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Reactive Distributed Systems

An architecture is a directed graph describing topology of the system.

m Communication is done through variables V.
m Communication is instantaneous.

m Process p has I(p), O(p), its input and
output variables.

m Process p behaves according to its local
strategy o, : (2/(P))" — 20(P),

m p. is the environment.

m Local strategies give the collective strategy
o (20(Pe))" — 2V\O(Pe),

m Reactive system as a function: The execution of ¢ on
T=aay... € (2O(P=))“’ isF9(w) =o(a1)o(araz) ... € (ZV\O(Pe))‘*’
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Realizability

m A computation of ¢ is the convolution of the environment output 7
and the execution of o, i.e., for m = ajay ... and [7(7) = b1 by ...
the computation is: 7 ® I'7(7) = (a1, bo)(a2, b2) ... € (2¥)

Satisfaction

A collective strategy o satisfies an LTL specification ¢ iff its every
computation satisfies ¢, i.e., for every 7 € (2O(P=))w, 7R () | .

Realizability

Given an architecture A and an LTL specification ¢, decide whether
there exist local strategies o}, for all processes p, that generate the
collective strategy o that satisfy .

m If so, synthesize them.
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Example

Consider a specification
v1 =000 = Oyi) A0 = Oy2) AO=(y1 A y2) in the
architecture:

X1 @ X It is realized by o1, 02 such that:
o1(w) = {»} if |w| is even and () otherwise, and
@ oa(w) = {y2} if |w| is odd and @ otherwise.
7 2
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x> holds infinitely often, but only when y; holds!
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Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Ay is
undecidable.

¢4A ‘:E’

X1 X2

y1 Y2
For every Turing Machine M, there is a
specification 7y, that forces p;, p» to output the

sequence of consecutive configurations of M(e)
terminated by the final configuration.
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Undecidability

Theorem (Pnueli, Rosner)

Realizability of LTL specifications on the following architecture Ay is
undecidable.
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For every Turing Machine M, there is a
specification 7y, that forces p;, p» to output the
sequence of consecutive configurations of M(e)
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Parametric on the Architecture

m For which classes of architectures is realizability decidable?

m Complete characterization base on the information fork criterion.

m Processes p1, pp form an information fork in architecture A if there
exist paths pe ~> p; in A such that do not traverse edges in I(p_;).

Theorem(Finkbeiner,Schewe)
Every architecture either:
m Has an information fork (undecidable).
m Can be reduced to a pipeline (decidable).
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Our approach

m LTL formulae that appear in the undecidability proof are
complicated.

What are the LTL fragments for which the realizability problem is
decidable?

m That question can be approached from two directions:

m Prove that realizability is undecidable in weak LTL fragments.
m Find LTL fragments for which the realizability problem is decidable.
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Reachability specifications LTL,,

m ¢ € LTL iff it is a Boolean combination of P and X'P, where P is
propositional. (only non-nested X)

m € LTLy iff o = Q — O, where ¢ € LTL; and Q is propositional.

The realizability of specifications from LTL in architectures containing
information fork is undecidable.
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Reachability specifications LTL,,

m ) € LTL, iff it is a Boolean combination of P and X' P, where P is

propositional. (only non-nested X)
m € LTLy iff o = Q — O, where ¢ € LTL; and Q is propositional.

Theorem
The realizability of specifications from LTL in architectures containing

information fork is undecidable.

ql;"'aqm
X1

m 7y is a (variant of) formula that forces p;, p»
to output a computation of a TM M.

m A safety automaton Asafe recognizes L.,,.
m Specification v € LTL,, states that eventually

Y2 m p. (does not) simulate Assfe with g1, ..., gx,
m p; outputs the final configuration.
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Safety specifications LTLy over Overlapping Inputs

m ¢ € LTL, iff it is a Boolean combination of P and X' P, where P is
propositional. (only non-nested X)

mp€ElLTLg iff p = Q A, where ¢ € LTL; and Q is propositional.

The realizability of specifications from LTLg in an architecture A
containing an information fork-meet is undecidable.

y % m The proof is as for LTL,, but p3 simulates
2

X1 ()x Asafe instead of pe, i.e.:
, l l m A safety automaton Asafe recognizes £.,,.
! 2 . Specification v € LTL ensures that ps
simulates Agfe.
qi, ..., qml
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Safety specifications over Disjoint Inputs

Consider a class of star architectures with disjoint inputs:

O(pn)m I(pn) D I(p1) /p\O(pl)

A formula ¢ = Q Ay is realizable iff it is realizable by strategies with
double exponential memory.

Sufficiently long plays can be repeated.

Theorem

Realizability of LTL specifications on star architectures with disjoint
inputs is in EXPSPACE.
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Fragments of LTL without X

p € LTL p¢ if for propositional formulae P, Q, R;, F;, ¢ is of the form

e =0P—-0QAAOOR A\ OF;

Realizability of LTLa¢ specifications is NEXPTIME-complete.
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Fragments of LTL without X

p € LTL p¢ if for propositional formulae P, Q, R;, F;, ¢ is of the form

e =0P—-0QAAOOR A\ OF;

Realizability of LTLa¢ specifications is NEXPTIME-complete.

m © € LTLag is realizable iff every formula O(P — Q A R;) and every
O(P — Q A F;) are realizable.

m [JQ is realizable iff it is realizable by memoryless strategies.
m Realizability of LTLag is in NEXPTIME.
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Fragments of LTL without X

LTLag

p € LTL p¢ if for propositional formulae P, Q, R;, F;, ¢ is of the form

e =0P—-0QAAOOR A\ OF;

Theorem

Realizability of LTLa¢ specifications is NEXPTIME-complete.

Dependency Quantified Boolean Formulas(DQBF) are propositional
formulae with Henkin quatifiers.

X1

X2
@ @ m Validity of DQBF is NEXPTIME-complete.
! y2 m DQBF reduces to realizability of LTLag

Vx1¥x23y1(xa)3ya(x2). Q(x1, X2, y1, ¥2)
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Conclusions

Our contributions:

m Distributed synthesis is undecidable, even restricted to simple LTL
fragments: LTLy, LTLg.

m LTLg is decidable in NEXPSPACE on the class of star architecutes
with disjoint inputs.

m LTLac is NEXPTIME-complete.

m LTLac reduces to DQBF and vice versa.

Thank you!
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