

FMCAD 2013

Parameter Synthesis with IC3

A. Cimatti, A. Griggio, S. Mover, S. Tonetta
FBK, Trento, Italy

Motivations and Contributions

♦ Parametric descriptions of systems arise in many domains

♦ E.g. software, cyber-physical systems, task scheduling, ...

♦ Important problem: find parameter values that guarantee the
satisfaction of a given property

♦ This work: exploit (SMT aware) IC3 for parameter synthesis

♦ Simple extension of IC3

♦ Exploit incrementality and generation of multiple
counterexamples

♦ Gives optimal parameter region for a given property

♦ Promising experimental results

Problem definition

♦ Symbolic transition system

♦ State variables

♦ Initial-state formula

♦ Transition relation

♦ Parametric system

♦ Set of parameters

♦ Init and trans

♦ Valuation of induces

♦ Synthesis problem:

♦ Given a property

♦ Find all valuations of such that iff

X

I(X)

T (X;X 0)

I(U;X) T (U;X;X 0)
° U S° = hX; °(I); °(T)i

P (U;X)

½ U

S = hX; I; T i

S = hU;X; I; T i
U

° 2 ½ S° j= °(P)

Our starting point: [RTSS'08]

Start from

BMC-check(S, P, k)
Unsafe compute

update

bad(U) = 9X;X 0; : : : ; Xk:BMC¼k

½1 := ½0 ^ :bad

½ = >; k = 0
S = hX[U; I(X)^½; T (X;X 0)^½ ^Vu2U u0 = ui

Our starting point: [RTSS'08]

Start from

BMC-check(S, P, k)
Unsafe compute

update

bad(U) = 9X;X 0; : : : ; Xk:BMC¼k

½1 := ½0 ^ :bad

½ = >; k = 0
S = hX[U; I(X)^½; T (X;X 0)^½ ^Vu2U u0 = ui

BMC formula simplified
by fixing Boolean variables
to the values found in the
counterexample trace

BMC¼k

Our starting point: [RTSS'08]

Start from

BMC-check(S, P, k)

return ρ

Safe

k >= kmax?
Yes

No

increase k

½ = >; k = 0
S = hX[U; I(X)^½; T (X;X 0)^½ ^Vu2U u0 = ui

Our starting point: [RTSS'08]

Start from

BMC-check(S, P, k)

return ρ

Safe

k >= kmax?
Yes

No

increase k

½ = >; k = 0
S = hX[U; I(X)^½; T (X;X 0)^½ ^Vu2U u0 = ui

Statically
determined

Drawbacks of [RTSS'08]

(1) BMC-based, needs to know k
max

 to terminate

♦ Implementation in [RTSS'08] only for task scheduling problems

♦ k
max

 computed from domain knowledge

(2) Quantifier elimination is a bottleneck

♦ As k grows, quant elim becomes prohibitively expensive

♦ Even if is usedBMC¼k

Drawbacks of [RTSS'08]

(1) BMC-based, needs to know k
max

 to terminate

♦ Implementation in [RTSS'08] only for task scheduling problems

♦ k
max

 computed from domain knowledge

(2) Quantifier elimination is a bottleneck

♦ As k grows, quant elim becomes prohibitively expensive

♦ Even if is used

♦ Solution for (1): use IC3-SMT instead of BMC

♦ But still (2) is a problem!

♦ We can do better with a tighter integration with IC3

BMC¼k

IC3 with SMT [CAV'12]

♦ IC3 main features (for this work):

♦ incremental construction of clauses

♦ from counterexamples to induction

♦ by recursively blocking predecessors of bad states

♦ if initial states are reached, we have a counterexample trace

IC3 with SMT [CAV'12]

♦ IC3 main features (for this work):

♦ incremental construction of clauses

♦ from counterexamples to induction

♦ by recursively blocking predecessors of bad states

♦ if initial states are reached, we have a counterexample trace

♦ We exploit a property of (the SMT extension of) IC3:

♦ a counterexample trace represents multiple counterexamples

♦ because predecessors are computed with (approximated)
quantifier elimination [CAV'12]

Exploiting IC3-SMT counterexamples

♦ Consider the cex s0(X;U); s1(X;U); : : : ; sk(X;U)

:P

s0 s2s1 sk

I

Exploiting IC3-SMT counterexamples

♦ Consider the cex

♦ Two (simple) observations:

♦ represents multiple states “by construction”

♦ ALL the states in are bad and need to be blocked

s0(X;U); s1(X;U); : : : ; sk(X;U)

:P

s0 s2s1 sk

I

s0(X;U)

s0(X;U)

Exploiting IC3-SMT counterexamples

♦ Consider the cex

♦ Two (simple) observations:

♦ represents multiple states “by construction”

♦ ALL the states in are bad and need to be blocked

♦ Therefore, we can use the cheaper

instead of

s0(X;U); s1(X;U); : : : ; sk(X;U)

:P

s0 s2s1 sk

I

s0(X;U)

s0(X;U)

bad(U) = 9X;X 0; : : : ; Xk:BMC¼k

bad(U) = 9X:s0(X;U)

IC3-based algorithm

Start from

IC3-check(S, P)

S = hX[U; I(X)^½; T (X;X 0)^½ ^Vu2U (u0 = u)i
½ = >

Unsafe

return ρ
Safe

s0(X;U); s1(X;U); : : : ; sk(X;U)

compute
bad(U) = 9X:s0(X;U)

get counterexample trace

update
½ := ½ ^ :bad

Optimizations

(1) Exploit incrementality

♦ At each iteration:

♦

♦

♦ No need to restart from scratch, can keep all the previous F
i
's

♦ Similarly, exploit incrementality in the underlying SMT solver

Inew := I ^ :bad
Tnew := T ^ :bad

Optimizations

(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination

:P

s0 s2s1 sk

I

Optimizations

(2) The IC3 cex trace allows to play with the
tradeoff generality / cost of quantifier elimination

♦ Each state is bad, because it leads to

♦ Can also try blocking

♦ Or in the limit

♦ Various heuristics are possible (see paper)

:P

s1 sk

I

9X;X 0; : : : ;Xj:s0(X;U) ^ T : : : ^ sj(Xj; U)

9X;X 0; : : : ;Xk:I(X;U) ^ T : : : ^ :P (Xk; U)

s00

sj

:Psj

Experimental evaluation

♦ Implemented in the IC3-SMT tool of [CAV'12]

♦ Using MathSAT for SMT check and quantifier elimination

♦ Comparison with:

♦ Non incremental algorithm of [RTSS'08], but using IC3

♦ “black box” use of IC3

♦ RED [Wang'05], a state-of-the-art tool for linear-hybrid automata

♦ Based on the computation of reachable states
♦ Specialized for hybrid automata

♦ Benchmarks from linear hybrid systems

Results

ParamIC3

It
er

at
iv

e-
bl

oc
k-

pa
th

(I
C

3)

ParamIC3
R

E
D

Conclusions

♦ Simple extension of IC3-SMT for parameter synthesis

♦ Exploit IC3 features

♦ Construction of a trace encoding multiple counterexamples

♦ Incrementality

♦ Allows to control cost of quantifier elimination

♦ Easy to implement

♦ Compares positively with alternative approaches

Thank You

Results

ParamIC3

ParamIC3

It
er

at
iv

e-
bl

oc
k-

pa
th

(I
C

3)
P

ar
am

IC
3-

ba
si

c

ParamIC3
R

E
D

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23

