
1

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Proving Termination of Imperative Programs
using Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodŕıguez-Carbonell and
Albert Rubio

Universitat Politècnica de Catalunya

FMCAD, October 2013

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

2

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

3

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

4

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

5

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y+1;

}

y=y-1;

}

}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

5

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y+1;

}

y=y-1;

}

}

Terminates.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

5

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Simple example

void simpleT(int x, int y) {

while (y>0) { Ranking function: y

// Inv: y>0

while (x>0) { Ranking function: x

x=x-y;

y=y+1;

}

y=y-1;

}

}

Terminates.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Goals

Main goal: fully-automatic program termination analysis.

• Consider integer linear programs.

• Use the constraint-based method [CSS2003, BMS2005].

• Use an SMT solver to solve the constraints.

• Use Max-SMT to guide the search

• Invariant conditions are hard

• Termination conditions are soft

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Goals

Main goal: fully-automatic program termination analysis.

• Consider integer linear programs.

• Use the constraint-based method [CSS2003, BMS2005].

• Use an SMT solver to solve the constraints.

• Use Max-SMT to guide the search

• Invariant conditions are hard

• Termination conditions are soft

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Goals

Main goal: fully-automatic program termination analysis.

• Consider integer linear programs.

• Use the constraint-based method [CSS2003, BMS2005].

• Use an SMT solver to solve the constraints.

• Use Max-SMT to guide the search

• Invariant conditions are hard

• Termination conditions are soft

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

6

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Goals

Main goal: fully-automatic program termination analysis.

• Consider integer linear programs.

• Use the constraint-based method [CSS2003, BMS2005].

• Use an SMT solver to solve the constraints.

• Use Max-SMT to guide the search

• Invariant conditions are hard

• Termination conditions are soft

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

7

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

There exist very efficient solvers: yices, z3, Barcelogic, ...
Can handle large formulas with a complex boolean structure.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Incomplete solvers focused on either satisfiability or unsatisfiability.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

8

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Incomplete solvers focused on either satisfiability or unsatisfiability.

Need to handle again large formulas with complex boolean structure.

Barcelogic SMT-solver works very well finding solutions
Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

9

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm in CNF, where some of
the clauses are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5)) ∧ . . .

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

10

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

11

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

11

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

11

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

12

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

• Assume input programs consist of linear expressions

• Model the program as a transition system

Simple example:

int main()

{

int x;

int y=-x;

l1: while (x>=0) {

x--;

y--;

}

}

l1
Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

12

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

• Assume input programs consist of linear expressions

• Model the program as a transition system

Simple example:

int main()

{

int x;

int y=-x;

l1: while (x>=0) {

x--;

y--;

}

}

l1
Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

13

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

15

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Motivation:

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

16

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.

It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

16

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.
It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

16

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.
It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

17

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

int main()

{

int x=indet(),y=indet(),z=indet ();

l1: while (y>=1) {

x--;

l2: while (y<z) {

x++; z--;

}

y=x+y;

}

}

τ
2

l1
l2

τ
3

τ
1

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

18

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

19

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = z is a ranking function for τ2

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

19

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

It is necessary a supporting invariant y ≥ 1 at `2.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

20

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

21

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants

In order to discard a transition τi we need to find a ranking function f over
the integers such that:

1 τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 τi =⇒ f (x1, . . . , xn) > f (x ′1, . . . , x
′
n) (strict-decreasing)

3 τj =⇒ f (x1, . . . , xn) ≥ f (x ′1, . . . , x
′
n) for all j (non-increasing)

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

22

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : I1, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : I2, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : I2, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ ′1 : 0 ≤ 0, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

23

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

24

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

24

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

25

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

The approach in [BMS2005] is nice but in practice some problems arise:

• May need several invariants before finding a ranking function.

We should be able to generate invariants even if there is no ranking
function (how to guide the search?).

• Might be no ranking function fulfiling all properties

We have to generate quasi-ranking functions.

Similar concept as in e.g. Amir Ben-Amram’s work.

May not fulfil some of the properties.
For instance, boundedness or decreasingness or even both.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

26

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: optimization vs satisfaction

Our solution:

Consider that this is an optimization problem
rather than a satisfaction problem

We want to get a ranking function but if it is not possible
we want to get as much properties as possible.

Use different weights to express which properties we prefer

Encode the problem using Max-SMT,

We use again Barcelogic to solve it.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

27

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

There is no ranking function that fulfils all conditions.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

28

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

29

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

30

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

30

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication

We are DONE!

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

32

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Contributions

• A novel optimization-based method for proving termination.

• New inferred properties: Termination Implications.

• No fixed number of supporting invariants a priori.

• Goal-oriented invariant generation.

• Progress in the absence of ranking functions (quasi-ranking
functions).

• All these techniques have been implemented in CppInv

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

33

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

Two sources of benchmarks:

• coming from T2 (Microsoft Cambridge). Thanks!

• code made by undergraduate students taken from a programming
learning environment Jutge.org

In contrast to the standard academic
examples the code is:

• involved and ugly
• unnecessary conditional statements
• includes repeated code

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

33

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

Two sources of benchmarks:

• coming from T2 (Microsoft Cambridge). Thanks!

• code made by undergraduate students taken from a programming
learning environment Jutge.org In contrast to the standard academic
examples the code is:

• involved and ugly
• unnecessary conditional statements
• includes repeated code

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

34

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Experimental evaluation:

#ins. CppInv T2

Set1 449 238 245

Set2 472 276 279

Table: Results with benchmarks from T2

#ins. CppInv T2
P11655 367 324 328
P12603 149 143 140
P12828 783 707 710
P16415 98 81 81
P24674 177 171 168
P33412 603 478 371

#ins. CppInv T2
P40685 362 324 329
P45965 854 780 793
P70756 280 243 235
P81966 3642 2663 926
P82660 196 174 177
P84219 413 325 243

Table: Results with benchmarks from Jutge.org.

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

35

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

36

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Further work

• Apply our techniques to program synthesis

• Prove non-termination.

• Combine termination and non-termination proofs.

• Improve the non-linear arithmetic solver and the interaction with the
invariant generation and termination engine.

• Consider other program properties

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

37

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Thank you!

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

38

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

39

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Example of students’ code

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int e = 0, d = N - 1, m, pos;

bool found = false, exit = false;

while (e <= d and not exit) {

m = (e+d)/2;

if (x > A[m]) {

if (not found) e = m+1;

else exit = true;

} else if (x < A[m]) {

if (not found) d = m-1;

else exit = true;

} else {

found = true; pos = m; d = m-1;

}

}

if (found) {

while (x == A[pos-1]) --pos;

return pos; }

return -1;

}

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int l=0, u=N;

while (l < u) {

int m = (l+u)/2;

if (A[m]<x) l=m+1;

else u=m;

}

if (l>=N || A[l]!=x) l=-1;

return l;

}

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

40

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Farkas’ Lemma

Farkas’ Lemma:

(∀x)

a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : c1x1 + . . .+ cnxn + d ≤ 0

⇔

∃λ0, λ1, . . . , λm ≥ 0,

c1 =
m∑
i=1

λiai1, . . . , cn =
m∑
i=1

λiain, d = (
m∑
i=1

λibi)− λ0

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT

	Introduction
	SMT/Max-SMT solving
	Invariant generation
	Termination analysis
	Further work

