Abstract—Parametric systems arise in different application
domains, such as software, cyber-physical systems or tasks
scheduling. A key challenge is to estimate the values of param-
eters that guarantee the desired behaviours of the system.

In this paper, we propose a novel approach based on an exten-
sion of the IC3 algorithm for infinite-state transition systems. The
algorithm finds the feasible region of parameters by complement,
incrementally finding and blocking sets of “bad” parameters
which lead to system failures. If the algorithm terminates we
obtain the precise region of feasible parameters of the system.

We describe an implementation for symbolic transition systems
with linear constraints and perform an experimental evaluation
on benchmarks taken from the domain of hybrid systems. The
results demonstrate the potential of the approach.

I. INTRODUCTION

Parametric systems arise in many application domains from
real-time systems to software to cyber-physical systems. In
these applications, the system is often part of a larger envi-
ronment, and the designer has to define the system relative to
some unknown parameters of the environment. The design of
a robust system requires the verification to not rely on concrete
values for the parameters but to prove the correctness of the
system for a certain region of values. The use of parameters is
fundamental in the early phases of the development, giving the
possibility to explore different design choices. In fact, a para-
metric system represents a set of (non-parametric) systems,
one for each valuation of the parameters.

A key challenge for the design of parametric systems is
the estimation of the parameter valuations that guarantee the
correct behavior of the system. Manual estimation of these val-
ues is time consuming and does not find optimal solutions for
specific design problems. Therefore, a fundamental problem is
to automatically synthesize the maximal region of parameter
valuations for which the system satisfies some properties.

In this paper, we focus on the verification of invariant
properties and how to extend the SMT-based algorithms to
solve the synthesis problem. The general approach works by
complement, building the set of "bad" parameter valuations.
It relies on the enumeration of counterexamples violating the
properties, extracting from the counterexample a region of bad
parameter valuations by quantification of the state variables.

The novel contribution of this paper is a new synthesis
algorithm based on IC3, one of the major recent breakthroughs
in SAT-based model checking, and lately extended to the SMT
case. The key idea of the synthesis algorithm is to exploit the
features of IC3. First, IC3 may find a set of counterexamples
consisting of a sequence of set of states

\[s_0, \ldots, s_k \]

where each state in \(s_i \) is guaranteed to reach some of the bad states in \(s_k \)
in \(k - i \) steps; this is exploited in the expensive quantification
of the state-variables, that can be performed on shortest, and
thus more amenable, counterexamples. Second, the internal
structures of IC3 allows our extension to be integrated in a
fully incremental fashion, never restarting the search from
scratch to find a new counterexample.

Various approaches already solve the parameter synthesis
problem for several kind of systems, like infinite-state transition
systems \([4]\), timed and hybrid automata \([10], [12]\), \([9]\),
\([7]\), \([1]\), \([2]\). The advantages of the new algorithm are that it
synthesizes an optimal region of parameters (unlike \([9], [1]\)), it
is incremental and applies quantifier elimination only to small
formulas (unlike \([9], [7]\)), and it avoids computing the whole
set of the reachable states (unlike \([10], [12]\)).

We implemented the algorithm for symbolic transition sys-
tems with linear constraints and performed an experimental
evaluation on benchmarks on timed and hybrid systems. We
compared the approach with similar SMT-based techniques
and with techniques based on the computation of the reachable
states. The results show the potential of the approach.

II. BACKGROUND

A. Transition Systems

A transition system \(S \) is a tuple \(S = (X, I, T) \) where \(X \)
is a set of (state) variables, \(I(X) \) is a formula representing
the initial states, and \(T(X, X') \) is a formula representing the
transitions. In this paper, we shall deal with linear rational
arithmetic formulas, that is, Boolean combinations of proposi-
tional variables and linear inequalities over rational variables.
A state of \(S \) is an assignment to the variables \(X \). A path of \(S \)
is a finite sequence \(s_0, s_1, \ldots, s_k \) of states such that \(s_0 \models I \)
and for all \(i, 0 \leq i < k, s_i, s_{i+1} \models T \). Given a formula
\(P(X) \), the verification problem denoted with \(S \models P \) is the
problem to check if for all paths \(s_0, s_1, \ldots, s_k \) of \(S \), for all
\(i, 0 \leq i < k, s_i \models P \). The dual problem is the reachability
problem, which is the problem to find a path \(s_0, s_1, \ldots, s_k \)
of \(S \) such that \(s_k \models \neg P \). \(P(X) \) represents the “good” states,
while \(\neg P \) represents the “bad” states.

B. Parameter Synthesis

In parametric systems, besides the standard constants, the
formulas can include also parameters, which are rigid symbols

* Supported by Provincia Autonoma di Trento and the European Com-
munity’s FP7/2007-2013 under grant agreement Marie Curie FP7 - PCOFUND-
GA-2008-226070 “progetto Trentino”, project ADAPTATION.

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.
with “unknown” values. Let U be the set of parameters. A parameter valuation is an assignment to the parameters. Given a formula ϕ and a parameter valuation γ, we denote with $\gamma(\phi)$ the formula obtained from ϕ by replacing each parameter in U with the assignment given by γ.

A parametric transition system S is a tuple $S = \langle U, X, I, T \rangle$ where U is the set of parameters, X is the set of variables, $I(U, X)$ is the initial formula, and $T(U, X, X')$ is the transition formula. Each parameter valuation γ induces a transition system $S_\gamma = \langle X, \gamma(I), \gamma(T) \rangle$.

Given a parametric transition system $S = \langle U, X, I, T \rangle$ and a formula $P(U, X)$, we say that a parameter valuation γ is feasible if $S_\gamma \models \gamma(P)$. The parameter synthesis problem is the problem of finding a set $\rho(U)$ of feasible parameter valuations (i.e., for every $\gamma \in \rho$, $S_\gamma \models \gamma(P)$). A set of feasible parameter valuations $\rho(U)$ is optimal if it contains all the feasible parameter valuations.

C. IC3 with SMT

IC3 [3] is an efficient algorithm for the verification of finite-state systems, with Boolean state variables and propositional logic formulas. IC3 was subsequently extended to the SMT case in [5], [11]. In the following, we present its main ideas, following the description of [5]. For brevity, we have to omit several important details, for which we refer to [3], [5], [11].

Let S and P be a transition system and a set of good states as in §II-A. The IC3 algorithm tries to prove that $S \models P$ by finding a formula $F(X)$ such that: (i) $I(X) \models F(X)$; (ii) $F(X) \land T(X, X') \models F(X')$; and (iii) $F(X) \models P(X)$.

In order to construct an inductive invariant F, IC3 maintains a sequence of formulas (called trace) $F_0(X), \ldots, F_k(X)$ such that: (i) $F_0 = I$; (ii) $F_i \models F_{i+1}$; (iii) $F_i(X) \land T(X, X') \models F_{i+1}(X')$; (iv) for all $i < k$, $F_i \models P$.

The algorithm proceeds incrementally, by alternating two phases: a blocking phase, and a propagation phase. In the blocking phase, the trace is analyzed to prove that no intersection between F_k and $\neg P(X)$ is possible. If such intersection cannot be disproven, the current trace property is violated and a counterexample can be reconstructed. During the blocking phase, the trace is enriched with additional formulas, that can be seen as strengthening the approximation of the reachable state space. At the end of the blocking phase, if no violation is found, $F_k \models P$.

The propagation phase tries to extend the trace with a new formula F_{k+1}, moving forward the clauses from preceding F_i’s. If, during this process, two consecutive elements of the trace (called frames) become identical (i.e., $F_i = F_{i+1}$), then a fixpoint is reached, and IC3 terminates with F_i being an inductive invariant proving the property.

In the blocking phase IC3 maintains a set of pairs (s, i), where s is a set of states that can lead to a bad state, and $i > 0$ is a position in the current trace. New formulas (in the form of clauses) to be added to the current trace are derived by (recursively) proving that a set s of a pair (s, i) is unreachable starting from the formula F_{i-1}. This is done by checking the satisfiability of the formula:

$$F_{i-1} \land \neg s \land T \land s'.$$ \hspace{1cm} (1)

If (1) is unsatisfiable, and s does not intersect the initial states I of the system, then $\neg s$ is inductive relative to F_{i-1}, and IC3 strengthens F_i by adding $\neg s$ to it, thus blocking the bad state s at i. If, instead, (1) is satisfiable, then the overapproximation F_{i-1} is not strong enough to show that s is unreachable. In this case, let p be a subset of the states in $F_{i-1} \land \neg s$ such that all the states in p lead to a state in s' in one transition step. Then, IC3 continues by trying to show that p is not reachable in one step from F_{i-1} (that is, it tries to block the pair $(p, i - 1)$). This procedure continues recursively, possibly generating other pairs to block at earlier points in the trace, until either IC3 generates a pair $(q, 0)$, meaning that the system does not satisfy the property, or the trace is eventually strengthened so that the original pair (s, i) can be blocked.

A key difference between the original Boolean IC3 and its SMT extensions in [5], [11] is in the way sets of states to be blocked or generalized are constructed. In the blocking phase, when trying to block a pair (s, i), if the formula (1) is satisfiable, then a new pair $(p, i - 1)$ has to be generated such that p is a cube in the preimage of s wrt. T. In the propositional case, p can be obtained from the model μ of (1) generated by the SAT solver, by simply dropping the primed variables occurring in μ. This cannot be done in general in the first-order case, where the relationship between the current state variables X and their primed version X' is encoded in the theory atoms, which in general cannot be partitioned into a primed and an unprimed set. The solution proposed in [5] is to compute p by existentially quantifying (1) and then applying an under-approximated existential elimination algorithm for linear rational arithmetic formulas. Similarly, in [11] a theory-aware generalization algorithm for linear rational arithmetic (based on interpolation) was proposed, in order to strengthen $\neg s$ before adding it to F_i after having successfully blocked it.

III. PARAMETER SYNTHESIS WITH IC3

A. Solving the synthesis problem with reachability

A naive approach to synthesize the set of parameters $\rho(U)$ is to incrementally find the complement set $\beta(U)$ (thus, $\rho = \neg \beta$) of unfeasible parameter valuations, rephrasing the problem as a reachability problem for a transition system S_ρ and iteratively removing the counterexamples to $S_\rho \models P$.

More specifically, given the parametric transition system $S = \langle U, X, I, T \rangle$, the algorithm keeps an over-approximation $\rho(U)$, initially true, of the safe region. The encoding of S is the transition system $S_\rho = \langle X \cup P, I_\rho, T_\rho \rangle$ where $T_\rho = T \land \bigwedge_{p \in \rho} p' = p$ forces parameters to not change their value in the evolution of the system and $I_\rho = I \land \rho$ restricts the parameter valuations to the over-approximation.

At every iteration, a new parameter valuation is removed from ρ. The algorithm terminates if it proves that $S_\rho \models P$, and ρ is the solution to the synthesis problem.

$1 - \neg s$ is actually generalized before being added to F_i. Although this is fundamental for the IC3 effectiveness, we do not discuss it for simplicity.
This simple approach does not work in the context of infinite-state transition systems, where the possible number of counterexamples and the values of the parameters are infinite. For this reason, we need an algorithm that removes a set of parameters, instead of a single point.

B. Description of the synthesis algorithm with IC3

We embed a reasoning similar to the naive algorithm in IC3, exploiting its generalization of counterexamples and incrementality. The generalization avoids to explicitly enumerate the counterexamples, while incrementality allows to reuse all the clauses learned by IC3 across different safety checks.

Therefore, IC3 is used to prove that $S_\rho \models P$. If it is successful (recall that in the SMT extension, the problem is undecidable), we can conclude that ρ is a set of feasible parameters and, in particular, is optimal. Instead, if there exists a set of parameters such that $S \not\models P$, IC3 might find a counterexample to P. The counterexample is found in the blocking phase as a sequence $\pi := (s_0, 0), \ldots, (s_n, n)$, where $s_0 \models P, s_n \models \neg P$ and for $0 < i < n$, $s_i \land T^i \models s_{i+1}$. Possibly, ρ does not represent a single path of the system that reaches a violation, but a set of paths that reach $\neg P$. This is an intrinsic feature of IC3, which generalizes the counterexamples to induction found in the blocking phase, trying to block set of states rater than a single state. The state s_0 represents a set of states that will eventually reach $\neg P$. Thus, we compute from s_0 a set of bad parameters $\beta_{s_0}(U)$ that will eventually reach s_{n^*}: $\beta_{s_0}(U) := \exists X.s_0(U, X)$. We rely on a quantifier elimination procedure to get a quantifier-free formula for β_{s_0}.

The algorithm refines its conjecture about the unfeasible parameters of the system. Let $\beta' := \beta \lor \beta_{s_0}$ and $\rho' := \rho \land \neg \beta_{s_0}$ be the new approximations of unfeasible and feasible regions of parameters. We have to prove that $S_{\rho'} \models P$. We perform the verification incrementally, reusing all the frames of IC3. Since $\rho' := \rho \land \neg \beta_{s_0}$, we have that $S_{\rho'} = (X \cup P, I_\rho \land \neg \beta_{s_0}, T_\rho)^3$. Thus, we incrementally encode $S_{\rho'}$ strengthening the initial condition and the transition relation used in the algorithm, and also strengthening the first frame kept by the IC3 algorithm (i.e. $F_0 := F_0 \land \neg (\beta_{s_0})$). The strengthening of F_0 removes the state s_0 from I (possibly blocking also other bad states).

Since S_ρ is an overapproximation of $S_{\rho'}$, the invariant maintained by IC3 ($F_0 = I, F_i \models F_{i+1}, F_i \models P, F_i(X) \land T(X, X') \models F_{i+1}(X')$) holds for the problem $S_{\rho'} \models P$.

From this point, we rely on the usual behaviour of IC3, which tries to block $(s_1, 1)$ with the strengthened frame F_0. The algorithm terminates if either P is proved or the F_0 becomes unsatisfiable, showing that ρ is empty.

Theorem 1: Given a parametric transition system $S = (U, X, I, T)$ and a formula $P(X)$, $\rho(U) := \text{PARAMIC3}(U, I, T, P)$ is the optimal set of feasible parameter valuations.

2 We follow the IC3 formulation of [8], which shows that IC3 can find a set of counterexamples, improving its performance. Moreover, in the SMT-based IC3 [5] the approximate pre-image computes a set of states.

3 We add $\neg \beta_{s_0}$ also to T_ρ, since it is an inductive invariant of $S_{\rho'}$. For lack of space, the proof is available in a technical report (http://es.fbk.eu/people/mover/fmcad13_ext.pdf).

C. Optimizations

We presented a version of the algorithm which computes a region of bad states β_{s_0} only from the initial states of $\pi := (s_0, 0), \ldots, (s_n, n)$. However, this is only one of the possible choices, since more general regions of bad parameters can be found considering each s_i in π. In fact, β_{s_0} is one of the extreme cases, while the other one is $\beta_{s_n}(U) := \exists X.(BMC_n)$, which encodes the set of all the parameters that may reach $\neg P$ in n steps, where BMC_n denotes $T^0 \land \bigwedge_{i=0}^{n-1} T^i \land \neg P^n$. However, the cost of eliminating the quantifiers grows as well, and it might in fact become impractical. In principle, one may consider the intermediate cases β_{s_i} (that is, the reachability of one of the intermediate states s_i in π) to trade the generality of the result with the cost of the quantifier elimination. Furthermore, we notice that for soundness we do not need the precise set β_{s_0}, but we can consider its under-approximations, since this still guarantees to remove only bad parameters valuations. As an advantage, in this case the quantifier elimination problems are easier to solve and are more general than β_{s_0}. In practice, we use an heuristic, which we describe in the next Section, that combines the precise and the under-approximated approach, enabling us to find a trade-off between generality and the cost of quantifier elimination.

IV. EXPERIMENTS

We have implemented the algorithm described in the previous section on top of the fully symbolic SMT-based IC3 of [5]. The tool uses MATHSAT [6] as backend SMT engine, and works on transition systems with linear arithmetic constraints.

Evaluation. Our evaluation consists of three parts. In the first, we compare our implementation (called PARAMIC3 in what follows) with the approach described in [7], in order to evaluate the viability of our technique when compared to other SMT-based solutions. For this, we have implemented the algorithm described in [7] using our “regular” SMT-based IC3 implementation as the backend engine for reachability checking (called ITERATIVE-BLOCK-PATH(IC3) in what follows). We remark that the tool of [7] was based only on Bounded Model Checking (BMC), and exploited domain-specific information for computing the maximum needed bound, which is not available in our more general context.

In the second part, we evaluate the effectiveness of the optimizations described in the previous section, by comparing the default heuristic used by PARAMIC3, using both the full counterexample path π and its initial state $(s_0, 0)$ for blocking bad regions of parameters, with the basic strategy using only $(s_0, 0)$ (called PARAMIC3-basic in the following). In particular, the default heuristic used by PARAMIC3 works as follows. At the beginning, only initial states $(s_0, 0)$ of counterexample paths are used to block bad regions of parameters. If the algorithm starts enumerating too many bad regions, it starts exploiting also full paths π, by computing the bad region $\beta_{s_0}(U) = \exists X.(BMC_k)$, where k is the length of π, and BMC_k is
is the formula encoding all the counterexample traces of length k where the values for the Boolean variables are the same as in π, similarly to what is done in [7]. The computation of β^*_k is aborted if it becomes too expensive\(^4\), in order to control the tradeoff between the quality of the obtained bad region and the cost of performing quantifier elimination.

Finally, in the third part of our evaluation, we compare \textsc{ParaIC3} against \textsc{RED} [12], a state-of-the-art tool for parameter synthesis for linear-hybrid automata.

Benchmarks. We have selected benchmarks used in previous work on parameter synthesis for hybrid systems. Most of them come from the suite of \textsc{RED}. We have a total of 92 instances from 13 different families. All the instances, the scripts and the tools used for reproducing our experiments are available at http://es.fbk.eu/people/mover/fmcad13.tar.gz. For the first two parts of our evaluation, we have experimented with two different ways of encoding linear hybrid automata into symbolic transition systems, resulting in a set of 192 instances. For the comparison with \textsc{RED}, we picked the encoding giving the best overall performance for \textsc{ParaIC3}.

Results. We have run our experiments on a cluster of Linux machines with a 2.27GHz Xeon CPU, using a timeout of 600 seconds and a memory limit of 3Gb for each instance. Figures 1–3 show the scatter plots that compare the total run time (in seconds) of the different techniques. From the plots, we can make the following observations. (i) Our new algorithm is clearly superior to the technique of [7], both in number of completed instances and in execution time. Overall, \textsc{ParaIC3} successfully solves 5 more instances than \textsc{Iterative-Block-Path(IC3)}, and it is almost always faster. We remark that both algorithms use the same implementation of IC3 as backend, run with the same options. (ii) Our heuristic for using full counterexample paths π for blocking bad regions of parameters pays off for harder problems. With it, \textsc{ParaIC3} solves 6 more instances which were previously out of reach, without any overhead for the other instances. (iii) The comparison with \textsc{RED} shows that our technique is very promising. Although there is no clear winner, there are more instances for which \textsc{ParaIC3} outperforms \textsc{RED} than the converse. In general, the two tools seem to be somewhat complementary. We remark that \textsc{RED} is specialized for timed and linear-hybrid automata and that most of the benchmarks we used come from its suite, whereas \textsc{ParaIC3} works for arbitrary transition systems and it is not tuned for linear hybrid systems in any way.

V. CONCLUSIONS AND FUTURE WORK

We proposed a new algorithm based on IC3 for synthesizing an optimal region of parameter valuations guaranteeing the satisfaction of an invariant property. The algorithm exploits the features of IC3 to incrementally remove sets of bad parameter valuations and to reduce the cost of expensive quantifier elimination operations by performing them on small formulas. Our experimental results show that the new synthesis algorithm performs better than similar SMT-based techniques and is complementary to other techniques based on the computation of the reachable states. In the future, we plan to improve the algorithm by better exploiting the structure of the problem, to evaluate it in other domains such as software, and to apply it in the context of modular component-based verification.

REFERENCES

\(^4\)We currently use a cutoff value on the number of elementary operations in the quantifier elimination module of MathSAT for this.