
An SMT Based Method for Optimizing Arithmetic
Computations in Embedded Software Code

Hassan Eldib and Chao Wang
Department of ECE, Virginia Tech, Blacksburg, VA 24061, USA

E-mail: {heldib,chaowang}@vt.edu

Abstract—We present a new method for optimizing the C/C++
code of embedded control software with the objective of mini-
mizing implementation errors in the linear fixed-point arithmetic
computations caused by overflow, underflow, and truncation.
Our method relies on the use of an SMT solver to search for
alternative implementations that are mathematically equivalent
but require a smaller bit-width, or implementations that use the
same bit-width but have a larger error-free dynamic range. Our
systematic search of the bounded implementation space is based
on an inductive synthesis procedure, which guarantees to find a
solution as long as such solution exists. Furthermore, the synthesis
procedure is applied incrementally to small code regions – one at
a time – as opposed to the entire program, which is crucial for
scaling the method to programs of realistic size and complexity.
We have implemented our method in a software tool based
on the Clang/LLVM compiler and the Yices SMT solver. Our
experiments, conducted on a set of representative benchmarks
from embedded control and DSP applications, show that the
method is both effective and efficient in optimizing fixed-point
arithmetic computations in embedded software code.

I. INTRODUCTION
Analyzing and optimizing the fixed-point arithmetic com-

putations in embedded control software is crucial to avoid
overflow and underflow errors and minimize truncation errors
within the designated input range. Implementation errors such
as overflow, underflow, and truncation can lead to degradation
of the computation results, which in turn may destabilize
the entire system. The conventional solution is to carefully
estimate the minimum bit-width required by the software code
to run in the error-free mode and then choose a microcontroller
that matches the minimum bit-width. However, this can be
expensive or even infeasible, e.g., when the microcontroller at
hand has 16 bits but the code requires 17 bits.
In many cases, it is possible for the developer to manually

reorder the arithmetic operations to avoid the overflow and
underflow errors and to minimize the truncation errors. How-
ever, the process is labor intensive and error prone. In this
paper, we present a new compiler assisted code transformation
method to automate the process. More specifically, we apply
inductive synthesis incrementally to optimize the arithmetic
computations so that the code can be safely executed on
microcontrollers with a smaller bit-width.
Consider the code in Fig. 1, where all input parameters

are assumed to be in the range [0, 9000]. A quick analysis
of this program shows that, to avoid overflow, the program
must be executed on a microcontroller with at least 32 bits.
If it were to run on a 16-bit microcontroller, many of the
arithmetic operations, e.g., the subtraction in Line 13, would
overflow. In this case, a naive solution is to scale down the bit-
widths of the overflowing operations by eliminating some of
their least significant bits (LSBs). However, it would decrease

the dynamic range, ultimately leading to a large accumulative
error in the output.
Our method, in contrast, can reduce the minimum bit-width

required to run this fixed-point arithmetic computation code
without loss in accuracy. It takes the original C code in
Fig. 1 and the user-specified ranges of its input parameters,
and returns the optimized C code in Fig. 2 as output. Our
method guarantees that the two programs are mathematically
equivalent but the one in Fig. 2 requires a smaller bit-
width. More specifically, the new code can run on a 16-bit
microcontroller. Furthermore, our method ensures that the new
code does not introduce additional truncation errors.
The optimization in our method is carried out by an

SMT solver based inductive synthesis procedure, which is
customized specifically for efficient handling of fixed-point
arithmetic computations. Recent years have seen a renewed
interest in applying inductive synthesis techniques to a wide
variety of applications (e.g., [1], [2], [3], [4], [5], [6], [7],
[8]). However, a naive application of inductive synthesis to
our problem would not work, due to the limited scalability and
large computational overhead of the synthesis procedure. For
example, our experience with the Sketch tool [1] shows that,
for synthesizing arbitrary fixed-point arithmetic computations,
it does not scale beyond programs with 3-4 lines of code.
Our main contribution in this paper is a new incremental

inductive synthesis algorithm, where the SMT solver based
analysis is carried out only on small code regions of bounded
size, one at a time, as opposed to the entire program. This
incremental optimization approach allows our method to scale
up to programs of practical size and complexity.
Our new method differs from existing methods for opti-

mizing arithmetic computations in embedded software. These
existing methods, including recent ones [9], [10], focus pri-
marily on computing the optimal (smallest) bit-widths for the
program variables. Instead, our method focuses on re-ordering
the arithmetic operations and re-structuring the code, which in
turn may lead to reduction in the minimum bit-width. In other
words, we are not merely finding the minimum bit-width, but
also reducing it through proper code transformation. Due to
the use of an SMT solver based exhaustive search, our method
can find the best implementation solution within a bounded
search space.
We have implemented our method in a software tool based

on the Clang/LLVM compiler framework [11] and the Yices
SMT solver [12]. We have evaluated its performance on a
representative set of public domain benchmarks collected from
embedded control and digital signal processing (DSP) applica-
tions. Our results show that the new method can significantly
reduce the minimum bit-width required by the program and,

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 112129ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.



1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11,t12;
3: t12 = 3 * A;
4: t10 = t12 + B;
5: t11 = H << 2;
6: t9 = t10 + t11;
7: t6 = t9 >> 3;
8: t8 = 3 * E;
9: t7 = t8 + D;
10: t5 = t7 - 16469;
11: t3 = t5 + t6;
12: t4 = 12 * F;
13: t2 = t3 - t4;
14: t1 = t2 >> 2;
15: t0 = t1 + K;
16: return t0;
17:}

Fig. 1. The original C program for implementing an embedded controller.

1: int comp(int A,int B,int H,int E,int D,int F,int K) {
2: int t0,t1,t3,t4,t5,t6,t8,t12;
3: int N1,N2,N3,N4,N5,N6,N7,N9,N10;
4: t12 = 3 * A;
5: N6 = H;
6: N10 = t12 - B;
7: N9 = N10 >> 1;
8: N7 = B + N9;
9: N5 = N7 >> 1;
10: N4 = N5 + N6;
11: t6 = N4 >> 1;
12: t8 = 3 * E;
13: N3 = t8 - 16469;
14: t5 = N3 + D;
15: t3 = t5 + t6;
16: t4 = 12 * F;
17: N2 = t4 >> 2;
18: N1 = t3 >> 2;
19: t1 = N1 - N2;
20: t0 = t1 + K;
21: return t0;
22:}

Fig. 2. Optimized C code for implementing the same embedded controller.

alternatively, increase the error-free dynamic range.
To sum up, this paper makes the following contributions:
• We propose the first method for incrementally optimizing
the linear fixed-point arithmetic computations in embed-
ded C/C++ code via inductive synthesis to reduce the
minimum bit-width and increase the dynamic range.

• We implement the new method in a software tool based
on Clang/LLVM and the Yices SMT solver, and demon-
strate its effectiveness and scalability on a set of repre-
sentative embedded control and DSP applications.

The remainder of this paper is organized as follows. In
Section II, we illustrate our new method by using an example.
We establish the notation in Section III, and then present the
overall algorithm in Section IV. We present our inductive syn-
thesis procedure in Section V. The implementation details and
experimental results are given in Section VI and Section VII,
respectively. We review related work in Section VIII, and
finally give our conclusions in Section IX.

II. MOTIVATING EXAMPLE
We illustrate the overall flow of our method using the

example in Fig. 1. The program is intended to be simple for
ease of presentation. In the actual evaluation benchmarks, the
programs have loops and variables that are assigned more than
once. Note that loops in these programs are all bounded, and
therefore can be handled by finite unrolling.

Our method takes the program in Fig. 1 and a configuration
file that defines the value ranges of all parameters as input, and
returns the program in Fig. 2 as output. It starts by parsing
the original program and constructing an abstract syntax tree
(AST). Each variable in Fig. 1 corresponds to a node in the
AST. The root node is the return value of the program. The
leaf nodes are the input parameters.
The AST is first traversed forwardly, from the parameters

to the return value, to compute the value ranges. Each value
range is a (min,max ) pair for representing the minimum and
maximum values of the node, computed using a symbolic
range analysis [13]. Then, the AST is traversed backwardly,
from the return value to the parameters, to identify the list
of AST nodes that may overflow or underflow when using a
reduced bit-width. For example, the first overflowing node in
Fig. 1 is the subtraction in Line 13: although t3 and t4 can
be represented in 16 bits, the subtraction may produce a value
that requires more bits.
For each AST node that may overflow or underflow, we

carve out some neighboring nodes to form a region for
optimization. The region includes the node, its parent node,
its child nodes, and optionally, the transitive fan-in and fan-
out nodes up to a bounded depth. The region size is limited
by the capacity of the inductive synthesis procedure. For the
subtraction in Line 13, if we bound the region size to 2 AST
levels, the extracted region would include the right-shift in
Line 14, which is the parent node.
The region is then subjected to an inductive synthesis

procedure, which generates an equivalent region that does not
overflow or underflow. For Line 13 in Fig. 1, the extracted
region and the new region are shown side by side as follows:

t2 = t3 - t4; N2 = t4 >> 2;
t1 = t2 >> 2; --> N1 = t3 >> 2;
... t1 = N1 - N2;

That is, instead of applying right-shift to the operands after
subtraction, it applies right-shift first. Because of this, the new
region needs a smaller bit-width to avoid overflow.
However, the above new region is not always better because

it may introduce additional truncation errors. Consider t3 =

2, t4 = -2 as a test case. We have (t3 - t4) >> 2 = 1 and (t3

>> 2 - t4 >> 2) = 0, meaning that the new region may lose
precision if the two least significant bits (LSBs) of t3,t4 are
not zero. An integral part of our new synthesis method is to
make sure that the new region does not introduce additional
truncation errors. More specifically, we perform a truncation
error margin analysis to identify, for each AST node, the
number of LSBs that are immaterial in deciding the final
output. For Line 13, this analysis would reveal that the LSBs
of t3 and t4 do not affect the value of the final output.
Since the new region is strictly better, the original AST is

updated by replacing the extracted region with the new region.
After that, our method continues to identify the next node that
may overflow or underflow. The entire procedure terminates
when it is no longer possible to optimize any further.
In the remainder of this section, we provide a more detailed

description of the subsequent optimization steps.
After optimizing the subtraction in Line 13, the next AST

node that may overflow is in Line 10. The extracted region
and the new region are shown side by side as follows:

t7 = t8 + D; N3 = t8 - 16469;

113130



t5 = t7 - 16469; --> t5 = N3 + D;

Our analysis shows that variables t8, D and constant 16469

all have zero truncation error margins. The new region does
not introduce any additional truncation error. Therefore, the
original AST is updated with the new region.
The next AST node that may overflow is in Line 6. The

extracted region and the new region are shown as follows:
t9 = t10 + t11; N6 = t11 >> 2;
t6 = t9 >> 3; N5 = t10 >> 2;
... --> N4 = N5 + N6;
... t6 = N4 >> 1;

The truncation error margins are 2 for t10 and 2 for t11.
Therefore, the truncation error margin for t9 is 2, meaning
that the two LSBs may be ignored. Since the new region is
strictly more accurate, the original AST is again updated with
the new region.
The next AST node that may overflow is in Line 4. The

extracted region and the new region are shown as follows:
t10 = t12 + B; N10 = t12 - B;
N5 = t10 >>2; N9 = N10 >> 1;
... --> N7 = B + N9;
... N5 = N7 >> 1;

Notice that this extracted region consists of a node that is the
result of a previous optimization step. The truncation error
margins are 0 for t12 and 0 for B. The new code region does not
suffer from the same truncation error that would be introduced
by N5 = (B>>2 + t12>>2), because the truncation error is not
amplified while being propagated to the final result. Instead,
it is compensated by the addition of B.
The last node that may overflow is in Line 5 of Fig. 1. The

extracted region and the new region are shown as follows:
t11 = H << 2;
N6 = t11 >> 2; --> N6 = H;

By now, all arithmetic operations that may overflow are
optimized. The new program in Fig. 2 can run on a 16-
bit microcontroller while still maintaining the same accuracy
as the original program running on a 32-bit microcontroller.
Another way to look at it is that if the optimized code were
to be executed on the original 32-bit microcontroller, it would
have a significantly larger dynamic range.

III. PRELIMINARIES

A. Fixed-point Notations
We follow [14] to represent the fixed-point type by a tuple

〈s,N,m〉, where s indicates whether it is signed or unsigned
(1 for signed and 0 for unsigned),N is the total number of bits
or the bit-width, and m is the number of bits representing the
fractional part. The number of bits representing the integer
part is n = (N − m). Different variables and constants
in the original program are allowed to have different bit
representations, but all of them should have the same bit-width
N .
Signed numbers are represented in the standard two’s com-

plement form. For an N -bit number α, which is represented
by bit-vector xN−1 xN−1 ... x0, its value is defined as follows:

α =
1

2m
×

(

−2N−1xN−1 +
N−2∑

i=0

2ixi

)

,

where xi is the value of the ith bit. The value of α lies in the
range [−2n, 2n−2−m]. If a number to be represented exceeds
the maximum value, there will be an overflow. If a number to
be represented is less than the minimum value, there will be
an underflow. If the number to be represented requires more
designated fractional bits than m, there will be a truncation
error. The maximum error caused by truncation is 2−m.
We define the step of a variable or a constant as the number

of consecutive LSBs that always have the value zero. For
example, the number 1024 has a step 9, meaning that nine
of the LSBs are zero. On the other hand, the number 3 has a
step 0. During the optimization process, they will be used to
compute the truncation error margin (the LSBs whose values
can be ignored). Our method will leverage the truncation error
margins to obtain the best possible optimization results.

B. Intermediate Representation
We use Clang/LLVM to construct an intermediate rep-

resentation (IR) for the input program. Since the standard
C language cannot explicitly represent fixed-point arithmetic
operations, we use a combination of the integer C program
representation and a separate configuration file, which defines
the fixed-point types of all program variables. More specifi-
cally, we scale each fixed-point constant (other than the ones
used in shift operations) to an integer by using the scaling
factor 2m. For example, a constant with the value of 2.5 will
be represented as 10, together with m = 2, since 2.5∗22 = 10.
After each multiplication, a shift-right is added to normalize

the result so as to match the fixed-point type for the result. For
example, x = c×z, where variables x and z and constant c all
have the fixed-point type 〈1, 8, 3〉, would be represented as x =
(c × z) >> 3. Our implementation currently supports linear
fixed-point arithmetic only; therefore, we do not consider the
multiplication of two variables.
Although there is no inherent difficulty in our method for

handling non-linear arithmetic, we focus on linear arithmetic
for two reasons. First, the benchmarks used in our experiments
are all linear. Second, we have not evaluated the efficiency
of SMT solvers in handling non-linear arithmetic operations.
Therefore, we leave the handling of nonlinear arithmetic for
future work.
For each multiplication, we also assign an accumulate flag,

which can be set by the user to indicate whether the micro-
controller has the capability of temporally storing the multipli-
cation result into two registers, which effectively doubles the
bit-width of the registers. Many real-world microcontrollers
have been designed in this way. Continuing with the same
example x = (c × z) >> 3, if the accumulate flag is set
to 1 by the user, the multiplication node will not be checked
for overflow and underflow. Only after the right-shift, will the
final result be checked for overflow and underflow.
For all the other operations (+, -, >>, <<), we do not rewrite

the default IR representation and do not allow the user to set
the accumulate flag, because most of the microcontrollers do
not have double sized registers to temporarily store the results
of these operations.

IV. THE OVERALL ALGORITHM
The overall flow of our method in shown in Algorithm 1.

The input includes the original program and the value ranges

114 131



of all the parameter variables. First, we invoke COMPUT-
ERANGES to compute the value ranges of all non-leaf AST
nodes. Then, we invoke COMPUTEIGNOREBITS to compute
the truncation error margins (LSBs whose values can be
ignored) for all AST nodes. Finally, we compute the bit-width
(bw1) required by the original program to run within the given
input range.

Algorithm 1 Optimizing the program within its input range.
1: OPTIMIZEPROGRAM (prog, p ranges) {
2: ranges← COMPUTERANGES(prog,p ranges);
3: ig bits← COMPUTEIGNOREBITS(prog);
4: bw1← COMPUTMINBITWIDTH(prog,ranges);
5: while (true) {
6: bw2← bw1− 1;
7: for each (Node n ∈ prog that may overflow or underflow) {
8: reg ← EXTRACTREGION(prog,n);
9: new reg ← SYNTHESIZE(reg,bw1, bw2, ranges, ig bits);
10: if (new reg does not exist) break;
11: REPLACEREGION(prog,reg, new reg);
12: }
13: bw1← bw2;
14: }
15: return prog;
16: }

After the bit-width of the original program (bw1) is de-
termined, we enter the while-loop to iteratively optimize the
program. In each iteration, we try to reduce the bit-width from
bw1 to bw2. The loop terminates as soon as a call to the
inductive synthesis procedure fails to return the new region.
Within each loop iteration, we search for all nodes that may

overflow or underflow when the new bit-width (bw2) is used.
We process these nodes in a breadth-first search (BFS) order,
i.e., from the return value of the program to the parameter
variables. For each node, we invoke EXTRACTREGION to
extract a neighboring region and then invoke the inductive
synthesis procedure. If successful, the inductive synthesis
procedure would return a new region, which is mathematically
equivalent to the extracted region but would not overflow
or underflow. It also ensures that the new region would not
introduce additional truncation error. After the new region is
found, we use it to replace the extracted region in the program.

A. Region for Optimization
The size of the extracted region affects both the effective-

ness and the computational overhead of the inductive synthesis
procedure. The minimum extracted region should include the
erroneous node and its parent node. Since we follow the BFS
order, the parent node must have no overflow or underflow
since it is already tested negative or optimized. Since in the
original program, the parent operation restores the overflowed
value created in the overflowing node back to the normal
operation range, when the parent node is included in the
region, it is more likely to find an alternative implementation
that is more accurate than the extracted region.
In general, a larger extracted region allows for more oppor-

tunity to find a suitable new region. The maximum extracted
region – if it were not for the limited capability of the SMT
solver – would be the entire input program. This is equivalent
to applying inductive synthesis tools such as Sketch [1], [2]
to the entire program, provided that the fixed-point arithmetic
optimization problem is modeled in the Sketch input language.

In practice, however, such a monolithic optimization approach
seldom works. Indeed, our experience with the Sketch tool
shows that it cannot scale beyond arbitrary fixed-point arith-
metic computation code of 2-3 lines.
Therefore, in addition to implementing our customized

inductive synthesis procedure, which can efficiently handle
fixed-point arithmetic computations, we also bound the size of
the extracted region so that inductive synthesis is applied only
in the context of incremental optimization. More specifically,
the extracted region is bounded to an AST with at most 5 node
levels, which represents up to 63 AST nodes.

B. Truncation Error Margin
We compute the step and the ignore bits for all AST nodes

recursively. First, we determine the step of each leaf node
based on the definition in Section III. In general, the step
may originate from a shift-left operation, a step in a parameter
variable, or a step in a constant. We compute the step of each
internal AST node as follows:

• step(x ∗ y) = step(x) + step(y);
• step(x+ y) = min(step(x), step(y));
• step(x− y) = min(step(x), step(y));
• step(x << c) = step(x) + c;
• step(x >> c) = max(step(x)− c, 0).
The ignore bits are those consecutive LSBs that can be

ignored during the optimization process. If these bits are
truncated in the new region, for example, no error will occur in
its output. By taking into account these bits in the optimization
process, we are able to synthesis more compact new regions.
To clarify this, consider the example in Fig. 3, where the

extracted region is shown inside the dotted box. We start by
analyzing the AST to determine the step of each node. For the
purpose of optimizing the extracted region, we need to know
the step of the region’s inputs, which are the nodes labeled as a
and b. Due to the shift-left operations, the step of a is 4, while
the step of b is 3. Considering these step values, we determine
that, when optimizing the extracted region, we have a “credit”
of 3 bits to ignore. In other words, we have the freedom to
truncate up to 3 consecutive LSBs of the two inputs (a and b)
without decreasing the accuracy of the result. Because of this,
we are able to synthesize the new region as shown in Fig. 4.

4 3x y

<< <<

+

>>

2
a b

Fig. 3. The extracted region.

4 3x y

<< <<

>>>>

2 2

+

a b

Fig. 4. The synthesized region.

Notice that, even if we do not consider the ignore bits,
our method can still synthesize a new region to remove the
overflowing node in the above example. However, in such
case, the extracted region would have to be larger. That is, the
extracted region would need to include all the AST nodes in
Fig. 3. The synthesized new region would include all the AST
nodes in Fig. 4. However, this would also lead to a significantly
longer synthesis time.

115132



V. THE INDUCTIVE SYNTHESIS PROCEDURE
At the high level, our inductive synthesis procedure consists

of two steps: (1) run a set of test cases on the extracted
region, and based on the results, generate a new region that
is equivalent to the extracted region at least for the set of test
cases; (2) check if the two regions are equivalent in the full
input range. If they are not equivalent, block this region (bad
solution) and try again.
Algorithm 2 shows the pseudo code of our synthesis pro-

cedure, which computes a new region (new reg) of bit-width
bw2, such that it is equivalent to the original region (reg) of
bit-width bw1, under the value ranges specified in ranges
while considering the truncation error margins specified in
ig bits. The procedure starts by initializing blockedRegions
and testSet to empty sets, where testSet consists of the test
cases used for inductively generating (guessing) a new region,
and blockedRegions consists of the previously explored regions
that fail the equivalence check. The procedure initializes the
size of the new region to 1, and then enters the while-loop to
iteratively search for a new region of increasingly larger size.
When size exceeds a predetermined bound, we have proved
that no solution exists in this search space.
Subroutine GENREGION uses an SMT solver to inductively

generate a new region, based on the test examples in testSet
and the already explored regions in blockedRegions. Sub-
routine COMPDIFF formally checks the equivalence of the
extracted region (reg) and the new region (new r), and returns
a concrete test if they are not equivalent.

Algorithm 2 Inductively synthesizing the new code region.
1: SYNTHESIZE (reg, bw1, bw2, ranges, ig bits) {
2: blockedRegions ← { };
3: testSet ← { };
4: size← 1;
5: while (size < MAX REGION SIZE) {
6: new r← GENREGION(reg,bw1, bw2, size,blockedRegions, testSet);
7: if (new r exists) {
8: test← COMPDIFF(reg,new r, bw1, bw2, ranges, ig bits);
9: if (test exists) {
10: blockedRegions ← blockedRegions ∪{new r};
11: testSet ← testSet ∪{test};
12: }
13: else
14: return new r;
15: }
16: else
17: size← size+ 1;
18: }
19: return no solution;
20: }

A. Constructing the New Region Skeleton
First, we generate a skeleton of the new region, which is a

generalized AST capable of representing any linear arithmetic
equation up to a bounded size. In this AST, each leaf node
is either a constant or any of the set of input variables
of the extracted region. Each internal node is any of the
linear arithmetic operations (*, +, -, >>, <<). The root node is
the result of the arithmetic computation and should compute
the same result as the output node in the extracted region.
Fig. 5 shows an example skeleton of 7 AST nodes. Here, Op
represents any binary arithmetic operator and V |C represents
a leaf node (either a variable or a constant).

Fig. 5. Skeleton of 7 AST nodes. Fig. 6. Synthesized new region.

For each AST node in the skeleton, we assign an auxiliary
variable called the selector, whose value determines the node
type. For example, a leaf node (LNode1), which may be variable
V1, variable V2, or constant C1, is represented as follows:

((LNode1 == V1) && (sel1 == 0) ||
(LNode1 == V2) && (sel1 == 1) ||
(LNode1 == C1) && (sel1 == 2))

where the integer value of selector variable sel1 ranges from
0 to 2. Similarly, a generalized internal node (INode3), which
may be an addition or a subtraction of LNode1 and LNode2, is
represented as follows:

((INode3 == LNode1+LNode2) && (sel2 == 0) ||
(INode3 == LNode1-LNode2) && (sel2 == 1))

where the integer value of selector variable sel2 ranges from
0 to 1. The actual node types in the skeleton are determined
later, when we encode the skeleton into an SMT formula, and
then call the SMT solver to find a set of suitable values for
all these selector variables.

B. Inductively Generating the New Region
To generate the new region, we need a representative set

of test cases for the extracted region. These are test values
for the input variables of the region, and should include
both the corner cases and the intermediate values. Since the
arithmetic computations are linear, we construct the corner
cases by including the minimum and maximum values of all
input variables as defined in ranges. Additional test values
are generated by taking semi-equidistant intermediate values
between values in the corner cases.
We create an SMT formula Φ such that Φ is satisfiable iff

the resulting new region – induced by a satisfying assignment
to all selector variables – is mathematically equivalent to the
extracted region, but does not overflow or underflow.

Φ = Φreg ∧ Φskel ∧ ΦsameI ∧ΦsameO ∧ Φtests ∧Φblocked,

where the subformulas are defined as follows:
• Extracted region (Φreg): It encodes the transition relation
of the extracted region by using bit-vector arithmetic,
where the bit-width is bw1.

• New region skeleton (Φskel): It encodes the transition
relation of the skeleton by using bit-vector arithmetic,
where the bit-width is bw2.

• Same input values (ΦsameI ): It asserts that the input
variables of the two regions must share the same values.

• Same output value (ΦsameO): It asserts that the output
variables of the two regions must have the same value,
and there is no overflow or underflow.

116 133



• Test cases (Φtests): It asserts that the input variables must
adopt concrete values from the given test cases.

• Blocked solutions (Φblocked): It asserts that the selector
variables should not take values that represent any previ-
ously explored (bad) solution.

If Φ is unsatisfiable, no solution exists in the bounded search
space. In this case, we need to increase the size of the skeleton
and try again. If Φ is satisfiable, we have computed a candidate
new region. As an example, consider the first extracted region
in Section II. The new region generated from the skeleton in
Fig. 5 is shown in Fig. 6.

C. Checking the Equivalence of the Regions
The candidate new region is guaranteed to be equivalent to

the extracted region over the given set of test cases. However,
they may not be equivalent over the full input range. Therefore,
the next step is to formally verify their equivalence over
the full input range. Toward this end, we create another
SMT formula Ψ, which is satisfiable iff the two regions are
not equivalent; that is, if there exists a test case that can
differentiate them. Formula Ψ is defined as follows:

Ψ = Φreg ∧Φnew reg ∧ΦsameI ∧ΦdiffO∧Φranges∧Φig bits,

where the subformulas are defined as follows:
• New region (Φnew reg): It encodes the transition relation
of the candidate new region in bit-vector arithmetic,
where the bit-width is bw2.

• Different output values (ΦdiffO): It asserts that the output
variables of the two regions have different values.

• Value ranges (Φranges): It asserts that all input variables
should stay within their pre-computed value ranges. We
are not interested in checking the equivalence of the two
regions outside the designated value ranges.

• Ignore bits (Φig bits): It asserts that the LSBs as specified
in the ignore bits should all be set to zero. This allows
us to ignore the differences between the two regions for
LSBs within the truncation error margins.

If Ψ is unsatisfiable, it means that the two regions are
mathematically equivalent within the given input range and
under the consideration of the ignore bits.
If Ψ is satisfiable, the candidate new region is not correct.

In this case, we add it to the blockedRegions and try again.
The blocking of an incorrect solution follows the counter-
example guided inductive synthesis algorithm [1], [15], where
the blocked solutions are encoded as an additional constraint
in the SMT formula, by adding an extra pair of extracted
region and new region skeleton with the blocked assignment
to selector variables. It ensures that, when the SMT solver is
invoked again to find a candidate new region, the same solution
will not be returned.

VI. IMPLEMENTATION
We have implemented our new method in a software tool for

optimizing the C/C++ code of embedded control and DSP ap-
plications based on the Clang/LLVM compiler framework [11]
and the Yices SMT solver [12]. Our tool has two modes:
the whole-program optimization mode and the incremental
optimization mode. The two modes differ only in the size
bound imposed on the extracted region.

When the bound is set to an arbitrarily large number, our
tool runs in the whole-program optimization mode. This makes
it somewhat comparable to the popular inductive synthesis tool
called Sketch [1], [15], provided that our new region skeleton
is carefully modeled in the Sketch input language, with the
selector variables defining the “integer holes” for Sketch to fill.
Before implementing our own inductive synthesis procedure,
we have explored this approach. However, it turns out to be
not scalable: synthesizing a new region with a size bound of
more than 2 would cause Sketch to quickly run out of the 4
GB memory. We believe that there are two reasons for this.
First, the performance of Sketch is not optimized for handling
arbitrary combinations of linear fixed-point arithmetic compu-
tations. Second, inductive synthesis, in general, may not be
able to scale up to arbitrarily large arithmetic computation
programs.
Due to the scalability problem encountered by using Sketch,

we have implemented our own inductive synthesis procedure
directly using the Yices SMT solver, which is designed for
efficient handling of fixed-point arithmetic operations, e.g.,
by designing SMT encoding schemes for exploiting the AST
structures encountered in this type of applications. Our experi-
mental evaluation shows that the new procedure is significantly
more efficient than Sketch. Instead of a size bound of 2, it
now can routinely optimize the skeleton with a size bound
of 5 (representing up to 63 AST nodes). Nevertheless, this
improvement alone is not sufficient for supporting the whole-
program optimization.
Instead, we propose an incremental optimization method

that applies inductive synthesis only to individual regions of
a bounded size. More specifically, we have set the maximum
bound for shift-right and shift-left operations to 4, and the
maximum level of AST nodes in the new region skeleton to
5. By incrementally optimizing one extracted region at a time,
our method is able to avoid the scalability bottleneck imposed
by the SMT solver, and therefore can be applied to programs
of practical size and complexity.

VII. EVALUATION
We have evaluated our tool on a set of public domain

benchmark examples. The experiments are designed to answer
the following three questions:

• How much can our method reduce the minimum bit-width
required for the program to run in the given input range?

• How much can our method increase the dynamic range
of the program for the given bit-width?

• If both the original and the optimized programs are forced
to run with a reduced bit-width, what is the difference
between their fixed-point specific implementation errors?

A. Benchmarks
Our benchmark includes a set of public domain C programs

for embedded control and DSP applications. They come from
various sources including papers, textbooks, and the output of
code generation tools. The sizes of the programs range from 21
lines of code (LoC) to 131 lines, with an average LoC of 79.
The number of fixed-point arithmetic operations on average
is 58. For the kind of cyber-physical systems (CPS) software
targeted by our new method, these are programs of realistic
size and complexity.

117134



TABLE I
STATISTICS OF THE BENCHMARK C PROGRAMS.

Name of the Benchmark Line of Code Arithmetic Operations
Sobel Image filter (3x3) 42 28
Bicycle controller 37 27
Locomotive controller 42 38
IDCT (N=8) 131 114
Control. Impl. 21 8
Diff. image filter (5x5) 131 77
FFT (N=8) (no DC component) 112 82
IFFT (N=8) 112 90

Table I shows the statistics of our benchmarks. The first
test case, taken from [16], is a 3x3 Sobel digital filter that is
widely used in image processing applications. The second test
case, taken from [10], is a bicycle controller optimally syn-
thesized for a custom-designed microprocessor with double-
sized internal registers. The third test case is a locomotive
controller generated by using Fixed Point Advisor and Real
Time Workshop of the Matlab toolkit [17]. The fourth test
case, taken from [18], is an inverse discrete cosine transform
(IDCT), which is widely used in mobile communication and
image compression applications. The fifth test case is the fixed-
point version of a control rule implementation from [17].
The sixth test case is a 5x5 kernel sized difference image
filter [19]. The seventh test case is a fast Fourier transform
(FFT) implementation, where the floating-point version was
taken from [20] and then converted to fixed-point, by changing
all double variables into int variables without modifying or
reordering any of its instructions. The eighth test case is the
inverse fast Fourier transform (IFFT) for test case 7. None of
the benchmarks was modified from their original forms in any
way to give performance advantage to our method.
All experiments were conducted on a machine with a 3.4

GHz Intel i7-2600 CPU, 3.3GB of RAM, and 32-bit Linux.

B. Results
First, we show that there is a significant increase in the

input/output range from the original program to the optimized
program, when they both use the original bit-width. Table
II shows the results (data on the output range are similar,
and therefore are omitted for brevity). Column 1 shows the
name of the benchmark. Columns 2 and 3 show the input
(output) ranges of the original program and the optimized
program, respectively. Column 4 shows the percentage of the
range increase. The increase in input (output) range spans
from 0% to 1515%, with an average of 307% or a median
of 72%. The increase is due to the removal of the overflowing
and underflowing nodes in the original program. As a result,
the output range is also increased. Together, they lead to
a significant increase in the dynamic range of the entire
application.
Second, we show that there is a significant decrease in the

minimum bit-width required for the program to run without
overflow/underflow errors for the given input range. The
experimental results are shown in Table III. Column 1 is the
name of the benchmark. Column 2 is the minimum bit-width
of the original program to avoid overflow and underflow, and
Column 3 is the average bit-width for all program variables.
Column 4 is the minimum bit-width of the new program to
avoid overflow and underflow, and Column 5 is the average

TABLE II
INCREASE IN THE OVERFLOW/UNDERFLOW FREE INPUT RANGE.

benchmark bit original optimized %
Sobel Image 32 [0, 16320] [-65536, 49152] 602
Bicycle 32 [-3.4*108, 3.4*108] [-1.0*109, 1.0*109] 194
Locomotive 64 [-8.7*1018 , 8.7*1018] [-9.2*1018 , 9.2*1018] 5
IDCT 32 [0, 1.5*106] [0, 2.1*106] 40
Controller 32 In1 [0, 5.0*108] In1 [-0, 6.6*108] 32

In2 [-5.0*108, 0] In2 [-6.6*108, 0 ] 32
In3 [-5.0*108, 0] In3 [-6.6*108, 0] 32

Diff. Image 32 [0, 1.3*108] [0, 2.1*109] 1515
FFT (N=8) 32 [0, 32736] [0, 32736] 0
IFFT (N=8) 32 [0, 2.6*108] [0, 5.3*108] 103

TABLE III
INCREASE IN THE MINIMUM AND AVERAGE BIT-WIDTHS.

Name of Original (bit-width) Optimized (bit-width)
Benchmark Minimum Average Minimum Average
Sobel image filter (3x3) 17 10.26 15 6.67
Bicycle controller 18 14.47 16 14.16
Locomotive controller 33 29.41 32 29.32
IDCT (N=8) 20 16.29 19 16.38
Control. Impl. 17 15 16 14.67
Diff. image filter (5x5) 17 11.11 13 8.09
FFT (N=8) 18 7.32 16 6.95
IFFT (N=8) 17 7.11 16 7.26

bit-width for all program variables.
Our results show that the bit-width reduction spans from 1

bit to 4 bits. Consider the Sobel Image filter as an example.
The minimum bit-width required to run the original program
is 17 bits. After optimization, it is reduced to 15 bits. This is
significant, because now the code can be executed on a 16-bit
microcontroller instead of a 32-bit microcontroller, which is
often significantly cheaper.
To further illustrate the benefit of our new method, consider

the maximum error bound in a scaled-down version of the
original program in order to downgrade the hardware from
32-bit to 16-bit, or from 64-bit to 32-bit. Table IV shows the
comparison between the optimized program and a scaled-down
version of the original program. Column 1 is the name of the
benchmark. Column 2 is the scaling level. Columns 3 and 4
are the maximum relative errors of the original program and
the optimized program, respectively. Our results show that the
optimized programs have smaller errors in all test cases.
We also show, in Table V, the statistics of running our

optimization method. Column 1 is the name of the benchmark.
Column 2 is the number of lines optimized by the incremental
inductive synthesis procedure in the original program. Column
3 is the total execution time by our method. The data show
that, by using incremental synthesis, we have kept the overall
runtime down. In fact, it is no longer directly dependent on the

TABLE IV
DECREASE IN THE MAXIMUM RELATIVE ERROR.

Benchmark Scaling Error original Error optimized
Sobel Image filter (3x3) 32-b → 16-b 3.1 ∗ 10−2 0.0
Bicycle controller 32-b → 16-b 3.5 ∗ 10−4 2.0 ∗ 10−4

Locomotive controller 64-b → 32-b 2.9 ∗ 10−8 1.5 ∗ 10−9

IDCT (N=8) 32-b → 16-b 9.2 ∗ 10−3 1.8 ∗ 10−5

Control. Impl. 32-b → 16-b 5.2 ∗ 10−4 2.9 ∗ 10−4

Diff. image filter (5x5) 32-b → 16-b 1.2 ∗ 10−2 2.5 ∗ 10−3

FFT (N=8) 32-b → 16-b 8.1 ∗ 10−2 4.4 ∗ 10−3

IFFT (N=8) 32-b → 16-b 8.4 ∗ 10−2 3.2 ∗ 10−2

118 135



TABLE V
STATISTICS OF THE INCREMENTAL OPTIMIZATION PROCESS.

Name of the Benchmark Num. Optimized Lines Total Time
Sobel Image filter (3x3) 22 2s
Bicycle controller 2 5s
Locomotive controller 1 5m 41s
IDCT (N=8) 3 2.7s
Control. Impl. 1 46s
Diff. image filter (5x5) 23 10s
FFT (N=8) 14 1m9s
IFFT (N=8) 1 4s

program size, but more on the number of extracted regions and
the time spent on optimizing each region. For Locomotive, the
SMT solver took a longer time because of its larger original
bit-width (64-bit) – the other examples are all 32-bit.

VIII. RELATED WORK

Our new method incrementally optimizes the fixed-point
arithmetic computations in an embedded software program
with the objective of reducing the minimum bit-width through
code transformation, without changing the computational ac-
curacy. The core synthesis routine in our method follows
the same counter-example guided inductive program synthesis
paradigm pioneered by Sketch [1], [2]. However, our method
is significantly different in that it has an implementation
that is designed for more efficiently handle linear fixed-point
arithmetic computations. Furthermore, we apply inductive
synthesis incrementally to regions of a bounded size, one at a
time, as opposed to the entire program.
Gulwani et al. [5] propose a method for synthesizing bit-

vector programs from a linear reference code by leveraging a
set of user defined library functions. Their method does not use
incremental inductive synthesis, and the largest synthesized
code reported in their paper has 16 lines of code, for which
their tool takes over 45 minutes. Jha et al. [3] use the
same symbolic encoding as in [5] but replace the logical
specification of the desired program by an input-output oracle.
The SCIDUCTION tool implemented by Jha [9] can au-

tomatically synthesize a fixed-point arithmetic program from
the floating-point arithmetic code. However, the focus of this
tool is solely on finding the smallest possible bit-width and
choosing the best fixed-point representation for each program
variable. They have not attempted to change the code structure
or synthesize completely new code for the purpose of reducing
the minimum bit-width.
Another closely related work is the linear fixed-point op-

timization method proposed in [10], which relies on using a
Mixed Integer Linear Programming (MILP) solver to minimize
the error bound by changing the fixed-point representation of
the program. Again, their method can only optimize the bit-
vector representations of the program variables, but do not
change the structure of the original code or synthesize new
completely new code in order to reduce the bit-width.
Our method is also related to superoptimization in mod-

ern compilers [21], [22], [23], which perform exhaustive
search in the space of valid instruction sequences to optimize
performance-critical inner loops. However, they typically can-
not be used to increase the dynamic range, or minimize the
bit-width, of fixed-point arithmetic computations.

IX. CONCLUSIONS
We have presented a new method for incrementally opti-

mizing the linear fixed-point arithmetic computations of an
embedded software program via code transformation to reduce
the required bit-width and to increase the dynamic range.
Our method is based on judicious application of an SMT
solver based inductive synthesis procedure to code regions
of bounded size. We have implemented our method in a
software tool and evaluated it on a set of representative
embedded programs. Our results show that the new method
can significantly reduce the bit-width and handle programs of
realistic size and complexity.

X. ACKNOWLEDGMENTS
This work is supported in part by the NSF grant CNS-

1128903 and the ONR grant N00014-13-1-0527.
REFERENCES

[1] A. Solar-Lezama, R. M. Rabbah, R. Bodı́k, and K. Ebcioglu, “Pro-
gramming by sketching for bit-streaming programs,” in PLDI, 2005, pp.
281–294.

[2] A. Solar-Lezama, C. G. Jones, and R. Bodı́k, “Sketching concurrent data
structures,” in PLDI, 2008, pp. 136–148.

[3] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
component-based program synthesis,” in ICSE, 2010, pp. 215–224.

[4] S. Gulwani, “Automating string processing in spreadsheets using input-
output examples,” in ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, 2011, pp. 317–330.

[5] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan, “Synthesis of loop-
free programs,” in PLDI, 2011, pp. 62–73.

[6] W. R. Harris and S. Gulwani, “Spreadsheet table transformations from
examples,” in PLDI, 2011, pp. 317–328.

[7] D. Perelman, S. Gulwani, T. Ball, and D. Grossman, “Type-directed
completion of partial expressions,” in PLDI, 2012, pp. 275–286.

[8] R. Singh and S. Gulwani, “Synthesizing number transformations from
input-output examples,” in International Conference on Computer Aided
Verification, 2012, pp. 634–651.

[9] S. K. Jha, “Towards automated system synthesis using sciduction,” Ph.D.
dissertation, UC Berkeley, Nov 2011.

[10] M. Rupak, I. Saha, and M. Zamani, “Synthesis of minimal-error control
software,” in ACM international conference on Embedded software,
2012, pp. 123–132.

[11] C. Lattner and V. Adve, “The LLVM Instruction Set and Compilation
Strategy,” CS Dept., Univ. of Illinois at Urbana-Champaign, Tech. Report
UIUCDCS-R-2002-2292, Aug 2002.

[12] B. Dutertre and L. de Moura, “A fast linear-arithmetic solver for
DPLL(T),” in International Conference on Computer Aided Verification.
Springer, 2006, pp. 81–94.

[13] R. Rugina and M. C. Rinard, “Symbolic bounds analysis of pointers,
array indices, and accessed memory regions,” in PLDI, 2000, pp. 182–
195.

[14] R. Yates, Fixed-point arithmetic: An introduction. Digital Signal Labs,
Technical Reference, 2013.

[15] A. Solar-Lezama, L. Tancau, R. Bodı́k, S. A. Seshia, and V. A. Saraswat,
“Combinatorial sketching for finite programs,” in ASPLOS, 2006, pp.
404–415.

[16] S. Qureshi, Embedded Image Processing on the TMS320C6000 DSP.
Springer, 2005.

[17] A. Martinez, R. Majumdar, I. Saha, and P. Tabuada, “Automatic ver-
ification of control system implementations,” in ACM international
conference on Embedded software, 2010, pp. 9–18.

[18] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
c and c++ based digital signal processing programs,” in IEEE Trans.
Circuits and Systems II, vol. 45, no. 11, 1998, pp. 1455–1464.

[19] W. Burger and M. Burge, Digital Image Processing. Springer, 2008.
[20] J. Xiong, J. R. Johnson, R. W. Johnson, and D. A. Padua, “Spl: A

language and compiler for dsp algorithms,” in PLDI, 2001, pp. 298–
308.

[21] R. Joshi, G. Nelson, and K. H. Randall, “Denali: A goal-directed
superoptimizer,” in PLDI, 2002, pp. 304–314.

[22] S. Bansal and A. Aiken, “Automatic generation of peephole superopti-
mizers,” in ASPLOS, 2006, pp. 394–403.

[23] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic superoptimization,”
in ASPLOS, 2013, pp. 305–316.

119136


