Infinite-State Backward Exploration of Boolean Broadcast Programs*

Peizun Liu and Thomas Wahl Northeastern University, Boston, USA

> FMCAD 2014 Lausanne, Switzerland

October 24, 2014

^{*}This work is supported by NSF grant no. 1253331.

Outline

Introduction

Classical BWS

Our Approach

Experiments

Summary

Problem Description

Assertion checking for non-recursive, unbounded-thread Boolean broadcast programs

```
decl s := 0; // shared
main() {
    decl 1 := 0; // local
    1: s := 0;
    2: goto 3,7;
    3: assume(s);
   4: 1 := 1;
   5: wait;
    6: goto 7;
    7: assume(!s);
    8: broadcast;
    9: s := !s;
   10: assert(!1);
```

Problem Description

Definition

Given: a program state (s, ℓ) , with shared component s and local component ℓ

Task: check if there exists a reachable global state of the form:

Motivation

- Boolean broadcast programs result from concurrent C programs via predicate abstraction [Donaldson et al., 2012]
- Predicate abstraction used widely in verification: SLAM, BLAST, SATABS (concurrent), etc.

```
int x = 1:
int main() {
    int y = 0;
    x = 0;
    if(x)
      v = 1;
    x = !x;
    assert(!y);
    return 0;
```

```
decl s := 0;
main() {
     decl 1 := 0;
   1: s := 0;
   2: goto 3,6;
   3: assume(s);
   4: 1 := 1;
   5: goto 7;
   6: assume(!s);
   7: s := !s;
   8: assert(!1);
```

Motivation: Classical Solutions

Reachability of $(s, \ell) \Rightarrow$ coverability problem

- Karp-Miller Procedure [Karp & Miller, 1969]
- Backward Search [Abdulla et al., 1996]

Limitations

- Karp-Miller procedure can not deal with broadcasts
- Both operate on transition systems
 - ⇒ need to first convert concurrent BP to *Petri net*

Motivation: State Space Blow-Up

Boolean Program to Petri Net: Program from Slide 5

$$|T| = 84$$

Motivation: State Space Blow-Up

Boolean Program to Petri Net: one benchmark

BP:
$$|V_S| = 5$$
, $|V_L| = 2$, $LOC = 60$

$$|T| = 8064$$

Our Approach

Boolean broadcast program backward search

... based on Abdulla's Backward Search.

But:

- operates directly on Boolean program
- instead of statically building transition system, constructs it on-the-fly

Result: dramatic reduction of state explosion

Outline

Introduction

Classical BWS

Our Approach

Experiments

Summary

Backward Search [Abdulla et al., 1996]

WQOS and cover relation

BWS operates over a *well quasi-ordered system* (WQOS). In our case: WQO is the *covers* relation:

$$(s, \bar{\ell}_1, \ldots, \bar{\ell}_{\bar{n}}) \succeq (s, \ell_1, \ldots, \ell_n)$$

whenever $multiset\{\bar{\ell}_1,\ldots,\bar{\ell}_{\bar{n}}\}\supseteq multiset\{\ell_1,\ldots,\ell_n\}.$

Backward Search [Abdulla et al., 1996]

$$CovPre(w) = min Pre(w)$$

Outline

Introduction

Classical BWS

Our Approach

Experiments

Summary

State Representation

Store states in counter-abstracted form:

$$\tau = \langle s, \{(\ell_1, n_1), \dots, (\ell_k, n_k)\} \rangle$$

- ℓ_1, \dots, ℓ_k are the *distinct* local states occurring in τ
- ▶ $n_i = \#$ of threads in local state ℓ_i in τ $(n_i > 0!)$

Cover Predecessor Computation

$$\mathsf{CovPre}(w) = \mathsf{min}\{p : \exists \bar{w} \succeq w : p \to \bar{w}\}\$$

Two challenges:

- **1.** given w, need to explore expanded elements $\bar{w} \succeq w$
 - ⇒ how many threads to be added?
- **2.** given \bar{w} , need to compute predecessor: $p \to \bar{w}$ We do not have \to , only the program \mathcal{B} !
 - \Rightarrow how to execute \mathcal{B} backwards?

Cover Predecessor Computation

Two challenges

- 1. need to expand w to \bar{w}
- 2. need to execute \mathcal{B} backwards from \bar{w}

The solutions

- 1. adding a **single** thread to *w* is sufficient¹
- 2. execute B backwards via WP and CFG

¹ see paper for details

$$\tau' = \langle s', \{(\ell'_1, n'_1), \dots, (\ell'_k, n'_k)\} \rangle$$

Standard predecessors

$$\tau' = \langle s', \{(\ell'_1, n'_1), \dots, (\ell'_k, n'_k)\} \rangle$$

Sequential statements (e.g. assignments)

compute the predecessors using WP_{e.stmt}:

for each
$$(s, \ell)$$
 s.t. $\mathsf{WP}_{e.stmt}(s, \ell, s', \ell'_i)$ compute the predecessors of τ' w.r.t. (s, ℓ)

$$\tau' = \langle s', \{\ldots, (\ell_i', n_i), \ldots, (\ell_i', n_j), \ldots \} \rangle$$

Thread creation statement

au' has a predecessor iff there exists ℓ_i' , ℓ_i' in au' s.t.

$$\ell'_{i}.pc = 11$$
 $\land \quad \ell'_{j}.pc = 20$
 $\land \quad \forall v \in V_{L}: \ell'_{j}.v = \ell'_{i}.v$

Predecessor:

$$\tau = \langle s', \{\ldots, (\ell'_i, n_i - 1), \ldots, (\ell'_j, n_j - 1), \ldots, (\ell_k, n_k + 1), \ldots \} \rangle$$

where $\ell_k.pc = 10 \land \forall v \in V_L : \ell_k.v = \ell'_i.v$

$$\tau' = \langle s', \{\ldots, (\ell'_i, n_i), \ldots, (\ell'_j, n_j), \ldots, (\ell'_k, n_k) \} \rangle$$

Broadcast statement

First find

$$\ell'_{i}.pc = 31, \ell'_{j}.pc = 21, \ell'_{k}.pc = 11$$

10: wait;
11: ...

20: wait;
21: ...

30: broadcast;
31: ...

broadcast

Broadcast statement

Current State

```
10: wait;
20: wait;
30: broadcast;
```

```
10: wait;
 11: ...
20: wait;
 30: broadcast;
```

broadcast

Broadcast statement

Current State

```
10: wait;
20: wait;
30: broadcast;
```

```
10: wait;
20: wait;
30: broadcast;
```

broadcast

Broadcast statement

Current State

```
10: wait;
20: wait;
30: broadcast;
```

```
10: wait;
 11: ...
 20: wait;
 30: broadcast;
```

broadcast

Broadcast statement

Current State

```
10: wait;
20: wait;
30: broadcast;
```

```
10: wait;
20: wait;
30: broadcast;
```

$$\tau' = \langle s', \{\ldots, (\ell'_i, n_i), \ldots, (\ell'_i, n_j), \ldots, (\ell'_k, n_k) \} \rangle$$

Broadcast statement

First find

$$\ell'_{i}.pc = 31, \ell'_{i}.pc = 21, \ell'_{k}.pc = 11$$

```
30: broadcast;

31: ...
```

Predecessors: Each subset of past-wait threads gives rise to a different predecessor

Our Algorithm: Expanded Predecessors

$$\tau' = \langle s', \{(\ell'_1, n'_1), \dots, (\ell'_k, n'_k)\} \rangle$$

Expanded predecessors

```
\begin{split} &\textbf{for each } (s,\ell) \text{ s.t. } \exists \textit{m'} \not\in \{\ell'_1,\ldots,\ell'_k\} : \\ &e := (\ell.\textit{pc},\textit{m'}.\textit{pc}) \in \textit{CFG} \\ &\land \textit{e.stmt} \text{ may modify the shared state} \\ &\land \mathsf{WP}_{\textit{e.stmt}}(s,\ell,s',\textit{m'}) \\ &\texttt{compute the predecessors of } \tau' \text{ w.r.t. } (s,\ell) \end{split}
```

Outline

Introduction

Classical BWS

Our Approach

Experiments

Summary

Experiments: Benchmark Sample

ID/Program	C Program				Boolean Program				Safe?
	SV	LV	LOC	Bc?	$ V_S $	$ V_L $	Its.	Mod.Sh.	Salt!
01/INC-L	2	1	46	0	3	1	2	7.5	•
02/INC-C	1	3	57	\circ	0	4	4	0	•
03/PRNSIMP-L	2	4	63	\circ	2	3	2	7.7	•
04/PRNSIMP-C	1	5	95	\circ	0	5	2	0	•
05/BS-LOOP	0	6	24	\circ	0	7	1	0	\circ
06/PTHREAD	5	0	85	\circ	7	0	5	17.1	\circ
07/MaxOpt-l	3	4	69	\circ	1	1	2	3.1	•
08/MaxOpt-c	2	6	86	\circ	0	2	2	0	•
09/STACK-L	4	2	79	\circ	1	3	3	3.8	•
10/STACK-C	3	3	89	\circ	3	1	2	6.4	•
11/BSD-ak	1	7	90	•	3	1	15	11.7	•
12/BSD-RA	2	21	87	•	3	0	19	12.3	•
13/NETBSD	1	28	152	•	3	1	30	10.1	•
14/Solaris	1	56	122	•	5	1	14	10.9	•
15/BOOP	5	2	89	\circ	5	2	4	11.4	0
:	:	:	:	:	:	:	:	:	:

Experimental Results

Outline

Introduction

Classical BWS

Our Approach

Experiments

Summary

Summary

Our approach

- avoids the static transition system construction
- operates on-the-fly: what you see is what you pay
- can result in dramatic savings

Thank You

References

- A. Donaldson, A. Kaiser, D. Kroening, M. Tautschnig, and T. Wahl, "Counterexample-guided abstraction refinement for symmetric concurrent programs," Form. Method. Syst. Des., 2012.
- R. M. Karp and R. E. Miller, "Parallel program schemata," *J. Comput. Syst. Sci.*, 1969.
- P. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay, "General decidability theorems for infinite-state systems," in *LICS*, 1996.
- A. Kaiser, D. Kroening, and T. Wahl, "Efficient coverability analysis by proof minimization," in *CONCUR*, 2012.