact. Furthermore, the discretization for the
values of c and v are accounted for by the r terms of their
integrators. Hence, we can simplify Equation 4 and let µ = 0
for the digital PLL model. SpaceEx supports linear differential
inclusions, so, the r functions are easily added to the model for
computing c and v. Once again, SpaceEx quickly establishes
global convergence.
Non-linearities of the DCO. As described in Section III, the
DCO is fundamentally non-linear in its response to its control
inputs, c and v. For our model, we considered c in a range of
0.9 to 1.1 and v in a range of 0.1 to 2.5 (arbitrary units). The
range of c matches what we could infer from [1]. The range

q̇ = f

dco

� f

ref

I : qD 2±(2p �d
reset

)
qD =�2p +d

reset

! qD := qD +2p
qD = 2p �d

reset

! qD := qD �2p

Fig. 6. A hybrid automaton for the linear PFD

of v is definitely wide; we chose it to show the flexibility of
our approach. We divided v into seven overlapping intervals:
when a trajectory leaves one region it arrives in the center

of next interval – this prevents chattering mode-transitions
that would cause SpaceEx to time out. For each interval, we
computed a linear approximation for f

dco

as a function of c

and v, bounded the error, and incorporated the error terms into
the linear differential inclusions for ċ.
The bang-bang PFD. First, consider the linear PFD. It can
detect phase differences of up to nearly a full clock period
in either direction. For example, if the up signal goes high
nearly a clock period before the dn signal, that indicates that
the DCO is nearly 2p radians behind the reference. At the
other extreme, the dn signal goes high nearly a clock period
before the up signal to indicate that the DCO is nearly 2p
radians ahead. Figure 6 shows a hybrid automaton model for
the linear PFD.

Note that during the time that the reset signals are asserted
(see Fig. 4), the PFD may fail to acquire an edge of one of
the clocks.

A simple model of the digital PLL could be obtained by
creating the product automaton from each of the component
automata described above. To verify global convergence, it
suffices to show that this product automaton converges to cor-
rect phase and frequency lock from all initial states. However,
this results in a huge number of mode transitions. The key
issue is that while the output of the PFD could have a mode
transition for nearly every cycle, the value of v changes quite
slowly. Thus, SpaceEx would need to analyse a large number
of mode changes before v settles; in practice, this results in
a time out. Furthermore, SpaceEx adds an error-term in all
directions to the reachable space with each mode transition.
Because v changes very little between mode transitions of the
PFD, these error-terms overwhelm the convergence of v. To
avoid these limitations, we created a model for the digital PLL
that consisted of three sub-models according to how “far” the
PLL is from its lock state.

Model 1: (the blue path segment in Fig. 5). This model is for
the region where v is much lower than the equilibrium value.
We construct a model that has c and qD as state variable and
models v as a static interval. A complication to this argument
is that due to delays in the reset loop of the PFD, the PFD
may occasionally report that the DCO leads the reference,
causing c to temporarily increase – these anomalous flows
are depicted by the red arrows in Fig. 5. These anomalies are
captured by our model, and SpaceEx shows that c moves to
a small, invariant interval containing cmin. Because c < c

center

,
v̇ > 0, from which we conclude that v increases, and the entry
conditions for model 2 will eventually be satisfied. We use

100 117

an equivalent construction when v is much greater than the
equilibrium value. Note that v must be analysed separately
from c and qD to avoid the issues with different time scales
for v and qD.

Model 2: (the magenta path segment in Fig. 5). For v in
these bounds, the linear phase path bounds qD and ensures
that there are no anomalies like those described for Model
1. Here we use the product-automata construction described
earlier; c, v, and qD are all included as state variables. SpaceEx
shows that v continues to progress towards its equilibrium
value, and in so doing verifies our choice of bounds for v.
In other words, our manual calculation was helpful to obtain
a successful verification, but the soundness of the verification
does not depend on the correctness of these calculations.

Model 3: (the green path segment in Fig. 5). Here, 1
N

f

dco

=
f

ref

, and c and v follow a zig-zag path to settle at their
equilibrium values. Along this path, qD frequently changes
sign, causing a large number of mode transitions that would
obscure the progress of v in the SpaceEx analysis. Our
linearized model for the DCO frequency is

f

dco

2 a

v

v+a

c

c�Err (5)

where � denotes Minkowski sum1, and Err is an error-bound
interval for the linear approximation.

w =
a

v

v+a

c

c

N

� f

ref

(6)

and construct a model whose state variables are w and qD.
SpaceEx readily shows that w and qD both converge to
intervals around 0.

Now, note that if |w| is small, then given v, we can derive
tight bounds for c. This allows us to construct a model, using
a small interval for w, that shows that v (and therefore c)
converges to its equilibrium value.

Together, these results from SpaceEx show that all trajecto-
ries that start in the valid region for model 1 eventually enter
the valid region for model 2. All trajectories that start in the
valid region for model 2, eventually enter the valid region for
model 3. All trajectories that start in the valid region for model
3, converge to the desired equilibrium point. Because the union
of the valid regions for models 1, 2, and 3 covers the entire
state space for c, v, and qD, global convergence of the digital
PLL is verified. As an example of the process, Figure 7 shows
how v converges to its equilibrium value in models 2 and 3.

B. Limitations of the model

Our verification is relative to the model, and the model
makes several simplifications relative to the real circuit. This
section summarizes the most important of these simplification-
s.

1 The Minkowski sum of two sets, A and B is the set of elements that can
be obtained as the sum of an element from A and an element from B:

A�B = {z | 9a 2 A. 9b 2 B. z = a+b}

v vs. t in Model 2 v vs. t in Model 3
Fig. 7. SpaceEx plots showing convergence of v for Models 2 and 3

Our model omits the Delta-Sigma modulator, the direct
phase control path and the low-pass filter of the complete
design. Modeling the Delta-Sigma modulator should be
straightforward using the quantization model from Eq. 4.

The linear phase control path. We included a simple,
linear model of the “time gain” of the linear phase control
in our model. The phase shift of this path is applied once for
every cycle of the PFD. This means that the phase shift is
proportional to both the phase offset and the minimum of f

ref

and 1
N

f

dco

. Our linear model is valid when the PLL is close
to lock, and we plan to model the non-linearity of this path in
future work.

The low-pass filter seemed like an obvious candidate to
include in our model for SpaceEx: we can model it as a
purely linear system with three state variables and no mode
transitions. When we included the filter in the PLL model,
SpaceEx failed to show convergence. We suspect that the
filter’s low cut-off frequency results in a stiff model. We hope
to explore this further and possibly along the lines of those
presented in [12] to model the PLL with the low-pass filter..
An interesting opportunity here is that if the cut-off frequency
of the low pass filter is close to that of the v-integrator, the
PLL will be unstable. We intend to use this as a test case to
show how our methods can identify a faulty design.

The PFD has a metastability issue that is hidden by
the abstraction that we used. Basically, there are situations
where the PFD must “decide” between reseting qD to 0 or
continuing with a value that is close to ±2p . While the issue
of metastability occurs in any PLL design, we have not seen
it mentioned or addressed in the verification literature.

Finally, our model has fixed coefficients for the linear
differential inclusions that model the PLL components. A
real design will not exactly match any pre-specified value
for these parameters, and they will be specified as intervals
instead. SpaceEx only supports models where the coefficients
are fixed, real numbers. In the next section, we introduce an
approach that allows verifying global convergence under the
more general realistic condition of having interval bounds for
key model parameters.

101118

V. PARAMETERIZED VERIFICATION WITH Z3

Consider the problem of showing that all trajectories in
an invariant region Q0 eventually reach a target region Q

T

with Q

T

✓ Q0. This can be proven by exhibiting a Lyapunov

function, F, that satisfies the two conditions below:
1) 8x 2 Q0 �Q

T

. F(x)> 0; and
2) 8x 2 Q0 �Q

T

. d

dt

F(x)< 0.
Because Q0 is invariant, all trajectories that start in Q0 will
remain in Q0 forever. Furthermore, if the trajectory has not
entered Q

T

, F(x) strictly decreases with time along any
trajectory outside of Q

T

. Therefore, F(x) must eventually be
less than or equal to zero. Because F(x) is strictly positive
outside of Q

T

, the trajectory must eventually enter Q

T

.
The soundness of the Lyapunov argument does not depend

on how F was obtained; it only requires that F satisfy the
Lyapunov conditions. In this section, we borrow an approach
from linear systems theory to construct a Lyapunov function,
and use the Z3 SMT solver to show that the Lyapunov
conditions stated above hold for this function when used
with the non-linear model for the digital PLL. By using this
approach with interval bounds for key model parameters, we
show that the verification holds for any digital PLL whose
components implement the model within the given bounds.
We observed that a direct application of this method produced
a system of non-linear relations where the SMT solver did
not terminate in a practical amount of time. However, we can
modify the original function to produce a new function that Z3
can show satisfies the Lyapunov conditions above. This verifies
global convergence for any implementation of the PLL whose
parameters are within the interval bounds.

As a preliminary experiment, we considered showing con-
vergece from states where 1

N

f

dco

is much different than f

ref

.
In this case, the PFD acts like a frequency comparator, and
we considered a simplification of Eq. 3 without q and where
ċ = g1(f

ref

� 1
N

f

dco

). Here, we use a non-linear DCO from
Eq. 2.

To construct F, first consider a linear system, ẋ = Ax. Let
P be the solution of

A

T

P+PA = �I (7)

By construction, P is symmetric. If P is positive definite, then
the system ẋ = Ax globally converges to x = 0 [13, p. 154]. To
prove this, observe that F(x) = x

T

Px satisfies the Lyapunov
conditions.

Next, consider the PLL model with a non-linear DCO
model and saturating accumulators as described in the previous
section. Let h be the time-derivative function for this model,
in other words, ẋ = h(x) where x = [c v]T . Let x0 be the
desired operating point of the PLL; in particular h(x0) = 0. To
show global convergence, let A = Jac(h,x0) be the Jacobian
of h when evaluated at x0; let P be defined as in Eq. 7;
and let F(x) = x

T

Px. The PLL globally converges to x0 if
P is positive definite and for all initial points x 2 Q0 � {x0},
d

dt

F(x) < 0. Positive-definiteness can be tested by adding a
conjunct with that constraint to the solver and showing that

a suitable P exists. The second part is equivalent to showing
8x 2 Q0 �{x0}. h(x)T

Px < 0. Z3 solves this problem in a few
seconds, including the multiple cases in the definition of h to
account for saturation of the accumulators.

We attempted to repeat this analysis using interval bounds
for the parameters a , b , and f0 for the DCO from Eq. 2,
allowing each parameter to vary ±20% from its nominal value.
With our initial attempt, Z3’s solver failed to complete. While
modern SMT solvers can handle non-linear relations, the
computational cost grows extremely rapidly with the number
of non-linear terms. Accordingly, we sought to simplify our
Lyapunov function. Using the Jacobian based approach defined
above:

A0 = f0

"
g1 f

ref

b
1+bc

center

� g1a
1+bc

center

g2 0

#
(8)

As described above, one can propose any matrix for A, and
if function obtained by solving for P satisfies the Lyapunov
conditions, global convergence is established. Thus, we looked
for ways to “simplify” A0 to obtain a system of inequalities
that would show convergence and be tractable in Z3. Noting
that the nominal values for a and b are both one, we factored
them out from the numerators in the elements for the first row
of A0 to get

A1 = f0

"
g1 f

ref

1+bc

center

� g1
1+bc

center

g2 0

#
(9)

With this change, Z3 verified the Lyapunov conditions, again
in just a few seconds.

Now, consider adding error terms as described in Section IV
to the derivatives to obtain an inclusion. These error terms
perturbed the effective values of c and v in the calculation of
the derivative. Let Err denote these error terms, and assume
that Err is symmetric about 0: if h 2 Err then �h 2 Err as
well. We now want to show:

8X 2 Q0 �Q

T

. 8h 2 Err. h(x+h)T

Px < 0

From the symmetry of Err, this is equivalent to showing

8X 2 (Q0 �Q

T

)�Err. 8h 2 Err.
(x+h 2 Q0 �Q

T

)) (h(x)T

P(x+h)< 0) (10)

The last form is easier for the SMT solver because it moves
the h term out of the non-linear function, h. With the earlier
models, Z3 showed convergence to the point x0. With this
model, Z3 shows convergence into a small rectangle that
contains x0. This rectangle is larger than x0 �E because the
disturbance can be time-varying.

Finally, we combined using interval bounds for the model
parameters and including error terms in the derivative function.
Again, Z3’s solver failed to converge. This time we noted that
the denominator of the elements in the first row of A0, 1+
bc

center

is always positive. Thus, we can multiply the second
inequality of the Lyapunov conditions by 1+bc

center

to obtain
the equivalent condition:

8x 2 (Q0 �Q

T

)�Err. 8h 2 Err. (x+h 2 Q0 �Q

T

)
) ((1+bc

center

)h(x)T

P(x+h)< 0) (11)

102 119

Using this formulation, Z3 quickly verified global convergence
with interval bounds for model parameters and error terms in
the derivative function.

VI. CONCLUSIONS AND FUTURE WORK

We have shown global convergence for a digital phase
locked loop (PLL). We modeled the components of the PLL
using piecewise linear differential inclusions, and then showed
that all initial states converge to a small region near the
intended operating point. These component models included
non-linearities in the digitally controlled oscillator, saturation
and quantization effects in the accumulators, and modeling
of both a linear and a bang-bang phase-frequency detectors.
Using a simplified model, we showed how the convergence
results can be extended to the case where the specifications
for components are given as interval bounds rather than exact
values.

We chose to use SpaceEx [4] for the reachability compu-
tations because it was designed from the outset to handle
large linear hybrid automaton models. The piecewise linear
inclusions model the PLL components quite well. On the other
hand, we encountered problems with long compute times and
large over approximations when SpaceEx computed non-trivial
fix points for cycles of modes. The solution we found was to
organize the modes of the automaton according to the typical
behaviour of the PLL during lock to avoid cycles of modes.
With thise changes SpaceEx could verify global convergence
in a few minutes.

SpaceEx requires fixed values for the model coefficients.
We also showed the convergence can be established using
Lyapunov functions, and the correctness of these functions can
be shown with an SMT solver. For the work reported here, we
used Z3 [5]. Here too, we encountered issues of time-outs: the
solver would either complete in a second or two, or they would
go on for hours without terminating. In this case, the solution
was to manually simplify the function. This works particularly
well with the Lyapunov approach; there’s no way to introduce
an error by simplifying a proposed Lyapunov function. If an
inappropriate change is made, the proposed function will be
refuted. Our SMT-based method is at a relatively preliminary
stage and we are interested in seeing if we can apply it to
a model that is as detailed as the one that we used with the
hybrid-automata appproach.

There are many areas for future work. We would like to
provide bounds on lock time (excluding metastability). Then
we plan to complete models for the low-pass filter and the
Delta-Sigma modulator. We plan to examine other digital
PLL architectures to assess how much of the effort from this
verification can be re-used for other designs. We expect that
the re-use will be large, but we do not expect full automation
given the need to guide the tools away from problems of time-
outs and over approximations.

A very promising follow-on is to formalize the connection
between the models used here and those used in other phases
of the analog and mixed-signal design process. For example,
we used “designer” provided models of the main components

of the PLL. How do we know that these handwritten models
correspond to the actual circuit? Thus, we want to connect this
work with component validation.

Acknowledgments

We appreciate feedback from designers who have given us
feedback on PLL design and verification, especially Elad Alon,
Brian Casper, Frankie Liu, Frank O’Mahony, and Suwen Yang.
This work has been supported by grants from Intel and from
NSERC Canada.

REFERENCES

[1] J. Crossley, E. Naviasky, and E. Alon, “An energy-efficient ring-
oscillator digital PLL,” in Proceedings of the Custom Integrated

Circuits Conference (CICC’2010), Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/CICC.2010.5617417

[2] J. Kim, M. Jeeradit, B. Lim, and M. A. Horowitz, “Leveraging
designer’s intent: a path toward simpler analog CAD tools,”
in Proceedings of the Custom Integrated Circuits Conference

(CICC’2009), Sep. 2009, pp. 613–620. [Online]. Available: http:
//dx.doi.org/10.1109/CICC.2009.5280741

[3] K. S. Kundert, “Introduction to RF simulation and its application,”
IEEE Journal of Solid-State Circuits, vol. 34, no. 9, pp. 1298–1319,
1999. [Online]. Available: http://dx.doi.org/10.1109/4.782091

[4] G. Frehse, C. L. Guernic et al., “SpaceEx: Scalable verification of
hybrid systems,” in Proceedings of the 23rd

Conference on Computer

Aided Verification, 2011. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22110-1 30

[5] L. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and

Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, C. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Springer Berlin Heidelberg, 2008, pp. 337–340. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-78800-3 24

[6] H. Lin, P. Li, and C. J. Myers, “Verification of digitally-intensive analog
circuits via kernel ridge regression and hybrid reachability analysis,” in
Proceedings of the 50th Annual Design Automation Conference, ser.
DAC ’13. New York, NY, USA: ACM, 2013, pp. 66:1–66:6. [Online].
Available: http://doi.acm.org/10.1145/2463209.2488814

[7] I.-S. Dhingra, “Formalising an integrated circuit design style in higher
order logic,” Ph.D. dissertation, Computer Laboratory, Cambridge
University, Nov. 1988. [Online]. Available: http://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-151.html

[8] Z. J. Dong, M. H. Zaki, G. Al-Sammane, S. Tahar, and G. Bois,
“Checking properties of PLL designs using run-time verification,”
in International Conference on Microelectronics (ICM’2007), 2007,
pp. 125–128. [Online]. Available: http://dx.doi.org/10.1109/ICM.2007.
4497676

[9] Z. Wang, N. Abbasi, R. Narayanan, M. Zaki, G. Al-Sammane, and
S. Tahar, “Verification of analog and mixed signal designs using online
monitoring,” in Mixed-Signals, Sensors, and Systems Test Workshop,

2009. IMS3TW ’09. IEEE 15th International, 2009, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/IMS3TW.2009.5158695

[10] A. Jesser and L. Hedrich, “A symbolic approach for mixed-signal
model checking,” in Proceedings of the 2008 Asia and South Pacific

design automation conference (ASPDAC’08). Los Alamitos, CA, USA:
IEEE Computer Society Press, 2008, pp. 404–409. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1356802.1356903

[11] M. Althoff, A. Rajhans et al., “Formal verification of phase-locked loops
using reachability analysis and continuization,” in Proceedings of the

2011 International Conference on Computer Aided Design, Nov. 2011,
pp. 659–666.

[12] C. Yan, M. R. Greenstreet, and J. Eisinger, “Formal verification of an
arbiter circuit,” in Proceedings of the 16th

International Symposium

on Asynchronous Circuits and Systems, 2010, pp. 165–175. [Online].
Available: http://dx.doi.org/10.1109/ASYNC.2010.25

[13] P. J. Antsaklis and A. N. Michel, A Linear Systems Primer, 1st ed.
Birkhauser Basel, 2007. [Online]. Available: http://dx.doi.org/10.1109/
MCS.2009.932913

103120

