Exploring Interpolants

Philipp Rimmer, Pavle Suboti ¢

Uppsala University, Sweden

FMCAD 2013, October 21

Rimmer, Subotic Exploring Interpolants

B 4@
Introduction

Interpolants in Model Checking
@ Craig interpolants used in model checking to refine abstractions

Rimmer, Subotic Exploring Interpolants _

|
Introduction

Interpolants in Model Checking
@ Craig interpolants used in model checking to refine abstractions
@ For a given interpolation problem several interpolants may exist

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 2/39

|
Introduction

Interpolants in Model Checking
@ Craig interpolants used in model checking to refine abstractions
@ For a given interpolation problem several interpolants may exist
@ The choice of interpolants affect iffhow a program is verified

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 2139

B 4@
Preliminaries

Craig Interpolants
Let (AAB = false) then there exists an interpolant | for (A, B) such that:

A—1l
B — -l
| refers only to common symbols of A,B

Rimmer, Subotic Exploring Interpolants

|
Motivation

Motivating Example

i =0, x =j; [l init
while (i<50) { /1 1oop
i +4:
X4+
}
if (j ==0)

assert (x >=50); // error location

Safety Properties
No feasible path exists that reaches an error state

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 4139

B 4@
Motivation

Analysis using CEGAR

© Compute an approximation of CFG with respect to a set of predicates

Rimmer, Subotic Exploring Interpolants _

B 4@
Motivation

Analysis using CEGAR

© Compute an approximation of CFG with respect to a set of predicates
@ Choose a (spurious or genuine) path to error

Rimmer, Subotic Exploring Interpolants _

|
Motivation

Analysis using CEGAR
© Compute an approximation of CFG with respect to a set of predicates
@ Choose a (spurious or genuine) path to error
@ If spurious, use interpolation to generate further predicates

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 5/39

|
Motivation

Motivating Example

i =0, x =j; [l init
while (i<50) { /1 1oop
i ++;
X++:
}
it (j ==0)

assert (x >=50); // error location

Counter Example - one loop iteration

init

——
ioIO/\Xo :]

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 6/39

|
Motivation

Motivating Example

i =0, x =7j; [l init
while (i<50) { /1 1oop
i +4;
X++:
1
if (j ==0)

assert (x >=50); // error location

Counter Example - one loop iteration

init loop

ip =0AXg=]Aip <50Ai; =ipg+1AXx3 =X%p+1

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 7139

|
Motivation

Motivating Example

i =0, x =7j; [l init
while (i<50) { /1 1oop
i +4;
X++:
1
if (j ==0)

assert (x >=50); // error location

Counter Example - one loop iteration

init loop error

ip =0AXg =] Aipg <50Aip =ipg+1AX3 =X%g+1Aip 250Aj=0AX; <50

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 8/39

Motivation

Counter Example - one loop iteration

ip =0AXg =] Aig<50Ai; =ig+1AXy =Xg+1Aig >50A] =0AXx; <50

A B

Interpolation Problem

iOZO/\XOZj/\iO<50/\i1:i0+1/\X1:X0+l—)|

A
i1 >50Aj=0AX; <50 — —l

B
where | has symbols only from A and B

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 9/39

|
Motivation

Candidate Interpolant

|1:(i1 Sl)

The Interpolant

i0=0/\X0:j/\i0<50/\i1=i0—|—1/\X1:X0—|—1—)i1S1\/
A
i >50Aj = 0Ax; <50 — —iy < 1v

B

i1 € sym(A) and iy € sym(B) v/

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 10/39

|
Motivation

The Problem
@ (i; <1) eliminates the counter-example
@ Results in unrolling the loop - not general enough
@ What we really would like is an inductive invariant

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 11/39

|
Motivation

A Better Candidate Interpolant

I = (xg >i1+]j)

The Interpolant

o =0AXo=jAlp <50Aig =ig+1AX =Xo+1— (X1 >i1+])V
A
i1 >50A] =0Ax; <50 — —(xg > i1 +j)v

B

X1,i1,] € sym(A) and xq,i1,j € sym(B) v/

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 12/39

B 4@
Motivation

Interpolants
@ (x1 > i1 +]) avoids loop unrolling
@ But how do we get (x; > i +]) instead of (i < 1) from the theorem prover?

Rimmer, Subotic Exploring Interpolants _

Interpolant lattice for the example

[J' #0Vip <49Vx, 250] I

[Xl =J+1/\|1=1] IL

Rimmer, Subotic Exploring Interpolants

Interpolant lattice for the example

(1 £0Vi, <49Vxy >50] I

[Xl =J+1/\|1=1] IL

@ How to navigate in lattice?
@ How to compare “quality” of interpolants?

Rimmer, Subotic Exploring Interpolants _

|
Some Related Work

@ Syntactic restrictions (R. Jhala and K. L. McMillan, TACAS 06)
@ Interpolant strength (v. D'Silva VMCAI 10)
@ Beautiful Interpolants (A.Albarghouthi, K. L. McMillan, CAV 13)

@ Term abstraction (F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina, LPAR 12)

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 15/39

I 4
Our Approach

Pre-process the interpolation query J

Rimmer, Subotic Exploring Interpolants

I 4
Our Approach

Pre-process the interpolation query J

@ General, prover independent framework

Rimmer, Subotic Exploring Interpolants

I 4
Our Approach

Pre-process the interpolation query J

@ General, prover independent framework
@ Generate several interpolants for a given interpolation problem

Rimmer, Subotic Exploring Interpolants _

Our Approach

Pre-process the interpolation query

@ General, prover independent framework
@ Generate several interpolants for a given interpolation problem
@ Incorporate domain specific knowledge in defining interpolant quality

Rimmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21

16/39

B 4@
Outline

a Interpolation Abstractions

a Exploring Interpolants

a Experiments on Software Programs

Q Conclusion

Exploring Interpolants

Abstractions in the Example

@ Step 1: Rename common variables in A[Sa,S] A B[S, 5g] J

In the example: common symbols are {j, i1, X }

A[§A,§l] = ioZO/\XOZj//\io<50/\i:’l:io/\X]/_:X0
B[s",58] = if >50Aj]" =0Ax; <50

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 18/39

Abstractions in the Example

@ Step 1: Rename common symbols in A[Sa,S] A B[S, 35g]
@ Step 2: Add templates capturing limited knowledge

In the example: templates are {j,x; —i1 }

AlSa,5)F = io=0AXo=J Nip <BOAI, =igAX] =Xo A X§ —if =x3 —ig AJ =]
RAES]
B[5,88]° = if >50Aj" =0Ax] <50 A xg —ip =x; —if Aj=j"
RB[‘§r,§”]

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 19/39

Interpolation Abstractions

Example

Interpolation Problem AAB

8

Rimmer,

Exploring Interpolants

Example

With abstraction generated by template x —y

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 21/39

Example

Blocks Interpolants x > 4 etc.

8

Exploring Interpolants FMCAD 2013, October 21 22/39

Interpolation Abstractions

Example

Allows interpolants x >y etc.

Rummer, Subotié

8

FMCAD 2013, October 21

23/39

Interpolation Abstractions

Interpolant sub-lattice for templates {i; } and {j,x; —i1 }

(1#0Vi <49V >50] I

a=j+1nib=1]y,

Rimmer, Subotic Exploring Interpolants

Interpolation Abstractions

Definitions

Definition (Abstraction)

An interpolation abstraction s a pair (Ra[5,35],Rs[S,3"]) of formulae with the
property that R[S, 5] and Rg|[S, 5] are valid

i.e., 1d[8',5] = Ra[§',5] and Id[5,5"] = Rs|[5,5"].

Definition (Abstract Interpolation Problem)
® A[5a,5] ABJS,5g] is the
concrete interpolation problem
o (A[§A,§I] AN RA[§,§/]) A (RB [§”,§] VAN B[§//,§B]) is called
abstract interpolation problem

Definition (Feasible Abstractions)

Assuming that the concrete interpolation problem is solvable, we call an interpolation
abstraction feasible if also the abstract interpolation problem is solvable, and
infeasible otherwise.

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 25/39

Natural classes of Abstractions

@ Term interpolation abstractions , constructed from a set of terms {ty,tz,...,tn}

RA[S,5] = /n\ti[§']=ti[§], Rg[5,5"] = /n\ti[§]=ti[§”]

@ (same possible for inequalities)

@ Predicate interpolation abstractions , constructed from {@, @, ..., }

n n

RAIE.8 = A(alS1-als), Re™EST= A(aBl—alE)

i=1 i=1

@ Quantified interpolation abstractions

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

26/39

Soundness and Completeness

Lemma (Soundness)

Every interpolant of the abstract interpolation problem is also an interpolant of the
concrete interpolation problem (but in general not vice versa).

Lemma (Completeness)

Suppose A[Sa,5] ABJ[S,Sg] is an interpolation problem with interpolant I[S], such that
both A[Sa, 5] and B[S, Sg] are satisfiable. Then there is a feasible interpolation
abstraction such that every abstract interpolant is equivalent to I[S].

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 27139

Exploring Interpolants

@ How do we find good interpolation abstractions?
@ Can be done in two steps:

Define a base vocabulary of “interesting” templates (building blocks for interpolants)
Search for maximum feasible interpolation abstractions in this language

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 28/39

Exploring Interpolants

@ How do we find good interpolation abstractions?

@ Can be done in two steps:
Define a base vocabulary of “interesting” templates (building blocks for interpolants)
Search for maximum feasible interpolation abstractions in this language

Definition (Abstraction lattice)

Suppose an interpolation problem A[Sa,5] AB[S,5g]. An abstraction lattice is a pair
({L,C.), M) consisting of a complete lattice (L,C,) and a monotonic mapping M from
elements of (L,) to interpolation abstractions (Ra[S’,5],Rg([S,5"]) with the property
that (L) = (1d[8',5],1d[8,5"]).

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 28/39

Exploring Interpolants

Abstraction lattice template base set {x; —iy,i1,]}

.

{ia} {x1—ir} {i}

> >

{xg —ig,is} {isia} {x1—i1,j}

~ | 7

{x1 —ip,i1,j}

0

Rimmer, Subotic Exploring Interpolants

Exploring Interpolants

Sub-lattices of interpolant lattice

[i #0Viy <49Vxy >50] |1

a=j+1nib=1]y,

Rimmer, Subotic Exploring Interpolants

Overall Architecture

____________ CEGARlop _ _ __ ________
I 1
i 1

: predicates X
I 1
' Verifier \
I 1
' Interpolation | |
! Engine '
I 1
1

: Query '
I 1
I 1
I 1

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 31/39

Exploring Interpolants

Overall Architecture

Domain
knowledge | _ _ _ _ _ o ________
predicates

Verifier

Interpolation
Engine

template lattice ||

CEGAR loop

counter example

abstract query(s)

feasible abstractions

RUmmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21 32/39

Experiments

Experiment Setup
@ Extended the Eldarica model checker with our approach
@ Experiments on Horn clause benchmarks generated from programs

@ Pre-computed templates of the form {x,y,x —y,x+y}
Typically 15-300 templates

@ Costs assigned to templates to define preference

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 33/39

Experiments on Software Programs

Experiments

Benchmark Eldarica Eldarica-ABS Flata z3

N sec N sec sec sec
C programs
boustrophedon (C) K K 10 10.7 * 0.1
boustrophedon_expansed (C) * * 11 7.7 * 0.1
halbwachs (C) * * 53 24 * 0.1
gopan (C) 17 222 62 57.0 0.4 349.5
rate_limiter (C) 11 2.7 11 19.1 1.0 0.1
anubhav (C) 1 17 1 16 0.9 *
cousot (C) i i & 7.7 0.7 it
bubblesort (E) 1 2.8 1 23 776 0.3
insdel (C) 1 0.9 1 0.9 0.7 0.0
insertsort (E) 1 1.8 1 1.7 1.3 0.1
listcounter (C) B 3 8 20 0.2 B
listcounter (E) 1 0.9 1 0.9 0.2 0.0
listreversal (C) 1 1.9 1 1.9 4.9 i
mergesort (E) 1 29 1 26 11 0.2
selectionsort (E) 1 2.4 1 2.4 1.2 0.2
rotation.vc.1 (C) 7 20 7 0.3 1.9 0.2
rotation_vc.2 (C) 8 27 8 0.2 22 0.3
rotation.vc.3 (C) 0 2.3 0 0.2 23 0.0
rotation.1 (E) 3 1.8 3 1.8 0.5 0.1
split.ve.1 (C) 18 3.9 17 32 * 11
splitve.2 (C) * * 18 11 * 0.2
split-ve.3 (C) 0 238 0 15 * 0.0
Recursive Horn SMT-LIB Benchmarks
addition (C) 1 0.7 1 0.8 0.4 0.0
bfprt (C) * * 5 8.3 - 0.0
binarysearch (C) 1 0.9 1 0.9 - 0.0
buildheap (C) * * * * - *
countZero (C) 2 20 2 20 - 0.0
disjunctive (C) 10 2.4 5 5.0 0.2 0.3
floodfill (C) * * * * 212 0.1
ged (C) 4 12 4 20 = *
identity (C) 2 11 2 21 - 0.1
merge-leq (C) 3 11 7 7.0 15.7 0.1

Exploring Interpolants

FMCAD 2013, October 21

34/39

Summary

A semantic, solver-independent framework for guiding interpolant search J

Exploring Interpolants

Summary

A semantic, solver-independent framework for guiding interpolant search J

@ We pre-process the interpolation queries

Rimmer, Subotic Exploring Interpolants _

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries
Easy to integrate in verifiers (basic implementation 500-1000 LOC)

Rimmer, Suboti¢ Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

@ General framework

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

@ General framework
Our implementation is just a basic instance of the framework

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries

Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

@ General framework

Our implementation is just a basic instance of the framework
Each query can have a specific lattice, lattices can be infinite etc.

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries
Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

@ General framework

Our implementation is just a basic instance of the framework
Each query can have a specific lattice, lattices can be infinite etc.
Applicable to various logics, not restricted to arithmetic

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

A semantic, solver-independent framework for guiding interpolant search

@ We pre-process the interpolation queries
Easy to integrate in verifiers (basic implementation 500-1000 LOC)
Enables use of domain-specific knowledge in interpolation

@ General framework
Our implementation is just a basic instance of the framework
Each query can have a specific lattice, lattices can be infinite etc.
Applicable to various logics, not restricted to arithmetic

@ Templates, but interpolants still constructed by theorem prover

= Arbitrary Boolean structure, etc., allowed

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21

35/39

Summary

Applications (ongoing work)
@ Software programs with heap, other datatypes
@ Timed systems
@ Reachability in Petri nets/Vector addition systems

Rimmer, Subotic Exploring Interpolants _

Thank you - Questions

Exploring Interpolants

Finding Abstractions

Algorithm 1 : Exploration algorithm

Input : Interpolation problem A[Sa,5] A B[S, 35g], abstraction lattice ({L,C.),H)
Result : Set of maximal feasible interpolation abstractions
1 if L is infeasible then

2 | retun 0

3 end

4 Frontier <— {maximise(L)};

5 while 3 feasible elem € L, incomparable with Frontier do
6

7

8

| Frontier < Frontier U {maximise(elem)};
end
return Frontier;

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 38/39

Finding Abstractions

Algorithm 2 : Maximisation algorithm
Input : Feasible element: elem
Result : Maximal feasible element

1 while dfeasible successor fs of elem do

2 pick element middle such that fs =, middle C, T;
3 if middle is feasible then

4 \ elem < middle;

5 else

6 | elem « fs;

7 end

8 end

9 return elem;

Rummer, Subotic Exploring Interpolants FMCAD 2013, October 21 39/39

	Interpolation Abstractions
	Exploring Interpolants
	Experiments on Software Programs
	Conclusion

