A Circuit Approach to LTL Model
Checking

Koen Claessen
Chalmers University of Technology

Niklas Een, Baruch Sterin
UC Berkeley

PLTL — Linear Temporal Logic
w/Past Operators

LTL and PLTL are used to model and specify
system behavior

Atomic Propositions

P, O, ...
Boolean Operators

&, [, !, —,..

PLTL — Linear Temporal Logic
w/Past Operators

Some future temporal operators
Xf f holds in the next cycle
Ff f holds sometime in the future
Gf f holds forever

fUg g holds sometime in the future, and until then, f
holds

Some past temporal operators

Yf f held in the previous cycle
Of f held sometime in the past
Hf f held until now

A Few LTL Formulas

G lerr

The error signal is never raised
F err

The error signal will eventually be raised
G(req—> X F ack)

Every request must be eventually acknowledged
F(req & X G lack)

There will eventually be a request that is never
acknowledged

Monotonicity

LTL operators are monotone

For example:

P :001001000011000000001...
X :01001000011000000001...

Monotonicity

LTL operators are monotone

For example:

P :001001010011010001001...
X :01001010011010001001...

If p holds in more places, then Xp holds in more
places

Automata-Theoretic Approach[VW86]

Every LTL formula f has a Blichi automaton A

(monitor) t

To check w

nat accepts all traces that satisfy f

nether f hold on every trace of M:

Build a Biichi automaton A¢(monitor for f)

Check if MxA,¢is empty

LTL Model Checking

Directly construct Blichi Automata [VW86]

Construct an Alternating Buchi Automata,
convert to Regular Blichi [V95]

Beautiful, clean and elegant

Alternating automata and their conversion to Bichi
automata are nontrivial

Temporal Testers [PZ06]

Transforming the Formula

Assume formula in NNF, with only |, & as
ooolean operators

~or every node *f or f*g in the parse tree:
Introduce a new activator variable z,
Replace the node with that variable

Maintain correctness by adding a conjunct
G(z, <—> *f) or G(z, <—> f*g)

Add a conjunct z, for the top level activator

Example

Formula Conjuncts
F(req&XG lack)

Example

Formula Conjuncts
F(req&Xz,;) G(z; <—> G lack)

Example

Formula Conjuncts
F(req&z,) G(z,<—>X1z3) &

G(z; <—> G lack)

Fz,

Formula

Example

Conjuncts
G(z,<—>req&z,)&

G(z,<—>Xz3)&
G(z; <—> G lack)

Formula

Example

Conjuncts
G(zy<—>Fz,)&

G(z,<—>req&z,)&
G(z,<—>X1z3) &
G(z; <—> G lack)

Example

Formula Conjuncts
z, &

G(z,<—>Fz,) &
G(z;,<—>req&z,)&
G(z,<—>Xz3)&
G(z; <—> G lack)

<—>—2>-—>

We can replace the <—> with a simple —>

Given a trace satisfying a conjunct G(z, <—> f*g)
Then it satisfies G(z, —> f*g)

Given a trace satisfying a conjunct G(z; —> f*g)
Then we change z;, to 1 whenever f*g holds

Because LTL operators are monotonic, and in
NNF we only have monotonic boolean
operators, this trace now satisfies G(z, <—> f*g)

Example

Z, & This new formula is
satisfiable iff the original
G(z,—>F &
(7 2) formula is satisfiable
G(z,—>req&z,)&

G(z,—>Xz;) & ,
It Is easy to construct

G(z;—> G lack) monitors for each
conjunct

Monitors

error

pending

accept

Monitors

pending:

Holds if the monitor has an outstanding
requirement

failed:
Holds if a violation has been detected
accept:

Must hold infinitely often for a trace to be valid

In most cases accept = Ipending

Example Monitors

G(z—>Xa)
pending =z
failed = prev(z) & la
G(z—>Ga)
pending = prev(pending) | z
failed = pending & !a
G(z—>Fa)
pending = (z | prev(pending)) & !a
accept = pending & !a

Monitor for G(z -> Fa)

pending
M

accept

>

Summary

Negate the formula f

Put If in NNF form

Expand !f to its conjuncts

Replace <—> with —>

Construct monitors for the conjuncts
Mark all failed signals as constraints
Replace the top-level z, with is_init

Mark all accept signals as fairness constraints

Finite Traces

What happens if all pending signals become 07

The trace can be extended to an infinite trace,
by setting all activators to 0 going forward

This gives a safety property (!failed & !pending),
which catches all informative prefixes [KV99]

Assumptions and Assertions

LTL formulas are used to either
Specify behavior — Assertions
Model the environment — Assumptions

In practice, infinite traces are expensive to find
(finding a loop is hard)

Sometimes, a reasonable compromise for safety
assertions, is to only use the failed signal of the

assumptions (ignoring accept)

Deadlock and Acceptable States

Deadlock States:

States which will eventually reach a failed signal
Transitive strong preimage of failed

Detect failed faster

Acceptable States:

States that can reach all accept signals

Intersection of the all the transitive (weak)
preimage of each accept signals

Restrict search to a small set

Reachable States

We can compute the reachable state space of
the monitor

Can be added as a constraint to improve k-
induction and PDR performance

Provide similar benefit to determinizing the
automaton

Experimental Results

Benchmarks from [BHJLS06]

SMV files and PLTL formulas

Except for 1394, csmacd (could not translate)
Compared to LTL2SMV

now part of the NuSMV distribution

Converted from SMV to AIGER using our own
tool

Monitor Circuit

Experimental Results

® T T T LS 2
° .’/ i
100 » ® Y ///// ¢ -
10 — /////]
i o ° : ® o %
o .
1+ /‘/ ° L ¢ _
LA °®
B ./// -
// .
0.1 | .0‘.’ ° -
¥,
001 ’//. Ll : Lol : Ll : | :
0.01 0.1 1 10 100

Ltl2smv

Conclusions
Our approach is competitive with existing
methods

Its (relative) simplicity makes it a good option
for industrial use

