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Causality
A relationship between two events, when the first event is recognized as a
necessary prerequisite for the occurrence of the second. Unrolling of the program
causality relation can be exponentially more succinct than its state space.

Our Approach
We consider the problem of verifying LTL properties for infinite-state concurrent
programs. Our approach can be seen as a proof by contradiction technique. We
assume that the property is violated, and follow causal consequences from that
assumption.
� We represent sets of potential counterexample runs as concurrent traces.
� The search is organized into a trace tableau, where vertices are labeled with

concurrent traces. The root trace represents all possible counterexamples.
� We unroll the trace tableau by applying causality-based proof rules.
� The property is proven when all tableau leaves are either contradictory, or can

be covered by the premises of other vertices in the tableau.

Concurrent Traces
Compactly represent sets of program runs, by specifying events that should
necessarily occur in the run, and the partial order between them. An arbitrary
number of other events can happen in between if they satisfy the edge
constraints. Concurrent traces enjoy efficient algorithms for testing language
emptiness and inclusion.

LTL-labeled concurrent traces
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Trace Tableau
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[ Fischer, Dixon, Peim, 2001,

Clausal Temporal Resolution ]

Tools: TSPASS, TRP++, TeMP,. . .
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LTL Model Checking Algorithm
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Proof Rules
Proof rule is a set τ : {τ1, . . . , τn} of
trace transformations τi : (L −→ Ri).
A proof rule should preserve the set of
system runs: L(L) = ∪iL(Ri).

LTL proof rules
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LTL proof rules
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LTL proof rules
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LTL proof rules
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LTL Model Checking

X Full LTL

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
(atl2∧r>0) =⇒ atl3

Safety/Reachability

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
¬(atl3 ∧ atm3 )

[CONCUR 2013]

Liveness/Termination

± ∀π. Φ / ∃π. Φ

X Infinite-state

X Multi-threading

T1 ‖ . . . ‖ Tn |=
atl2 =⇒ atl3

[CAV 2014]
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Results

� Safety: our causality-based algorithm is the first that is able to analyze in
polynomial time the class of multi-threaded programs with binary locks and
arbitrary control flow.

� Termination: we have developed the first termination prover, Arctor, that
scales to a large number of concurrent threads (see table).

� LTL Model Checking: implementation is in progress. Preliminary experience
shows that in some cases our approach can achieve exponentially better results
compared to automata-based model checking.

Terminator T2 AProVE Arctor a

Threads Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB) Time(s) Mem.(MB)
1 3.37 26 2.42 38 3.17 237 0.002 2.3
2 1397 1394 3.25 44 6.79 523 0.002 2.6
3 × MO U(29.2) 253 U(26.6) 1439 0.002 2.6
4 × MO U(36.6) 316 U(71.2) 1455 0.003 2.7
5 × MO U(30.7) 400 U(312) 1536 0.007 2.7

10 × MO Z3-TO × × MO 0.027 3.0
20 × MO Z3-TO × × MO 0.30 4.2
40 × MO Z3-TO × × MO 4.30 12.7
60 × MO Z3-TO × × MO 20.8 35
80 × MO Z3-TO × × MO 67.7 145

100 × MO Z3-TO × × MO 172 231
aArctor : Abstraction Refinement of Concurrent Temporal Orderings (react.uni-saarland.de/tools/arctor/)
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