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Periodic Embedded Real-Time Software 

Avionics Mission System*  
Rate Monotonic Scheduling (RMS) 

*Locke, Vogel, Lucas, and Goodenough. “Generic Avionics Software Specification”. SEI/CMU 
Technical Report CMU/SEI-90-TR-8-ESD-TR-90-209, December, 1990 

Task Period 

weapon release 10ms 

radar tracking 40ms 

target tracking 40ms 

aircraft flight data 50ms 

display 50ms 

steering 80ms 

Domains: Avionics, Automotive 
OS: OSEK, VxWorks, RTEMS 
We call them periodic programs 
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Context: Time-Bounded Verification [FMCAD’11, VMCAI’13] 

Periodic Program 
•  Collection of periodic tasks 

•  Execute concurrently with preemptive priority-based scheduling 
•  Priorities respect RMS  
•  Communicate through shared memory 

 
Time-Bounded Verification 
•  Assertion A violated within X ms of a system’s execution from initial state I? 

•  A, X , I are user specified 
•  Time bounds map naturally to program’s functionality (e.g., air bags) 

 
Locks 

•  CPU-locks, priority ceiling protocol locks [FMCAD’11, VMCAI’13] 
•  priority inheritance protocol locks Main focus of 

this paper 
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Periodic Program (PP) 

An N-task periodic program PP is a set of tasks {τ1, …, τN} 
A task τ is a tuple 〈I, T, P, C, A〉, where 
•  I is a task identifier = its priority 
•  T is a task body (i.e., code) 
•  P is a period 
•  C is the worst-case execution time 
•  A is the release time: the time at which task becomes first enabled 

Semantics of PP bounded by time X is given by an asynchronous 
concurrent program: 
 

ki	  =	  0;	  
while	  (ki	  <	  Ji	  &&	  Wait(τi,	  ki))	  
	  	  Ti	  ();	  
	  	  ki	  =	  ki	  +	  1;	  

parallel  
execution  

w/ priorities 

blocks 𝜏↓𝑖  
until time 

 𝐴↓𝑖 + 𝑘↓𝑖 × 𝑃↓𝑖  

𝐽↓𝑖 =   𝑋/𝑃↓𝑖   
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Priority Inheritance Protocol (PIP) 

Ensure mutual exclusion when accessing shared resources 
 
Works by dynamically raising and lowering thread priorities 

•  Lock:  
o  If lock, is available, grab it.  
o  Otherwise, block; the thread holding the lock “inherits” my priority 

•  Unlock: Release lock. Return to normal priority. 
 
Provably avoids the priority inversion problem 

•  High-priority task is blocked on a lock held by low-priority task 
 
 
However, incorrect usage leads to deadlocks 

•  In contrast to priority ceiling locks and CPU locks  [FMCAD’11, VMCAI’13] 
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Our Contributions 

Time-bounded verification of reachability properties of PP with PIP locks 
•  Based on sequentialization [LR08], but supports PIP locks 
•  Challenge: # sequentialization rounds needed for completeness cannot be 

statically determined 
•  Insight: whether more rounds needed can be statically determined 
•  Solution: Iterative-deepening search with fixed point check 

 
Deadlock detection in PPs with PIP locks 

•  Builds dynamically the Task-Resource Graph   
•  Aborts if a cycle in that graph is detected 

Implementation and Empirical Evaluation 
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Example: A Periodic Program 

4 

2 

Task Prio 
(I1)  

WCET 
(Ci) 

Period 
(Pi) 

Arrival Time 
(Ai) 

τ2 2 2 10 2 
τ1 1 4 20 1 
τ0 0 3 40 0 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏          𝒖↓𝟏        

  𝒍↓𝟐            𝒍↓𝟏       𝒖↓𝟐        𝒖↓𝟏          

  𝒍↓𝟐          𝒖↓𝟐        

Two PIP locks: 1 and 2 
𝑙↓𝑖 =𝑎𝑐𝑞𝑢𝑟𝑖𝑛𝑔  𝑙𝑜𝑐𝑘  𝑖 
𝑢↓𝑖 =𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔  𝑙𝑜𝑐𝑘  𝑖 

𝝉↓𝟎  

𝝉↓𝟏  

𝝉↓𝟐  
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Example: One Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

𝝉↓𝟏   unblocks, 
grabs 𝒍↓𝟏 , and 

resumes 
execution 

↑ ↑ ∗ ∗ ↑ ↑ ↓ ↓ ↓ 

𝝉↓𝟏   Inherits 
priority of 𝝉↓𝟐  

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 



10 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Example: Viewing as a Round-Based Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 
•  Define: A round ends if the scheduling point is either a block, or a job end 
•  Define: A round continues if the scheduling point is a preemption 
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4 3 2 1 0 

Example: Viewing as a Round-Based Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 
•  Define: A round ends if the scheduling point is either a block, or a job end 
•  Define: A round continues if the scheduling point is a preemption 
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4 3 2 1 0 

Sequentialization With PIP locks and fixed #Rounds 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

𝑉↓0  𝑉↓1  𝑉↓2  𝑉↓3  𝑉↓4  

1.  Create fresh variables for each round 
2.  Distribute jobs across rounds 
3.  Execute jobs using variables for the round it is in 
4.  Equate ending value at round 𝑖 to beginning value at round 𝑖+1 
5.  Building on prior work [VMCAI13] – adding PIP locks non-trivial 

= = = = 
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4 3 2 1 0 

Complete Algorithm: Iteratively Increase #Rounds 

4 

2 
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Pr
io
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ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

•  Challenge: Different schedules have different number of rounds 
•  #Rounds = #Jobs + #Blocks 
•  #Blocks depends on the execution and preemption 

•  Solution: Start with a small number of rounds (equal to #Jobs) 
•  Add more rounds iteratively till counterexample found, or fixed-point reached 

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   
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Overall Algorithm 

Aborts if a 
job blocks 
but all R 
rounds 
already 

allocated 
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Implementing 𝑉𝑒𝑟𝑖𝑓𝑅𝑜𝑢𝑛𝑑𝑠(𝐶,𝑅) 

Supports C programs w/ tasks, priorities, priority ceiling protocol, shared 
variables 
Works in two stages: 
1.  Sequentialization – reduction to sequential program w/ prophecy variables 
2.  Bounded program analysis: bounded C model checker (CBMC, HAVOC, …) 

Construct 𝑺↓𝒂 
(𝑪,𝑹) and 𝑺↓𝒃 

(𝑪,𝑹) 

Check [𝑺↓𝒂 
(𝑪,𝑹)]=∅ and [
𝑺↓𝒃 (𝑪,𝑹)]=∅ 

Periodic Program in C 
Sequentialization SAFE 

UNSAFE  
+ CEX 

Periods, WCETs, Initial 
Condition, Time bound 

Uses non-determinism (prophecy 
variables) to allow all possible 

interleavings between jobs and R – |J| 
job block events 

CBMC 

INCROUNDS 
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Deadlock Detection: Encoding TRG 
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3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 



17 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 
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  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  

↑ 
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Deadlock Detection: Encoding TRG 
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•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  
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  𝒖↓𝟐  
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Deadlock Detection: Encoding TRG 
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•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
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Deadlock Detection: Encoding TRG 
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↑ ↑ ∗ ∗ ↑ ↑ ↓ ↓ ↓ 

𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 
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NXTway-GS: a 2 wheeled self-balancing robot 

Original: nxt (2 tasks) 
•  balancer (4ms) 
– Keeps the robot upright and responds to BT 

commands 
•  obstacle (50ms) 
– monitors sonar sensor for obstacle and 

communicates with balancer to back up the robot 
Ours: aso (3 tasks) 
•  balancer  as above but no BT 
•  obstacle as above 
•  bluetooth (100ms) 
–  responds to BT commands and communicates with 

the balancer 
Verified consistency of communication between 
tasks 
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Experimental Results 
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Related, Ongoing and Future Work 

Related Work 
•  Sequentialization of Periodic Programs with CPU locks and priority ceiling 

protocol locks (FMCAD’11, VMCAI’13) 
•  Sequentialization of Concurrent Programs (Lal & Reps ‘08, and others) 
•  Sequentialization of Periodic Programs (Kidd, Jagannathan, Vitek ’10) 
•  Verification of periodic programs using SPIN (Florian, Gamble, & Holzmann 

‘12) 
•  Verification of Time Properties of (Models of) Real Time Embedded Systems 
•  Model Checking Real-Time Java using JPF (Lindstrom, Mehlitz, and Visser 

‘05) 
 
Ongoing and Future Work 
•  Verification without the time bound 
•  Memory Consistency based Sequentialization 
•  Abstraction / Refinement 
•  Modeling physical aspects (i.e., environment) more faithfully 
•  More Examples 
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