FMCAD 2013

Parameter Synthesis with IC3

A. Cimatti, A. Griggio, S. Mover, S. Tonetta
FBK, Trento, Italy

OOOOOOOOOO
BBBBBBB

Motivations and Contributions iy

¢+ Parametric descriptions of systems arise in many domains

+ E.g. software, cyber-physical systems, task scheduling, ...

¢ Important problem: find parameter values that guarantee the
satisfaction of a given property

¢ This work: exploit (SMT aware) IC3 for parameter synthesis

+ Simple extension of IC3

+ Exploit incrementality and generation of multiple
counterexamples

+ Gives optimal parameter region for a given property
+ Promising experimental results

Problem definition

¢+ Symbolic transition system S = (X, I,T)
+ State variables X
+ Initial-state formula 1(X)
+ Transition relation T'(X, X')
¢ Parametric system S = (U, X, 1,T)
+ Set of parameters U
¢« Init I(U, X) and trans T'(U, X, X')
¢ Valuation v of U induces S, = (X,~v(1),v(T))

¢ Synthesis problem:
+ Given a property P(U, X)
+ Find all valuations p of U such that v € p iff Sy = ~v(P)

Our starting point: [RTSS'OB] R e

Start from {P =T,k=0
P4 * S = (XU, I(X) \p, T(X, X")\p NN\ e v =)

Unsate compute

BMC-check(S, P, k)

bad(U) = 3X, X’,..., X* BMCT

r~ ~

update
P1 = PO A —bad

- -

Our starting point: [RTSS'OB] R e
Start from {p = T,k =0
P4 * S = (XU, I(X) \p, T(X, X")\p NN\ e v =)

Unsate compute

BMC-check(S, P, k)

bad(U) = 3X, X', ..., x (NI

4 BMC formula simplified
by fixing Boolean variables
to the values found in the

N counterexample trace)

- -~

update
P1 = PO A —bad

- -

Our starting point: [RTSS'OB] R e

Start from {,0 = T,k=0
P4 * S = (XU, I(X) \p, T(X, X")\p NN\ e v =)

BMC-check(S, P, k)

\Safe
Yes
— return p

‘ No
- |: increase k:l

Our starting point: [RTSS'OB] R e

Start from {,0 = T,k=0
P4 * S = (XU, I(X) \p, T(X, X")\p NN\ e v =)

BMC-check(S, P, k)
Statically
determined
\Safe
Yes
k >= kmax —> return [0

‘ No
- |: increase k:l

Drawbacks of [RTSS'08] RS

(1) BMC-based, needs to know k£ _to terminate

+ Implementation in [RTSS'08] only for task scheduling problems
+ k _computed from domain knowledge

(2) Quantifier elimination is a bottleneck

+ As k grows, quant elim becomes prohibitively expensive
+ Even if BMC7, is used

Drawbacks of [RTSS'08] RS

(1) BMC-based, needs to know k£ _to terminate

+ Implementation in [RTSS'08] only for task scheduling problems
+ k _computed from domain knowledge

(2) Quantifier elimination is a bottleneck

+ As k grows, quant elim becomes prohibitively expensive
+ Even if BMC7, is used

¢ Solution for (1): use IC3-SMT instead of BMC
+ But still (2) is a problem!
+ We can do better with a tighter integration with IC3

IC3 with SMT [CAV'12]

¢ |C3 main features (for this work):

+ incremental construction of clauses
+ from counterexamples to induction
+ by recursively blocking predecessors of bad states
+ if initial states are reached, we have a counterexample trace

IC3 with SMT [CAV'12]

¢ |C3 main features (for this work):

+ incremental construction of clauses
+ from counterexamples to induction
+ by recursively blocking predecessors of bad states
+ if initial states are reached, we have a counterexample trace

(We exploit a property of (the SMT extension of) IC3: h
+ a counterexample trace represents multiple counterexamples
+ because predecessors are computed with (approximated)
\ qguantifier elimination [CAV'12] Y,

Exploiting IC3-SMT counterexamples e

¢+ Consider the cex so(X,U),s1(X,U),

" D

Exploiting IC3-SMT counterexamples

¢+ Consider the cex so(X,U),s1(X,U),

P @

Two (simple) observations:

+ so(X, U) represents multiple states “by construction”

¢+ ALL the states in so(X,U) are bad and need to be blocked/

o

Exploiting IC3-SMT counterexamples

¢+ Consider the cex so(X,U),s1(X,U),

P @

Two (simple) observations:

so(X, U) represents multiple states “by construction”

ALL the states in so(X,U) are bad and need to be blocked/

o

|

:
FONDAZIONE
BRUNO KESSLER

instead of bad(U) = 3X,X’,..., X* BMC],
A\

« D
¢+ Therefore, we can use the cheaper bad(U) = 94X .s¢(X, U)

4

IC3-based algorithm

Start from {P =1

|C3-check(S, P)

l Safe

return p

-~

update

Unsafe

e

p = p N\ —bad

—~

-’

-

get counterexample trace

|

compute

OOOOOOOOOO
RRRRRRRRRRRR

P4 * S = (XUU,I(X) p, T(X, X")\p NN\, e (0 = u))

~

S()(X, U),Sl(X, U), . .,Sk(X, U)

-’

/ bad(U) = 3X.s0(X,U)

T ->¢
Optimizations

BRUNO KESSLER

(1) Exploit incrementality

+ At each iteration:
¢ IThew := I N\ —bad
¢ Thew := 1T N —bad

|

+ No need to restart from scratch, can keep all the previous F's

+ Similarly, exploit incrementality in the underlying SMT solver

O ptl mizations AR

(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination

e D

O ptimizations RS

(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination

+ Each state s; is bad, because it leads to —P
¢ Can also try blocking 33X, X’,..., X7.so(X,U)AT...Ns;(X7,U)
¢ Orinthelimit 3X,X’,... . X*I(X,U)AT ... AN=P(X* U)

¢ Various heuristics are possible (see paper)

Experimental evaluation s,

¢ Implemented in the IC3-SMT tool of [CAV'12]
+ Using MathSAT for SMT check and quantifier elimination

¢+ Comparison with:

+ Non incremental algorithm of [RTSS'08], but using IC3
+ “black box” use of IC3

+ RED [Wang'05], a state-of-the-art tool for linear-hybrid automata

+ Based on the computation of reachable states
+ Specialized for hybrid automata

¢+ Benchmarks from linear hybrid systems

Results

1000 F

100 |

10 +

lterative-block-path(IC3)

10 100

ParamIC3

1000

RED

1000 F

100 |

10 +

ParamIC3

100 1000

Conclusions

14

FONDAZIONE
BRUNO KESSLER

¢+ Simple extension of IC3-SMT for parameter synthesis

¢ Exploit IC3 features
+ Construction of a trace encoding multiple counterexamples

¢+ Incrementality
+ Allows to control cost of quantifier elimination

¢+ Easy to implement

+ Compares positively with alternative approaches

14

FONDAZIONE
BRUNO KESSLER

Thank You

Results

—~~
o0 1000 F
O
=
e
TE 100 |
O
X
8 10 b 1000 F
2
2
= 1] 100 |
©
| -
2 o
- 1 10 100 1000 TR
ParamIC3 o

1000 F o — 00 Tp
O
@ 100} 0.1L . | , 1
Po! 0.1 1 10 100 1000

1

8 ParamIC3
— 10}
&
©
| -
©
o 1L

] 10 100 7000

ParamIC3

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23

