
On the Concept of Variable Roles and
its Use in Software Analysis

Yulia Demyanova, Helmut Veith, Florian Zuleger
Vienna University of Technology

Abstract—Human written source code in imperative program-
ming languages exhibits typical patterns for variable use, such as
flags, loop iterators, counters, indices, bitvectors, etc. Although
it is widely understood by practitioners that these patterns are
important for automated software analysis tools, they are not
systematically studied by the formal methods community, and
not well documented in the research literature. In this paper, we
introduce the notion of variable roles on the example of basic
types (int, float, char) in C. We propose a classification of the
variables in a program by variable roles which formalises the
typical usage patterns of variables. We show that classical data
flow analysis lends itself naturally both as a specification for-
malism and an analysis paradigm for this classification problem.
We demonstrate the practical applicability of our method by
predicting membership of source files to the different categories
of the software verification competition SVCOMP 2013.

I. INTRODUCTION

Programs written in imperative programming languages,
such as C, Java, Perl, Python, share typical patterns of variable
use, like flags, loop iterators, counters, indices, bitvectors,
temporary variables, and so on. Experienced programmers
have informal knowledge of these patterns, to which we refer
as variable roles. For example, from the piece of C code
while(i<n) a[i++]=0;, it can be deduced that i is a
loop iterator and an array index. Similarly, from the statement
x&=y, we can infer that x is a bitvector.
In common programming languages, there is no direct map-
ping from data types to roles - multiple roles can be associated
with the same type. For example, in C, the type int can be
used to store such different values as boolean, file descriptor,
bitvector, and character literal. Moreover, it is not clear how to
extend standard type systems for languages like C to express
roles like array index, counter, and loop iterator. Additionally,
one variable can have several roles simultaneously, like the
variable i in the loop example above. In type systems, in
contrast, one variable must be assigned one and only one type.
Therefore, roles can not be considered simply as refined types.
Information about variable roles is implicitly contained in
the structure of the source code, thus the roles can often be
inferred by syntactic analysis. This can be done by analysing
the expressions or statements of a given kind, for example,
matching array indices in array subscripts. Alternatively, roles
can be inferred by searching for code patterns, for example,
t=x; x=y; y=t; is a typical pattern for a temporary
variable t.
The notion of a variable role has two dimensions. In general,
variable roles represent heuristics, which means that they can

be systematically studied and analysed, but they need to be
treated as auxiliary heuristic information. Thus, variable roles
can guide a verification tool, but the soundness of a formal
analysis must not depend on variable roles. Certain variable
roles, however, provide sound information, which can be relied
upon during verification, and thus these roles can be viewed
as types. We will explore these two dimensions of variable
roles in future work.
In this paper we define 14 variable roles with a standard data-
flow analysis. Our definition serves at the same time as an
algorithm to compute the roles. In order to choose the roles,
we have manually investigated 5.2 KLOC of C code from the
cBench benchmark [1]. We assigned roles to the variables of
basic types such as int, float and char. When choosing the
roles, we were inspired by typical programming patterns for
variable use in real life programs. We have chosen the roles in
such a way that a small number of roles is able to classify each
occurring program variable in the programs we considered. We
have implemented a prototype of a tool which maps basic-type
variables in C programs to sets of roles.
As this short paper is reporting work in progress, we are
currently exploring applications for variable roles. An im-
portant natural application is the use of variable roles to
create abstractions in software verification or choose abstract
domains through a better understanding of the program. For
example, in C programs integer variables are used to store
boolean flags, because there is no boolean type. When creating
an abstraction for a C program, we know that the predicate
x==0 provides sufficient information about a boolean variable
x. However, most state-of-the-art verification papers consider
a program as a logical formula and either ignore such implicit
information, or treat it as undocumented heuristics. For exam-
ple, the ASTREE static analyser [2] relies heavily on human
insight for selecting the right domain. Variable roles could be
used for automating this process, e.g., to suggest the use of
octagon or polyhedra domains for variables which occur only
in linear operations, BDDs for boolean variables, etc. This will
save a verification tool from enumerating all possible domains.
After submission of this paper, we learnt about current work in
this direction by the developers of the CPAchecker verification
tool [3].
Another important application area of our method is to clas-
sify source files, for example, from benchmarks for different
verification competitions, according to the relative number
of occurrences of variable roles in them. To demonstrate

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 209226ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

int x, y, n =1 0;
. . .
y =2 x;
while (x)
{

n++3;
x =4 x &5 (x-1);

}
a) bitvector, counter, iterator

int fd =1 open(path, flags);
int c, val =2 0;

while (read3(fd, &c, 1) > 0
&& isdigit4(c))

{
val =5 10*val + c-’0’;

}
b) character, file descriptor, linear

Fig. 1: Different patterns of use of integer variables

this point, we performed the following experiment with the
benchmarks from the software competition SVCOMP 2013
[4]. The competition distinguishes several categories of source
files, such as device drivers, embedded systems, concurrent
programs, and so on. The classification is done by human
experts, who manually analysed and comprehended the source
code. With our tool we computed the frequency of different
roles in each category and used this data to train a machine
learning tool to predict the competition categories for new
files. In a number of experiments, we randomly selected a
subset of the competition source files for training and used
the remaining source files to check our prediction against
the human classification. Importantly, we used a machine
learning technique not to infer roles, but rather to validate
their predictive power. The results of the experiments are
encouraging - the prediction is successful in more than 80%
of the cases. We highlight that our choice of the roles was
based on examples from cBench rather than SVCOMP.
The results of our experiment suggest that variable roles can be
used to interpret experimental results for current verification
tools. The strengths and weaknesses of the tools can be
identified by computing code metrics in terms of the relative
frequencies of the roles. This idea can be further elaborated
for building a portfolio-solver where we first analyse the
variable roles of the program under scrutiny and then select
the verification tool that is best suited.

Contributions:
• We identify 14 variable roles that commonly occur in

practical programs.
• We implement a prototype of a tool which assigns a set

of roles to every basic-type variable in a C program.
• Using our tool and a machine learning technique, we

predict the membership of a C program to a category
of the SW verification competition SVCOMP 2013. We
get encouraging results in a number of experiments.

II. FORMALISATION OF VARIABLE ROLES

A. Examples

We will use the C programs of Figure 1 to informally
introduce variable roles, whose formal definitions are given
later in the section. In the programs we have assigned labels
to the statements and expressions to which we refer from the
text.

The program in Figure 1a calculates the number of non-zero
bits of the variable x. In every loop iteration, a non-zero bit
of x is set to zero and the counter n is incremented. The loop
continues until all bits are set to zero. Although the variables
x and n are declared of the same type int, they are used
differently. For a human reading the program, the statements
n=0 and n++ in the loop body signal that n is a counter.
Indeed, n is used to count the number of loop iterations. On
the other hand, the value of the variable x as an integer is
not used in calculations, but rather individual bits in its binary
representation matter.
We define the roles by restricting the operations in which a
variable occurs. We require that a bitvector occurs in at least
one bitwise operation (bitwise AND, OR or XOR), like the
variable x in expression 5. We require that a counter variable
only changes its value in an increment or decrement statement
or gets assigned zero. The variable n, which is assigned in
statements 1 and 3, satisfies these constrains.
The program in Figure 1b reads a decimal number from a text
file and stores its numeric representation in the variable val.
In contrast, the variables fd and c are used to store the output
of the library functions open() and read() respectively.
The difference between the two variables is that c is later
used in calculations, while fd is only passed to the function
read() as a black box because its value does not directly
affect the result of the computations. One can conjecture that
c is a character, because it is passed as an input to the function
isdigit(), which checks whether its parameter is a decimal
digit character. Even though isdigit() is declared to take
a parameter of type int, the documentation states that the
parameter is a character to be tested, cast to int [5].
We define character, file descriptor and linear roles as follows.
We require that a character variable is assigned at least
once a character literal (e.g., c=’a’) or another character
variable, or is used in a standard C function for manipulating
characters (e.g., c=getchar() or isdigit(c)). A file
descriptor is required to be used in a standard C function
for manipulating files (e.g., fd=open(path,flags) or
read(fd,&c,1)). A linear variable can be assigned only
linear combinations of linear variables. The variables c and
val, assigned in statements 3 and 2,5 respectively, satisfy the
latter constraint.

B. Definition of the analysis
We define variable roles using classical intraprocedural

dataflow analysis [6]. In this section we use the notation as
follows. Var denotes the set of program variables, and Num
denotes all scalar constant literals (e.g., 0, 0.5, ’a’). S, E and B
denote the set of program statements, arithmetic and boolean
expressions respectively. For the elements of these sets we
use the same names in the lowercase version (e.g., var for a
program variable).
For a program s2 S the result of analysis R is computed using
the function Res

R, which is defined as follows:

Res

R = Init

R
F
gen

R(s),

210 227

BITVECTOR Init = ;,
F

= [, c = o

gen(var := e) =
⇢
{var} if e ::= e1 bitop e2
; otherwise

gen(if b then s1 else s2) = gen(b) [gen(s1) [gen(s2)
gen(s1; s2) = gen(s1) [gen(s2)

gen(skip) = ;
gen(while b do s) = gen(b) [gen(s)

gen(var) = gen(num) = ;
gen(e1 bitop e2) = IsVar(e1) [IsVar(e2)

[gen(e1) [gen(e2)
gen(e1 arithop e2) = = gen(e1) [gen(e2)

gen(bitnot e) = IsVar(e) [gen(e)

IsVar(e) =
⇢
{var} if e ::= var
; otherwise

LINEAR Init = Var,
F

= \, c = f

gen(var:=e) =
⇢
{var} if lin(e)=false
; otherwise

gen(if b then s1 else s2) = gen(s1) [gen(s2)
gen(s1; s2) = gen(s1) [gen(s2)

gen(skip) = ;
gen(while b do s) = gen(s)

gen(e) = ;
lin(num) = true

lin(var) =
⇢

true if var 2 ResLINEAR

false otherwise
lin(e1+e2) = lin(e1) ^ lin(e2)

lin(e1*e2) =

8
<

:

lin(e2) if e1 2 Num
lin(e1) if e2 2 Num
false otherwise

lin(e1 bitop e2) = lin(bitnot e) = lin(e1/e2) = false
Fig. 2: Formal definition of roles BITVECTOR and LINEAR

where Init

R 2 P(Var) is the initial set of variables, the
function gen

R : S [E [B ! P(Var) maps every statement
and expression to a set of generated variables, and the signF

is used as a placeholder for a set operation and must be
instantiated for each analysis.
Analysis R is therefore defined by a tuple (InitR,

F
, genR,

c), where c2 {f, o} indicates how to evaluate Res

R. When c
is defined as f, a fixed point of Res

R is computed, i.e. Res

R

is iteratively recalculated until it does not change. When c is
defined as o, Res

R is calculated in one iteration.

C. Example of role definition
In Figure 2 we formally define the analysis for the roles

BITVECTOR and LINEAR. Due to the lack of space we
give only an informal definition of the remaining roles in
Table I. We now show step by step the computation of the
BITVECTOR and LINEAR roles for the example program in
Figure 1a.
The analysis for the role BITVECTOR starts with the empty
set (Init = ;). The operation

F
is defined to be set union,

and the result set is calculated in one iteration (c = o). When
statement 4 is processed, the variable x is added to the result
set because in this statement x is assigned the result of a
bitwise AND operation. At expression 5, the variable x is
also added to the result set because x occurs in a bitwise
operation. After that, the result set does not change anymore,
and the analysis yields the result {x}, as shown in Figure 3a.

TABLE I: Informal definition of variable roles
Role name Informal definition
SYNT CONST not assigned any value in the program
CONST ASSIGN assigned only numeric literals or CONST ASSIGN

variables
COUNTER assigned only in increment and decrement state-

ments, or assigned zero
LINEAR assigned only linear combinations of LINEAR vari-

ables
BOOL assigned only 0,1, the result of a boolean expression

or BOOL variables
INPUT modified by an external function
BRANCH COND occurs in the condition of an if statement
BITVECTOR occurs in a bitwise operation or assigned the result

of a bitwise operation
UNRES ASSIGN assigned a pointer dereference or modified by a

function
CHAR assigned only character literals, CHAR variables,

or passed to a library function which manipulates
characters

LOOP
ITERATOR

occurs in the condition of a loop and assigned in the
loop body

FILE DESCR passed to a library function which manipulates files
ARRAY INDEX occurs in an array subscript expression
ARRAY SIZE passed to a memory allocating library function

BITVECTOR
label gen(s)
4,5 {x}

Init(vd)=;, Res={x}

a) bitvectors

LINEAR
Iter. label gen(s)
1 4 {x}
2 2 {y}

Init(vd)={x,y,n}, Res={n}
b) linear variables

Fig. 3: Step-by-step computation of roles

The analysis for the role LINEAR is computed as a fixed
point of the function Res

R (c = f). It starts with the set
Var of all program variables, which evaluates to {x,y,n}.
The operation

F
is defined to be set subtraction. In the first

iteration, the variable x is excluded from the result set at
statement 4 because it is assigned a non-linear expression.
In the second iteration, the variable y is excluded from the
result set at statement 2 because it is assigned x, which does
not belong to the result set. In the third iteration, the result
set does not change, and the analysis yields the result {n}, as
shown in Figure 3b.

III. IMPLEMENTATION AND EXPERIMENTS

We used the clang compiler [7] to implement a prototype of
a tool, which assigns a subset of variable roles to every basic-
type variable. The current implementation does intraprocedural
analysis and does not include a pointer analysis. We replace
all function calls (e.g., c=getchar()) and pointer derefer-
ences (e.g., n=

*

ptr, n=arr[i]) with fresh variables. For
example, the statement c=getchar() would be rewritten
as c=t1, and in the LINEAR analysis the variable t1 would
not be excluded from the result set, but rather assigned the
role ”unresolved assignment”, which is a trade-off between
soundness and precision.
We ran two experiments. In the first one we computed the
relative number of the occurrences of each role in every
category. We calculated it by summing up the numbers in all
files of a category and normalising them by the total number of
variables in these files. The results for the categories ”Control

211228

a) Relative numbers of roles for 2 categories
R

el
at

i v
e

nu
m

be
rs

of
ro

le
s,

%
SY

NT
CO

NS
T

CO
NS

T
AS

SI
GN

CO
UN

TE
R

LI
NE

AR
BO

OL
IN

PU
T

BR
AN

CH
CO

ND
BI

TV
EC

TO
R

UN
RE

S
AS

SI
GN

US
ED

IN
AR

IT
HM

10%

20%

30%

40%

50%

Control Flow and Integer Variables
Linux Device Drivers 64-bit

b) Prediction error
in different settings

Tr
ai

ni
ng

se
t,

%
of

al
lfi

le
s

Er
ro

r
of

ch
oi

ce
1

Er
ro

r
of

ch
oi

ce
2

90% 15.94% 2.90%
80% 14.81% 5.93%
70% 16.20% 7.98%
60% 19.77% 7.98%
50% 18.60% 8.54%

Fig. 4: Comparison of categories and automatic classification
of files

Flow and Integer Variables” and ”Linux Device Drivers”
are shown in Figure 4a. We observed higher frequencies of
boolean flags and branching operations, counters, arithmetic
operations and constant assignments in the first category, and
high numbers (in comparison to other categories in SVCOMP)
of bitvectors and pointers in the second one.
In our main experiment, whose summary was given in Section
I, we used machine learning to create a classifier for source
files into the categories of the competition SVCOMP as a
function of the frequencies of variable roles in a file. Since
a program would typically share similarities with several
categories, we used a multiclass vector support machine [8] to
predict the category of a source file with some probability. For
example, we predict that a file is a driver with the probability
60%, a concurrent program with the probability 35%, and so
on. We translated the relative numbers of roles into the input
format of the machine learning tool Weka [9] as follows:
each source file represented one training example with the
category corresponding to the class, and relative numbers of
roles representing the vector of float attributes. We ran the
experiments for varying sizes of the training sets from 90%
to 50% of all files and analysed the remaining files by our
tool. Figure 4b shows the percentage of the files for which
the most likely category (second column) or the two most
likely categories (third column) do not include the actual file
category.

IV. RELATED WORK

The term variable roles was inspired by the work in program
comprehension [10] which informally defines roles as patterns
of how variables are initialised and updated. The authors have
defined nine roles, implemented a tool for assigning roles
to variables using static analysis, and evaluated it on Pascal
programs from textbooks. The work leaves open the question
of formalising the notion of variable roles as well as of the
possibility of applying the method to real-word programs.
The commercial bug finding tool Coverity [11] uses implicit
knowledge in the form of programmer’s beliefs, i.e. proposi-
tional statements about program variables and functions. The

authors use static analysis to extract two types of statements
– the sound statements which follow from the requirements
of safety, non-redundancy and reachability of the code (e.g.,
”a pointer is not null”) and hypotheses which follow from the
statistics of observations (e.g., ”calls to functions f() and g()
should be paired”).
Rondon et al. [12] use predicate abstraction over a fixed
set of predicates to infer so called liquid types, i.e. types
refined with a conjunction of propositional predicates (e.g.,
x>0 ^ x<5). We consider this approach to be complementary
to ours, because it does not use any information from the
source code other than the transition relation, and concentrates
on arithmetic properties of variables.
Variable names and comments as an additional source of
knowledge about a program have been systematically studied
in program comprehension. The Latent Semantic Indexing
technique [13] allows to query the program source code using
words in natural language, based on the number of occurrences
of the words in variable names and comments. A study has
been made of the naming rules for variables in real-word
programs [14], and of expanding abbreviated identifiers to full
words [15]. We plan to use these techniques in future work.

ACKNOWLEDGMENT

This work is supported by the Austrian National Research
Network S11403-N23 (RiSE) of the Austrian Science Fund
(FWF) and by the Vienna Science and Technology Fund
(WWTF) through grants PROSEED and ICT12-059.

REFERENCES

[1] http://ctuning.org/wiki/index.php/CTools:CBench.
[2] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival, “The astrée analyzer,” in Programming Languages and
Systems. Springer, 2005, pp. 21–30.

[3] S. Apel, D. Beyer, K. Friedberger, F. Raimondi, and A. von Rhein,
“Domain types: Selecting abstractions based on variable usage,” CoRR,
Tech. Rep. abs/1305.6640, 2013.

[4] http://sv-comp.sosy-lab.org/2013/benchmarks.php.
[5] http://www.gnu.org/software/libc/manual/pdf/libc.pdf.
[6] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program

analysis. Springer-Verlag New York Incorporated, 1999.
[7] http://clang.llvm.org.
[8] J. Weston and C. Watkins, “Multi-class support vector machines,” De-

partment of Computer Science, Royal Holloway, University of London,
Tech. Rep. CSD-TR-98-04, 1998.

[9] http://www.cs.waikato.ac.nz/ml/weka.
[10] J. Sajaniemi, “An empirical analysis of roles of variables in novice-level

procedural programs,” in Proceedings of the IEEE Symposia on Human
Centric Computing Languages and Environments, 2002, pp. 37–39.

[11] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: a general approach to inferring errors in systems code,”
SIGOPS Operating Systems Review, vol. 35, no. 5, pp. 57–72, 2001.

[12] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” in Proceed-
ings of the ACM SIGPLAN conference on Programming language design
and implementation, 2008, pp. 159–169.

[13] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman, “Indexing by latent semantic analysis,” Journal of the
American Society for Information Science, vol. 41, no. 6, pp. 391–407,
1990.

[14] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, 2006.

[15] D. Lawrie, H. Feild, and D. Binkley, “Extracting meaning from abbrevi-
ated identifiers,” in IEEE International Working Conference on Source
Code Analysis and Manipulation, 2007, pp. 213–222.

212 229

2

