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Motivation

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.
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Simple example

void simpleT(int x, int y) {

while (y>0) {

while (x>0) {

x=x-y;

y=y+1;

}

y=y-1;

}

}
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Simple example

void simpleT(int x, int y) {

while (y>0) { Ranking function: y

// Inv: y>0

while (x>0) { Ranking function: x

x=x-y;

y=y+1;

}

y=y-1;

}

}

Terminates.
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Goals

Main goal: fully-automatic program termination analysis.

• Consider integer linear programs.

• Use the constraint-based method [CSS2003, BMS2005].

• Use an SMT solver to solve the constraints.

• Use Max-SMT to guide the search

• Invariant conditions are hard

• Termination conditions are soft
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SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}
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SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = linear integer/real arithmetic.

(x < 0 ∨ x ≤ y ∨ y < z) ∧ (x ≥ 0) ∧ (x > y ∨ y < z)

{x = 1, y = 0, z = 2}

There exist very efficient solvers: yices, z3, Barcelogic, ...
Can handle large formulas with a complex boolean structure.
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SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}
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SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.
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SMT solving

Input: Given a boolean formula ϕ over some theory T .

Question: Is there any interpretation that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z)

{x = 0, y = 1, z = 1}

Non-linear arithmetic decidability:

• Integers: undecidable

• Reals: decidable but unpractical due to its complexity.

Incomplete solvers focused on either satisfiability or unsatisfiability.

Need to handle again large formulas with complex boolean structure.

Barcelogic SMT-solver works very well finding solutions
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Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ϕ = C1 ∧ . . . ∧ Cm in CNF, where some of
the clauses are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(x2 + y2 > 2 ∨ x · z ≤ y ∨ y · z < z2) ∧ (x > y ∨ 0 < z ∨ w(5)) ∧ . . .
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Invariants

Definition

An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition

An invariant is said to be inductive at a program location if:

• Initiation condition: It holds the first time the location is reached.

• Consecution condition: It is preserved under every cycle back to the
location.

We are focused on inductive invariants.
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Constraint-based invariant generation [CSS2003]

• Assume input programs consist of linear expressions

• Model the program as a transition system

Simple example:

int main()

{

int x;

int y=-x;

l1: while (x>=0) {

x--;

y--;

}

}

l1
Θ τ1

ρΘ : x ′ = x , y ′ = −x
ρτ1 : x ≥ 0, x ′ = x − 1, y ′ = y − 1
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Constraint-based invariant generation [CSS2003]

Assume we have a transition system with linear expressions.

Keys:

• Use a template for candidate invariants.

c1x1 + . . .+ cnxn + d ≤ 0

• Check initiation and consecution conditions obtaining an ∃∀ problem.

• Transform it using Farkas’ Lemma into an ∃ problem over non-linear
arithmetic.
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Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT



14

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work
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Motivation:

• Prove termination of imperative programs automatically.

• Find ranking functions.

• Find supporting invariants.

• How to guide the search!.
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Ranking functions and Invariants

Basic method: find a single ranking function f : States→ Z, with
f (S) ≥ 0 and f (S) > f (S ′) after every iteration.

It does not work in practice in many cases.
What is (at least) necessary?

• Find supporting Invariants

• Consider a (lexicographic) combination of ranking functions
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Ranking functions and Invariants: Example

int main()

{

int x=indet(),y=indet(),z=indet ();

l1: while (y>=1) {

x--;

l2: while (y<z) {

x++; z--;

}

y=x+y;

}

}

τ
2

l1
l2

τ
3

τ
1
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = z is a ranking function for τ2
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

It is necessary a supporting invariant y ≥ 1 at `2.
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

We can discard all executions that pass through τ2.
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Ranking functions and Invariants

In order to discard a transition τi we need to find a ranking function f over
the integers such that:

1 τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 τi =⇒ f (x1, . . . , xn) > f (x ′1, . . . , x
′
n) (strict-decreasing)

3 τj =⇒ f (x1, . . . , xn) ≥ f (x ′1, . . . , x
′
n) for all j (non-increasing)
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Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].
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Ranking functions and Invariants: Example

Transition system:
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : I1, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : I2, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : I2, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ ′1 : 0 ≤ 0, y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2
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Ranking functions and Invariants: Example

Transition system:

l1 l2

τ3

τ1

τ2

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ2 : y ≥ 1, y < z , x ′ = x + 1, y ′ = y , z ′ = z − 1
ρτ3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2
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l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

and ranking function f (x , y , z) = z , fulfiling all properties for τ2

we can remove τ2
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Ranking functions and Invariants: Combined problem

In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].
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In order to prove properties of the ranking function we may need to
generate invariants.

Generation of both invariants and ranking functions should be combined in
the same satisfaction problem.

Both are found at the same time [BMS2005].

In order to be correct we need to have two transition systems:

• the original system (extended with all found invariants) for invariant
generation.

• the termination transition system which includes the transitions not
yet proved to be terminating.

Similar to the cooperation graph in [BCF2013].
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Our approach: Example

The approach in [BMS2005] is nice but in practice some problems arise:

• May need several invariants before finding a ranking function.

We should be able to generate invariants even if there is no ranking
function (how to guide the search?).

• Might be no ranking function fulfiling all properties

We have to generate quasi-ranking functions.

Similar concept as in e.g. Amir Ben-Amram’s work.

May not fulfil some of the properties.
For instance, boundedness or decreasingness or even both.
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Our approach: optimization vs satisfaction

Our solution:

Consider that this is an optimization problem
rather than a satisfaction problem

We want to get a ranking function but if it is not possible
we want to get as much properties as possible.

Use different weights to express which properties we prefer

Encode the problem using Max-SMT,

We use again Barcelogic to solve it.
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

There is no ranking function that fulfils all conditions.
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1

ρτ1 : y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

f (x , y , z) = x is non-increasing and strict decreasing for τ1.

However, it is not bounded (soft).
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

τ1.1

ρτ1.1 : x ≥ 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Now f (x , y , z) = x is a ranking function for τ1.1

We can remove it!

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT



31

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
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Our approach: Example

Transition system:

l1 l2

τ ′3

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z
ρτ ′3 : y ≥ 1, y ≥ z , x ′ = x , y ′ = x + y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication
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Our approach: Example

Transition system:

l1 l2

τ1.2

ρτ1.2 : x < 0 y ≥ 1, x ′ = x − 1, y ′ = y , z ′ = z

Finally, f (x , y , z) = y is used to discard τ ′3.
But we need x < 0 in l2, which is a Termination Implication

We are DONE!
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Contributions

• A novel optimization-based method for proving termination.

• New inferred properties: Termination Implications.

• No fixed number of supporting invariants a priori.

• Goal-oriented invariant generation.

• Progress in the absence of ranking functions (quasi-ranking
functions).

• All these techniques have been implemented in CppInv
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Experimental evaluation:

Two sources of benchmarks:

• coming from T2 (Microsoft Cambridge). Thanks!

• code made by undergraduate students taken from a programming
learning environment Jutge.org

In contrast to the standard academic
examples the code is:

• involved and ugly
• unnecessary conditional statements
• includes repeated code
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Experimental evaluation:

#ins. CppInv T2

Set1 449 238 245

Set2 472 276 279

Table: Results with benchmarks from T2

#ins. CppInv T2
P11655 367 324 328
P12603 149 143 140
P12828 783 707 710
P16415 98 81 81
P24674 177 171 168
P33412 603 478 371

#ins. CppInv T2
P40685 362 324 329
P45965 854 780 793
P70756 280 243 235
P81966 3642 2663 926
P82660 196 174 177
P84219 413 325 243

Table: Results with benchmarks from Jutge.org.
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Outline

1 Introduction

2 SMT/Max-SMT solving

3 Invariant generation

4 Termination analysis

5 Further work

Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT



36

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Further work

• Apply our techniques to program synthesis

• Prove non-termination.

• Combine termination and non-termination proofs.

• Improve the non-linear arithmetic solver and the interaction with the
invariant generation and termination engine.

• Consider other program properties
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Thank you!
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Larraz,Oliveras,Rodŕıguez-Carbonell,Rubio, UPC FMCAD’13 Proving Termination of Imperative Programs Using Max-SMT



39

Introduction SMT/Max-SMT solving Invariant generation Termination analysis Further work

Example of students’ code

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int e = 0, d = N - 1, m, pos;

bool found = false, exit = false;

while (e <= d and not exit) {

m = (e+d)/2;

if (x > A[m]) {

if (not found) e = m+1;

else exit = true;

} else if (x < A[m]) {

if (not found) d = m-1;

else exit = true;

} else {

found = true; pos = m; d = m-1;

}

}

if (found) {

while (x == A[pos-1]) --pos;

return pos; }

return -1;

}

int first_occurrence(int x, int A[N]) {

assume(N > 0);

int l=0, u=N;

while (l < u) {

int m = (l+u)/2;

if (A[m]<x) l=m+1;

else u=m;

}

if (l>=N || A[l]!=x) l=-1;

return l;

}
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Farkas’ Lemma

Farkas’ Lemma:

(∀x)


a11x1 + · · ·+ a1nxn + b1 ≤ 0

...
...

... ≤ 0

am1x1 + · · ·+ amnxn + bm ≤ 0

⇒ ϕ : c1x1 + . . .+ cnxn + d ≤ 0

⇔

∃λ0, λ1, . . . , λm ≥ 0,

c1 =
m∑
i=1

λiai1, . . . , cn =
m∑
i=1

λiain, d = (
m∑
i=1

λibi )− λ0
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