Infinite-State Backward Exploration
of Boolean Broadcast Programs*

Peizun Liu and Thomas Wahi
Northeastern University, Boston, USA

FMCAD 2014
Lausanne, Switzerland

October 24, 2014

*This work is supported by NSF grant no. 1253331.

Outline

Introduction

Problem Description

Assertion checking for non-recursive, unbounded-thread
Boolean broadcast programs

e 7

decl s := 0; // shared
main () {

decl 1 := 0; // local
s := 0;

goto 3,7;
assume (s);

1 := 1;

wait;

goto T7;

assume (!s);
broadcast;

s := lIs;

assert ('1);

O O 00 NO O WN =

I

[

Problem Description

Definition

Given: a program state (s, (), with shared component s and
local component ¢
Task: check if there exists a reachable global state of the form:

shared

. oy lo bz lal |4

Motivation

» Boolean broadcast programs result from concurrent C
programs via predicate abstraction [Donaldson et al., 2012]

» Predicate abstraction used widely in verification:
SLAM, BLAST, SATABS (concurrent), etc.

int x = 1; decl s := 0;
main () {
int main() { decl 1 := 0;
int y = 0; 1: s := 0;
2: goto 3,6;
x = 0; 3: assume(s);
if (x) 4: 1 := 1;
y = 1; 5: goto 7;
x = !x; 6: assume(!s);
assert (ly); 7: s := !s;
return O; 8: assert('1l);
} }

Motivation: Classical Solutions

Reachability of (s, ¢) = coverability problem

» Karp-Miller Procedure [Karp & Miller, 1969]
» Backward Search [Abdulla et al., 1996]

Limitations

» Karp-Miller procedure can not deal with broadcasts

» Both operate on transition systems
= need to first convert concurrent BP to Petri net

Motivation: State Space Blow-Up

Boolean Program to Petri Net: Program from Slide 5

e AN P

s
“L‘\:l-—ox! |
\\35§!!£\\t»"4,

IYEE S
LYY, \N

W
LS

\
<
| RN
= NPN
~

Q {

|T| =84

Motivation: State Space Blow-Up

Boolean Program to Petri Net: one benchmark
BP: |Vs| =5, |V | =2, LOC = 60

| T| = 8064

Our Approach

Boolean broadcast program backward search

... based on Abdulla’s Backward Search.

But:
» operates directly on Boolean program
» instead of statically building transition system,
constructs it on-the-fly

Result: dramatic reduction of state explosion

Outline

Classical BWS

Backward Search [Abdulla et al., 1996]

WQOS and cover relation

BWS operates over a well quasi-ordered system (WQOS).
In our case: WQO is the covers relation:

(S7£17"'7_f_7) t (87617"')£n)

whenever multiset{(1, ... 05} D multiset{{s,. .., {n}.

Backward Search [Abdulla et al., 1996]

Pre(w)

CovPre(w) = min Pre(w)

Outline

Our Approach

State Representation

Store states in counter-abstracted form:

7= (s,{(ts,m), ..., Lk,)}

» /4,...,L are the distinct local states occurring in 7
» n; = # of threads in local state ¢; in 7 (n; > 0)

Cover Predecessor Computation

CovPre(w) =min{p: 3w - w: p — w}

Two challenges:

1. given w, need to explore expanded elements w > w

= how many threads to be added?

2. given w, need to compute predecessor: p — w
We do not have —, only the program B !

= how to execute B backwards ?

Cover Predecessor Computation

Two challenges

1. need to expand w to w
2. need to execute B backwards from w

The solutions

1. adding a single thread to w is sufficient’
2. execute B backwards via WP and CFG

'see paper for details

Our Algorithm: Standard Predecessors

= {4, M), .., (l, M)}

Standard predecessors

N NN EE LT R L = local states in 7/

for each CFG edge e s.t. target(e) = ¢/.pc
switch e.stmt:
case sequential statement:

case thread creation statement:

T2 Tn case broadcast statement:

1
1
!
1
1
1
1
1
1
i
73 - '
1
1
1
1
1
1
1
1
1
\

™ 70

Our Algorithm: Standard Predecessors

= {4, M), .., (M)}

Sequential statements (e.g. assignments)

» compute the predecessors using WP ¢ sim::

for each (s, /) s.t. WPe simei(s,¢, 8, 1))
compute the predecessors of 7/ w.r.t. (s, /)

Our Algorithm: Standard Predecessors

7= (S e), (),)

Thread creation statement

7’ has a predecessor iff there

10: start_thread 20; . .
(_, W exists ¢, £ in 7' s.t.

11: ...
: ¢.pc =11
20: ... ’
) A {.pc =20
LL) J A Vv e VL:EII-.Vzﬂ;.V
Predecessor:

r=(s{...,(t,n —),...,(Ej/-,nj—1),...,(€k,nk+1),...})

where (,.pc =10 AVv € V| 1 lk.v =Ly

Our Algorithm: Standard Predecessors

=), (), (G k)Y

Broadcast statement

First find
¢i.pc = 31,¢.pc = 21,4.pc = 11
10: wait;
- 11 ...
éO: wait;
- 21: ...

30: broadcast;
- 31 L.,

L J

Our Algorithm: Standard Predecessors

Broadcast statement

Current State Predecessor could be ...

e N (

10: wait; w 10: wait;
- 11: ... 11: ...

20: wait; w 20: wait;
~-> 21: ... Qroadcast 21: ...

30: broadcast; m 30: broadcast;
31 .. 31: ...

L J L

Our Algorithm: Standard Predecessors

Broadcast statement

Current State Predecessor could be ...

e N (

10: wait; 10: wait;
- 11: ... - 11

20: wait; w 20: wait;
~-> 21: ... Qroadcast 21: ...

30: broadcast; m 30: broadcast;
31 .. 31: ...

L J L

Our Algorithm: Standard Predecessors

Broadcast statement

Current State Predecessor could be ...

e N (

10: wait; = 10: wait;
- 11: ... 11: ...

20: wait; 20: wait;
~-> 21: ... Qroadcast - 21

30: broadcast; m 30: broadcast;
31 .. 31: ...

L J L

Our Algorithm: Standard Predecessors

Broadcast statement

Current State Predecessor could be ...
e N (

10: wait; 10: wait;
- 11: ... - 11

20: wait; 20: wait;
~-> 21: ... Qroadcast - 21

30: broadcast; m 30: broadcast;
31 .. 31: ...

L J L

Our Algorithm: Standard Predecessors

= (s, {..., (¢, m),..

Broadcast statement

First find

), (G M)

¢i.pc = 31,¢.pc = 21,4.pc = 11

L

10:
- 11: ...

20:
- 21: ...

30:
31 L.,

wait;

wait;

broadcast;

Predecessors: Each

subset of past-wait
threads gives rise to a
different predecessor

Our Algorithm: Expanded Predecessors

7 = <Slv{(,17nl1)7"'7(;(,n;()}>
Expanded predecessors

for each (s,¢) s.t. 3m’ & {¢4,..., 0, } -
e:= (¢L.pc,m .pc) € CFG
A e.stmt may modify the shared state
A WPe stmi(s,¢,8,m’)
compute the predecessors of 7/ w.r.t. (s, /)

Outline

Experiments

Experiments: Benchmark Sample

ID/Program C Program Boolean Program Safe?
SV LV LOC Bc? |Vs| |V,| Its. Mod.Sh.
01/INC-L 2 1 46 o 3 1 2 7.5 ®
02/INc-C 1 3 57 o 0 4 4 0 °
03/PRNSIMP-L 2 4 63 o 2 3 2 7.7 ®
04/PRNSIMP-C 1 5 9% o 0 5 2 0]
05/BS-LooP 0 6 24 o 0 7 1 0 O
06/PTHREAD 5 0 8% o 7 0 5 17.1 O
07/MAXOPT-L 3 4 69 O 1 1 2 3.1]
08/MAXOPT-C 2 6 86 o 0 2 2 0 (]
09/STACK-L 4 2 79 O 1 3 3 3.8]
10/STACK-C 3 3 89 o 38 1 2 6.4]
11/BSD-AK 1 7 909 e 3 1 15 11.7 (]
12/BSD-RA 2 21 87 e 3 0 19 12.3]
13/NETBSD 1 28 152 e 3 1 30 10.1]
14/SOLARIS 1 56 122 e 5 1 14 10.9 (]
5 o 5 2 O

15/Boop 2 89

11.4

Experimental Results

103 F T T T T T T T T T »
- | |-~ Ucos i
§ I |-=— Mcov 1
e | |+ Mcov/GKkm |
< 10°} | Boom-Km E
€ i i
< L i
[&]
c S i
8
~ 10! E]
(0] =]
N S]
> i]
© L 4
s
o 100F E
— [2 B
© H]
£ 2 1

| |
9101112131415161718192021222324252627282930
k of benchmarks analyzed successfully

A
po L
wl
N
ol
ol
<L
ol

Outline

Summary

Summary

Our approach

» avoids the static transition system construction
» operates on-the-fly: what you see is what you pay
» can result in dramatic savings

Thank You

References

@ A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and
T. Wahl, “Counterexample-guided abstraction refinement

for symmetric concurrent programs,” Form. Method. Syst.
Des., 2012.

[@ R. M. Karp and R. E. Miller, “Parallel program schemata,”
J. Comput. Syst. Sci., 1969.

[§ P Abdulla, K. Cerans, B. Jonsson, and Y. Tsay, “General
decidability theorems for infinite-state systems,” in LICS,
1996.

[@ A. Kaiser, D. Kroening, and T. Wahl, “Efficient coverability
analysis by proof minimization,” in CONCUR, 2012.

