
Kuai: A Model Checker for
Software-defined Networks

Rupak Majumdar
MPI-SWS
Germany

Sai Deep Tetali
UC Los Angeles

USA

Zilong Wang
MPI-SWS
Germany

Abstract—In software-defined networking (SDN), a software
controller manages a distributed collection of switches by in-
stalling and uninstalling packet-forwarding rules in the switches.
SDNs allow flexible implementations for expressive and sophisti-
cated network management policies.

We consider the problem of verifying that an SDN satisfies a
given safety property. We describe Kuai, a distributed enumer-
ative model checker for SDNs. Kuai takes as input a controller
implementation written in Murphi, a description of the network
topology (switches and connections), and a safety property, and
performs a distributed enumerative reachability analysis on a
cluster of machines. Kuai uses a set of partial order reduction
techniques specific to the SDN domain that help reduce the state
space dramatically. In addition, Kuai performs an automatic
abstraction to handle unboundedly many packets traversing the
network at a given time and unboundedly many control messages
between the controller and the switches.

We demonstrate the scalability and coverage of Kuai on
standard SDN benchmarks. We show that our set of partial order
reduction techniques significantly reduces the state spaces of these
benchmarks by many orders of magnitude. In addition, Kuai
exploits large-scale distribution to quickly search the reduced
state space.

I. Introduction
Software-defined networking (SDN) is a novel networking

architecture in which a centralized software controller dy-
namically updates the packet processing policies in network
switches based on observing the flow of packets in the network
[9], [5]. SDNs have been used to implement sophisticated
packet processing policies in networks, and there is increasing
industrial adoption [12], [9].

We consider the problem of verifying that an SDN satisfies
a network-wide safety property. Since the controller code in
an SDN can dynamically change how packets flow in the
network, a bug in the controller code can lead to hard-to-
analyze network errors at run time. We describe the design of
Kuai, a distributed enumerative model checker for SDNs. The
input to Kuai is a model of an SDN consisting of two parts.
The first part is the controller, written in a simplified guarded-
command language similar to Murphi. The second part is the
description of a network, consisting of a fixed finite set of
switches, a fixed set of client nodes, and the topology of the
network (i.e., the connections between the ports of the clients
and the switches). Given a safety property of the network, Kuai
explores the state space of the SDN to check if the property
holds on all executions.

Figure 1 shows a simple SDN. It consists of two switches
sw1 and sw2 connected to two clients c1 and c2. Each client
has a port and each switch has two ports to send and receive
packets, and the figure shows how the ports are connected to
each other. Each connection between ports represents a bi-
directional communication channel that may reorder packets.

Fig. 1: SSH Example

1 def pktIn(pkt)
2 (sw,pt) = pkt.loc
3 if pkt.prot = SSH:
4 drop(pkt)
5 else:
6 dest = 2 if pt = 1 else 1
7 fwd(pkt, [|dest|], sw)
8 rule r1 = (5,{prot=SSH},[||])
9 rule r2 = (1,{port=1},[|2|])

10 rule r3 = (1,{port=2},[|1|])
11 message cm1 = add(r1)
12 message cm2 = add(r2)
13 message cm3 = add(r3)
14 for sw in [sw1, sw2]:
15 send_message(cm1, sw)
16 send_message(cm2, sw)
17 send_message(cm3, sw)

Listing 1: Controller for SSH
Moreover, the switches are connected to a controller through
dedicated links. Packets are routed in the network using flow
tables in switches. A flow table is a collection of prioritized
forwarding rules. A rule consists of a priority, a pattern on
packet headers, and a list of ports. A switch processes an
incoming packet based on its flow table. It looks at the highest
priority rule whose pattern matches the packet and forwards
the packet to the list of ports specified in the rule, and drops
the packet if the list of ports in the rule is empty. In case no
rule matches a packet, the switch forwards the packet to the
controller using a request queue and waits for a reply from
the controller on a forward queue. The controller replies with
a list of ports to which the packet should be forwarded, and
optionally sends control messages to the control queue of one
or more switches to update their flow tables. A control message
can add or delete a rule in a switch.

By specifying the rules to be added or deleted, a controller
can dynamically control the behaviors of all switches in an
SDN network. For example, suppose we want to implement
the policy that all SSH packets are dropped. The controller
can update the switches with a rule that states that no SSH
packets are forwarded, and another that states all non-SSH
packets are forwarded. List 1 shows a possible controller that
implements this policy. Essentially, the controller drops SSH
packets, and adds three rules on the switches: r1 to drop SSH
packets, r2 to forward packets from port 1 to port 2, and
r3 to forward packets from port 2 to port 1. Since dropping

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 163

SSH packets (rule r1) has higher priority, it will match SSH
packets, and rules r2 and r3 will only match (and forward)
non-SSH packets. The controller has a subtle bug. It turns out
that a switch can implement rules in arbitrary order. Thus, the
switches may end up adding rules r2 and r3 before adding r1,
thus violating the policy. Our model checker confirms the bug
A possible fix in this case is to implement a barrier after line
15, to ensure that rule r1 is added before the other rules. Our
model checker confirms the policy holds in the fixed version.

The verification of SDNs is challenging due to several
reasons. First, even when the topology is fixed with a finite
set of clients and switches, the state space is still unbounded,
as clients may generate unboundedly many packets and these
packets could be simultaneously progressing through the net-
work. For example, client c1 may send a packet to sw1 at
any point, and an unbounded number of packets can be in
the network before sw1 processes them. Similarly, there may
be an unbounded number of control messages (i.e., messages
sent from the controller to a switch) between the controller
and the switches. While there may be a physical limit on the
number of packets and control messages imposed by packet
buffers in the switches, the sizes of these buffers can be large
(of the order of megabytes) and precise modeling of buffers
will blow up the state space.

Second, the packets may be processed in arbitrary inter-
leaved orders, and the processing of one packet may influence
the processing of subsequent ones because the controller may
update flow tables based on the first packet. Similarly, control
messages between the controller and the switches may be
processed in arbitrary order and this may lead to potential
bugs, including the bug pointed to above.

Kuai handles these challenges in the following way. First,
instead of modeling unbounded multisets for packet queues,
we implement a counter abstraction where we track, for each
possible packet, whether zero or arbitrarily many instances of
the packet are waiting in a multiset. This abstraction enables
us to apply finite-state model checking approaches.

Second, we implement a set of partial-order reduction
techniques that are specific to the SDN domain. For example,
we note that while in principle a switch only processes one
packet at a time, we do not lose behaviors by processing all
packets at the packet queue of a switch atomically. Similarly,
using the semantics of the barrier message [12], we show that
a switch can atomically execute all control messages up to the
last barrier in its control queue. Specifically, this optimization
enables the model checker to bound the size of control queues.
Additionally, we show that whenever there is a packet in a
client’s packet queue, the client can receive and process it
immediately, so that sends from switches can be atomically
processed with receives at clients. Finally, we show that we
can eagerly serve requests to the controller, that is, we do not
lose behaviors if we restrict the controller’s request queue to
size one and service these requests as soon as they appear.

We empirically demonstrate that our set of partial order
reduction techniques significantly reduces the state spaces of
SDN benchmarks, often by many orders of magnitude. For
the simple SSH example, the number of explored states is
approximately 2 million without partial order reductions, but
only 13 with reductions!

To handle large state spaces, our model checker Kuai
distributes the model checking over a number of nodes in a
cluster, using the PReach distributed model checker [2] (based
on Murphi [4]) as its back end. The large-scale distribution

enables Kuai to model check large state spaces quickly.
Related Work. There is a lot of systems and networking
interest in SDNs [9], [5] and standards such as Openflow [12].
From the formal methods perspective, research has focused
on verified programming language frameworks for writing
SDN controllers [6], [8]. Here, verification refers to correct
compilation from Frenetic to executable code, or to checking
composability of programs, not the correctness of invariants.

Previous model checking attempts for SDNs mostly focused
either on proving a static snapshot of the network [10] or
on model checking or symbolic simulation techniques for a
fixed number of packets [3], [14]. Recent work extended to
controller updates and arbitrary number of packets [17], but
used a manual process to add non-interference lemmas. In
contrast, our technique automatically deals with unboundedly
many packets and, thanks to the partial-order techniques,
scales to much larger configurations than reported in [17].
Program verification for SDN controllers using loop invariants
and SMT solving has been proposed recently [1]. While the
invariants can quantify over the network (and therefore not
limited to finite topologies), the model of the network ignores
asynchronous interleavings of packet and control message
processing that we handle here.

Our work builds on top of distributed enumerative model
checking and the PReach tool [2]. Our contribution is iden-
tifying domain specific state space reduction heuristics that
enable us to explore large configurations.

II. Software-defined Networks
Preliminaries. A multiset m over a set Σ is a function Σ→ N
with finite support (i.e., m(σ) 6= 0 for finitely many σ ∈ Σ).
By M[Σ] we denote the set of all multisets over Σ. We shall
write m = Jσ2

1 , σ3K for the multiset m ∈M[{σ1,σ2,σ3}] with
m(σ1) = 2,m(σ2) = 0, and m(σ3) = 1. We write ∅ for an
empty multiset, mapping each σ ∈ Σ to 0. We write {} for
an empty set. Two multisets are ordered by m1 ≤ m2 if for
all σ ∈ Σ, we have m1(σ) ≤ m2(σ). Let m1 ⊕ m2 (resp.
m1 	m2) be the multiset that maps every element σ ∈ Σ to
m1(σ) +m2(σ) (resp. max{0,m1(σ)−m2(σ)}).

Given a set of states, a (guarded) action α is a pair (g, c)
where g is a guard that evaluates the states to a boolean and c
is a command. A action α is enabled in a state s if the guard
of α evaluates s to true. If α is enabled in s, the command of
α can execute and lead to a new state s′, denoted by s α−→ s′.
We write α(s) = s′ if s α−→ s′. A transition system TS is a
tuple (S,A,→, s0,AP , L) where S is a set of states, A is a
set of actions, →⊆ S ×A× S is a transition relation, s0 ∈ S
is the initial state, AP is a set of atomic propositions, and
L : S → 2AP is a labeling function. We write →∗ for the
reflexive transitive closure of →. A state s′ is reachable from
s if s→∗ s′. We write s→+ s′ if there is a state t such that
s → t →∗ s′. For a state s, let A(s) be the set of actions
enabled in s; we assume A(s) 6= ∅ for each s ∈ S. The trace
of an infinite execution ρ = s

α1−→ s1
α2−→ . . . is defined

as trace(ρ) = L(s)L(s1) The trace of a finite execution
ρ = s

α1−→ s1
α2−→ . . .

αn−−→ sn is defined as trace(ρ) =
L(s)L(s1) . . . L(sn). An execution is initial if it starts in s0.
Let Traces(TS) be the set of traces of initial executions in
TS . We define invariants and invariant satisfaction in the usual
way.
Syntax of Software-defined Networks We model an SDN as
a network consisting of nodes, connections, and a controller

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 164

program. Nodes come from a finite set Clients of clients and
a (disjoint) finite set Switches of switches. Each node n has
a finite set of ports Port(n) ⊆ N which are connected to
ports of other nodes. A location (n, pt) is a pair of a node
and a port pt ∈ Port(n). Let Loc be the set of locations. A
connection is a pair of locations. A network is well-formed if
there is a bijective function λ : Loc → Loc, called the topology
function, such that {((n, pt), λ(n, pt)) | (n, pt) ∈ Loc} is the
set of connections and no two clients are connected directly.

We model a packet pkt in the network as a tuple
(a1, . . . , ak, loc), where (a1, . . . , ak) ∈ {0, 1}k models an
abstraction of the packet data and loc ∈ Loc indicates the
location of pkt . Let Packet be the set of all packets.

Each switch contains a set of rules that determine how pack-
ets are forwarded. A rule is a tuple (priority , pattern, ports),
where priority ∈ N determines the priority of the rule,
pattern is a proposition over Packet , and ports is a multiset of
ports. We write Rule to denote the set of all rules. Intuitively, a
packet matches a rule if it satisfies pattern . A switch forwards
a packet along ports for the highest priority rule that matches.

Rules are added or deleted on a switch by the controller
through a set of control messages CM = {add(r), del(r) | r ∈
Rule}. Additionally, the controller uses a barrier message b
to synchronize.
type client {
Port : set of nat
pq : multiset of packets

}
rule "send(c, pkt)"
true ==> send(c, pkt)

end
rule "recv(c,pkt,pkts)"
exist(pkt:c.pq, true) ==> recv(c,pkt,pkts)

end

Listing 2: Client

A client c ∈ Clients is modeled as in List 2. It consists of
a finite set Port of ports and a packet queue pq ∈M[Packet]
containing a multiset of packets which have arrived at the
client. We use (guarded) actions to model behaviors of clients.
An action is written as “rule name guard =⇒ command end.”
Predicate exist(i : X,ϕ) asserts that there is an element i
in the set (or multiset) X such that the predicate ϕ holds.
Additionally, if exist(i : X,ϕ) holds, then the variable i is
bound to an element of X that satisfies ϕ and can be used
later in the command part. In each step, a client c can (1)
send a non-deterministically chosen packet pkt along some
ports (rule send), or (2) receive a packet pkt from its packet
queue and (optionally) send a multiset of packets pkts on some
ports (rule recv).

A switch sw is modeled as in List 3. It consists of a
set of ports, a flow table ft ⊆ Rule , a packet queue pq
containing packets arriving from neighboring nodes, a control
queue cq containing control messages or barriers from the
controller, a forward queue fq consisting of at most one pair
(pkt , ports) through which the controller tells the switch to
forward packet pkt along the ports ports , and a boolean
variable wait . Predicate noBarrier(sw) asserts sw .cq does
not contain a barrier. Predicate bestmatch(sw , r, pkt) asserts
that r is the highest priority rule whose pattern matches the
packet pkt in switch sw’s flow table.

Intuitively, a switch has a normal mode and a waiting mode
determined by the wait variable. When the switch is in the
normal mode, as long as there is no barrier in its control queue,
it can either attempt to forward a packet from its packet queue

type switch {
Port : set of nat
ft : set of rules
pq : multiset of packets
cq : list of barriers and

multisets of control messages
fq : set of forward messages
wait : boolean

}
rule "match(sw,pkt,r)"
!sw.wait & noBarrier(sw) &
exist(pkt:sw.pq,
exist(r:sw.ft, bestmatch(sw,r,pkt))) ==>

match(sw,pkt,r)
end
rule "nomatch(sw,pkt)"
!sw.wait & noBarrier(sw) & !RqFull(controller) &
exist(pkt:sw.pq,
!exist(r:sw.ft,bestmatch(sw,r,pkt))) ==>

nomatch(sw,pkt)
end
rule "add(sw,r)"
!sw.wait & noBarrier(sw) &
exist(add(r):sw.cq[0],true) ==>
add(sw,r)

end
rule "delete(sw,r)"
!sw.wait & noBarrier(sw) &
exist(del(r):sw.cq[0],true) ==>
delete(sw,r)

end
rule "fwd(sw,pkt,pts)"
sw.wait & noBarrier(sw) &
exist((pkt,pts):fq, true) ==>
fwd(sw,pkt,pts)

end
rule "barrier(sw)"
!noBarrier(sw) ==>
barrier(sw)

end

Listing 3: Switch

based on its flow table, or update its flow table according
to a control message in its control queue. When the switch
cannot find a matching rule in its flow table for a packet, it
can initiate a request to the controller, change to the waiting
mode, and wait for a forward message from the controller
telling it how to forward the packet. Once it receives a forward
message (pkt , pts) and there is no barrier in the control queue,
it forwards the pending packet pkt to the ports in pts , and
changes back to the normal mode. If the control queue contains
one or more barriers, the switch dequeues all control messages
up to the first barrier from its control queue and updates its
flow table.
type controller {
CS : set of control states
cs0 : CS cs : CS
rq : set of packets κ : N+

pktIn : function
}
rule "ctrl(pkt,cs)"
exist(pkt:controller.rq, true) ==>
ctrl(pkt,controller.cs)

end

Listing 4: Controller

A controller controller is modeled as in List 4. It is a
tuple (CS , cs0, cs, rq, κ, pktIn) where CS is a finite set of
control states, cs0 ∈ CS is the initial control state, cs is
the current control state, rq is a finite request queue of size
κ ≥ 1 consisting of packets forwarded to the controller from
switches, and pktIn is a function that takes a packet pkt and a
control state cs1, and returns a tuple (η, (pkt , pts), cs2) where
η is a function from Switches to (M[CM]∪{b})∗, (pkt , pts)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 165

is a forward message, and cs2 is a control state. Intuitively,
in each step, the controller removes a packet pkt from rq
and executes pktIn(pkt , controller .cs). Based on the result
(η, (pkt , pts), cs ′), it sends back to the source of the packet
the forward message (pkt , pts) that specifies pkt should be
forwarded along pts , and goes to a new control state cs ′.
Further, for each switch sw in the network it appends η(sw)
to sw ’s control queue.
Semantics of Software-defined Networks The semantics
of an SDN is given as a transition system. Let N =
(Clients,Switches, λ,Packet ,Rule, controller) be an SDN,
where each component is as defined above.

A state s of the SDN N is a quadruple (π, δ, cs, rq),
where π is a function mapping each client c ∈ Clients to
its packet queue pq and δ is a function mapping each switch
sw ∈ Switches to a tuple (pq , cq , fq , ft ,wait) consisting of its
packet queue, control queue, forward queue, flow table, and
the wait variable.

For a non-empty list l = [x1, x2, . . . , xn], define l.hd=x1,
l.tl=[x2, . . . , xn], and l[i] as the i-th element in l. Given two
lists l1 and l2, let l1@l2 be the concatenation of l1 and l2. For
two non-empty lists l1 = [x1, . . . , xm] and l2 = [y1, . . . , yn] in
(M[CM]∪{b})∗, define l1+l2 be the list [x1, . . . , xm−1, xm⊕
y1, y2, . . . , yn] if xm 6= b and y1 6= b; l1@l2 otherwise.

Given a flow table ft and a list l ∈ (M[CM] ∪ b)∗, let
update(ft , l) be a procedure that updates ft based on l as
follows. It dequeues the head of l and sets l to l.tl . If the
head is a barrier b, then ignore it. If the head is a multiset m,
it nondeterministically chooses a fetching order p and based
on p, removes a control message cm with m(cm) > 0 from
m. If cm is add(r), then add the rule r to ft , or if cm is
del(r), then delete r from ft . It keeps updating ft based on p
until m becomes empty. It repeats the above instructions on l
until l becomes empty. Then it returns the resulting flow table
ft .

For a function f : X → Y , x ∈ X , and y ∈ Y , let f [x 7→ y]
denote the function that maps x to y and all x′ 6= x to f(x′).
Let f [x1 7→ y1;x2 7→ y2; . . . ;xn 7→ yn] denote the function
f [x1 7→ y1][x2 7→ y2] . . . [xn 7→ yn]. Given a subset X ′ =
{x1, . . . , xn} ⊆ X , let f [foreach xi ∈ X ′ : xi 7→ yi] be the
function f [x1 7→ y1] . . . [xn 7→ yn] where 1 ≤ i ≤ n. Given a
tuple t = (f1, . . . , fn), let t.fi be the field fi, for 1 ≤ i ≤ n.
By abuse of notation, we write t[fi 7→ v] to be the tuple such
that t[fi 7→ v].fi = v and for any j 6= i, t[fi 7→ v].fj = t.fj .

We define the following basic operations over δ and π:
1) Add or delete packets in switches or in clients. Given a

set X ⊆ Switches × PacketN, define addPkt(δ,X) =
δ[foreach (sw , pktk) ∈ X, sw 7→ δ(sw)[pq 7→ δ(sw).pq
⊕ JpktkK]]. Given a set Y ⊆ Clients × PacketN, de-
fine addPkt(π, Y) = π[foreach (c, pktk) ∈ Y, c 7→
π(c)⊕JpktkK]. We define delPkt(δ,X) and delPkt(π, Y)
analogously by replacing ⊕ with 	 above.

2) Set the wait bit of a switch sw to true or false. Define
setWait(δ, sw) = δ[sw 7→ δ(sw)[wait 7→ true]] and
unsetWait(δ, sw) = δ[sw 7→ δ(sw)[wait 7→ false]].

3) Add or delete a rule r in the flow table of a switch
sw. Define addRule(δ, sw, r) = δ[cq 7→ [δ(sw).cq .hd 	Jadd(r)K]; sw 7→ δ(sw)[ft 7→ δ(sw).ft ∪ {r}]]. De-
fine delRule(δ, sw, r) = δ[cq 7→ [δ(sw).cq .hd 	Jdel(r)K]; sw 7→ δ(sw)[ft 7→ δ(sw).ft\{r}]].

4) Add or delete a forward message msg in a switch sw .
Define addFwdMsg(δ, sw ,msg) = δ[sw 7→ δ(sw)[fq 7→

δ(sw).fq ∪ {msg}]] and delFwdMsg(δ, sw ,msg) =
δ[sw 7→ δ(sw)[fq 7→ δ(sw).fq\{msg}]].

5) Flush and run all control messages up to the first barrier
in a switch. Define flush(δ, sw) = δ[sw 7→ δ(sw)[cq 7→
l; ft 7→ update(δ(sw).ft , [m, b])]] where l = [∅], if
δ(sw).cq = [m, b]; l = l′, if δ(sw).cq = [m, b]@l′ and l′
is not an empty list.

6) Flush and run all control messages up to the last barrier in
a switch. Define flushall(δ, sw) = δ[sw 7→ δ(sw)[cq 7→
l1; ft 7→update(δ(sw).ft , l2)]] where l1 = [∅] and l2 =
δ(sw).cq if the last element of δ(sw).cq is a barrier.
Otherwise, let δ(sw).cq = l@[m]. Then l1 =[m] and l2 = l.

7) Add control messages and barriers to the con-
trol queues of the switches. Given a total func-
tion f : Switches → (M[CM] ∪ {b})∗, define
addCtrlCmd(δ, f) = δ[foreach sw ∈ Switches : sw 7→
δ(sw)[cq 7→ δ(sw).cq + f(sw)]].

For a switch sw , a packet pkt , and a multiset of ports
pts , let FwdToC (sw , pkt , pts) be a set {(c, pkt ′k) | ∃pt ∈
sw .Port . pts(pt) = k ∧ λ(sw , pt) = (c, pt ′) ∧ c ∈ Clients ∧
pkt ′ = pkt [loc 7→ (c, pt ′)]} and FwdToSw(sw , pkt , pts) be a
set {(sw ′, pkt ′k) | ∃pt ∈ sw .Port . pts(pt) = k∧λ(sw , pt) =
(sw ′, pt ′) ∧ sw ′ ∈ Switches ∧ pkt ′ = pkt [loc 7→ (sw ′, pt ′)]}.
Intuitively, when sw is about to forward pkt on its ports
pts , these two sets summarize how many packets should be
forwarded to its connected clients and switches.

For an SDN N , let Send = {send(c, pkt) | c ∈ Clients ∧
pkt ∈ Packet} be the set of send actions. We define analo-
gously the set of receive actions Recv , the set of match actions
Match , the set of no-match actions NoMatch , the set of add
actions Add , the set of delete actions Del , the set of forward
actions Forward , the set of barrier actions Barrier , and the
set of control actions Ctrl .

Let π0 = λc ∈ Clients.∅ and δ0 = λsw ∈
Switches.(∅, [∅], {}, {}, false). The semantics of an SDN N is
given by a transition system TS (N) = (S,A,→, s0,AP , L).
Here, S is the set of states, s0 = (π0, δ0, cs0, {}) is the initial
state, and A = Send∪Recv∪Match∪NoMatch∪Add∪Del∪
Forward ∪ Barrier ∪ Ctrl . The transition relation s α−→ s′ is
defined as follows.

1) α = send(c, pkt). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = addPkt(δ, {(sw , pkt)}) and sw = pkt .loc.n.

2) α = recv(c, pkt , pkts). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′=delPkt(π, {(c, pkt)}), δ′ = addPkt(δ,X) and
X = {(sw , pkt ′k) | pkts(pkt ′) = k ∧ pkt ′.loc.n = sw}.

3) α = match(sw , pkt , r). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′ = addPkt(π,FwdToC (sw , pkt , r.ports)) and
δ′ = addPkt(δ,FwdToSw(sw , pkt , r.ports)).

4) α = nomatch(sw , pkt). (π, δ, cs, rq) α−→ (π, δ′, cs, rq ′)
where rq ′ = rq ∪ {pkt}, δ′′ = delPkt(δ, {(sw , pkt)}),
and δ′ = setWait(δ′′, sw).

5) α = add(sw , r). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = addRule(δ, sw , r).

6) α = del(sw , r). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = delRule(δ, sw , r).

7) α = fwd(sw , pkt , pts). (π, δ, cs, rq) α−→ (π′, δ′, cs, rq)
where π′ = addPkt(π,FwdToC (sw , pkt , pts)),
δ1 = delFwdMsg(δ, sw , (pkt , pts)), δ2 = addPkt(δ1,
FwdToSw(sw , pkt , pts)), and δ′ = unsetWait(δ2, sw).

8) α = barrier(sw). (π, δ, cs, rq) α−→ (π, δ′, cs, rq) where
δ′ = flush(δ, sw).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 166

9) α = ctrl(pkt , cs). Let pktIn(pkt , cs) = (η,msg, cs ′)
and sw = pkt .loc.n. (π, δ, cs, rq) α−→ (π, δ′, cs ′, rq ′)
where rq ′ = rq\{pkt}, δ′′ = addFwdMsg(δ, sw ,msg),
and δ′ = addCtrlCmd(δ′′, η).

An atomic proposition p ∈ AP is an assertion over packet
fields or over control states. Define an SDN specification
as a safety property �φ where φ is a formula over AP
and � is the “globally” operator of linear-temporal logic.
The model checking problem for an SDN asks, given an
SDN N and an SDN specification �φ, if TS (N) satisfies
�φ. For example, blocking SSH packets can be specified as
�
∧

pkt∈Packet(pkt .loc.n ∈ Clients ∧ pkt .src ∈ Clients ∧
pkt .loc.n 6= pkt .src ⇒ pkt .prot 6= SSH).

III. Optimizations
We now describe partial-order reduction and abstraction

techniques that reduce the state space. These techniques use
the structure of SDNs and, as we demonstrate empirically,
are crucial in making the model checking scale to non-trivial
examples. We state the correctness theorems; the proofs are
in the technical report [11].
Partial Order Reduction Let TS = (S,A,→, s0,AP , L) be
an action-deterministic transition system, i.e., s α−→ s′ and s α−→
s′′ implies s′ = s′′. Given two actions α, β ∈ A with α 6= β,
α and β are independent if for any s ∈ S with α, β ∈ A(s),
β ∈ A(α(s)), α ∈ A(β(s))), and α(β(s)) = β(α(s)). The
actions α and β are dependent if α and β are not independent.
An action α ∈ A is a stutter action if for each transition
s
α−→ s′ in TS , we have L(s) = L(s′).
For i ∈ {1, 2}, let TS i = (Si,Ai,→i, s

i
0,AP , Li) be

transition systems. Infinite executions ρ1 of TS 1 and ρ2 of
TS 2 are stutter-equivalent, denoted ρ1 , ρ2, if there is an
infinite sequence A0A1A2 . . . with Ai ⊆ AP , and natural
numbers n0, n1, n2, . . . ,m0,m1,m2, . . . ≥ 1 such that

trace(ρ1) = A0 . . . A0︸ ︷︷ ︸
n0 times

A1 . . . A1︸ ︷︷ ︸
n1 times

A2 . . . A2︸ ︷︷ ︸
n2 times

. . .

trace(ρ2) = A0 . . . A0︸ ︷︷ ︸
m0 times

A1 . . . A1︸ ︷︷ ︸
m1 times

A2 . . . A2︸ ︷︷ ︸
m2 times

. . .

TS 1 and TS 2 are stutter equivalent, denoted TS 1 , TS 2 , if
TS 1ETS 2 and TS 2ETS 1, where E is defined by: TS 1ETS 2

iff for all ρ1 ∈ Traces(TS 1). ∃ρ2 ∈ Traces(TS 2). ρ1 , ρ2.

A. Barrier Optimization
Intuitively, barrier optimization uses the observation that for

any state, we can always flush out control queues of switches
until there are no barriers in them. This implies that after a
control action is executed, one can immediately update flow
tables of switches whose control queue has barriers added by
the controller. Hence a control action and successive barrier
actions can be merged. We prove its correctness by viewing
it as an instance of partial order reduction.

For an SDN N , note that TS (N) is not action-deterministic
due to barrier actions. With different fetching orders,
barrier(sw) may lead to multiple states. Define b(s, sw) as

the number of transitions of the form s
barrier(sw)−−−−−−−→ s′. Note

that a barrier action from any s leads to at most 2|Rule|

states. Hence for each transition s
barrier(sw)−−−−−−−→ si where

1 ≤ i ≤ b(s, sw), we can append the action with the index

i, i.e., s
barrier(sw)i−−−−−−−−→ si. In the following, we redefine the set

Barrier = {barrier(sw)i | sw ∈ Switches∧1 ≤ i ≤ 2|Rule|},
and assume that TS (N) is action-deterministic by renaming
barrier actions.

A switch sw has a barrier iff there is a barrier in sw ’s
control queue. A state s has a barrier, denoted hasb(s), iff
some switch sw ∈ Switches has a barrier in s. Define the
ample set for every state s in TS (N) as follows: if s has a
barrier, then ample(s) = {barrier(sw)i | 1 ≤ i ≤ b(s, sw) ∧
sw has a barrier in s}, that is, all barrier actions enabled in s.
If s does not have a barrier, then ample(s) = A(s).

Given TS (N), we now define a transition system T̂S =
(Ŝ,A,⇒, s0,AP , L) where Ŝ = S is the set of states, and
the transition relation ⇒ is defined as: if s α−→ s′ and α ∈
ample(s), then s α=⇒ s′.

Theorem 1: Let TS (N) be an action-deterministic transition
system. TS (N) , T̂S .
Intuitively, Theorem 1 holds because any barrier action is
independent of other actions and is a stutter action. Hence
for an infinite execution s α1−→ s1 . . .

αn−−→ sn
barrier(sw)−−−−−−−→ t in

TS (N) where s has a barrier and αi is not a barrier action
for all 1 ≤ i ≤ n, we can permute barrier(sw) forward until
s and obtain a stutter-equivalent execution in T̂S .

Since Theorem 1 holds, we can merge a control ac-
tion and successive barrier actions into a single transition
s

ctrl(pkt,cs)−−−−−−−→2 s′ where we define the new semantics of
ctrl(pkt , cs) under the transition relation →2. Formally, Let
(η, (pkt , pts), cs ′) = pktIn(pkt , cs) and sw = pkt .loc.n.

Ctrl. (π, δ, cs, rq)
ctrl(pkt,cs)−−−−−−−→2 (π, δ′, cs ′, rq ′) where rq ′ =

rq\{pkt}. Define δ′′ = addFwdMsg(δ, sw , (pkt , pts)),
and δ′′′ = addCtrlCmd(δ′′, η). Let {sw1, . . . , swn} be
the set of all switches whose control queue has barriers
in δ′′′. Let δ0 = δ′′′ and δi = flushall(δi−1, sw i) for all
1 ≤ i ≤ n. Define δ′ = δn.

Given T̂S = (Ŝ,A,⇒, s0,AP , L), define a transition
system TS 2 = (S2,A2,→2, s0,AP2, L2) where S2 ⊆ Ŝ is a
set of states reachable by →2, A2 is A\Barrier , AP2 = AP ,
L2 = L, and →2 is defined inductively as

s0
α=⇒ s′

s0
α−→2 s

′
s0 →+

2 s
α=⇒ s′ ∧ α 6∈ Ctrl

s
α−→2 s

′

s0 →+
2 s

α=⇒ t⇒∗ s′ ∧ α ∈ Ctrl ∧ ¬hasb(s′)

s
α−→2 s

′

Since we only remove barrier actions which are stutter
actions, we have TS 2 , T̂S , TS (N). Hence we have the
following theorem:

Theorem 2: Given an SDN N and a safety property �φ,
TS (N) satisfies �φ iff TS 2 satisfies �φ.

B. Client Optimization
Given transition system TS 2 = (S2,A2,→2, s0,AP2, L2),

we further reduce the state space by observing that any receive
action of a client is a stutter action and is independent of
other actions. Formally, we define ample(s) for each state
s ∈ S2 as follows: if there is a client in s such that its packet
queue is not empty, then ample(s) = {recv(c, pkt , pkts) |
pkt is in c.pq at s}, that is, all receive actions enabled in s.
Otherwise, ample(s) = A(s). We now define a transition
system TS 3 = (S3,A3,→3, s0,AP3, L3) where S3 = S2,

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 167

A3 = A2, AP3 = AP2, L3 = L2, and where the transition
relation →3 is defined as: if s α−→2 s

′ and α ∈ ample(s), then
s
α−→3 s

′.
Theorem 3: (1) TS 2 , TS 3. (2) Given a safety property
�φ, TS 2 satisfies �φ iff TS 3 satisfies �φ.

C. (0,∞) Abstraction
The (0,∞) abstraction bounds the size of packet queues

and the multiset in each control queue. The idea is as follows.
One can regard a multiset as a counter that counts the number
of elements in it exactly. Instead, (0,∞) abstraction abstracts
a multiset so that for each element e, it either does not contain
e (i.e. 0) or contains unboundedly many copies of e (i.e. ∞).
Then the size of an abstracted multiset is bounded. Note that
for any state s in TS 3, any switch’s control queue contains
exactly one multiset. Hence, the abstraction bounds the length
of control queues.

Let N∞ = N∪{∞} be the extension of the natural numbers
with infinity. We naturally extend the addition operation by
assuming that ∞ +∞ = ∞ and ∞ + c = ∞ for all c ∈ Z.
Given a multiset m ∈ M[D] for some finite set D, define an
extended multiset over(m) such that for each element d ∈ D,
over(m)(d) = 0 if m(d) = 0, and over(m)(d) =∞ otherwise.
Define M[D]∞ as the set of all extended multisets and
multisets over D. Given a control queue cq with length n, let
over(cq) be such that for 1 ≤ i ≤ n, over(cq)[i] = over(cq [i])
if cq [i] 6= b; over(cq)[i] = b otherwise. For m1,m2 ∈M[D]∞,
we write m1 ≤e m2 iff for all d ∈ D, m1(d) ≤ m2(d)
or m2(d) = ∞. Given two control queues cq , cq ′ of same
length n, define cq ≤e cq ′ iff for each 1 ≤ i ≤ n,
(cq [i] = b↔ cq ′[i] = b) ∧ (cq [i] 6= b→ cq [i] ≤e cq ′[i]).

Given an SDN and the transition system TS 3 =
(S3,A3,→3, s0,AP3, L3), Define a transition system TS 4 =
(S4,A4,→4, s0,AP4, L4) where S4 = {over(s) | s ∈ S3},
A4 = A3, AP4 = AP3, and L4 = L3. The definition of
→4 is given in detail in [11]. We provide the intuition of
→4 here: →4 is defined so that (1) whenever a packet pkt
is added k ≥ 1 times into a packet queue pq , we set pq
to over(pq ⊕ JpktkK), and (2) whenever η(sw) is added into
switch sw ’s control queue cq , we set cq to over(cq + η(sw)).
The following lemma claims that TS 4 simulates TS 3, which
leads to Theorem 4.

Lemma 1: For any infinite initial execution s0
β1−→3

s1
β2−→3 s2 . . . in TS 3, there is an infinite initial execution

t0
β1−→4 t1

β2−→4 t2 . . . in TS 4 such that for all i ≥ 0,
si = (πi, δi, csi, rq i) and ti = (π′i, δ

′
i, cs

′
i, rq

′
i) satisfy the

following condition: for all c ∈ Clients , πi(c) ≤e π′i(c) and
for all sw ∈ Switches , δi(sw).pq ≤e δ′i(sw).pq , δi(sw).cq ≤e
δ′i(sw).cq , δi(sw).fq = δ′i(sw).fq , δi(sw).ft = δ′i(sw).ft , and
δi(sw).wait = δ′i(sw).wait , and csi = cs′i, and rq i = rq ′i.

Theorem 4: Given a safety property �φ, if TS 4 satisfies
�φ then TS 3 satisfies �φ.

D. All Packets in One Shot Abstraction
So far, a switch processes a single packet at a time. We can

further reduce the reachable state space by forcing a switch
to process all packets matched by some rule at a time. The
intermediate states produced by successive match actions in
a switch are removed. Let TS 4 = (S4,A4,→4, s0,AP4, L4).
Define a transition system TS 5 = (S5,A5,→5, s0,AP5, L5)
where S5 = S4, AP5 = AP4, L5 = L4, A5 is the union of
the new “multiple” match actions and A4 excluding the old

“single” match actions, and →5 is defined as:
s
α−→4 s

′ ∧ α is not a match action

s
α−→5 s

′

and if pkt lst = [pkt1, . . . , pktn] and r lst = [r1, . . . , rn]

s
match(sw ,pkt1,r1)−−−−−−−−−−−−→4 s1 . . . sn−1

match(sw ,pktn,rn)−−−−−−−−−−−−→4 s
′

s
match(sw ,pkt lst,r lst)−−−−−−−−−−−−−−−→5 s

′

We prove TS 5 simulates TS 4. We define a relation R ⊆
S4 × S5 such that ((π, δ, cs, rq), (π′, δ′, cs ′, rq ′)) ∈ R iff
for all pkt ∈ Packet , for all c ∈ Clients , π(c)(pkt) =
∞ → π′(c)(pkt) = ∞ and for all sw ∈ Switches ,
δ(sw).pq(pkt) = ∞ → δ′(sw).pq(pkt) = ∞, δ(sw).cq =
δ′(sw).cq , δ(sw).fq = δ′(sw).fq , δ(sw).ft = δ′(sw).ft , and
δ(sw).wait = δ′(sw).wait , and cs = cs ′, and rq = rq ′.

Theorem 5: (1)The relation R is a simulation relation. (2)For
a safety property �φ, if TS 5 satisfies �φ, then TS 4 satisfies
�φ.

E. Controller Optimization
We consider a restricted class of SDNs in which the size κ

of the controller’s request queue is one. Under this restriction,
we can define a new transition system TS 6 that is stutter
equivalent to TS 5 and has fewer reachable states. The idea is
to observe that a no-match action is a stutter action and is inde-
pendent of any actions before a corresponding control action is
executed. Formally, given TS 5 = (S5,A5,→5, s0,AP5, L5),
we define a new transition relation →6 inductively:

s0
α−→5 s

′

s0
α−→6 s

′

s0 →+
6 s1

nomatch(sw ,pkt)−−−−−−−−−−−→5 s2
ctrl(pkt,cs)−−−−−−−→5 s

′

s1
nomatch ctrl(sw ,pkt,cs)−−−−−−−−−−−−−−−−→6 s

′

s0 →+
6 s1

α−→5 s
′ ∧ α is not a no-match action

s1
α−→6 s

′

where a new action nomatch ctrl(sw , pkt , cs) merges
nomatch(sw , pkt) and ctrl(pkt , cs) actions. We define a
transition system TS 6 = (S6,A6,→6, s0,AP6, L6), where
S6 = S5 is the set of states, A6 is the union of all
nomatch ctrl(sw , pkt , cs) actions and A5\(NoMatch ∪
Ctrl), AP6 = AP5, and L6 = L5.

Theorem 6: Given an SDN N where the size of the request
queue of the controller is one, and a safety property �φ. (1)
TS 5 , TS 6. (2) TS 5 satisfies �φ iff TS 6 satisfies �φ.

IV. Implementation and Evaluation
Kuai1 is implemented on top of PReach [2], a distributed

enumerative model checker built on Murphi. We model
switches, clients, and the controller as concurrent Murphi
processes which communicate using message passing, with the
queues modeled as multisets. We manually abstract IP packets
using predicates used in the controller. We implement (0,∞)-
counter abstraction as a library on top of Murphi multisets.

Kuai takes as input topology information such as the
number of switches, clients, and their connections, (manually)
abstracted packets, and the controller code written as a Murphi
process, and invariants written in Murphi syntax. We found it
fairly straightforward to port POX [15] controllers due to the
imperative features of Murphi. Murphi allows arbitrary first
order logic formulas as invariants and it is easy to specify

1The tool is can be downloaded at https://github.com/t-saideep/kuai

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 168

Program Bytes/ w/o optimizations w/ optimizations
state States Time States Time

SSH 2×2 304 2,283,527 23.52s 13 6.40s
ML 3×3 320 9,109,456 89.99s 5308 6.39s
ML 6×3 748 23,926,202 604.07s
ML 9×2 1276 18,615,767 793.84s
FW(S) 1×2 332 2,110,986 26.89s 3645 5.45s
FW(M) 2×4 448 45,507 8.03s
FW(M) 3×4 560 512,439 55.06s
FW(M) 4×4 676 5,360,871 475.54s
RS 4×4 764 4998 6.60s
RS 4×5 764 590,570 82.82s
RS 4×6 764 5,112,013 327.39s
SIM 5×6 632 167 6.23s
SIM 5×8 632 167 6.34s
SIM 5×12 1108 167 6.85s

TABLE I: Experimental results. Omitted entries indicate that model checking
did not terminate. The number X×Y in the Program column means that there
are X switches and Y clients in the example.

Fig. 2: Verification time vs processes ◦ ML 9×2 ∆ ML 6×3 � FW(M) 4×4
safety properties. Kuai compiles them into a single Murphi file
and the model checking effort is then distributed across several
machines using PReach. Finally the output of the tool is an
error trace if the program invariant fails, or success otherwise.

We have evaluated Kuai on a number of real world Open-
Flow benchmarks. The experiments were performed on a
cluster of 5 Dell R910 rack servers each with 4 Intel Xeon
X7550 2GHz processors, 64 x 16GB Quad Rank RDIMMs
memory and 174GB storage. Our experiments had access to
a total of 150 cores and had access to 4TB of RAM.

Table I shows a summary of experimental results and
compares against model checking without the optimizations
from Section III. Empty rows indicate model checking did
not terminate in 1 hour or ran out of memory. Figure 2 shows
the scalability of model checking with increasing distribution
on the three largest examples. We noticed that the performance
of the distributed model checker plateaued around 70 Erlang
processes on these and other large examples. Thus, times (in
table I) are provided for configurations that use 70 Erlang
processes. As we introduced abstractions, it is possible that
we get false positives. We verified the existence of all bugs
reported by Kuai manually and there were no false positives.

Besides the table, we plot the MAC learning example in
Figure 3, which shows how significantly our optimization
techniques reduce the state space. Though we still suffer from
the state-space explosion problem, our optimizations delay it
and enable us to verify SDNs with much larger configurations.

We now describe the benchmarks in detail.

SSH We run Kuai on the SSH controller from Listing 1. It
finds the control message reordering bug in 0.1 seconds. By
adding a barrier after line 15, Kuai proves the correctness in
6.4 seconds by exploring 13 states. In contrast, the unopti-
mized version explores over 2 million states.

Fig. 3: State space of MAC learning controller: ∆: optimized, ◦ unoptimized

MAC Learning Controller (ML) This is based on the
POX [15] implementation of the standard ethernet discovery
protocol. We checked there are no forwarding loops (similar
to [17]), i.e., a packet should not reach a switch more than
once. Packets are augmented with a bit for each switch
which gets set when the switch processes that packet. The
invariant is specified using these visit-bits (called reached):
� ∀sw ∈ Switches. ∀pkt ∈ sw .pq. (¬pkt .reached(sw)).

A cycle in the topology will lead to forwarding loops as the
controller does not compute the minimum spanning tree. We
discover the bug in a cyclic topology of 3 switches 3 clients in
0.47 seconds. We re-ran the example on a topology containing
the minimum spanning tree of the original cyclic topology
and the tool is able to prove that there were no forwarding
loops in 6.39 seconds. We scale the example by adding more
switches. We notice that while the verification on topology
with 9 switches and 2 clients has fewer states than the one with
6 switches and 3 clients, each state in the latter case is bigger
than the former and hence the memory and communication
overheads are higher.

Single Switch Firewall (FW(S)) This is based on an advanced
GENI assignment [7] on building an OpenFlow based firewall.
The controller takes as input a simple configuration file which
is a list of tuples of the form (client1, port1, client2, port2).
This specifies that packets originating from client1 on port1
can be forwarded to client2 on port2. We abbreviate the tuples
as (client1: port1→ client2: port2). Any flow not explicitly
allowed is forbidden. The flows are uni-directional and the
above flow will reject traffic initiated by client2 on port2
towards client1 on port1. However, once client1 initiates a
flow, the firewall should allow client2 to reply back, making
the flow bi-directional until client1 closes the connection.

The naive implementation of the controller is as follows:
on receiving a packet (c1: p1 → c2: p2), check if there is
a tuple matching the flow in the policy. If it does, add rules
(c1: p1 → c2: p2) and (c2: p2 → c1: p1) and forward the
packet to c2. Otherwise add a rule to drop packets of the form
(c1: p1 → c2: p2). The invariant to verify here is to ensure
the policy of the firewall, i.e., a packet from c1: p1 should
be forwarded to c2: p2 if and only if (c1: p2 → c2: p2)
exists in the firewall policy or if (c2: p2 → c1: p1) exists
in the policy and c2 has already initiated the corresponding
flow. The following formula specifies that allowed packets
should not be dropped: �∀p ∈ Packet . on dropped(p) ⇒
¬flows[p.src][packet.src port][packet.dest][p.dest port],
where on dropped(p) is set if a packet-drop transition is fired
on packet p (and reset at the beginning of every transition).
flows is an auxiliary variable in the controller which keeps

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 169

track of allowed flows based on the firewall policy and
initiating client.

We ran the experiment on a topology with 2 clients and a
firewall. We found an interesting bug in our implementation
which is caused by not assigning proper priorities to rules.
For example, when (c1: p1 → c2: p2) is present in the
policy but not (c2: p2 → c1: p1), the rule to drop flows
should have a lower priority than the rules to allow flows.
Otherwise, the following bug would occur. If c2 initiates
the flow (c2: p2 → c1: p1) then the controller adds a rule
to drop packets matching that flow. Later on, if c1 initiates
(c1: p1→ c2: p2) and the controller adds the corresponding
rules to allow the flow on both directions, the switch now has
two conflicting rules of the same priority. One to allow and
the other to drop (c2: p2 → c1: p1). The switch may non-
deterministically choose to drop the packet. Once we fixed the
bug, the tool could prove the invariant in 5.45 seconds.
Multiple Switch Firewalls (FW(M)) We extend the above
example to include multiple replicated firewalls for load bal-
ancing. We now allow the clients to send packets to all of these
firewalls. We augment the implementation of the single switch
controller to add the same rules on all firewalls. However, this
implementation no longer ensures the invariant in the multi-
switch setting.

Consider the case with two firewalls, f1 and f2. The tool
reports the following bug: c1 initiates (c1: p1 → c2: p2)
on firewall f1. The controller adds the corresponding rules
to allow flows in both directions to f1 and f2 but only
sends a barrier to f1. Now f2 delays the installation of
(c2: p2→ c1: p1) and c2 replies back to c1 through f2 which
forwards the packet to the controller. The controller then drops
the packet.

The fix here is to add the rules along with barriers on
all switches and not just the switch from which the packet
originates. With this fix the tool is able to prove the property
in 8 seconds. In order to test the scalability, we tested the tool
on increasing number of firewalls in the topology.
Resonance (RS) Resonance [13] is a system for ensuring
security in large networks using OpenFlow switches. When
a new client enters the network, it is assigned registration
state and is only allowed to communicate with a web portal.
The portal either authenticates a client by sending a signal
to the controller (and the controller assigns the client an
authenticated state), or sets the client to quarantined state.
In the authenticated state, the client is only allowed to com-
municate with a scanner. The scanner ensures that the client
is not infected and sends a signal to the controller and lets
the controller assign it an operational state. If an infection
is detected, it is assigned a quarantined state. The clients
in operational state are periodically scanned and moved to
the quarantined state if they are infected. Quarantined clients
cannot communicate with other clients.

In our model, the web portal non-deterministically chooses
to authenticate or quarantine a client and the scanner non-
deterministically marks a client operational or quarantined.
We check the invariant that packets from quarantined clients
should not be forwarded: �∀p ∈ Packet . on forward(p) ⇒
(state(p.src) 6= Quarantined). Similar to on drop,
on forward is set when packet-forward transition is fired and
reset before the beginning of every transition. The controller
follows the Resonance algorithm [13].

We ran the experiment on a topology of two clients, one

portal, one scanner and four switches. The topology is the
same as in Figure 2 of [13] without DHCP and DNS clients.
Kuai proves the invariant in 6.6 seconds. We scale up the
example by increasing the number of clients.
Simple (SIM) Simple [16] is a policy enforcement layer
built on top of OpenFlow to ensure efficient middlebox traffic
steering. In many network settings, traffic is routed through
several middleboxes, such as firewalls, loggers, proxies, etc.,
before reaching the final destination. Simple takes a middlebox
policy as input and translates this to forwarding rules to
ensure the policy holds. The invariant ensures that all source
packets to a client will be received and forwarded by the
middleboxes specified in a given policy before the packet
reaches its destination.

We ran the experiment on a topology of two clients, two
firewalls, one IDS, one proxy and five switches (see Figure 1
of [16]). Kuai can prove the invariant in 6.48 seconds.

We scale up the example by fixing the destination client and
increasing the number of source clients that can send packets
to it. Because of our “all packets in one shot” optimization
(section III-D), no matter how many packets get queued
initially, they are all forwarded in lock-step as the controller
forwarding rule applies to all incoming packets.

References
[1] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,

M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller
programs in software-defined networks. PLDI ’14, pages 282–293, 2014.

[2] B. Bingham, J. Bingham, F. de Paula, J. Erickson, G. Singh, and
M. Reitblatt. Industrial strength distributed explicit state model checking.
In PDMC-HIBI, pages 28–36, Sept 2010.

[3] M. Canini, D. Venzano, P. Perešı́ni, D. Kostić, and J. Rexford. A NICE
way to test openflow applications. NSDI’12, pages 127–140, 2012.

[4] D. L. Dill. The Murphi verification system. CAV ’96, pages 390–393,
London, UK, UK, 1996. Springer-Verlag.

[5] N. Feamster, J. Rexford, and E. Zegura. The road to SDN. Queue,
11(12):20:20–20:40, Dec. 2013.

[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker. Frenetic: A network programming language.
ICFP ’11, pages 279–291, New York, NY, USA, 2011. ACM.

[7] GENI Assignment. http://groups.geni.net/geni/wiki/GENIEducation/
SampleAssignments/OpenFlowFirewallAssignment/ExerciseLayout/
Execute.

[8] A. Guha, M. Reitblatt, and N. Foster. Machine-verified network
controllers. PLDI ’13, pages 483–494, New York,USA, 2013. ACM.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat. B4: Experience with a globally-deployed software
defined wan. SIGCOMM13, pages 3–14, New York, NY, USA, 2013.

[10] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In NSDI, pages 113–126, 2012.

[11] R. Majumdar, S. Tetali, and Z. Wang. Kuai: A Model Checker for
Software-defined Networks. Technical report. http://www.mpi-sws.org/
∼zilong/papers/kuai tr.pdf.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation
in campus networks. SIGCOMM, 38(2):69–74, Mar. 2008.

[13] A. K. Nayak, A. Reimers, N. Feamster, and R. Clark. Resonance:
Dynamic access control for enterprise networks. WREN ’09, pages
11–18, New York, NY, USA, 2009. ACM.

[14] T. Nelson, A. Guha, D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
A balance of power: Expressive, analyzable controller programming.
HotSDN ’13, pages 79–84, New York, NY, USA, 2013. ACM.

[15] POX. http://www.noxrepo.org/pox/about-pox/.
[16] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-

fying middlebox policy enforcement using SDN. SIGCOMM13, pages
27–38, New York, NY, USA, 2013. ACM.

[17] D. Sethi, S. Narayana, and S. Malik. Abstractions for model check-
ing SDN controllers. In Formal Methods in Computer-Aided Design
(FMCAD), 2013, pages 145–148, Oct 2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 170

