A Circuit Approach to LTL Model Checking

Koen Claessen Chalmers University of Technology

> Niklas Een, Baruch Sterin UC Berkeley

PLTL – Linear Temporal Logic w/Past Operators

LTL and PLTL are used to model and specify system behavior

Atomic Propositions

Boolean Operators

PLTL – Linear Temporal Logic w/Past Operators

Some future temporal operators

```
Xf f holds in the next cycle
```

```
Ff f holds sometime in the future
```

```
Gf f holds forever
```

```
fUg g holds sometime in the future, and until then, f holds
```

Some past temporal operators

```
Yf f held in the previous cycle
```

Of **f** held sometime in the past

```
Hf f held until now
```

A Few LTL Formulas

G!err

The error signal is never raised

F err

The error signal will eventually be raised

G(req -> **X F** ack)

Every request must be eventually acknowledged

F (req & **X G** !ack)

There will eventually be a request that is never acknowledged

Monotonicity

LTL operators are monotone

For example:

p :00100100001100000001...

 $\textbf{X} p \hspace{0.5cm} : 0 \hspace{0.1cm} 1 \hspace{0.05cm} 0 \hspace{0.05cm} 1 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 1 \hspace{0.05cm} 1 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 0 \hspace{0.05cm} 1 \hspace{0.05cm} \dots \\$

Monotonicity

LTL operators are monotone

For example:

```
p :00100101011010001...
```

Xp : 01001010011010001...

If p holds in more places, then Xp holds in more places

Automata-Theoretic Approach[VW86]

Every LTL formula **f** has a Büchi automaton **A**_{**f**} (**monitor**) that accepts all traces that satisfy **f**

To check whether **f** hold on every trace of **M**:

Build a Büchi automaton A_{!f} (monitor for !f)

Check if M×A_{If} is empty

LTL Model Checking

Directly construct Büchi Automata [VW86]

Construct an Alternating Büchi Automata, convert to Regular Büchi [V95]

Beautiful, clean and elegant

Alternating automata and their conversion to Büchi automata are nontrivial

Temporal Testers [PZ06]

Transforming the Formula

Assume formula in NNF, with only |, & as boolean operators

For every node *f or f*g in the parse tree:

Introduce a new activator variable z_i

Replace the node with that variable

Maintain correctness by adding a **conjunct** $G(z_i \leftarrow *f)$ or $G(z_i \leftarrow *f)$

Add a conjunct $\mathbf{z_0}$ for the top level activator

Formula Conjuncts

F (req & **X G** !ack)

Formula

Conjuncts

G(**z**₃ <-> **G**!ack)

Formula

Conjuncts

$$G(z_2 < -> X z_3) &$$

Formula

Conjuncts

 Fz_1

 $G(z_1 < -> req \& z_2) \&$

 $G(z_2 < -> X z_3) &$

G(**z**₃ <-> **G**!ack)

Formula

Conjuncts

 $\mathbf{Z}_{\mathbf{0}}$

$$G(z_0 < -> Fz_1) &$$

$$G(z_1 < -> req \& z_2) \&$$

$$G(z_2 < -> X z_3) &$$

$$G(z_3 < -> G ! ack)$$

Formula

Conjuncts

$$z_0$$
 &

$$G(z_0 < -> Fz_1) &$$

$$G(z_1 < -> req \& z_2) \&$$

$$G(z_2 < -> X z_3) &$$

$$G(z_3 < -> G ! ack)$$

<-> -> ->

We can replace the <-> with a simple ->

Given a trace satisfying a conjunct $G(z_i < -> f*g)$ Then it satisfies $G(z_i -> f*g)$

Given a trace satisfying a conjunct $G(z_i -> f*g)$ Then we change z_i to 1 whenever f*g holds

Because LTL operators are monotonic, and in NNF we only have monotonic boolean operators, this trace now satisfies $G(z_i < -> f*g)$

$$G(z_0 -> Fz_1) \&$$

$$G(z_1 -> req \& z_2) \&$$

$$G(z_2 -> X z_3) &$$

$$G(z_3 \rightarrow G ! ack)$$

This new formula is satisfiable iff the original formula is satisfiable

It is easy to construct monitors for each conjunct

Monitors

Monitors

pending:

Holds if the monitor has an outstanding requirement

failed:

Holds if a violation has been detected

accept:

Must hold infinitely often for a trace to be valid In most cases **accept** = **!pending**

Example Monitors

```
G(z \rightarrow Xa)
    pending = z
   failed = prev(z) & !a
G(z \rightarrow Ga)
    pending = prev(pending) | z
   failed = pending & !a
G(z \rightarrow Fa)
    pending = (z | prev(pending)) & !a
   accept = pending & !a
```

Monitor for $G(z \rightarrow Fa)$

Summary

Negate the formula **f**

Put !f in NNF form

Expand !f to its conjuncts

Replace <-> with ->

Construct monitors for the conjuncts

Mark all !failed signals as constraints

Replace the top-level **z**₀ with **is_init**

Mark all accept signals as fairness constraints

Finite Traces

What happens if all pending signals become 0?

The trace can be extended to an infinite trace, by setting all activators to 0 going forward

This gives a safety property (!failed & !pending), which catches all **informative prefixes** [KV99]

Assumptions and Assertions

LTL formulas are used to either

Specify behavior – **Assertions**

Model the environment – **Assumptions**

In practice, infinite traces are expensive to find (finding a loop is hard)

Sometimes, a reasonable compromise for safety assertions, is to only use the **failed** signal of the assumptions (ignoring **accept**)

Deadlock and Acceptable States

Deadlock States:

States which will eventually reach a failed signal

Transitive strong preimage of failed

Detect **failed** faster

Acceptable States:

States that can reach all accept signals

Intersection of the all the transitive (weak) preimage of each **accept** signals

Restrict search to a small set

Reachable States

We can compute the reachable state space of the monitor

Can be added as a constraint to improve k-induction and PDR performance

Provide similar benefit to determinizing the automaton

Experimental Results

Benchmarks from [BHJLS06]

SMV files and PLTL formulas

Except for 1394, csmacd (could not translate)

Compared to LTL2SMV

now part of the NuSMV distribution

Converted from SMV to AIGER using our own tool

Experimental Results

Conclusions

Our approach is competitive with existing methods

Its (relative) simplicity makes it a good option for industrial use