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Motivations and Contributions iy

¢+ Parametric descriptions of systems arise in many domains

+ E.g. software, cyber-physical systems, task scheduling, ...

¢ Important problem: find parameter values that guarantee the
satisfaction of a given property

¢ This work: exploit (SMT aware) IC3 for parameter synthesis

+ Simple extension of IC3

+ Exploit incrementality and generation of multiple
counterexamples

+ Gives optimal parameter region for a given property
+ Promising experimental results



Problem definition

¢+ Symbolic transition system S = (X, I,T)
+ State variables X
+ Initial-state formula 1(X)
+ Transition relation T'(X, X')
¢ Parametric system S = (U, X, 1,T)
+ Set of parameters U
¢« Init I(U, X) and trans T'(U, X, X')
¢ Valuation v of U induces S, = (X,~v(1),v(T))

¢ Synthesis problem:
+ Given a property P(U, X)
+ Find all valuations p of U such that v € p iff Sy = ~v(P)




Our starting point: [RTSS'OB] R e

Start from {P =T,k=0
P4 * S = (XU, I(X) \p, T( X, X")\p NN\ e v = )

Unsate compute

BMC-check(S, P, k)

bad(U) = 3X, X’,..., X* BMCT

r~ ~

update
P1 = PO A —bad
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Our starting point: [RTSS'OB] R e

Start from {,0 = T,k=0
P4 * S = (XU, I(X) \p, T( X, X")\p NN\ e v = )

BMC-check(S, P, k)
Statically
determined
\Safe
Yes
k >= kmax —> return [0

‘ No
- |: increase k:l




Drawbacks of [RTSS'08] RS

(1) BMC-based, needs to know k£ _to terminate

+ Implementation in [RTSS'08] only for task scheduling problems
+ k _computed from domain knowledge

(2) Quantifier elimination is a bottleneck

+ As k grows, quant elim becomes prohibitively expensive
+ Even if BMC7, is used
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(1) BMC-based, needs to know k£ _to terminate

+ Implementation in [RTSS'08] only for task scheduling problems
+ k _computed from domain knowledge

(2) Quantifier elimination is a bottleneck

+ As k grows, quant elim becomes prohibitively expensive
+ Even if BMC7, is used

¢ Solution for (1): use IC3-SMT instead of BMC
+ But still (2) is a problem!
+ We can do better with a tighter integration with IC3




IC3 with SMT [CAV'12]

¢ |C3 main features (for this work):

+ incremental construction of clauses
+ from counterexamples to induction
+ by recursively blocking predecessors of bad states
+ if initial states are reached, we have a counterexample trace



IC3 with SMT [CAV'12]

¢ |C3 main features (for this work):

+ incremental construction of clauses
+ from counterexamples to induction
+ by recursively blocking predecessors of bad states
+ if initial states are reached, we have a counterexample trace

(We exploit a property of (the SMT extension of) IC3: h
+ a counterexample trace represents multiple counterexamples
+ because predecessors are computed with (approximated)
\ qguantifier elimination [CAV'12] Y,
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instead of bad(U) = 3X,X’,..., X* BMC],
A\

« D
¢+ Therefore, we can use the cheaper bad(U) = 94X .s¢(X, U)
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IC3-based algorithm

Start from {P =1

|C3-check(S, P)

l Safe

return p

-~

update

Unsafe

e

p = p N\ —bad

—~

-’
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get counterexample trace
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compute
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P4 * S = (XUU,I(X) p, T(X, X")\p NN\, e (0 = u))

~

S()(X, U),Sl(X, U), . .,Sk(X, U)

-’

/ bad(U) = 3X.s0(X,U)
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Optimizations
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(1) Exploit incrementality

+ At each iteration:
¢ IThew := I N\ —bad
¢ Thew := 1T N —bad

|

+ No need to restart from scratch, can keep all the previous F's

+ Similarly, exploit incrementality in the underlying SMT solver
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(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination
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(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination

+ Each state s; is bad, because it leads to —P
¢ Can also try blocking 33X, X’,..., X7.so(X,U)AT...Ns;(X7,U)
¢ Orinthelimit 3X,X’,... . X*I(X,U)AT ... AN=P(X* U)

¢ Various heuristics are possible (see paper)




Experimental evaluation s,

¢ Implemented in the IC3-SMT tool of [CAV'12]
+ Using MathSAT for SMT check and quantifier elimination

¢+ Comparison with:

+ Non incremental algorithm of [RTSS'08], but using IC3
+ “black box” use of IC3

+ RED [Wang'05], a state-of-the-art tool for linear-hybrid automata

+ Based on the computation of reachable states
+ Specialized for hybrid automata

¢+ Benchmarks from linear hybrid systems
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Conclusions

14

FONDAZIONE
BRUNO KESSLER

¢+ Simple extension of IC3-SMT for parameter synthesis

¢ Exploit IC3 features
+ Construction of a trace encoding multiple counterexamples

¢+ Incrementality
+ Allows to control cost of quantifier elimination

¢+ Easy to implement

+ Compares positively with alternative approaches
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Thank You
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