
© 2013 Carnegie Mellon University 

Verifying Periodic 
Programs with 
Priority Inheritance 
Locks 
Sagar Chaki1, Arie Gurfinkel1, 
Ofer Strichman2 

 
FMCAD, October 22, 2013 
 
1Software Engineering Institute, CMU 
2Technion, Israel Institute of Technology 



2 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Copyright 2013 Carnegie Mellon University 
 
This material is based upon work funded and supported by the Department of Defense under 
Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the 
Software Engineering Institute, a federally funded research and development center. 
 
Any opinions, findings and conclusions or recommendations expressed in this material are those 
of the author(s) and do not necessarily reflect the views of the United States Department of 
Defense. 
 
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING 
INSTITUTE MATERIAL IS FURNISHEDON AN “AS-IS” BASIS. CARNEGIE MELLON 
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, 
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR 
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE 
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY 
OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR 
COPYRIGHT INFRINGEMENT. 
 
This material has been approved for public release and unlimited distribution except as restricted 
below. 
 
This material may be reproduced in its entirety, without modification, and freely distributed in 
written or electronic form without requesting formal permission. Permission is required for any 
other use. Requests for permission should be directed to the Software Engineering Institute at 
permission@sei.cmu.edu. 
 
DM-0000695 



3 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Periodic Embedded Real-Time Software 

Avionics Mission System*  
Rate Monotonic Scheduling (RMS) 

*Locke, Vogel, Lucas, and Goodenough. “Generic Avionics Software Specification”. SEI/CMU 
Technical Report CMU/SEI-90-TR-8-ESD-TR-90-209, December, 1990 

Task Period 

weapon release 10ms 

radar tracking 40ms 

target tracking 40ms 

aircraft flight data 50ms 

display 50ms 

steering 80ms 

Domains: Avionics, Automotive 
OS: OSEK, VxWorks, RTEMS 
We call them periodic programs 



4 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Context: Time-Bounded Verification [FMCAD’11, VMCAI’13] 

Periodic Program 
•  Collection of periodic tasks 

•  Execute concurrently with preemptive priority-based scheduling 
•  Priorities respect RMS  
•  Communicate through shared memory 

 
Time-Bounded Verification 
•  Assertion A violated within X ms of a system’s execution from initial state I? 

•  A, X , I are user specified 
•  Time bounds map naturally to program’s functionality (e.g., air bags) 

 
Locks 

•  CPU-locks, priority ceiling protocol locks [FMCAD’11, VMCAI’13] 
•  priority inheritance protocol locks Main focus of 

this paper 



5 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Periodic Program (PP) 

An N-task periodic program PP is a set of tasks {τ1, …, τN} 
A task τ is a tuple 〈I, T, P, C, A〉, where 
•  I is a task identifier = its priority 
•  T is a task body (i.e., code) 
•  P is a period 
•  C is the worst-case execution time 
•  A is the release time: the time at which task becomes first enabled 

Semantics of PP bounded by time X is given by an asynchronous 
concurrent program: 
 

ki	  =	  0;	  
while	  (ki	  <	  Ji	  &&	  Wait(τi,	  ki))	  
	  	  Ti	  ();	  
	  	  ki	  =	  ki	  +	  1;	  

parallel  
execution  

w/ priorities 

blocks 𝜏↓𝑖  
until time 

 𝐴↓𝑖 + 𝑘↓𝑖 × 𝑃↓𝑖  

𝐽↓𝑖 =   𝑋/𝑃↓𝑖   



6 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Priority Inheritance Protocol (PIP) 

Ensure mutual exclusion when accessing shared resources 
 
Works by dynamically raising and lowering thread priorities 

•  Lock:  
o  If lock, is available, grab it.  
o  Otherwise, block; the thread holding the lock “inherits” my priority 

•  Unlock: Release lock. Return to normal priority. 
 
Provably avoids the priority inversion problem 

•  High-priority task is blocked on a lock held by low-priority task 
 
 
However, incorrect usage leads to deadlocks 

•  In contrast to priority ceiling locks and CPU locks  [FMCAD’11, VMCAI’13] 



7 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Our Contributions 

Time-bounded verification of reachability properties of PP with PIP locks 
•  Based on sequentialization [LR08], but supports PIP locks 
•  Challenge: # sequentialization rounds needed for completeness cannot be 

statically determined 
•  Insight: whether more rounds needed can be statically determined 
•  Solution: Iterative-deepening search with fixed point check 

 
Deadlock detection in PPs with PIP locks 

•  Builds dynamically the Task-Resource Graph   
•  Aborts if a cycle in that graph is detected 

Implementation and Empirical Evaluation 



8 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Example: A Periodic Program 

4 

2 

Task Prio 
(I1)  

WCET 
(Ci) 

Period 
(Pi) 

Arrival Time 
(Ai) 

τ2 2 2 10 2 
τ1 1 4 20 1 
τ0 0 3 40 0 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏          𝒖↓𝟏        

  𝒍↓𝟐            𝒍↓𝟏       𝒖↓𝟐        𝒖↓𝟏          

  𝒍↓𝟐          𝒖↓𝟐        

Two PIP locks: 1 and 2 
𝑙↓𝑖 =𝑎𝑐𝑞𝑢𝑟𝑖𝑛𝑔  𝑙𝑜𝑐𝑘  𝑖 
𝑢↓𝑖 =𝑟𝑒𝑙𝑒𝑎𝑠𝑖𝑛𝑔  𝑙𝑜𝑐𝑘  𝑖 

𝝉↓𝟎  

𝝉↓𝟏  

𝝉↓𝟐  



9 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Example: One Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

𝝉↓𝟏   unblocks, 
grabs 𝒍↓𝟏 , and 

resumes 
execution 

↑ ↑ ∗ ∗ ↑ ↑ ↓ ↓ ↓ 

𝝉↓𝟏   Inherits 
priority of 𝝉↓𝟐  

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 



10 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Example: Viewing as a Round-Based Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 
•  Define: A round ends if the scheduling point is either a block, or a job end 
•  Define: A round continues if the scheduling point is a preemption 



11 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

4 3 2 1 0 

Example: Viewing as a Round-Based Schedule 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   

•  Note: A scheduling point is either a preemption (↑), a block (*), or a job end (↓) 
•  Define: A round ends if the scheduling point is either a block, or a job end 
•  Define: A round continues if the scheduling point is a preemption 



12 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

4 3 2 1 0 

Sequentialization With PIP locks and fixed #Rounds 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

𝑉↓0  𝑉↓1  𝑉↓2  𝑉↓3  𝑉↓4  

1.  Create fresh variables for each round 
2.  Distribute jobs across rounds 
3.  Execute jobs using variables for the round it is in 
4.  Equate ending value at round 𝑖 to beginning value at round 𝑖+1 
5.  Building on prior work [VMCAI13] – adding PIP locks non-trivial 

= = = = 



13 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

4 3 2 1 0 

Complete Algorithm: Iteratively Increase #Rounds 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   

•  Challenge: Different schedules have different number of rounds 
•  #Rounds = #Jobs + #Blocks 
•  #Blocks depends on the execution and preemption 

•  Solution: Start with a small number of rounds (equal to #Jobs) 
•  Add more rounds iteratively till counterexample found, or fixed-point reached 

↑      ↑      ∗      ∗      ↑      ↑    ↓      ↓        ↓   



14 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Overall Algorithm 

Aborts if a 
job blocks 
but all R 
rounds 
already 

allocated 



15 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Implementing 𝑉𝑒𝑟𝑖𝑓𝑅𝑜𝑢𝑛𝑑𝑠(𝐶,𝑅) 

Supports C programs w/ tasks, priorities, priority ceiling protocol, shared 
variables 
Works in two stages: 
1.  Sequentialization – reduction to sequential program w/ prophecy variables 
2.  Bounded program analysis: bounded C model checker (CBMC, HAVOC, …) 

Construct 𝑺↓𝒂 
(𝑪,𝑹) and 𝑺↓𝒃 

(𝑪,𝑹) 

Check [𝑺↓𝒂 
(𝑪,𝑹)]=∅ and [
𝑺↓𝒃 (𝑪,𝑹)]=∅ 

Periodic Program in C 
Sequentialization SAFE 

UNSAFE  
+ CEX 

Periods, WCETs, Initial 
Condition, Time bound 

Uses non-determinism (prophecy 
variables) to allow all possible 

interleavings between jobs and R – |J| 
job block events 

CBMC 

INCROUNDS 



16 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 



17 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  

↑ 



18 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  

↑ 

  𝒖↓𝟐  

↑ 



19 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  

↑ 

  𝒖↓𝟐  

↑ 

  𝒖↓𝟏  

↓ 



20 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏  

↑ ↑ ∗ ∗ 
𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 

  𝒖↓𝟐↑  

↑ 

  𝒖↓𝟐  

↑ 

  𝒖↓𝟏  

↓ 
   

↓ 



21 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Deadlock Detection: Encoding TRG 

4 

2 

0 

1 

Pr
io

rit
y 

Le
ve

l 
3 2 1 0 8 7 6 5 10 9 

  𝒍↓𝟏  

  𝒍↓𝟐  

  𝒍↓𝟐↑∗    𝒍↓𝟏↑∗    𝒖↓𝟏    𝒖↓𝟐↑    𝒖↓𝟐  

  𝒖↓𝟏  

   
↑ ↑ ∗ ∗ ↑ ↑ ↓ ↓ ↓ 

𝝉↓𝟎  𝝉↓𝟏  𝝉↓𝟐  𝒍↓𝟏  𝒍↓𝟐  

•  TRG: Node = task/lock; Edge = blocking/ownership; Cycle = deadlock 
•  Transitive closure of TRG maintained and updated dynamically 
•  Program aborts if TRG becomes cyclic (i.e., transitive closure has self-loop) 

Ownership Edge 
Blocking Edge 



22 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

NXTway-GS: a 2 wheeled self-balancing robot 

Original: nxt (2 tasks) 
•  balancer (4ms) 
– Keeps the robot upright and responds to BT 

commands 
•  obstacle (50ms) 
– monitors sonar sensor for obstacle and 

communicates with balancer to back up the robot 
Ours: aso (3 tasks) 
•  balancer  as above but no BT 
•  obstacle as above 
•  bluetooth (100ms) 
–  responds to BT commands and communicates with 

the balancer 
Verified consistency of communication between 
tasks 



23 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Experimental Results 



24 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Related, Ongoing and Future Work 

Related Work 
•  Sequentialization of Periodic Programs with CPU locks and priority ceiling 

protocol locks (FMCAD’11, VMCAI’13) 
•  Sequentialization of Concurrent Programs (Lal & Reps ‘08, and others) 
•  Sequentialization of Periodic Programs (Kidd, Jagannathan, Vitek ’10) 
•  Verification of periodic programs using SPIN (Florian, Gamble, & Holzmann 

‘12) 
•  Verification of Time Properties of (Models of) Real Time Embedded Systems 
•  Model Checking Real-Time Java using JPF (Lindstrom, Mehlitz, and Visser 

‘05) 
 
Ongoing and Future Work 
•  Verification without the time bound 
•  Memory Consistency based Sequentialization 
•  Abstraction / Refinement 
•  Modeling physical aspects (i.e., environment) more faithfully 
•  More Examples 

 



25 

Verifying Periodic Programs with Priority 
Inheritance Locks 
Chaki, Gurfinkel, Kong, Strichman 

© 2013 Carnegie Mellon University 

Contact Information 

Presenter 
Sagar Chaki 
SSD 
Telephone:  +1 412-268-5800 
Email:  chaki@sei.cmu.edu 

U.S. mail: 
Software Engineering Institute 
Customer Relations 
4500 Fifth Avenue 
Pittsburgh, PA 15213-2612 
USA 
 

Web: 
www.sei.cmu.edu 
http://www.sei.cmu.edu/contact.cfm 
 
 

Customer Relations 
Email: info@sei.cmu.edu 
Telephone:  +1 412-268-5800 
SEI Phone:  +1 412-268-5800 
SEI Fax:    +1 412-268-6257 



© 2013 Carnegie Mellon University 

QUESTIONS? 


