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Abstract—Reactive synthesis supports designers by automat-
ically constructing correct hardware from declarative specifi-
cations. Synthesis algorithms usually compute a strategy, and
then construct a circuit that implements it. In this work, we
study SAT- and QBF-based methods for the second step, i.e.,
computing circuits from strategies. This includes methods based
on QBF-certification, interpolation, and computational learning.
We present optimizations, efficient implementations, and experi-
mental results for synthesis from safety specifications, where we
outperform BDDs both regarding execution time and circuit size.

I. INTRODUCTION

Synthesis is an ambitious design approach: Instead of
checking whether an already constructed system satisfies its
specification, a correct implementation is derived automati-
cally from the specification [3]. Synthesis is also used in rapid
prototyping, automatic repair [9], and program sketching [14].

Existing work often focuses on finding strategies to satisfy
the specification, or only on deciding realizability. However,
computing circuits from strategies is computationally demand-
ing as well. System quality (e.g., circuit size and depth)
imposes additional challenges. Synthesized strategies usually
allow for much implementation freedom, which needs to be
exploited cleverly. Algorithms must also be symbolic (operate
on formulas rather than enumerating states) to achieve scal-
ability. These symbolic algorithms are usually implemented
with BDDs because they offer existential and universal quan-
tification. Recently, SAT-based synthesis algorithms have been
proposed [12], [4] as alternative to BDDs and their scalability
issues. However, these works do not address circuit extraction.

We thus present and compare several SAT- and QBF-
based circuit synthesis algorithms. The basic algorithms are
not new, but we present novel optimizations, combinations,
efficient implementations for safety synthesis problems, and
extensive experiments. This includes methods based on QBF-
certification, computational learning (including the first ap-
plication of incremental QBF solving in synthesis), and in-
terpolation. We achieve the best results by combining ideas
from interpolation [8] with learning [7], thereby outperforming
BDDs both regarding computation time and circuit size.

Related work. It is argued [7] that many circuit synthesis
methods are still outperformed by the simple BDD-based co-
factor approach [3]. The same work [7] also proposes learning-
based techniques, which are implemented with BDDs. This
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yields smaller circuits, but is slower. We show how learning
can be efficiently realized with SAT- and QBF-solvers, and
that this realization can outperform the cofactor approach
both regarding circuit size and computation time. SAT-based
learning is also used in [4]. However, this work only addresses
strategy computation and not circuit synthesis. Jiang et al. [8]
propose interpolation for circuit extraction, and show how
quantifier alternations can be avoided by temporarily treating
outputs as inputs. We combine this idea with learning to
compute interpolants, thereby achieving a speedup of several
orders of magnitude. QBF certification [13] can derive circuits
from a completeness proof of the strategy formula. We show
how this method can be applied efficiently for safety synthesis.

II. PRELIMINARIES

We assume familiarity with propositional logic, SAT- and
QBF-solving (cf. [1]) but repeat the most important concepts.

Basic Notation. A literal is a Boolean variable or its
negation. A clause (cube) is a disjunction (conjunction) of
literals, and a Conjunctive Normal Form (CNF) formula is
a conjunction of clauses. We denote variables vectors with
overlines, corresponding cubes in bold, and propositional
formulas with capital letters. E.g., x is a cube over the variable
vector x = (x1, . . . , xn), and F (x) is a formula over x. If the
variables are irrelevant, we simply write F instead of F (x).

Decision Procedures. A SAT-solver checks if a CNF is
satisfiable. We write (sat,x) := PSAT(F (x)) for a SAT-
solver call, where sat is assigned true iff the CNF F is
satisfiable, and x is a satisfying assignment given as cube
over x. Let x be a cube. We write y := PCORE(x, F ) to
denote the extraction of an unsatisfiable core: Given that x∧F
is unsatisfiable, y will be a sub-cube of x such that y ∧ F
is still unsatisfiable. Let A(x, y) and B(x, z) be two CNFs
such that A ∧ B is unsatisfiable, and y and z are disjoint.
An interpolant is a formula I(x) such that A ⇒ I ⇒
¬B. Interpolants can be computed from the unsatisfiability
proof of A ∧ B [6]. We denote this computation by I :=
INT(A,B). A Quantified Boolean Formula (QBF) is a formula
Q1x .Q2y . . . F (x, y, . . .), where Qi ∈ {∀,∃} and F is a
CNF. The quantifiers have their expected semantics. A QBF-
solver checks if a QBF is satisfiable. We write (sat,a) :=
QSAT(∃a .Q1x .Q2y . . . F (a, x, y, . . .)) for QBF-solver calls.
The satisfying assignment a can only be extracted for variables
that are quantified existentially on the outermost level. Finally,
we write b := QCORE(a,∃a .Q1x .Q2y . . . F (a, x, y, . . .)) to
denote the extraction of an unsatisfiable core.
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Fig. 1. Implementation of a strategy. (FF = flip-flops).

Circuit Synthesis. A strategy is a formula S(x, i, o, x′) such
that ∀x, i .∃o, x′ . S, where x, i, o are state-, input-, and output-
bits, respectively, and x′ is the next-state copy of x. Intuitively,
for a given state x and input i, S defines allowed output-values
o and next states x′: o,x′ is allowed iff x∧ i∧o∧x′ satisfies
S. Let u = x∪i and v = o∪x′. An implementation of S(u, v)
is a function f : 2|u| → 2|v| such that ∀u . S(u, f(u)). This
function can be implemented in hardware as shown in Fig. 1.

Strategies for safety specifications are particularly simple:
given a winning region W (x) from which the specification
can be enforced, and a complete1 and deterministic2 transition
relation T (x, i, o, x′) defining the state transitions, the strategy
must pick values for o such that the next state is in W again,
i.e., S =

(¬W (x)
) ∨ (T (x, i, o, x′) ∧W (x′)

)
. We only need

to synthesize circuits for o, and define x′ using T .

III. CIRCUIT SYNTHESIS ALGORITHMS

A. QBF-Certification

An implementation can be computed as Skolem functions3

for the signals o and x′ in the QBF ∀x, i .∃o, x′ . S(x, i, o, x′).
QBFCert [13] computes such functions using DepQBF [10].

Optimizations for Safety Specifications. We need to find
Skolem functions for o in ∀x, i .∃o, x′ .(¬W )∨(T ∧W ′). Yet,
we achieve better results with QBFCert by computing Her-
brand functions4 in the unsatisfiable QBF ∃x, i .∀o .∃x′ .W ∧
T∧¬W ′. This works because T is deterministic and complete.
In our setting, W is in CNF, so the conjunctions in the latter
formulation are simpler to realize in CNF. Also, the clause
resolution proofs required for unsatisfiable QBFs are usually
less expensive than the cube resolution proofs for satisfiable
ones. Still, the intermediate files produced by QBFCert can
grow large (hundreds of GB). One reason is that a straightfor-
ward CNF encoding of ¬W ′ requires many auxiliary variables
and clauses. We could reduce the size of the files by up to a
factor of 30 by learning a CNF representation of ¬W ′ without
introducing auxiliary variables using the following algorithm:

1: procedure NEGLEARN(W ′), returns: ¬W ′
2: N ′ := true
3: while sat, with (sat,x) := PSAT(W ′ ∧N ′) do
4: N ′ := N ′ ∧ ¬PCORE(x,¬W ′)
5: return N ′

1I.e., ∀x, i, o . ∃x′ . T (x, i, o, x′). T can always be made complete: if some
input is not allowed by the original specification, T can allow for arbitrary
outputs; if some output is not allowed originally, T can visit an unsafe state.

2I.e., ∀x, i, o, x1
′, x2

′ .(T (x, i, o, x1
′)∧ T (x, i, o, x2

′))⇒ (x1
′ = x2

′).
3Skolem functions define existentially quantified variables as a function

over the universally quantified ones such that the QBF becomes true.
4Herbrand functions define universally quantified variables as a function

over the existentially quantified ones such that the QBF becomes false.

As long as N ′ is not yet ¬W ′, i.e., W ′∧N ′ is still satisfiable,
we refine N ′ with a clause that excludes the cube x witnessing
this insufficiency. By taking the unsatisfiable core, the clause
eliminates also other counterexamples. Since clauses are only
added, NEGLEARN is suitable for incremental SAT solving.

Using incremental SAT solving, we also simplify W by
removing literals and clauses as long as W does not change
semantically. This is applied to all following methods as well.

B. QBF-Based Learning
In [7], several learning-based circuit synthesis algorithms

are presented and implemented using BDDs. Here, we discuss
an efficient implementation of the CNF-learning algorithm
using a QBF-solver. Since QBF-solvers operate on CNFs, this
algorithm is particularly suitable. It can be defined as follows.

1: procedure SYLEARNQBF(S(x, i, o, x′))
2: u := x ∪ i, va := v := o ∪ x′
3: for v ∈ v do
4: va := va\{v}, ve := v\va, fv := true, R := v∧¬S
5: while sat, with (sat,u):=QSAT(∃u .∀va .∃ve . R) do
6: u2 := QCORE(u,∃u .∀oa .∃oe, x′ .¬v ∧ ¬S)
7: fv := fv ∧ ¬u2, R := R ∧ ¬u2

8: DUMPCIRCUIT(v, fv), S := S ∧ (v ↔ fv)

SYLEARNQBF builds up circuits in fv for one v ∈ v after
the other. Initially, fv = true, i.e., the circuit always outputs
true. While there exists an input u for which v must be false
(the QBF in line 5 is satisfiable), fv is refined with a clause
that maps u to false. By taking the core in line 6, other inputs
are also mapped to false as long as false is allowed by S.
The final solution fv is dumped, and S is refined with the
implementation of v before the next circuit is computed. The
final fv are in CNF, so the circuits have a depth of only two.
Even after optimizations and mapping to standard cells, the
depth usually remains low [7], which enables fast clock rates.

Once ¬S is available in CNF, the algorithm only adds
clauses to existing CNFs (i.e., to R and fv). Only for the
resubstitution in line 8, a CNF encoding of ¬fv is needed.

Optimizations for Safety Specifications. As in Sect. III-A,
¬S is defined as W ∧T ∧¬W ′. This requires a CNF encoding
of ¬W ′. While computing ¬W ′ with NEGLEARN is beneficial
for QBFCert, it does not pay off for SYLEARNQBF. Hence,
we build a CNF for ¬W ′ with one auxiliary variable per clause
of W ′. Recently, the QBF solver DepQBF was equipped with
incremental solving capabilities [11]. SYLEARNQBF is well
suited for incremental solving. We use two solver instances for
line 5 and 6 respectively. For each v ∈ v, a new incremental
session is started. During the inner loop, we only add clauses
to the former solver. The QBF of the latter even stays the same.
DepQBF supports unsatisfiable cores natively. The resulting
cores are small but not necessarily minimal, so we iterate over
the remaining literals to obtain even smaller cores because
(slightly) smaller cores typically mean (much) less iterations.

C. Interpolation
Jiang et al. [8] present two interpolation-based approaches

to synthesize circuits for one v ∈ v after the other. The first one
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expands S over v. We consider this intractable in our setting.
The second approach circumvents the quantifier alternation
and expansion by temporarily treating output signals as inputs:

1: procedure SYINT(S(x, i, o, x′))
2: d := x ∪ i ∪ o ∪ x′, r := ∅
3: for v ∈ v do
4: d := d \ {v}, r := r ∪ {v}
5: r1, r2, r3, r4 := create4FreshCopies(r)
6: M1(d, r1, r2) := (S ∧ v)[r←r1] ∧ (¬S ∧ ¬v)[r←r2]
7: M0(d, r3, r4) := (S ∧ ¬v)[r←r3] ∧ (¬S ∧ v)[r←r4]
8: fv(d) := INT(M1(d, r1, r2),M0(d, r3, r4))
9: DUMPCIRCUIT(v, fv), S := S ∧ (v ↔ fv)

In each iteration, d contains all variables on which the imple-
mentation of the current v ∈ v can depend, and r contains the
rest. For v = (v1, . . . , vn), v1 can depend not only on u but
also on (v2, . . . , vn), v2 can depend on u and (v3, . . . , vn),
etc. Yet, when the circuits for all v ∈ v are built together,
the signals v effectively depend on u only. The formulas M1

and M0 characterize the d-vectors for which v must be set
to true and false respectively. The syntax [r← ri] means
that the variables r are renamed by fresh copies ri. Line 8
computes an interpolant between M1 and M0. The property
M1 ⇒ fv ⇒ ¬M0 of the interpolant ensures that (a) fv is
true whenever it must be true, and (b) whenever fv is true
then it does not have to be false. The renaming of the variables
r has the effect that fv can only depend on the shared signals d.

Optimizations for Safety Specifications. In order to avoid
double-negations of W in S by negating S, we compute

M1 := (T ∧W ′ ∧ v)[r←r1] ∧ (T ∧ ¬v ∧W ∧ ¬W ′)[r←r2]
M0 := (T ∧W ′ ∧ ¬v)[r←r3] ∧ (T ∧ v ∧W ∧ ¬W ′)[r←r4]

Note the difference to a plain substitution of S = T ∧ (¬W ∨
W ′) and ¬S = T ∧W ∧¬W ′ in SYINT: (¬W ∨W ′) reduces
to W ′ due to the conjunction with W from ¬S. This is
fortunate because disjunctions are expensive in CNF. Since
SYINT allows vi to depend on other vj with j > i, it is
sensitive to the variable order, both regarding execution time
and circuit size. We exploit this insight with the following
optimization. Once vi has been synthesized, we analyze on
which vj it actually depends. If vi does not depend on a
particular vj , then vj is allowed to depend on vi. This gives an
increased flexibility without introducing circular dependencies.
We simplify all computed interpolants with ABC5 [5].

D. SAT-Based Learning

Here, we use SYINT but with a special interpolation proce-
dure (called in line 8) that applies computational learning:

1: procedure INTLEARN(M1(d, r1, r2), M0(d, r3, r4))
2: f := true
3: while sat, with (sat,d) := PSAT(M0 ∧ f) do
4: f := f ∧ ¬PCORE(d,M1)
5: return f

5We use the command sequence strash; refactor -zl; rewrite
-zl; up to 3 times, followed by dfraig; rewrite -zl; dfraig;.

As long as there exists some d for which f is true but must be
false, i.e., M0∧f is satisfiable, we refine f with an additional
clause that excludes the cube d witnessing this insufficiency.
By taking the unsatisfiable core, other inputs are also mapped
to false as long as false is allowed.

Optimizations. We use two SAT solver instances, one for
line 3 and one for line 4. A new incremental session is started
upon each call of INTLEARN. Using activation variables to
set v-variables to true, false, or equal to their renamed copy,
we can even use one incremental session throughout the entire
SYINT procedure. However, this did not result in significant
improvements in our experiments. All optimizations discussed
in Sect. III-C can be applied. We also extended the variable
dependency optimization further: The CNF T often contains
many auxiliary variables that are defined uniquely by other
signals of x, i, o. If some of these auxiliary variables depend
only on d, then we allow f to depend on them as well by
including them into d. This can be beneficial because these
auxiliary variables often capture the important connections
between the variables x, i, o. When dumping the circuits,
we add additional gates that define the referenced auxiliary
variables as done by T . We also implemented a second
minimization pass that tries to remove every clause and literal
from every CNF f after SYINT is done. However, this only
results in minor circuit size improvements (around 20%).

IV. EXPERIMENTAL RESULTS

A. Implementation

We implemented the discussed methods and optimizations
in the SAT-based synthesis tool Demiurge6 [4]. Demiurge
synthesizes AIGER7 circuits from safety specifications and
complies with the SyntComp8 competition rules. The archive
of version 1.1.0 contains way more experiments than reported
here. E.g., for the SAT-based learning approach alone we
implemented 24 variants. Here, we only compare interesting
versions, summarized in the following table.

Name Engine Algorithm
BDD CuDD 2.4.2 Cofactor-Based [3]
QC QBFCert 1.0 QBF-Certification (Sect III-A)
QL DepQBF 3.02 SYLEARNQBF (Sect III-B)
SI MathSAT 5 SYINT (Sect III-C)
SL Lingeling ats SYINT+INTLEARN (Sect III-D)

SLN Lingeling ats SL without dependency opt.

BDD serves as baseline for our comparison. It was created by
students and won a competition held in a synthesis lecture.
It implements a cofactor-based approach [3], uses dynamic
variable reordering, and forced reorderings at certain points.
QC, QL, SI, and SL implement the methods from the previous
section with all optimizations. SLN is used to highlight the
benefits of the dependency optimization. All our methods
use ABC5 [5] to minimize the final circuits further. SI uses

6http://www.iaik.tugraz.at/content/research/design verification/demiurge/.
7http://fmv.jku.at/aiger/
8http://www.syntcomp.org/
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MathSAT, which supports several interpolation schemes. We
use McMillan’s scheme (see [6]), but the performance is
similar with other schemes. We also implemented our own in-
terpolation engine by processing proofs produced by PicoSat.
However, the proof files grew prohibitively large.

The limitations of our implementation are that it can only
handle safety specifications in AIGER format, it can produce
circuit only in AIGER format, and it runs under Linux only.

B. Benchmarks
We use the same benchmarks as [4], but report here only

results for the interesting ones. The benchmarks ambaij
specify an arbiter for ARM’s AMBA AHB bus [3], where
i is the number of masters, and j ∈ {c,b,f} indicates the
method used to transform the original benchmark [3] into
our input format [4]. The benchmarks genbufij, again with
j ∈ {c,b,f}, define a generalized buffer [3] connecting i
senders to two receivers. The specifications addi and multi
denote i-bit combinational adders and multipliers.

C. Results and Discussion
Fig. 2 summarizes our results with cactus plots. The y-axis

gives the execution time or circuit size, and the x-axis gives
the number of benchmarks that can be solved within this time
or size limit. Concrete numbers and more plots can be found in
an extended version [2] of this paper and in the downloadable
archive. All experiments were performed on an Intel Xeon
E5430 CPU running a 64 bit Linux at 2.66 GHz. The memory
limit was set to 8 GB, the time-out to 10 000 seconds. All
circuits have been successfully model checked.

Method SL achieves the best results both regarding execu-
tion time and circuit size. The dependency optimization (SL
vs. SLN) is very beneficial for add and mult, but slower
for amba and genbuf. QC, QL, and SI do not perform so
well. Using incremental QBF solving in QL gives an average
speedup of factor 3.5. The speedup factor compared to using
the QBF preprocessor Bloqqer is even 21. Still, QL is not very
competitive. BDD is much better, but still outperformed by SL.
In particular, SL outperforms SI by many orders of magnitude.
Hence, our idea of implementing the interpolation procedure
with computational learning is very beneficial. Execution time
and circuit size are not in conflict but rather correlate. The time
for optimization with ABC is usually insignificant, but only
yields moderate size reductions (around 25 % for SL). Using
method SLN, Demiurge won a track of SyntComp 2014.
One reason was the small circuit size compared to other tools.

V. CONCLUSION

We compared several SAT- and QBF-based methods to
synthesize circuits from strategies, and presented optimizations
and efficient implementations for safety specifications. Our
SAT-based learning method combines the quantifier elimina-
tion approach by Jiang et al. [8] with computational learning
as proposed by Ehlers et al. [7], and outperforms BDDs both
regarding execution time and circuit size in our experiments.

Future research includes preprocessing for incremental QBF
solving, exploiting unreachable states, and parallelization.

(a) Execution time for amba and genbuf.

(b) Execution time for add and mult.

(c) Circuit size for all benchmarks.

Fig. 2. Cactus plots summarizing our performance evaluation.
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