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Given an arbitrary first-order  over5

æ¾,¾, ç

decide the truth value of .5

With a rich enough , we would be able to:

solve many control-engineering problems

verify and synthesize safety-critical embedded systems

■
■
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Logic Encoding

We can do this if we can solve the following SMT formula in real-time:

āþóóòăþ( ) _ ( = + āþóóò÷üõ(s)ds) ⋀x t 0 x t 1 x t 0 ∫
t1

0

āĂóóĀ( , ) _ ( = + ĂăĀü÷üõ(s)ds) ⋀x t 1 x t 2 x t 3 x t 2 ∫
t2

0

ðĀïùó( , ) _ ( = + òĀ÷ôĂ÷üõ(s)ds) ⋀ þïĀùóò( )x t 3 x t 4 x t 5 x t 4 ∫
t3

0
x t 5



Isn't this problem too hard?



Difficulty

Suppose  is . {+, ×}

¾ ;a8b;c (a + bx + c > 0)ā
?

x 2

Decidable [Tarski 1948].

Double-exponential lower-bound. Extensive research on

practical solvers.

■
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Difficulty

Suppose  further contains sine:

¾ ;x, y, z ( (/x) + (/y) + (/z) = 0 ⋀ + = )ā
?

sin2 sin 2 sin2 x 3 y3 z3

 case already undecidable.

Partial algorithms are of extremely high complexity.

Engineers would rather be left alone.

■ ¤1
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The key is to change the decision problem.



 

The Delta-Decision Problem (one version)

Given  and , return one of the following:5 # @ »+

 is false.

A weakening of the original formula, , is true.

■ 5
■ 5J#

We now define what  is.5J#



-Variants#

Any bounded -sentence  can be written in the form 5

( ⋀(⋁ t( ) > 0 ` ⋁ t( ) ¾ 0)Q[ , ]u1 v1
1 xn Q[ , ]un vn

n xn x t x t 

Definition ( -weakening)

Let . The -weakening  of  is

®
# @ b {0}»+ ® 5J# 5

( ⋀(⋁ t( ) > J# ` ⋁ t( ) ¾ J#)Q[ , ]u1 v1
1 x1 Q[ , ]un vn

n xn x t x t 



-Decisions#

Let  be arbitrary.# @ »+

Definition ( -decisions)

Decide, for any given bounded , whether

 is false, or

 is true.

When the two cases overlap, either answer can be returned.

®
5

■ 5
■ Àħ®



-Decidability#

Let  be an arbitrary collection of Type 2 computable functions.

Theorem [Gao et al. LICS'12]

The -decision problem over  is decidable.# ¾

Type 2 computable functions:

Polynomials

exp, sine, …
L-continuous ODEs

PDEs, …

■
■
■
■



 

-Decisions#

There is a grey area that a -complete algorithm can be wrong about.#



 

 is good#

A system  is safe if some formula  is false. 5

■ ; ;t; (æóïñö( , t, ) _ éüāïôó( ))x0 x t x0 x t x t

Now the interpretation of -decisions is:#

False:  is safe (within bounds, for BMC).

-True:  is unsafe, or some -perturbation would make

it unsafe. You shouldn't rely on it anyway.

■ 

■ #  ®



Complexity

Theorem

: -complete.

: -complete.

■  = {+, ×, exp, sin, . . . } |P
k

■  = {ODEs with äèÝáÙ deriv.} ������

These are extremely low compared to the original ones.



In theory, it may be possible to solve
some. In practice?



Formal Analysis of Numerical Algorithms

We say an algorithm is -complete if it solves -decision

problem.

Many numerically-driven procedures satisfy -

completeness after formal analysis [Gao et al, IJCAR'12].

■ ® #

■ #



Interval Constraint Propagation

Contract big initial interval boxes to small ones that cover

solutions.

If some constraints are satisfiable, then the interval

relaxations always have overlapping boxes.

■

■



Interval Constraint Propagation

;x, y @ [0.5, 1.0] : y = sin(x) _ y = atan(x)
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-Completeness of ICP#

We gave conditions for a pruning operator to be well-defined,
formalizing practical implementation strategies used in ICP.

Theorem [Gao et al. IJCAR'12]

DPLL(ICP) is -complete iff its pruning operators are well-defined.#



We now go into the details of ODE solving.



Handling Differential Equations

An ODE system

= ( , t)
dx t 
dt

f t x t 

when put in Picard–Lindelöf form:

= + f ( , s)dsx t t x t 0 ∫
t

0
x t 

is seen as a constraint between , and .,x t 0 x t t t



ODE Pruning

Starting with big intervals for

use the ODE constraints to find smaller intervals for them.

, , tx t t x t 0
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Tool

Open-source at 

Nonlinear ODEs, and of course, polynomials,

transcendental functions, etc.

Formulas with hundreds of nonlinear ODEs have been

solved.

■ http://dreal.cs.cmu.edu

■

■

http://dreal.cs.cmu.edu/
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(set-logic QF_NRA_ODE)
(declare-fun w_0_1_t () Real)
(declare-fun w_0_1_0 () Real)
(declare-fun w_1_2_t () Real)
(declare-fun w_1_2_0 () Real)
(declare-fun w_2_3_t () Real)
(declare-fun w_2_3_0 () Real)
(declare-fun w_3_4_t () Real)
(declare-fun w_3_4_0 () Real)
(declare-fun w_4_5_t () Real)
(declare-fun w_4_5_0 () Real)
(declare-fun w_5_6_t () Real)
(declare-fun w_5_6_0 () Real)
(declare-fun w_6_7_t () Real)
(declare-fun w_6_7_0 () Real)
(declare-fun w_7_8_t () Real)
(declare-fun w_7_8_0 () Real)
(declare-fun w_8_1_t () Real)
(declare-fun w_8_1_0 () Real)
(declare-fun w_9_2_t () Real)
(declare-fun w_9_2_0 () Real)
(declare-fun w_10_3_t () Real)
(declare-fun w_10_3_0 () Real)
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Conclusion

This is not much harder than SAT solving.


