

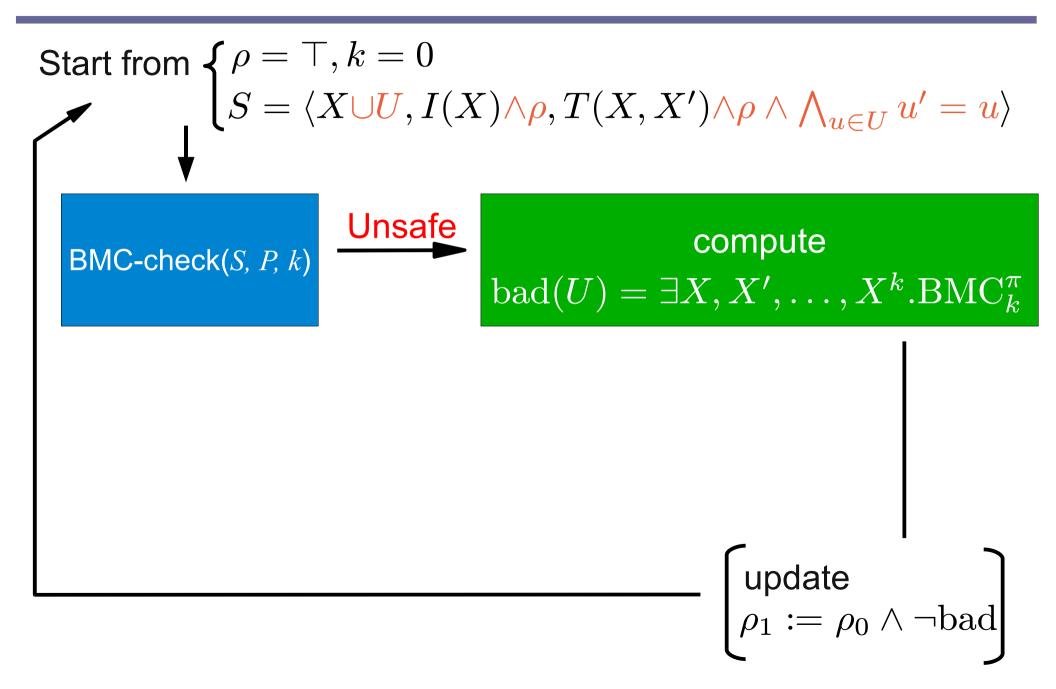
FMCAD 2013

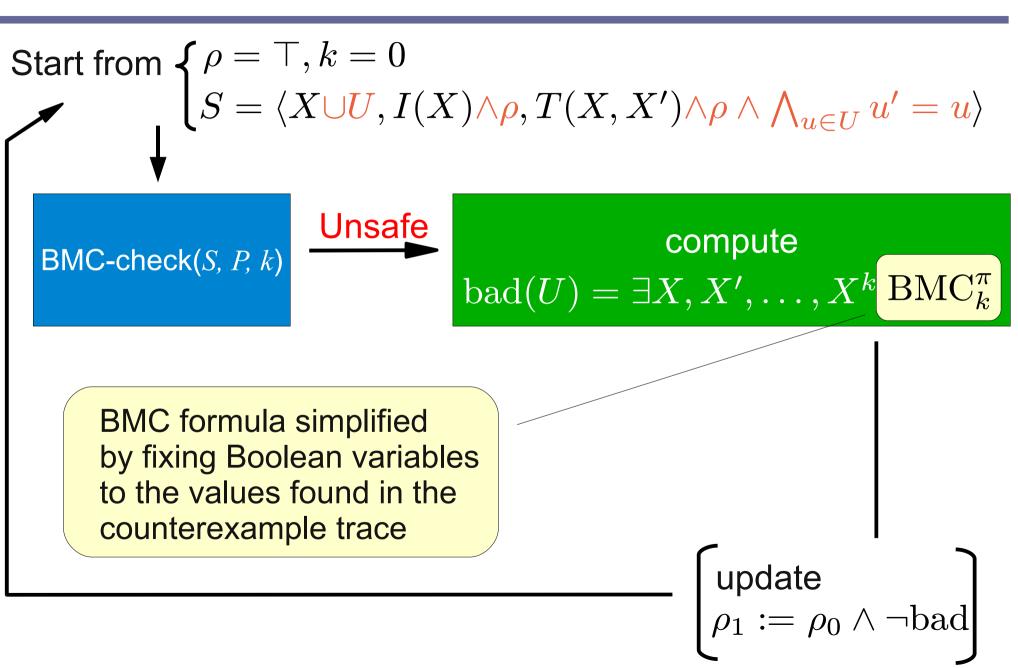
Parameter Synthesis with IC3

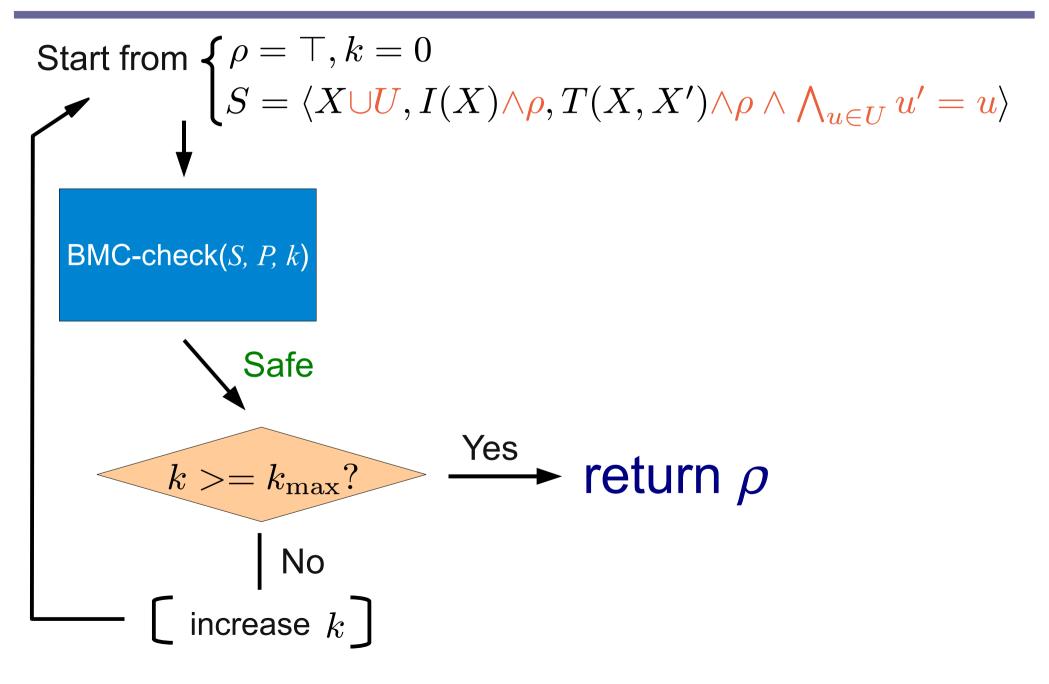
A. Cimatti, <u>A. Griggio</u>, S. Mover, S. Tonetta FBK, Trento, Italy

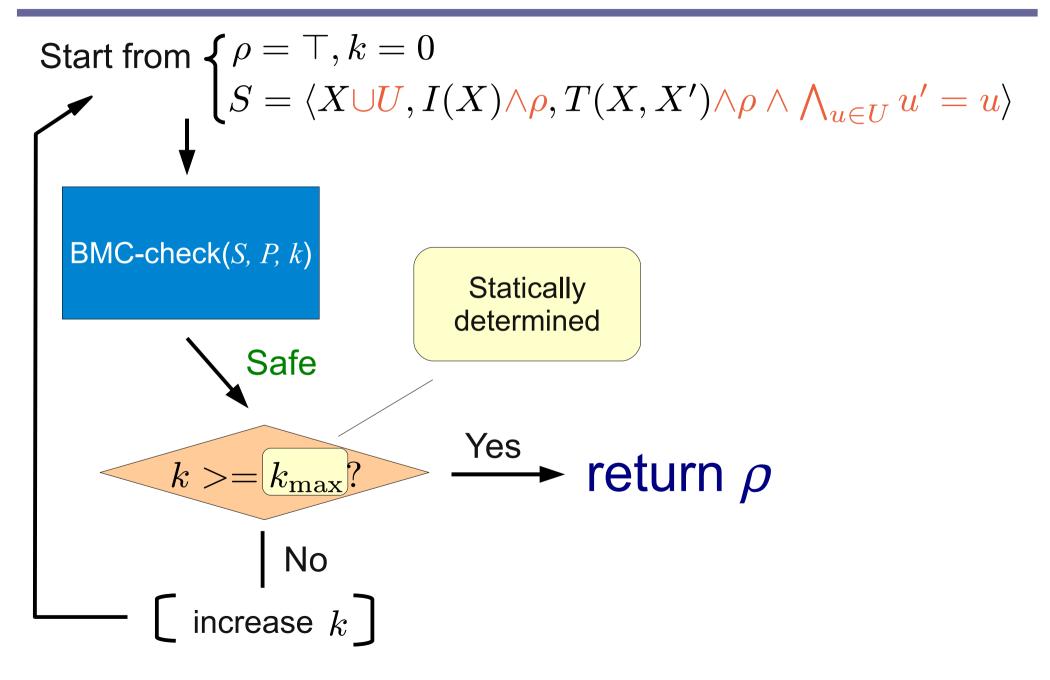
- Parametric descriptions of systems arise in many domains
 - E.g. software, cyber-physical systems, task scheduling, ...
- Important problem: find parameter values that guarantee the satisfaction of a given property
- This work: exploit (SMT aware) IC3 for parameter synthesis
 - Simple extension of IC3
 - Exploit incrementality and generation of multiple counterexamples
 - Gives optimal parameter region for a given property
 - Promising experimental results

- \bullet Symbolic transition system $S = \langle X, I, T \rangle$
 - State variables X
 - Initial-state formula I(X)
 - Transition relation T(X, X')
- \bullet Parametric system $S = \langle U, X, I, T \rangle$
 - Set of parameters U
 - Init I(U, X) and trans T(U, X, X')
 - Valuation γ of U induces $S_{\gamma} = \langle X, \gamma(I), \gamma(T) \rangle$
- Synthesis problem:
 - Given a property P(U, X)
 - Find <u>all</u> valuations ρ of U such that $\gamma \in \rho$ iff $S_{\gamma} \models \gamma(P)$









(1) BMC-based, needs to know k_{max} to terminate

- Implementation in [RTSS'08] only for task scheduling problems
 - k_{max} computed from domain knowledge

(2) Quantifier elimination is a bottleneck

- As *k* grows, quant elim becomes prohibitively expensive
- Even if $\operatorname{BMC}_k^{\pi}$ is used

(1) BMC-based, needs to know k_{max} to terminate

- Implementation in [RTSS'08] only for task scheduling problems
 - k_{max} computed from domain knowledge

(2) Quantifier elimination is a bottleneck

- As *k* grows, quant elim becomes prohibitively expensive
- Even if BMC_k^{π} is used

- Solution for (1): use IC3-SMT instead of BMC
 - But still (2) is a problem!
 - We can do better with a tighter integration with IC3

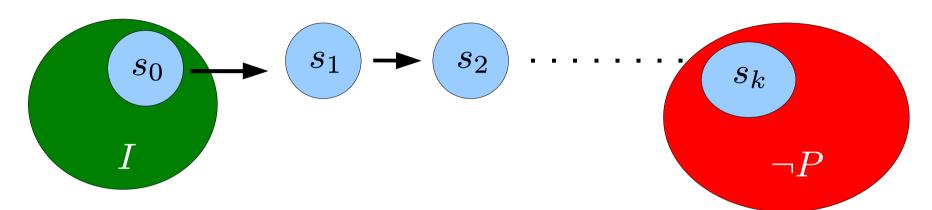
- IC3 main features (for this work):
 - incremental construction of clauses
 - from counterexamples to induction
 - by recursively blocking predecessors of bad states
 - if initial states are reached, we have a counterexample trace

- IC3 main features (for this work):
 - incremental construction of clauses
 - from counterexamples to induction
 - by recursively blocking predecessors of bad states
 - if initial states are reached, we have a counterexample trace

- We exploit a property of (the SMT extension of) IC3:
 - a counterexample trace represents multiple counterexamples
 - because predecessors are computed with (approximated) quantifier elimination [CAV'12]

Exploiting IC3-SMT counterexamples

• Consider the cex $s_0(X,U), s_1(X,U), \ldots, s_k(X,U)$



Exploiting IC3-SMT counterexamples

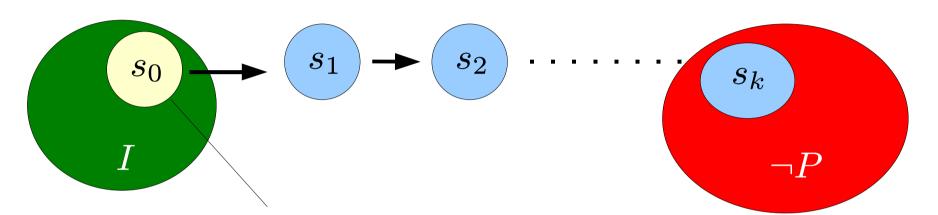
• Consider the cex $s_0(X,U), s_1(X,U), \ldots, s_k(X,U)$



- Two (simple) observations:
 - $s_0(X, U)$ represents multiple states "by construction"
 - ALL the states in $s_0(X, U)$ are bad and need to be blocked

Exploiting IC3-SMT counterexamples

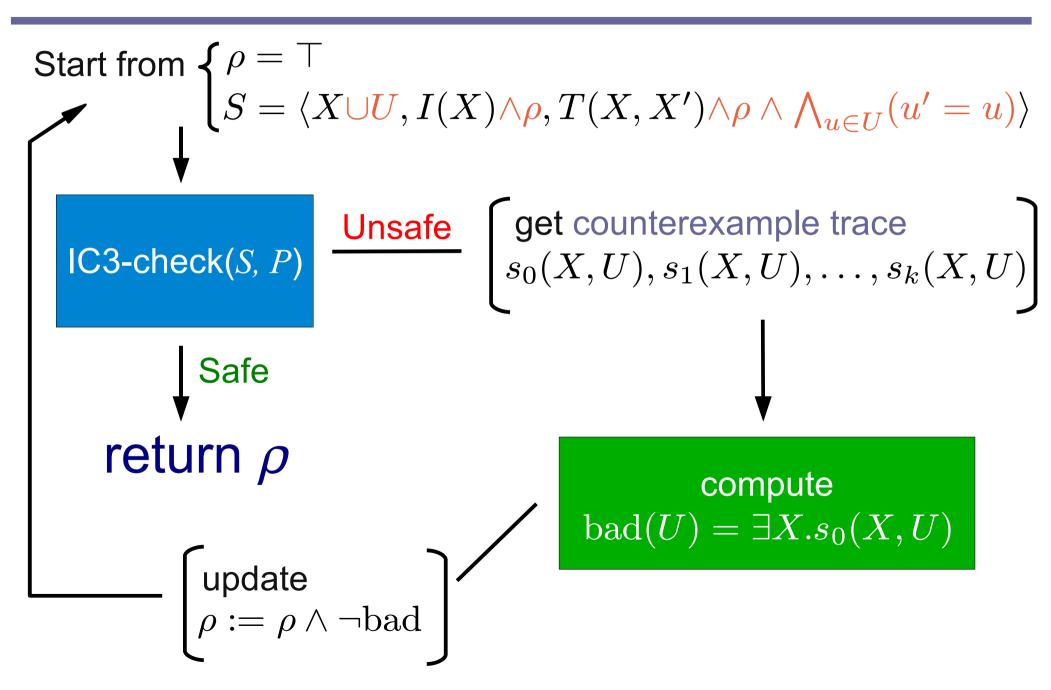
• Consider the cex $s_0(X,U), s_1(X,U), \ldots, s_k(X,U)$



- Two (simple) observations:
 - $s_0(X, U)$ represents multiple states "by construction"
 - ALL the states in $s_0(X, U)$ are bad and need to be blocked

• Therefore, we can use the cheaper $bad(U) = \exists X.s_0(X, U)$ instead of $bad(U) = \exists X, X', \dots, X^k.BMC_k^{\pi}$

IC3-based algorithm



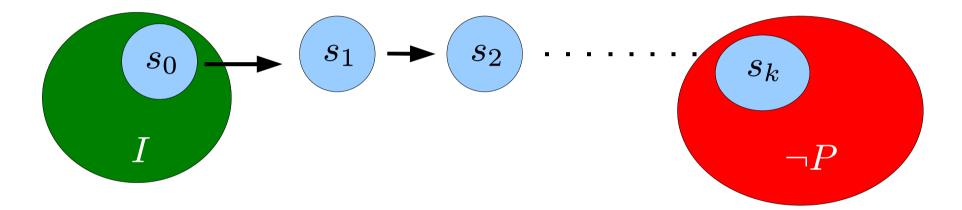
Optimizations

(1) Exploit incrementality

- At each iteration:
 - $I_{\text{new}} := I \land \neg \text{bad}$
 - $T_{\text{new}} := T \land \neg \text{bad}$
- No need to restart from scratch, can keep all the previous F_i 's
 - Similarly, exploit incrementality in the underlying SMT solver

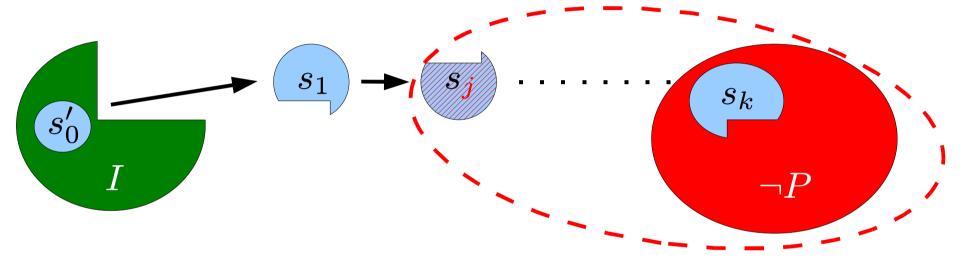
Optimizations

(2) The IC3 cex trace allows to play with the tradeoff generality / cost of quantifier elimination



Optimizations

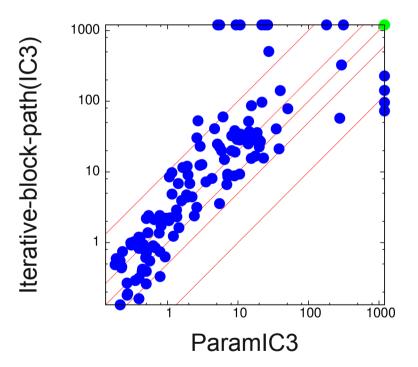
(2) The IC3 cex trace allows to play with the tradeoff generality / cost of quantifier elimination

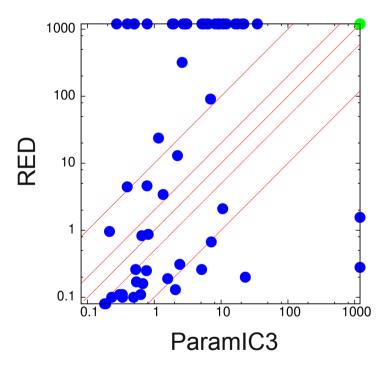


- Each state s_j is bad, because it leads to $\neg P$
- Can also try blocking $\exists X, X', \ldots, X^j . s_0(X, U) \land T \ldots \land s_j(X^j, U)$
- Or in the limit $\exists X, X', \dots, X^k. I(X, U) \land T \dots \land \neg P(X^k, U)$
- Various heuristics are possible (see paper)

- Implemented in the IC3-SMT tool of [CAV'12]
 - Using MathSAT for SMT check and quantifier elimination
- Comparison with:
 - Non incremental algorithm of [RTSS'08], but using IC3
 - "black box" use of IC3
 - RED [Wang'05], a state-of-the-art tool for linear-hybrid automata
 - Based on the computation of reachable states
 - Specialized for hybrid automata
- Benchmarks from linear hybrid systems

Results





Conclusions

- Simple extension of IC3-SMT for parameter synthesis
- Exploit IC3 features
 - Construction of a trace encoding multiple counterexamples
 - Incrementality
 - Allows to control cost of quantifier elimination
- Easy to implement
- Compares positively with alternative approaches

Thank You

Results

