Outline

- Generalized counterexamples to liveness
 - and why they are especially interesting

- How to detect that a trace exhibits a liveness CEX
 - and how to manipulate traces to increase this likelihood

- k-LIVENESS with failure detection

- Conclusions
Liveness Properties

- Reduce to the form FGq (with q a state variable)

 - FGq passes:
 - on every trace q eventually becomes true forever

- FGq fails:
 - there is a trace on which $\neg q$ holds infinitely often
 - equivalently, there is a finite trace with a repeating state, and $\neg q$ in-between
Example

- (q, x, y) – state variables
 - initially: $q = 1$, $x = 0$, $y = 0$
 - next-state: $q' = (q \land x) \lor (\neg q \land y)$, $x' = q \land y$, $y' = \neg x$

- There is a concrete counterexample to FGq of length 4:

 repetition
 - $(1, 0, 0) \rightarrow (0, 0, 1) \rightarrow (1, 0, 1) \rightarrow (0, 1, 1) \rightarrow (1, 0, 0)$

- There is a “generalized” counterexample to FGq of length 2:

 repetition
 - $(1, 0, \cdot) \rightarrow (0, \cdot, 1) \rightarrow (1, 0, \cdot)$
Generalized CEXes

- **generalized state**: a partial assignment to state variables

- **s is a generalized predecessor of** t:

 for *every* state in s, there is a transition to *some* state t

- **t₀, t₁, …, tₙ** generalized trace:

 - t₀ contains a state in Init

 - tᵢ is a generalized predecessor of tᵢ₊₁ for every i, 0 ≤ i < n

- **generalized counterexample** to FGq:

 - a generalized trace t₀, t₁, …, tₙ

 - tₘ ⇒ tₙ for some 0 ≤ m < n (“closing” the generalized loop)

 - tₖ ⇒ ¬q for some m ≤ k ≤ n (detecting violation of q)

```plaintext
specialized CEXes

- t₀ contains a state in Init
- tₖ ⇒ ¬q for some m ≤ k ≤ n
- tₘ ⇒ tₙ for some 0 ≤ m < n  (“closing” the specialized loop)
```

- tₙ is more concrete
Observations

- The existence of a generalized liveness CEX always implies the existence of a concrete CEX

- A generalized liveness CEX can be exponentially shorter than a concrete CEX

- Makes sense to develop algorithms that search for generalized counterexamples
 - In the paper we suggest a BMC-like algorithm based on 3-valued netlist encoding
k-LIVENESS

- Reference: “A Liveness Checking Algorithm that Counts”, FMCAD’12 [Claessen-Sörensson]

- A safety query of the form “is there a trace on which $\neg q$ occurs at least k times” is passed to a model checker

- If there is no such trace for some k, $\text{FG}q$ passes

- Does not detect whether $\text{FG}q$ fails
Extending k-LIVENESS

- Analyze counterexample traces
 - $\neg q$ occurs at least k times
 - somewhat generalized - if implemented on top of PDR

- If there are states t_m, t_n, t_k with $m < k \leq n$ so that $t_m \Rightarrow t_n$ and $t_k \Rightarrow \neg q$ then FGq fails. Both checks are purely syntactic (very fast).

- Detects failure of FGq on 44 HWMCC’12 liveness benchmarks (with small values of k)

- On 2 benchmarks performs significantly better than BMC

<table>
<thead>
<tr>
<th>Design</th>
<th>k-LIVENESS</th>
<th>BMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubak</td>
<td>295s</td>
<td>12084s</td>
</tr>
<tr>
<td>cuhanoi10</td>
<td>5s</td>
<td>3492s</td>
</tr>
</tbody>
</table>
Example

- **(q, x, y)** – state variables
 - initially: \(q = 1, x = 0, y = 0 \)
 - next-state: \(q' = q \land x, \ x' = x, \ y' = \neg y \)

- Consider traces of length 2:
 - concrete: \((1, 0, 0) \rightarrow (0, 0, 1) \rightarrow (0, 0, 0)\) not a CEX
 - generalized: \((1, 0, \cdot) \rightarrow (0, 0, \cdot) \rightarrow (0, 0, \cdot)\) CEX
 - generalized more: \((1, 0, \cdot) \rightarrow (0, 0, \cdot) \rightarrow (0, \cdot, \cdot)\) not a CEX

Generalizing traces may create or destroy liveness CEXes
Manipulating Traces

- Generalization (“backwards”)
 - If \(s \) is a predecessor of \(t \), sometimes can remove variables from \(s \)

- Concretization (“forward”)
 - If \(s \) is a predecessor of \(t \), sometimes can add variables to \(t \)

- ConcretizeTentative (“try to close the loop”)
 - If \(t_i \) and \(t_j \) have no variables in opposite polarities (\(i<j \)), concretize from \(t_i \) towards \(t_j \)

<table>
<thead>
<tr>
<th>Design</th>
<th>(k) generalized</th>
<th>(k) concrete</th>
<th>(k) modified</th>
</tr>
</thead>
<tbody>
<tr>
<td>cubak</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>cujc128f</td>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>cutf2</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>cutq2</td>
<td>16</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>lmcs06dme2p0</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Concluding remarks

- Generalized counterexamples to liveness can be significantly shorter than concrete counterexamples

- It makes sense to search for generalized counterexamples directly

- k-LIVENESS can be easily extended with failure detection

- Traces may be manipulated to increase the chance of detecting a counterexample
Thank You!