Using Interval Constraint Propagation for
Pseudo-Boolean Constraint Solving

Karsten Scheibler and Bernd Becker
University of Freiburg, Georges Koehler Allee 51, 79110 Freiburg, Germany
{scheibler,becker}@informatik.uni-freiburg.de

Abstract—This work is motivated by (1) a practical application
which automatically generates test patterns for integrated circuits
and (2) the observation that off-the-shelf state-of-the-art pseudo-
Boolean solvers have difficulties in solving instances with huge
pseudo-Boolean constraints as created by our application.

Derived from the SMT solver iSAT3 we present the solver
iSAT3p that on the one hand allows the efficient handling of huge
pseudo-Boolean constraints with several thousand summands and
large integer coefficients. On the other hand, experimental results
demonstrate that at the same time iSAT3p is competitive or even
superior to other solvers on standard pseudo-Boolean benchmark
families.

I. INTRODUCTION

Boolean satisfiability (SAT) and extensions thereof have
gained increased importance also in the area of digital circuit
testing — in particular since they allow the generation of so-called
high quality tests [1], [2], [3]. On the other hand, it turns out that
the test pattern generation for more complex physical defects
demands for abilities going beyond the boolean level. In this
paper we deal with pseudo-Boolean constraints (PB constraints)
arising among others in this context and corresponding solution
methods. Before going into solver details, we want to give a
short introduction to our test pattern generation application. More
details on the general context can be found e.g. in [4]. Some
more specific information on the application considered here are
provided in [5].

Assume the design of an integrated circuit (IC) is given and
should now go into production. When manufacturing ICs, many
things may go wrong. Thus, at the end of the production process it
is necessary to test if the produced ICs behave according to their
specification. L.e. one applies input patterns to an IC and compares
the output with an expected result. If there is a difference, the IC
is faulty. Obviously, the major aim is to recognize (hopefully
all) faulty circuits from a given set of freshly produced ICs.
Furthermore, the test procedure for one IC should be very fast
in order to be able to test many circuits in a short period of
time. Therefore, testing all possible input patterns is infeasible
for circuits with a reasonable number of inputs.

To be able to generate a small set of test patterns, it is
necessary to make assumptions about what can go wrong during
the production process. Usually, the visible effects of a specific
physical defect are described in a so-called fault model. Of course
there exists a bunch of different fault models — each focussing
on different aspects. The stuck-at fault model [6] assumes that a
faulty line on a chip always carries a logical zero or one. Although
it is one of the oldest models it is still widely-used, because
of its simplicity. Nonetheless, due to to latest nanoelectronic
technology [7], more complex fault models have become more
and more important recently — in particular the open fault model.
The open fault model looks at broken lines on a chip. Here, it is
assumed that the voltage of the disconnected part is determined

by the voltages of the surrounding lines. This voltage is then
mapped to a logical value. In our application we focus on the
generation of test patterns for this kind of fault.

When generating test patterns for a circuit one starts with a set
of all possible faults regarding the underlying fault model. Then a
fault is taken from this set and it is tried to generate a test pattern
for it. Regarding the open fault model a set of boolean and PB
constraints is created. The basic idea is to encode a fault-free and
a faulty version of the circuit and demanding a difference at at
least one output. In the faulty version additional PB constraints
are used to describe the influence of the surrounding lines' (as
given by the layout of the circuit) which induce faulty values
to the disconnected part. If this set of constraints is satisfiable,
the values of the variables representing the inputs of the circuit
constitute a test pattern which discovers the considered fault.

One way to solve a set of PB constraints is to translate them
into a SAT instance and to employ a SAT solver to solve it.
The PB constraints generated within our application may contain
up to several thousand summands. As our results show, such PB
constraints pose a hard problem for solvers solely relying on SAT
translation techniques. Therefore, we decided to utilize the SMT
solver iSAT3, which is able to handle PB constraints directly
in the solver. iSAT3 supports boolean, integer- and real-valued
variables and uses interval constraint propagation (ICP) to handle
boolean combinations of linear and non-linear constraints.

Compared to other solvers iSAT3 performs superior on our
benchmark class. On the other hand one could expect that this is
not the case for other benchmark classes as well, because ICP is
a general deduction mechanism not tailored for PB constraints.
In order to create a solver performing superior on all benchmark
classes, we decided to develop a hybrid approach which (1) uses
all the merits provided by SAT translation techniques and (2)
exploits the abilities of ICP to do reasoning on the arithmetic
level — in particular by introducing a preprocessing technique
which is not applicable on the boolean level.

The paper is structured as follows. After giving some prelim-
inaries in Section II, we present the extensions done to the solver
in Section III. In Section IV we discuss the experimental results
and conclude with a summary and outlook in Section V.

II. PRELIMINARIES

Most modern SAT solvers operate on a conjunctive normal
form (CNF). A CNF consists of a conjunction of clauses with
each clause being a disjunction of literals and a literal being a
boolean variable z or its negation . One core component of
a SAT solver is the boolean constraint propagation (BCP) [8]
which is used to detect implied assignments. Everytime a clause

! Each summand in the PB constraint (consisting of a large integer coefficient
and a boolean variable) represents the logic value of a surrounding line (boolean
variable) and its influence on the disconnected part (large integer coefficient).

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 203

with n literals contains n — 1 literals being already assigned to
false, the remaining literal has to be t rue in order to retain a
chance to satisfy the formula. Furthermore, today’s SAT solvers
add conflict clauses to the CNF to prune the search space even
further — so-called conflict-driven clause learning (CDCL) [9].

In SAT Modulo Theory (SMT) the CDCL working principle
is lifted to a higher level. The CNF is just a boolean abstraction
of the real problem to be solved. Each literal may now represent
a theory atom, e.g. (x +y < 10). The SAT solver works on this
boolean abstraction and assigns t rue or false to the literals —
and thus also to the theory atoms. If the SAT solver does not find
a solution the underlying SMT problem is unsatisfiable — but if
it finds a satisfying assignment a theory solver has to be used to
check if the conjunction of theory atoms satisfying the clauses
is indeed satisfiable within the theory. If this is not the case,
the boolean abstraction is refined with a conflict clause which
forbids the conflicting theory atoms. This is the classical scheme
for handling SMT formulas. It is also abbreviated as DPLL(T)
or CDCL(T) — with T being the theory used within the atoms.

iSAT3 [10] is the third implementation of the iSAT algo-
rithm [11], [12] and uses interval constraint propagation (ICP,
see e.g. [13]) to check the consistency of the theory atoms.
But unlike classical SMT, the iSAT algorithm does not separate
the consistency check of the theory atoms from the search
for a satisfying assignment in the boolean abstraction. Instead,
ICP is tightly integrated into the CDCL framework. The iSAT
algorithm allows theory atoms to contain linear and non-linear
arithmetic as well as transcendental functions, e.g. (x2+y2 = 22),
(lv — w| < min(v,w)) or (x + siny < e*). Three variable
types are natively supported: boolean, integer- and real-valued
variables. Furthermore, ICP demands each integer- and real-
valued variable to be declared with an initial interval.

iSAT3 uses an abstract syntax graph (ASG) to preprocess
the given formula. In contrast to an abstract syntax tree (AST)
an ASG-node may have multiple parent nodes. This allows
structural hashing to natively share sub-expressions. The Tseitin-
transformation [14] is used to convert the input formula to a CNF.
Additionally, arithmetic constraints are decomposed into sub-
expressions and simple bounds (a simple bound is a comparison
between an integer- or real-valued variable and a constant). The
solver core of iSAT3 is a SAT solver — extended in two directions:
(1) it is able to create new literals on-the-fly during the solving
process in order to map every newly deduced simple bound to a
literal, (2) it executes ICP in addition to BCP. For more details
refer to [10].

In the context of this paper we concentrate on constraints with
pseudo-Boolean arithmetic. The linear form of such constraints
has the form:). c;x; ~ C where ¢; and C are integer coef-
ficients, x; boolean variables and ~ a relational operator with
~€ {<,<,>,>}. Non-linear PB constraints additionally allow
variables to be multiplied:)" (c;II;x;) ~ C. The PB constraint
2x1 + 4x9 + x3 < 5 is an example for the linear form, while
3x1x4 + 372 + 2375 < b represents a non-linear PB constraint.

Especially when translating PB constraints to SAT it is desired
that the resulting CNF enables BCP to infer all the implications
present in the original PB constraint — also denoted as maintaining
generalized arc consistency (maintaining GAC). This means if a
constraint C' implies literal [under the partial assignment A then
the constraint encoded in CNF Cnp should allow BCP do the
same: CANAFl & ConpNAbpepl.

In [15] BDDs, sorting networks and adder circuits were
utilized to translate PB constraints into CNF. The proposed BDD-
based encoding creates a BDD which describes the set of satis-

fying assignments of the PB constraint. Then each inner BDD-
node is translated into CNF as an if-then-else (ITE) gate. While
the BDD-based CNF encoding maintains GAC, sorting networks
and adder circuits do not — this means possible implications are
not recognized as early as possible which leads in most cases to
a worse SAT solver performance. On the other hand the latter
two encodings are compact, whereas BDD representations could
have exponential size in worst case [16]. The authors of [17]
proposed a different encoding which is also able to maintain
GAC but stays polynomial in size. A PB constraint with n
variables and the maximum integer coefficient c¢,,4, is encoded
with O(n%log(n)log(cmas)) variables in O(n®log(n)log(cmaz))
clauses. For PB constraints containing several hundreds or even
thousands of variables this encoding method would generate bil-
lions of clauses and is therefore not applicable for PB constraints
originating from our application. Additionally, BDDs are able
to represent certain PB constraint types in linear size, while the
encoding proposed in [17] stays in O(n®log(n)log(cmaz))-

ICP operates on interval valuations and is used in iSAT3
to reason about linear and non-linear arithmetic constraints.
Basically, ICP checks if a constraint is still consistent under
the current (partial) assignment and tries to shrink the interval
valuations of the variables occuring in the constraint if possible.
In the following we illustrate the basic steps done by ICP when
evaluating the PB constraint C' : 4z1 + 2x2 + 7x3 < 10 under
the partial assignment A : z; = 1. With A these interval
valuations are examined: I, = 421 = [4,4], I = 2z5 = [0,2],
Is = Txs = [0,7], I, = [0,10). According to the current interval
valuations C looks like this: [4,4] + [0,2] + [0,7] = [0,10).
C' is consistent under A, because there are still values in the
intervals I5 and I3 such that the intersection between I + I5 + I3
and I, is not empty. Furthermore, ICP is able deduce a new
upper bound for I3 (because of ;). In order to prune definitive
non-solutions I3 is shrunk from [0,7] down to [0,6). In a next
step the new upper bound for I3 is propagated to x3. With
Is=7x3 AN I3 =10,6) A x3 € B we can deduce x3 = 0. The
sum of the lower (upper) bounds of the left-hand side exceeds
(falls below) the upper (lower) bound of the right-hand side,
whenever the constraint is inconsistent under a partial assignment.
Furthermore, the sum of the upper (lower) bound of interval I;
and the lower (upper) bounds of intervals I; exceeds (falls
below) the upper (lower) bound of the right-hand side, whenever
z; = 0 (z; = 1). Therefore, ICP is able to maintain GAC. In
fact this is not surprising, because ICP does reasoning on the
arithmetic level. On the other hand ICP is a general deduction
mechanism and not optimized for PB constraints. Especially PB
constraints like x1 + x5 + x3 > 1 are handled more efficently if
their CNF translation is used — in this extreme case this would be
just one clause: (21 V 23 V x3). Therefore we combine ICP and
BDD-based CNF translations as described in the next section.

III. 1SAT3P =1SAT3 + PB EXTENSIONS

iSAT3p1: This variant is nearly identical to the underlying
SMT solver iSAT3. We just extended the rewrite rules in the
ASG formula preprocessing in order to normalize PB constraints
to have positive coefficients on the left-hand side (—c¢;z; ~ C
can be rewritten to ¢;T; ~ C + ¢; with ~€ {<, <, > >1}).

iSAT3p2: We extend iSAT3pl by adding the ability to
represent PB constraints as BDDs similar to [15]. The boolean
variables are ordered according to their coefficients — from the
largest to the smallest. This also determines the static variable
order of the BDD. The variable with the largest coefficient will
be the top level variable. We use the ASG already present in
iSAT3 to store the BDD as a directed acyclic graph of ITE-

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 204

nodes. These ITE-nodes are then converted to a CNF — which
is handled efficiently by iSAT3p, because of its SAT solver
core. A heuristic collects some statistics during BDD creation
(i.e. number of created ITE-nodes, number of reused ITE-nodes
because of structural hashing), estimates the expected size and
decides whether the BDD creation should be aborted. If this is
the case the PB constraint will be kept in its arithmetic form. The
solver core will then use ICP as deduction mechanism.

iSAT3p3: On the one hand ICP is not as efficient as CNF
translations for certain kinds of PB constraints. On the other hand
ICP operates on the arithmetic level and therefore allows us to
apply preprocessing techniques which are not applicable for CNF
translations. We build on iSAT3p2 and extend it with symbolic
gaussian elimination (SGE). The basic idea behind SGE is to
generate helpful lemmas and add them to the formula before
solving in order to strengthen ICP. The generated lemmas are
not limited to PB constraints. In fact it does not matter, whether
the variables occuring in a constraint are boolean, integer- or
real-valued. We illustrate the idea with a small example with two
constraints Cy, Cy in the R? space: (y > 2.00001-2+0.25)A(y <
2 - x), the initial intervals are: z,y € [0,1000000]. Within the
initial intervals C; and Cy have no intersection. Therefore, the
formula is unsatisfiable. ICP will continously shrink the intervals
of x and y and may need millions of deductions until it finally
discovers the conflict and deduces contradicting bounds for one
variable. Geometrically, ICP constructs wrapping boxes around
each constraint and calculates the intersection of those boxes.
These boxes are parallel to the coordinate axes. Here, the idea
is to generate an additional lemma which enables ICP to use an
alternate coordinate axis for its wrapping box. A good choice for
such an alternate axis is one of the constraints itself.

To generate such lemmas we re-use the auxiliary variables
introduced during the decomposition of the original constraints
into sub-expressions and simple bounds. Regarding our example
the original constraints would be decomposed as follows.

C1~ (hy =y —2.00001-z)A (hy > 0.25)
CQM (hQZy—2‘.T)/\(h2§0)

Clearly, the following two equations are tautological and could
be added to the formula without harm, because they just rephrase
the equations above:

y —2.00001 -z —h; =0
y—2-x—hy=0

In a system of equations, gaussian elimination replaces the
problem variables step-by-step. We apply the same principle to
the two tautolgies above. Assume we replace y in the second
tautology with 2.00001 -+ h;. This yields the following lemma:
0.00001 - z + hy — hy = 0. If we add it to the formula, ICP
is able to deduce the conflict in a few steps: assume there is
an additional auxiliary variable (hy = —hy) and we rewrite the
lemma to (0.00001 - z + hy + hy = 0). Because of (hy < 0) it
directly follows that (hy > 0). With (hy > 0.25)A(hy > 0) a new
upper bound for x is deduced: (z < —25000). This contradicts
with the initial lower bound (x > 0).

So in general SGE creates for every constraint a tautology
containing the left-hand side of the constraint and the auxiliary
variable introduced during Tseitin-transformation. Then, one of
these tautologies is selected and redirected to a problem variable
in order to replace this variable in all remaining tautologies. This
process is repeated until no further replacements are possible. The
current implementation processes the tautologies in the order of
their creation in the ASG. Depending on the structure of the
constraints this may result in one or more lemmas. On the one

hand SGE needs enough constraints to construct useful lemmas,
but on the other hand with increasing size and number of the
constraints, SGE could become expensive. Therefore, a heuristic
is used to decide if SGE should be aborted.

If the auxiliary variable representing the left-hand side of a
constraint is used in a lemma, then this constraint will be kept —
even if a BDD representation for this constraint is created later
on. This allows ICP and BCP to reason about the same constraint
simultaneously.

IV. EXPERIMENTAL RESULTS

Solver DBL DSL | DSN | OF10 >
(14) | (355) 30) | (321)
SAT 8 136 - 8
Minisatp UNS 1 93 - 0
S+U 9 229 - 8 243
SAT 9 129 [5] 221
SAT4JPB UNS 0 90 [5] 12
S+U 9 219 [10] 233 461 [471]
SAT 5 138 [8] 275
Clasp UNS 0 96 [5] 12
S+U 5 234 [13] 287 526 [539]
SAT 2 92 [15] 301
iSAT3pl UNS 0 63 [5] 12
S+U 2 155 [20] 313 470 [490]
SAT 13 118 [15] 307
iSAT3p2 UNS 1 90 [5] 8
S+U 14 208 [20] 315 537 [557]
SAT 13 116 [15] 307
iSAT3p3 UNS 1 122 [5] 8
S+U 14 238 [20] 315 567 [587]
DEC-BIGINT-LIN=DBL, DEC-SMALLINT-LIN=DSL,
DEC-SMALLINT-NLC=DSN, OPENFAULTS-DIV10=0F10

Figure 1. Comparing Minisatp, Clasp and three variants of iSAT3p over a set
of four benchmark families. The experiments were conducted on an Intel Xeon
with 3.3 GHz with a timeout of 900 seconds and a memory limit of 8 GB.

We compared all three variants of iSAT3p against Min-
isatp [15] (git d91742bcdl), SAT4JPB [18] (version 2.3.5) and
Clasp [19] (version 2.1.4). All three solvers were among the best
solvers in the pseudo-Boolean competition 2012. Minisatp relies
on the SAT solver Minisat (git 37dc6c67e2) and translates all PB
constraints into SAT — either via BDD representations, sorting
networks or adder circuits. SAT4JPB utilizes dedicated deduction
mechanisms for PB constraints. Clasp is an answer set solver for
(extended) normal logic programs.

From the pseudo-Boolean competition 2012 we selected
those benchmark families containing satisfiability problems,
namely: DEC-BIGINT-LIN (with 14 benchmark instances), DEC-
SMALLINT-LIN (with 355 instances) and DEC-SMALLINT-
NLC (with 30 instances). The first two families contain linear PB
constraints, while the third contains non-linear ones. Additionally,
we created a fourth benchmark family OPENFAULTS-DIV10
with 321 converted instances originating from our application.
During test pattern generation we directly created the instance to
be solved with ASG-nodes via the library interface of iSAT3p.
In order to obtain a conjunction of PB constraints, we introduced
additional auxiliary variables when needed. Furthermore, for PB
constraints containing large numbers we had to divide all integer
constants in the constraint by 10 — otherwise Clasp was unable
to parse the benchmarks.

To compare the solvers we used an Intel Xeon with 3.3
GHz. The results are shown in Figure 1. For each benchmark
family and for each solver the table shows the number of solved
satisfiable (SAT) and unsatisfiable (UNS) instances as well as
the sum of both (S+U). The best numbers in each category are

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 205

marked bold. Minisatp did not handle benchmarks with non-linear
PB constraints properly and immediately returned UNKNOWN
for those benchmarks. Therefore, we list the numbers for the
benchmark family DEC-SMALLINT-NLC for SAT4JPB, Clasp
and iSAT3p in square brackets.

The results show that the baseline solver iSAT3p1 already out-
performs Minisatp, SAT4JPB and Clasp on the benchmark fami-
lies DEC-SMALLINT-NLC and OPENFAULTS-DIV10, but falls
somewhat behind for DEC-BIGINT-LIN and DEC-SMALLINT-
LIN. To a large extent this is due to the fact that the ICP routines
borrowed from iSAT3 were written to handle generic linear and
non-linear arithmetic constraints and are not optimized for PB
constraints. iISAT3p2 is able to close the gap for DEC-BIGINT-
LIN and DEC-SMALLINT-LIN. For these two benchmark fam-
ilies iSAT3p2 performs equally well as SAT4JPB with its ded-
icated PB deduction routines. Regarding OPENFAULTS-DIV10
and DEC-SMALLINT-NLC iSAT3p2 has significant lower run-
times compared to iISAT3p1. Finally, iSAT3p3 with SGE is able
to outperform the other solvers on all benchmark families. As
mentioned earlier, SGE needs on the one hand enough constraints
to create useful lemmas, but on the other hand may become too
expensive with increasing size and number of the constraints.
Therefore, SGE is only applicable to a subset of the benchmark
instances — in particular those in DEC-SMALLINT-LIN. The
benchmark instances in DEC-BIGINT-LIN contain between 50-
100 variables, but only two constraints. OPENFAULTS-DIV10
contains constraints with several hundred variables, so SGE will
be too expensive and is aborted. DEC-SMALLINT-NLC contains
non-linear PB constraints and is therefore not suitable for SGE.

The results for OPENFAULTS-DIV10 emphasize that solvers
solely reying on a translation into SAT are not competitive for
applications which require PB constraints with many summands
and large integer coefficients. While Minisatp solves only 8
instances, SAT4JPB and Clasp solve 233 and 287 instances. All
variants of iSAT3p solve almost all of the 321 instances.

To sum up: the results approve the efficacy of the exten-
sions made to iSAT3. Resorting to BDD representations, the
performance especially for the two benchmark families DEC-
BIGINT-LIN and DEC-SMALLINT-LIN is improved. Here we
see that a BDD-based CNF translation allows more efficient
deductions. Additionally, SGE strengthens ICP and improves the
overall performance further such that iSAT3p3 shows superior
performance on all benchmark families.

V. CONCLUSION AND OUTLOOK

We presented an approach for solving PB constraints with
interval constraint propagation — and when possible with BDD
representations of the constraints. The experimental results con-
firmed the efficiency of our approach. Over the complete bench-
mark set iSAT3p3 was able to solve 587 instances — compared
to the second best solver Clasp, this is a gain of 48 instances
or 8.9%. The gain is even higher if iSAT3p3 is compared to
SAT4JPB and Minisatp, namely 27.3% and 133% more bench-
mark instances are solved compared to these two solvers. Fur-
thermore, we observed that methods only relying on a translation
to SAT fail for our benchmark class. Therefore, it is clearly
beneficial to keep the ability to handle constraints in an arithmetic
way.

The fact that iSAT3p has a SAT solver in its core enables us
to use all the merits of a BDD-based SAT translation. At the same
time, the tight integration of ICP in iSAT3p allows us to opt out
for BDD creation individually for each constraint. Additionally,
we presented a preprocessing technique which generates lemmas

to strengthen ICP reasoning. It improves the overall performance
of the solver and is therefore a good starting point for future
work in this direction. Furthermore, going beyond satisfiability
checking and adding the capability to optimize solutions is a
challenging task we want to address as well.

ACKNOWLEDGEMENTS

The authors thank Leonore Winterer and Felix Neubauer
as well as Dominik Erb and Linus Feiten for supporting
this work. This work has been partially supported by the
German Research Foundation (DFG) as part of the Transre-
gional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (DFG, SFB/TR 14 AVACS,
http://www.avacs.org/) and by the Cluster of Excellence
BrainLinks-BrainTools (DFG, grant number EXC 1086)

REFERENCES
[1] M. Sauer, A. Czutro, I. Polian, and B. Becker, “Small-delay-fault atpg with
waveform accuracy,” in /ICCAD. IEEE, 2012, pp. 30-36.

[2] D. Erb, M. A. Kochte, M. Sauer, S. Hillebrecht, T. Schubert, H.-J.
Waunderlich, and B. Becker, “Exact logic and fault simulation in presence
of unknowns,” Accepted for publication in ACM Transactions on Design
Automation of Electronic Systems (TODAES), 2014.

[3] S. Eggersglii, R. Wille, and R. Drechsler, “Improved sat-based atpg: more

constraints, better compaction,” in /CCAD, J. Henkel, Ed. IEEE/ACM,
2013, pp. 85-90.
[4] N. K. Jha and S. K. Gupta, Testing of Digital Systems. Cambridge

University Press, 2003.

[5S] D. Erb, K. Scheibler, M. Sauer, and B. Becker, “Efficient smt-based atpg
for interconnect open defects,” in DATE, 2014, pp. 125:1-125:6.

[6] R.D. Eldred, “Test routines based on symbolic logical statements,” Journal
of the ACM, vol. 6, no. 1, pp. 33-36, 1959.

[71 V. H. Champac, R. Rodriguez-Montaifiés, J. A. Segura, J. Figueras, and
J. A. Rubio, “Fault modelling of gate oxide short, floating gate and bridging
failures in CMOS circuits,” in European Test Conf., 1991, pp. 143-148.

[8] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem proving,” Communications of the ACM, vol. 5, pp. 394-397, 1962.

[9] J. P. M. Silva and K. A. Sakallah, “Grasp - a new search algorithm for
satisfiability,” in ICCAD, 1996, pp. 220-227.

[10] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent improvements in
the smt solver isat,” in MBMV, C. Haubelt and D. Timmermann, Eds.
Institut fiir Angewandte Mikroelektronik und Datentechnik, Fakultit fiir
Informatik und Elektrotechnik, Universitidt Rostock, 2013, pp. 231-241.

[11] M. Frinzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure,” Journal on Satisfiability, Boolean Modeling, and Com-
putation, vol. 1, no. 3-4, pp. 209-236, 2007.

[12] C. Herde, “Efficient solving of large arithmetic constraint systems with
complex boolean structure: proof engines for the analysis of hybrid
discrete-continuous systems,” Ph.D. dissertation, 2011.

[13] FE Benhamou and L. Granvilliers, “Continuous and Interval Constraints,”
in Handbook of Constraint Programming, ser. Foundations of Artificial
Intelligence, 2006, pp. 571-603.

[14] G. S. Tseitin, “On the complexity of derivations in propositional calcu-
lus,” in Studies in Constructive Mathematics and Mathematical Logics,
A. Slisenko, Ed., 1968.

[15] N. Eén and N. Sorensson, “Translating pseudo-boolean constraints into
sat,” JSAT, vol. 2, no. 1-4, pp. 1-26, 2006.

[16] I. Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell, and
V. Mayer-Eichberger, “A new look at bdds for pseudo-boolean
constraints,” J. Artif. Int. Res., vol. 45, no. 1, pp. 443-480, Sep. 2012.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2444851.2444862

[17] O. Bailleux, Y. Boufkhad, and O. Roussel, “New encodings of pseudo-
boolean constraints into cnf,” in SAT, ser. Lecture Notes in Computer
Science, O. Kullmann, Ed., vol. 5584. Springer, 2009, pp. 181-194.

[18] D. L. Berre and A. Parrain, “The sat4j library, release 2.2, JSAT, vol. 7,
no. 2-3, pp. 59-6, 2010.

[19] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “clasp : A conflict-
driven answer set solver,” in LPNMR, ser. Lecture Notes in Computer
Science, C. Baral, G. Brewka, and J. S. Schlipf, Eds., vol. 4483. Springer,
2007, pp. 260-265.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 206

