## SAT MOD ODES

Sicun Gao / Soonho Kong / Edmund Clarke

2013/10/22, FMCAD'13

http://dreal.cs.cmu.edu

#### Decision Problems over Real Numbers

Given an arbitrary first-order  $\phi$  over

$$\langle \mathbb{R},\geq,\mathcal{F}\rangle$$

decide the truth value of  $\varphi$ .

#### Decision Problems over Real Numbers

Given an arbitrary first-order  $\varphi$  over

$$\langle \mathbb{R}, \geq, \mathcal{F} \rangle$$

decide the truth value of  $\varphi$ .

With a rich enough  $\mathcal{F}$ , we would be able to:

- solve many control-engineering problems
- verify and synthesize safety-critical embedded systems









Speed up









Speed up







Speed up

Turn







Speed up

Turn











#### Logic Encoding

We can do this if we can solve the following SMT formula in real-time:

speedup
$$(\vec{x}_0) \land \left(\vec{x}_1 = \vec{x}_0 + \int_0^{t_1} \text{speeding}(s) ds\right) \land$$
  
steer $(\vec{x}_1, \vec{x}_2) \land \left(\vec{x}_3 = \vec{x}_2 + \int_0^{t_2} \text{turning}(s) ds\right) \land$   
brake $(\vec{x}_3, \vec{x}_4) \land \left(\vec{x}_5 = \vec{x}_4 + \int_0^{t_3} \text{drifting}(s) ds\right) \land$  parked $(\vec{x}_5)$ 

#### Isn't this problem too hard?

#### Difficulty

Suppose  $\mathcal{F}$  is  $\{+, \times\}$ .

$$\mathbb{R} \stackrel{?}{\vDash} \exists a \forall b \exists c \ (ax^2 + bx + c > 0)$$

- Decidable [Tarski 1948].
- Double-exponential lower-bound. Extensive research on practical solvers.

#### Difficulty

Suppose  $\mathcal{F}$  further contains **sine**:

$$\mathbb{R} \stackrel{?}{\vDash} \exists x, y, z \; (\sin^2(\pi x) + \sin^2(\pi y) + \sin^2(\pi z) = 0 \bigwedge x^3 + y^3 = z^3)$$

- $\Sigma_1$  case already undecidable.
- Partial algorithms are of extremely high complexity.
- Engineers would rather be left alone.

#### The key is to change the decision problem.

#### The Delta-Decision Problem (one version)

Given  $\varphi$  and  $\delta \in \mathbb{Q}^+$ , return one of the following:

- $\varphi$  is false.
- A weakening of the original formula,  $\varphi^{-\delta}$ , is true.

We now define what  $\varphi^{-\delta}$  is.

#### $\delta$ -Variants

Any bounded  $\mathcal{L}_{\mathcal{F}}$  -sentence  $\varphi$  can be written in the form

$$Q_1^{[u_1,v_1]}x_n \cdots Q_n^{[u_n,v_n]}x_n \quad \bigwedge (\bigvee t(\vec{x}) > 0 \lor \bigvee t(\vec{x}) \ge 0)$$

**Definition (\delta-weakening)** Let  $\delta \in \mathbb{Q}^+ \cup \{0\}$ . The  $\delta$ -weakening  $\varphi^{-\delta}$  of  $\varphi$  is  $Q_1^{[u_1,v_1]}x_1 \cdots Q_n^{[u_n,v_n]}x_n \quad \bigwedge (\bigvee t(\vec{x}) > -\delta \lor \bigvee t(\vec{x}) \ge -\delta)$ 

#### $\delta$ -Decisions

Let  $\delta \in \mathbb{Q}^+$  be arbitrary.

#### Definition ( $\delta$ -decisions)

Decide, for any given bounded  $\varphi$ , whether

- $\varphi$  is false, or
- $\phi^{-\delta}$  is true.

When the two cases overlap, either answer can be returned.

#### $\delta$ -Decidability

Let  $\mathcal{F}$  be an arbitrary collection of Type 2 computable functions.

#### Theorem [Gao et al. LICS'12]

The  $\delta$ -decision problem over  $\mathbb{R}_{\mathcal{F}}$  is decidable.

Type 2 computable functions:

- Polynomials
- exp, sine, ...
- L-continuous ODEs
- PDEs, ...

#### $\delta$ -Decisions

There is a grey area that a  $\delta$ -complete algorithm can be wrong about.



#### $\delta$ is good

A system S is **safe** if some formula  $\varphi$  is false.

•  $\exists x_0 \exists t \exists x_t (\operatorname{Reach}(x_0, t, x_t) \land \operatorname{Unsafe}(x_t))$ 

Now the interpretation of  $\delta$ -decisions is:

- False: *S* is **safe** (within bounds, for BMC).
- δ-True: S is unsafe, or some δ-perturbation would make it unsafe. You shouldn't rely on it anyway.

#### Complexity

#### Theorem

- $\mathcal{F} = \{+, \times, \exp, \sin, \dots\}$  :  $\Sigma_k^P$ -complete.
- $\mathcal{F} = \{\text{ODEs with PTIME deriv.}\}$  : **PSPACE -complete**.

These are extremely low compared to the original ones.

# In theory, it may be possible to solve some. In practice?

#### Formal Analysis of Numerical Algorithms

- We say an algorithm is δ-complete if it solves δ-decision problem.
- Many numerically-driven procedures satisfy δcompleteness after **formal analysis** [Gao et al, IJCAR'12].

#### Interval Constraint Propagation

- Contract big initial interval boxes to small ones that cover solutions.
- If some constraints are satisfiable, then the interval relaxations always have overlapping boxes.



#### Interval Constraint Propagation

 $\exists x, y \in [0.5, 1.0] : y = \sin(x) \land y = \operatorname{atan}(x)$ 

Begin x dim : x + y dim : y + Next



#### $\delta$ -Completeness of ICP

We gave conditions for a pruning operator to be **well-defined**, formalizing practical implementation strategies used in ICP.

#### Theorem [Gao et al. IJCAR'12]

DPLL(ICP) is  $\delta$ -complete **iff** its pruning operators are well-defined.

#### We now go into the details of ODE solving.

#### Handling Differential Equations

An ODE system

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{f}(\vec{x}, t)$$

when put in Picard–Lindelöf form:

$$\vec{x}_t = \vec{x}_0 + \int_0^t f(\vec{x}, s) \mathrm{d}s$$

is seen as a constraint between  $\vec{x}_0, \vec{x}_t$ , and t.

#### ODE Pruning

Starting with big intervals for

 $\vec{x}_t, \vec{x}_0, t$ 

use the ODE constraints to find smaller intervals for them.











#### Backward Pruning (on $X_0$ )





#### Backward Pruning (on $X_0$ )





#### Backward Pruning (on $X_0$ )





## Time Pruning (on *T*)



t

## Time Pruning (on *T*)



t

## Time Pruning (on *T*)



t









#### Tool

- Open-source at http://dreal.cs.cmu.edu
- Nonlinear ODEs, and of course, polynomials, transcendental functions, etc.
- Formulas with hundreds of nonlinear ODEs have been solved.



• " $\delta$ -sat":  $\varphi^{\delta}$  is satisfiable.



```
(set-logic QF_NRA_ODE)
(declare-fun w_0_1_t () Real)
(declare-fun w_0_1_0 () Real)
(declare-fun w 1 2 t () Real)
(declare-fun w_1_2_0 () Real)
(declare-fun w 2 3 t () Real)
(declare-fun w_2_3_0 () Real)
(declare-fun w_3_4_t () Real)
(declare-fun w 3 4 0 () Real)
(declare-fun w 4 5 t () Real)
(declare-fun w 4 5 0 () Real)
(declare-fun w 5 6 t () Real)
(declare-fun w 5 6 0 () Real)
(declare-fun w_6_7_t () Real)
(declare-fun w_6_7_0 () Real)
(declare-fun w_7_8_t () Real)
(declare-fun w_7_8_0 () Real)
(declare-fun w_8_1_t () Real)
(declare-fun w 8 1 0 () Real)
(declare-fun w 9 2 t () Real)
(declare-fun w 9 2 0 () Real)
(declare-fun w 10 3 t () Real)
(declare_fun w 10 3 0 () Real)
```



| Р  | #M | #D | #O  | #V  | delta | R | Time(s)  | Trace |
|----|----|----|-----|-----|-------|---|----------|-------|
| AF | 4  | 3  | 20  | 44  | 0.001 | S | 43.10    | 90K   |
| AF | 8  | 7  | 40  | 88  | 0.001 | S | 698.86   | 20M   |
| AF | 8  | 23 | 120 | 246 | 0.001 | S | 4528.13  | 59M   |
| AF | 8  | 31 | 160 | 352 | 0.001 | S | 8485.99  | 78M   |
| AF | 8  | 47 | 240 | 528 | 0.001 | S | 15740.41 | 117M  |
| AF | 8  | 55 | 280 | 616 | 0.001 | S | 19989.59 | 137M  |
| CT | 2  | 2  | 15  | 36  | 0.005 | S | 345.84   | 3.1M  |
| CT | 2  | 2  | 15  | 36  | 0.002 | S | 362.84   | 3.1M  |
| EO | 3  | 2  | 18  | 42  | 0.01  | S | 52.93    | 998K  |
| EO | 3  | 2  | 18  | 42  | 0.001 | S | 57.67    | 847K  |
| EO | 3  | 11 | 72  | 168 | 0.01  | U | 7.75     | _     |
| BB | 2  | 10 | 22  | 66  | 0.01  | S | 0.25     | 123K  |
| BB | 2  | 20 | 42  | 126 | 0.01  | S | 0.57     | 171K  |
| BB | 2  | 20 | 42  | 126 | 0.001 | S | 2.21     | 168K  |
| BB | 2  | 40 | 82  | 246 | 0.01  | U | 0.27     |       |
| BB | 2  | 40 | 82  | 246 | 0.001 | U | 0.26     |       |
| D1 | 3  | 2  | 9   | 24  | 0.1   | S | 30.84    | 72K   |
| DU | 3  | 2  | 6   | 16  | 0.1   | U | 0.04     | -     |

TABLE I: Experimental results. #M = Number of modes in the hybrid system, #D = Unrolling depth, #O = Number of ODEs in the unrolled formula, #V = Number of variables in the unrolled formula, R = Bounded Model Checking Result (delta-SAT/UNSAT) Time = CPU time (s), Trace = Size of the ODE trajectory, AF = Atrial Filbrillation Model, CT = Cancer Treatment Model, EO = Electronic Oscillator Model, BB = Bouncing Ball with Drag Model, D1,DU = Decay Model.

#### Conclusion



#### Conclusion



#### This is not much harder than SAT solving.