Efficient Modular SAT Solving for IC3

Sam Bayless*, Celina G. Val*, Thomas Ball[†], Holger H. Hoos*, Alan J. Hu*

*University of British Columbia

†Microsoft Research

Efficient Modular SAT Solving for IC3

We introduce an improved version of IC3, 'SMS-PDR', using our new 'SAT modulo SAT' solver:

	SMS-PDR	PDR	IC3
HWMCC'08	596 /645	581/645	586/645
HWMCC'10	749 /818	733/818	712/818
HWMCC'12	92 /310	84/310	48/310

Solves more instances than both ABC's PDR, and the original IC3, on the 2008, 2010, and 2012 Hardware Model Checking Competition Benchmarks.

Efficient Modular SAT Solving for IC3

Outline:

- Cube-blocking in IC3
- Connection between cube-blocking and SMT
- SAT modulo SAT solvers for cube-blocking
- Results

Cube Blocking in IC3:

Problem: Because we are solving each time frame independently, satisfying assignments to the inputs of one time frame might be trivially false (*i.e.*, refuted by unit propagation alone) when passed to the outputs of the preceding time frame.

Efficient, lazy SMT^1 solvers apply unit propagation from the SAT solver to the theory solver $\it eagerly$

¹R. Sebastiani. "Lazy satisfiability modulo theories". In: *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)* 3 (2007), pp. 141–224.

Efficient, lazy SMT^2 solvers apply unit propagation from the SAT solver to the theory solver *eagerly*

²R. Sebastiani. "Lazy satisfiability modulo theories". In: *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)* 3 (2007), pp. 141–224.

Efficient, lazy SMT^3 solvers apply unit propagation from the SAT solver to the theory solver *eagerly*

³R. Sebastiani. "Lazy satisfiability modulo theories". In: *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)* 3 (2007), pp. 141–224.

Efficient, lazy SMT⁴ solvers apply unit propagation from the SAT solver to the theory solver *eagerly*

⁴R. Sebastiani. "Lazy satisfiability modulo theories". In: *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)* 3 (2007), pp. 141–224.

Efficient, lazy SMT^5 solvers apply unit propagation from the SAT solver to the theory solver eagerly

⁵R. Sebastiani. "Lazy satisfiability modulo theories". In: *Journal on Satisfiability, Boolean Modeling and Computation (JSAT)* 3 (2007), pp. 141–224.

SAT modulo SAT

Observation: Incremental SAT solvers can support all the operations that lazy SMT theory solvers need

- Eager unit propagation
- Efficient learned clauses & lazy conflict analysis
- Maintaining state in the theory solver
- \longrightarrow SAT is actually an *ideal* theory for lazy SMT solvers!
- \longrightarrow We can build a 'SAT modulo SAT' solver using all the tricks that lazy SMT solvers use!

Results

Our 'SAT modulo SAT' version of PDR ('SMS-PDR') versus ABC's PDR and the original IC3:

	SMS-PDR	PDR	IC3
HWMCC'08	596 /645	581/645	586/645
HWMCC'10	749 /818	733/818	712/818
HWMCC'12	92 /310	84/310	48/310

- Solves more instances than both IC3 and PDR on each benchmark
- Solves both more safe and unsafe instances than both IC3 and PDR on each benchmark
- Solves just one instance less than the entire virtual best solver from the 2008 competition

Results

Our 'SAT modulo SAT' version of PDR ('SMS-PDR') versus ABC's PDR and the original IC3:

	SMS-PDR		PDR		IC3	
	SAT	UNSAT	SAT	UNSAT	SAT	UNSAT
HWMCC'08	245	351	242	339	240	346
HWMCC'10	322	427	317	416	308	404
HWMCC'12	25	67	21	63	14	34

- Solves more instances than both IC3 and PDR on each benchmark
- Solves both more safe and unsafe instances than both IC3 and PDR on each benchmark
- Solves just one instance less than the entire virtual best solver from the 2008 competition

SAT modulo SAT

- SAT modulo SAT is not limited to just model checking
- Can be applied to many other types of formulas:
 - Not restricted to just unrolled circuits
 - Can handle partitions of arbitrary formulas
 - ► Can handle tree-structured formulas

SAT modulo SAT

- SAT modulo SAT is not limited to just model checking
- Can be applied to many other types of formulas:
 - Not restricted to just unrolled circuits
 - Can handle partitions of arbitrary formulas
 - Can handle tree-structured formulas
 - Can combine SAT and SMT theories

 The source code for our implementation of IC3, and for the new 'SAT modulo SAT' solver that it runs on, are open source & online at:

www.cs.ubc.ca/labs/isd/Projects/ModularSAT/