
Distributed Synthesis for LTL Fragments

Krishnendu Chatterjee, Thomas A. Henzinger, Jan Otop,
Andreas Pavlogiannis

21 October 2013

1 / 26

Reactive Distributed Systems

An architecture is a directed graph describing topology of the system.

pe

p1 p2

p3

x1 x2
y1

y1, y2
y4

y3

y5

Communication is done through variables V .
Communication is instantaneous.
Process p has I(p), O(p), its input and
output variables.
Process p behaves according to its local
strategy σp :

(
2I (p)

)∗ → 2O(p).
pe is the environment.

Local strategies give the collective strategy
σ :
(
2O(pe)

)∗ → 2V\O(pe).
Reactive system as a function: The execution of σ on
π = a1a2 . . . ∈

(
2O(pe)

)
ω is Γσ(π) = σ(a1)σ(a1a2) . . . ∈

(
2V\O(pe)

)
ω

2 / 26

Reactive Distributed Systems

An architecture is a directed graph describing topology of the system.

pe

p1 p2

p3

x1 x2

y4

y3

y5

y1

y1, y2

Communication is done through variables V .
Communication is instantaneous.
Process p has I(p), O(p), its input and
output variables.
Process p behaves according to its local
strategy σp :

(
2I (p)

)∗ → 2O(p).
pe is the environment.

Local strategies give the collective strategy
σ :
(
2O(pe)

)∗ → 2V\O(pe).
Reactive system as a function: The execution of σ on
π = a1a2 . . . ∈

(
2O(pe)

)
ω is Γσ(π) = σ(a1)σ(a1a2) . . . ∈

(
2V\O(pe)

)
ω

3 / 26

Realizability

A computation of σ is the convolution of the environment output π
and the execution of σ, i.e., for π = a1a2 . . . and Γσ(π) = b1b2 . . .
the computation is: π ⊗ Γσ(π) = (a1, b2)(a2, b2) . . . ∈

(
2V
)ω

Satisfaction
A collective strategy σ satisfies an LTL specification ϕ iff its every
computation satisfies ϕ, i.e., for every π ∈

(
2O(pe)

)ω
, π ⊗ Γσ(π) |= ϕ.

Realizability

Given an architecture A and an LTL specification ϕ, decide whether
there exist local strategies σp for all processes p, that generate the
collective strategy σ that satisfy ϕ.

If so, synthesize them.

4 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

5 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

6 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1

0

0

1

1

0

0

1

1

0

0

1

1

0

7 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1

0

0

1

1

0

0

1

1

0

0

1

1

0
1 0 0 0 1 0 1

0 1 0 1 0 1 0

8 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1 0 1 0 1 0 1
1 0 0 0 1 0 1

9 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1 0 1 0 1 0 1
1 0 0 0 1 0 1

10 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1 0 1 0 1 0 1
1
1

0
0

0
0

0
0

1
1

0
0

1
1

11 / 26

Example

Consider a specification
ϕ1 ≡ �(x1 =⇒ ♦y1) ∧�(x2 =⇒ ♦y2) ∧�¬(y1 ∧ y2) in the
architecture:

pe

p1 p2

x1 x2

y1 y2

It is realized by σ1, σ2 such that:
σ1(w) = {y1} if |w | is even and ∅ otherwise, and
σ2(w) = {y2} if |w | is odd and ∅ otherwise.

The following specification is not realizable
ϕ2 ≡ (�♦x1 =⇒ �♦(x1 ∧ y1))∧(�♦x2 =⇒ �♦(x2 ∧ y2))∧�¬(y1∧y2).

Suppose it is realizable.
x1

x2

y1

y2

1 0 1 0 1 0 1
1
1

0
0

0
0

0
0

1
1

0
0

1
1

x2 holds infinitely often, but only when y1 holds!

12 / 26

Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Aλ is
undecidable.

Aλ pe

p1 p2

x1 x2

y1 y2

For every Turing Machine M, there is a
specification τM , that forces p1, p2 to output the
sequence of consecutive configurations of M(ε)
terminated by the final configuration.

13 / 26

Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Aλ is
undecidable.

Aλ pe

p1 p2

x1 x2

y1 y2

#

#0

01

1
q3

q3
0

0#

#0

0
q4

q4
0

00

0#

#0

0

...
...

...
...

For every Turing Machine M, there is a
specification τM , that forces p1, p2 to output the
sequence of consecutive configurations of M(ε)
terminated by the final configuration.

14 / 26

Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Aλ is
undecidable.

Aλ pe

p1 p2

x1 x2

y1 y2

#

#

0

0

1

1

q3

q3

0

0

#

#

0

0

q4

q4

0

0

0

0

#

#

0

0

...

...

...

...

For every Turing Machine M, there is a
specification τM , that forces p1, p2 to output the
sequence of consecutive configurations of M(ε)
terminated by the final configuration.

15 / 26

Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Aλ is
undecidable.

Aλ pe

p1 p2

x1 x2

y1 y2

#

0 0
1 1
q3 q3

0 0
#

0 0
q4 q4

0 0
0 0
#

0 0

...
...

...
...

For every Turing Machine M, there is a
specification τM , that forces p1, p2 to output the
sequence of consecutive configurations of M(ε)
terminated by the final configuration.

16 / 26

Parametric on the Architecture

For which classes of architectures is realizability decidable?
Complete characterization base on the information fork criterion.
Processes p1, p2 form an information fork in architecture A if there
exist paths pe pi in A such that do not traverse edges in I (p−i).

pe

p1 p2

Theorem(Finkbeiner,Schewe)

Every architecture either:
Has an information fork (undecidable).
Can be reduced to a pipeline (decidable).

17 / 26

Our approach

LTL formulae that appear in the undecidability proof are
complicated.

Question

What are the LTL fragments for which the realizability problem is
decidable?

That question can be approached from two directions:
Prove that realizability is undecidable in weak LTL fragments.
Find LTL fragments for which the realizability problem is decidable.

18 / 26

Reachability specifications LTL♦

LTL♦

ψ ∈ LTL1 iff it is a Boolean combination of P and XP, where P is
propositional. (only non-nested X)
ϕ ∈ LTL♦ iff ϕ ≡ Q → ♦ψ, where ψ ∈ LTL1 and Q is propositional.

Theorem
The realizability of specifications from LTL♦ in architectures containing
information fork is undecidable.

pe

p1 p2

x1 x2

q1, . . . , qm

y1 y2

τM is a (variant of) formula that forces p1, p2
to output a computation of a TM M.
A safety automaton Asafe recognizes LτM .
Specification γ ∈ LTL♦ states that eventually

pe (does not) simulate Asafe with q1, . . . , qk ,
p1 outputs the final configuration.

19 / 26

Reachability specifications LTL♦

LTL♦

ψ ∈ LTL1 iff it is a Boolean combination of P and XP, where P is
propositional. (only non-nested X)
ϕ ∈ LTL♦ iff ϕ ≡ Q → ♦ψ, where ψ ∈ LTL1 and Q is propositional.

Theorem
The realizability of specifications from LTL♦ in architectures containing
information fork is undecidable.

pe

p1 p2

x1 x2

q1, . . . , qm

y1 y2

τM is a (variant of) formula that forces p1, p2
to output a computation of a TM M.
A safety automaton Asafe recognizes LτM .
Specification γ ∈ LTL♦ states that eventually

pe (does not) simulate Asafe with q1, . . . , qk ,
p1 outputs the final configuration.

20 / 26

Safety specifications LTL� over Overlapping Inputs

LTL�

ψ ∈ LTL1 iff it is a Boolean combination of P and XP, where P is
propositional. (only non-nested X)
ϕ ∈ LTL� iff ϕ ≡ Q ∧�ψ, where ψ ∈ LTL1 and Q is propositional.

Theorem
The realizability of specifications from LTL� in an architecture A
containing an information fork-meet is undecidable.

pe

p2

x2

y2

p1

x1

y1 p3

x1 x2

q1, . . . , qm

The proof is as for LTL♦, but p3 simulates
Asafe instead of pe , i.e.:
A safety automaton Asafe recognizes LτM .
Specification γ ∈ LTL� ensures that p3
simulates Asafe.

21 / 26

Safety specifications over Disjoint Inputs

Consider a class of star architectures with disjoint inputs:

pe p1
I (p1) O(p1)

p2

I (p2)

O(p2)

pn
I (pn)O(pn)

Lemma
A formula φ = Q ∧�ψ is realizable iff it is realizable by strategies with
double exponential memory.

Sufficiently long plays can be repeated.

Theorem
Realizability of LTL� specifications on star architectures with disjoint
inputs is in EXPSPACE.

22 / 26

Fragments of LTL without X

LTLAG

ϕ ∈ LTLAG if for propositional formulae P,Q,Ri ,Fi , ϕ is of the form

ϕ = �P → �Q ∧
∧
i

�♦Ri ∧
∧
i

♦Fi

Theorem
Realizability of LTLAG specifications is NEXPTIME-complete.

23 / 26

Fragments of LTL without X

LTLAG

ϕ ∈ LTLAG if for propositional formulae P,Q,Ri ,Fi , ϕ is of the form

ϕ = �P → �Q ∧
∧
i

�♦Ri ∧
∧
i

♦Fi

Theorem
Realizability of LTLAG specifications is NEXPTIME-complete.

ϕ ∈ LTLAG is realizable iff every formula �(P → Q ∧ Ri) and every
�(P → Q ∧ Fi) are realizable.
�Q is realizable iff it is realizable by memoryless strategies.
Realizability of LTLAG is in NEXPTIME.

24 / 26

Fragments of LTL without X

LTLAG

ϕ ∈ LTLAG if for propositional formulae P,Q,Ri ,Fi , ϕ is of the form

ϕ = �P → �Q ∧
∧
i

�♦Ri ∧
∧
i

♦Fi

Theorem
Realizability of LTLAG specifications is NEXPTIME-complete.

Dependency Quantified Boolean Formulas(DQBF) are propositional
formulae with Henkin quatifiers.

pe

p1 p2

x1 x2

y1 y2

∀x1∀x2∃y1(x1)∃y2(x2).Q(x1, x2, y1, y2)

Validity of DQBF is NEXPTIME-complete.
DQBF reduces to realizability of LTLAG

25 / 26

Conclusions

Our contributions:
Distributed synthesis is undecidable, even restricted to simple LTL
fragments: LTL♦, LTL�.
LTL� is decidable in NEXPSPACE on the class of star architecutes
with disjoint inputs.
LTLAG is NEXPTIME-complete.
LTLAG reduces to DQBF and vice versa.

Thank you!

26 / 26

