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I. TRADITIONAL NETWORKING

Computer networks are essential infrastructure in modern
society. Much like the electric power grid, we expect net-
works to always function, and there are often serious material
consequences when they fail. Unfortunately, network failures
are all too common. At Amazon, a configuration error during
routine maintenance triggered cascading failures that shut
down a datacenter and the customer machines hosted there.
At GoDaddy, a corrupted routing table disabled their domain
name service (DNS) for a day, causing a widespread outage.
At United Airlines, a network connectivity issue disabled their
reservation system, leading to thousands of flight cancellations
and a “ground stop” at their San Francisco hub. Even worse,
each of these failures could have been avoided—they were all
caused by operator errors or software bugs [6], [13], [22].

The high rate of network failures should not be surprising.
A typical datacenter or enterprise network is a complex system
with thousands of devices: routers and switches, web caches
and load balancers, monitoring middleboxes and firewalls, and
more. Each type of device runs a stack of interrelated protocols
and is configured by idiosyncratic, vendor-specific interfaces.
Network operators have to grapple with this complexity to
implement high-level, end-to-end policies. For example, an
access control policy or a quality of service guarantee may
need to be implemented by stringing together configurations
on several devices. Network operators who can accomplish
these feats have been called “masters of complexity” [18], for
good reason!

The complexity of traditional networks has also made it
extremely difficult to build automated tools for reasoning
precisely about end-to-end behavior. To make an effective tool,
one would need to somehow reverse-engineer the semantics
of numerous poorly-documented devices, construct parsers for
proprietary protocols, and formalize their concurrent execution
and asynchronous interactions. Although formal models of
traditional networks have been developed, they are either too
complex to be effective or too abstract to be practical.

II. SOFTWARE-DEFINED NETWORKING

Recently, a new network architecture has emerged called
software defined networking (SDN) that addresses the many of
the issues listed above. An SDN eliminates the heterogeneous
devices used in traditional networks—switches, routers, load
balancers, firewalls, etc.—and replaces them with commodity
programmable switches. These switches are managed and
programmed by a logically-centralized controller machine,

which communicates with switches using a standard protocol
such as OpenFlow [14].

Since OpenFlow-programmable switches conform to a well-
defined interface, it is possible to reason about their behavior
and even build formal models of their operation. This has
sparked a lot of interest in building verification tools for soft-
ware defined networks. Before introducing verification, this
tutorial will start with begin with an introduc to OpenFlow it-
self. Using OX, a simple, OCaml-based controller, participants
will first learn how to write some simple SDN applications. The
skills they learn will be directly applicable to other popular
platforms, such as NOX [7], POX [17], Beacon [3], Nettle [19],
and Floodlight [5].

III. PROGRAMMING WITH FRENETIC

OpenFlow and SDN make network programming possible,
but they do not make it easy. The first part of the tutorial
will make it evident that the OpenFlow abstraction is quite
low-level; although it abstracts away several hardware details,
it still feels like an “assembly language” for switch program-
ming. It is particularly hard to run several programs or modules
simultaneously when programming directly with OpenFlow.
If composed naively, two applications are almost certain to
destroy each others’ network state. Broadly, OpenFlow itself
lacks the mechanisms that we need to construct software from
separate, modular components.

To address this issue, we will introduce Frenetic, a high-
level language for programming SDN. Unlike OpenFlow,
which requires programmers to carefully manipulate low-level
switch-state, Frenetic provides a much higher level of ab-
straction: a Frenetic program denotes a mathematical, packet-
processing function. Frenetic provides a collection of simple
functions for filtering, modifying, counting, and forwarding
packets, as well as several operators that combine smaller
functions into larger ones. The Frenetic compiler takes care
of translating these functions into low-level OpenFlow instruc-
tions, and the Frenetic runtime system addresses several other
details of OpenFlow.

In this tutorial, we will show participants how to program
SDNs in a modular way, using Frenetic’s abstractions. We will
build several realistic network applications from the ground
up, and also learn to use more sophisticated modules, such as
NAT and MAC-learning, which are part of the Frenetic standard
library. We will also look under the hood to see how the
Frenetic compiler and runtime system work.

Although the tutorial will focus on Frenetic, we hope
to impart an understanding of other network programming
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languages, such as Pyretic [15], Maple [20], and PANE [4].
Although these languages provide a variety of abstractions,
they all address issues of modularity and composition that
Frenetic also tackles.

IV. VERIFICATION WITH FRENETIC

Frenetic’s modularity and composition operators make SDN
programming much easier; however, SDN promises to make
networks verifiable, too. There are several verification tools
that operate directly on low-level network state [1], [10], [12],
[11], but Frenetic programs can be verified at the source-level.

This tutorial will introduce the Frenetic verification tool,
which can check reachability properties of source-level Fre-
netic programs automatically. This tool enables programmers
to automatically answer questions such as, “is host A reachable
from host B?”, “is there a loop involving C?”, “is all SSH
traffic blocked?”, and so on. These are precisely the kinds
of questions that network operators ask whilst debugging and
troubleshooting their networks.

Under the hood, the Frenetic verification tool operates by
encoding programs and properties as SAT formulae and checks
their satisfiability using the Z3 theorem prover. Thanks to
Frenetic’s well-defined, high-level semantics, the encoding is
fairly straightforward and certainly much simpler than tools
that work with OpenFlow directly.

V. CONCLUSION

We hope this tutorial will show you how programming
languages technology and formal methods can be used to both
build networks and verify important network properties. Since
this is an in-depth, hands-on tutorial, we will only get to use a
small selection of tools and technologies, developed as part of
the Frenetic project. However, your experience with Frenetic
and its tools will also help you understand the many other
languages and tools that have been developed for this domain.
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