

Distributed Synthesis for LTL Fragments

Krishnendu Chatterjee, Thomas A. Henzinger, **Jan Otop**,
Andreas Pavlogiannis

Institute of Science and Technology

21 October 2013

An **architecture** is a directed graph describing topology of the system.

- **Communication** is done through variables V .
- Communication is **instantaneous**.
- Process p has $I(p)$, $O(p)$, its **input** and **output** variables.
- Process p behaves according to its **local strategy** $\sigma_p : (2^{I(p)})^* \rightarrow 2^{O(p)}$.
- p_e is the **environment**.

- Local strategies give **the collective strategy**
 $\sigma : (2^{O(p_e)})^* \rightarrow 2^{V \setminus O(p_e)}$.
- Reactive system as a function: The **execution** of σ on
 $\pi = a_1 a_2 \dots \in (2^{O(p_e)})^\omega$ is $\Gamma^\sigma(\pi) = \sigma(a_1) \sigma(a_1 a_2) \dots \in (2^{V \setminus O(p_e)})^\omega$

An **architecture** is a directed graph describing topology of the system.

- **Communication** is done through variables V .
- Communication is **instantaneous**.
- Process p has $I(p)$, $O(p)$, its **input** and **output** variables.
- Process p behaves according to its **local strategy** $\sigma_p : (2^{I(p)})^* \rightarrow 2^{O(p)}$.
- p_e is the **environment**.

- Local strategies give **the collective strategy**
 $\sigma : (2^{O(p_e)})^* \rightarrow 2^{V \setminus O(p_e)}$.
- Reactive system as a function: The **execution** of σ on
 $\pi = a_1 a_2 \dots \in (2^{O(p_e)})^\omega$ is $\Gamma^\sigma(\pi) = \sigma(a_1) \sigma(a_1 a_2) \dots \in (2^{V \setminus O(p_e)})^\omega$

- A **computation** of σ is the convolution of the environment output π and the execution of σ , i.e., for $\pi = a_1 a_2 \dots$ and $\Gamma^\sigma(\pi) = b_1 b_2 \dots$ the computation is: $\pi \otimes \Gamma^\sigma(\pi) = (a_1, b_1)(a_2, b_2) \dots \in (2^V)^\omega$

Satisfaction

A collective strategy σ **satisfies** an LTL specification φ iff its every computation satisfies φ , i.e., for every $\pi \in (2^{O(p_e)})^\omega$, $\pi \otimes \Gamma^\sigma(\pi) \models \varphi$.

Realizability

Given an architecture \mathcal{A} and an LTL specification φ , decide whether there exist local strategies σ_p for all processes p , that generate the collective strategy σ that satisfy φ .

- If so, synthesize them.

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

$x_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$

y_1

$x_2 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0$

y_2

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

x_1	1	0	1	0	1	0	1
y_1	1	0	0	0	1	0	1
x_2	0	1	0	1	0	1	0
y_2	0	1	0	1	0	1	0

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

$x_1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1$

$y_1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1$

x_2

y_2

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

x_1	1	0	1	0	1	0	1
y_1	1	0	0	0	1	0	1
x_2	↓	↓	↓	↓	↓	↓	↓
y_2							

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

x_1	1	0	1	0	1	0	1
y_1	1	0	0	0	1	0	1
x_2	1	0	0	0	1	0	1
y_2							

Example

Consider a specification

$\varphi_1 \equiv \square(x_1 \implies \Diamond y_1) \wedge \square(x_2 \implies \Diamond y_2) \wedge \square \neg(y_1 \wedge y_2)$ in the architecture:

It is realized by σ_1, σ_2 such that:

$\sigma_1(w) = \{y_1\}$ if $|w|$ is even and \emptyset otherwise, and
 $\sigma_2(w) = \{y_2\}$ if $|w|$ is odd and \emptyset otherwise.

The following specification is not realizable

$\varphi_2 \equiv (\square \Diamond x_1 \implies \square \Diamond(x_1 \wedge y_1)) \wedge (\square \Diamond x_2 \implies \square \Diamond(x_2 \wedge y_2)) \wedge \square \neg(y_1 \wedge y_2)$.

Suppose it is realizable.

x_1	1	0	1	0	1	0	1
y_1	1	0	0	0	1	0	1
x_2	1	0	0	0	1	0	1
y_2							

x_2 holds infinitely often, but only when y_1 holds!

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture \mathcal{A}_λ is undecidable.

For every Turing Machine M , there is a specification τ_M , that forces p_1, p_2 to output the sequence of consecutive configurations of $M(\epsilon)$ terminated by the final configuration.

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture \mathcal{A}_λ is undecidable.

⋮

0
1
 q_3
0

0
 q_4
0
0

0
⋮

⋮

0
1
 q_3
0

0
 q_4
0
0

0
⋮

For every Turing Machine M , there is a specification τ_M , that forces p_1, p_2 to output the sequence of consecutive configurations of $M(\epsilon)$ terminated by the final configuration.

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture \mathcal{A}_λ is undecidable.

⋮

0
1
 q_3
0

0
 q_4
0
0

0
0
⋮

0
⋮

For every Turing Machine M , there is a specification τ_M , that forces p_1, p_2 to output the sequence of consecutive configurations of $M(\epsilon)$ terminated by the final configuration.

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture \mathcal{A}_λ is undecidable.

For every Turing Machine M , there is a specification τ_M , that forces p_1, p_2 to output the sequence of consecutive configurations of $M(\epsilon)$ terminated by the final configuration.

⋮	⋮
#	#
0	0
1	1
q_3	q_3
0	0
#	#
0	0
q_4	q_4
0	0
0	0
#	#
0	0
⋮	⋮

Parametric on the Architecture

- For which classes of architectures is realizability decidable?
- Complete characterization base on the *information fork* criterion.
- Processes p_1, p_2 form an information fork in architecture \mathcal{A} if there exist paths $p_e \rightsquigarrow p_i$ in \mathcal{A} such that do not traverse edges in $I(p_{-i})$.

Theorem(Finkbeiner,Schewe)

Every architecture either:

- Has an information fork (undecidable).
- Can be reduced to a pipeline (decidable).

- LTL formulae that appear in the undecidability proof are complicated.

Question

What are the LTL fragments for which the realizability problem is decidable?

- That question can be approached from two directions:
 - Prove that realizability is undecidable in weak LTL fragments.
 - Find LTL fragments for which the realizability problem is decidable.

LTL_{\Diamond}

- $\psi \in LTL_1$ iff it is a Boolean combination of P and $\mathcal{X}P$, where P is propositional. (only non-nested \mathcal{X})
- $\varphi \in LTL_{\Diamond}$ iff $\varphi \equiv Q \rightarrow \Diamond\psi$, where $\psi \in LTL_1$ and Q is propositional.

Theorem

The realizability of specifications from LTL_{\Diamond} in architectures containing information fork is undecidable.

LTL_{\Diamond}

- $\psi \in LTL_1$ iff it is a Boolean combination of P and $\mathcal{X}P$, where P is propositional. (only non-nested \mathcal{X})
- $\varphi \in LTL_{\Diamond}$ iff $\varphi \equiv Q \rightarrow \Diamond\psi$, where $\psi \in LTL_1$ and Q is propositional.

Theorem

The realizability of specifications from LTL_{\Diamond} in architectures containing information fork is undecidable.

- τ_M is a (variant of) formula that forces p_1, p_2 to output a computation of a TM M .
- A safety automaton A_{safe} recognizes \mathcal{L}_{τ_M} .
- Specification $\gamma \in LTL_{\Diamond}$ states that eventually
 - p_e (does not) simulate A_{safe} with q_1, \dots, q_k ,
 - p_1 outputs the final configuration.

LTL_{\Box}

- $\psi \in LTL_1$ iff it is a Boolean combination of P and $\mathcal{X}P$, where P is propositional. (only non-nested \mathcal{X})
- $\varphi \in LTL_{\Box}$ iff $\varphi \equiv Q \wedge \Box\psi$, where $\psi \in LTL_1$ and Q is propositional.

Theorem

The realizability of specifications from LTL_{\Box} in an architecture \mathcal{A} containing an information fork-meet is undecidable.

- The proof is as for LTL_{\Diamond} , but p_3 simulates A_{safe} instead of p_e , i.e.:
 - A safety automaton A_{safe} recognizes \mathcal{L}_{τ_M} .
 - Specification $\gamma \in LTL_{\Box}$ ensures that p_3 simulates A_{safe} .

Safety specifications over Disjoint Inputs

Consider a class of **star architectures with disjoint inputs**:

Lemma

A formula $\phi = Q \wedge \square \psi$ is realizable iff it is realizable by strategies with double exponential memory.

Sufficiently long plays can be repeated.

Theorem

Realizability of LTL_{\square} specifications on star architectures with disjoint inputs is in EXPSPACE.

LTL_{AG}

$\varphi \in \text{LTL}_{AG}$ if for propositional formulae P, Q, R_i, F_i , φ is of the form

$$\varphi = \square P \rightarrow \square Q \wedge \bigwedge_i \square \diamond R_i \wedge \bigwedge_i \diamond F_i$$

Theorem

Realizability of LTL_{AG} specifications is NEXPTIME-complete.

LTL_{AG}

$\varphi \in \text{LTL}_{AG}$ if for propositional formulae P, Q, R_i, F_i , φ is of the form

$$\varphi = \square P \rightarrow \square Q \wedge \bigwedge_i \square \diamond R_i \wedge \bigwedge_i \diamond F_i$$

Theorem

Realizability of LTL_{AG} specifications is NEXPTIME-complete.

- $\varphi \in \text{LTL}_{AG}$ is realizable iff every formula $\square(P \rightarrow Q \wedge R_i)$ and every $\square(P \rightarrow Q \wedge F_i)$ are realizable.
- $\square Q$ is realizable iff it is realizable by memoryless strategies.
- Realizability of LTL_{AG} is in NEXPTIME.

LTL_{AG}

$\varphi \in \text{LTL}_{AG}$ if for propositional formulae P, Q, R_i, F_i , φ is of the form

$$\varphi = \square P \rightarrow \square Q \wedge \bigwedge_i \square \diamond R_i \wedge \bigwedge_i \diamond F_i$$

Theorem

Realizability of LTL_{AG} specifications is NEXPTIME-complete.

Dependency Quantified Boolean Formulas(DQBF) are propositional formulae with Henkin quantifiers.

$$\forall x_1 \forall x_2 \exists y_1(x_1) \exists y_2(x_2). Q(x_1, x_2, y_1, y_2)$$

- Validity of DQBF is NEXPTIME-complete.
- DQBF reduces to realizability of LTL_{AG}

Our contributions:

- Distributed synthesis is undecidable, even restricted to simple LTL fragments: LTL_{\Diamond} , LTL_{\Box} .
- LTL_{\Box} is decidable in NEXPSPACE on the class of star architectures with disjoint inputs.
- LTL_{AG} is NEXPTIME-complete.
- LTL_{AG} reduces to DQBF and vice versa.

Thank you!