Exploring Interpolants

Philipp Rümmer, Pavle Subotić

Uppsala University, Sweden

FMCAD 2013, October 21

Introduction

Interpolants in Model Checking

• Craig interpolants used in model checking to refine abstractions

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist

Introduction

Interpolants in Model Checking

- Craig interpolants used in model checking to refine abstractions
- For a given interpolation problem several interpolants may exist
- The **choice** of interpolants affect if/how a program is verified

Preliminaries

Craig Interpolants

Let $(A \land B = false)$ then there exists an interpolant I for (A, B) such that:

$$A \rightarrow I$$

$$B \rightarrow \neg I$$

I refers only to common symbols of A, B

Motivating Example

Safety Properties

No feasible path exists that reaches an error state

Analysis using CEGAR

Ompute an approximation of CFG with respect to a set of predicates

Analysis using CEGAR

Compute an approximation of CFG with respect to a set of predicates

Choose a (spurious or genuine) path to error

Analysis using CEGAR

- Compute an approximation of CFG with respect to a set of predicates
- Choose a (spurious or genuine) path to error
- If spurious, use interpolation to generate further predicates

Motivating Example

Counter Example - one loop iteration

$$\overbrace{i_0 = 0 \land x_0 = j}^{\text{init}}$$

Motivating Example

Counter Example - one loop iteration

$$\overbrace{i_0 = 0 \land x_0 = j}^{\text{init}} \land \overbrace{i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}^{\text{loop}}$$

Motivating Example

Counter Example - one loop iteration

$$\overbrace{i_0 = 0 \land x_0 = j}^{\text{init}} \land \overbrace{i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}^{\text{loop}} \land \overbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}^{\text{error}}$$

Counter Example - one loop iteration

$$\underbrace{i_0 = 0 \land x_0 = j \land i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}_{A} \land \underbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}_{B}$$

Interpolation Problem

$$\underbrace{i_0 = 0 \land x_0 = j \land i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}_{A} \rightarrow I$$

$$\underbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}_{B} \rightarrow \neg I$$

where I has symbols only from A and B

Candidate Interpolant

$$I_1 = (i_1 \leq 1)$$

The Interpolant

$$\underbrace{i_0 = 0 \land x_0 = j \land i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}_{A} \rightarrow i_1 \le 1\checkmark$$

$$\underbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}_{B} \rightarrow \neg i_1 \le 1\checkmark$$

$$\underbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}_{B} \rightarrow \neg i_1 \le 1\checkmark$$

$$\underbrace{i_1 \ge sym(A) \text{ and } i_1 \in sym(B)}_{A} \checkmark$$

The Problem

- $(i_1 \le 1)$ eliminates the counter-example
- Results in unrolling the loop not general enough
- What we really would like is an inductive invariant

A Better Candidate Interpolant

$$I_2=(x_1\geq i_1+j)$$

The Interpolant

$$\underbrace{i_0 = 0 \land x_0 = j \land i_0 < 50 \land i_1 = i_0 + 1 \land x_1 = x_0 + 1}_{A} \rightarrow (x_1 \ge i_1 + j) \checkmark$$

$$\underbrace{i_1 \ge 50 \land j = 0 \land x_1 < 50}_{B} \rightarrow \neg (x_1 \ge i_1 + j) \checkmark$$

$$\underbrace{x_1, i_1, j \in sym(A) \text{ and } x_1, i_1, j \in sym(B)}_{A} \checkmark$$

Interpolants

- $(x_1 \ge i_1 + j)$ avoids loop unrolling
- But how do we get $(x_1 \ge i_1 + j)$ instead of $(i_1 \le 1)$ from the theorem prover?

Interpolant lattice for the example

Interpolant lattice for the example

- How to navigate in lattice?
- How to compare "quality" of interpolants?

Some Related Work

- Syntactic restrictions (R. Jhala and K. L. McMillan, TACAS 06)
- Interpolant strength (V. D'Silva VMCAI 10)
- Beautiful Interpolants (A.Albarghouthi, K. L. McMillan, CAV 13)
- Term abstraction (F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina, LPAR 12)

Pre-process the interpolation query

Pre-process the interpolation query

General, prover independent framework

Pre-process the interpolation query

- General, prover independent framework
- Generate several interpolants for a given interpolation problem

Pre-process the interpolation query

- General, prover independent framework
- Generate several interpolants for a given interpolation problem
- Incorporate domain specific knowledge in defining interpolant quality

Outline

- 1 Interpolation Abstractions
- Exploring Interpolants
- Separation Software Programs
- 4 Conclusion

Abstractions in the Example

Step 1: Rename common variables in A[s̄_A, s̄] ∧ B[s̄, s̄_B]

In the example: common symbols are $\{j, i_1, x_1\}$

$$A[\bar{s}_A, \bar{s}'] = i_0 = 0 \land x_0 = j' \land i_0 < 50 \land i'_1 = i_0 \land x'_1 = x_0$$

$$B[\bar{s}'', \bar{s}_B] = i_1'' \ge 50 \land j'' = 0 \land x_1'' < 50$$

Abstractions in the Example

- Step 1: Rename common symbols in $A[\bar{s}_A, \bar{s}] \wedge B[\bar{s}, \bar{s}_B]$
- Step 2: Add templates capturing limited knowledge

In the example: templates are $\{j, x_1 - i_1\}$

$$A[\bar{s}_A, \bar{s}]^{\sharp} = i_0 = 0 \land x_0 = j' \land i_0 < 50 \land i_1' = i_0 \land x_1' = x_0 \land \underbrace{x_1' - i_1' = x_1 - i_1 \land j' = j}_{R_A[\bar{s}', \bar{s}]}$$

$$B[\bar{s},\bar{s}_B]^{\sharp} = i_1'' \geq 50 \land j'' = 0 \land x_1'' < 50 \land \underbrace{x_1 - i_1 = x_1'' - i_1'' \land j = j''}_{R_B[\bar{s},\bar{s}'']}$$

Interpolation Problem $A \wedge B$

With abstraction generated by template x - y

Blocks Interpolants $x \ge 4$ etc.

Allows interpolants $x \ge y$ etc.

Interpolant sub-lattice for templates $\{i_1\}$ and $\{j, x_1 - i_1\}$

Definitions

Definition (Abstraction)

An **interpolation abstraction** is a pair $(R_A[\bar{s}',\bar{s}],R_B[\bar{s},\bar{s}''])$ of formulae with the property that $R_A[\bar{s},\bar{s}]$ and $R_B[\bar{s},\bar{s}]$ are valid i.e., $Id[\bar{s}',\bar{s}] \Rightarrow R_A[\bar{s}',\bar{s}]$ and $Id[\bar{s},\bar{s}''] \Rightarrow R_B[\bar{s},\bar{s}'']$.

Definition (Abstract Interpolation Problem)

- A[s̄_A, s̄] ∧ B[s̄, s̄_B] is the concrete interpolation problem.
- (A[s̄_A, s̄'] ∧ R_A[s̄, s̄']) ∧ (R_B[s̄", s̄] ∧ B[s̄", s̄_B]) is called abstract interpolation problem;

Definition (Feasible Abstractions)

Assuming that the concrete interpolation problem is solvable, we call an interpolation abstraction **feasible** if also the abstract interpolation problem is solvable, and **infeasible** otherwise.

Natural classes of Abstractions

ullet Term interpolation abstractions, constructed from a set of terms $\{t_1,t_2,\ldots,t_n\}$

$$R_A^T[\bar{s}',\bar{s}] = \bigwedge_{i=1}^n t_i[\bar{s}'] = t_i[\bar{s}], \quad R_B^T[\bar{s},\bar{s}''] = \bigwedge_{i=1}^n t_i[\bar{s}] = t_i[\bar{s}'']$$

- (same possible for inequalities)
- Predicate interpolation abstractions, constructed from {φ₁, φ₂,...,φ_n}

$$\textit{R}^{\textit{Pred}}_{\textit{A}}[\bar{s}',\bar{s}] = \bigwedge_{i=1}^{n} \left(\varphi_{i}[\bar{s}'] \rightarrow \varphi_{i}[\bar{s}] \right), \quad \textit{R}^{\textit{Pred}}_{\textit{B}}[\bar{s},\bar{s}''] = \bigwedge_{i=1}^{n} \left(\varphi_{i}[\bar{s}] \rightarrow \varphi_{i}[\bar{s}''] \right)$$

- Quantified interpolation abstractions
- <u>a</u> ...

Soundness and Completeness

Lemma (Soundness)

Every interpolant of the abstract interpolation problem is also an interpolant of the concrete interpolation problem (but in general not vice versa).

Lemma (Completeness)

Suppose $A[\bar{s}_A, \bar{s}] \wedge B[\bar{s}, \bar{s}_B]$ is an interpolation problem with interpolant $I[\bar{s}]$, such that both $A[\bar{s}_A, \bar{s}]$ and $B[\bar{s}, \bar{s}_B]$ are satisfiable. Then there is a feasible interpolation abstraction such that every abstract interpolant is equivalent to $I[\bar{s}]$.

Exploring Interpolants

- How do we find good interpolation abstractions?
- Can be done in two steps:
 - Define a base vocabulary of "interesting" templates (building blocks for interpolants)
 - Search for maximum feasible interpolation abstractions in this language

Exploring Interpolants

- How do we find good interpolation abstractions?
- Can be done in two steps:
 - Define a base vocabulary of "interesting" templates (building blocks for interpolants)
 - Search for maximum feasible interpolation abstractions in this language

Definition (Abstraction lattice)

Suppose an interpolation problem $A[\bar{s}_A, \bar{s}] \wedge B[\bar{s}, \bar{s}_B]$. An **abstraction lattice** is a pair $(\langle L, \sqsubseteq_L \rangle, \mu)$ consisting of a complete lattice $\langle L, \sqsubseteq_L \rangle$ and a monotonic mapping μ from elements of $\langle L, \sqsubseteq_L \rangle$ to interpolation abstractions $(R_A[\bar{s}', \bar{s}], R_B[\bar{s}, \bar{s}''])$ with the property that $\mu(\bot) = (Id[\bar{s}', \bar{s}], Id[\bar{s}, \bar{s}''])$.

Abstraction lattice template base set $\{x_1 - i_1, i_1, j\}$

Sub-lattices of interpolant lattice

Overall Architecture

Overall Architecture

Experiments

Experiment Setup

- Extended the Eldarica model checker with our approach
- Experiments on Horn clause benchmarks generated from programs
- Pre-computed templates of the form $\{x, y, x y, x + y\}$ Typically 15–300 templates
- Costs assigned to templates to define preference

Experiments

Benchmark	Eldarica		Eldarica-ABS		Flata	Z3
	N	sec	N	sec	sec	sec
C programs						
boustrophedon (C)	*	*	10	10.7	*	0.1
boustrophedon_expansed (C)	*	*	11	7.7	*	0.1
halbwachs (C)	*	*	53	2.4	*	0.1
gopan (C)	17	22.2	62	57.0	0.4	349.5
rate_limiter (C)	11	2.7	11	19.1	1.0	0.1
anubhav (C)	1	1.7	1	1.6	0.9	*
cousot (C)	*	*	3	7.7	0.7	
bubblesort (E)	1	2.8	1	2.3	77.6	0.3
insdel (C)	1	0.9	1	0.9	0.7	0.0
insertsort (E)	1	1.8	1	1.7	1.3	0.1
listcounter (C)	*	*	8	2.0	0.2	*
listcounter (E)	1	0.9	1	0.9	0.2	0.0
listreversal (C)	1	1.9	1	1.9	4.9	*
mergesort (E)	1	2.9	1	2.6	1.1	0.2
selectionsort (E)	1	2.4	1	2.4	1.2	0.2
rotation_vc.1 (C)	7	2.0	7	0.3	1.9	0.2
rotation_vc.2 (C)	8	2.7	8	0.2	2.2	0.3
rotation_vc.3 (C)	0	2.3	0	0.2	2.3	0.0
rotation.1 (E)	3	1.8	3	1.8	0.5	0.1
split_vc.1 (C)	18	3.9	17	3.2	*	1.1
split_vc.2 (C)	*	*	18	1.1	*	0.2
split_vc.3 (C)	0	2.8	0	1.5	*	0.0
Recursive Horn SMT-LIB Bend	hmarks					
addition (C)	1	0.7	1	0.8	0.4	0.0
bfprt (C)	*	*	5	8.3	-	0.0
binarysearch (C)	1	0.9	1	0.9	-	0.0
buildheap (C)	*	*	*	*	-	*
countZero (C)	2	2.0	2	2.0		0.0
disjunctive (C)	10	2.4	5	5.0	0.2	0.3
floodfill (C)	*	*	*	*	41.2	0.1
gcd (C)	4	1.2	4	2.0	-	*
identity (C)	2	1.1	2	2.1	-	0.1
merge-leq (C)	3	1.1	7	7.0	15.7	0.1

A semantic, solver-independent framework for guiding interpolant search

A semantic, solver-independent framework for guiding interpolant search

• We pre-process the interpolation queries

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation
- General framework

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation
- General framework
 - Our implementation is just a basic instance of the framework

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation
- General framework
 - Our implementation is just a basic instance of the framework
 - Each query can have a specific lattice, lattices can be infinite etc.

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation
- General framework
 - Our implementation is just a basic instance of the framework
 - Each query can have a specific lattice, lattices can be infinite etc.
 - Applicable to various logics, not restricted to arithmetic

A semantic, solver-independent framework for guiding interpolant search

- We pre-process the interpolation queries
 - Easy to integrate in verifiers (basic implementation 500-1000 LOC)
 - Enables use of domain-specific knowledge in interpolation
- General framework
 - Our implementation is just a basic instance of the framework
 - Each query can have a specific lattice, lattices can be infinite etc.
 - Applicable to various logics, not restricted to arithmetic
- Templates, but interpolants still constructed by theorem prover
 - ⇒ Arbitrary Boolean structure, etc., allowed

Applications (ongoing work)

- Software programs with heap, other datatypes
- Timed systems
- Reachability in Petri nets/Vector addition systems

Thank you - Questions

Finding Abstractions

```
Algorithm 1: Exploration algorithm

Input: Interpolation problem A[\bar{s}_A, \bar{s}] \wedge B[\bar{s}, \bar{s}_B], abstraction lattice (\langle L, \sqsubseteq_L \rangle, \mu)

Result: Set of maximal feasible interpolation abstractions

if \bot is infeasible then

return \emptyset;

end

Frontier \leftarrow {maximise(\bot)};

while \exists feasible elem \in L, incomparable with Frontier do

Frontier \leftarrow Frontier \cup {maximise(elem)};

end

return Frontier;
```

Finding Abstractions

3

```
Algorithm 2: Maximisation algorithm
  Input: Feasible element: elem
  Result: Maximal feasible element
1 while ∃ feasible successor fs of elem do
      pick element middle such that fs \sqsubseteq_I middle \sqsubseteq_I \top;
      if middle is feasible then
           elem \leftarrow middle;
      else
           elem \leftarrow fs:
      end
8 end
9 return elem;
```