
Efficient Handling of Obligation Constraints in
Synthesis from Omega-Regular Specifications

Saqib Sohail and Fabio Somenzi
University of Colorado at Boulder

Abstract—A finite state reactive system (for instance a hard-
ware controller) can be specified through a set of !-regular
properties, most of which are often safety properties. In the game-
based approach to synthesis, the specification is converted to a
game between the system and the environment. A deterministic
implementation is obtained from the game graph and a system’s
winning strategy. However, there are obstacles to extract an
efficient implementation from the game in hardware. On the
one hand, a large space must be explored to find a strategy that
has a concise representation. On the other hand, the transition
structure inherited from the game graph may correspond to a
state encoding that is far from optimal.

In the approach presented in this paper, the game is formulated
as a sequence of Boolean equations. That leads to significant
improvements in the quality of the implementation compared to
existing automata-based techniques. It is also shown discussed to
extend this approach to the synthesis from obligation properties.

I. INTRODUCTION

Synthesizing reactive systems from !-regular specifications
[20] allows designers to focus on intended behavior rather than
implementation details. Acceptance of automated techniques,
however, is in proportion to their ability to deliver designs
that meet cost and performance targets and are comparable to
those produced by humans.

We present techniques that increase the performance of syn-
thesis algorithms and lead to more compact implementations.
While the algorithms are general, our implementation is geared
towards the synthesis of hardware controllers. We assume that
the specification of the reactive system to be synthesized is
given by a list of !-regular properties (system guarantees)
that must hold when the environment satisfies another list of
!-regular properties (environment assumption). Each property
is first translated to a deterministic parity automaton [18]. In
special cases—like specifications in general reactive(1) form
[19]—our algorithms take full advantage of this restricted form
of specification. However, we do not impose restrictions on the
input specification beyond !-regularity.

Our approach extends the one of [21] in several ways. We
synthesize safety properties by first reducing them to relation
constraints and then manipulating the constraints in a fully
symbolic form. Unlike previous techniques, this approach does
not tend to embed the structures of the property automata
in the implementation and produces designs with fewer state
bits, better state encoding, and simpler combinational logic. It
can also be considerably faster than techniques that work on

This work was supported in part by SRC contract 2012-TJ-2271.

explicit representations of the automata, especially when many
safety properties are combined. The result of the process is a
parameterized system suitable for incremental synthesis. This
is useful when the specification has more than just safety or
obligation properties.

We extend the symbolic approach based on transition con-
straint to the synthesis from obligation properties [14], which
include implications between safety properties. For such im-
plications, in particular, we show how to reduce the synthesis
game to two safety games based on transition constraints.

The typical approach of automatic synthesis from the spec-
ification derives deterministic automata for each safety prop-
erty; these automata operate in parallel to constrain the transi-
tions of the system. The transition function of the composition
of these automata is then inherited by the implementation. In
this paper, we propose a novel way to extract the transition
function of the implementation. When all the safety properties
describe a language that can be generated by a relation so that
the problem of sequential synthesis is converted to a problem
of combination synthesis. Otherwise, we add just enough
memory so that the conversion is correct. We then solve
the problem of combinational synthesis by solving Boolean
equations. The general solutions capture all the possible ways
in which the system can satisfy the safety properties in the
specification. The parameterized representation of the general
solutions allows us to take advantage of the incremental
synthesis framework of [21]. An additional advantage of our
approach is that it is symbolic and thus adept at manipulating
a large set of safety properties.

The size of the synthesized implementation depends on the
transition function of the game and on the system’s winning
strategy. The authors in [1] provide a heuristic to select a
winning strategy that attempts to minimize the amount of
combinational logic in the implementation. On the other hand,
the authors in [6] provide a heuristic to select a winning
strategy that attempts to minimize the amount of sequential
logic. However, improving the symbolic representation of the
game obtained from the specification is not the focus of these
works. The importance of efficient game representation has
also been observed in [13]. The author remarks that current
techniques are unable to extract an efficient transition structure
of the implementation and proposes a tree-based approach to
reduce the dependency of the implementation on the syntax
of the specification. No experiments are reported.

The paper is organized as follows: Sec. II covers background
and introduces notation. Sec. III, IV and V show that safety
properties can be generated by a relation. Sec. VI and VII

ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc. 1734ISBN 978-0-9835678-3-7/13. Copyright owned jointly by the authors and FMCAD Inc.

discuss the synthesis from safety properties from such a
relation. Sec. VIII extends the relation-based approach to
obligation properties. Experimental results are described in
Sec. IX and conclusions are drawn in Sec. X.

II. PRELIMINARIES

A. Linear-Time Properties
A finite automaton on !-words h⌃, Q, qin, �,↵i (an !-au-

tomaton) is defined by a finite alphabet ⌃, a finite set of states
Q, an initial state qin 2 Q, a transition function � : Q⇥ ⌃ !
2

Q that maps a state and an input letter to a set of possible
successors, and an acceptance condition ↵ that describes a
subset of Q

! , that is, a set of infinite sequences of states.
A deterministic automaton is such that �(q,�) is empty or a
singleton for all states q 2 Q and all letters � 2 ⌃. (In the
case �(q,�) is a singleton, we write �(q,�) = q

0 for �(q,�) =
{q0}.) A run of automaton A on !-word w = w0w1 . . . is a
sequence q0, q1, . . . such that q0 = qin, and for i � 0, q

i+1 2
�(q

i

, w

i

). A run is accepting iff (if and only if) it belongs to
the set described by ↵, and a word is accepted iff it has an
accepting run in A. The subset of ⌃

! accepted by A is the
language of A, written L(A).

Several types of acceptance conditions ↵ are in use. We are
concerned with parity conditions [16], [8], which concern the
set of states inf(⇢) that occur infinitely often in a run ⇢. A
parity condition assigns a priority to each state: a condition
of index k is a function ⇡ : Q ! {i | 0  i  k}. A run
⇢ is accepting iff max{⇡(q) | q 2 inf(⇢)} is odd; that is, iff
the highest recurring priority is odd [5], [9]. A deterministic
parity word automaton (DPW) is a deterministic !-automaton
equipped with a parity condition; it is of minimum index
if there is no other DPW for the same language with an
acceptance condition of lower index. In the sequel, parity
automata are deterministic and of minimum index [5]. A
conjunctive parity condition is a set of parity conditions; and
a run is accepting iff it is accepting by every parity condition.
A disjunctive parity condition is a set of parity conditions;
and a run is accepting iff it is accepting by some parity
condition. Automata are also assumed to be reduced: all states
are reachable from the initial state and the language accepted
from them is nonempty.

We fix a finite set of atomic propositions X and consider
the alphabet ⌃ = 2

X . An !-regular linear-time property is a
subset of ⌃! that is accepted by a DPW. A linear-time safety
property is a closed set of the product topology of ⌃! . Safety
properties are accepted by DPWs of index 2 such that there is
no path from priority 0 states to priority 1 states. Non-safety
properties are progress properties [15]. A safety automaton is
irredundant if no two states accept the same language.

Linear-time temporal logic (LTL) is a specification mech-
anism that can express a subset of the !-regular properties.
Formulae of LTL are built from the atomic propositions in
X by applying Boolean connectives and temporal operators U
(until), R (releases), and X (next). Convenient abbreviations
include G (globally), F (eventually), and W (weak until).
An LTL formula is in negation normal form if negation is
restricted to atomic propositions. The language described by
the LTL formula � is denoted by L(�).

B. Realizability, Synthesis, and Games

An !-regular property W is satisfiable if it has a model.
For a given partition (X

e

, X

s

) of the atomic propositions,
W is realizable if there exists a winning strategy for the
player controlling X

s

(the system) in the following game
against the player controlling X

e

(the environment): at each
turn the environment and the system choose subsets of the
propositions they control, jointly selecting an element of ⌃.
The elements chosen at successive turns form an infinite
sequence ⇢ 2 ⌃

! . If ⇢ is in W , then the system wins;
otherwise the environment wins. If the system has a winning
strategy, then W is realizable, in which case a program or
circuit satisfying W can be extracted from the strategy.

A full specification of the game requires detailing what
each player knows of the opponent’s choices when making
its own choices. Variants of realizability result from different
assumptions: If the system is fully apprised of the envi-
ronment’s choice for the same turn, Mealy realizability is
obtained. In the opposite case, Moore realizability follows. We
adopt a formulation that encompasses both Mealy and Moore
realizability as special cases.

An !-regular property � over X specifying a reactive
system is accepted by a DPW A

�

= h⌃, Q, qin, �,⇡i. To check
the realizability of �, A

�

is interpreted as an input-based parity
game G

�

= h⌃, Q, qin, �,⇡i, where X = X

ed

[X

s

[X

ep

, and
⌃ is the Cartesian product of a disclosed environment alphabet
⌃

ed

= 2

Xed , a system alphabet ⌃

s

= 2

Xs , and a private
environment alphabet ⌃

ep

= 2

Xep . When the token is in state
q 2 Q, the environment chooses a letter �

ed

and discloses it to
the system; then the system chooses a letter �

s

and discloses
it to the environment; finally the environment selects a letter
�

ep

and the token moves to state q

0
= �(q, (�

ed

,�

s

,�

ep

)). If
the system has a strategy ⌧

s

: S ⇥ Q ⇥ ⌃

ed

! ⌃

s

⇥ S to
win this game from qin then � is realizable1. The set S is the
system’s memory.

III. R-GENERABILITY

This section is concerned with the safety languages that can
be generated by a relation on the alphabet ⌃. It characterizes
the R-generable languages in terms of the automata that
accept them and establishes the correspondence between the
automata-based view and the linguistic view of [7]. The
automata-based approach provides efficient membership tests
that are used in subsequent sections to devise an efficient
synthesis procedure for properties that are R-generable.

Definition 1. A set of infinite words W ✓ ⌃

! is R-generable
if there exists a binary relation R on ⌃ such that a sequence
w0w1w2 . . . is in W iff 8i � 0, (w

i

, w

i+1) is in R.

The subset of ⌃

! generated by R ✓ ⌃ ⇥ ⌃ is denoted by
L(R). It has been shown in [7] that a set of infinite words
W ✓ ⌃

! is R-generable iff it is suffix-closed, fusion-closed,
and limit-closed2. These concepts are defined as follows:

1If |⌃ed| = 1 then system’s winning strategy has a Moore implementation.
2In the context of synthesis, it is convenient to drop the requirement that

the relation be total. As part of the realizability check of a specification, a
subset of the alphabet is computed over which the relation is indeed total.

18 35

Definition 2. The language W ✓ ⌃

! is suffix-closed if for
every word w0w1w2 . . . 2 W then the suffix w1w2 . . . is in W .
The language W ✓ ⌃

! is fusion-closed if the words xvy and
avb are in W , then xvb 2 W (and avy 2 W). The language
W ✓ ⌃

! is limit-closed if whenever the words w0a, w0w1b,
w0w1w2c, . . . belong to W , then the limit of the prefixes
w0, w0w1, w0w1w2, . . ., which is the infinite word w0w1w2 . . .

is also in W .

Limit-closed !-regular languages are accepted by safety
automata [11]. The structure of the !-automata that recognize
suffix-closed and fusion-closed languages are now examined.
For lack of space, most proofs are omitted, except those that
provide constructions used in the algorithms.

Definition 3. An automaton A = h⌃, Q, qin, �,⇡i is initially
free iff 8� 2 ⌃ . �(qin,�) = {q0 | 9q 2 Q . �(q,�) = q

0}.

Lemma 1. An !-regular language W ✓ ⌃

! is suffix-closed
iff it is accepted by an initially-free automaton over ⌃.

To check whether an !-automaton A accepts a suffix-closed
language, one constructs an initially-free automaton A

0 as
described in the proof of Theorem 1 below. If L(A0

) ✓ L(A)

then L(A) is suffix-closed. When A is a deterministic safety
automaton, if its initial state simulates every other state then
L(A) is suffix-closed.

Definition 4. An !-automaton A is 1-definite if the current
state of A is determined by the most recent letter read.

The following result is a special case of the test for
definiteness [17], [10]:

Lemma 2. An automaton is 1-definite iff for every input letter
� 2 ⌃, there exists a state q 2 Q such that for every state
q

0 2 Q, �(q0,�) is either ; or q.

The notion of definiteness is relaxed to characterize fusion-
closed languages in terms of automata.

Definition 5. An automaton A = h⌃, Q, qin, �,⇡i is half
definite iff for every letter � 2 ⌃ the states in {q0 | 9q 2
Q . q

0 2 �(q,�)} are language equivalent.

Lemma 3. If an !-regular language W ✓ ⌃

! is fusion-
closed, then all deterministic automata that accept it are half-
definite. If an !-regular language W ✓ ⌃

! is accepted by a
half-definite deterministic automaton, then it is fusion-closed.

Corollary 1. An !-regular language W ✓ ⌃

! is fusion-
closed and limit-closed iff it is accepted by a 1-definite safety
automaton.

The following theorem characterizes the !-regular lan-
guages that are R-generable in terms of the structure of their
accepting automata. This provides an efficient membership test
for safety languages that can be generated by relations.

Theorem 1. A language W ✓ ⌃

! is R-generable iff it is
accepted by an initially-free, 1-definite safety automaton.

Proof: If a set W ✓ ⌃

! is generated by a relation R, an
initially-free, 1-definite safety automaton A = h⌃, Q, qin, �, Qi
can be built as follows. For each letter � 2 ⌃ that appears in

>

g

r ^ ¬g

r ^ ¬g

r

¬r

A

�

A

rW g

G(r ! X(r _ g))

¬r ^ g

G(r ! X(rW g))

Fig. 1. Irredundant automata for three LTL formulae. All states have priority 1.
A� is 1-definite and shows that both formulae represent transition constraints
(transition constraints are defined in Sec. IV). A is not 1-definite because
the input word (r ^ ¬g)! cannot distinguish the target state.

some pair of R, a state q

�

is added to Q, distinct from qin.
Let �(q

�

,�

0
) = q

�

0 for each pair (�,�

0
) 2 R . Moreover, let

�(qin,�) = q

�

for every letter � that appears in first position in
some pair of R. This guarantees that A is initially-free because
qin is connected to every state in Q \ qin that has at least one
outgoing transition. Then, A accepts W .

If A = h⌃, Q, qin, �, Qi is an initially-free, 1-definite safety
automaton accepting W , a relation R is built as follows. The
pair of letters (�,�

0
) is added to R when �(q,�0

) = q

0 and �
is a letter that labels the transitions into q. (No pair is added to
R for a state with no incoming transitions.) Then, R generates
W .

The check of Theorem 1 can be simplified when the safety
automaton is known to be deterministic and irredundant.

Lemma 4. If a deterministic safety automaton A =

h⌃, Q, qin, �,⇡i is initially-free then it is also 1-definite.

Example 1. Consider A

�

shown in Figure 1. It is a reduced,
deterministic, initially-free, and 1-definite automaton. The lan-
guage L(A

�

) is R-generable and the relation R is given by the
Boolean formula (¬r^¬r0)_(¬r_r0)_(r^r0)_(r^¬r0^g0),
which can be simplified to ¬r _ r

0 _ g

0.
If a language W ✓ ⌃

! is fusion-closed and limit-closed
then it is a subset of some R-generable language W

0 ✓ ⌃

! .
For Rin ✓ ⌃, let L(Rin) be Rin⌃

! .

Theorem 2. Given a fusion-closed and limit-closed language
W ✓ ⌃

! , let Rin = {� | 9�w 2 W}. Then there exists an
R-generable language W

0 such that W = W

0 \ L(Rin).

An acceptor for the language W

0 in Theorem 2 is obtained
through the construction in the proof of Theorem 1.

The following result is already foreshadowed in [17]. This
theorem provides us with a method to detect !-regular prop-
erties which are R-generable.

Theorem 3. If an irredundant safety automaton A =

h⌃, Q, qin, �,⇡i that accepts the !-regular safety property '
is not 1-definite, then no other automaton that accepts ' is
1-definite.

IV. LTL AND R-GENERABILITY

This section provides a syntactic characterization of a subset
of the LTL formulae that describe R-generable languages.
When a formula is syntactically R-generable, the automata-
based procedure of Sec. III can be skipped.

1936

Definition 6. An LTL formula � is a transition-constraint if
it belongs to the class defined by the following grammar, in
which x is a proposition:

P ::= G(f), f ::= p | n | f ^ f | f _ f,

p ::= x | ¬x, n ::= X p .

The grammar defines LTL formulae in negation normal
form. Only the X operator is permissible inside the G operator
and its nesting is not allowed. The set of safety properties
described by Definition 6 is closed under conjunction.

Given a formula � produced by the grammar in Definition 6,
the relation R that generates the language of � is obtained
by replacing each subformula Xx by x

0 and each subformula
X¬x by ¬x0. Finally, the G operator is discarded to obtain
the propositional formula that is the representation of R.
Conversely, given a relation R ✓ ⌃ ⇥ ⌃

0, an LTL safety
formula �

R

in the form described in Definition 6 can be
obtained by replacing each x

0 by Xx and ¬x0 by ¬Xx, finally
applying the G operator. (The relation R ✓ ⌃ ⇥ ⌃ generated
from a transition constraint is a Boolean formula, a minterm
that satisfies this formula describes a pair (�,�0

) 2 R such that
the cube of non-primed variables extracted from the minterm
encodes � and the cube of primed variables extracted from
the minterm encodes �0.)
Example 2. Some LTL formulae describe transition constraints
even though they are do not satisfy Definition 6. Simple
rewriting suffices for something like � = G(r ! X(r _ g)),
while the construction of an irredundant safety automaton
is used to show that = G(r ! X(rW g)) describes the
transition constraint �. The formula rW g does not describe a
transition constraint. The automaton for this property is shown
on the right in Figure 1; this automaton is not 1-definite, but
it is deterministic and irredundant. By Theorem 3, it does not
accept an R-generable language.

V. GENERAL SAFETY PROPERTIES

Safety properties like rW g are neither suffix-closed nor
fusion-closed. The objective of this section is to find an
R-generable language ˆ

W that embeds an arbitrary safety
language W . It is shown that a fusion-closed and limit-closed
language ˆ

W over an augmented alphabet exists such that
it is in one-to-one correspondence with W . Theorem 2 can
be invoked to decompose ˆ

W into the intersection of an R-
generable language and one that constrains the initial letter.

Given a safety language L that is not R-generable, the
problem of augmenting the alphabet ⌃ to ˆ

⌃ = ⌃ ⇥ K is
solved through the irredundant automaton A that accepts L.

Let A

�

= h⌃, Q, qin, �,⇡i be an irredundant deterministic
safety automaton that accepts property �. If A

�

is not 1-
definite then there exists � 2 ⌃ such that the automaton
A

�

can be in two or more different states after reading the
letter �. This ambiguity of the irredundant automaton A

�

after reading one letter defines an incompatibility graph. The
vertices of the graph are the states of the automaton, and
there is an edge between two distinct vertices v1 and v2 iff
there is a letter � 2 ⌃ such that, for some states t1 and t2,
�(t1,�) = v1 and �(t2,�) = v2. The chromatic number of

this graph gives the minimum cardinality of the K required to
turn the irredundant automaton into a 1-definite automaton.
Each element of K corresponds to one of the colors and
� : Q ! K maps states to colors. One can obtain another
safety automaton ˆ

A

�

= hˆ⌃, Q, qin, ˆ�,⇡i, where ˆ

⌃ = ⌃⇥K and
ˆ

�(q, (�, �(�(q,�)))) = �(q,�). The label of each transition is
augmented with the color of the target state; this guarantees
that ˆ

A

�

is a 1-definite safety automaton. (If A

�

can be in
several different states after reading a letter � 2 ⌃ then
all the states are colored differently in the incompatibility
graph.) Since ˆ

A

�

is 1-definite, the transition function ˆ

� can
be replaced by a new transition function ˜

� :

ˆ

⌃ ! Q where
˜

�((�, k)) = {q0 | 9q 2 Q . q

0
=

ˆ

�(q,�) ^ k = �(q

0
)}. The

state coloring function � can also be replaced by an edge
coloring function �̃ : Q⇥ˆ

⌃ ! K, where �̃(q,�) = �(�(q,�)).
(The color of an initial state that does not have any incoming
transitions is not important.) It will be seen in Sec. VI that
the map �̃ is convenient when checking realizability of the
property � through its transition constraint.
Example 3. The irredundant automaton A

�1 for the property
�1 = rW g is shown in Figure 2. This is not a fusion-closed
language, therefore no 1-definite automaton exists. Because of
the input r^¬g the two states are incompatible. The chromatic
number of the incompatibility graph derived from A

�1 is 2.
The automaton ˆ

A

�

derived from an irredundant A
�

through
the coloring procedure described earlier accepts a fusion-
closed and limit-closed language over the alphabet ˆ

⌃. The
language of ˆ

A

�

can be represented by a relation R

�

and an
initial predicate Rin. Let ⇣ :

ˆ

⌃ ! ⌃ be the projection function
that maps letter (�, k) 2 ˆ

⌃ to �; let ⇣(w) and ⇣(W) denote
the point-wise extensions of ⇣ to a word w 2 ˆ

⌃

! and to a
language W ✓ ˆ

⌃

! . Then the language of ˆ

A

�

embeds the
language described by � so that ⇣(L(ˆA

�

)) = L(�).
The following lemma shows that the safety language ac-

cepted by A

�

is embedded in the language accepted by ˆ

A

�

.
It proves that every word in L(A

�

) has a corresponding word
in L(

ˆ

A

�

) through the runs of the automata A

�

and ˆ

A

�

.

Lemma 5. Given a safety property W ✓ ⌃

! , there exists an
augmented alphabet ˆ

⌃ and an R-generable language ˆ

W ✓
ˆ

⌃

! such that ⇣ :

ˆ

⌃

! ! ⌃

! is a bijection from ˆ

W to W .

Proof: Let A
�

be an irredundant safety automaton accept-
ing W ; let ˆ

A

�

be the 1-definite automaton obtained through
the procedure described above. Let ˆ

W be the language of ˆ

A

�

.
The automata A

�

and ˆ

A

�

are isomorphic and every edge (q,�)
of A

�

has a unique corresponding edge (q, (�, �̃(q,�))) in ˆ

A

�

.
Therefore, for every word w 2 W , there is a unique word

ŵ 2 ˆ

⌃

! such that ⇣(ŵ) = w and ŵ has a run in ˆ

A

�

. This
run ⇢̂ is identical to the run ⇢ of w in A

�

. Hence, ŵ 2 ˆ

W .
Since, there is an injection from ˆ

W to ˆ

⌃, the restriction of the
function ⇣ to ˆ

W ✓ ˆ

⌃ is a bijection from ˆ

W to W .
Example 4. Continuing Example 3. The safety property �1 =

rW g is defined over the alphabet ⌃ = 2

{r,g}. Let K =

{¬x, x} as |K| = 2. The irredundant 1-definite automaton
ˆ

A

�1 is shown in Figure 2. The relation R

�1 is

((r ^ ¬g ^ ¬x) ^ ((r

0 ^ ¬g0 ^ ¬x0
) _ (g

0 ^ x

0
))) _ (x

0
)

20 37

(¬r _ g) ^ ¬y

¬r ^ ¬g ^ y

g ^ x

r ^ ¬g ^ ¬x

r ^ ¬g ^ ¬y

x

g ^ ¬y

r ^ ¬g ^ ¬y

qin

q2

q1

qin

q1

ˆ

A

�1
ˆ

A

�2

Fig. 2. Automata for �1 = rW g and �2 = G(r^¬g ! X(r_g_X(r_g)))

and Rin is ((r ^ ¬g ^ ¬x) _ (g ^ x)).
Example 5. The LTL formula �2 = G(r ^ ¬g ! X(r _ g _
X(r _ g)) over ⌃ = 2

{r,g} does not describe a fusion-closed
language. States qin and q2 are incompatible with each other.
Let K = {¬y, y} as |K| = 2. The automaton ˆ

A

�2 is shown
in Figure 2. The predicate Rin is ¬y and the relation R

�2 is

((¬r ^ ¬g ^ y ^ ((r

0 _ g

0
) ^ ¬y0)) _ ((¬r _ g) ^ ¬y ^ ¬y0))

_ (r ^ ¬g ^ ¬y ^ (((r

0 _ g

0
) ^ ¬y0) _ (¬r0 ^ ¬g0 ^ y

0
))) .

There exists another approach that can derive a transition
constraint from an arbitrary safety property. A transition con-
straint can be derived from an LTL safety property by putting it
in separated normal form [2]. For instance, G(r ! X(rW g))

can be written as G((r ! Xx1)^(x1 ! g_(r^Xx1))). This
rewriting, however, may use more auxiliary variables than the
approach based on the incompatibility graph.

Of course, given a conjunction of safety properties, obtain-
ing transition constraints from each of them in turn and then
conjoining all the transition constraints does not guarantee
optimality. This is because the product automaton obtained
from composing the irredundant automata for the correspond-
ing safety properties may be neither reduced nor irredundant.
In fact, the conjunction of two languages that are not fusion-
closed and limit-closed may result in a fusion-closed and limit-
closed (and maybe even suffix-closed) language.

VI. REALIZABILITY OF TRANSITION CONSTRAINTS

This section describes how to check the realizability of a
safety property � embedded in a fusion-closed, limit-closed
language ˆ

W . The language ˆ

W is described by an initial
predicate Rin and a relation R

�

. One can obtain an input-
based game G

�

from the automaton A

�

that recognizes the
language described by �. One can also derive an input-based
game ˆ

G

�

from the automaton that accepts ˆ

W . Finally a game
ˆ

G

R
�

can be derived from R

�

and Rin. It can be shown that
one can obtain system’s or environment’s winning strategy
for G

�

by playing ˆ

G

�

or vice-versa. Moreover, one can
obtain system’s or environment’s winning strategy for ˆ

G

�

by
playing ˆ

G

R
�

or vice-versa. Therefore, one can obtain system’s
or environment’s winning strategy for G

�

by playing ˆ

G

R
�

.
For lack of space, the details of the constructions of

strategies for one game from those of the other are omitted.
(These constructions are rather lengthy and tedious and are not
used in the synthesis process: they are only used to prove its
correctness.) However, it must be mentioned that in ˆ

G

R
�

the

input letter includes the “color” added to A

�

to obtain ˆ

A

�

.
The choice of the color is given to the system. Since there is
only one way to choose the right color, and the system needs
to make the right choice to win, this additional responsibility
does not affect the outcome of the game.

Now it is shown how to check for the existence of winning
strategies in ˆ

G

R
�

symbolically; that is, by an algorithm that
manipulates the characteristic functions of sets and relations
over ˆ

⌃. The game ˆ

G

R
�

is played in two stages; the first stage
checks the realizability of R

�

and the second stage checks the
realizability of Rin ^R

�

. Given a set of target letters T (X

0
),

that is, a set expressed in terms of next-state variables, the
pre-image operator3 MX is defined as follows:

MX
�

T = 8X 0
ed

. 9X 0
s

. 8X 0
ep

. 9X 0
K

. R

�

(X,X

0
) ^ T (X

0
) .

The greatest fixpoint operator MG
�

is defined as MG
�

p =

⌫Z . p ^MX
�

Z. The realizability of R

�

is checked by com-
puting the realizable subset ˆ

⌃

�

r

of ˆ

⌃ such that ˆ

⌃

�

r

= MG
�

>.
The greatest fixpoint computation removes the terminal letters
from the alphabet ˆ

⌃. The terminal letters of the alphabet are
defined inductively as letters after which there does not exist a
strategy to pick a next letter such that R

�

is satisfied or letters
after which only terminal letters can be selected to satisfy R

�

.
Finally, the realizability of Rin ^ R

�

is checked. The system
wins the game ˆ

G

R
�

iff MXin MG
�

> = >, where

MXin T = 8X 0
ed

. 9X 0
s

. 8X 0
ep

. 9X 0
K

. Rin(X
0
) ^ T (X

0
) .

For every letter in ˆ

⌃

�

r

, the system can always pick the next
letter from the same set so that R

�

is satisfied. The operator
MXin establishes the system’s ability to start a word from a
letter in ˆ

⌃

�

r

such that Rin is satisfied. Therefore, the system
wins the game ˆ

G

R
�

iff MXin MG
�

> = >, which means that
the system can force the selection of a letter from ˆ

⌃

�

r

(ˆ⌃�
r

=

MG
�

>) such that the predicate Rin is also satisfied.
Example 6. Examples 4 and 5 are continued here. Consider the
property � = �1^�2 where �1 = rW g and �2 = G(r^¬g !
X(r _ g _ X(r _ g))). Let X

ed

= ;, X
s

= {r}, X
ep

= {g},
and X

K

= {x, y}. Initially r is asserted until g is asserted;
after that, whenever r is asserted then it must be reasserted at
least every other step until g is asserted. The iterates of the
MG

�

> computation are Z0 = >, Z1 = (x^¬y)_ (x^¬r ^
¬g) _ (¬y ^ r ^ ¬g), ˆ

⌃

�

r

= Z2 = Z1. Since MXin Z2 = >,
property � is realizable.

VII. SYNTHESIS FROM TRANSITION CONSTRAINTS

This section reviews Boolean equations [4] and their relation
to safety games. In particular, the connection between the
solution of Boolean equations and the winning strategy of the
safety game is established. The synthesis approach discussed
in this section scales well when the specification contains a
large percentage of safety properties.

3 In Sec. VIII the environment has to check the realizabil-
ity of an assumption �. In that case the pre-image operator is
MX� T = 9X0

ed . 8X0
s .9X0

ep . 9X0
K . R�(X,X0) ^ T (X0).

2138

A. Boolean Equations

Let x1, . . . , xm

and y

i

, . . . , y

n

be two sets of variables
ranging over a Boolean algebra B. (¬, _, and ^ denote com-
plementation, join, and meet in B, respectively.) A Boolean
equation in independent variables x1, . . . , xm

and unknowns
y1, . . . , yn is a formula of the form

8x1.., xm

.9y1.., yn.F0(x1.., xm

)=F (y1.., yn, x1.., xm

), (1)

where F0 = 9y1, . . . , yn . F is the consistency condition of F .
When no confusion arises, we write F to signify (1).

A particular solution of (1) is a set of Boolean functions
f

i

(x1, . . . , xm

), for 1  i  n, such that

8x1.., xm

. F0(x1.., xm

) = F (f1.., fn, x1.., xm

) .

A general solution in parametric form of (1) is a set of
Boolean functions g

i

(x1, . . . , xm

, p1, . . . , pi), for 1  i  n,
where each p

j

is a Boolean function of x1, . . . , xm

, such that

8p1.., pn . 8x1.., xm

. F0(x1.., xm

) = F (g1.., gn, x1.., xm

) ,

and for every particular solution {f1, . . . , fn} of (1) there is a
choice of p

j

’s that produces a particular solution {f 0
1, . . . , f

0
n

}
such that, for 1  i  n,

8x1.., xm

. F0(x1.., xm

)  f

i

(x1.., xm

) $ f

0
i

(x1.., xm

) .

A general solution to (1) can be computed by the method
of successive eliminations [4], which, given F , returns F0 and
the solution functions g

i

. Letting F

n

= F and F

i�1 = 9y
i

. F

i

for 1  i  n, it produces

g

i

= ¬F
i

(g1.., gi�1,?, x1.., xm

)_
(p

i

^ F

i

(g1.., gi�1,>, x1.., xm

)) .

(2)

Example 7. Consider F2 = (¬x1 ^ y1) _ (x2 ^ y2). Then

F1=9y2.F2=(¬x1 ^ y1) _ x2 F0=9y1.F1=¬x1 _ x2

g1(x1, x2, p1) = ¬x2 _ (p1 ^ ¬x1) _ (p1 ^ x2)

g2(x1, x2, p1, p2) = x1 _ (x2 ^ ¬p1) _ p2 .

One can verify that 8p1, p2, x1, x2.¬x1_x2=F (g1, g2, x1, x2).
Setting p1 = p2 = ? in g1 and g2, one obtains the particular

solution f1 = ¬x2, f2 = x1 _ x2. The same solution is
obtained for p1 = ¬x2 and p2 = x1 _ x2. The particular
solution f

0
1 = ¬x2, f 0

2 = x2 cannot be obtained from g1 and
g2, but, for i 2 {1, 2}, 8x1, x2 .¬x1 _ x2  f

i

$ f

0
i

. Note
that when the consistency condition is identically satisfied,

¬F
i

(g1.., gi�1,?, x1.., xm

)  F

i

(g1.., gi�1,>, x1.., xm

)) .

Therefore, if p

i

is taken in the interval defined by the two
bounds, the particular solution obtained for y

i

is p

i

itself.
Solving a Boolean equation can be interpreted as finding

winning strategies for a two-player game. One player selects
a value (x̂1, . . . , x̂m

) 2 ({?,>})m for the independent
variables, while the other must choose a value (ŷ1, . . . , ŷn) 2
({?,>})n for the unknowns such that F0(x̂1, . . . , x̂m

) =

F (ŷ1, . . . , ŷn, x̂1, . . . , x̂m

). A particular solution to the equa-
tion gives one winning strategy for the second player, while
a general solution describes all winning strategies (that differ
over the consistency condition).

B. Parameterized Solutions and Transition Constraints

Once the realizability of an !-regular safety property � is
established, an implementation that satisfies � can be gener-
ated from a system’s winning strategy in the game ˆ

G

R
�

. This
section describes the procedure to obtain an implementation
that satisfies � from the initial predicate Rin and relation R

�

.
The solution of equations derived from Rin defines the initial
condition, while the solution of equations derived from R

�

defines the steady state behavior.
The parameterized reactive system M

�

that implements �
consists of the solutions for the initial values and steady state
values for variables in X

0
s

[X

0
K

and a state variable I which
is initially ? and then is > forever. For each element u

0 2
(X

0
s

[X

0
K

), let uin be the initial solution and u1 the steady-
state solution. The initial value of u is ? and its update is
given by u

0
= (¬I ^ u

0
in) _ (I ^ u

0
1). The initialization bit

distinguishes between the initial and steady state solutions.
We now describe how the solutions for initial values and

steady state values are computed. The relation R

�

is defined
over the variables ˆ

X and ˆ

X

0, where ˆ

X = X

ed

[X
s

[X
ep

[X
K

,
while ˆ

X

0
= X

0
ed

[X

0
s

[X

0
ep

[X

0
K

. Given ˆ

⌃

�

r

= MG
�

> the
following four relations are used to synthesize an implemen-
tation for the property �:

F = R

�

(

ˆ

X,

ˆ

X

0
) ^ ˆ

⌃

�

r

(

ˆ

X

0
) F

s

= 8X 0
ep

. 9X 0
K

. F

I = Rin(ˆX
0
) ^ ⌃

�

r

(

ˆ

X

0
) I

s

= 8X 0
ep

. 9X 0
K

. I .

The existence of solutions of these Boolean equations has
been established by checking the realizability of � through Rin
and R

�

. The steady state solution for the variables in X

0
s

is
computed from F

s

. The steady state solution for the variables
in X

0
K

is computed from F . The solution for the initial values
for variables in X

0
s

is computed from I

s

. The solution for
the initial values for variables in X

0
K

is computed from I . If
a variable X

0
s

appears in the steady-state (initial) solution of
X

0
K

then it is substituted by its steady-state (initial) solution.
Example 8. Continuing Example 6, a system M

�

is ob-
tained through the synthesis of x

0
, y

0 and r

0. The steady
state Boolean equation for the unknown variables {x0

, y

0} is
F4 = R

�

(

ˆ

X,

ˆ

X

0
) ^ ˆ

⌃

�

r

(

ˆ

X

0
). This equation can be computed

from the values of R

�

and ⌃

�

r

described in Example 6. Let
{r

i

, x

i

, y

i

} be the set of parameters, then the steady state
solution of variables {x0

, y

0} is given by:

y

0
1 = ¬F¬y

0

3 _ (y

i

^ F

y

0

3) = r ^ ¬g ^ ¬p1 ^ x ^ ¬g0 ,

x

0
1 = ¬F¬x

0

4 _ (x

i

^ F

x

0

4) = ¬r _ g _ x _ g

0
.

If the variable y

0 had appeared in x

0
1 then y

0 would be
substituted by its function y

0
1. The steady state solution of

the variables in {r0} is computed from the Boolean equation
F1 = 8g0 . 9{x0

, y

0} . F4, where

r

0
1 = ¬F¬r

0

1 _ (r

i

^ F

r

0

1) = p1 _ ¬x _ y ,

Likewise the initial values for {x0
, y

0} are synthesized from
I = ((r

0 ^ ¬g0 ^ ¬x0
) _ (g

0 ^ x

0
)) ^ ¬y0, where

y

0
in=¬I3(0) _

�
y

i

^ I3(1)
�
=?, x

0
in=¬I(0) _

�
x

i

^ I(1)

�
=g

0
.

22 39

The initial value of r0 is computed from I1 = 8X 0
ep

. 9X 0
K

. I ,
where r

0
in = ¬I1(0) _

�
(r

i

^ I1(1)
�
= >.

Each variable v 2 ˆ

X represents a latch (register) which
stores the current value of the corresponding value of v0 2 ˆ

X

0.
Each variable o

0 2 X

0
s

represents the output of the sequential
machine and is labeled as the corresponding variable o. Each
variable o

0 2 X

0
K

is stored in the latch represented by the
variables in X

K

, these are treated as internal signals.
The solution is kept in parameterized form so that winning

strategies for the progress properties can be found. This is done
by computing the appropriate values of the parameters (which
may be functions requiring some finite memory to satisfy the
progress properties). If the specification does not contain any
progress properties then a simplified M

�

can be obtained by
assigning any values to the parameters.

VIII. OBLIGATION PROPERTIES

If a game with an !-regular winning condition has a graph
with more than one strongly connected component (SCC) then
the winning and losing states can be computed inductively
starting from the terminal SCCs. At each non-terminal SCC,
one computes the states that each player can control to
its winning states outside of the SCC (which are already
known). The game is then played on the remaining states.
This approach is discussed in [12]. In this section this idea is
applied to the obligation properties defined by the implication
of two safety properties (e.g., environment assumption and
system guarantee). Every obligation property results in a DPW
of minimum index 1 with more than one SCC.

To check realizability of an implication between two safety
properties such as ! �, one converts and � to parity
games G

and G

�

with safety conditions ⇡

and ⇡

�

. The
SCCs of their product can be partitioned in three ordered sets;
the bottom set S

B

contains the states in which the antecedent
has been violated. The middle set S

M

contains the states in
which only the consequent has been violated, and the top set
S

T

contains the states where both properties hold. The states
in S

T

[S

B

have priority 1; those in S

M

have priority 0.
This game does not need to be built explicitly, though.

Given an implication � = ! �, where both and � are
safety properties, one can obtain the relations R

and R

�

as
described in Sec. V. These relations are used to check the
realizability of �. The pre-image operator MX

�

defined in
Sec. VI cannot be used for checking � because it computes
the states that can be forced by the protagonist to stay within
the SCC, while in a game obtained from �, the protagonist
may be able to win the game by staying within S

T

or by
forcing a move out of S

T

to states from which it can force the
play to S

B

. Therefore, a modified pre-image operator needs
to be defined that takes into account the protagonist’s option
to escape the SCC. For lack of space we only outline its use.

The solution of the game obtained from � follows three
steps. In the first step one plays the game MG

> to compute
the letters from which the environment can satisfy R

. In this
game the environment is the protagonist and the system is
the antagonist. One may need to augment the alphabet ⌃ to
˜

⌃ = ⌃ ⇥K

e

as described in Sec. V; the control of coloring

variables X

Ke is assigned to the environment. The system is
eventually able to force a violation of R

from the letters in
˜

⌃\⌃
r

. From the letters ⌃
r

, the system can only satisfy R� by
satisfying R

�

. The new pre-image operator is used to compute
MG� >; the objective of the system is to keep satisfying R

�

while the environment cannot use strategies that will give the
system the option to choose the letter from ˜

⌃\⌃
r

. Once again,
one may need to augment the alphabet ˜

⌃ to ˆ

⌃ =

˜

⌃ ⇥ K

s

.
The system is able to satisfy R� from the letters in ⌃

�
r

=

MG� >[(

ˆ

⌃\ (⌃
r

⇥K

s

)). Finally, the system wins the game
obtained from � when the constraint R

in ! R

�

in allows the
system to select a letter from ⌃

�
r

.
As discussed in Sec. V, the control of coloring variables is

assigned to the player who is trying to satisfy the property.
This is why the variables in X

Ke (X
Ks) are controlled by the

environment (system) when it is trying to satisfy (�). This
distinction is at work in the following example.
Example 9. Consider the LTL formula � = ! �, where
 = G(r ^ X r ! XX(r ! l)) and � = G((r ^ ¬l ! ¬g) ^
(r ^ X r ! XX(r ! g))). Then R

in is ¬x and R

is

(¬r ! ¬x0
) _ (r ^ ¬x ! (r

0 $ x

0
))_

(r ^ x ! ((r

0 ^ l

0 ^ x

0
) _ (¬r0 ^ ¬x0

))) ,

while R

�

in is (¬r _ l _ ¬g) ^ ¬y and R

�

is

(r ^ ¬l ! ¬g) ^
�
(¬r ! ¬y0) _ (r ^ ¬y ! (r

0 $ y

0
))

_ (r ^ y ! ((r

0 ^ g

0 ^ y

0
) _ (¬r0 ^ ¬y0)))

�
.

The alphabets ⌃� = 2

{r,l,g} and ˆ

⌃� = 2

{r,l,g,x,y}, where

X

ed

={r, l}, X

s

={g}, X

ep

=;, X

Ke={x}, X

Ks={y}.

The system loses both games G¬ and G

�

, but it can win
the game G�. In the game G

�

the environment can force
the system to violate � at any time by playing the sequence
r ^ ¬l, r ^ ¬l, r ^ ¬l. On the other hand, in the game G�,
this sequence forces the environment to violate and if the
environment never plays this sequence then system can always
satisfy �. Thus G� is won by the system.

IX. EXPERIMENTAL RESULTS

The approach described here has been implemented in Vis
[3] as an extension of the SAFETY-FIRST approach described
in [21]. We report on preliminary experiments conducted on
a parameterized example coming from [1] (AMBA Bus). The
performance and quality of the implementation is compared
in Table I to ANZU [1] and our SAFETY-FIRST approach.

The specifications used for ANZU are different from those
used by the other two tools because ANZU requires the safety
components to be pre-synthesized into transition constraints.
The salient feature of our approach is the significantly smaller
sizes of the implementation. We only report latch count in [21],
but starting from a more abstract specification than ANZU was
paid with higher latch and gate counts. The new approach,
however, keeps the simpler and more abstract specification,
and still manages to achieve the most efficient designs.

The specification of the AMBA bus controller for n clients
contains n � 1 properties that are R-generable, but are not

2340

TABLE I. Experimental Results

Model Safety Parity Properties Time(s) latches Gates
E S E S ANZU ANZU SF SF+TC ANZU SF SF+TC ANZU SF+TC

AMBA2 3 17 2 3 56 2.39 6.87 0.44 24 37 15 4409 281
AMBA3 4 22 2 4 68 44.67 14.2 1.25 30 42 18 20686 586
AMBA4 5 26 2 5 80 35.30 109.9 3.47 34 48 20 17501 860
AMBA5 6 31 2 6 93 224.06 139.7 5.23 39 56 22 48154 1747
AMBA6 7 34 2 7 105 1011.7 301.1 10.18 43 55 23 74948 1792
AMBA7 8 38 2 8 117 1758.5 965.6 17.93 48 61 24 88808 1714
AMBA8 9 41 2 9 129 2034.9 875.3 76.72 52 67 26 222598 3621
AMBA9 10 44 2 10 141 7861.2 1439.6 193.90 57 77 28 175298 4597
AMBA10 11 48 2 11 153 28319.8 3727.6 224.21 61 81 29 172195 4941
AMBA11 12 51 2 12 165 8403.3 3154.0 410.44 65 87 30 179291 6240
AMBA12 13 55 2 13 177 49138.7 6641.2 878.63 69 92 31 224266 7223
AMBA13 14 60 2 14 189 13163.4 32562.4 1335.04 73 98 32 239494 9361
AMBA14 15 64 2 15 200 17104.9 12202.2 1865.70 77 105 33 284027 8202
AMBA15 16 69 2 16 212 TO TO 2611.00 - - 34 - 12385

produced by the grammar in Definition 6. The specification
also contains two safety properties that are not R-generable
irrespective of the number of clients.

We also implemented a limited retiming step (not applicable
in the SAFETY-FIRST approach), applied after the safety
properties of the system have been synthesized. Consider the
function f = (a

L

^ b

L

) _ f

i

, where a

L

and b

L

are the
latched versions of the signals a and b. One can implement
this function with one latch c = a ^ b then f = c

L

_ f

i

.
This step may reduce the number of memory elements in the
parameterized representation of the transition function. Both
the combinational and sequential logic is reduced by this step.

In the case of AMBA bus controller, retiming has significant
impact because this controller can be implemented as a Moore
machine. When a Moore implementation is not possible,
the effectiveness of retiming may be less noticeable. The
runtime of the algorithm is affected by retiming because the
parameterized representation is also simplified: with fewer
BDD variables finding suitable variable orders becomes easier.

The results of Table I do not make use of conversion of
general safety properties to transition constraints. Rather the
automata for these properties are used directly. In the case
when general safety properties are converted to transition con-
straints, the extraction of an optimal parameterized transition
relation incurs significant penalty and is being investigated.

X. CONCLUSION

We have presented a technique that obtains a significantly
simpler representation of the synthesis game. This results in
significant improvement in solving the game and produces
implementations that are an order of magnitude smaller than
previous techniques. The results being reported here include
the logic that keeps track of the environment’s assumptions.
However, this logic is often not required after the game has
been played. We are investigating techniques that will allow
the extraction of an implementation that only depends on this
logic when absolutely necessary.

REFERENCES

[1] R. Bloem, S. Galler, B. Jobstmann, N. Piterman, A. Pnueli, and
M. Weiglhofer. Automatic hardware synthesis from specifications: A
case study. In In Proceedings of the Design, Automation and Test in
Europe, pages 1188–1193, 2007.

[2] A. Bolotov and M. Fisher. A resolution method for CTL branching
time temporal logic. In Fourth International Workshop on Temporal
Representation and Reasoning (TIME). IEEE Press, 1997.

[3] R. K. Brayton et al. VIS: A system for verification and synthesis.
In T. Henzinger and R. Alur, editors, Eighth Conference on Computer
Aided Verification (CAV’96), pages 428–432. Springer-Verlag, Rutgers
University, 1996. LNCS 1102.

[4] F. M. Brown. Boolean Reasoning: The Logic of Boolean Equations.
Kluwer, Boston, 1990.

[5] O. Carton and R. Maceiras. Computing the Rabin index of a parity
automaton. Theoretical Informatics and Applications, 33:495–505, 1999.

[6] R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing
small circuits. In Proceedings of the 12th Conference on Formal Methods
in Computer-Aided Design (FMCAD 2012), pages 91–100, 2012.

[7] E. A. Emerson. Alternative semantics for temporal logics. Theoretical
Computer Science, 26:121–130, 1983.

[8] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and
determinacy. In Proc. 32nd IEEE Symposium on Foundations of
Computer Science, pages 368–377, Oct. 1991.

[9] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexponen-
tial algorithm for solving parity games. In Proceedings of ACM-SIAM
Symposium on Discrete Algorithms, SODA 2006, pages 117–123, Miami,
FL, Jan. 2006.

[10] Z. Kohavi. Switching and Finite Automata Theory. McGraw-Hill, New
York, second edition, 1978.

[11] L. H. Landweber. Decision problems for !-automata. Mathematical
Systems Theory, 3(4):376–384, 1969.

[12] M. Lange and O. Friedmann. The pgsolver collection of parity game
solvers. Technical report, Ludwig-Maximilians-Universität - München,
2009.

[13] P. Madhusudan. Synthesizing reactive programs. In CSL, pages 428–
442, 2011.

[14] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Annual
ACM Symposium on Principles of Distributed Computing, pages 377–
410, Quebec City, Quebec, Canada, Aug. 1990.

[15] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, 1995.

[16] A. W. Mostowski. Regular expressions for infinite trees and a standard
form of automata. In A. Skowron, editor, Computation Theory, pages
157–168. Springer-Verlag, 1984. LNCS 208.

[17] M. Perles, M. O. Rabin, and E. Shamir. The theory of definite automata.
IEEE Transactions on Electronic Computers, pages 233–243, 1963.

[18] N. Piterman. From nondeterministic Büchi and Streett automata to
deterministic parity automata. In 21st Symposium on Logic in Computer
Science, pages 255–264, Seattle, WA, Aug. 2006.

[19] N. Piterman, A. Pnueli, and Y. Sa´ar. Synthesis of reactive(1) designs.
In 7th International Conference on Verification, Model Checking and
Abstract Interpretation, pages 364–380. Springer, 2006. LNCS 3855.

[20] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
Proc. Symposium on Principles of Programming Languages (POPL ’89),
pages 179–190, 1989.

[21] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for the
synthesis of reactive systems. Software Tools for Technology Transfer
(Online First), pages 1–22, 2012.

24 41

