Small Inductive Safe Invariants

Alexander Ivrii, Arie Gurfinkel, Anton Belov
Introduction

- Consider a verification problem \((INIT, TR, P)\)
- In the case that \(P\) holds, a Model Checker may produce a proof in terms of a safe inductive invariant
- A safe inductive invariant is a set of states \(G\), satisfying:
 - \(G\) contains all the initial states
 - All the transitions from \(G\) lead back to \(G\)
 - \(G\) is contained in the set of states where \(P\) holds
Introduction

- Equivalently, a **safe inductive invariant** is a Boolean function G, satisfying:
 - $\text{INIT} \Rightarrow G$
 - $\text{TR} \land G \Rightarrow G'$ (inductive)
 - $G \Rightarrow P$ (safe)

- Following **IC3**, a recent trend is to produce such an invariant as a conjunction of **many simple lemmas** (such as clauses)
 - $G = C_1 \land \ldots \land C_n$

- A typical invariant may contain **10,000s** of clauses
Introduction

- Our motivation is that smaller inductive invariants are more useful:
 - They are relevant in the context of FAIR [Bradley et al. 2011]
 - The cited paper introduces the problem and presents a solution
 - They produce better abstractions
 - A state variable not in the invariant is irrelevant for correctness
 - They increase user comprehension
 - They improve regression verification

- In this work we minimize inductive invariants by removing clauses
 - Look for minimal (or small) subsets
 - “Minimal” does not mean “of minimum size” (the latter is harder)
Problem Statement

- Following the standard (abuse of) notation for CNFs, we denote the conjunction of clauses as a set (and vice versa)

- **Minimal Safe Inductive Invariants (MSIS):** Given a safe inductive invariant \(\{C_1, ..., C_n\}\), find a subset \(\{C_{i_1}, ..., C_{i_k}\}\) of \(\{C_1, ..., C_n\}\), so that:
 - \(\{C_{i_1}, ..., C_{i_k}\}\) is also a safe inductive invariant
 - \(\{C_{i_1}, ..., C_{i_k}\}\) is **minimal** (no proper subset of \(\{C_{i_1}, ..., C_{i_k}\}\) is safe and inductive)

- We want the solution to be **efficient** (ideally the time to minimize a safe inductive invariant should be much smaller than to compute it)
Why finding an MSIS is not simple

- Recall that in particular we need to make sure that
 \[TR \land C_{i1} \land \ldots \land C_{ik} \Rightarrow C_{i1}' \land \ldots \land C_{ik}' \]

- This query is non-monotone: each clause appears both as a premise and a conclusion
 - With fewer clauses, we need to prove less, but we can also assume less

- For example, it might be that:
 - \{C_1, C_2, C_3, C_4\} is inductive,
 - \{C_1, C_2, C_3\} is not inductive,
 - \{C_1, C_2\} is inductive
Basic MSIS algorithm

- First, we present the approach described in [Bradley et al. 2011]

- The main idea is to tentatively remove a clause, and then to iteratively tentatively remove all no longer implied clauses, until:
 - Either a smaller inductive invariant is obtained
 - We can restrict to this smaller invariant
 - Or the property itself is no longer implied
 - We should restore all the tentatively removed clauses

- Repeat for every clause
Basic MSIS algorithm – Example

- Initially: \(\{C_1, C_2, C_3, C_4, C_5, C_6\} \) is a safe inductive invariant for \(P \)

- Remove \(C_1 \):
 - Suppose that \(C_2' \) and \(C_4' \) are no longer implied

- Remove \(C_2 \) and \(C_4 \) as well (as they cannot be part of any MSIS of \(\{C_2, C_3, C_4, C_5, C_6\} \))
 - Suppose that \(C_5' \) is no longer implied

- Remove \(C_5 \) as well
 - Suppose that \(C_6 \) and \(P \) are no longer implied

- It follows that \(C_1 \) cannot be removed (must be present in every MSIS of \(\{C_1, C_2, C_3, C_4, C_5, C_6\} \))

- Restore all removed clauses
Basic MSIS algorithm – Example

- Currently:
 - \{C_1, C_2, C_3, C_4, C_5, C_6\} is a safe inductive invariant for P
 - \(C_1\) cannot be removed

- Remove \(C_2\):
 - Suppose that \(C_3\)' and \(C_6\)' are no longer implied

- Remove \(C_3\) and \(C_6\) as well:
 - Suppose that all remaining clauses and \(P\) are implied

- It follows that \(\{C_1, C_4, C_5\}\) is a smaller safe inductive invariant
Basic MSIS algorithm – Example

- Currently:
 - \(\{C_1, C_4, C_5\}\) is a safe inductive invariant for \(P\)
 - \(C_1\) cannot be removed

- Proceed with the remaining clauses in a similar fashion
Basic MSIS algorithm

- Denote by $\text{MaxInductiveSubset}(S, P)$ the procedure that computes the maximum inductive subset of S, aborting if it does not imply P.
- Given a safe inductive invariant G for P, in the basic approach we
 - Iteratively
 - Choose a not-yet-considered clause C in G
 - Compute $X = \text{MaxInductiveSubset}(G \setminus C, P)$
 - If X is safe (X implies P), then replace G by X
- **Claim**: the described algorithm computes an MSIS of G

- Unfortunately, this algorithm **is not efficient**
 - A large number of SAT calls is required (\simquadratic)
 - Does repeated work
What can we do better?

- Efficiently **under-approximate** an MSIS
 - Find clauses that must be present in any MSIS of G

- Efficiently **over-approximate** an MSIS
 - Remove clauses that are not part of some MSIS of G

- Optimize the basic MSIS algorithm
 - Minimizing the amount of wasted work
 - Taking clause dependency into account

- Combine under- and over- approximations with the optimized MSIS algorithm
Under-Approximation

- Given a safe inductive invariant $G = \{C_1, \ldots, C_n\}$, we say that a clause C_i is **safe necessary** if C_i is present in every MSIS of G.

- We exploit the following observations:
 - Given a clause C in G, if $(G \setminus C) \land TR \Rightarrow P$ does not hold then C is safe necessary
 - Given a clause C in G and a safe necessary clause D (different from C), if $(G \setminus C) \land TR \Rightarrow D'$ does not hold then C is safe necessary

- The under-approximation algorithm iteratively applies the above two observations until fix-point

- The algorithm can be implemented very efficiently using an incremental SAT-solver
Under-Approximation – Example

- Initially:
 - \(\{C_1, C_2, C_3, C_4, C_5, C_6\} \) is a safe inductive invariant for \(P \)
 - No clauses are marked as necessary
- Check if there is an unmarked clause without which \(P \) is not implied
 - Suppose that we find \(C_4 \)
 - Mark \(C_4 \) as necessary
- Check if there is an unmarked clause without which \(P \) is not implied
 - Suppose that we find \(C_5 \)
 - Mark \(C_5 \) as necessary
- Check if there is an unmarked clause without which \(P \) is not implied
 - Suppose that we find none
Under-Approximation – Example

- Check if there is an unmarked clause without which C_4' is not implied
 - Suppose that we find C_1
 - Mark C_1 as necessary
- Check if there is an unmarked clause without which C_4' is not implied
 - Suppose that we find none
- Check if there is an unmarked clause without which C_5' is not implied
 - Suppose that we find none
- Check if there is an unmarked clause without which C_1' is not implied
 - Suppose that we find none
- Therefore: C_1, C_4, C_5 belong to every MSIS of $\{C_1, C_2, C_3, C_4, C_5, C_6\}$
Under-Approximation

- **Claim**: the described algorithm computes a set of clauses that must be present in every MSIS of G
 (however, it does not compute all such clauses)

- The algorithm makes only a linear number of SAT calls (even in the size of the solution)

- The algorithm can be further improved if some clauses are initially known to be necessary

- For IC3 proofs, the algorithm is very efficient and usually marks a large number of clauses
Over-Approximation

- Given a safe inductive invariant \(G = \{C_1, \ldots, C_n\} \) and two subsets \(A \) and \(B \) of \(G \), we say that \(A \) inductively supports \(B \) (or equivalently that \(B \) is supported by \(A \)) if \(TR \land A \land B \Rightarrow B' \)
- **Greedily** compute a safe inductive subset of \(G \) as follows:
 - Choose any minimal subset \(A_1 \) of clauses needed to support \(P \) (and any necessary clauses, if known)
 - Choose any minimal subset \(A_2 \) of clauses needed to inductively support \(A_1 \)
 - Choose any minimal subset \(A_3 \) of clauses needed to inductively support \(A_2 \)

 ...
 - Stop when the last computed set is empty
- The over-approximation is the union of all the sets considered
Over-Approximation

• **Claim**: the described algorithm computes a safe inductive subset of G (however, it is not guaranteed to be minimal)

• The algorithm makes only a linear number of MUS calls

• The quality and the run-time of the algorithm are greatly improved
 - If we compute minimal supporting sets
 - If we follow the presented recursive approach
 • Instead of computing a global unsatisfiable core as suggested in [Bradley et al. 2011]
 - If we consider all the clauses of A_i together, rather than 1-by-1
 - If some of the clauses are initially marked as necessary
Optimized MSIS algorithm

- An immediate optimization to the basic MSIS algorithm consists of
 - Marking necessary clauses as soon as they are discovered, and
 - Aborting the computation as soon as one of the necessary clauses becomes non-implied

- Given a safe inductive invariant G for P, in the optimized approach we
 - Keep track of necessary clauses N
 - Iteratively
 - Choose a not-yet-considered clause C in $G \setminus N$
 - Compute $X = \text{MaxInductiveSubset}(G \setminus C, P \cup N')$
 - If X is safe, then replace G by X
 - Otherwise, add C to N
Optimized MSIS algorithm – Example

- Consider the previous example:
 - \{C_1, C_4, C_5\} is a safe inductive invariant for \(P \)
 - \(C_1 \) cannot be removed

- Remove \(C_4 \):
 - Suppose that \(C_1 \)' is no longer implied
 - The basic algorithm removes \(C_1 \)
 - The optimized algorithm aborts immediately

- Remove \(C_5 \):
 - Suppose that \(C_4 \)' is no longer implied
 - The basic algorithm removes \(C_4 \) (and then possibly \(C_1 \), etc)
 - The optimized algorithm aborts immediately
Optimized MSIS algorithm

- The optimized algorithm is significantly better than the basic algorithm.

- Moreover, the optimized algorithm is significantly improved when some of the clauses are initially marked as necessary.

- However, the optimized algorithm still requires a quadratic number of SAT queries in the worst case:
 - Queries of the form “which clauses become not implied if certain other clauses are removed?”
 - Each time that we remove a clause C_i from a safe inductive invariant, might need to make a linear number of such queries
 - Might need to process a linear number of clauses
The B.I.G. algorithm makes use the following observation: given a safe inductive invariant G and a clause C

- Either $G \setminus C$ remains a safe inductive invariant
- Or C is safe necessary for P or for some other clause in G

The B.I.G. algorithm makes only a linear number of SAT queries

The technique is inspired by the Binary Implication Graphs used in SAT-solvers

Purely by coincidence, B.I.G. also represents the authors' initials ;-)
B.I.G. MSIS algorithm – Example

- Initially: \(\{C_1, C_2, C_3, C_4, C_5, C_6\} \) is a safe inductive invariant for \(P \)
- Remove \(C_1 \):
 - Suppose that \(C_4' \) is no longer implied (and possibly other clauses)
 - We infer: \(C_1 \) is needed for \(C_4 \)
 - Equivalently: if \(C_4 \) is in the invariant, then \(C_1 \) is in the invariant
 - Denote this graphically by \(\{C_1\} \rightarrow \{C_4\} \)
- Restore \(C_1 \) and remove \(C_4 \):
 - Suppose that \(C_5' \) is no longer implied (and possibly other clauses)
 - We infer: \(C_4 \) is needed for \(C_5 \)
 - Denote this graphically by \(\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\} \) (note transitivity)
- Restore \(C_4 \) and remove \(C_5 \)
B.I.G. MSIS algorithm – Example

• Currently:
 - C₅ is tentatively removed: \(\{C₁, C₂, C₃, C₄, C₆\} \)
 - Know: \(\{C₁\} \rightarrow \{C₄\} \rightarrow \{C₅\} \)

• **Case I**: P and all remaining clauses are still implied
 - In this case, can permanently remove the (last) clause \(C₅ \)
 - Know: \(\{C₁\} \rightarrow \{C₄\} \)
 - Make the query for \(C₄ \)
B.I.G. MSIS algorithm – Example

• Currently:
 – C_5 is tentatively removed: \{C_1, C_2, C_3, C_4, C_6\}
 – Know: \{C_1\} → \{C_4\} → \{C_5\}

• **Case II:** P (or one of known necessary clauses) is not implied
 – In this case, **all** of the clauses C_1, C_4, C_5 are necessary
 – Make the query for some new clause
Currently:
- C_5 is tentatively removed: $\{C_1, C_2, C_3, C_4, C_6\}$
- Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

Case III: A new clause (for example C_6) is not implied
- Infer: C_5 is needed for C_6
- Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\} \rightarrow \{C_6\}$
- Make the query for C_6
B.I.G. MSIS algorithm – Example

- Currently:
 - C_5 is tentatively removed: $\{C_1, C_2, C_3, C_4, C_6\}$
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

- **Case IV**: A previous clause (for example C_4) is not implied:
 - Either
 - All clauses between C_4 and C_5 are in the final invariant
 - None of the clauses between C_4 and C_5 are in the invariant
 - Know: $\{C_1\} \rightarrow \{C_4, C_5\}$
 - Make the query for $\{C_4, C_5\}$
Combined MSIS algorithm

- Experimentally the following combination of the presented ideas works the best

1) Run under-approximation
 - About 70% of the final MSIS clauses are identified in this stage

2) Run over-approximation (with marked necessary clauses)
 - After this stage over-approximates the final MSIS by only 4%
 - In many cases already produces an MSIS

3) Run under-approximation (on the reduced invariant)
 - About 90% of the final MSIS clauses are identified

4) Run Optimized MSIS or B.I.G. MSIS on the remaining clauses
 - On average improves the basic MSIS algorithm by 10 to 1000 times
Overall Improvement in Run-Time

![Graph showing overall improvement in run-time comparison between BIG+NFN and NAIVE, CPU time in seconds.]
Thank You!
Reduction in the Number of Clauses
Under-Approximation – Implementation

- Introduce an auxiliary variable a_i for every clause C_i of G
- Load $TR \land (a_1 \leftrightarrow C_1) \land \ldots \land (a_n \leftrightarrow C_n)$ into the solver
- Encode the constraint “at most one out of $\neg a_1$, …, $\neg a_n$ is true”
- Keep unprocessed elements in a queue Q, initially $Q = \{P\}$
- Iteratively:
 - Consider the first element q in Q
 - Solve, passing $\neg q$ as assumptions
 - If SAT:
 - Exactly one of the a_i evaluates to false
 - Mark the corresponding C_i as necessary and set $a_i = true$
 - Add C'_i to Q
 - If UNSAT:
 - Proceed to the next element in Q