A Program Transformation for Faster Goal-Directed Search

Akash Lal and Shaz Qadeer
Microsoft Research
Email: {akashl, qadeer}@microsoft.com

Abstract—
A goal-directed search attempts to reveal only relevant information needed to establish reachability (or unreachability) of the goal from the initial state of the program. The further apart the goal is from the initial state, the harder it can get to establish what is relevant. This paper addresses this concern in the context of programs with assertions that may be nested deeply inside its call graph—thus, far away interprocedurally from main. We present a source-to-source transformation on programs that lifts all assertions in the input program to the entry procedure of the output program, thus, revealing more information about the assertions close to the entry of the program. The transformation is easy to implement and applies to sequential as well as concurrent programs. We empirically validate using multiple goal-directed verifiers that applying this transformation before invoking the verifier results in significant speedups, sometimes up to an order of magnitude.

I. INTRODUCTION

Automated program verification attempts to establish reachability (or unreachability) of a goal from the initial state of the program. The goal is usually expressed as the violation of an assertion in the program. Modern automated program verifiers are typically goal-directed, i.e., they attempt to use program information parsimoniously in order to establish (un)reachability of the goal as efficiently as possible. The challenge of distinguishing relevant from irrelevant and the difficulty of the verification problem increases as the distance of the goal from the initial state becomes larger. This paper addresses this challenge for programs with assertions that may be nested deeply inside its call graph—thus, far away interprocedurally from the program entry point.

Deep assertions are natural in large programs. For instance, in our benchmarks (Section VI), the static nesting depth of assertions (i.e., length of an acyclic path in the call-graph from main to a procedure containing an assertion) ranges from 4 to 38 (Fig. 6) and the depth observed on real error traces ranges from 5 to 15 (Fig. 7). At such depths, a naive strategy of inlining procedures to expose control locations of the assertions is infeasible for analysis because of the exponential cost of inlining.

This paper presents an approach for lifting all assertions to the entry procedure of the program, thus revealing more information about the assertions close to the initial state of the program. Our method is a source-to-source transformation that produces output whose size is a small constant times the size of the input, and applies to both sequential and concurrent programs. We empirically validate using multiple verifiers that applying this transformation before feeding a program to a verifier results in up-to-order-of-magnitude speedups.

Our transformation is based on the observation that any execution that descends into a call to a procedure P either fails inside the call (and doesn’t return) or returns from it without failing. We can convert assert statements inside P to assume statements if (1) we make a copy of the body of P, (2) instrument call sites of P to guess whether the call will fail, and (3) either make the call in the success case or jump to the copy in the failure case. This eliminates the need for making a call in order to reach the control location of the assertion. Further, we only need to make a single copy of the body of P regardless of the calling context, because in the failure case, control does not need to return to the caller. We also lift assertions outside loops based on the observation that in any execution only the last iteration of the loop (in that execution) can fail. In the presence of concurrency, we exploit the observation that at most one thread can fail.

Contributions. The contributions of this paper are: (1) a novel program transformation that optimizes running time of goal-directed verifiers for programs with deep assertions; and (2) an extensive evaluation over real software that totals over a month of verification time, and shows up to an order of magnitude speedup for two very different verifiers.

Organization. Section II covers background and related work on goal-directed verification techniques. Section III presents an overview of our transformation. Sections IV and V formally present the transformation for a simplified programming language. Section VI presents the evaluation.

II. BACKGROUND

In order to describe the intuition behind our program transformation, we first discuss some goal-directed verifiers that are based on procedure inlining strategies. We choose these kinds of verifiers for two reason: first, they form a part of our evaluation (Section VI) and second, some inlining strategies have been proposed to specifically address deeply-nested assertions, thus, we compare the effect of our transformation against them.

Bounded model-checking tools (e.g., CBMC [6], [5]) are based on an eager inlining strategy that inlines all procedure calls up to a certain depth to produce a single procedure with all assertions inside it. Eager inlining fails for moderate to large programs because the inlining can result in an exponential explosion, even for small bounds. For instance, in many
of the benchmarks used in this paper, eager inlining ran out of
memory even before the analysis was started.

To avoid the cost of eager inlining, there are several pro-
posed* lazy inlining strategies that inline procedure on-demand
and in a goal-directed manner. Techniques such as structural
abstraction [2], inertial refinement [21], and stratified inlining
[14] are all forward-inlining strategies, described abstractly by
the method FWD of Alg. 1.

Forward Inlining. FWD takes a partially-inlined program P
as input. (One can think of P as a single procedure containing
some procedure calls.) Initially, P is just the body of main.
FWD checks if P contains a bug without going through a
procedure call (line 2). If not, then it picks a relevant procedure
call made by P (line 7), inlines the body of the callee (line 8)
and repeats. The choice of picking relevant calls is guided using
procedure summaries (that are either pre-computed or inferred on the fly): if no error trace in P_{over} goes through a
call c then this proves that no error trace of the original
program goes through c. A default summary based on mod-set
information, i.e., a procedure can arbitrarily modify variables
that it can touch, can always be used. FWD, even with default
summaries, has been shown to be much better than eager
inlining in some contexts [2], [14]. Further, one can treat loops
as tail-recursive procedures to extend FWD to perform loop
unrolling as well.

FWD raises two technical concerns: first, what do procedure
summaries mean in the presence of assertions, and second,
what does it mean to query P_{over} for error when it may not
even contain an assertion? Both these question are answered
using an error-bit instrumentation. As pre-processing, we add
a Boolean global variable err to the program; it is set to true
if and only if an assertion fails; and all procedures immediately
return when err is true. Then procedure summaries can use
err to distinguish failing executions from non-failing ones.
Moreover, we simply query P_{over} for a trace that ends with
err set. We note that the error-bit instrumentation results
in a program with the only assertion in main. However, it
does not reveal any information about the original assertions
themselves.

We illustrate FWD using the example in Fig. 1. This program
has two global variables s and g. The entry procedure main
initializes s and g and calls P_1. The procedure P_1 is the first

![Algorithm 1 Forward and Alternating Inlining Strategies](image)

Fig. 1: An example program

in a chain of procedures P_1, \ldots, P_n each of which (except the last) calls its successor twice. P_n contains a nondeterministic loop that calls Open and Close in alternation. The assert statement inside Close cannot fail.

Suppose we wish to explore all behaviors of this program up to R loop iterations. In this case FWD will inline $O(2^n) \cdot O(R)$ procedures to conclude unreachability (under R) when using default summaries because no call will be deemed irrelevant. This number comes down to $O(1)$ when FWD has the following (inductive) procedure summaries available for each P_i: (old(g) == 1 && old(s) == 0) ==> (s == 0 && !err), where old(v) refers to the value of v
at the beginning of the procedure. This says that if g and s
are 1 and 0, respectively, at the beginning of P_i then when
P_i returns, the value of s is still 0 and err has not been set.
Clearly, given this summary for P_1, FWD can conclude the
absence of assertion failure just looking at main.

Alternating Inlining. Other inlining strategies include both
backward and forward search [1, Section 4.2] [22], captured
abstractly using ALT in Alg. 1. It starts with P as a procedure
with an assertion. It conducts a forward search (line 2) to find
an error trace from the initial state of P. If such a trace is
found, it picks a caller of P, inlines P inside it and repeats
until the search reaches main. An interesting remark is that
ALT does not require the error bit instrumentation. This is
because it starts with the assertion that it wishes to violate, and
all procedures inlined during the call to FWD are constrained to
not fail. Thus, all summary computation can be done assuming
fail-free executions.

On Fig. 1, ALT will inline $O(2^n) \cdot O(R)$ procedures when
using default summaries. However, using just the (inductive)
fact that $g == 1$ is a valid precondition of each P_i, this
number comes down to $O(1)$. This is because when the search
is at procedure P_n, then under this precondition, ALT can
already prove the absence of assertion violations (line 3)
without enumerating the calling contexts of P_n.

Thus, different inlining strategies can involve different
amount of inlining, and put different amount of stress on
invariant and summary generation.

III. OVERVIEW OF OUR PROGRAM TRANSFORMATION

In this section, we informally describe our novel contribu-
tion, a semantics-preserving source-to-source transformation
that lifts all assert statements in a program into its entry
procedure. As explained in Section I, our transformation
is based on the simple observation that any execution that
descends into a call to a procedure P either fails inside the
call or returns from it. We will convert all assert statements
inside \(P \) to assume statements and simulate failures in the body of \(P \) by nondeterministically jumping to a copy of the body of \(P \) at a call site.

Fig. 2 shows, as a control-flow graph, the result of our transformation on the \(\text{main} \) procedure of our running example from Fig. 1. The bodies of all other procedures remain the same except for \(\text{Close} \) in which \(\text{assume} \) \(s > 0 \) is converted to \(\text{assume} \) \(s > 0 \). The execution of transformed \(\text{main} \) begins in the top-left block with the initialization of the global variables. Next, it can non-deterministically choose to call \(P1 \) or jump to a copy of the body of \(P1 \). The two calls to \(P2 \) in the body of \(P1 \) are similarly instrumented, and so on.

The instrumentation of the body of \(Pn \) is interesting because it contains a loop. In addition to lifting assertions out of procedure calls, we would also like to lift them out of loops. Our insight is that it suffices to allow only the final iteration of the loop to fail. Therefore, we can make a copy of the loop body, convert assert statements inside the loop to assume statements, and then nondeterministically execute the copy of the body after the loop at most once.

It is worth noting that in Fig. 2, we did not make a copy of the body of procedure \(\text{Open} \). We could do this optimization because it was possible to statically determine that a call to \(\text{Open} \) cannot fail.

When \(\text{FWD} \) is applied to the transformed program, it only inlines \(O(1) \) number of procedures to conclude \(\text{CORRECT} \). (In particular, it only needs to inline the call to \(\text{Open} \) from the new \(\text{main} \).) The reason is that the value flow between the initialization of \(g \) and the conditional expression guarding the call to \(\text{Open} \) is apparent at the top-level without any intervening loops and calls, even under default summaries. In this case, inlining the call to \(\text{Open} \) is sufficient to discharge the assertion. Thus, no summary or invariant generation was required for this example after our transformation. This example provides intuition for the speedup on programs with an unreachable goal, however, pruning infeasible paths also translates to finding the goal faster when reachable. This is confirmed by our experiments.

While we have chosen to evaluate our program transformation against lazy inlining strategies (as each address the issue of deep assertions), our approach is more general. It is not tied to a particular analysis. It simply produces a new program that can be fed to any verifier, with the hope of speeding up the verifier. For instance, our evaluation uses the \text{YOGI} verifier for C programs that is based on predicate-abstraction and doesn’t directly implement an inlining strategy. This point is further emphasized when dealing with concurrent programs, as we are not aware of inlining strategies that directly apply to concurrent programs.

Remark: Here we note that our approach is inspired by “Phase 2” of the RHS algorithm [19], [20]. RHS is the standard tabulation-based algorithm for interprocedural dataflow analysis. It works in two phases: the first phase computes procedure summaries bottom-up in the call graph. The second phase replaces procedure calls with the summaries and deletes return edges. This transformation is similar to ours, however, we do not use summaries and our target is goal-directed program verification, not dataflow analysis. Moreover, our transformation has special handling for loops and concurrency.

IV. A SIMPLE PROGRAMMING LANGUAGE

We present a core programming language, similar to Boo- gie [3], for formalizing our program transformation. The syntax of the language is presented in Fig. 3. A program \(P \) is a tuple comprising a set of global variable declarations \(gs \) and a set of procedure declarations \(ps \) that is assumed to contained a distinguished procedure called \(\text{main} \). Each procedure is a tuple comprising its name \(x \), input parameters \(is \), output parameters \(os \), local variables \(vs \), and a statement \(st \). As notation, for a procedure \(f = (x, is, os, vs, st) \), let \(\text{name}(f) = x \), \(\text{input}(f) = is \), \(\text{output}(f) = os \), \(\text{locals}(f) = vs \), and \(\text{code}(f) = st \). We assume, without loss of generality, that \(\text{main} \) is never called and it does not have output variables.

A statement \(st \) is a “;”-separated list of a label \(l \) and one of the following—assert, assume, assignment, havoc, goto, loop, call, async, or yield. In our presentation, we ignore the syntax of expressions and types and assume the existence of a type checker for validating that the program is well-formed. Further, we may sometimes omit writing the label of a statement, in which case it is assumed to have a fresh label that is not used elsewhere in the program. Statement labels must be unique and cannot be re-used.

The control flow in our language is straightforward. The statement goto \(ls \) causes control to non-deterministically jump to some label in \(ls \); the type checker ensures that the labels exist in the same procedure or enclosing loop. For all other statements, control implicitly moves to the next statement by following the sequential composition (“;”) operator. If there is no next statement, then execution of the statement terminates.

assert \(e \) fails if \(e \) evaluates to false in the current state and otherwise leaves state unchanged. assume \(e \) blocks if \(e \)
evaluates to false in the current state and otherwise leaves state unchanged. \(x := es \) is a parallel assignment that evaluates \(es \) in the current state and updates variables \(x \) to the result.

\(\text{havoc } x \) puts nondeterministically chosen values into each variable in \(x \). \(\text{loop } st \) is a nondeterministic structured loop and executes \(st \) zero or more times. \(\text{call } x := x(es) \) is call to procedure \(x \) with inputs \(es \); the output of the procedure call is received in variables \(x \). \(\text{async } x(es) \) is an asynchronous call to procedure \(x \) with inputs \(es \); the call is executed in a new thread that executes concurrently with all existing threads. The multithreading model in our language is cooperative and nondeterministic; \(\text{yield} \) yields control to a nondeterministically chosen thread.

For convenience, we also use a statement
\[\text{if}(\ast)\text{then}\{st1\}\text{else}\{st2\} \]
that denotes non-deterministic branching between two statements. We use it as syntactic sugar over using \(\text{goto} \) statements.

V. PROGRAM TRANSFORMATION

We begin by presenting our transformation for sequential programs in Fig. 4 and generalize it to concurrent programs in Fig. 5. We use \(\text{skip} \) and \(\text{die} \) to compactly denote \textit{assume} \textit{true} and \textit{assume} \textit{false}, respectively. Our transformation depends on an initial renaming of variables and labels in the program to make them globally distinct. This initial renaming is standard and we do not present it here. Further, for a statement \(st \), let \(\neg st \) be the same statement where all occurrences of \textit{assert} \textit{e} in \(st \) are converted to \textit{assume} \textit{e}.

A. Transforming sequential programs

Fig. 4 describes three transformations: \(\left[_\right]_{\text{sim}} \) for statements, \(\left[_\right]_{\text{proc}} \) for procedures and \(\left[_\right]_{\text{prog}} \) for programs. First, note that the transformation of a procedure simply disables all assertions in the procedure. The transformation on a program leaves the set of global variables unchanged and disables assertions in all procedures except \(\text{main} \). The main procedure is transformed by absorbing the bodies of all other procedures (along with their input, output and local variables) and applying the statement transformer on them. It is easy to show that \(\left[P\right]_{\text{prog}} \) can only have assertions in \(\text{main} \).

Let us now look at the statement transformer \(\left[_\right]_{\text{sim}} \). It is non-trivial only for procedure calls and loops. It transforms a procedure call of \(x \) to a non-deterministic branch. The \(\text{then} \) branch simulates an execution where the procedure call succeeds. In this case, the call is left untouched. However, note that \(x \) does not have assertions in the transformed program, thus a call to it cannot fail. The \(\text{else} \) branch simulates an execution where the procedure call fails. In this case, we simply jump to \(x^{\text{en}} \) where a copy of the body of \(x \) resides. Note the use of \(\text{die} \) in the \(\left[_\right]_{\text{prog}} \) Transformation. This prevents the execution of, say, \(x_2 \)’s body to fall through onto the body of \(x_3 \). Thus, a jump to the body of a procedure cannot ever return (but may fail).

The statement transformation for loops works by first peeling off the last iteration of the loop. (\(\text{loop } st \) is equivalent to \(\text{loop } st; \text{if}(\ast)\text{then}\{st\}\text{else}\{\text{skip}\} \). Next, the new loop’s body is not allowed to fail (\(\neg st \)), because only the last iteration of a loop can fail. The statement transformer is applied recursively to the last iteration.

B. Transforming concurrent programs

The transformation described in the previous section, although adequate for lifting all assertions to the entry procedures of all threads, is inadequate for lifting all assertions to just the \textit{main} block of the initial thread. This section extends the transformation described earlier to achieve this goal.

Fig. 5 defines the statement transformer for \textit{yield} and \textit{async} procedure calls. It also redefines the program transformation. The rest is borrowed over from Fig. 4. The main insight behind these transformations is that any erroneous execution has exactly one assertion failure which stops the execution. Therefore, it suffices to allow at most one thread, either initial or dynamically-created, to fail. The start procedure of a dynamically-created thread is one of a finite number of procedures that are targets of asynchronous procedure calls.

We introduce fresh constants including the special constant \(nil \) and a constant \(c_x \) for each procedure in the input program with name \(x \); these constants are assumed to be distinct from each other. We also introduce a fresh global variable \(\text{flag} \) whose value is one of these freshly introduced constants; this variable is initialized to \(nil \). During the execution of the transformed
program its value changes at most once from \textit{nil} to some constant c_x. The final value of $flag$, if different from \textit{nil}, represents the entry procedure of the potentially failing thread.

The transformation of an asynchronous call $async \ x(es)$ is a non-deterministic choice. One choice is to keep the asynchronous call, but to a procedure that cannot fail (recall the procedure transformation from Fig. 4). The other choice is to atomically update $flag$ from \textit{nil} to c_x, which simulates the creation of a failing instance of x. (The failing instance executes in the entry procedure of the transformed program, discussed later in program transformation rule.) Blocking on the condition $flag = \textit{nil}$ ensures that at most one failing instance is created. We use additional global variables a_v (where v is an input argument to some procedure) for storing the arguments of the failing thread instance.

The $[\cdot]_{\text{prog}}$ transformation is more sophisticated. It works by creating a new procedure, called newmain that is understood to be the entry procedure of transformed program. It consists of the bodies of all other procedures, including $main$. It starts by initializing $flag$ to \textit{nil}. Next, it decides if the $main$ thread is the one that fails; if so, it jumps to $main$. Otherwise, it spawns $main$ as a separate thread (which cannot fail) and non-deterministically jumps to a location l_x for some procedure x. The location l_x waits for $flag$ to be set to c_x, grabs input arguments from a_v variables, and jumps to the body of x.

C. Correctness

Let P be a program where all variables and labels are globally distinct. The most important property of our transformation is that it is failure-preserving. Therefore, verifying the original program is equivalent to verifying the transformed program.

Theorem 5.1: P fails an assertion if and only if $[P]_{\text{prog}}$ fails an assertion.

The following theorem states that we succeeded in our objective of lifting all assert statements out of loops and procedures.

Theorem 5.2: In $[P]_{\text{prog}}$, no procedure other than the entry procedure can have assertions. Further, even loop statements in the entry procedure cannot have assertions.

Next, we state a property about the compactness of our transformation. Let $|P|$ denote the size of the program P. The loop nesting depth of a program is defined recursively as follows.

$$LND(ps) = \max\{LND(p) \mid p \in ps\}$$

$$LND(x, is, os, vs, st) = LND(st)$$

$$LND(st_1; st_2) = \max(LND(st_1), LND(st_2))$$

$$LND(l; \text{loop st}) = LND(st) + 1$$

$$LND(_) = 1$$

Theorem 5.3: $|P|_{\text{prog}} = |P| \times (LND(P) + c)$ for a small constant c.

Finally, our transformation enjoys the desirable property that if the input program is recursion-free and has only structured loops, then so is the output program.

Theorem 5.4: If P is recursion-free and each procedure has an acyclic control-flow graph then $[P]_{\text{prog}}$ is recursion-free and each procedure has an acyclic control-flow graph.

VI. Evaluation

We refer to the transformation of Section V as the \textit{deep-assert} (DA) instrumentation. We conducted extensive experiments to evaluate its effect on the running time of two different verifiers:

1) \textsc{Corral} [14] is an SMT-based verifier that accepts \textsc{Boogie} programs [16] as input. It consists of an outer loop of abstraction refinement. Inside the loop, it verifies a program using either \textsc{Fwd} or \textsc{Alt} of Alg. 1, based on stratified inlining [14] and alternating inlining [22], respectively.

2) \textsc{Yogi} [4], [10] is a verifier for C programs. It alternates between test generation (for proving “reachability” information) and automated predicate abstraction (for proving “unreachability” information).

We chose \textsc{Yogi} because: first, it currently uses the error-bit instrumentation (Section II). Second, \textsc{Yogi} has been highly optimized over several years of research and development [18], [11], [4], [10], thus, any performance improvement is considered significant. Third, it is a “third-party” tool; we were never a part of the design or implementation of \textsc{Yogi}.

Let SI and AT refer to \textsc{Corral} with stratified inlining and alternating inlining, respectively, and let SI+DA refer to applying our deep-assert transformation followed by running \textsc{Corral} with stratified inlining. Note that once the deep-assert transformation is executed then using SI or AT is identical as all assertions would be in \textit{main}.

\textsc{Corral} uses \textsc{Houdini} [9] for generating program invariants and procedure (and loop) summaries. Let SI+H, AT+H and SI+DA+H refer to configurations when \textsc{Houdini} is enabled. \textsc{Houdini} requires invariant templates to be supplied by the user. Invariant generation in \textsc{Yogi} is fully automated.

\textsc{Corral} and \textsc{Yogi} use different IR representation for programs. The implementation of the deep-assert instrumentation for \textsc{Corral} was 969 lines of C# code\(^1\) and for \textsc{Yogi} was 166 lines of OCaml code.

All experiments were conducted on a server class machine with two Intel(R) Xeon(R) processors (16 logical cores) executing at 2.4 GHz with 32 GB RAM. Different verification instances were executed in parallel, with at most 16 instances (one per core) executing in parallel at any given time.

\textit{Static Driver Verifier.} Our first set of experiments is using the Static Driver Verifier (SDV) [17]. SDV is a commercial-grade tool offered by Microsoft to third-party driver developers. We collected a set of real device drivers that have been historically challenging for SDV, shown in Fig. 6. The drivers total 115KLOC, and additionally link against libraries of size 75KLOC. Fig. 6 also gives the number of procedures (#Procs) and “Assert Depth”, which is a pair consisting of the smallest and largest acyclic path in the call graph from the entry point to a procedure containing an assert. This is a static measure for how deep the assertions were in the program. The last column lists the number of verification instances for

\(^1\)available open source at corral.codeplex.com.
Table 6: Details of SDV benchmarks

<table>
<thead>
<tr>
<th>Name</th>
<th>KLOC</th>
<th>#Procs</th>
<th>Assert Depth (min,max)</th>
<th>#Verif. Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>fdc_fail</td>
<td>9.2</td>
<td>216</td>
<td>4-18</td>
<td>226</td>
</tr>
<tr>
<td>kbdclass</td>
<td>7.1</td>
<td>230</td>
<td>4-31</td>
<td>252</td>
</tr>
<tr>
<td>daytona</td>
<td>21.5</td>
<td>345</td>
<td>4-27</td>
<td>316</td>
</tr>
<tr>
<td>parport</td>
<td>33.9</td>
<td>531</td>
<td>4-21</td>
<td>169</td>
</tr>
<tr>
<td>sys</td>
<td>2.2</td>
<td>108</td>
<td>4-27</td>
<td>596</td>
</tr>
<tr>
<td>isapnp</td>
<td>14.1</td>
<td>286</td>
<td>4-18</td>
<td>94</td>
</tr>
<tr>
<td>mouser</td>
<td>7.4</td>
<td>190</td>
<td>4-38</td>
<td>600</td>
</tr>
<tr>
<td>modem</td>
<td>14.4</td>
<td>289</td>
<td>4-26</td>
<td>157</td>
</tr>
<tr>
<td>kernaldriver</td>
<td>5.0</td>
<td>183</td>
<td>4-34</td>
<td>106</td>
</tr>
</tbody>
</table>

Total: 115+75 2378 4-38 2516

Fig. 6: Details of SDV benchmarks

Fig. 7: Stack depth of SDV error traces

A driver: SDV verifies multiple properties of a driver and in doing so, generates multiple different verification instances. For our purpose, a verification instance is simply a program with assertions. SDV generated verification instances have no recursion (usually drivers don’t have recursion, and even when they do, SDV statically unrolls the recursion up to a small bound). Moreover, all loops are structured (i.e., the control-flow graph of procedures are reducible), in which case we can compile loops to use our loop statement. Fig. 7 shows the stack depth at which the failing assert was reached among all the error traces found in the benchmark suite. It shows a reasonable range and variation.

SDV generates a set of predicates $R_1, \cdots, R_n, S_1, \cdots, S_m$ for each verification instance, based on the property that it is checking [14]. The R_is are predicates over the input state of a procedure; they serve as templates for preconditions. The S_js are templates for postconditions (summaries). SI uses the error-bit instrumentation; let err_1 be the error bit summarizing if an assertion has failed or not (see Section II). SI+H uses Houdini to look for procedure summaries of the following form: $\forall err \Rightarrow S_i$ (i.e., S_i is a summary when the procedure doesn’t fail) and $R_j \Rightarrow \neg err$ (i.e., under R_j, the procedure doesn’t fail). AT+H doesn’t use the error-bit instrumentation; it looks for summaries of the form S_i and preconditions of the form R_j. While summaries can be inferred bottom-up in the call graph, inferring preconditions requires a top-down pass as well. SI+DA+H also doesn’t use the error-bit instrumentation (there is no need because all assertions are lifted to main by DA). Further, it only looks for summaries of the form S_i; the templates R_j are dropped as our deep-assert transformation reduces the need for preconditions.

Aggregate results across all verification instances are shown in Fig. 11. The table lists the total number of instances that timed out after 2000 seconds (#TO), hit the search bound (i.e., inconclusive) (#Bnd), produced an error trace (#Bugs), or proved the instance correct (#Proof). The other columns list the total time taken by Houdini (Houd), and the time spent by CORRAL (inclusive of time spent by Houdini) on buggy and non-buggy instances. Non-buggy instances include both bound-hit and proofs, but not timeouts. Times are reported in units of 1000 seconds. The entire table took 41 days of verification time.

The table shows advantages of the deep-assert instrumentation along several dimensions. SI+DA and SI+DA+H have much fewer timeouts, find more bugs, prove more instances correct, and take the least amount of time. Using Houdini significantly reduces the number of timeouts and increases the number of instances proved correct (for each of SI, AT, and SI+DA). These numbers suggest that the templates used by Houdini were complete to a good extent. However, the time taken by Houdini is a significant fraction of the total running time. Thus, optimizing Houdini usage is important. The table shows that the simplification of templates provided by DA improves the running time of Houdini. Because ALT requires preconditions for pruning, AT+H spends the maximum amount of time in Houdini—more than twice as much as SI+DA+H. Consequently, AT+H is the slowest among other configurations with Houdini. This indicates that ALT imposes a stricter demand for invariants for pruning search. SI+DA, on the other hand, does well even without invariant generation; in fact, it finds all the 363 bugs without the help of Houdini.

Fig. 8 presents a more detailed comparison of the running times of SI and SI+DA. The scatter plot (on the left) is the distribution of running times: each dot is a single verification instance. The chart on the right summarizes the number of instances in which DA resulted in a particular speedup (computed as a fraction of the running time). “Infinity” means that a timeout was eliminated, and “-Infinity” means that a timeout was introduced. For example, there are 54 instances in which SI+DA is at least 10 times faster than SI. The numbers on top of the bars indicate the average running time of SI (in seconds) on an instance that falls in that bar. For example, whenever SI+DA was 5 to 10 times faster than SI, the average time taken by SI was 434.2 seconds. These numbers show that the speedup was obtained on non-trivial instances. Further, only 6 timeouts were introduced, and 303 were eliminated by DA. Only 5 instances experienced a slowdown worse than a factor of 2 (see the bar “< 0.5”). There are 1726 instances with speedup in the range 0.5 to 1.75. These are not shown in the figure, moreover, their average running time was just 69
seconds. One can also visually observe high density of dots near the origin of the scatter plot.

Fig. 9 shows similar graphs for SI+DA+H against SI+H. In this case, 33 timeouts were eliminated and only 3 introduced by DA. Only 4 instances observed a slowdown worse than a factor of 2. There are 2323 instances with speedup in the range 0.5 to 1.75 with an average running time of 76 seconds.

Fig. 10 shows the effect of DA on the running time of YOGI. The overall speedup is a modest 9% but this increases to as much as 50% (i.e., a factor of 2 faster) on harder instances that take at least 600 seconds. The benchmarks used for YOGI were the same set of drivers as mentioned in Fig. 6, but for a subset of the verification instances (total 802). Because YOGI does not support features like bitvector reasoning and arrays, we disabled some of the SDV properties when using YOGI. DA eliminated 8 timeouts and only 1 was introduced. As before, the slowdowns are mostly on trivial instances. The average running time on such instances was less than 2 minutes. The harder instances, with longer running time, usually show a speedup.

The scatter plot of Fig. 10 shows a greater spread than for CORRAL (Figs. 8 and 9). We believe this is because CORRAL uses a more powerful (SMT-based) intraprocedural analysis and this matches well with the programs produced by DA as they have a large main procedure.

Memory Consumption: For SDV benchmarks, we observed that the ratio of $|P_{prog}|$ to $|P|$ ranged from 1.1 to 1.6, which is much smaller than the worst-case mentioned in Thm. 5.3. This is because bodies of nested loops tend to be very small compared to the rest of the program. (DA copies the body of a loop as many times as its nesting depth.) Moreover, many procedures cannot statically reach an assert, thus they need not be copied into main by the instrumentation. Despite the increase in program size, DA still reduces memory consumption because of the decreased analysis complexity. On average, the peak memory usage of SI+H was 461MB, for AT+H it was 663MB, and for SI+DA+H it was 443MB.
Concurrency: One scalable approach for the analysis of large (multiple-procedure) concurrent programs is the process of sequentialization [13], [7], [8], [15] where a concurrent program is transformed to a sequential program and then verified using a sequential analysis tool. CORRAL supports such a sequentialization; it feeds the resulting sequential program to stratified inlining.

Remark. Sequentializations only preserve end-state reachability and require a variant of the error-bit instrumentation for assertions.\(^2\) This implies that the generated sequential programs have an assertion only at the end of \texttt{main}. Consequently, any transformation for revealing information about deep assertions needs to be done on the concurrent program before the sequentialization, as our transformation does.

Fig. 12 reports results on concurrent programs (obtained from [13]) using CORRAL. The improvement is a modest 13\% overall, and the assert depth of the benchmarks is also quite shallow. We leave further investigation on concurrent benchmarks for future work.

Summary: We note that there are several other choices of verifiers and it is possible that our program transformation may interact differently with the search heuristics of the verifier. However, our experimental evaluation shows a large potential for speedups, especially given that we do not algorithmically modify the verifier. Further, the program transformation can be applied with any verifier, and takes relatively minimal effort to implement (a few hundred lines of code).

REFERENCES

\(^2\)There are sequentializations that preserve assertions [12], but these have not yet been shown to be scalable to programs in real languages like C.