Automated Deadlock Verification in Register Transfer Level Designs of Communication Fabrics

Sebastiaan J.C. Joosten
Julien Schmaltz
Automated Deadlock Verification in Register Transfer Level Designs of Communication Fabrics

- Functional core
- Switch

RTL design

Our approach

(candidate) deadlock configurations

Sebastiaan J.C. Joosten
Our approach

- Sound for deadlock freedom / Complete for finding deadlocks
- Fast because:
 - abstract from queues (using Verilog module structure)
 - use off-the shelve SAT solvers
 - find static deadlock configurations (just one state!)
Encoding deadlocks = Encoding persistency

- A dead queue is one that never releases its packet

\[\Diamond \Box (\neg \text{dequeue} \land \text{not_empty}) \]
Encoding persistency

- Persistency can be propagated over the network

\[\diamondsuit a \land \diamondsuit b \rightarrow \diamondsuit \square c \]
Encoding persistency

- Persistency can be propagated over the network
Encoding persistency

- Persistency can be propagated over the network

\[\text{enqueue} \rightarrow \text{not_empty}\]
Automated Deadlock Verification in Register Transfer Level Designs of Communication Fabrics

- Functional core
- Switch

RTL design

Our approach

automatic proof of deadlock freedom

• Find essential properties of the design
• Find restrictions for compositional verification

Sebastiaan J.C. Joosten
Automated Deadlock Verification in Register Transfer Level Designs of Communication Fabrics

- Functional core
- Switch

RTL design

Our approach

automatic proof of deadlock freedom

Sebastiaan J.C. Joosten
Deadlock Verification in Register Transfer Level Designs of Communication Fabrics

This research is funded by NWO, Project 612.001.108, Effective Layered Verification of Networks-on-Chips.

Sebastiaan J.C. Joosten
sjj@ou.nl

Julien Schmaltz
Julien.Schmaltz@ou.nl

Context
- Communication fabrics constitute a key component of multicore processors and systems-on-chip.
- Detection of message dependent deadlocks in communication fabrics is a challenge due to the large number of queues and the distributed character of control.

Motivation
- Verification of deadlock freedom of Register Transfer Level designs of communication fabrics.

Contribution
- Reduce queues to an abstract entity
- Convert deadlock freedom to an SMT instance
- Implemented approach in ACL2
- Approach scales to large fabrics
- Sound but incomplete: false deadlocks may be found

Future work:
- Reduce generation time
- Reduce false deadlocks by adding invariants

Experimental results for deadlock-free networks

<table>
<thead>
<tr>
<th>Instance</th>
<th># q</th>
<th># w</th>
<th>generation</th>
<th>solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 mesh</td>
<td>20</td>
<td>1992</td>
<td>6 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>4x4 mesh</td>
<td>80</td>
<td>5281</td>
<td>42 sec</td>
<td>3 sec</td>
</tr>
<tr>
<td>6x6 mesh</td>
<td>180</td>
<td>13972</td>
<td>866 sec</td>
<td>4 sec</td>
</tr>
<tr>
<td>8x8 mesh</td>
<td>320</td>
<td>24515</td>
<td>4618 sec</td>
<td>4 sec</td>
</tr>
</tbody>
</table>

Experimental results for networks with deadlocks

<table>
<thead>
<tr>
<th>Instance</th>
<th># q</th>
<th># w</th>
<th>generation</th>
<th>solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x2 mesh</td>
<td>28</td>
<td>940</td>
<td>3 sec</td>
<td>0 sec</td>
</tr>
<tr>
<td>4x4 mesh</td>
<td>112</td>
<td>4768</td>
<td>68 sec</td>
<td>1 sec</td>
</tr>
<tr>
<td>6x6 mesh</td>
<td>252</td>
<td>13280</td>
<td>1660 sec</td>
<td>7 sec</td>
</tr>
<tr>
<td>8x8 mesh</td>
<td>448</td>
<td>23872</td>
<td>9148 sec</td>
<td>11 sec</td>
</tr>
</tbody>
</table>